if_sk.c revision 266270
1/*	$OpenBSD: if_sk.c,v 2.33 2003/08/12 05:23:06 nate Exp $	*/
2
3/*-
4 * Copyright (c) 1997, 1998, 1999, 2000
5 *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 *    notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 *    notice, this list of conditions and the following disclaimer in the
14 *    documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 *    must display the following acknowledgement:
17 *	This product includes software developed by Bill Paul.
18 * 4. Neither the name of the author nor the names of any co-contributors
19 *    may be used to endorse or promote products derived from this software
20 *    without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
26 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
32 * THE POSSIBILITY OF SUCH DAMAGE.
33 */
34/*-
35 * Copyright (c) 2003 Nathan L. Binkert <binkertn@umich.edu>
36 *
37 * Permission to use, copy, modify, and distribute this software for any
38 * purpose with or without fee is hereby granted, provided that the above
39 * copyright notice and this permission notice appear in all copies.
40 *
41 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
42 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
43 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
44 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
45 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
46 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
47 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
48 */
49
50#include <sys/cdefs.h>
51__FBSDID("$FreeBSD: head/sys/dev/sk/if_sk.c 266270 2014-05-16 21:19:17Z brueffer $");
52
53/*
54 * SysKonnect SK-NET gigabit ethernet driver for FreeBSD. Supports
55 * the SK-984x series adapters, both single port and dual port.
56 * References:
57 * 	The XaQti XMAC II datasheet,
58 *  http://www.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
59 *	The SysKonnect GEnesis manual, http://www.syskonnect.com
60 *
61 * Note: XaQti has been acquired by Vitesse, and Vitesse does not have the
62 * XMAC II datasheet online. I have put my copy at people.freebsd.org as a
63 * convenience to others until Vitesse corrects this problem:
64 *
65 * http://people.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
66 *
67 * Written by Bill Paul <wpaul@ee.columbia.edu>
68 * Department of Electrical Engineering
69 * Columbia University, New York City
70 */
71/*
72 * The SysKonnect gigabit ethernet adapters consist of two main
73 * components: the SysKonnect GEnesis controller chip and the XaQti Corp.
74 * XMAC II gigabit ethernet MAC. The XMAC provides all of the MAC
75 * components and a PHY while the GEnesis controller provides a PCI
76 * interface with DMA support. Each card may have between 512K and
77 * 2MB of SRAM on board depending on the configuration.
78 *
79 * The SysKonnect GEnesis controller can have either one or two XMAC
80 * chips connected to it, allowing single or dual port NIC configurations.
81 * SysKonnect has the distinction of being the only vendor on the market
82 * with a dual port gigabit ethernet NIC. The GEnesis provides dual FIFOs,
83 * dual DMA queues, packet/MAC/transmit arbiters and direct access to the
84 * XMAC registers. This driver takes advantage of these features to allow
85 * both XMACs to operate as independent interfaces.
86 */
87
88#include <sys/param.h>
89#include <sys/systm.h>
90#include <sys/bus.h>
91#include <sys/endian.h>
92#include <sys/mbuf.h>
93#include <sys/malloc.h>
94#include <sys/kernel.h>
95#include <sys/module.h>
96#include <sys/socket.h>
97#include <sys/sockio.h>
98#include <sys/queue.h>
99#include <sys/sysctl.h>
100
101#include <net/bpf.h>
102#include <net/ethernet.h>
103#include <net/if.h>
104#include <net/if_var.h>
105#include <net/if_arp.h>
106#include <net/if_dl.h>
107#include <net/if_media.h>
108#include <net/if_types.h>
109#include <net/if_vlan_var.h>
110
111#include <netinet/in.h>
112#include <netinet/in_systm.h>
113#include <netinet/ip.h>
114
115#include <machine/bus.h>
116#include <machine/in_cksum.h>
117#include <machine/resource.h>
118#include <sys/rman.h>
119
120#include <dev/mii/mii.h>
121#include <dev/mii/miivar.h>
122#include <dev/mii/brgphyreg.h>
123
124#include <dev/pci/pcireg.h>
125#include <dev/pci/pcivar.h>
126
127#if 0
128#define SK_USEIOSPACE
129#endif
130
131#include <dev/sk/if_skreg.h>
132#include <dev/sk/xmaciireg.h>
133#include <dev/sk/yukonreg.h>
134
135MODULE_DEPEND(sk, pci, 1, 1, 1);
136MODULE_DEPEND(sk, ether, 1, 1, 1);
137MODULE_DEPEND(sk, miibus, 1, 1, 1);
138
139/* "device miibus" required.  See GENERIC if you get errors here. */
140#include "miibus_if.h"
141
142static const struct sk_type sk_devs[] = {
143	{
144		VENDORID_SK,
145		DEVICEID_SK_V1,
146		"SysKonnect Gigabit Ethernet (V1.0)"
147	},
148	{
149		VENDORID_SK,
150		DEVICEID_SK_V2,
151		"SysKonnect Gigabit Ethernet (V2.0)"
152	},
153	{
154		VENDORID_MARVELL,
155		DEVICEID_SK_V2,
156		"Marvell Gigabit Ethernet"
157	},
158	{
159		VENDORID_MARVELL,
160		DEVICEID_BELKIN_5005,
161		"Belkin F5D5005 Gigabit Ethernet"
162	},
163	{
164		VENDORID_3COM,
165		DEVICEID_3COM_3C940,
166		"3Com 3C940 Gigabit Ethernet"
167	},
168	{
169		VENDORID_LINKSYS,
170		DEVICEID_LINKSYS_EG1032,
171		"Linksys EG1032 Gigabit Ethernet"
172	},
173	{
174		VENDORID_DLINK,
175		DEVICEID_DLINK_DGE530T_A1,
176		"D-Link DGE-530T Gigabit Ethernet"
177	},
178	{
179		VENDORID_DLINK,
180		DEVICEID_DLINK_DGE530T_B1,
181		"D-Link DGE-530T Gigabit Ethernet"
182	},
183	{ 0, 0, NULL }
184};
185
186static int skc_probe(device_t);
187static int skc_attach(device_t);
188static int skc_detach(device_t);
189static int skc_shutdown(device_t);
190static int skc_suspend(device_t);
191static int skc_resume(device_t);
192static bus_dma_tag_t skc_get_dma_tag(device_t, device_t);
193static int sk_detach(device_t);
194static int sk_probe(device_t);
195static int sk_attach(device_t);
196static void sk_tick(void *);
197static void sk_yukon_tick(void *);
198static void sk_intr(void *);
199static void sk_intr_xmac(struct sk_if_softc *);
200static void sk_intr_bcom(struct sk_if_softc *);
201static void sk_intr_yukon(struct sk_if_softc *);
202static __inline void sk_rxcksum(struct ifnet *, struct mbuf *, u_int32_t);
203static __inline int sk_rxvalid(struct sk_softc *, u_int32_t, u_int32_t);
204static void sk_rxeof(struct sk_if_softc *);
205static void sk_jumbo_rxeof(struct sk_if_softc *);
206static void sk_txeof(struct sk_if_softc *);
207static void sk_txcksum(struct ifnet *, struct mbuf *, struct sk_tx_desc *);
208static int sk_encap(struct sk_if_softc *, struct mbuf **);
209static void sk_start(struct ifnet *);
210static void sk_start_locked(struct ifnet *);
211static int sk_ioctl(struct ifnet *, u_long, caddr_t);
212static void sk_init(void *);
213static void sk_init_locked(struct sk_if_softc *);
214static void sk_init_xmac(struct sk_if_softc *);
215static void sk_init_yukon(struct sk_if_softc *);
216static void sk_stop(struct sk_if_softc *);
217static void sk_watchdog(void *);
218static int sk_ifmedia_upd(struct ifnet *);
219static void sk_ifmedia_sts(struct ifnet *, struct ifmediareq *);
220static void sk_reset(struct sk_softc *);
221static __inline void sk_discard_rxbuf(struct sk_if_softc *, int);
222static __inline void sk_discard_jumbo_rxbuf(struct sk_if_softc *, int);
223static int sk_newbuf(struct sk_if_softc *, int);
224static int sk_jumbo_newbuf(struct sk_if_softc *, int);
225static void sk_dmamap_cb(void *, bus_dma_segment_t *, int, int);
226static int sk_dma_alloc(struct sk_if_softc *);
227static int sk_dma_jumbo_alloc(struct sk_if_softc *);
228static void sk_dma_free(struct sk_if_softc *);
229static void sk_dma_jumbo_free(struct sk_if_softc *);
230static int sk_init_rx_ring(struct sk_if_softc *);
231static int sk_init_jumbo_rx_ring(struct sk_if_softc *);
232static void sk_init_tx_ring(struct sk_if_softc *);
233static u_int32_t sk_win_read_4(struct sk_softc *, int);
234static u_int16_t sk_win_read_2(struct sk_softc *, int);
235static u_int8_t sk_win_read_1(struct sk_softc *, int);
236static void sk_win_write_4(struct sk_softc *, int, u_int32_t);
237static void sk_win_write_2(struct sk_softc *, int, u_int32_t);
238static void sk_win_write_1(struct sk_softc *, int, u_int32_t);
239
240static int sk_miibus_readreg(device_t, int, int);
241static int sk_miibus_writereg(device_t, int, int, int);
242static void sk_miibus_statchg(device_t);
243
244static int sk_xmac_miibus_readreg(struct sk_if_softc *, int, int);
245static int sk_xmac_miibus_writereg(struct sk_if_softc *, int, int,
246						int);
247static void sk_xmac_miibus_statchg(struct sk_if_softc *);
248
249static int sk_marv_miibus_readreg(struct sk_if_softc *, int, int);
250static int sk_marv_miibus_writereg(struct sk_if_softc *, int, int,
251						int);
252static void sk_marv_miibus_statchg(struct sk_if_softc *);
253
254static uint32_t sk_xmchash(const uint8_t *);
255static void sk_setfilt(struct sk_if_softc *, u_int16_t *, int);
256static void sk_rxfilter(struct sk_if_softc *);
257static void sk_rxfilter_genesis(struct sk_if_softc *);
258static void sk_rxfilter_yukon(struct sk_if_softc *);
259
260static int sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high);
261static int sysctl_hw_sk_int_mod(SYSCTL_HANDLER_ARGS);
262
263/* Tunables. */
264static int jumbo_disable = 0;
265TUNABLE_INT("hw.skc.jumbo_disable", &jumbo_disable);
266
267/*
268 * It seems that SK-NET GENESIS supports very simple checksum offload
269 * capability for Tx and I believe it can generate 0 checksum value for
270 * UDP packets in Tx as the hardware can't differenciate UDP packets from
271 * TCP packets. 0 chcecksum value for UDP packet is an invalid one as it
272 * means sender didn't perforam checksum computation. For the safety I
273 * disabled UDP checksum offload capability at the moment. Alternatively
274 * we can intrduce a LINK0/LINK1 flag as hme(4) did in its Tx checksum
275 * offload routine.
276 */
277#define SK_CSUM_FEATURES	(CSUM_TCP)
278
279/*
280 * Note that we have newbus methods for both the GEnesis controller
281 * itself and the XMAC(s). The XMACs are children of the GEnesis, and
282 * the miibus code is a child of the XMACs. We need to do it this way
283 * so that the miibus drivers can access the PHY registers on the
284 * right PHY. It's not quite what I had in mind, but it's the only
285 * design that achieves the desired effect.
286 */
287static device_method_t skc_methods[] = {
288	/* Device interface */
289	DEVMETHOD(device_probe,		skc_probe),
290	DEVMETHOD(device_attach,	skc_attach),
291	DEVMETHOD(device_detach,	skc_detach),
292	DEVMETHOD(device_suspend,	skc_suspend),
293	DEVMETHOD(device_resume,	skc_resume),
294	DEVMETHOD(device_shutdown,	skc_shutdown),
295
296	DEVMETHOD(bus_get_dma_tag,	skc_get_dma_tag),
297
298	DEVMETHOD_END
299};
300
301static driver_t skc_driver = {
302	"skc",
303	skc_methods,
304	sizeof(struct sk_softc)
305};
306
307static devclass_t skc_devclass;
308
309static device_method_t sk_methods[] = {
310	/* Device interface */
311	DEVMETHOD(device_probe,		sk_probe),
312	DEVMETHOD(device_attach,	sk_attach),
313	DEVMETHOD(device_detach,	sk_detach),
314	DEVMETHOD(device_shutdown,	bus_generic_shutdown),
315
316	/* MII interface */
317	DEVMETHOD(miibus_readreg,	sk_miibus_readreg),
318	DEVMETHOD(miibus_writereg,	sk_miibus_writereg),
319	DEVMETHOD(miibus_statchg,	sk_miibus_statchg),
320
321	DEVMETHOD_END
322};
323
324static driver_t sk_driver = {
325	"sk",
326	sk_methods,
327	sizeof(struct sk_if_softc)
328};
329
330static devclass_t sk_devclass;
331
332DRIVER_MODULE(skc, pci, skc_driver, skc_devclass, NULL, NULL);
333DRIVER_MODULE(sk, skc, sk_driver, sk_devclass, NULL, NULL);
334DRIVER_MODULE(miibus, sk, miibus_driver, miibus_devclass, NULL, NULL);
335
336static struct resource_spec sk_res_spec_io[] = {
337	{ SYS_RES_IOPORT,	PCIR_BAR(1),	RF_ACTIVE },
338	{ SYS_RES_IRQ,		0,		RF_ACTIVE | RF_SHAREABLE },
339	{ -1,			0,		0 }
340};
341
342static struct resource_spec sk_res_spec_mem[] = {
343	{ SYS_RES_MEMORY,	PCIR_BAR(0),	RF_ACTIVE },
344	{ SYS_RES_IRQ,		0,		RF_ACTIVE | RF_SHAREABLE },
345	{ -1,			0,		0 }
346};
347
348#define SK_SETBIT(sc, reg, x)		\
349	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) | x)
350
351#define SK_CLRBIT(sc, reg, x)		\
352	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) & ~x)
353
354#define SK_WIN_SETBIT_4(sc, reg, x)	\
355	sk_win_write_4(sc, reg, sk_win_read_4(sc, reg) | x)
356
357#define SK_WIN_CLRBIT_4(sc, reg, x)	\
358	sk_win_write_4(sc, reg, sk_win_read_4(sc, reg) & ~x)
359
360#define SK_WIN_SETBIT_2(sc, reg, x)	\
361	sk_win_write_2(sc, reg, sk_win_read_2(sc, reg) | x)
362
363#define SK_WIN_CLRBIT_2(sc, reg, x)	\
364	sk_win_write_2(sc, reg, sk_win_read_2(sc, reg) & ~x)
365
366static u_int32_t
367sk_win_read_4(sc, reg)
368	struct sk_softc		*sc;
369	int			reg;
370{
371#ifdef SK_USEIOSPACE
372	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
373	return(CSR_READ_4(sc, SK_WIN_BASE + SK_REG(reg)));
374#else
375	return(CSR_READ_4(sc, reg));
376#endif
377}
378
379static u_int16_t
380sk_win_read_2(sc, reg)
381	struct sk_softc		*sc;
382	int			reg;
383{
384#ifdef SK_USEIOSPACE
385	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
386	return(CSR_READ_2(sc, SK_WIN_BASE + SK_REG(reg)));
387#else
388	return(CSR_READ_2(sc, reg));
389#endif
390}
391
392static u_int8_t
393sk_win_read_1(sc, reg)
394	struct sk_softc		*sc;
395	int			reg;
396{
397#ifdef SK_USEIOSPACE
398	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
399	return(CSR_READ_1(sc, SK_WIN_BASE + SK_REG(reg)));
400#else
401	return(CSR_READ_1(sc, reg));
402#endif
403}
404
405static void
406sk_win_write_4(sc, reg, val)
407	struct sk_softc		*sc;
408	int			reg;
409	u_int32_t		val;
410{
411#ifdef SK_USEIOSPACE
412	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
413	CSR_WRITE_4(sc, SK_WIN_BASE + SK_REG(reg), val);
414#else
415	CSR_WRITE_4(sc, reg, val);
416#endif
417	return;
418}
419
420static void
421sk_win_write_2(sc, reg, val)
422	struct sk_softc		*sc;
423	int			reg;
424	u_int32_t		val;
425{
426#ifdef SK_USEIOSPACE
427	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
428	CSR_WRITE_2(sc, SK_WIN_BASE + SK_REG(reg), val);
429#else
430	CSR_WRITE_2(sc, reg, val);
431#endif
432	return;
433}
434
435static void
436sk_win_write_1(sc, reg, val)
437	struct sk_softc		*sc;
438	int			reg;
439	u_int32_t		val;
440{
441#ifdef SK_USEIOSPACE
442	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
443	CSR_WRITE_1(sc, SK_WIN_BASE + SK_REG(reg), val);
444#else
445	CSR_WRITE_1(sc, reg, val);
446#endif
447	return;
448}
449
450static int
451sk_miibus_readreg(dev, phy, reg)
452	device_t		dev;
453	int			phy, reg;
454{
455	struct sk_if_softc	*sc_if;
456	int			v;
457
458	sc_if = device_get_softc(dev);
459
460	SK_IF_MII_LOCK(sc_if);
461	switch(sc_if->sk_softc->sk_type) {
462	case SK_GENESIS:
463		v = sk_xmac_miibus_readreg(sc_if, phy, reg);
464		break;
465	case SK_YUKON:
466	case SK_YUKON_LITE:
467	case SK_YUKON_LP:
468		v = sk_marv_miibus_readreg(sc_if, phy, reg);
469		break;
470	default:
471		v = 0;
472		break;
473	}
474	SK_IF_MII_UNLOCK(sc_if);
475
476	return (v);
477}
478
479static int
480sk_miibus_writereg(dev, phy, reg, val)
481	device_t		dev;
482	int			phy, reg, val;
483{
484	struct sk_if_softc	*sc_if;
485	int			v;
486
487	sc_if = device_get_softc(dev);
488
489	SK_IF_MII_LOCK(sc_if);
490	switch(sc_if->sk_softc->sk_type) {
491	case SK_GENESIS:
492		v = sk_xmac_miibus_writereg(sc_if, phy, reg, val);
493		break;
494	case SK_YUKON:
495	case SK_YUKON_LITE:
496	case SK_YUKON_LP:
497		v = sk_marv_miibus_writereg(sc_if, phy, reg, val);
498		break;
499	default:
500		v = 0;
501		break;
502	}
503	SK_IF_MII_UNLOCK(sc_if);
504
505	return (v);
506}
507
508static void
509sk_miibus_statchg(dev)
510	device_t		dev;
511{
512	struct sk_if_softc	*sc_if;
513
514	sc_if = device_get_softc(dev);
515
516	SK_IF_MII_LOCK(sc_if);
517	switch(sc_if->sk_softc->sk_type) {
518	case SK_GENESIS:
519		sk_xmac_miibus_statchg(sc_if);
520		break;
521	case SK_YUKON:
522	case SK_YUKON_LITE:
523	case SK_YUKON_LP:
524		sk_marv_miibus_statchg(sc_if);
525		break;
526	}
527	SK_IF_MII_UNLOCK(sc_if);
528
529	return;
530}
531
532static int
533sk_xmac_miibus_readreg(sc_if, phy, reg)
534	struct sk_if_softc	*sc_if;
535	int			phy, reg;
536{
537	int			i;
538
539	SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8));
540	SK_XM_READ_2(sc_if, XM_PHY_DATA);
541	if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) {
542		for (i = 0; i < SK_TIMEOUT; i++) {
543			DELAY(1);
544			if (SK_XM_READ_2(sc_if, XM_MMUCMD) &
545			    XM_MMUCMD_PHYDATARDY)
546				break;
547		}
548
549		if (i == SK_TIMEOUT) {
550			if_printf(sc_if->sk_ifp, "phy failed to come ready\n");
551			return(0);
552		}
553	}
554	DELAY(1);
555	i = SK_XM_READ_2(sc_if, XM_PHY_DATA);
556
557	return(i);
558}
559
560static int
561sk_xmac_miibus_writereg(sc_if, phy, reg, val)
562	struct sk_if_softc	*sc_if;
563	int			phy, reg, val;
564{
565	int			i;
566
567	SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8));
568	for (i = 0; i < SK_TIMEOUT; i++) {
569		if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY))
570			break;
571	}
572
573	if (i == SK_TIMEOUT) {
574		if_printf(sc_if->sk_ifp, "phy failed to come ready\n");
575		return (ETIMEDOUT);
576	}
577
578	SK_XM_WRITE_2(sc_if, XM_PHY_DATA, val);
579	for (i = 0; i < SK_TIMEOUT; i++) {
580		DELAY(1);
581		if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY))
582			break;
583	}
584	if (i == SK_TIMEOUT)
585		if_printf(sc_if->sk_ifp, "phy write timed out\n");
586
587	return(0);
588}
589
590static void
591sk_xmac_miibus_statchg(sc_if)
592	struct sk_if_softc	*sc_if;
593{
594	struct mii_data		*mii;
595
596	mii = device_get_softc(sc_if->sk_miibus);
597
598	/*
599	 * If this is a GMII PHY, manually set the XMAC's
600	 * duplex mode accordingly.
601	 */
602	if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) {
603		if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
604			SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX);
605		} else {
606			SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX);
607		}
608	}
609}
610
611static int
612sk_marv_miibus_readreg(sc_if, phy, reg)
613	struct sk_if_softc	*sc_if;
614	int			phy, reg;
615{
616	u_int16_t		val;
617	int			i;
618
619	if (sc_if->sk_phytype != SK_PHYTYPE_MARV_COPPER &&
620	    sc_if->sk_phytype != SK_PHYTYPE_MARV_FIBER) {
621		return(0);
622	}
623
624        SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
625		      YU_SMICR_REGAD(reg) | YU_SMICR_OP_READ);
626
627	for (i = 0; i < SK_TIMEOUT; i++) {
628		DELAY(1);
629		val = SK_YU_READ_2(sc_if, YUKON_SMICR);
630		if (val & YU_SMICR_READ_VALID)
631			break;
632	}
633
634	if (i == SK_TIMEOUT) {
635		if_printf(sc_if->sk_ifp, "phy failed to come ready\n");
636		return(0);
637	}
638
639	val = SK_YU_READ_2(sc_if, YUKON_SMIDR);
640
641	return(val);
642}
643
644static int
645sk_marv_miibus_writereg(sc_if, phy, reg, val)
646	struct sk_if_softc	*sc_if;
647	int			phy, reg, val;
648{
649	int			i;
650
651	SK_YU_WRITE_2(sc_if, YUKON_SMIDR, val);
652	SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
653		      YU_SMICR_REGAD(reg) | YU_SMICR_OP_WRITE);
654
655	for (i = 0; i < SK_TIMEOUT; i++) {
656		DELAY(1);
657		if ((SK_YU_READ_2(sc_if, YUKON_SMICR) & YU_SMICR_BUSY) == 0)
658			break;
659	}
660	if (i == SK_TIMEOUT)
661		if_printf(sc_if->sk_ifp, "phy write timeout\n");
662
663	return(0);
664}
665
666static void
667sk_marv_miibus_statchg(sc_if)
668	struct sk_if_softc	*sc_if;
669{
670	return;
671}
672
673#define HASH_BITS		6
674
675static u_int32_t
676sk_xmchash(addr)
677	const uint8_t *addr;
678{
679	uint32_t crc;
680
681	/* Compute CRC for the address value. */
682	crc = ether_crc32_le(addr, ETHER_ADDR_LEN);
683
684	return (~crc & ((1 << HASH_BITS) - 1));
685}
686
687static void
688sk_setfilt(sc_if, addr, slot)
689	struct sk_if_softc	*sc_if;
690	u_int16_t		*addr;
691	int			slot;
692{
693	int			base;
694
695	base = XM_RXFILT_ENTRY(slot);
696
697	SK_XM_WRITE_2(sc_if, base, addr[0]);
698	SK_XM_WRITE_2(sc_if, base + 2, addr[1]);
699	SK_XM_WRITE_2(sc_if, base + 4, addr[2]);
700
701	return;
702}
703
704static void
705sk_rxfilter(sc_if)
706	struct sk_if_softc	*sc_if;
707{
708	struct sk_softc		*sc;
709
710	SK_IF_LOCK_ASSERT(sc_if);
711
712	sc = sc_if->sk_softc;
713	if (sc->sk_type == SK_GENESIS)
714		sk_rxfilter_genesis(sc_if);
715	else
716		sk_rxfilter_yukon(sc_if);
717}
718
719static void
720sk_rxfilter_genesis(sc_if)
721	struct sk_if_softc	*sc_if;
722{
723	struct ifnet		*ifp = sc_if->sk_ifp;
724	u_int32_t		hashes[2] = { 0, 0 }, mode;
725	int			h = 0, i;
726	struct ifmultiaddr	*ifma;
727	u_int16_t		dummy[] = { 0, 0, 0 };
728	u_int16_t		maddr[(ETHER_ADDR_LEN+1)/2];
729
730	SK_IF_LOCK_ASSERT(sc_if);
731
732	mode = SK_XM_READ_4(sc_if, XM_MODE);
733	mode &= ~(XM_MODE_RX_PROMISC | XM_MODE_RX_USE_HASH |
734	    XM_MODE_RX_USE_PERFECT);
735	/* First, zot all the existing perfect filters. */
736	for (i = 1; i < XM_RXFILT_MAX; i++)
737		sk_setfilt(sc_if, dummy, i);
738
739	/* Now program new ones. */
740	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
741		if (ifp->if_flags & IFF_ALLMULTI)
742			mode |= XM_MODE_RX_USE_HASH;
743		if (ifp->if_flags & IFF_PROMISC)
744			mode |= XM_MODE_RX_PROMISC;
745		hashes[0] = 0xFFFFFFFF;
746		hashes[1] = 0xFFFFFFFF;
747	} else {
748		i = 1;
749		if_maddr_rlock(ifp);
750		TAILQ_FOREACH_REVERSE(ifma, &ifp->if_multiaddrs, ifmultihead,
751		    ifma_link) {
752			if (ifma->ifma_addr->sa_family != AF_LINK)
753				continue;
754			/*
755			 * Program the first XM_RXFILT_MAX multicast groups
756			 * into the perfect filter.
757			 */
758			bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
759			    maddr, ETHER_ADDR_LEN);
760			if (i < XM_RXFILT_MAX) {
761				sk_setfilt(sc_if, maddr, i);
762				mode |= XM_MODE_RX_USE_PERFECT;
763				i++;
764				continue;
765			}
766			h = sk_xmchash((const uint8_t *)maddr);
767			if (h < 32)
768				hashes[0] |= (1 << h);
769			else
770				hashes[1] |= (1 << (h - 32));
771			mode |= XM_MODE_RX_USE_HASH;
772		}
773		if_maddr_runlock(ifp);
774	}
775
776	SK_XM_WRITE_4(sc_if, XM_MODE, mode);
777	SK_XM_WRITE_4(sc_if, XM_MAR0, hashes[0]);
778	SK_XM_WRITE_4(sc_if, XM_MAR2, hashes[1]);
779}
780
781static void
782sk_rxfilter_yukon(sc_if)
783	struct sk_if_softc	*sc_if;
784{
785	struct ifnet		*ifp;
786	u_int32_t		crc, hashes[2] = { 0, 0 }, mode;
787	struct ifmultiaddr	*ifma;
788
789	SK_IF_LOCK_ASSERT(sc_if);
790
791	ifp = sc_if->sk_ifp;
792	mode = SK_YU_READ_2(sc_if, YUKON_RCR);
793	if (ifp->if_flags & IFF_PROMISC)
794		mode &= ~(YU_RCR_UFLEN | YU_RCR_MUFLEN);
795	else if (ifp->if_flags & IFF_ALLMULTI) {
796		mode |= YU_RCR_UFLEN | YU_RCR_MUFLEN;
797		hashes[0] = 0xFFFFFFFF;
798		hashes[1] = 0xFFFFFFFF;
799	} else {
800		mode |= YU_RCR_UFLEN;
801		if_maddr_rlock(ifp);
802		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
803			if (ifma->ifma_addr->sa_family != AF_LINK)
804				continue;
805			crc = ether_crc32_be(LLADDR((struct sockaddr_dl *)
806			    ifma->ifma_addr), ETHER_ADDR_LEN);
807			/* Just want the 6 least significant bits. */
808			crc &= 0x3f;
809			/* Set the corresponding bit in the hash table. */
810			hashes[crc >> 5] |= 1 << (crc & 0x1f);
811		}
812		if_maddr_runlock(ifp);
813		if (hashes[0] != 0 || hashes[1] != 0)
814			mode |= YU_RCR_MUFLEN;
815	}
816
817	SK_YU_WRITE_2(sc_if, YUKON_MCAH1, hashes[0] & 0xffff);
818	SK_YU_WRITE_2(sc_if, YUKON_MCAH2, (hashes[0] >> 16) & 0xffff);
819	SK_YU_WRITE_2(sc_if, YUKON_MCAH3, hashes[1] & 0xffff);
820	SK_YU_WRITE_2(sc_if, YUKON_MCAH4, (hashes[1] >> 16) & 0xffff);
821	SK_YU_WRITE_2(sc_if, YUKON_RCR, mode);
822}
823
824static int
825sk_init_rx_ring(sc_if)
826	struct sk_if_softc	*sc_if;
827{
828	struct sk_ring_data	*rd;
829	bus_addr_t		addr;
830	u_int32_t		csum_start;
831	int			i;
832
833	sc_if->sk_cdata.sk_rx_cons = 0;
834
835	csum_start = (ETHER_HDR_LEN + sizeof(struct ip))  << 16 |
836	    ETHER_HDR_LEN;
837	rd = &sc_if->sk_rdata;
838	bzero(rd->sk_rx_ring, sizeof(struct sk_rx_desc) * SK_RX_RING_CNT);
839	for (i = 0; i < SK_RX_RING_CNT; i++) {
840		if (sk_newbuf(sc_if, i) != 0)
841			return (ENOBUFS);
842		if (i == (SK_RX_RING_CNT - 1))
843			addr = SK_RX_RING_ADDR(sc_if, 0);
844		else
845			addr = SK_RX_RING_ADDR(sc_if, i + 1);
846		rd->sk_rx_ring[i].sk_next = htole32(SK_ADDR_LO(addr));
847		rd->sk_rx_ring[i].sk_csum_start = htole32(csum_start);
848	}
849
850	bus_dmamap_sync(sc_if->sk_cdata.sk_rx_ring_tag,
851	    sc_if->sk_cdata.sk_rx_ring_map,
852	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
853
854	return(0);
855}
856
857static int
858sk_init_jumbo_rx_ring(sc_if)
859	struct sk_if_softc	*sc_if;
860{
861	struct sk_ring_data	*rd;
862	bus_addr_t		addr;
863	u_int32_t		csum_start;
864	int			i;
865
866	sc_if->sk_cdata.sk_jumbo_rx_cons = 0;
867
868	csum_start = ((ETHER_HDR_LEN + sizeof(struct ip)) << 16) |
869	    ETHER_HDR_LEN;
870	rd = &sc_if->sk_rdata;
871	bzero(rd->sk_jumbo_rx_ring,
872	    sizeof(struct sk_rx_desc) * SK_JUMBO_RX_RING_CNT);
873	for (i = 0; i < SK_JUMBO_RX_RING_CNT; i++) {
874		if (sk_jumbo_newbuf(sc_if, i) != 0)
875			return (ENOBUFS);
876		if (i == (SK_JUMBO_RX_RING_CNT - 1))
877			addr = SK_JUMBO_RX_RING_ADDR(sc_if, 0);
878		else
879			addr = SK_JUMBO_RX_RING_ADDR(sc_if, i + 1);
880		rd->sk_jumbo_rx_ring[i].sk_next = htole32(SK_ADDR_LO(addr));
881		rd->sk_jumbo_rx_ring[i].sk_csum_start = htole32(csum_start);
882	}
883
884	bus_dmamap_sync(sc_if->sk_cdata.sk_jumbo_rx_ring_tag,
885	    sc_if->sk_cdata.sk_jumbo_rx_ring_map,
886	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
887
888	return (0);
889}
890
891static void
892sk_init_tx_ring(sc_if)
893	struct sk_if_softc	*sc_if;
894{
895	struct sk_ring_data	*rd;
896	struct sk_txdesc	*txd;
897	bus_addr_t		addr;
898	int			i;
899
900	STAILQ_INIT(&sc_if->sk_cdata.sk_txfreeq);
901	STAILQ_INIT(&sc_if->sk_cdata.sk_txbusyq);
902
903	sc_if->sk_cdata.sk_tx_prod = 0;
904	sc_if->sk_cdata.sk_tx_cons = 0;
905	sc_if->sk_cdata.sk_tx_cnt = 0;
906
907	rd = &sc_if->sk_rdata;
908	bzero(rd->sk_tx_ring, sizeof(struct sk_tx_desc) * SK_TX_RING_CNT);
909	for (i = 0; i < SK_TX_RING_CNT; i++) {
910		if (i == (SK_TX_RING_CNT - 1))
911			addr = SK_TX_RING_ADDR(sc_if, 0);
912		else
913			addr = SK_TX_RING_ADDR(sc_if, i + 1);
914		rd->sk_tx_ring[i].sk_next = htole32(SK_ADDR_LO(addr));
915		txd = &sc_if->sk_cdata.sk_txdesc[i];
916		STAILQ_INSERT_TAIL(&sc_if->sk_cdata.sk_txfreeq, txd, tx_q);
917	}
918
919	bus_dmamap_sync(sc_if->sk_cdata.sk_tx_ring_tag,
920	    sc_if->sk_cdata.sk_tx_ring_map,
921	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
922}
923
924static __inline void
925sk_discard_rxbuf(sc_if, idx)
926	struct sk_if_softc	*sc_if;
927	int			idx;
928{
929	struct sk_rx_desc	*r;
930	struct sk_rxdesc	*rxd;
931	struct mbuf		*m;
932
933
934	r = &sc_if->sk_rdata.sk_rx_ring[idx];
935	rxd = &sc_if->sk_cdata.sk_rxdesc[idx];
936	m = rxd->rx_m;
937	r->sk_ctl = htole32(m->m_len | SK_RXSTAT | SK_OPCODE_CSUM);
938}
939
940static __inline void
941sk_discard_jumbo_rxbuf(sc_if, idx)
942	struct sk_if_softc	*sc_if;
943	int			idx;
944{
945	struct sk_rx_desc	*r;
946	struct sk_rxdesc	*rxd;
947	struct mbuf		*m;
948
949	r = &sc_if->sk_rdata.sk_jumbo_rx_ring[idx];
950	rxd = &sc_if->sk_cdata.sk_jumbo_rxdesc[idx];
951	m = rxd->rx_m;
952	r->sk_ctl = htole32(m->m_len | SK_RXSTAT | SK_OPCODE_CSUM);
953}
954
955static int
956sk_newbuf(sc_if, idx)
957	struct sk_if_softc	*sc_if;
958	int 			idx;
959{
960	struct sk_rx_desc	*r;
961	struct sk_rxdesc	*rxd;
962	struct mbuf		*m;
963	bus_dma_segment_t	segs[1];
964	bus_dmamap_t		map;
965	int			nsegs;
966
967	m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
968	if (m == NULL)
969		return (ENOBUFS);
970	m->m_len = m->m_pkthdr.len = MCLBYTES;
971	m_adj(m, ETHER_ALIGN);
972
973	if (bus_dmamap_load_mbuf_sg(sc_if->sk_cdata.sk_rx_tag,
974	    sc_if->sk_cdata.sk_rx_sparemap, m, segs, &nsegs, 0) != 0) {
975		m_freem(m);
976		return (ENOBUFS);
977	}
978	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
979
980	rxd = &sc_if->sk_cdata.sk_rxdesc[idx];
981	if (rxd->rx_m != NULL) {
982		bus_dmamap_sync(sc_if->sk_cdata.sk_rx_tag, rxd->rx_dmamap,
983		    BUS_DMASYNC_POSTREAD);
984		bus_dmamap_unload(sc_if->sk_cdata.sk_rx_tag, rxd->rx_dmamap);
985	}
986	map = rxd->rx_dmamap;
987	rxd->rx_dmamap = sc_if->sk_cdata.sk_rx_sparemap;
988	sc_if->sk_cdata.sk_rx_sparemap = map;
989	bus_dmamap_sync(sc_if->sk_cdata.sk_rx_tag, rxd->rx_dmamap,
990	    BUS_DMASYNC_PREREAD);
991	rxd->rx_m = m;
992	r = &sc_if->sk_rdata.sk_rx_ring[idx];
993	r->sk_data_lo = htole32(SK_ADDR_LO(segs[0].ds_addr));
994	r->sk_data_hi = htole32(SK_ADDR_HI(segs[0].ds_addr));
995	r->sk_ctl = htole32(segs[0].ds_len | SK_RXSTAT | SK_OPCODE_CSUM);
996
997	return (0);
998}
999
1000static int
1001sk_jumbo_newbuf(sc_if, idx)
1002	struct sk_if_softc	*sc_if;
1003	int			idx;
1004{
1005	struct sk_rx_desc	*r;
1006	struct sk_rxdesc	*rxd;
1007	struct mbuf		*m;
1008	bus_dma_segment_t	segs[1];
1009	bus_dmamap_t		map;
1010	int			nsegs;
1011
1012	m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUM9BYTES);
1013	if (m == NULL)
1014		return (ENOBUFS);
1015	if ((m->m_flags & M_EXT) == 0) {
1016		m_freem(m);
1017		return (ENOBUFS);
1018	}
1019	m->m_pkthdr.len = m->m_len = MJUM9BYTES;
1020	/*
1021	 * Adjust alignment so packet payload begins on a
1022	 * longword boundary. Mandatory for Alpha, useful on
1023	 * x86 too.
1024	 */
1025	m_adj(m, ETHER_ALIGN);
1026
1027	if (bus_dmamap_load_mbuf_sg(sc_if->sk_cdata.sk_jumbo_rx_tag,
1028	    sc_if->sk_cdata.sk_jumbo_rx_sparemap, m, segs, &nsegs, 0) != 0) {
1029		m_freem(m);
1030		return (ENOBUFS);
1031	}
1032	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
1033
1034	rxd = &sc_if->sk_cdata.sk_jumbo_rxdesc[idx];
1035	if (rxd->rx_m != NULL) {
1036		bus_dmamap_sync(sc_if->sk_cdata.sk_jumbo_rx_tag, rxd->rx_dmamap,
1037		    BUS_DMASYNC_POSTREAD);
1038		bus_dmamap_unload(sc_if->sk_cdata.sk_jumbo_rx_tag,
1039		    rxd->rx_dmamap);
1040	}
1041	map = rxd->rx_dmamap;
1042	rxd->rx_dmamap = sc_if->sk_cdata.sk_jumbo_rx_sparemap;
1043	sc_if->sk_cdata.sk_jumbo_rx_sparemap = map;
1044	bus_dmamap_sync(sc_if->sk_cdata.sk_jumbo_rx_tag, rxd->rx_dmamap,
1045	    BUS_DMASYNC_PREREAD);
1046	rxd->rx_m = m;
1047	r = &sc_if->sk_rdata.sk_jumbo_rx_ring[idx];
1048	r->sk_data_lo = htole32(SK_ADDR_LO(segs[0].ds_addr));
1049	r->sk_data_hi = htole32(SK_ADDR_HI(segs[0].ds_addr));
1050	r->sk_ctl = htole32(segs[0].ds_len | SK_RXSTAT | SK_OPCODE_CSUM);
1051
1052	return (0);
1053}
1054
1055/*
1056 * Set media options.
1057 */
1058static int
1059sk_ifmedia_upd(ifp)
1060	struct ifnet		*ifp;
1061{
1062	struct sk_if_softc	*sc_if = ifp->if_softc;
1063	struct mii_data		*mii;
1064
1065	mii = device_get_softc(sc_if->sk_miibus);
1066	sk_init(sc_if);
1067	mii_mediachg(mii);
1068
1069	return(0);
1070}
1071
1072/*
1073 * Report current media status.
1074 */
1075static void
1076sk_ifmedia_sts(ifp, ifmr)
1077	struct ifnet		*ifp;
1078	struct ifmediareq	*ifmr;
1079{
1080	struct sk_if_softc	*sc_if;
1081	struct mii_data		*mii;
1082
1083	sc_if = ifp->if_softc;
1084	mii = device_get_softc(sc_if->sk_miibus);
1085
1086	mii_pollstat(mii);
1087	ifmr->ifm_active = mii->mii_media_active;
1088	ifmr->ifm_status = mii->mii_media_status;
1089
1090	return;
1091}
1092
1093static int
1094sk_ioctl(ifp, command, data)
1095	struct ifnet		*ifp;
1096	u_long			command;
1097	caddr_t			data;
1098{
1099	struct sk_if_softc	*sc_if = ifp->if_softc;
1100	struct ifreq		*ifr = (struct ifreq *) data;
1101	int			error, mask;
1102	struct mii_data		*mii;
1103
1104	error = 0;
1105	switch(command) {
1106	case SIOCSIFMTU:
1107		if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > SK_JUMBO_MTU)
1108			error = EINVAL;
1109		else if (ifp->if_mtu != ifr->ifr_mtu) {
1110			if (sc_if->sk_jumbo_disable != 0 &&
1111			    ifr->ifr_mtu > SK_MAX_FRAMELEN)
1112				error = EINVAL;
1113			else {
1114				SK_IF_LOCK(sc_if);
1115				ifp->if_mtu = ifr->ifr_mtu;
1116				if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1117					ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1118					sk_init_locked(sc_if);
1119				}
1120				SK_IF_UNLOCK(sc_if);
1121			}
1122		}
1123		break;
1124	case SIOCSIFFLAGS:
1125		SK_IF_LOCK(sc_if);
1126		if (ifp->if_flags & IFF_UP) {
1127			if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1128				if ((ifp->if_flags ^ sc_if->sk_if_flags)
1129				    & (IFF_PROMISC | IFF_ALLMULTI))
1130					sk_rxfilter(sc_if);
1131			} else
1132				sk_init_locked(sc_if);
1133		} else {
1134			if (ifp->if_drv_flags & IFF_DRV_RUNNING)
1135				sk_stop(sc_if);
1136		}
1137		sc_if->sk_if_flags = ifp->if_flags;
1138		SK_IF_UNLOCK(sc_if);
1139		break;
1140	case SIOCADDMULTI:
1141	case SIOCDELMULTI:
1142		SK_IF_LOCK(sc_if);
1143		if (ifp->if_drv_flags & IFF_DRV_RUNNING)
1144			sk_rxfilter(sc_if);
1145		SK_IF_UNLOCK(sc_if);
1146		break;
1147	case SIOCGIFMEDIA:
1148	case SIOCSIFMEDIA:
1149		mii = device_get_softc(sc_if->sk_miibus);
1150		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
1151		break;
1152	case SIOCSIFCAP:
1153		SK_IF_LOCK(sc_if);
1154		if (sc_if->sk_softc->sk_type == SK_GENESIS) {
1155			SK_IF_UNLOCK(sc_if);
1156			break;
1157		}
1158		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
1159		if ((mask & IFCAP_TXCSUM) != 0 &&
1160		    (IFCAP_TXCSUM & ifp->if_capabilities) != 0) {
1161			ifp->if_capenable ^= IFCAP_TXCSUM;
1162			if ((ifp->if_capenable & IFCAP_TXCSUM) != 0)
1163				ifp->if_hwassist |= SK_CSUM_FEATURES;
1164			else
1165				ifp->if_hwassist &= ~SK_CSUM_FEATURES;
1166		}
1167		if ((mask & IFCAP_RXCSUM) != 0 &&
1168		    (IFCAP_RXCSUM & ifp->if_capabilities) != 0)
1169			ifp->if_capenable ^= IFCAP_RXCSUM;
1170		SK_IF_UNLOCK(sc_if);
1171		break;
1172	default:
1173		error = ether_ioctl(ifp, command, data);
1174		break;
1175	}
1176
1177	return (error);
1178}
1179
1180/*
1181 * Probe for a SysKonnect GEnesis chip. Check the PCI vendor and device
1182 * IDs against our list and return a device name if we find a match.
1183 */
1184static int
1185skc_probe(dev)
1186	device_t		dev;
1187{
1188	const struct sk_type	*t = sk_devs;
1189
1190	while(t->sk_name != NULL) {
1191		if ((pci_get_vendor(dev) == t->sk_vid) &&
1192		    (pci_get_device(dev) == t->sk_did)) {
1193			/*
1194			 * Only attach to rev. 2 of the Linksys EG1032 adapter.
1195			 * Rev. 3 is supported by re(4).
1196			 */
1197			if ((t->sk_vid == VENDORID_LINKSYS) &&
1198				(t->sk_did == DEVICEID_LINKSYS_EG1032) &&
1199				(pci_get_subdevice(dev) !=
1200				 SUBDEVICEID_LINKSYS_EG1032_REV2)) {
1201				t++;
1202				continue;
1203			}
1204			device_set_desc(dev, t->sk_name);
1205			return (BUS_PROBE_DEFAULT);
1206		}
1207		t++;
1208	}
1209
1210	return(ENXIO);
1211}
1212
1213/*
1214 * Force the GEnesis into reset, then bring it out of reset.
1215 */
1216static void
1217sk_reset(sc)
1218	struct sk_softc		*sc;
1219{
1220
1221	CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_RESET);
1222	CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_RESET);
1223	if (SK_YUKON_FAMILY(sc->sk_type))
1224		CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_SET);
1225
1226	DELAY(1000);
1227	CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_UNRESET);
1228	DELAY(2);
1229	CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_UNRESET);
1230	if (SK_YUKON_FAMILY(sc->sk_type))
1231		CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_CLEAR);
1232
1233	if (sc->sk_type == SK_GENESIS) {
1234		/* Configure packet arbiter */
1235		sk_win_write_2(sc, SK_PKTARB_CTL, SK_PKTARBCTL_UNRESET);
1236		sk_win_write_2(sc, SK_RXPA1_TINIT, SK_PKTARB_TIMEOUT);
1237		sk_win_write_2(sc, SK_TXPA1_TINIT, SK_PKTARB_TIMEOUT);
1238		sk_win_write_2(sc, SK_RXPA2_TINIT, SK_PKTARB_TIMEOUT);
1239		sk_win_write_2(sc, SK_TXPA2_TINIT, SK_PKTARB_TIMEOUT);
1240	}
1241
1242	/* Enable RAM interface */
1243	sk_win_write_4(sc, SK_RAMCTL, SK_RAMCTL_UNRESET);
1244
1245	/*
1246         * Configure interrupt moderation. The moderation timer
1247	 * defers interrupts specified in the interrupt moderation
1248	 * timer mask based on the timeout specified in the interrupt
1249	 * moderation timer init register. Each bit in the timer
1250	 * register represents one tick, so to specify a timeout in
1251	 * microseconds, we have to multiply by the correct number of
1252	 * ticks-per-microsecond.
1253	 */
1254	switch (sc->sk_type) {
1255	case SK_GENESIS:
1256		sc->sk_int_ticks = SK_IMTIMER_TICKS_GENESIS;
1257		break;
1258	default:
1259		sc->sk_int_ticks = SK_IMTIMER_TICKS_YUKON;
1260		break;
1261	}
1262	if (bootverbose)
1263		device_printf(sc->sk_dev, "interrupt moderation is %d us\n",
1264		    sc->sk_int_mod);
1265	sk_win_write_4(sc, SK_IMTIMERINIT, SK_IM_USECS(sc->sk_int_mod,
1266	    sc->sk_int_ticks));
1267	sk_win_write_4(sc, SK_IMMR, SK_ISR_TX1_S_EOF|SK_ISR_TX2_S_EOF|
1268	    SK_ISR_RX1_EOF|SK_ISR_RX2_EOF);
1269	sk_win_write_1(sc, SK_IMTIMERCTL, SK_IMCTL_START);
1270
1271	return;
1272}
1273
1274static int
1275sk_probe(dev)
1276	device_t		dev;
1277{
1278	struct sk_softc		*sc;
1279
1280	sc = device_get_softc(device_get_parent(dev));
1281
1282	/*
1283	 * Not much to do here. We always know there will be
1284	 * at least one XMAC present, and if there are two,
1285	 * skc_attach() will create a second device instance
1286	 * for us.
1287	 */
1288	switch (sc->sk_type) {
1289	case SK_GENESIS:
1290		device_set_desc(dev, "XaQti Corp. XMAC II");
1291		break;
1292	case SK_YUKON:
1293	case SK_YUKON_LITE:
1294	case SK_YUKON_LP:
1295		device_set_desc(dev, "Marvell Semiconductor, Inc. Yukon");
1296		break;
1297	}
1298
1299	return (BUS_PROBE_DEFAULT);
1300}
1301
1302/*
1303 * Each XMAC chip is attached as a separate logical IP interface.
1304 * Single port cards will have only one logical interface of course.
1305 */
1306static int
1307sk_attach(dev)
1308	device_t		dev;
1309{
1310	struct sk_softc		*sc;
1311	struct sk_if_softc	*sc_if;
1312	struct ifnet		*ifp;
1313	u_int32_t		r;
1314	int			error, i, phy, port;
1315	u_char			eaddr[6];
1316	u_char			inv_mac[] = {0, 0, 0, 0, 0, 0};
1317
1318	if (dev == NULL)
1319		return(EINVAL);
1320
1321	error = 0;
1322	sc_if = device_get_softc(dev);
1323	sc = device_get_softc(device_get_parent(dev));
1324	port = *(int *)device_get_ivars(dev);
1325
1326	sc_if->sk_if_dev = dev;
1327	sc_if->sk_port = port;
1328	sc_if->sk_softc = sc;
1329	sc->sk_if[port] = sc_if;
1330	if (port == SK_PORT_A)
1331		sc_if->sk_tx_bmu = SK_BMU_TXS_CSR0;
1332	if (port == SK_PORT_B)
1333		sc_if->sk_tx_bmu = SK_BMU_TXS_CSR1;
1334
1335	callout_init_mtx(&sc_if->sk_tick_ch, &sc_if->sk_softc->sk_mtx, 0);
1336	callout_init_mtx(&sc_if->sk_watchdog_ch, &sc_if->sk_softc->sk_mtx, 0);
1337
1338	if (sk_dma_alloc(sc_if) != 0) {
1339		error = ENOMEM;
1340		goto fail;
1341	}
1342	sk_dma_jumbo_alloc(sc_if);
1343
1344	ifp = sc_if->sk_ifp = if_alloc(IFT_ETHER);
1345	if (ifp == NULL) {
1346		device_printf(sc_if->sk_if_dev, "can not if_alloc()\n");
1347		error = ENOSPC;
1348		goto fail;
1349	}
1350	ifp->if_softc = sc_if;
1351	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1352	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1353	/*
1354	 * SK_GENESIS has a bug in checksum offload - From linux.
1355	 */
1356	if (sc_if->sk_softc->sk_type != SK_GENESIS) {
1357		ifp->if_capabilities = IFCAP_TXCSUM | IFCAP_RXCSUM;
1358		ifp->if_hwassist = 0;
1359	} else {
1360		ifp->if_capabilities = 0;
1361		ifp->if_hwassist = 0;
1362	}
1363	ifp->if_capenable = ifp->if_capabilities;
1364	/*
1365	 * Some revision of Yukon controller generates corrupted
1366	 * frame when TX checksum offloading is enabled.  The
1367	 * frame has a valid checksum value so payload might be
1368	 * modified during TX checksum calculation. Disable TX
1369	 * checksum offloading but give users chance to enable it
1370	 * when they know their controller works without problems
1371	 * with TX checksum offloading.
1372	 */
1373	ifp->if_capenable &= ~IFCAP_TXCSUM;
1374	ifp->if_ioctl = sk_ioctl;
1375	ifp->if_start = sk_start;
1376	ifp->if_init = sk_init;
1377	IFQ_SET_MAXLEN(&ifp->if_snd, SK_TX_RING_CNT - 1);
1378	ifp->if_snd.ifq_drv_maxlen = SK_TX_RING_CNT - 1;
1379	IFQ_SET_READY(&ifp->if_snd);
1380
1381	/*
1382	 * Get station address for this interface. Note that
1383	 * dual port cards actually come with three station
1384	 * addresses: one for each port, plus an extra. The
1385	 * extra one is used by the SysKonnect driver software
1386	 * as a 'virtual' station address for when both ports
1387	 * are operating in failover mode. Currently we don't
1388	 * use this extra address.
1389	 */
1390	SK_IF_LOCK(sc_if);
1391	for (i = 0; i < ETHER_ADDR_LEN; i++)
1392		eaddr[i] =
1393		    sk_win_read_1(sc, SK_MAC0_0 + (port * 8) + i);
1394
1395	/* Verify whether the station address is invalid or not. */
1396	if (bcmp(eaddr, inv_mac, sizeof(inv_mac)) == 0) {
1397		device_printf(sc_if->sk_if_dev,
1398		    "Generating random ethernet address\n");
1399		r = arc4random();
1400		/*
1401		 * Set OUI to convenient locally assigned address.  'b'
1402		 * is 0x62, which has the locally assigned bit set, and
1403		 * the broadcast/multicast bit clear.
1404		 */
1405		eaddr[0] = 'b';
1406		eaddr[1] = 's';
1407		eaddr[2] = 'd';
1408		eaddr[3] = (r >> 16) & 0xff;
1409		eaddr[4] = (r >>  8) & 0xff;
1410		eaddr[5] = (r >>  0) & 0xff;
1411	}
1412	/*
1413	 * Set up RAM buffer addresses. The NIC will have a certain
1414	 * amount of SRAM on it, somewhere between 512K and 2MB. We
1415	 * need to divide this up a) between the transmitter and
1416 	 * receiver and b) between the two XMACs, if this is a
1417	 * dual port NIC. Our algotithm is to divide up the memory
1418	 * evenly so that everyone gets a fair share.
1419	 *
1420	 * Just to be contrary, Yukon2 appears to have separate memory
1421	 * for each MAC.
1422	 */
1423	if (sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC) {
1424		u_int32_t		chunk, val;
1425
1426		chunk = sc->sk_ramsize / 2;
1427		val = sc->sk_rboff / sizeof(u_int64_t);
1428		sc_if->sk_rx_ramstart = val;
1429		val += (chunk / sizeof(u_int64_t));
1430		sc_if->sk_rx_ramend = val - 1;
1431		sc_if->sk_tx_ramstart = val;
1432		val += (chunk / sizeof(u_int64_t));
1433		sc_if->sk_tx_ramend = val - 1;
1434	} else {
1435		u_int32_t		chunk, val;
1436
1437		chunk = sc->sk_ramsize / 4;
1438		val = (sc->sk_rboff + (chunk * 2 * sc_if->sk_port)) /
1439		    sizeof(u_int64_t);
1440		sc_if->sk_rx_ramstart = val;
1441		val += (chunk / sizeof(u_int64_t));
1442		sc_if->sk_rx_ramend = val - 1;
1443		sc_if->sk_tx_ramstart = val;
1444		val += (chunk / sizeof(u_int64_t));
1445		sc_if->sk_tx_ramend = val - 1;
1446	}
1447
1448	/* Read and save PHY type and set PHY address */
1449	sc_if->sk_phytype = sk_win_read_1(sc, SK_EPROM1) & 0xF;
1450	if (!SK_YUKON_FAMILY(sc->sk_type)) {
1451		switch(sc_if->sk_phytype) {
1452		case SK_PHYTYPE_XMAC:
1453			sc_if->sk_phyaddr = SK_PHYADDR_XMAC;
1454			break;
1455		case SK_PHYTYPE_BCOM:
1456			sc_if->sk_phyaddr = SK_PHYADDR_BCOM;
1457			break;
1458		default:
1459			device_printf(sc->sk_dev, "unsupported PHY type: %d\n",
1460			    sc_if->sk_phytype);
1461			error = ENODEV;
1462			SK_IF_UNLOCK(sc_if);
1463			goto fail;
1464		}
1465	} else {
1466		if (sc_if->sk_phytype < SK_PHYTYPE_MARV_COPPER &&
1467		    sc->sk_pmd != 'S') {
1468			/* not initialized, punt */
1469			sc_if->sk_phytype = SK_PHYTYPE_MARV_COPPER;
1470			sc->sk_coppertype = 1;
1471		}
1472
1473		sc_if->sk_phyaddr = SK_PHYADDR_MARV;
1474
1475		if (!(sc->sk_coppertype))
1476			sc_if->sk_phytype = SK_PHYTYPE_MARV_FIBER;
1477	}
1478
1479	/*
1480	 * Call MI attach routine.  Can't hold locks when calling into ether_*.
1481	 */
1482	SK_IF_UNLOCK(sc_if);
1483	ether_ifattach(ifp, eaddr);
1484	SK_IF_LOCK(sc_if);
1485
1486	/*
1487	 * The hardware should be ready for VLAN_MTU by default:
1488	 * XMAC II has 0x8100 in VLAN Tag Level 1 register initially;
1489	 * YU_SMR_MFL_VLAN is set by this driver in Yukon.
1490	 *
1491	 */
1492        ifp->if_capabilities |= IFCAP_VLAN_MTU;
1493        ifp->if_capenable |= IFCAP_VLAN_MTU;
1494	/*
1495	 * Tell the upper layer(s) we support long frames.
1496	 * Must appear after the call to ether_ifattach() because
1497	 * ether_ifattach() sets ifi_hdrlen to the default value.
1498	 */
1499        ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
1500
1501	/*
1502	 * Do miibus setup.
1503	 */
1504	phy = MII_PHY_ANY;
1505	switch (sc->sk_type) {
1506	case SK_GENESIS:
1507		sk_init_xmac(sc_if);
1508		if (sc_if->sk_phytype == SK_PHYTYPE_XMAC)
1509			phy = 0;
1510		break;
1511	case SK_YUKON:
1512	case SK_YUKON_LITE:
1513	case SK_YUKON_LP:
1514		sk_init_yukon(sc_if);
1515		phy = 0;
1516		break;
1517	}
1518
1519	SK_IF_UNLOCK(sc_if);
1520	error = mii_attach(dev, &sc_if->sk_miibus, ifp, sk_ifmedia_upd,
1521	    sk_ifmedia_sts, BMSR_DEFCAPMASK, phy, MII_OFFSET_ANY, 0);
1522	if (error != 0) {
1523		device_printf(sc_if->sk_if_dev, "attaching PHYs failed\n");
1524		ether_ifdetach(ifp);
1525		goto fail;
1526	}
1527
1528fail:
1529	if (error) {
1530		/* Access should be ok even though lock has been dropped */
1531		sc->sk_if[port] = NULL;
1532		sk_detach(dev);
1533	}
1534
1535	return(error);
1536}
1537
1538/*
1539 * Attach the interface. Allocate softc structures, do ifmedia
1540 * setup and ethernet/BPF attach.
1541 */
1542static int
1543skc_attach(dev)
1544	device_t		dev;
1545{
1546	struct sk_softc		*sc;
1547	int			error = 0, *port;
1548	uint8_t			skrs;
1549	const char		*pname = NULL;
1550	char			*revstr;
1551
1552	sc = device_get_softc(dev);
1553	sc->sk_dev = dev;
1554
1555	mtx_init(&sc->sk_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
1556	    MTX_DEF);
1557	mtx_init(&sc->sk_mii_mtx, "sk_mii_mutex", NULL, MTX_DEF);
1558	/*
1559	 * Map control/status registers.
1560	 */
1561	pci_enable_busmaster(dev);
1562
1563	/* Allocate resources */
1564#ifdef SK_USEIOSPACE
1565	sc->sk_res_spec = sk_res_spec_io;
1566#else
1567	sc->sk_res_spec = sk_res_spec_mem;
1568#endif
1569	error = bus_alloc_resources(dev, sc->sk_res_spec, sc->sk_res);
1570	if (error) {
1571		if (sc->sk_res_spec == sk_res_spec_mem)
1572			sc->sk_res_spec = sk_res_spec_io;
1573		else
1574			sc->sk_res_spec = sk_res_spec_mem;
1575		error = bus_alloc_resources(dev, sc->sk_res_spec, sc->sk_res);
1576		if (error) {
1577			device_printf(dev, "couldn't allocate %s resources\n",
1578			    sc->sk_res_spec == sk_res_spec_mem ? "memory" :
1579			    "I/O");
1580			goto fail;
1581		}
1582	}
1583
1584	sc->sk_type = sk_win_read_1(sc, SK_CHIPVER);
1585	sc->sk_rev = (sk_win_read_1(sc, SK_CONFIG) >> 4) & 0xf;
1586
1587	/* Bail out if chip is not recognized. */
1588	if (sc->sk_type != SK_GENESIS && !SK_YUKON_FAMILY(sc->sk_type)) {
1589		device_printf(dev, "unknown device: chipver=%02x, rev=%x\n",
1590		    sc->sk_type, sc->sk_rev);
1591		error = ENXIO;
1592		goto fail;
1593	}
1594
1595	SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
1596		SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
1597		OID_AUTO, "int_mod", CTLTYPE_INT|CTLFLAG_RW,
1598		&sc->sk_int_mod, 0, sysctl_hw_sk_int_mod, "I",
1599		"SK interrupt moderation");
1600
1601	/* Pull in device tunables. */
1602	sc->sk_int_mod = SK_IM_DEFAULT;
1603	error = resource_int_value(device_get_name(dev), device_get_unit(dev),
1604		"int_mod", &sc->sk_int_mod);
1605	if (error == 0) {
1606		if (sc->sk_int_mod < SK_IM_MIN ||
1607		    sc->sk_int_mod > SK_IM_MAX) {
1608			device_printf(dev, "int_mod value out of range; "
1609			    "using default: %d\n", SK_IM_DEFAULT);
1610			sc->sk_int_mod = SK_IM_DEFAULT;
1611		}
1612	}
1613
1614	/* Reset the adapter. */
1615	sk_reset(sc);
1616
1617	skrs = sk_win_read_1(sc, SK_EPROM0);
1618	if (sc->sk_type == SK_GENESIS) {
1619		/* Read and save RAM size and RAMbuffer offset */
1620		switch(skrs) {
1621		case SK_RAMSIZE_512K_64:
1622			sc->sk_ramsize = 0x80000;
1623			sc->sk_rboff = SK_RBOFF_0;
1624			break;
1625		case SK_RAMSIZE_1024K_64:
1626			sc->sk_ramsize = 0x100000;
1627			sc->sk_rboff = SK_RBOFF_80000;
1628			break;
1629		case SK_RAMSIZE_1024K_128:
1630			sc->sk_ramsize = 0x100000;
1631			sc->sk_rboff = SK_RBOFF_0;
1632			break;
1633		case SK_RAMSIZE_2048K_128:
1634			sc->sk_ramsize = 0x200000;
1635			sc->sk_rboff = SK_RBOFF_0;
1636			break;
1637		default:
1638			device_printf(dev, "unknown ram size: %d\n", skrs);
1639			error = ENXIO;
1640			goto fail;
1641		}
1642	} else { /* SK_YUKON_FAMILY */
1643		if (skrs == 0x00)
1644			sc->sk_ramsize = 0x20000;
1645		else
1646			sc->sk_ramsize = skrs * (1<<12);
1647		sc->sk_rboff = SK_RBOFF_0;
1648	}
1649
1650	/* Read and save physical media type */
1651	 sc->sk_pmd = sk_win_read_1(sc, SK_PMDTYPE);
1652
1653	 if (sc->sk_pmd == 'T' || sc->sk_pmd == '1')
1654		 sc->sk_coppertype = 1;
1655	 else
1656		 sc->sk_coppertype = 0;
1657
1658	/* Determine whether to name it with VPD PN or just make it up.
1659	 * Marvell Yukon VPD PN seems to freqently be bogus. */
1660	switch (pci_get_device(dev)) {
1661	case DEVICEID_SK_V1:
1662	case DEVICEID_BELKIN_5005:
1663	case DEVICEID_3COM_3C940:
1664	case DEVICEID_LINKSYS_EG1032:
1665	case DEVICEID_DLINK_DGE530T_A1:
1666	case DEVICEID_DLINK_DGE530T_B1:
1667		/* Stay with VPD PN. */
1668		(void) pci_get_vpd_ident(dev, &pname);
1669		break;
1670	case DEVICEID_SK_V2:
1671		/* YUKON VPD PN might bear no resemblance to reality. */
1672		switch (sc->sk_type) {
1673		case SK_GENESIS:
1674			/* Stay with VPD PN. */
1675			(void) pci_get_vpd_ident(dev, &pname);
1676			break;
1677		case SK_YUKON:
1678			pname = "Marvell Yukon Gigabit Ethernet";
1679			break;
1680		case SK_YUKON_LITE:
1681			pname = "Marvell Yukon Lite Gigabit Ethernet";
1682			break;
1683		case SK_YUKON_LP:
1684			pname = "Marvell Yukon LP Gigabit Ethernet";
1685			break;
1686		default:
1687			pname = "Marvell Yukon (Unknown) Gigabit Ethernet";
1688			break;
1689		}
1690
1691		/* Yukon Lite Rev. A0 needs special test. */
1692		if (sc->sk_type == SK_YUKON || sc->sk_type == SK_YUKON_LP) {
1693			u_int32_t far;
1694			u_int8_t testbyte;
1695
1696			/* Save flash address register before testing. */
1697			far = sk_win_read_4(sc, SK_EP_ADDR);
1698
1699			sk_win_write_1(sc, SK_EP_ADDR+0x03, 0xff);
1700			testbyte = sk_win_read_1(sc, SK_EP_ADDR+0x03);
1701
1702			if (testbyte != 0x00) {
1703				/* Yukon Lite Rev. A0 detected. */
1704				sc->sk_type = SK_YUKON_LITE;
1705				sc->sk_rev = SK_YUKON_LITE_REV_A0;
1706				/* Restore flash address register. */
1707				sk_win_write_4(sc, SK_EP_ADDR, far);
1708			}
1709		}
1710		break;
1711	default:
1712		device_printf(dev, "unknown device: vendor=%04x, device=%04x, "
1713			"chipver=%02x, rev=%x\n",
1714			pci_get_vendor(dev), pci_get_device(dev),
1715			sc->sk_type, sc->sk_rev);
1716		error = ENXIO;
1717		goto fail;
1718	}
1719
1720	if (sc->sk_type == SK_YUKON_LITE) {
1721		switch (sc->sk_rev) {
1722		case SK_YUKON_LITE_REV_A0:
1723			revstr = "A0";
1724			break;
1725		case SK_YUKON_LITE_REV_A1:
1726			revstr = "A1";
1727			break;
1728		case SK_YUKON_LITE_REV_A3:
1729			revstr = "A3";
1730			break;
1731		default:
1732			revstr = "";
1733			break;
1734		}
1735	} else {
1736		revstr = "";
1737	}
1738
1739	/* Announce the product name and more VPD data if there. */
1740	if (pname != NULL)
1741		device_printf(dev, "%s rev. %s(0x%x)\n",
1742			pname, revstr, sc->sk_rev);
1743
1744	if (bootverbose) {
1745		device_printf(dev, "chip ver  = 0x%02x\n", sc->sk_type);
1746		device_printf(dev, "chip rev  = 0x%02x\n", sc->sk_rev);
1747		device_printf(dev, "SK_EPROM0 = 0x%02x\n", skrs);
1748		device_printf(dev, "SRAM size = 0x%06x\n", sc->sk_ramsize);
1749	}
1750
1751	sc->sk_devs[SK_PORT_A] = device_add_child(dev, "sk", -1);
1752	if (sc->sk_devs[SK_PORT_A] == NULL) {
1753		device_printf(dev, "failed to add child for PORT_A\n");
1754		error = ENXIO;
1755		goto fail;
1756	}
1757	port = malloc(sizeof(int), M_DEVBUF, M_NOWAIT);
1758	if (port == NULL) {
1759		device_printf(dev, "failed to allocate memory for "
1760		    "ivars of PORT_A\n");
1761		error = ENXIO;
1762		goto fail;
1763	}
1764	*port = SK_PORT_A;
1765	device_set_ivars(sc->sk_devs[SK_PORT_A], port);
1766
1767	if (!(sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC)) {
1768		sc->sk_devs[SK_PORT_B] = device_add_child(dev, "sk", -1);
1769		if (sc->sk_devs[SK_PORT_B] == NULL) {
1770			device_printf(dev, "failed to add child for PORT_B\n");
1771			error = ENXIO;
1772			goto fail;
1773		}
1774		port = malloc(sizeof(int), M_DEVBUF, M_NOWAIT);
1775		if (port == NULL) {
1776			device_printf(dev, "failed to allocate memory for "
1777			    "ivars of PORT_B\n");
1778			error = ENXIO;
1779			goto fail;
1780		}
1781		*port = SK_PORT_B;
1782		device_set_ivars(sc->sk_devs[SK_PORT_B], port);
1783	}
1784
1785	/* Turn on the 'driver is loaded' LED. */
1786	CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_ON);
1787
1788	error = bus_generic_attach(dev);
1789	if (error) {
1790		device_printf(dev, "failed to attach port(s)\n");
1791		goto fail;
1792	}
1793
1794	/* Hook interrupt last to avoid having to lock softc */
1795	error = bus_setup_intr(dev, sc->sk_res[1], INTR_TYPE_NET|INTR_MPSAFE,
1796	    NULL, sk_intr, sc, &sc->sk_intrhand);
1797
1798	if (error) {
1799		device_printf(dev, "couldn't set up irq\n");
1800		goto fail;
1801	}
1802
1803fail:
1804	if (error)
1805		skc_detach(dev);
1806
1807	return(error);
1808}
1809
1810/*
1811 * Shutdown hardware and free up resources. This can be called any
1812 * time after the mutex has been initialized. It is called in both
1813 * the error case in attach and the normal detach case so it needs
1814 * to be careful about only freeing resources that have actually been
1815 * allocated.
1816 */
1817static int
1818sk_detach(dev)
1819	device_t		dev;
1820{
1821	struct sk_if_softc	*sc_if;
1822	struct ifnet		*ifp;
1823
1824	sc_if = device_get_softc(dev);
1825	KASSERT(mtx_initialized(&sc_if->sk_softc->sk_mtx),
1826	    ("sk mutex not initialized in sk_detach"));
1827	SK_IF_LOCK(sc_if);
1828
1829	ifp = sc_if->sk_ifp;
1830	/* These should only be active if attach_xmac succeeded */
1831	if (device_is_attached(dev)) {
1832		sk_stop(sc_if);
1833		/* Can't hold locks while calling detach */
1834		SK_IF_UNLOCK(sc_if);
1835		callout_drain(&sc_if->sk_tick_ch);
1836		callout_drain(&sc_if->sk_watchdog_ch);
1837		ether_ifdetach(ifp);
1838		SK_IF_LOCK(sc_if);
1839	}
1840	if (ifp)
1841		if_free(ifp);
1842	/*
1843	 * We're generally called from skc_detach() which is using
1844	 * device_delete_child() to get to here. It's already trashed
1845	 * miibus for us, so don't do it here or we'll panic.
1846	 */
1847	/*
1848	if (sc_if->sk_miibus != NULL)
1849		device_delete_child(dev, sc_if->sk_miibus);
1850	*/
1851	bus_generic_detach(dev);
1852	sk_dma_jumbo_free(sc_if);
1853	sk_dma_free(sc_if);
1854	SK_IF_UNLOCK(sc_if);
1855
1856	return(0);
1857}
1858
1859static int
1860skc_detach(dev)
1861	device_t		dev;
1862{
1863	struct sk_softc		*sc;
1864
1865	sc = device_get_softc(dev);
1866	KASSERT(mtx_initialized(&sc->sk_mtx), ("sk mutex not initialized"));
1867
1868	if (device_is_alive(dev)) {
1869		if (sc->sk_devs[SK_PORT_A] != NULL) {
1870			free(device_get_ivars(sc->sk_devs[SK_PORT_A]), M_DEVBUF);
1871			device_delete_child(dev, sc->sk_devs[SK_PORT_A]);
1872		}
1873		if (sc->sk_devs[SK_PORT_B] != NULL) {
1874			free(device_get_ivars(sc->sk_devs[SK_PORT_B]), M_DEVBUF);
1875			device_delete_child(dev, sc->sk_devs[SK_PORT_B]);
1876		}
1877		bus_generic_detach(dev);
1878	}
1879
1880	if (sc->sk_intrhand)
1881		bus_teardown_intr(dev, sc->sk_res[1], sc->sk_intrhand);
1882	bus_release_resources(dev, sc->sk_res_spec, sc->sk_res);
1883
1884	mtx_destroy(&sc->sk_mii_mtx);
1885	mtx_destroy(&sc->sk_mtx);
1886
1887	return(0);
1888}
1889
1890static bus_dma_tag_t
1891skc_get_dma_tag(device_t bus, device_t child __unused)
1892{
1893
1894	return (bus_get_dma_tag(bus));
1895}
1896
1897struct sk_dmamap_arg {
1898	bus_addr_t	sk_busaddr;
1899};
1900
1901static void
1902sk_dmamap_cb(arg, segs, nseg, error)
1903	void			*arg;
1904	bus_dma_segment_t	*segs;
1905	int			nseg;
1906	int			error;
1907{
1908	struct sk_dmamap_arg	*ctx;
1909
1910	if (error != 0)
1911		return;
1912
1913	ctx = arg;
1914	ctx->sk_busaddr = segs[0].ds_addr;
1915}
1916
1917/*
1918 * Allocate jumbo buffer storage. The SysKonnect adapters support
1919 * "jumbograms" (9K frames), although SysKonnect doesn't currently
1920 * use them in their drivers. In order for us to use them, we need
1921 * large 9K receive buffers, however standard mbuf clusters are only
1922 * 2048 bytes in size. Consequently, we need to allocate and manage
1923 * our own jumbo buffer pool. Fortunately, this does not require an
1924 * excessive amount of additional code.
1925 */
1926static int
1927sk_dma_alloc(sc_if)
1928	struct sk_if_softc	*sc_if;
1929{
1930	struct sk_dmamap_arg	ctx;
1931	struct sk_txdesc	*txd;
1932	struct sk_rxdesc	*rxd;
1933	int			error, i;
1934
1935	/* create parent tag */
1936	/*
1937	 * XXX
1938	 * This driver should use BUS_SPACE_MAXADDR for lowaddr argument
1939	 * in bus_dma_tag_create(9) as the NIC would support DAC mode.
1940	 * However bz@ reported that it does not work on amd64 with > 4GB
1941	 * RAM. Until we have more clues of the breakage, disable DAC mode
1942	 * by limiting DMA address to be in 32bit address space.
1943	 */
1944	error = bus_dma_tag_create(
1945		    bus_get_dma_tag(sc_if->sk_if_dev),/* parent */
1946		    1, 0,			/* algnmnt, boundary */
1947		    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
1948		    BUS_SPACE_MAXADDR,		/* highaddr */
1949		    NULL, NULL,			/* filter, filterarg */
1950		    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
1951		    0,				/* nsegments */
1952		    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
1953		    0,				/* flags */
1954		    NULL, NULL,			/* lockfunc, lockarg */
1955		    &sc_if->sk_cdata.sk_parent_tag);
1956	if (error != 0) {
1957		device_printf(sc_if->sk_if_dev,
1958		    "failed to create parent DMA tag\n");
1959		goto fail;
1960	}
1961
1962	/* create tag for Tx ring */
1963	error = bus_dma_tag_create(sc_if->sk_cdata.sk_parent_tag,/* parent */
1964		    SK_RING_ALIGN, 0,		/* algnmnt, boundary */
1965		    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
1966		    BUS_SPACE_MAXADDR,		/* highaddr */
1967		    NULL, NULL,			/* filter, filterarg */
1968		    SK_TX_RING_SZ,		/* maxsize */
1969		    1,				/* nsegments */
1970		    SK_TX_RING_SZ,		/* maxsegsize */
1971		    0,				/* flags */
1972		    NULL, NULL,			/* lockfunc, lockarg */
1973		    &sc_if->sk_cdata.sk_tx_ring_tag);
1974	if (error != 0) {
1975		device_printf(sc_if->sk_if_dev,
1976		    "failed to allocate Tx ring DMA tag\n");
1977		goto fail;
1978	}
1979
1980	/* create tag for Rx ring */
1981	error = bus_dma_tag_create(sc_if->sk_cdata.sk_parent_tag,/* parent */
1982		    SK_RING_ALIGN, 0,		/* algnmnt, boundary */
1983		    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
1984		    BUS_SPACE_MAXADDR,		/* highaddr */
1985		    NULL, NULL,			/* filter, filterarg */
1986		    SK_RX_RING_SZ,		/* maxsize */
1987		    1,				/* nsegments */
1988		    SK_RX_RING_SZ,		/* maxsegsize */
1989		    0,				/* flags */
1990		    NULL, NULL,			/* lockfunc, lockarg */
1991		    &sc_if->sk_cdata.sk_rx_ring_tag);
1992	if (error != 0) {
1993		device_printf(sc_if->sk_if_dev,
1994		    "failed to allocate Rx ring DMA tag\n");
1995		goto fail;
1996	}
1997
1998	/* create tag for Tx buffers */
1999	error = bus_dma_tag_create(sc_if->sk_cdata.sk_parent_tag,/* parent */
2000		    1, 0,			/* algnmnt, boundary */
2001		    BUS_SPACE_MAXADDR,		/* lowaddr */
2002		    BUS_SPACE_MAXADDR,		/* highaddr */
2003		    NULL, NULL,			/* filter, filterarg */
2004		    MCLBYTES * SK_MAXTXSEGS,	/* maxsize */
2005		    SK_MAXTXSEGS,		/* nsegments */
2006		    MCLBYTES,			/* maxsegsize */
2007		    0,				/* flags */
2008		    NULL, NULL,			/* lockfunc, lockarg */
2009		    &sc_if->sk_cdata.sk_tx_tag);
2010	if (error != 0) {
2011		device_printf(sc_if->sk_if_dev,
2012		    "failed to allocate Tx DMA tag\n");
2013		goto fail;
2014	}
2015
2016	/* create tag for Rx buffers */
2017	error = bus_dma_tag_create(sc_if->sk_cdata.sk_parent_tag,/* parent */
2018		    1, 0,			/* algnmnt, boundary */
2019		    BUS_SPACE_MAXADDR,		/* lowaddr */
2020		    BUS_SPACE_MAXADDR,		/* highaddr */
2021		    NULL, NULL,			/* filter, filterarg */
2022		    MCLBYTES,			/* maxsize */
2023		    1,				/* nsegments */
2024		    MCLBYTES,			/* maxsegsize */
2025		    0,				/* flags */
2026		    NULL, NULL,			/* lockfunc, lockarg */
2027		    &sc_if->sk_cdata.sk_rx_tag);
2028	if (error != 0) {
2029		device_printf(sc_if->sk_if_dev,
2030		    "failed to allocate Rx DMA tag\n");
2031		goto fail;
2032	}
2033
2034	/* allocate DMA'able memory and load the DMA map for Tx ring */
2035	error = bus_dmamem_alloc(sc_if->sk_cdata.sk_tx_ring_tag,
2036	    (void **)&sc_if->sk_rdata.sk_tx_ring, BUS_DMA_NOWAIT |
2037	    BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc_if->sk_cdata.sk_tx_ring_map);
2038	if (error != 0) {
2039		device_printf(sc_if->sk_if_dev,
2040		    "failed to allocate DMA'able memory for Tx ring\n");
2041		goto fail;
2042	}
2043
2044	ctx.sk_busaddr = 0;
2045	error = bus_dmamap_load(sc_if->sk_cdata.sk_tx_ring_tag,
2046	    sc_if->sk_cdata.sk_tx_ring_map, sc_if->sk_rdata.sk_tx_ring,
2047	    SK_TX_RING_SZ, sk_dmamap_cb, &ctx, BUS_DMA_NOWAIT);
2048	if (error != 0) {
2049		device_printf(sc_if->sk_if_dev,
2050		    "failed to load DMA'able memory for Tx ring\n");
2051		goto fail;
2052	}
2053	sc_if->sk_rdata.sk_tx_ring_paddr = ctx.sk_busaddr;
2054
2055	/* allocate DMA'able memory and load the DMA map for Rx ring */
2056	error = bus_dmamem_alloc(sc_if->sk_cdata.sk_rx_ring_tag,
2057	    (void **)&sc_if->sk_rdata.sk_rx_ring, BUS_DMA_NOWAIT |
2058	    BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc_if->sk_cdata.sk_rx_ring_map);
2059	if (error != 0) {
2060		device_printf(sc_if->sk_if_dev,
2061		    "failed to allocate DMA'able memory for Rx ring\n");
2062		goto fail;
2063	}
2064
2065	ctx.sk_busaddr = 0;
2066	error = bus_dmamap_load(sc_if->sk_cdata.sk_rx_ring_tag,
2067	    sc_if->sk_cdata.sk_rx_ring_map, sc_if->sk_rdata.sk_rx_ring,
2068	    SK_RX_RING_SZ, sk_dmamap_cb, &ctx, BUS_DMA_NOWAIT);
2069	if (error != 0) {
2070		device_printf(sc_if->sk_if_dev,
2071		    "failed to load DMA'able memory for Rx ring\n");
2072		goto fail;
2073	}
2074	sc_if->sk_rdata.sk_rx_ring_paddr = ctx.sk_busaddr;
2075
2076	/* create DMA maps for Tx buffers */
2077	for (i = 0; i < SK_TX_RING_CNT; i++) {
2078		txd = &sc_if->sk_cdata.sk_txdesc[i];
2079		txd->tx_m = NULL;
2080		txd->tx_dmamap = NULL;
2081		error = bus_dmamap_create(sc_if->sk_cdata.sk_tx_tag, 0,
2082		    &txd->tx_dmamap);
2083		if (error != 0) {
2084			device_printf(sc_if->sk_if_dev,
2085			    "failed to create Tx dmamap\n");
2086			goto fail;
2087		}
2088	}
2089
2090	/* create DMA maps for Rx buffers */
2091	if ((error = bus_dmamap_create(sc_if->sk_cdata.sk_rx_tag, 0,
2092	    &sc_if->sk_cdata.sk_rx_sparemap)) != 0) {
2093		device_printf(sc_if->sk_if_dev,
2094		    "failed to create spare Rx dmamap\n");
2095		goto fail;
2096	}
2097	for (i = 0; i < SK_RX_RING_CNT; i++) {
2098		rxd = &sc_if->sk_cdata.sk_rxdesc[i];
2099		rxd->rx_m = NULL;
2100		rxd->rx_dmamap = NULL;
2101		error = bus_dmamap_create(sc_if->sk_cdata.sk_rx_tag, 0,
2102		    &rxd->rx_dmamap);
2103		if (error != 0) {
2104			device_printf(sc_if->sk_if_dev,
2105			    "failed to create Rx dmamap\n");
2106			goto fail;
2107		}
2108	}
2109
2110fail:
2111	return (error);
2112}
2113
2114static int
2115sk_dma_jumbo_alloc(sc_if)
2116	struct sk_if_softc	*sc_if;
2117{
2118	struct sk_dmamap_arg	ctx;
2119	struct sk_rxdesc	*jrxd;
2120	int			error, i;
2121
2122	if (jumbo_disable != 0) {
2123		device_printf(sc_if->sk_if_dev, "disabling jumbo frame support\n");
2124		sc_if->sk_jumbo_disable = 1;
2125		return (0);
2126	}
2127	/* create tag for jumbo Rx ring */
2128	error = bus_dma_tag_create(sc_if->sk_cdata.sk_parent_tag,/* parent */
2129		    SK_RING_ALIGN, 0,		/* algnmnt, boundary */
2130		    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
2131		    BUS_SPACE_MAXADDR,		/* highaddr */
2132		    NULL, NULL,			/* filter, filterarg */
2133		    SK_JUMBO_RX_RING_SZ,	/* maxsize */
2134		    1,				/* nsegments */
2135		    SK_JUMBO_RX_RING_SZ,	/* maxsegsize */
2136		    0,				/* flags */
2137		    NULL, NULL,			/* lockfunc, lockarg */
2138		    &sc_if->sk_cdata.sk_jumbo_rx_ring_tag);
2139	if (error != 0) {
2140		device_printf(sc_if->sk_if_dev,
2141		    "failed to allocate jumbo Rx ring DMA tag\n");
2142		goto jumbo_fail;
2143	}
2144
2145	/* create tag for jumbo Rx buffers */
2146	error = bus_dma_tag_create(sc_if->sk_cdata.sk_parent_tag,/* parent */
2147		    1, 0,			/* algnmnt, boundary */
2148		    BUS_SPACE_MAXADDR,		/* lowaddr */
2149		    BUS_SPACE_MAXADDR,		/* highaddr */
2150		    NULL, NULL,			/* filter, filterarg */
2151		    MJUM9BYTES,			/* maxsize */
2152		    1,				/* nsegments */
2153		    MJUM9BYTES,			/* maxsegsize */
2154		    0,				/* flags */
2155		    NULL, NULL,			/* lockfunc, lockarg */
2156		    &sc_if->sk_cdata.sk_jumbo_rx_tag);
2157	if (error != 0) {
2158		device_printf(sc_if->sk_if_dev,
2159		    "failed to allocate jumbo Rx DMA tag\n");
2160		goto jumbo_fail;
2161	}
2162
2163	/* allocate DMA'able memory and load the DMA map for jumbo Rx ring */
2164	error = bus_dmamem_alloc(sc_if->sk_cdata.sk_jumbo_rx_ring_tag,
2165	    (void **)&sc_if->sk_rdata.sk_jumbo_rx_ring, BUS_DMA_NOWAIT |
2166	    BUS_DMA_COHERENT | BUS_DMA_ZERO,
2167	    &sc_if->sk_cdata.sk_jumbo_rx_ring_map);
2168	if (error != 0) {
2169		device_printf(sc_if->sk_if_dev,
2170		    "failed to allocate DMA'able memory for jumbo Rx ring\n");
2171		goto jumbo_fail;
2172	}
2173
2174	ctx.sk_busaddr = 0;
2175	error = bus_dmamap_load(sc_if->sk_cdata.sk_jumbo_rx_ring_tag,
2176	    sc_if->sk_cdata.sk_jumbo_rx_ring_map,
2177	    sc_if->sk_rdata.sk_jumbo_rx_ring, SK_JUMBO_RX_RING_SZ, sk_dmamap_cb,
2178	    &ctx, BUS_DMA_NOWAIT);
2179	if (error != 0) {
2180		device_printf(sc_if->sk_if_dev,
2181		    "failed to load DMA'able memory for jumbo Rx ring\n");
2182		goto jumbo_fail;
2183	}
2184	sc_if->sk_rdata.sk_jumbo_rx_ring_paddr = ctx.sk_busaddr;
2185
2186	/* create DMA maps for jumbo Rx buffers */
2187	if ((error = bus_dmamap_create(sc_if->sk_cdata.sk_jumbo_rx_tag, 0,
2188	    &sc_if->sk_cdata.sk_jumbo_rx_sparemap)) != 0) {
2189		device_printf(sc_if->sk_if_dev,
2190		    "failed to create spare jumbo Rx dmamap\n");
2191		goto jumbo_fail;
2192	}
2193	for (i = 0; i < SK_JUMBO_RX_RING_CNT; i++) {
2194		jrxd = &sc_if->sk_cdata.sk_jumbo_rxdesc[i];
2195		jrxd->rx_m = NULL;
2196		jrxd->rx_dmamap = NULL;
2197		error = bus_dmamap_create(sc_if->sk_cdata.sk_jumbo_rx_tag, 0,
2198		    &jrxd->rx_dmamap);
2199		if (error != 0) {
2200			device_printf(sc_if->sk_if_dev,
2201			    "failed to create jumbo Rx dmamap\n");
2202			goto jumbo_fail;
2203		}
2204	}
2205
2206	return (0);
2207
2208jumbo_fail:
2209	sk_dma_jumbo_free(sc_if);
2210	device_printf(sc_if->sk_if_dev, "disabling jumbo frame support due to "
2211	    "resource shortage\n");
2212	sc_if->sk_jumbo_disable = 1;
2213	return (0);
2214}
2215
2216static void
2217sk_dma_free(sc_if)
2218	struct sk_if_softc	*sc_if;
2219{
2220	struct sk_txdesc	*txd;
2221	struct sk_rxdesc	*rxd;
2222	int			i;
2223
2224	/* Tx ring */
2225	if (sc_if->sk_cdata.sk_tx_ring_tag) {
2226		if (sc_if->sk_cdata.sk_tx_ring_map)
2227			bus_dmamap_unload(sc_if->sk_cdata.sk_tx_ring_tag,
2228			    sc_if->sk_cdata.sk_tx_ring_map);
2229		if (sc_if->sk_cdata.sk_tx_ring_map &&
2230		    sc_if->sk_rdata.sk_tx_ring)
2231			bus_dmamem_free(sc_if->sk_cdata.sk_tx_ring_tag,
2232			    sc_if->sk_rdata.sk_tx_ring,
2233			    sc_if->sk_cdata.sk_tx_ring_map);
2234		sc_if->sk_rdata.sk_tx_ring = NULL;
2235		sc_if->sk_cdata.sk_tx_ring_map = NULL;
2236		bus_dma_tag_destroy(sc_if->sk_cdata.sk_tx_ring_tag);
2237		sc_if->sk_cdata.sk_tx_ring_tag = NULL;
2238	}
2239	/* Rx ring */
2240	if (sc_if->sk_cdata.sk_rx_ring_tag) {
2241		if (sc_if->sk_cdata.sk_rx_ring_map)
2242			bus_dmamap_unload(sc_if->sk_cdata.sk_rx_ring_tag,
2243			    sc_if->sk_cdata.sk_rx_ring_map);
2244		if (sc_if->sk_cdata.sk_rx_ring_map &&
2245		    sc_if->sk_rdata.sk_rx_ring)
2246			bus_dmamem_free(sc_if->sk_cdata.sk_rx_ring_tag,
2247			    sc_if->sk_rdata.sk_rx_ring,
2248			    sc_if->sk_cdata.sk_rx_ring_map);
2249		sc_if->sk_rdata.sk_rx_ring = NULL;
2250		sc_if->sk_cdata.sk_rx_ring_map = NULL;
2251		bus_dma_tag_destroy(sc_if->sk_cdata.sk_rx_ring_tag);
2252		sc_if->sk_cdata.sk_rx_ring_tag = NULL;
2253	}
2254	/* Tx buffers */
2255	if (sc_if->sk_cdata.sk_tx_tag) {
2256		for (i = 0; i < SK_TX_RING_CNT; i++) {
2257			txd = &sc_if->sk_cdata.sk_txdesc[i];
2258			if (txd->tx_dmamap) {
2259				bus_dmamap_destroy(sc_if->sk_cdata.sk_tx_tag,
2260				    txd->tx_dmamap);
2261				txd->tx_dmamap = NULL;
2262			}
2263		}
2264		bus_dma_tag_destroy(sc_if->sk_cdata.sk_tx_tag);
2265		sc_if->sk_cdata.sk_tx_tag = NULL;
2266	}
2267	/* Rx buffers */
2268	if (sc_if->sk_cdata.sk_rx_tag) {
2269		for (i = 0; i < SK_RX_RING_CNT; i++) {
2270			rxd = &sc_if->sk_cdata.sk_rxdesc[i];
2271			if (rxd->rx_dmamap) {
2272				bus_dmamap_destroy(sc_if->sk_cdata.sk_rx_tag,
2273				    rxd->rx_dmamap);
2274				rxd->rx_dmamap = NULL;
2275			}
2276		}
2277		if (sc_if->sk_cdata.sk_rx_sparemap) {
2278			bus_dmamap_destroy(sc_if->sk_cdata.sk_rx_tag,
2279			    sc_if->sk_cdata.sk_rx_sparemap);
2280			sc_if->sk_cdata.sk_rx_sparemap = NULL;
2281		}
2282		bus_dma_tag_destroy(sc_if->sk_cdata.sk_rx_tag);
2283		sc_if->sk_cdata.sk_rx_tag = NULL;
2284	}
2285
2286	if (sc_if->sk_cdata.sk_parent_tag) {
2287		bus_dma_tag_destroy(sc_if->sk_cdata.sk_parent_tag);
2288		sc_if->sk_cdata.sk_parent_tag = NULL;
2289	}
2290}
2291
2292static void
2293sk_dma_jumbo_free(sc_if)
2294	struct sk_if_softc	*sc_if;
2295{
2296	struct sk_rxdesc	*jrxd;
2297	int			i;
2298
2299	/* jumbo Rx ring */
2300	if (sc_if->sk_cdata.sk_jumbo_rx_ring_tag) {
2301		if (sc_if->sk_cdata.sk_jumbo_rx_ring_map)
2302			bus_dmamap_unload(sc_if->sk_cdata.sk_jumbo_rx_ring_tag,
2303			    sc_if->sk_cdata.sk_jumbo_rx_ring_map);
2304		if (sc_if->sk_cdata.sk_jumbo_rx_ring_map &&
2305		    sc_if->sk_rdata.sk_jumbo_rx_ring)
2306			bus_dmamem_free(sc_if->sk_cdata.sk_jumbo_rx_ring_tag,
2307			    sc_if->sk_rdata.sk_jumbo_rx_ring,
2308			    sc_if->sk_cdata.sk_jumbo_rx_ring_map);
2309		sc_if->sk_rdata.sk_jumbo_rx_ring = NULL;
2310		sc_if->sk_cdata.sk_jumbo_rx_ring_map = NULL;
2311		bus_dma_tag_destroy(sc_if->sk_cdata.sk_jumbo_rx_ring_tag);
2312		sc_if->sk_cdata.sk_jumbo_rx_ring_tag = NULL;
2313	}
2314
2315	/* jumbo Rx buffers */
2316	if (sc_if->sk_cdata.sk_jumbo_rx_tag) {
2317		for (i = 0; i < SK_JUMBO_RX_RING_CNT; i++) {
2318			jrxd = &sc_if->sk_cdata.sk_jumbo_rxdesc[i];
2319			if (jrxd->rx_dmamap) {
2320				bus_dmamap_destroy(
2321				    sc_if->sk_cdata.sk_jumbo_rx_tag,
2322				    jrxd->rx_dmamap);
2323				jrxd->rx_dmamap = NULL;
2324			}
2325		}
2326		if (sc_if->sk_cdata.sk_jumbo_rx_sparemap) {
2327			bus_dmamap_destroy(sc_if->sk_cdata.sk_jumbo_rx_tag,
2328			    sc_if->sk_cdata.sk_jumbo_rx_sparemap);
2329			sc_if->sk_cdata.sk_jumbo_rx_sparemap = NULL;
2330		}
2331		bus_dma_tag_destroy(sc_if->sk_cdata.sk_jumbo_rx_tag);
2332		sc_if->sk_cdata.sk_jumbo_rx_tag = NULL;
2333	}
2334}
2335
2336static void
2337sk_txcksum(ifp, m, f)
2338	struct ifnet		*ifp;
2339	struct mbuf		*m;
2340	struct sk_tx_desc	*f;
2341{
2342	struct ip		*ip;
2343	u_int16_t		offset;
2344	u_int8_t 		*p;
2345
2346	offset = sizeof(struct ip) + ETHER_HDR_LEN;
2347	for(; m && m->m_len == 0; m = m->m_next)
2348		;
2349	if (m == NULL || m->m_len < ETHER_HDR_LEN) {
2350		if_printf(ifp, "%s: m_len < ETHER_HDR_LEN\n", __func__);
2351		/* checksum may be corrupted */
2352		goto sendit;
2353	}
2354	if (m->m_len < ETHER_HDR_LEN + sizeof(u_int32_t)) {
2355		if (m->m_len != ETHER_HDR_LEN) {
2356			if_printf(ifp, "%s: m_len != ETHER_HDR_LEN\n",
2357			    __func__);
2358			/* checksum may be corrupted */
2359			goto sendit;
2360		}
2361		for(m = m->m_next; m && m->m_len == 0; m = m->m_next)
2362			;
2363		if (m == NULL) {
2364			offset = sizeof(struct ip) + ETHER_HDR_LEN;
2365			/* checksum may be corrupted */
2366			goto sendit;
2367		}
2368		ip = mtod(m, struct ip *);
2369	} else {
2370		p = mtod(m, u_int8_t *);
2371		p += ETHER_HDR_LEN;
2372		ip = (struct ip *)p;
2373	}
2374	offset = (ip->ip_hl << 2) + ETHER_HDR_LEN;
2375
2376sendit:
2377	f->sk_csum_startval = 0;
2378	f->sk_csum_start = htole32(((offset + m->m_pkthdr.csum_data) & 0xffff) |
2379	    (offset << 16));
2380}
2381
2382static int
2383sk_encap(sc_if, m_head)
2384        struct sk_if_softc	*sc_if;
2385        struct mbuf		**m_head;
2386{
2387	struct sk_txdesc	*txd;
2388	struct sk_tx_desc	*f = NULL;
2389	struct mbuf		*m;
2390	bus_dma_segment_t	txsegs[SK_MAXTXSEGS];
2391	u_int32_t		cflags, frag, si, sk_ctl;
2392	int			error, i, nseg;
2393
2394	SK_IF_LOCK_ASSERT(sc_if);
2395
2396	if ((txd = STAILQ_FIRST(&sc_if->sk_cdata.sk_txfreeq)) == NULL)
2397		return (ENOBUFS);
2398
2399	error = bus_dmamap_load_mbuf_sg(sc_if->sk_cdata.sk_tx_tag,
2400	    txd->tx_dmamap, *m_head, txsegs, &nseg, 0);
2401	if (error == EFBIG) {
2402		m = m_defrag(*m_head, M_NOWAIT);
2403		if (m == NULL) {
2404			m_freem(*m_head);
2405			*m_head = NULL;
2406			return (ENOMEM);
2407		}
2408		*m_head = m;
2409		error = bus_dmamap_load_mbuf_sg(sc_if->sk_cdata.sk_tx_tag,
2410		    txd->tx_dmamap, *m_head, txsegs, &nseg, 0);
2411		if (error != 0) {
2412			m_freem(*m_head);
2413			*m_head = NULL;
2414			return (error);
2415		}
2416	} else if (error != 0)
2417		return (error);
2418	if (nseg == 0) {
2419		m_freem(*m_head);
2420		*m_head = NULL;
2421		return (EIO);
2422	}
2423	if (sc_if->sk_cdata.sk_tx_cnt + nseg >= SK_TX_RING_CNT) {
2424		bus_dmamap_unload(sc_if->sk_cdata.sk_tx_tag, txd->tx_dmamap);
2425		return (ENOBUFS);
2426	}
2427
2428	m = *m_head;
2429	if ((m->m_pkthdr.csum_flags & sc_if->sk_ifp->if_hwassist) != 0)
2430		cflags = SK_OPCODE_CSUM;
2431	else
2432		cflags = SK_OPCODE_DEFAULT;
2433	si = frag = sc_if->sk_cdata.sk_tx_prod;
2434	for (i = 0; i < nseg; i++) {
2435		f = &sc_if->sk_rdata.sk_tx_ring[frag];
2436		f->sk_data_lo = htole32(SK_ADDR_LO(txsegs[i].ds_addr));
2437		f->sk_data_hi = htole32(SK_ADDR_HI(txsegs[i].ds_addr));
2438		sk_ctl = txsegs[i].ds_len | cflags;
2439		if (i == 0) {
2440			if (cflags == SK_OPCODE_CSUM)
2441				sk_txcksum(sc_if->sk_ifp, m, f);
2442			sk_ctl |= SK_TXCTL_FIRSTFRAG;
2443		} else
2444			sk_ctl |= SK_TXCTL_OWN;
2445		f->sk_ctl = htole32(sk_ctl);
2446		sc_if->sk_cdata.sk_tx_cnt++;
2447		SK_INC(frag, SK_TX_RING_CNT);
2448	}
2449	sc_if->sk_cdata.sk_tx_prod = frag;
2450
2451	/* set EOF on the last desciptor */
2452	frag = (frag + SK_TX_RING_CNT - 1) % SK_TX_RING_CNT;
2453	f = &sc_if->sk_rdata.sk_tx_ring[frag];
2454	f->sk_ctl |= htole32(SK_TXCTL_LASTFRAG | SK_TXCTL_EOF_INTR);
2455
2456	/* turn the first descriptor ownership to NIC */
2457	f = &sc_if->sk_rdata.sk_tx_ring[si];
2458	f->sk_ctl |= htole32(SK_TXCTL_OWN);
2459
2460	STAILQ_REMOVE_HEAD(&sc_if->sk_cdata.sk_txfreeq, tx_q);
2461	STAILQ_INSERT_TAIL(&sc_if->sk_cdata.sk_txbusyq, txd, tx_q);
2462	txd->tx_m = m;
2463
2464	/* sync descriptors */
2465	bus_dmamap_sync(sc_if->sk_cdata.sk_tx_tag, txd->tx_dmamap,
2466	    BUS_DMASYNC_PREWRITE);
2467	bus_dmamap_sync(sc_if->sk_cdata.sk_tx_ring_tag,
2468	    sc_if->sk_cdata.sk_tx_ring_map,
2469	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2470
2471	return (0);
2472}
2473
2474static void
2475sk_start(ifp)
2476	struct ifnet		*ifp;
2477{
2478	struct sk_if_softc *sc_if;
2479
2480	sc_if = ifp->if_softc;
2481
2482	SK_IF_LOCK(sc_if);
2483	sk_start_locked(ifp);
2484	SK_IF_UNLOCK(sc_if);
2485
2486	return;
2487}
2488
2489static void
2490sk_start_locked(ifp)
2491	struct ifnet		*ifp;
2492{
2493        struct sk_softc		*sc;
2494        struct sk_if_softc	*sc_if;
2495        struct mbuf		*m_head;
2496	int			enq;
2497
2498	sc_if = ifp->if_softc;
2499	sc = sc_if->sk_softc;
2500
2501	SK_IF_LOCK_ASSERT(sc_if);
2502
2503	for (enq = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd) &&
2504	    sc_if->sk_cdata.sk_tx_cnt < SK_TX_RING_CNT - 1; ) {
2505		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
2506		if (m_head == NULL)
2507			break;
2508
2509		/*
2510		 * Pack the data into the transmit ring. If we
2511		 * don't have room, set the OACTIVE flag and wait
2512		 * for the NIC to drain the ring.
2513		 */
2514		if (sk_encap(sc_if, &m_head)) {
2515			if (m_head == NULL)
2516				break;
2517			IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
2518			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2519			break;
2520		}
2521
2522		enq++;
2523		/*
2524		 * If there's a BPF listener, bounce a copy of this frame
2525		 * to him.
2526		 */
2527		BPF_MTAP(ifp, m_head);
2528	}
2529
2530	if (enq > 0) {
2531		/* Transmit */
2532		CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_START);
2533
2534		/* Set a timeout in case the chip goes out to lunch. */
2535		sc_if->sk_watchdog_timer = 5;
2536	}
2537}
2538
2539
2540static void
2541sk_watchdog(arg)
2542	void			*arg;
2543{
2544	struct sk_if_softc	*sc_if;
2545	struct ifnet		*ifp;
2546
2547	ifp = arg;
2548	sc_if = ifp->if_softc;
2549
2550	SK_IF_LOCK_ASSERT(sc_if);
2551
2552	if (sc_if->sk_watchdog_timer == 0 || --sc_if->sk_watchdog_timer)
2553		goto done;
2554
2555	/*
2556	 * Reclaim first as there is a possibility of losing Tx completion
2557	 * interrupts.
2558	 */
2559	sk_txeof(sc_if);
2560	if (sc_if->sk_cdata.sk_tx_cnt != 0) {
2561		if_printf(sc_if->sk_ifp, "watchdog timeout\n");
2562		ifp->if_oerrors++;
2563		ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2564		sk_init_locked(sc_if);
2565	}
2566
2567done:
2568	callout_reset(&sc_if->sk_watchdog_ch, hz, sk_watchdog, ifp);
2569
2570	return;
2571}
2572
2573static int
2574skc_shutdown(dev)
2575	device_t		dev;
2576{
2577	struct sk_softc		*sc;
2578
2579	sc = device_get_softc(dev);
2580	SK_LOCK(sc);
2581
2582	/* Turn off the 'driver is loaded' LED. */
2583	CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_OFF);
2584
2585	/*
2586	 * Reset the GEnesis controller. Doing this should also
2587	 * assert the resets on the attached XMAC(s).
2588	 */
2589	sk_reset(sc);
2590	SK_UNLOCK(sc);
2591
2592	return (0);
2593}
2594
2595static int
2596skc_suspend(dev)
2597	device_t		dev;
2598{
2599	struct sk_softc		*sc;
2600	struct sk_if_softc	*sc_if0, *sc_if1;
2601	struct ifnet		*ifp0 = NULL, *ifp1 = NULL;
2602
2603	sc = device_get_softc(dev);
2604
2605	SK_LOCK(sc);
2606
2607	sc_if0 = sc->sk_if[SK_PORT_A];
2608	sc_if1 = sc->sk_if[SK_PORT_B];
2609	if (sc_if0 != NULL)
2610		ifp0 = sc_if0->sk_ifp;
2611	if (sc_if1 != NULL)
2612		ifp1 = sc_if1->sk_ifp;
2613	if (ifp0 != NULL)
2614		sk_stop(sc_if0);
2615	if (ifp1 != NULL)
2616		sk_stop(sc_if1);
2617	sc->sk_suspended = 1;
2618
2619	SK_UNLOCK(sc);
2620
2621	return (0);
2622}
2623
2624static int
2625skc_resume(dev)
2626	device_t		dev;
2627{
2628	struct sk_softc		*sc;
2629	struct sk_if_softc	*sc_if0, *sc_if1;
2630	struct ifnet		*ifp0 = NULL, *ifp1 = NULL;
2631
2632	sc = device_get_softc(dev);
2633
2634	SK_LOCK(sc);
2635
2636	sc_if0 = sc->sk_if[SK_PORT_A];
2637	sc_if1 = sc->sk_if[SK_PORT_B];
2638	if (sc_if0 != NULL)
2639		ifp0 = sc_if0->sk_ifp;
2640	if (sc_if1 != NULL)
2641		ifp1 = sc_if1->sk_ifp;
2642	if (ifp0 != NULL && ifp0->if_flags & IFF_UP)
2643		sk_init_locked(sc_if0);
2644	if (ifp1 != NULL && ifp1->if_flags & IFF_UP)
2645		sk_init_locked(sc_if1);
2646	sc->sk_suspended = 0;
2647
2648	SK_UNLOCK(sc);
2649
2650	return (0);
2651}
2652
2653/*
2654 * According to the data sheet from SK-NET GENESIS the hardware can compute
2655 * two Rx checksums at the same time(Each checksum start position is
2656 * programmed in Rx descriptors). However it seems that TCP/UDP checksum
2657 * does not work at least on my Yukon hardware. I tried every possible ways
2658 * to get correct checksum value but couldn't get correct one. So TCP/UDP
2659 * checksum offload was disabled at the moment and only IP checksum offload
2660 * was enabled.
2661 * As nomral IP header size is 20 bytes I can't expect it would give an
2662 * increase in throughput. However it seems it doesn't hurt performance in
2663 * my testing. If there is a more detailed information for checksum secret
2664 * of the hardware in question please contact yongari@FreeBSD.org to add
2665 * TCP/UDP checksum offload support.
2666 */
2667static __inline void
2668sk_rxcksum(ifp, m, csum)
2669	struct ifnet		*ifp;
2670	struct mbuf		*m;
2671	u_int32_t		csum;
2672{
2673	struct ether_header	*eh;
2674	struct ip		*ip;
2675	int32_t			hlen, len, pktlen;
2676	u_int16_t		csum1, csum2, ipcsum;
2677
2678	pktlen = m->m_pkthdr.len;
2679	if (pktlen < sizeof(struct ether_header) + sizeof(struct ip))
2680		return;
2681	eh = mtod(m, struct ether_header *);
2682	if (eh->ether_type != htons(ETHERTYPE_IP))
2683		return;
2684	ip = (struct ip *)(eh + 1);
2685	if (ip->ip_v != IPVERSION)
2686		return;
2687	hlen = ip->ip_hl << 2;
2688	pktlen -= sizeof(struct ether_header);
2689	if (hlen < sizeof(struct ip))
2690		return;
2691	if (ntohs(ip->ip_len) < hlen)
2692		return;
2693	if (ntohs(ip->ip_len) != pktlen)
2694		return;
2695
2696	csum1 = htons(csum & 0xffff);
2697	csum2 = htons((csum >> 16) & 0xffff);
2698	ipcsum = in_addword(csum1, ~csum2 & 0xffff);
2699	/* checksum fixup for IP options */
2700	len = hlen - sizeof(struct ip);
2701	if (len > 0) {
2702		/*
2703		 * If the second checksum value is correct we can compute IP
2704		 * checksum with simple math. Unfortunately the second checksum
2705		 * value is wrong so we can't verify the checksum from the
2706		 * value(It seems there is some magic here to get correct
2707		 * value). If the second checksum value is correct it also
2708		 * means we can get TCP/UDP checksum) here. However, it still
2709		 * needs pseudo header checksum calculation due to hardware
2710		 * limitations.
2711		 */
2712		return;
2713	}
2714	m->m_pkthdr.csum_flags = CSUM_IP_CHECKED;
2715	if (ipcsum == 0xffff)
2716		m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
2717}
2718
2719static __inline int
2720sk_rxvalid(sc, stat, len)
2721	struct sk_softc		*sc;
2722	u_int32_t		stat, len;
2723{
2724
2725	if (sc->sk_type == SK_GENESIS) {
2726		if ((stat & XM_RXSTAT_ERRFRAME) == XM_RXSTAT_ERRFRAME ||
2727		    XM_RXSTAT_BYTES(stat) != len)
2728			return (0);
2729	} else {
2730		if ((stat & (YU_RXSTAT_CRCERR | YU_RXSTAT_LONGERR |
2731		    YU_RXSTAT_MIIERR | YU_RXSTAT_BADFC | YU_RXSTAT_GOODFC |
2732		    YU_RXSTAT_JABBER)) != 0 ||
2733		    (stat & YU_RXSTAT_RXOK) != YU_RXSTAT_RXOK ||
2734		    YU_RXSTAT_BYTES(stat) != len)
2735			return (0);
2736	}
2737
2738	return (1);
2739}
2740
2741static void
2742sk_rxeof(sc_if)
2743	struct sk_if_softc	*sc_if;
2744{
2745	struct sk_softc		*sc;
2746	struct mbuf		*m;
2747	struct ifnet		*ifp;
2748	struct sk_rx_desc	*cur_rx;
2749	struct sk_rxdesc	*rxd;
2750	int			cons, prog;
2751	u_int32_t		csum, rxstat, sk_ctl;
2752
2753	sc = sc_if->sk_softc;
2754	ifp = sc_if->sk_ifp;
2755
2756	SK_IF_LOCK_ASSERT(sc_if);
2757
2758	bus_dmamap_sync(sc_if->sk_cdata.sk_rx_ring_tag,
2759	    sc_if->sk_cdata.sk_rx_ring_map, BUS_DMASYNC_POSTREAD);
2760
2761	prog = 0;
2762	for (cons = sc_if->sk_cdata.sk_rx_cons; prog < SK_RX_RING_CNT;
2763	    prog++, SK_INC(cons, SK_RX_RING_CNT)) {
2764		cur_rx = &sc_if->sk_rdata.sk_rx_ring[cons];
2765		sk_ctl = le32toh(cur_rx->sk_ctl);
2766		if ((sk_ctl & SK_RXCTL_OWN) != 0)
2767			break;
2768		rxd = &sc_if->sk_cdata.sk_rxdesc[cons];
2769		rxstat = le32toh(cur_rx->sk_xmac_rxstat);
2770
2771		if ((sk_ctl & (SK_RXCTL_STATUS_VALID | SK_RXCTL_FIRSTFRAG |
2772		    SK_RXCTL_LASTFRAG)) != (SK_RXCTL_STATUS_VALID |
2773		    SK_RXCTL_FIRSTFRAG | SK_RXCTL_LASTFRAG) ||
2774		    SK_RXBYTES(sk_ctl) < SK_MIN_FRAMELEN ||
2775		    SK_RXBYTES(sk_ctl) > SK_MAX_FRAMELEN ||
2776		    sk_rxvalid(sc, rxstat, SK_RXBYTES(sk_ctl)) == 0) {
2777			ifp->if_ierrors++;
2778			sk_discard_rxbuf(sc_if, cons);
2779			continue;
2780		}
2781
2782		m = rxd->rx_m;
2783		csum = le32toh(cur_rx->sk_csum);
2784		if (sk_newbuf(sc_if, cons) != 0) {
2785			ifp->if_iqdrops++;
2786			/* reuse old buffer */
2787			sk_discard_rxbuf(sc_if, cons);
2788			continue;
2789		}
2790		m->m_pkthdr.rcvif = ifp;
2791		m->m_pkthdr.len = m->m_len = SK_RXBYTES(sk_ctl);
2792		ifp->if_ipackets++;
2793		if ((ifp->if_capenable & IFCAP_RXCSUM) != 0)
2794			sk_rxcksum(ifp, m, csum);
2795		SK_IF_UNLOCK(sc_if);
2796		(*ifp->if_input)(ifp, m);
2797		SK_IF_LOCK(sc_if);
2798	}
2799
2800	if (prog > 0) {
2801		sc_if->sk_cdata.sk_rx_cons = cons;
2802		bus_dmamap_sync(sc_if->sk_cdata.sk_rx_ring_tag,
2803		    sc_if->sk_cdata.sk_rx_ring_map,
2804		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2805	}
2806}
2807
2808static void
2809sk_jumbo_rxeof(sc_if)
2810	struct sk_if_softc	*sc_if;
2811{
2812	struct sk_softc		*sc;
2813	struct mbuf		*m;
2814	struct ifnet		*ifp;
2815	struct sk_rx_desc	*cur_rx;
2816	struct sk_rxdesc	*jrxd;
2817	int			cons, prog;
2818	u_int32_t		csum, rxstat, sk_ctl;
2819
2820	sc = sc_if->sk_softc;
2821	ifp = sc_if->sk_ifp;
2822
2823	SK_IF_LOCK_ASSERT(sc_if);
2824
2825	bus_dmamap_sync(sc_if->sk_cdata.sk_jumbo_rx_ring_tag,
2826	    sc_if->sk_cdata.sk_jumbo_rx_ring_map, BUS_DMASYNC_POSTREAD);
2827
2828	prog = 0;
2829	for (cons = sc_if->sk_cdata.sk_jumbo_rx_cons;
2830	    prog < SK_JUMBO_RX_RING_CNT;
2831	    prog++, SK_INC(cons, SK_JUMBO_RX_RING_CNT)) {
2832		cur_rx = &sc_if->sk_rdata.sk_jumbo_rx_ring[cons];
2833		sk_ctl = le32toh(cur_rx->sk_ctl);
2834		if ((sk_ctl & SK_RXCTL_OWN) != 0)
2835			break;
2836		jrxd = &sc_if->sk_cdata.sk_jumbo_rxdesc[cons];
2837		rxstat = le32toh(cur_rx->sk_xmac_rxstat);
2838
2839		if ((sk_ctl & (SK_RXCTL_STATUS_VALID | SK_RXCTL_FIRSTFRAG |
2840		    SK_RXCTL_LASTFRAG)) != (SK_RXCTL_STATUS_VALID |
2841		    SK_RXCTL_FIRSTFRAG | SK_RXCTL_LASTFRAG) ||
2842		    SK_RXBYTES(sk_ctl) < SK_MIN_FRAMELEN ||
2843		    SK_RXBYTES(sk_ctl) > SK_JUMBO_FRAMELEN ||
2844		    sk_rxvalid(sc, rxstat, SK_RXBYTES(sk_ctl)) == 0) {
2845			ifp->if_ierrors++;
2846			sk_discard_jumbo_rxbuf(sc_if, cons);
2847			continue;
2848		}
2849
2850		m = jrxd->rx_m;
2851		csum = le32toh(cur_rx->sk_csum);
2852		if (sk_jumbo_newbuf(sc_if, cons) != 0) {
2853			ifp->if_iqdrops++;
2854			/* reuse old buffer */
2855			sk_discard_jumbo_rxbuf(sc_if, cons);
2856			continue;
2857		}
2858		m->m_pkthdr.rcvif = ifp;
2859		m->m_pkthdr.len = m->m_len = SK_RXBYTES(sk_ctl);
2860		ifp->if_ipackets++;
2861		if ((ifp->if_capenable & IFCAP_RXCSUM) != 0)
2862			sk_rxcksum(ifp, m, csum);
2863		SK_IF_UNLOCK(sc_if);
2864		(*ifp->if_input)(ifp, m);
2865		SK_IF_LOCK(sc_if);
2866	}
2867
2868	if (prog > 0) {
2869		sc_if->sk_cdata.sk_jumbo_rx_cons = cons;
2870		bus_dmamap_sync(sc_if->sk_cdata.sk_jumbo_rx_ring_tag,
2871		    sc_if->sk_cdata.sk_jumbo_rx_ring_map,
2872		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2873	}
2874}
2875
2876static void
2877sk_txeof(sc_if)
2878	struct sk_if_softc	*sc_if;
2879{
2880	struct sk_txdesc	*txd;
2881	struct sk_tx_desc	*cur_tx;
2882	struct ifnet		*ifp;
2883	u_int32_t		idx, sk_ctl;
2884
2885	ifp = sc_if->sk_ifp;
2886
2887	txd = STAILQ_FIRST(&sc_if->sk_cdata.sk_txbusyq);
2888	if (txd == NULL)
2889		return;
2890	bus_dmamap_sync(sc_if->sk_cdata.sk_tx_ring_tag,
2891	    sc_if->sk_cdata.sk_tx_ring_map, BUS_DMASYNC_POSTREAD);
2892	/*
2893	 * Go through our tx ring and free mbufs for those
2894	 * frames that have been sent.
2895	 */
2896	for (idx = sc_if->sk_cdata.sk_tx_cons;; SK_INC(idx, SK_TX_RING_CNT)) {
2897		if (sc_if->sk_cdata.sk_tx_cnt <= 0)
2898			break;
2899		cur_tx = &sc_if->sk_rdata.sk_tx_ring[idx];
2900		sk_ctl = le32toh(cur_tx->sk_ctl);
2901		if (sk_ctl & SK_TXCTL_OWN)
2902			break;
2903		sc_if->sk_cdata.sk_tx_cnt--;
2904		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2905		if ((sk_ctl & SK_TXCTL_LASTFRAG) == 0)
2906			continue;
2907		bus_dmamap_sync(sc_if->sk_cdata.sk_tx_tag, txd->tx_dmamap,
2908		    BUS_DMASYNC_POSTWRITE);
2909		bus_dmamap_unload(sc_if->sk_cdata.sk_tx_tag, txd->tx_dmamap);
2910
2911		ifp->if_opackets++;
2912		m_freem(txd->tx_m);
2913		txd->tx_m = NULL;
2914		STAILQ_REMOVE_HEAD(&sc_if->sk_cdata.sk_txbusyq, tx_q);
2915		STAILQ_INSERT_TAIL(&sc_if->sk_cdata.sk_txfreeq, txd, tx_q);
2916		txd = STAILQ_FIRST(&sc_if->sk_cdata.sk_txbusyq);
2917	}
2918	sc_if->sk_cdata.sk_tx_cons = idx;
2919	sc_if->sk_watchdog_timer = sc_if->sk_cdata.sk_tx_cnt > 0 ? 5 : 0;
2920
2921	bus_dmamap_sync(sc_if->sk_cdata.sk_tx_ring_tag,
2922	    sc_if->sk_cdata.sk_tx_ring_map,
2923	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2924}
2925
2926static void
2927sk_tick(xsc_if)
2928	void			*xsc_if;
2929{
2930	struct sk_if_softc	*sc_if;
2931	struct mii_data		*mii;
2932	struct ifnet		*ifp;
2933	int			i;
2934
2935	sc_if = xsc_if;
2936	ifp = sc_if->sk_ifp;
2937	mii = device_get_softc(sc_if->sk_miibus);
2938
2939	if (!(ifp->if_flags & IFF_UP))
2940		return;
2941
2942	if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
2943		sk_intr_bcom(sc_if);
2944		return;
2945	}
2946
2947	/*
2948	 * According to SysKonnect, the correct way to verify that
2949	 * the link has come back up is to poll bit 0 of the GPIO
2950	 * register three times. This pin has the signal from the
2951	 * link_sync pin connected to it; if we read the same link
2952	 * state 3 times in a row, we know the link is up.
2953	 */
2954	for (i = 0; i < 3; i++) {
2955		if (SK_XM_READ_2(sc_if, XM_GPIO) & XM_GPIO_GP0_SET)
2956			break;
2957	}
2958
2959	if (i != 3) {
2960		callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
2961		return;
2962	}
2963
2964	/* Turn the GP0 interrupt back on. */
2965	SK_XM_CLRBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET);
2966	SK_XM_READ_2(sc_if, XM_ISR);
2967	mii_tick(mii);
2968	callout_stop(&sc_if->sk_tick_ch);
2969}
2970
2971static void
2972sk_yukon_tick(xsc_if)
2973	void			*xsc_if;
2974{
2975	struct sk_if_softc	*sc_if;
2976	struct mii_data		*mii;
2977
2978	sc_if = xsc_if;
2979	mii = device_get_softc(sc_if->sk_miibus);
2980
2981	mii_tick(mii);
2982	callout_reset(&sc_if->sk_tick_ch, hz, sk_yukon_tick, sc_if);
2983}
2984
2985static void
2986sk_intr_bcom(sc_if)
2987	struct sk_if_softc	*sc_if;
2988{
2989	struct mii_data		*mii;
2990	struct ifnet		*ifp;
2991	int			status;
2992	mii = device_get_softc(sc_if->sk_miibus);
2993	ifp = sc_if->sk_ifp;
2994
2995	SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
2996
2997	/*
2998	 * Read the PHY interrupt register to make sure
2999	 * we clear any pending interrupts.
3000	 */
3001	status = sk_xmac_miibus_readreg(sc_if, SK_PHYADDR_BCOM, BRGPHY_MII_ISR);
3002
3003	if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
3004		sk_init_xmac(sc_if);
3005		return;
3006	}
3007
3008	if (status & (BRGPHY_ISR_LNK_CHG|BRGPHY_ISR_AN_PR)) {
3009		int			lstat;
3010		lstat = sk_xmac_miibus_readreg(sc_if, SK_PHYADDR_BCOM,
3011		    BRGPHY_MII_AUXSTS);
3012
3013		if (!(lstat & BRGPHY_AUXSTS_LINK) && sc_if->sk_link) {
3014			mii_mediachg(mii);
3015			/* Turn off the link LED. */
3016			SK_IF_WRITE_1(sc_if, 0,
3017			    SK_LINKLED1_CTL, SK_LINKLED_OFF);
3018			sc_if->sk_link = 0;
3019		} else if (status & BRGPHY_ISR_LNK_CHG) {
3020			sk_xmac_miibus_writereg(sc_if, SK_PHYADDR_BCOM,
3021	    		    BRGPHY_MII_IMR, 0xFF00);
3022			mii_tick(mii);
3023			sc_if->sk_link = 1;
3024			/* Turn on the link LED. */
3025			SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL,
3026			    SK_LINKLED_ON|SK_LINKLED_LINKSYNC_OFF|
3027			    SK_LINKLED_BLINK_OFF);
3028		} else {
3029			mii_tick(mii);
3030			callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
3031		}
3032	}
3033
3034	SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
3035
3036	return;
3037}
3038
3039static void
3040sk_intr_xmac(sc_if)
3041	struct sk_if_softc	*sc_if;
3042{
3043	struct sk_softc		*sc;
3044	u_int16_t		status;
3045
3046	sc = sc_if->sk_softc;
3047	status = SK_XM_READ_2(sc_if, XM_ISR);
3048
3049	/*
3050	 * Link has gone down. Start MII tick timeout to
3051	 * watch for link resync.
3052	 */
3053	if (sc_if->sk_phytype == SK_PHYTYPE_XMAC) {
3054		if (status & XM_ISR_GP0_SET) {
3055			SK_XM_SETBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET);
3056			callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
3057		}
3058
3059		if (status & XM_ISR_AUTONEG_DONE) {
3060			callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
3061		}
3062	}
3063
3064	if (status & XM_IMR_TX_UNDERRUN)
3065		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_TXFIFO);
3066
3067	if (status & XM_IMR_RX_OVERRUN)
3068		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_RXFIFO);
3069
3070	status = SK_XM_READ_2(sc_if, XM_ISR);
3071
3072	return;
3073}
3074
3075static void
3076sk_intr_yukon(sc_if)
3077	struct sk_if_softc	*sc_if;
3078{
3079	u_int8_t status;
3080
3081	status = SK_IF_READ_1(sc_if, 0, SK_GMAC_ISR);
3082	/* RX overrun */
3083	if ((status & SK_GMAC_INT_RX_OVER) != 0) {
3084		SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST,
3085		    SK_RFCTL_RX_FIFO_OVER);
3086	}
3087	/* TX underrun */
3088	if ((status & SK_GMAC_INT_TX_UNDER) != 0) {
3089		SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST,
3090		    SK_TFCTL_TX_FIFO_UNDER);
3091	}
3092}
3093
3094static void
3095sk_intr(xsc)
3096	void			*xsc;
3097{
3098	struct sk_softc		*sc = xsc;
3099	struct sk_if_softc	*sc_if0, *sc_if1;
3100	struct ifnet		*ifp0 = NULL, *ifp1 = NULL;
3101	u_int32_t		status;
3102
3103	SK_LOCK(sc);
3104
3105	status = CSR_READ_4(sc, SK_ISSR);
3106	if (status == 0 || status == 0xffffffff || sc->sk_suspended)
3107		goto done_locked;
3108
3109	sc_if0 = sc->sk_if[SK_PORT_A];
3110	sc_if1 = sc->sk_if[SK_PORT_B];
3111
3112	if (sc_if0 != NULL)
3113		ifp0 = sc_if0->sk_ifp;
3114	if (sc_if1 != NULL)
3115		ifp1 = sc_if1->sk_ifp;
3116
3117	for (; (status &= sc->sk_intrmask) != 0;) {
3118		/* Handle receive interrupts first. */
3119		if (status & SK_ISR_RX1_EOF) {
3120			if (ifp0->if_mtu > SK_MAX_FRAMELEN)
3121				sk_jumbo_rxeof(sc_if0);
3122			else
3123				sk_rxeof(sc_if0);
3124			CSR_WRITE_4(sc, SK_BMU_RX_CSR0,
3125			    SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START);
3126		}
3127		if (status & SK_ISR_RX2_EOF) {
3128			if (ifp1->if_mtu > SK_MAX_FRAMELEN)
3129				sk_jumbo_rxeof(sc_if1);
3130			else
3131				sk_rxeof(sc_if1);
3132			CSR_WRITE_4(sc, SK_BMU_RX_CSR1,
3133			    SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START);
3134		}
3135
3136		/* Then transmit interrupts. */
3137		if (status & SK_ISR_TX1_S_EOF) {
3138			sk_txeof(sc_if0);
3139			CSR_WRITE_4(sc, SK_BMU_TXS_CSR0, SK_TXBMU_CLR_IRQ_EOF);
3140		}
3141		if (status & SK_ISR_TX2_S_EOF) {
3142			sk_txeof(sc_if1);
3143			CSR_WRITE_4(sc, SK_BMU_TXS_CSR1, SK_TXBMU_CLR_IRQ_EOF);
3144		}
3145
3146		/* Then MAC interrupts. */
3147		if (status & SK_ISR_MAC1 &&
3148		    ifp0->if_drv_flags & IFF_DRV_RUNNING) {
3149			if (sc->sk_type == SK_GENESIS)
3150				sk_intr_xmac(sc_if0);
3151			else
3152				sk_intr_yukon(sc_if0);
3153		}
3154
3155		if (status & SK_ISR_MAC2 &&
3156		    ifp1->if_drv_flags & IFF_DRV_RUNNING) {
3157			if (sc->sk_type == SK_GENESIS)
3158				sk_intr_xmac(sc_if1);
3159			else
3160				sk_intr_yukon(sc_if1);
3161		}
3162
3163		if (status & SK_ISR_EXTERNAL_REG) {
3164			if (ifp0 != NULL &&
3165			    sc_if0->sk_phytype == SK_PHYTYPE_BCOM)
3166				sk_intr_bcom(sc_if0);
3167			if (ifp1 != NULL &&
3168			    sc_if1->sk_phytype == SK_PHYTYPE_BCOM)
3169				sk_intr_bcom(sc_if1);
3170		}
3171		status = CSR_READ_4(sc, SK_ISSR);
3172	}
3173
3174	CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
3175
3176	if (ifp0 != NULL && !IFQ_DRV_IS_EMPTY(&ifp0->if_snd))
3177		sk_start_locked(ifp0);
3178	if (ifp1 != NULL && !IFQ_DRV_IS_EMPTY(&ifp1->if_snd))
3179		sk_start_locked(ifp1);
3180
3181done_locked:
3182	SK_UNLOCK(sc);
3183}
3184
3185static void
3186sk_init_xmac(sc_if)
3187	struct sk_if_softc	*sc_if;
3188{
3189	struct sk_softc		*sc;
3190	struct ifnet		*ifp;
3191	u_int16_t		eaddr[(ETHER_ADDR_LEN+1)/2];
3192	static const struct sk_bcom_hack bhack[] = {
3193	{ 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 }, { 0x17, 0x0013 },
3194	{ 0x15, 0x0404 }, { 0x17, 0x8006 }, { 0x15, 0x0132 }, { 0x17, 0x8006 },
3195	{ 0x15, 0x0232 }, { 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 },
3196	{ 0, 0 } };
3197
3198	SK_IF_LOCK_ASSERT(sc_if);
3199
3200	sc = sc_if->sk_softc;
3201	ifp = sc_if->sk_ifp;
3202
3203	/* Unreset the XMAC. */
3204	SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL, SK_TXMACCTL_XMAC_UNRESET);
3205	DELAY(1000);
3206
3207	/* Reset the XMAC's internal state. */
3208	SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
3209
3210	/* Save the XMAC II revision */
3211	sc_if->sk_xmac_rev = XM_XMAC_REV(SK_XM_READ_4(sc_if, XM_DEVID));
3212
3213	/*
3214	 * Perform additional initialization for external PHYs,
3215	 * namely for the 1000baseTX cards that use the XMAC's
3216	 * GMII mode.
3217	 */
3218	if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
3219		int			i = 0;
3220		u_int32_t		val;
3221
3222		/* Take PHY out of reset. */
3223		val = sk_win_read_4(sc, SK_GPIO);
3224		if (sc_if->sk_port == SK_PORT_A)
3225			val |= SK_GPIO_DIR0|SK_GPIO_DAT0;
3226		else
3227			val |= SK_GPIO_DIR2|SK_GPIO_DAT2;
3228		sk_win_write_4(sc, SK_GPIO, val);
3229
3230		/* Enable GMII mode on the XMAC. */
3231		SK_XM_SETBIT_2(sc_if, XM_HWCFG, XM_HWCFG_GMIIMODE);
3232
3233		sk_xmac_miibus_writereg(sc_if, SK_PHYADDR_BCOM,
3234		    BRGPHY_MII_BMCR, BRGPHY_BMCR_RESET);
3235		DELAY(10000);
3236		sk_xmac_miibus_writereg(sc_if, SK_PHYADDR_BCOM,
3237		    BRGPHY_MII_IMR, 0xFFF0);
3238
3239		/*
3240		 * Early versions of the BCM5400 apparently have
3241		 * a bug that requires them to have their reserved
3242		 * registers initialized to some magic values. I don't
3243		 * know what the numbers do, I'm just the messenger.
3244		 */
3245		if (sk_xmac_miibus_readreg(sc_if, SK_PHYADDR_BCOM, 0x03)
3246		    == 0x6041) {
3247			while(bhack[i].reg) {
3248				sk_xmac_miibus_writereg(sc_if, SK_PHYADDR_BCOM,
3249				    bhack[i].reg, bhack[i].val);
3250				i++;
3251			}
3252		}
3253	}
3254
3255	/* Set station address */
3256	bcopy(IF_LLADDR(sc_if->sk_ifp), eaddr, ETHER_ADDR_LEN);
3257	SK_XM_WRITE_2(sc_if, XM_PAR0, eaddr[0]);
3258	SK_XM_WRITE_2(sc_if, XM_PAR1, eaddr[1]);
3259	SK_XM_WRITE_2(sc_if, XM_PAR2, eaddr[2]);
3260	SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_STATION);
3261
3262	if (ifp->if_flags & IFF_BROADCAST) {
3263		SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
3264	} else {
3265		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
3266	}
3267
3268	/* We don't need the FCS appended to the packet. */
3269	SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_STRIPFCS);
3270
3271	/* We want short frames padded to 60 bytes. */
3272	SK_XM_SETBIT_2(sc_if, XM_TXCMD, XM_TXCMD_AUTOPAD);
3273
3274	/*
3275	 * Enable the reception of all error frames. This is is
3276	 * a necessary evil due to the design of the XMAC. The
3277	 * XMAC's receive FIFO is only 8K in size, however jumbo
3278	 * frames can be up to 9000 bytes in length. When bad
3279	 * frame filtering is enabled, the XMAC's RX FIFO operates
3280	 * in 'store and forward' mode. For this to work, the
3281	 * entire frame has to fit into the FIFO, but that means
3282	 * that jumbo frames larger than 8192 bytes will be
3283	 * truncated. Disabling all bad frame filtering causes
3284	 * the RX FIFO to operate in streaming mode, in which
3285	 * case the XMAC will start transfering frames out of the
3286	 * RX FIFO as soon as the FIFO threshold is reached.
3287	 */
3288	if (ifp->if_mtu > SK_MAX_FRAMELEN) {
3289		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_BADFRAMES|
3290		    XM_MODE_RX_GIANTS|XM_MODE_RX_RUNTS|XM_MODE_RX_CRCERRS|
3291		    XM_MODE_RX_INRANGELEN);
3292		SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK);
3293	} else
3294		SK_XM_CLRBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK);
3295
3296	/*
3297	 * Bump up the transmit threshold. This helps hold off transmit
3298	 * underruns when we're blasting traffic from both ports at once.
3299	 */
3300	SK_XM_WRITE_2(sc_if, XM_TX_REQTHRESH, SK_XM_TX_FIFOTHRESH);
3301
3302	/* Set Rx filter */
3303	sk_rxfilter_genesis(sc_if);
3304
3305	/* Clear and enable interrupts */
3306	SK_XM_READ_2(sc_if, XM_ISR);
3307	if (sc_if->sk_phytype == SK_PHYTYPE_XMAC)
3308		SK_XM_WRITE_2(sc_if, XM_IMR, XM_INTRS);
3309	else
3310		SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
3311
3312	/* Configure MAC arbiter */
3313	switch(sc_if->sk_xmac_rev) {
3314	case XM_XMAC_REV_B2:
3315		sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_B2);
3316		sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_B2);
3317		sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_B2);
3318		sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_B2);
3319		sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_B2);
3320		sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_B2);
3321		sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_B2);
3322		sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_B2);
3323		sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
3324		break;
3325	case XM_XMAC_REV_C1:
3326		sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_C1);
3327		sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_C1);
3328		sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_C1);
3329		sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_C1);
3330		sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_C1);
3331		sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_C1);
3332		sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_C1);
3333		sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_C1);
3334		sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
3335		break;
3336	default:
3337		break;
3338	}
3339	sk_win_write_2(sc, SK_MACARB_CTL,
3340	    SK_MACARBCTL_UNRESET|SK_MACARBCTL_FASTOE_OFF);
3341
3342	sc_if->sk_link = 1;
3343
3344	return;
3345}
3346
3347static void
3348sk_init_yukon(sc_if)
3349	struct sk_if_softc	*sc_if;
3350{
3351	u_int32_t		phy, v;
3352	u_int16_t		reg;
3353	struct sk_softc		*sc;
3354	struct ifnet		*ifp;
3355	u_int8_t		*eaddr;
3356	int			i;
3357
3358	SK_IF_LOCK_ASSERT(sc_if);
3359
3360	sc = sc_if->sk_softc;
3361	ifp = sc_if->sk_ifp;
3362
3363	if (sc->sk_type == SK_YUKON_LITE &&
3364	    sc->sk_rev >= SK_YUKON_LITE_REV_A3) {
3365		/*
3366		 * Workaround code for COMA mode, set PHY reset.
3367		 * Otherwise it will not correctly take chip out of
3368		 * powerdown (coma)
3369		 */
3370		v = sk_win_read_4(sc, SK_GPIO);
3371		v |= SK_GPIO_DIR9 | SK_GPIO_DAT9;
3372		sk_win_write_4(sc, SK_GPIO, v);
3373	}
3374
3375	/* GMAC and GPHY Reset */
3376	SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, SK_GPHY_RESET_SET);
3377	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
3378	DELAY(1000);
3379
3380	if (sc->sk_type == SK_YUKON_LITE &&
3381	    sc->sk_rev >= SK_YUKON_LITE_REV_A3) {
3382		/*
3383		 * Workaround code for COMA mode, clear PHY reset
3384		 */
3385		v = sk_win_read_4(sc, SK_GPIO);
3386		v |= SK_GPIO_DIR9;
3387		v &= ~SK_GPIO_DAT9;
3388		sk_win_write_4(sc, SK_GPIO, v);
3389	}
3390
3391	phy = SK_GPHY_INT_POL_HI | SK_GPHY_DIS_FC | SK_GPHY_DIS_SLEEP |
3392		SK_GPHY_ENA_XC | SK_GPHY_ANEG_ALL | SK_GPHY_ENA_PAUSE;
3393
3394	if (sc->sk_coppertype)
3395		phy |= SK_GPHY_COPPER;
3396	else
3397		phy |= SK_GPHY_FIBER;
3398
3399	SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_SET);
3400	DELAY(1000);
3401	SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_CLEAR);
3402	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_LOOP_OFF |
3403		      SK_GMAC_PAUSE_ON | SK_GMAC_RESET_CLEAR);
3404
3405	/* unused read of the interrupt source register */
3406	SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
3407
3408	reg = SK_YU_READ_2(sc_if, YUKON_PAR);
3409
3410	/* MIB Counter Clear Mode set */
3411	reg |= YU_PAR_MIB_CLR;
3412	SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
3413
3414	/* MIB Counter Clear Mode clear */
3415	reg &= ~YU_PAR_MIB_CLR;
3416	SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
3417
3418	/* receive control reg */
3419	SK_YU_WRITE_2(sc_if, YUKON_RCR, YU_RCR_CRCR);
3420
3421	/* transmit parameter register */
3422	SK_YU_WRITE_2(sc_if, YUKON_TPR, YU_TPR_JAM_LEN(0x3) |
3423		      YU_TPR_JAM_IPG(0xb) | YU_TPR_JAM2DATA_IPG(0x1a) );
3424
3425	/* serial mode register */
3426	reg = YU_SMR_DATA_BLIND(0x1c) | YU_SMR_MFL_VLAN | YU_SMR_IPG_DATA(0x1e);
3427	if (ifp->if_mtu > SK_MAX_FRAMELEN)
3428		reg |= YU_SMR_MFL_JUMBO;
3429	SK_YU_WRITE_2(sc_if, YUKON_SMR, reg);
3430
3431	/* Setup Yukon's station address */
3432	eaddr = IF_LLADDR(sc_if->sk_ifp);
3433	for (i = 0; i < 3; i++)
3434		SK_YU_WRITE_2(sc_if, SK_MAC0_0 + i * 4,
3435		    eaddr[i * 2] | eaddr[i * 2 + 1] << 8);
3436	/* Set GMAC source address of flow control. */
3437	for (i = 0; i < 3; i++)
3438		SK_YU_WRITE_2(sc_if, YUKON_SAL1 + i * 4,
3439		    eaddr[i * 2] | eaddr[i * 2 + 1] << 8);
3440	/* Set GMAC virtual address. */
3441	for (i = 0; i < 3; i++)
3442		SK_YU_WRITE_2(sc_if, YUKON_SAL2 + i * 4,
3443		    eaddr[i * 2] | eaddr[i * 2 + 1] << 8);
3444
3445	/* Set Rx filter */
3446	sk_rxfilter_yukon(sc_if);
3447
3448	/* enable interrupt mask for counter overflows */
3449	SK_YU_WRITE_2(sc_if, YUKON_TIMR, 0);
3450	SK_YU_WRITE_2(sc_if, YUKON_RIMR, 0);
3451	SK_YU_WRITE_2(sc_if, YUKON_TRIMR, 0);
3452
3453	/* Configure RX MAC FIFO Flush Mask */
3454	v = YU_RXSTAT_FOFL | YU_RXSTAT_CRCERR | YU_RXSTAT_MIIERR |
3455	    YU_RXSTAT_BADFC | YU_RXSTAT_GOODFC | YU_RXSTAT_RUNT |
3456	    YU_RXSTAT_JABBER;
3457	SK_IF_WRITE_2(sc_if, 0, SK_RXMF1_FLUSH_MASK, v);
3458
3459	/* Disable RX MAC FIFO Flush for YUKON-Lite Rev. A0 only */
3460	if (sc->sk_type == SK_YUKON_LITE && sc->sk_rev == SK_YUKON_LITE_REV_A0)
3461		v = SK_TFCTL_OPERATION_ON;
3462	else
3463		v = SK_TFCTL_OPERATION_ON | SK_RFCTL_FIFO_FLUSH_ON;
3464	/* Configure RX MAC FIFO */
3465	SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_CLEAR);
3466	SK_IF_WRITE_2(sc_if, 0, SK_RXMF1_CTRL_TEST, v);
3467
3468	/* Increase flush threshould to 64 bytes */
3469	SK_IF_WRITE_2(sc_if, 0, SK_RXMF1_FLUSH_THRESHOLD,
3470	    SK_RFCTL_FIFO_THRESHOLD + 1);
3471
3472	/* Configure TX MAC FIFO */
3473	SK_IF_WRITE_1(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_CLEAR);
3474	SK_IF_WRITE_2(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_OPERATION_ON);
3475}
3476
3477/*
3478 * Note that to properly initialize any part of the GEnesis chip,
3479 * you first have to take it out of reset mode.
3480 */
3481static void
3482sk_init(xsc)
3483	void			*xsc;
3484{
3485	struct sk_if_softc	*sc_if = xsc;
3486
3487	SK_IF_LOCK(sc_if);
3488	sk_init_locked(sc_if);
3489	SK_IF_UNLOCK(sc_if);
3490
3491	return;
3492}
3493
3494static void
3495sk_init_locked(sc_if)
3496	struct sk_if_softc	*sc_if;
3497{
3498	struct sk_softc		*sc;
3499	struct ifnet		*ifp;
3500	struct mii_data		*mii;
3501	u_int16_t		reg;
3502	u_int32_t		imr;
3503	int			error;
3504
3505	SK_IF_LOCK_ASSERT(sc_if);
3506
3507	ifp = sc_if->sk_ifp;
3508	sc = sc_if->sk_softc;
3509	mii = device_get_softc(sc_if->sk_miibus);
3510
3511	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
3512		return;
3513
3514	/* Cancel pending I/O and free all RX/TX buffers. */
3515	sk_stop(sc_if);
3516
3517	if (sc->sk_type == SK_GENESIS) {
3518		/* Configure LINK_SYNC LED */
3519		SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_ON);
3520		SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL,
3521			SK_LINKLED_LINKSYNC_ON);
3522
3523		/* Configure RX LED */
3524		SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL,
3525			SK_RXLEDCTL_COUNTER_START);
3526
3527		/* Configure TX LED */
3528		SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL,
3529			SK_TXLEDCTL_COUNTER_START);
3530	}
3531
3532	/*
3533	 * Configure descriptor poll timer
3534	 *
3535	 * SK-NET GENESIS data sheet says that possibility of losing Start
3536	 * transmit command due to CPU/cache related interim storage problems
3537	 * under certain conditions. The document recommends a polling
3538	 * mechanism to send a Start transmit command to initiate transfer
3539	 * of ready descriptors regulary. To cope with this issue sk(4) now
3540	 * enables descriptor poll timer to initiate descriptor processing
3541	 * periodically as defined by SK_DPT_TIMER_MAX. However sk(4) still
3542	 * issue SK_TXBMU_TX_START to Tx BMU to get fast execution of Tx
3543	 * command instead of waiting for next descriptor polling time.
3544	 * The same rule may apply to Rx side too but it seems that is not
3545	 * needed at the moment.
3546	 * Since sk(4) uses descriptor polling as a last resort there is no
3547	 * need to set smaller polling time than maximum allowable one.
3548	 */
3549	SK_IF_WRITE_4(sc_if, 0, SK_DPT_INIT, SK_DPT_TIMER_MAX);
3550
3551	/* Configure I2C registers */
3552
3553	/* Configure XMAC(s) */
3554	switch (sc->sk_type) {
3555	case SK_GENESIS:
3556		sk_init_xmac(sc_if);
3557		break;
3558	case SK_YUKON:
3559	case SK_YUKON_LITE:
3560	case SK_YUKON_LP:
3561		sk_init_yukon(sc_if);
3562		break;
3563	}
3564	mii_mediachg(mii);
3565
3566	if (sc->sk_type == SK_GENESIS) {
3567		/* Configure MAC FIFOs */
3568		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_UNRESET);
3569		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_END, SK_FIFO_END);
3570		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_ON);
3571
3572		SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_UNRESET);
3573		SK_IF_WRITE_4(sc_if, 0, SK_TXF1_END, SK_FIFO_END);
3574		SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_ON);
3575	}
3576
3577	/* Configure transmit arbiter(s) */
3578	SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL,
3579	    SK_TXARCTL_ON|SK_TXARCTL_FSYNC_ON);
3580
3581	/* Configure RAMbuffers */
3582	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_UNRESET);
3583	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_START, sc_if->sk_rx_ramstart);
3584	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_WR_PTR, sc_if->sk_rx_ramstart);
3585	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_RD_PTR, sc_if->sk_rx_ramstart);
3586	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_END, sc_if->sk_rx_ramend);
3587	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_ON);
3588
3589	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_UNRESET);
3590	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_STORENFWD_ON);
3591	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_START, sc_if->sk_tx_ramstart);
3592	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_WR_PTR, sc_if->sk_tx_ramstart);
3593	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_RD_PTR, sc_if->sk_tx_ramstart);
3594	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_END, sc_if->sk_tx_ramend);
3595	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_ON);
3596
3597	/* Configure BMUs */
3598	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_ONLINE);
3599	if (ifp->if_mtu > SK_MAX_FRAMELEN) {
3600		SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_LO,
3601		    SK_ADDR_LO(SK_JUMBO_RX_RING_ADDR(sc_if, 0)));
3602		SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_HI,
3603		    SK_ADDR_HI(SK_JUMBO_RX_RING_ADDR(sc_if, 0)));
3604	} else {
3605		SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_LO,
3606		    SK_ADDR_LO(SK_RX_RING_ADDR(sc_if, 0)));
3607		SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_HI,
3608		    SK_ADDR_HI(SK_RX_RING_ADDR(sc_if, 0)));
3609	}
3610
3611	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_ONLINE);
3612	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_LO,
3613	    SK_ADDR_LO(SK_TX_RING_ADDR(sc_if, 0)));
3614	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_HI,
3615	    SK_ADDR_HI(SK_TX_RING_ADDR(sc_if, 0)));
3616
3617	/* Init descriptors */
3618	if (ifp->if_mtu > SK_MAX_FRAMELEN)
3619		error = sk_init_jumbo_rx_ring(sc_if);
3620	else
3621		error = sk_init_rx_ring(sc_if);
3622	if (error != 0) {
3623		device_printf(sc_if->sk_if_dev,
3624		    "initialization failed: no memory for rx buffers\n");
3625		sk_stop(sc_if);
3626		return;
3627	}
3628	sk_init_tx_ring(sc_if);
3629
3630	/* Set interrupt moderation if changed via sysctl. */
3631	imr = sk_win_read_4(sc, SK_IMTIMERINIT);
3632	if (imr != SK_IM_USECS(sc->sk_int_mod, sc->sk_int_ticks)) {
3633		sk_win_write_4(sc, SK_IMTIMERINIT, SK_IM_USECS(sc->sk_int_mod,
3634		    sc->sk_int_ticks));
3635		if (bootverbose)
3636			device_printf(sc_if->sk_if_dev,
3637			    "interrupt moderation is %d us.\n",
3638			    sc->sk_int_mod);
3639	}
3640
3641	/* Configure interrupt handling */
3642	CSR_READ_4(sc, SK_ISSR);
3643	if (sc_if->sk_port == SK_PORT_A)
3644		sc->sk_intrmask |= SK_INTRS1;
3645	else
3646		sc->sk_intrmask |= SK_INTRS2;
3647
3648	sc->sk_intrmask |= SK_ISR_EXTERNAL_REG;
3649
3650	CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
3651
3652	/* Start BMUs. */
3653	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_RX_START);
3654
3655	switch(sc->sk_type) {
3656	case SK_GENESIS:
3657		/* Enable XMACs TX and RX state machines */
3658		SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_IGNPAUSE);
3659		SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
3660		break;
3661	case SK_YUKON:
3662	case SK_YUKON_LITE:
3663	case SK_YUKON_LP:
3664		reg = SK_YU_READ_2(sc_if, YUKON_GPCR);
3665		reg |= YU_GPCR_TXEN | YU_GPCR_RXEN;
3666#if 0
3667		/* XXX disable 100Mbps and full duplex mode? */
3668		reg &= ~(YU_GPCR_SPEED | YU_GPCR_DPLX_DIS);
3669#endif
3670		SK_YU_WRITE_2(sc_if, YUKON_GPCR, reg);
3671	}
3672
3673	/* Activate descriptor polling timer */
3674	SK_IF_WRITE_4(sc_if, 0, SK_DPT_TIMER_CTRL, SK_DPT_TCTL_START);
3675	/* start transfer of Tx descriptors */
3676	CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_START);
3677
3678	ifp->if_drv_flags |= IFF_DRV_RUNNING;
3679	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3680
3681	switch (sc->sk_type) {
3682	case SK_YUKON:
3683	case SK_YUKON_LITE:
3684	case SK_YUKON_LP:
3685		callout_reset(&sc_if->sk_tick_ch, hz, sk_yukon_tick, sc_if);
3686		break;
3687	}
3688
3689	callout_reset(&sc_if->sk_watchdog_ch, hz, sk_watchdog, ifp);
3690
3691	return;
3692}
3693
3694static void
3695sk_stop(sc_if)
3696	struct sk_if_softc	*sc_if;
3697{
3698	int			i;
3699	struct sk_softc		*sc;
3700	struct sk_txdesc	*txd;
3701	struct sk_rxdesc	*rxd;
3702	struct sk_rxdesc	*jrxd;
3703	struct ifnet		*ifp;
3704	u_int32_t		val;
3705
3706	SK_IF_LOCK_ASSERT(sc_if);
3707	sc = sc_if->sk_softc;
3708	ifp = sc_if->sk_ifp;
3709
3710	callout_stop(&sc_if->sk_tick_ch);
3711	callout_stop(&sc_if->sk_watchdog_ch);
3712
3713	/* stop Tx descriptor polling timer */
3714	SK_IF_WRITE_4(sc_if, 0, SK_DPT_TIMER_CTRL, SK_DPT_TCTL_STOP);
3715	/* stop transfer of Tx descriptors */
3716	CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_STOP);
3717	for (i = 0; i < SK_TIMEOUT; i++) {
3718		val = CSR_READ_4(sc, sc_if->sk_tx_bmu);
3719		if ((val & SK_TXBMU_TX_STOP) == 0)
3720			break;
3721		DELAY(1);
3722	}
3723	if (i == SK_TIMEOUT)
3724		device_printf(sc_if->sk_if_dev,
3725		    "can not stop transfer of Tx descriptor\n");
3726	/* stop transfer of Rx descriptors */
3727	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_RX_STOP);
3728	for (i = 0; i < SK_TIMEOUT; i++) {
3729		val = SK_IF_READ_4(sc_if, 0, SK_RXQ1_BMU_CSR);
3730		if ((val & SK_RXBMU_RX_STOP) == 0)
3731			break;
3732		DELAY(1);
3733	}
3734	if (i == SK_TIMEOUT)
3735		device_printf(sc_if->sk_if_dev,
3736		    "can not stop transfer of Rx descriptor\n");
3737
3738	if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
3739		/* Put PHY back into reset. */
3740		val = sk_win_read_4(sc, SK_GPIO);
3741		if (sc_if->sk_port == SK_PORT_A) {
3742			val |= SK_GPIO_DIR0;
3743			val &= ~SK_GPIO_DAT0;
3744		} else {
3745			val |= SK_GPIO_DIR2;
3746			val &= ~SK_GPIO_DAT2;
3747		}
3748		sk_win_write_4(sc, SK_GPIO, val);
3749	}
3750
3751	/* Turn off various components of this interface. */
3752	SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
3753	switch (sc->sk_type) {
3754	case SK_GENESIS:
3755		SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL, SK_TXMACCTL_XMAC_RESET);
3756		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_RESET);
3757		break;
3758	case SK_YUKON:
3759	case SK_YUKON_LITE:
3760	case SK_YUKON_LP:
3761		SK_IF_WRITE_1(sc_if,0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_SET);
3762		SK_IF_WRITE_1(sc_if,0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_SET);
3763		break;
3764	}
3765	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_OFFLINE);
3766	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
3767	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_OFFLINE);
3768	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
3769	SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL, SK_TXARCTL_OFF);
3770	SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
3771	SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
3772	SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_OFF);
3773	SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_LINKSYNC_OFF);
3774
3775	/* Disable interrupts */
3776	if (sc_if->sk_port == SK_PORT_A)
3777		sc->sk_intrmask &= ~SK_INTRS1;
3778	else
3779		sc->sk_intrmask &= ~SK_INTRS2;
3780	CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
3781
3782	SK_XM_READ_2(sc_if, XM_ISR);
3783	SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
3784
3785	/* Free RX and TX mbufs still in the queues. */
3786	for (i = 0; i < SK_RX_RING_CNT; i++) {
3787		rxd = &sc_if->sk_cdata.sk_rxdesc[i];
3788		if (rxd->rx_m != NULL) {
3789			bus_dmamap_sync(sc_if->sk_cdata.sk_rx_tag,
3790			    rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
3791			bus_dmamap_unload(sc_if->sk_cdata.sk_rx_tag,
3792			    rxd->rx_dmamap);
3793			m_freem(rxd->rx_m);
3794			rxd->rx_m = NULL;
3795		}
3796	}
3797	for (i = 0; i < SK_JUMBO_RX_RING_CNT; i++) {
3798		jrxd = &sc_if->sk_cdata.sk_jumbo_rxdesc[i];
3799		if (jrxd->rx_m != NULL) {
3800			bus_dmamap_sync(sc_if->sk_cdata.sk_jumbo_rx_tag,
3801			    jrxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
3802			bus_dmamap_unload(sc_if->sk_cdata.sk_jumbo_rx_tag,
3803			    jrxd->rx_dmamap);
3804			m_freem(jrxd->rx_m);
3805			jrxd->rx_m = NULL;
3806		}
3807	}
3808	for (i = 0; i < SK_TX_RING_CNT; i++) {
3809		txd = &sc_if->sk_cdata.sk_txdesc[i];
3810		if (txd->tx_m != NULL) {
3811			bus_dmamap_sync(sc_if->sk_cdata.sk_tx_tag,
3812			    txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
3813			bus_dmamap_unload(sc_if->sk_cdata.sk_tx_tag,
3814			    txd->tx_dmamap);
3815			m_freem(txd->tx_m);
3816			txd->tx_m = NULL;
3817		}
3818	}
3819
3820	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING|IFF_DRV_OACTIVE);
3821
3822	return;
3823}
3824
3825static int
3826sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
3827{
3828	int error, value;
3829
3830	if (!arg1)
3831		return (EINVAL);
3832	value = *(int *)arg1;
3833	error = sysctl_handle_int(oidp, &value, 0, req);
3834	if (error || !req->newptr)
3835		return (error);
3836	if (value < low || value > high)
3837		return (EINVAL);
3838	*(int *)arg1 = value;
3839	return (0);
3840}
3841
3842static int
3843sysctl_hw_sk_int_mod(SYSCTL_HANDLER_ARGS)
3844{
3845	return (sysctl_int_range(oidp, arg1, arg2, req, SK_IM_MIN, SK_IM_MAX));
3846}
3847