1/*	$OpenBSD: if_sk.c,v 2.33 2003/08/12 05:23:06 nate Exp $	*/
2
3/*-
4 * Copyright (c) 1997, 1998, 1999, 2000
5 *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 *    notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 *    notice, this list of conditions and the following disclaimer in the
14 *    documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 *    must display the following acknowledgement:
17 *	This product includes software developed by Bill Paul.
18 * 4. Neither the name of the author nor the names of any co-contributors
19 *    may be used to endorse or promote products derived from this software
20 *    without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
26 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
32 * THE POSSIBILITY OF SUCH DAMAGE.
33 */
34/*-
35 * Copyright (c) 2003 Nathan L. Binkert <binkertn@umich.edu>
36 *
37 * Permission to use, copy, modify, and distribute this software for any
38 * purpose with or without fee is hereby granted, provided that the above
39 * copyright notice and this permission notice appear in all copies.
40 *
41 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
42 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
43 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
44 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
45 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
46 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
47 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
48 */
49
50#include <sys/cdefs.h>
51__FBSDID("$FreeBSD$");
52
53/*
54 * SysKonnect SK-NET gigabit ethernet driver for FreeBSD. Supports
55 * the SK-984x series adapters, both single port and dual port.
56 * References:
57 * 	The XaQti XMAC II datasheet,
58 *  http://www.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
59 *	The SysKonnect GEnesis manual, http://www.syskonnect.com
60 *
61 * Note: XaQti has been acquired by Vitesse, and Vitesse does not have the
62 * XMAC II datasheet online. I have put my copy at people.freebsd.org as a
63 * convenience to others until Vitesse corrects this problem:
64 *
65 * http://people.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
66 *
67 * Written by Bill Paul <wpaul@ee.columbia.edu>
68 * Department of Electrical Engineering
69 * Columbia University, New York City
70 */
71/*
72 * The SysKonnect gigabit ethernet adapters consist of two main
73 * components: the SysKonnect GEnesis controller chip and the XaQti Corp.
74 * XMAC II gigabit ethernet MAC. The XMAC provides all of the MAC
75 * components and a PHY while the GEnesis controller provides a PCI
76 * interface with DMA support. Each card may have between 512K and
77 * 2MB of SRAM on board depending on the configuration.
78 *
79 * The SysKonnect GEnesis controller can have either one or two XMAC
80 * chips connected to it, allowing single or dual port NIC configurations.
81 * SysKonnect has the distinction of being the only vendor on the market
82 * with a dual port gigabit ethernet NIC. The GEnesis provides dual FIFOs,
83 * dual DMA queues, packet/MAC/transmit arbiters and direct access to the
84 * XMAC registers. This driver takes advantage of these features to allow
85 * both XMACs to operate as independent interfaces.
86 */
87
88#include <sys/param.h>
89#include <sys/systm.h>
90#include <sys/bus.h>
91#include <sys/endian.h>
92#include <sys/mbuf.h>
93#include <sys/malloc.h>
94#include <sys/kernel.h>
95#include <sys/module.h>
96#include <sys/socket.h>
97#include <sys/sockio.h>
98#include <sys/queue.h>
99#include <sys/sysctl.h>
100
101#include <net/bpf.h>
102#include <net/ethernet.h>
103#include <net/if.h>
104#include <net/if_var.h>
105#include <net/if_arp.h>
106#include <net/if_dl.h>
107#include <net/if_media.h>
108#include <net/if_types.h>
109#include <net/if_vlan_var.h>
110
111#include <netinet/in.h>
112#include <netinet/in_systm.h>
113#include <netinet/ip.h>
114
115#include <machine/bus.h>
116#include <machine/in_cksum.h>
117#include <machine/resource.h>
118#include <sys/rman.h>
119
120#include <dev/mii/mii.h>
121#include <dev/mii/miivar.h>
122#include <dev/mii/brgphyreg.h>
123
124#include <dev/pci/pcireg.h>
125#include <dev/pci/pcivar.h>
126
127#if 0
128#define SK_USEIOSPACE
129#endif
130
131#include <dev/sk/if_skreg.h>
132#include <dev/sk/xmaciireg.h>
133#include <dev/sk/yukonreg.h>
134
135MODULE_DEPEND(sk, pci, 1, 1, 1);
136MODULE_DEPEND(sk, ether, 1, 1, 1);
137MODULE_DEPEND(sk, miibus, 1, 1, 1);
138
139/* "device miibus" required.  See GENERIC if you get errors here. */
140#include "miibus_if.h"
141
142static const struct sk_type sk_devs[] = {
143	{
144		VENDORID_SK,
145		DEVICEID_SK_V1,
146		"SysKonnect Gigabit Ethernet (V1.0)"
147	},
148	{
149		VENDORID_SK,
150		DEVICEID_SK_V2,
151		"SysKonnect Gigabit Ethernet (V2.0)"
152	},
153	{
154		VENDORID_MARVELL,
155		DEVICEID_SK_V2,
156		"Marvell Gigabit Ethernet"
157	},
158	{
159		VENDORID_MARVELL,
160		DEVICEID_BELKIN_5005,
161		"Belkin F5D5005 Gigabit Ethernet"
162	},
163	{
164		VENDORID_3COM,
165		DEVICEID_3COM_3C940,
166		"3Com 3C940 Gigabit Ethernet"
167	},
168	{
169		VENDORID_LINKSYS,
170		DEVICEID_LINKSYS_EG1032,
171		"Linksys EG1032 Gigabit Ethernet"
172	},
173	{
174		VENDORID_DLINK,
175		DEVICEID_DLINK_DGE530T_A1,
176		"D-Link DGE-530T Gigabit Ethernet"
177	},
178	{
179		VENDORID_DLINK,
180		DEVICEID_DLINK_DGE530T_B1,
181		"D-Link DGE-530T Gigabit Ethernet"
182	},
183	{ 0, 0, NULL }
184};
185
186static int skc_probe(device_t);
187static int skc_attach(device_t);
188static int skc_detach(device_t);
189static int skc_shutdown(device_t);
190static int skc_suspend(device_t);
191static int skc_resume(device_t);
192static bus_dma_tag_t skc_get_dma_tag(device_t, device_t);
193static int sk_detach(device_t);
194static int sk_probe(device_t);
195static int sk_attach(device_t);
196static void sk_tick(void *);
197static void sk_yukon_tick(void *);
198static void sk_intr(void *);
199static void sk_intr_xmac(struct sk_if_softc *);
200static void sk_intr_bcom(struct sk_if_softc *);
201static void sk_intr_yukon(struct sk_if_softc *);
202static __inline void sk_rxcksum(struct ifnet *, struct mbuf *, u_int32_t);
203static __inline int sk_rxvalid(struct sk_softc *, u_int32_t, u_int32_t);
204static void sk_rxeof(struct sk_if_softc *);
205static void sk_jumbo_rxeof(struct sk_if_softc *);
206static void sk_txeof(struct sk_if_softc *);
207static void sk_txcksum(struct ifnet *, struct mbuf *, struct sk_tx_desc *);
208static int sk_encap(struct sk_if_softc *, struct mbuf **);
209static void sk_start(struct ifnet *);
210static void sk_start_locked(struct ifnet *);
211static int sk_ioctl(struct ifnet *, u_long, caddr_t);
212static void sk_init(void *);
213static void sk_init_locked(struct sk_if_softc *);
214static void sk_init_xmac(struct sk_if_softc *);
215static void sk_init_yukon(struct sk_if_softc *);
216static void sk_stop(struct sk_if_softc *);
217static void sk_watchdog(void *);
218static int sk_ifmedia_upd(struct ifnet *);
219static void sk_ifmedia_sts(struct ifnet *, struct ifmediareq *);
220static void sk_reset(struct sk_softc *);
221static __inline void sk_discard_rxbuf(struct sk_if_softc *, int);
222static __inline void sk_discard_jumbo_rxbuf(struct sk_if_softc *, int);
223static int sk_newbuf(struct sk_if_softc *, int);
224static int sk_jumbo_newbuf(struct sk_if_softc *, int);
225static void sk_dmamap_cb(void *, bus_dma_segment_t *, int, int);
226static int sk_dma_alloc(struct sk_if_softc *);
227static int sk_dma_jumbo_alloc(struct sk_if_softc *);
228static void sk_dma_free(struct sk_if_softc *);
229static void sk_dma_jumbo_free(struct sk_if_softc *);
230static int sk_init_rx_ring(struct sk_if_softc *);
231static int sk_init_jumbo_rx_ring(struct sk_if_softc *);
232static void sk_init_tx_ring(struct sk_if_softc *);
233static u_int32_t sk_win_read_4(struct sk_softc *, int);
234static u_int16_t sk_win_read_2(struct sk_softc *, int);
235static u_int8_t sk_win_read_1(struct sk_softc *, int);
236static void sk_win_write_4(struct sk_softc *, int, u_int32_t);
237static void sk_win_write_2(struct sk_softc *, int, u_int32_t);
238static void sk_win_write_1(struct sk_softc *, int, u_int32_t);
239
240static int sk_miibus_readreg(device_t, int, int);
241static int sk_miibus_writereg(device_t, int, int, int);
242static void sk_miibus_statchg(device_t);
243
244static int sk_xmac_miibus_readreg(struct sk_if_softc *, int, int);
245static int sk_xmac_miibus_writereg(struct sk_if_softc *, int, int,
246						int);
247static void sk_xmac_miibus_statchg(struct sk_if_softc *);
248
249static int sk_marv_miibus_readreg(struct sk_if_softc *, int, int);
250static int sk_marv_miibus_writereg(struct sk_if_softc *, int, int,
251						int);
252static void sk_marv_miibus_statchg(struct sk_if_softc *);
253
254static uint32_t sk_xmchash(const uint8_t *);
255static void sk_setfilt(struct sk_if_softc *, u_int16_t *, int);
256static void sk_rxfilter(struct sk_if_softc *);
257static void sk_rxfilter_genesis(struct sk_if_softc *);
258static void sk_rxfilter_yukon(struct sk_if_softc *);
259
260static int sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high);
261static int sysctl_hw_sk_int_mod(SYSCTL_HANDLER_ARGS);
262
263/* Tunables. */
264static int jumbo_disable = 0;
265TUNABLE_INT("hw.skc.jumbo_disable", &jumbo_disable);
266
267/*
268 * It seems that SK-NET GENESIS supports very simple checksum offload
269 * capability for Tx and I believe it can generate 0 checksum value for
270 * UDP packets in Tx as the hardware can't differenciate UDP packets from
271 * TCP packets. 0 chcecksum value for UDP packet is an invalid one as it
272 * means sender didn't perforam checksum computation. For the safety I
273 * disabled UDP checksum offload capability at the moment. Alternatively
274 * we can intrduce a LINK0/LINK1 flag as hme(4) did in its Tx checksum
275 * offload routine.
276 */
277#define SK_CSUM_FEATURES	(CSUM_TCP)
278
279/*
280 * Note that we have newbus methods for both the GEnesis controller
281 * itself and the XMAC(s). The XMACs are children of the GEnesis, and
282 * the miibus code is a child of the XMACs. We need to do it this way
283 * so that the miibus drivers can access the PHY registers on the
284 * right PHY. It's not quite what I had in mind, but it's the only
285 * design that achieves the desired effect.
286 */
287static device_method_t skc_methods[] = {
288	/* Device interface */
289	DEVMETHOD(device_probe,		skc_probe),
290	DEVMETHOD(device_attach,	skc_attach),
291	DEVMETHOD(device_detach,	skc_detach),
292	DEVMETHOD(device_suspend,	skc_suspend),
293	DEVMETHOD(device_resume,	skc_resume),
294	DEVMETHOD(device_shutdown,	skc_shutdown),
295
296	DEVMETHOD(bus_get_dma_tag,	skc_get_dma_tag),
297
298	DEVMETHOD_END
299};
300
301static driver_t skc_driver = {
302	"skc",
303	skc_methods,
304	sizeof(struct sk_softc)
305};
306
307static devclass_t skc_devclass;
308
309static device_method_t sk_methods[] = {
310	/* Device interface */
311	DEVMETHOD(device_probe,		sk_probe),
312	DEVMETHOD(device_attach,	sk_attach),
313	DEVMETHOD(device_detach,	sk_detach),
314	DEVMETHOD(device_shutdown,	bus_generic_shutdown),
315
316	/* MII interface */
317	DEVMETHOD(miibus_readreg,	sk_miibus_readreg),
318	DEVMETHOD(miibus_writereg,	sk_miibus_writereg),
319	DEVMETHOD(miibus_statchg,	sk_miibus_statchg),
320
321	DEVMETHOD_END
322};
323
324static driver_t sk_driver = {
325	"sk",
326	sk_methods,
327	sizeof(struct sk_if_softc)
328};
329
330static devclass_t sk_devclass;
331
332DRIVER_MODULE(skc, pci, skc_driver, skc_devclass, NULL, NULL);
333DRIVER_MODULE(sk, skc, sk_driver, sk_devclass, NULL, NULL);
334DRIVER_MODULE(miibus, sk, miibus_driver, miibus_devclass, NULL, NULL);
335
336static struct resource_spec sk_res_spec_io[] = {
337	{ SYS_RES_IOPORT,	PCIR_BAR(1),	RF_ACTIVE },
338	{ SYS_RES_IRQ,		0,		RF_ACTIVE | RF_SHAREABLE },
339	{ -1,			0,		0 }
340};
341
342static struct resource_spec sk_res_spec_mem[] = {
343	{ SYS_RES_MEMORY,	PCIR_BAR(0),	RF_ACTIVE },
344	{ SYS_RES_IRQ,		0,		RF_ACTIVE | RF_SHAREABLE },
345	{ -1,			0,		0 }
346};
347
348#define SK_SETBIT(sc, reg, x)		\
349	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) | x)
350
351#define SK_CLRBIT(sc, reg, x)		\
352	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) & ~x)
353
354#define SK_WIN_SETBIT_4(sc, reg, x)	\
355	sk_win_write_4(sc, reg, sk_win_read_4(sc, reg) | x)
356
357#define SK_WIN_CLRBIT_4(sc, reg, x)	\
358	sk_win_write_4(sc, reg, sk_win_read_4(sc, reg) & ~x)
359
360#define SK_WIN_SETBIT_2(sc, reg, x)	\
361	sk_win_write_2(sc, reg, sk_win_read_2(sc, reg) | x)
362
363#define SK_WIN_CLRBIT_2(sc, reg, x)	\
364	sk_win_write_2(sc, reg, sk_win_read_2(sc, reg) & ~x)
365
366static u_int32_t
367sk_win_read_4(sc, reg)
368	struct sk_softc		*sc;
369	int			reg;
370{
371#ifdef SK_USEIOSPACE
372	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
373	return(CSR_READ_4(sc, SK_WIN_BASE + SK_REG(reg)));
374#else
375	return(CSR_READ_4(sc, reg));
376#endif
377}
378
379static u_int16_t
380sk_win_read_2(sc, reg)
381	struct sk_softc		*sc;
382	int			reg;
383{
384#ifdef SK_USEIOSPACE
385	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
386	return(CSR_READ_2(sc, SK_WIN_BASE + SK_REG(reg)));
387#else
388	return(CSR_READ_2(sc, reg));
389#endif
390}
391
392static u_int8_t
393sk_win_read_1(sc, reg)
394	struct sk_softc		*sc;
395	int			reg;
396{
397#ifdef SK_USEIOSPACE
398	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
399	return(CSR_READ_1(sc, SK_WIN_BASE + SK_REG(reg)));
400#else
401	return(CSR_READ_1(sc, reg));
402#endif
403}
404
405static void
406sk_win_write_4(sc, reg, val)
407	struct sk_softc		*sc;
408	int			reg;
409	u_int32_t		val;
410{
411#ifdef SK_USEIOSPACE
412	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
413	CSR_WRITE_4(sc, SK_WIN_BASE + SK_REG(reg), val);
414#else
415	CSR_WRITE_4(sc, reg, val);
416#endif
417	return;
418}
419
420static void
421sk_win_write_2(sc, reg, val)
422	struct sk_softc		*sc;
423	int			reg;
424	u_int32_t		val;
425{
426#ifdef SK_USEIOSPACE
427	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
428	CSR_WRITE_2(sc, SK_WIN_BASE + SK_REG(reg), val);
429#else
430	CSR_WRITE_2(sc, reg, val);
431#endif
432	return;
433}
434
435static void
436sk_win_write_1(sc, reg, val)
437	struct sk_softc		*sc;
438	int			reg;
439	u_int32_t		val;
440{
441#ifdef SK_USEIOSPACE
442	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
443	CSR_WRITE_1(sc, SK_WIN_BASE + SK_REG(reg), val);
444#else
445	CSR_WRITE_1(sc, reg, val);
446#endif
447	return;
448}
449
450static int
451sk_miibus_readreg(dev, phy, reg)
452	device_t		dev;
453	int			phy, reg;
454{
455	struct sk_if_softc	*sc_if;
456	int			v;
457
458	sc_if = device_get_softc(dev);
459
460	SK_IF_MII_LOCK(sc_if);
461	switch(sc_if->sk_softc->sk_type) {
462	case SK_GENESIS:
463		v = sk_xmac_miibus_readreg(sc_if, phy, reg);
464		break;
465	case SK_YUKON:
466	case SK_YUKON_LITE:
467	case SK_YUKON_LP:
468		v = sk_marv_miibus_readreg(sc_if, phy, reg);
469		break;
470	default:
471		v = 0;
472		break;
473	}
474	SK_IF_MII_UNLOCK(sc_if);
475
476	return (v);
477}
478
479static int
480sk_miibus_writereg(dev, phy, reg, val)
481	device_t		dev;
482	int			phy, reg, val;
483{
484	struct sk_if_softc	*sc_if;
485	int			v;
486
487	sc_if = device_get_softc(dev);
488
489	SK_IF_MII_LOCK(sc_if);
490	switch(sc_if->sk_softc->sk_type) {
491	case SK_GENESIS:
492		v = sk_xmac_miibus_writereg(sc_if, phy, reg, val);
493		break;
494	case SK_YUKON:
495	case SK_YUKON_LITE:
496	case SK_YUKON_LP:
497		v = sk_marv_miibus_writereg(sc_if, phy, reg, val);
498		break;
499	default:
500		v = 0;
501		break;
502	}
503	SK_IF_MII_UNLOCK(sc_if);
504
505	return (v);
506}
507
508static void
509sk_miibus_statchg(dev)
510	device_t		dev;
511{
512	struct sk_if_softc	*sc_if;
513
514	sc_if = device_get_softc(dev);
515
516	SK_IF_MII_LOCK(sc_if);
517	switch(sc_if->sk_softc->sk_type) {
518	case SK_GENESIS:
519		sk_xmac_miibus_statchg(sc_if);
520		break;
521	case SK_YUKON:
522	case SK_YUKON_LITE:
523	case SK_YUKON_LP:
524		sk_marv_miibus_statchg(sc_if);
525		break;
526	}
527	SK_IF_MII_UNLOCK(sc_if);
528
529	return;
530}
531
532static int
533sk_xmac_miibus_readreg(sc_if, phy, reg)
534	struct sk_if_softc	*sc_if;
535	int			phy, reg;
536{
537	int			i;
538
539	SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8));
540	SK_XM_READ_2(sc_if, XM_PHY_DATA);
541	if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) {
542		for (i = 0; i < SK_TIMEOUT; i++) {
543			DELAY(1);
544			if (SK_XM_READ_2(sc_if, XM_MMUCMD) &
545			    XM_MMUCMD_PHYDATARDY)
546				break;
547		}
548
549		if (i == SK_TIMEOUT) {
550			if_printf(sc_if->sk_ifp, "phy failed to come ready\n");
551			return(0);
552		}
553	}
554	DELAY(1);
555	i = SK_XM_READ_2(sc_if, XM_PHY_DATA);
556
557	return(i);
558}
559
560static int
561sk_xmac_miibus_writereg(sc_if, phy, reg, val)
562	struct sk_if_softc	*sc_if;
563	int			phy, reg, val;
564{
565	int			i;
566
567	SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8));
568	for (i = 0; i < SK_TIMEOUT; i++) {
569		if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY))
570			break;
571	}
572
573	if (i == SK_TIMEOUT) {
574		if_printf(sc_if->sk_ifp, "phy failed to come ready\n");
575		return (ETIMEDOUT);
576	}
577
578	SK_XM_WRITE_2(sc_if, XM_PHY_DATA, val);
579	for (i = 0; i < SK_TIMEOUT; i++) {
580		DELAY(1);
581		if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY))
582			break;
583	}
584	if (i == SK_TIMEOUT)
585		if_printf(sc_if->sk_ifp, "phy write timed out\n");
586
587	return(0);
588}
589
590static void
591sk_xmac_miibus_statchg(sc_if)
592	struct sk_if_softc	*sc_if;
593{
594	struct mii_data		*mii;
595
596	mii = device_get_softc(sc_if->sk_miibus);
597
598	/*
599	 * If this is a GMII PHY, manually set the XMAC's
600	 * duplex mode accordingly.
601	 */
602	if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) {
603		if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
604			SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX);
605		} else {
606			SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX);
607		}
608	}
609}
610
611static int
612sk_marv_miibus_readreg(sc_if, phy, reg)
613	struct sk_if_softc	*sc_if;
614	int			phy, reg;
615{
616	u_int16_t		val;
617	int			i;
618
619	if (sc_if->sk_phytype != SK_PHYTYPE_MARV_COPPER &&
620	    sc_if->sk_phytype != SK_PHYTYPE_MARV_FIBER) {
621		return(0);
622	}
623
624        SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
625		      YU_SMICR_REGAD(reg) | YU_SMICR_OP_READ);
626
627	for (i = 0; i < SK_TIMEOUT; i++) {
628		DELAY(1);
629		val = SK_YU_READ_2(sc_if, YUKON_SMICR);
630		if (val & YU_SMICR_READ_VALID)
631			break;
632	}
633
634	if (i == SK_TIMEOUT) {
635		if_printf(sc_if->sk_ifp, "phy failed to come ready\n");
636		return(0);
637	}
638
639	val = SK_YU_READ_2(sc_if, YUKON_SMIDR);
640
641	return(val);
642}
643
644static int
645sk_marv_miibus_writereg(sc_if, phy, reg, val)
646	struct sk_if_softc	*sc_if;
647	int			phy, reg, val;
648{
649	int			i;
650
651	SK_YU_WRITE_2(sc_if, YUKON_SMIDR, val);
652	SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
653		      YU_SMICR_REGAD(reg) | YU_SMICR_OP_WRITE);
654
655	for (i = 0; i < SK_TIMEOUT; i++) {
656		DELAY(1);
657		if ((SK_YU_READ_2(sc_if, YUKON_SMICR) & YU_SMICR_BUSY) == 0)
658			break;
659	}
660	if (i == SK_TIMEOUT)
661		if_printf(sc_if->sk_ifp, "phy write timeout\n");
662
663	return(0);
664}
665
666static void
667sk_marv_miibus_statchg(sc_if)
668	struct sk_if_softc	*sc_if;
669{
670	return;
671}
672
673#define HASH_BITS		6
674
675static u_int32_t
676sk_xmchash(addr)
677	const uint8_t *addr;
678{
679	uint32_t crc;
680
681	/* Compute CRC for the address value. */
682	crc = ether_crc32_le(addr, ETHER_ADDR_LEN);
683
684	return (~crc & ((1 << HASH_BITS) - 1));
685}
686
687static void
688sk_setfilt(sc_if, addr, slot)
689	struct sk_if_softc	*sc_if;
690	u_int16_t		*addr;
691	int			slot;
692{
693	int			base;
694
695	base = XM_RXFILT_ENTRY(slot);
696
697	SK_XM_WRITE_2(sc_if, base, addr[0]);
698	SK_XM_WRITE_2(sc_if, base + 2, addr[1]);
699	SK_XM_WRITE_2(sc_if, base + 4, addr[2]);
700
701	return;
702}
703
704static void
705sk_rxfilter(sc_if)
706	struct sk_if_softc	*sc_if;
707{
708	struct sk_softc		*sc;
709
710	SK_IF_LOCK_ASSERT(sc_if);
711
712	sc = sc_if->sk_softc;
713	if (sc->sk_type == SK_GENESIS)
714		sk_rxfilter_genesis(sc_if);
715	else
716		sk_rxfilter_yukon(sc_if);
717}
718
719static void
720sk_rxfilter_genesis(sc_if)
721	struct sk_if_softc	*sc_if;
722{
723	struct ifnet		*ifp = sc_if->sk_ifp;
724	u_int32_t		hashes[2] = { 0, 0 }, mode;
725	int			h = 0, i;
726	struct ifmultiaddr	*ifma;
727	u_int16_t		dummy[] = { 0, 0, 0 };
728	u_int16_t		maddr[(ETHER_ADDR_LEN+1)/2];
729
730	SK_IF_LOCK_ASSERT(sc_if);
731
732	mode = SK_XM_READ_4(sc_if, XM_MODE);
733	mode &= ~(XM_MODE_RX_PROMISC | XM_MODE_RX_USE_HASH |
734	    XM_MODE_RX_USE_PERFECT);
735	/* First, zot all the existing perfect filters. */
736	for (i = 1; i < XM_RXFILT_MAX; i++)
737		sk_setfilt(sc_if, dummy, i);
738
739	/* Now program new ones. */
740	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
741		if (ifp->if_flags & IFF_ALLMULTI)
742			mode |= XM_MODE_RX_USE_HASH;
743		if (ifp->if_flags & IFF_PROMISC)
744			mode |= XM_MODE_RX_PROMISC;
745		hashes[0] = 0xFFFFFFFF;
746		hashes[1] = 0xFFFFFFFF;
747	} else {
748		i = 1;
749		if_maddr_rlock(ifp);
750		TAILQ_FOREACH_REVERSE(ifma, &ifp->if_multiaddrs, ifmultihead,
751		    ifma_link) {
752			if (ifma->ifma_addr->sa_family != AF_LINK)
753				continue;
754			/*
755			 * Program the first XM_RXFILT_MAX multicast groups
756			 * into the perfect filter.
757			 */
758			bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
759			    maddr, ETHER_ADDR_LEN);
760			if (i < XM_RXFILT_MAX) {
761				sk_setfilt(sc_if, maddr, i);
762				mode |= XM_MODE_RX_USE_PERFECT;
763				i++;
764				continue;
765			}
766			h = sk_xmchash((const uint8_t *)maddr);
767			if (h < 32)
768				hashes[0] |= (1 << h);
769			else
770				hashes[1] |= (1 << (h - 32));
771			mode |= XM_MODE_RX_USE_HASH;
772		}
773		if_maddr_runlock(ifp);
774	}
775
776	SK_XM_WRITE_4(sc_if, XM_MODE, mode);
777	SK_XM_WRITE_4(sc_if, XM_MAR0, hashes[0]);
778	SK_XM_WRITE_4(sc_if, XM_MAR2, hashes[1]);
779}
780
781static void
782sk_rxfilter_yukon(sc_if)
783	struct sk_if_softc	*sc_if;
784{
785	struct ifnet		*ifp;
786	u_int32_t		crc, hashes[2] = { 0, 0 }, mode;
787	struct ifmultiaddr	*ifma;
788
789	SK_IF_LOCK_ASSERT(sc_if);
790
791	ifp = sc_if->sk_ifp;
792	mode = SK_YU_READ_2(sc_if, YUKON_RCR);
793	if (ifp->if_flags & IFF_PROMISC)
794		mode &= ~(YU_RCR_UFLEN | YU_RCR_MUFLEN);
795	else if (ifp->if_flags & IFF_ALLMULTI) {
796		mode |= YU_RCR_UFLEN | YU_RCR_MUFLEN;
797		hashes[0] = 0xFFFFFFFF;
798		hashes[1] = 0xFFFFFFFF;
799	} else {
800		mode |= YU_RCR_UFLEN;
801		if_maddr_rlock(ifp);
802		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
803			if (ifma->ifma_addr->sa_family != AF_LINK)
804				continue;
805			crc = ether_crc32_be(LLADDR((struct sockaddr_dl *)
806			    ifma->ifma_addr), ETHER_ADDR_LEN);
807			/* Just want the 6 least significant bits. */
808			crc &= 0x3f;
809			/* Set the corresponding bit in the hash table. */
810			hashes[crc >> 5] |= 1 << (crc & 0x1f);
811		}
812		if_maddr_runlock(ifp);
813		if (hashes[0] != 0 || hashes[1] != 0)
814			mode |= YU_RCR_MUFLEN;
815	}
816
817	SK_YU_WRITE_2(sc_if, YUKON_MCAH1, hashes[0] & 0xffff);
818	SK_YU_WRITE_2(sc_if, YUKON_MCAH2, (hashes[0] >> 16) & 0xffff);
819	SK_YU_WRITE_2(sc_if, YUKON_MCAH3, hashes[1] & 0xffff);
820	SK_YU_WRITE_2(sc_if, YUKON_MCAH4, (hashes[1] >> 16) & 0xffff);
821	SK_YU_WRITE_2(sc_if, YUKON_RCR, mode);
822}
823
824static int
825sk_init_rx_ring(sc_if)
826	struct sk_if_softc	*sc_if;
827{
828	struct sk_ring_data	*rd;
829	bus_addr_t		addr;
830	u_int32_t		csum_start;
831	int			i;
832
833	sc_if->sk_cdata.sk_rx_cons = 0;
834
835	csum_start = (ETHER_HDR_LEN + sizeof(struct ip))  << 16 |
836	    ETHER_HDR_LEN;
837	rd = &sc_if->sk_rdata;
838	bzero(rd->sk_rx_ring, sizeof(struct sk_rx_desc) * SK_RX_RING_CNT);
839	for (i = 0; i < SK_RX_RING_CNT; i++) {
840		if (sk_newbuf(sc_if, i) != 0)
841			return (ENOBUFS);
842		if (i == (SK_RX_RING_CNT - 1))
843			addr = SK_RX_RING_ADDR(sc_if, 0);
844		else
845			addr = SK_RX_RING_ADDR(sc_if, i + 1);
846		rd->sk_rx_ring[i].sk_next = htole32(SK_ADDR_LO(addr));
847		rd->sk_rx_ring[i].sk_csum_start = htole32(csum_start);
848	}
849
850	bus_dmamap_sync(sc_if->sk_cdata.sk_rx_ring_tag,
851	    sc_if->sk_cdata.sk_rx_ring_map,
852	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
853
854	return(0);
855}
856
857static int
858sk_init_jumbo_rx_ring(sc_if)
859	struct sk_if_softc	*sc_if;
860{
861	struct sk_ring_data	*rd;
862	bus_addr_t		addr;
863	u_int32_t		csum_start;
864	int			i;
865
866	sc_if->sk_cdata.sk_jumbo_rx_cons = 0;
867
868	csum_start = ((ETHER_HDR_LEN + sizeof(struct ip)) << 16) |
869	    ETHER_HDR_LEN;
870	rd = &sc_if->sk_rdata;
871	bzero(rd->sk_jumbo_rx_ring,
872	    sizeof(struct sk_rx_desc) * SK_JUMBO_RX_RING_CNT);
873	for (i = 0; i < SK_JUMBO_RX_RING_CNT; i++) {
874		if (sk_jumbo_newbuf(sc_if, i) != 0)
875			return (ENOBUFS);
876		if (i == (SK_JUMBO_RX_RING_CNT - 1))
877			addr = SK_JUMBO_RX_RING_ADDR(sc_if, 0);
878		else
879			addr = SK_JUMBO_RX_RING_ADDR(sc_if, i + 1);
880		rd->sk_jumbo_rx_ring[i].sk_next = htole32(SK_ADDR_LO(addr));
881		rd->sk_jumbo_rx_ring[i].sk_csum_start = htole32(csum_start);
882	}
883
884	bus_dmamap_sync(sc_if->sk_cdata.sk_jumbo_rx_ring_tag,
885	    sc_if->sk_cdata.sk_jumbo_rx_ring_map,
886	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
887
888	return (0);
889}
890
891static void
892sk_init_tx_ring(sc_if)
893	struct sk_if_softc	*sc_if;
894{
895	struct sk_ring_data	*rd;
896	struct sk_txdesc	*txd;
897	bus_addr_t		addr;
898	int			i;
899
900	STAILQ_INIT(&sc_if->sk_cdata.sk_txfreeq);
901	STAILQ_INIT(&sc_if->sk_cdata.sk_txbusyq);
902
903	sc_if->sk_cdata.sk_tx_prod = 0;
904	sc_if->sk_cdata.sk_tx_cons = 0;
905	sc_if->sk_cdata.sk_tx_cnt = 0;
906
907	rd = &sc_if->sk_rdata;
908	bzero(rd->sk_tx_ring, sizeof(struct sk_tx_desc) * SK_TX_RING_CNT);
909	for (i = 0; i < SK_TX_RING_CNT; i++) {
910		if (i == (SK_TX_RING_CNT - 1))
911			addr = SK_TX_RING_ADDR(sc_if, 0);
912		else
913			addr = SK_TX_RING_ADDR(sc_if, i + 1);
914		rd->sk_tx_ring[i].sk_next = htole32(SK_ADDR_LO(addr));
915		txd = &sc_if->sk_cdata.sk_txdesc[i];
916		STAILQ_INSERT_TAIL(&sc_if->sk_cdata.sk_txfreeq, txd, tx_q);
917	}
918
919	bus_dmamap_sync(sc_if->sk_cdata.sk_tx_ring_tag,
920	    sc_if->sk_cdata.sk_tx_ring_map,
921	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
922}
923
924static __inline void
925sk_discard_rxbuf(sc_if, idx)
926	struct sk_if_softc	*sc_if;
927	int			idx;
928{
929	struct sk_rx_desc	*r;
930	struct sk_rxdesc	*rxd;
931	struct mbuf		*m;
932
933
934	r = &sc_if->sk_rdata.sk_rx_ring[idx];
935	rxd = &sc_if->sk_cdata.sk_rxdesc[idx];
936	m = rxd->rx_m;
937	r->sk_ctl = htole32(m->m_len | SK_RXSTAT | SK_OPCODE_CSUM);
938}
939
940static __inline void
941sk_discard_jumbo_rxbuf(sc_if, idx)
942	struct sk_if_softc	*sc_if;
943	int			idx;
944{
945	struct sk_rx_desc	*r;
946	struct sk_rxdesc	*rxd;
947	struct mbuf		*m;
948
949	r = &sc_if->sk_rdata.sk_jumbo_rx_ring[idx];
950	rxd = &sc_if->sk_cdata.sk_jumbo_rxdesc[idx];
951	m = rxd->rx_m;
952	r->sk_ctl = htole32(m->m_len | SK_RXSTAT | SK_OPCODE_CSUM);
953}
954
955static int
956sk_newbuf(sc_if, idx)
957	struct sk_if_softc	*sc_if;
958	int 			idx;
959{
960	struct sk_rx_desc	*r;
961	struct sk_rxdesc	*rxd;
962	struct mbuf		*m;
963	bus_dma_segment_t	segs[1];
964	bus_dmamap_t		map;
965	int			nsegs;
966
967	m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
968	if (m == NULL)
969		return (ENOBUFS);
970	m->m_len = m->m_pkthdr.len = MCLBYTES;
971	m_adj(m, ETHER_ALIGN);
972
973	if (bus_dmamap_load_mbuf_sg(sc_if->sk_cdata.sk_rx_tag,
974	    sc_if->sk_cdata.sk_rx_sparemap, m, segs, &nsegs, 0) != 0) {
975		m_freem(m);
976		return (ENOBUFS);
977	}
978	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
979
980	rxd = &sc_if->sk_cdata.sk_rxdesc[idx];
981	if (rxd->rx_m != NULL) {
982		bus_dmamap_sync(sc_if->sk_cdata.sk_rx_tag, rxd->rx_dmamap,
983		    BUS_DMASYNC_POSTREAD);
984		bus_dmamap_unload(sc_if->sk_cdata.sk_rx_tag, rxd->rx_dmamap);
985	}
986	map = rxd->rx_dmamap;
987	rxd->rx_dmamap = sc_if->sk_cdata.sk_rx_sparemap;
988	sc_if->sk_cdata.sk_rx_sparemap = map;
989	bus_dmamap_sync(sc_if->sk_cdata.sk_rx_tag, rxd->rx_dmamap,
990	    BUS_DMASYNC_PREREAD);
991	rxd->rx_m = m;
992	r = &sc_if->sk_rdata.sk_rx_ring[idx];
993	r->sk_data_lo = htole32(SK_ADDR_LO(segs[0].ds_addr));
994	r->sk_data_hi = htole32(SK_ADDR_HI(segs[0].ds_addr));
995	r->sk_ctl = htole32(segs[0].ds_len | SK_RXSTAT | SK_OPCODE_CSUM);
996
997	return (0);
998}
999
1000static int
1001sk_jumbo_newbuf(sc_if, idx)
1002	struct sk_if_softc	*sc_if;
1003	int			idx;
1004{
1005	struct sk_rx_desc	*r;
1006	struct sk_rxdesc	*rxd;
1007	struct mbuf		*m;
1008	bus_dma_segment_t	segs[1];
1009	bus_dmamap_t		map;
1010	int			nsegs;
1011
1012	m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUM9BYTES);
1013	if (m == NULL)
1014		return (ENOBUFS);
1015	m->m_pkthdr.len = m->m_len = MJUM9BYTES;
1016	/*
1017	 * Adjust alignment so packet payload begins on a
1018	 * longword boundary. Mandatory for Alpha, useful on
1019	 * x86 too.
1020	 */
1021	m_adj(m, ETHER_ALIGN);
1022
1023	if (bus_dmamap_load_mbuf_sg(sc_if->sk_cdata.sk_jumbo_rx_tag,
1024	    sc_if->sk_cdata.sk_jumbo_rx_sparemap, m, segs, &nsegs, 0) != 0) {
1025		m_freem(m);
1026		return (ENOBUFS);
1027	}
1028	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
1029
1030	rxd = &sc_if->sk_cdata.sk_jumbo_rxdesc[idx];
1031	if (rxd->rx_m != NULL) {
1032		bus_dmamap_sync(sc_if->sk_cdata.sk_jumbo_rx_tag, rxd->rx_dmamap,
1033		    BUS_DMASYNC_POSTREAD);
1034		bus_dmamap_unload(sc_if->sk_cdata.sk_jumbo_rx_tag,
1035		    rxd->rx_dmamap);
1036	}
1037	map = rxd->rx_dmamap;
1038	rxd->rx_dmamap = sc_if->sk_cdata.sk_jumbo_rx_sparemap;
1039	sc_if->sk_cdata.sk_jumbo_rx_sparemap = map;
1040	bus_dmamap_sync(sc_if->sk_cdata.sk_jumbo_rx_tag, rxd->rx_dmamap,
1041	    BUS_DMASYNC_PREREAD);
1042	rxd->rx_m = m;
1043	r = &sc_if->sk_rdata.sk_jumbo_rx_ring[idx];
1044	r->sk_data_lo = htole32(SK_ADDR_LO(segs[0].ds_addr));
1045	r->sk_data_hi = htole32(SK_ADDR_HI(segs[0].ds_addr));
1046	r->sk_ctl = htole32(segs[0].ds_len | SK_RXSTAT | SK_OPCODE_CSUM);
1047
1048	return (0);
1049}
1050
1051/*
1052 * Set media options.
1053 */
1054static int
1055sk_ifmedia_upd(ifp)
1056	struct ifnet		*ifp;
1057{
1058	struct sk_if_softc	*sc_if = ifp->if_softc;
1059	struct mii_data		*mii;
1060
1061	mii = device_get_softc(sc_if->sk_miibus);
1062	sk_init(sc_if);
1063	mii_mediachg(mii);
1064
1065	return(0);
1066}
1067
1068/*
1069 * Report current media status.
1070 */
1071static void
1072sk_ifmedia_sts(ifp, ifmr)
1073	struct ifnet		*ifp;
1074	struct ifmediareq	*ifmr;
1075{
1076	struct sk_if_softc	*sc_if;
1077	struct mii_data		*mii;
1078
1079	sc_if = ifp->if_softc;
1080	mii = device_get_softc(sc_if->sk_miibus);
1081
1082	mii_pollstat(mii);
1083	ifmr->ifm_active = mii->mii_media_active;
1084	ifmr->ifm_status = mii->mii_media_status;
1085
1086	return;
1087}
1088
1089static int
1090sk_ioctl(ifp, command, data)
1091	struct ifnet		*ifp;
1092	u_long			command;
1093	caddr_t			data;
1094{
1095	struct sk_if_softc	*sc_if = ifp->if_softc;
1096	struct ifreq		*ifr = (struct ifreq *) data;
1097	int			error, mask;
1098	struct mii_data		*mii;
1099
1100	error = 0;
1101	switch(command) {
1102	case SIOCSIFMTU:
1103		if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > SK_JUMBO_MTU)
1104			error = EINVAL;
1105		else if (ifp->if_mtu != ifr->ifr_mtu) {
1106			if (sc_if->sk_jumbo_disable != 0 &&
1107			    ifr->ifr_mtu > SK_MAX_FRAMELEN)
1108				error = EINVAL;
1109			else {
1110				SK_IF_LOCK(sc_if);
1111				ifp->if_mtu = ifr->ifr_mtu;
1112				if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1113					ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1114					sk_init_locked(sc_if);
1115				}
1116				SK_IF_UNLOCK(sc_if);
1117			}
1118		}
1119		break;
1120	case SIOCSIFFLAGS:
1121		SK_IF_LOCK(sc_if);
1122		if (ifp->if_flags & IFF_UP) {
1123			if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1124				if ((ifp->if_flags ^ sc_if->sk_if_flags)
1125				    & (IFF_PROMISC | IFF_ALLMULTI))
1126					sk_rxfilter(sc_if);
1127			} else
1128				sk_init_locked(sc_if);
1129		} else {
1130			if (ifp->if_drv_flags & IFF_DRV_RUNNING)
1131				sk_stop(sc_if);
1132		}
1133		sc_if->sk_if_flags = ifp->if_flags;
1134		SK_IF_UNLOCK(sc_if);
1135		break;
1136	case SIOCADDMULTI:
1137	case SIOCDELMULTI:
1138		SK_IF_LOCK(sc_if);
1139		if (ifp->if_drv_flags & IFF_DRV_RUNNING)
1140			sk_rxfilter(sc_if);
1141		SK_IF_UNLOCK(sc_if);
1142		break;
1143	case SIOCGIFMEDIA:
1144	case SIOCSIFMEDIA:
1145		mii = device_get_softc(sc_if->sk_miibus);
1146		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
1147		break;
1148	case SIOCSIFCAP:
1149		SK_IF_LOCK(sc_if);
1150		if (sc_if->sk_softc->sk_type == SK_GENESIS) {
1151			SK_IF_UNLOCK(sc_if);
1152			break;
1153		}
1154		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
1155		if ((mask & IFCAP_TXCSUM) != 0 &&
1156		    (IFCAP_TXCSUM & ifp->if_capabilities) != 0) {
1157			ifp->if_capenable ^= IFCAP_TXCSUM;
1158			if ((ifp->if_capenable & IFCAP_TXCSUM) != 0)
1159				ifp->if_hwassist |= SK_CSUM_FEATURES;
1160			else
1161				ifp->if_hwassist &= ~SK_CSUM_FEATURES;
1162		}
1163		if ((mask & IFCAP_RXCSUM) != 0 &&
1164		    (IFCAP_RXCSUM & ifp->if_capabilities) != 0)
1165			ifp->if_capenable ^= IFCAP_RXCSUM;
1166		SK_IF_UNLOCK(sc_if);
1167		break;
1168	default:
1169		error = ether_ioctl(ifp, command, data);
1170		break;
1171	}
1172
1173	return (error);
1174}
1175
1176/*
1177 * Probe for a SysKonnect GEnesis chip. Check the PCI vendor and device
1178 * IDs against our list and return a device name if we find a match.
1179 */
1180static int
1181skc_probe(dev)
1182	device_t		dev;
1183{
1184	const struct sk_type	*t = sk_devs;
1185
1186	while(t->sk_name != NULL) {
1187		if ((pci_get_vendor(dev) == t->sk_vid) &&
1188		    (pci_get_device(dev) == t->sk_did)) {
1189			/*
1190			 * Only attach to rev. 2 of the Linksys EG1032 adapter.
1191			 * Rev. 3 is supported by re(4).
1192			 */
1193			if ((t->sk_vid == VENDORID_LINKSYS) &&
1194				(t->sk_did == DEVICEID_LINKSYS_EG1032) &&
1195				(pci_get_subdevice(dev) !=
1196				 SUBDEVICEID_LINKSYS_EG1032_REV2)) {
1197				t++;
1198				continue;
1199			}
1200			device_set_desc(dev, t->sk_name);
1201			return (BUS_PROBE_DEFAULT);
1202		}
1203		t++;
1204	}
1205
1206	return(ENXIO);
1207}
1208
1209/*
1210 * Force the GEnesis into reset, then bring it out of reset.
1211 */
1212static void
1213sk_reset(sc)
1214	struct sk_softc		*sc;
1215{
1216
1217	CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_RESET);
1218	CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_RESET);
1219	if (SK_YUKON_FAMILY(sc->sk_type))
1220		CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_SET);
1221
1222	DELAY(1000);
1223	CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_UNRESET);
1224	DELAY(2);
1225	CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_UNRESET);
1226	if (SK_YUKON_FAMILY(sc->sk_type))
1227		CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_CLEAR);
1228
1229	if (sc->sk_type == SK_GENESIS) {
1230		/* Configure packet arbiter */
1231		sk_win_write_2(sc, SK_PKTARB_CTL, SK_PKTARBCTL_UNRESET);
1232		sk_win_write_2(sc, SK_RXPA1_TINIT, SK_PKTARB_TIMEOUT);
1233		sk_win_write_2(sc, SK_TXPA1_TINIT, SK_PKTARB_TIMEOUT);
1234		sk_win_write_2(sc, SK_RXPA2_TINIT, SK_PKTARB_TIMEOUT);
1235		sk_win_write_2(sc, SK_TXPA2_TINIT, SK_PKTARB_TIMEOUT);
1236	}
1237
1238	/* Enable RAM interface */
1239	sk_win_write_4(sc, SK_RAMCTL, SK_RAMCTL_UNRESET);
1240
1241	/*
1242         * Configure interrupt moderation. The moderation timer
1243	 * defers interrupts specified in the interrupt moderation
1244	 * timer mask based on the timeout specified in the interrupt
1245	 * moderation timer init register. Each bit in the timer
1246	 * register represents one tick, so to specify a timeout in
1247	 * microseconds, we have to multiply by the correct number of
1248	 * ticks-per-microsecond.
1249	 */
1250	switch (sc->sk_type) {
1251	case SK_GENESIS:
1252		sc->sk_int_ticks = SK_IMTIMER_TICKS_GENESIS;
1253		break;
1254	default:
1255		sc->sk_int_ticks = SK_IMTIMER_TICKS_YUKON;
1256		break;
1257	}
1258	if (bootverbose)
1259		device_printf(sc->sk_dev, "interrupt moderation is %d us\n",
1260		    sc->sk_int_mod);
1261	sk_win_write_4(sc, SK_IMTIMERINIT, SK_IM_USECS(sc->sk_int_mod,
1262	    sc->sk_int_ticks));
1263	sk_win_write_4(sc, SK_IMMR, SK_ISR_TX1_S_EOF|SK_ISR_TX2_S_EOF|
1264	    SK_ISR_RX1_EOF|SK_ISR_RX2_EOF);
1265	sk_win_write_1(sc, SK_IMTIMERCTL, SK_IMCTL_START);
1266
1267	return;
1268}
1269
1270static int
1271sk_probe(dev)
1272	device_t		dev;
1273{
1274	struct sk_softc		*sc;
1275
1276	sc = device_get_softc(device_get_parent(dev));
1277
1278	/*
1279	 * Not much to do here. We always know there will be
1280	 * at least one XMAC present, and if there are two,
1281	 * skc_attach() will create a second device instance
1282	 * for us.
1283	 */
1284	switch (sc->sk_type) {
1285	case SK_GENESIS:
1286		device_set_desc(dev, "XaQti Corp. XMAC II");
1287		break;
1288	case SK_YUKON:
1289	case SK_YUKON_LITE:
1290	case SK_YUKON_LP:
1291		device_set_desc(dev, "Marvell Semiconductor, Inc. Yukon");
1292		break;
1293	}
1294
1295	return (BUS_PROBE_DEFAULT);
1296}
1297
1298/*
1299 * Each XMAC chip is attached as a separate logical IP interface.
1300 * Single port cards will have only one logical interface of course.
1301 */
1302static int
1303sk_attach(dev)
1304	device_t		dev;
1305{
1306	struct sk_softc		*sc;
1307	struct sk_if_softc	*sc_if;
1308	struct ifnet		*ifp;
1309	u_int32_t		r;
1310	int			error, i, phy, port;
1311	u_char			eaddr[6];
1312	u_char			inv_mac[] = {0, 0, 0, 0, 0, 0};
1313
1314	if (dev == NULL)
1315		return(EINVAL);
1316
1317	error = 0;
1318	sc_if = device_get_softc(dev);
1319	sc = device_get_softc(device_get_parent(dev));
1320	port = *(int *)device_get_ivars(dev);
1321
1322	sc_if->sk_if_dev = dev;
1323	sc_if->sk_port = port;
1324	sc_if->sk_softc = sc;
1325	sc->sk_if[port] = sc_if;
1326	if (port == SK_PORT_A)
1327		sc_if->sk_tx_bmu = SK_BMU_TXS_CSR0;
1328	if (port == SK_PORT_B)
1329		sc_if->sk_tx_bmu = SK_BMU_TXS_CSR1;
1330
1331	callout_init_mtx(&sc_if->sk_tick_ch, &sc_if->sk_softc->sk_mtx, 0);
1332	callout_init_mtx(&sc_if->sk_watchdog_ch, &sc_if->sk_softc->sk_mtx, 0);
1333
1334	if (sk_dma_alloc(sc_if) != 0) {
1335		error = ENOMEM;
1336		goto fail;
1337	}
1338	sk_dma_jumbo_alloc(sc_if);
1339
1340	ifp = sc_if->sk_ifp = if_alloc(IFT_ETHER);
1341	if (ifp == NULL) {
1342		device_printf(sc_if->sk_if_dev, "can not if_alloc()\n");
1343		error = ENOSPC;
1344		goto fail;
1345	}
1346	ifp->if_softc = sc_if;
1347	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1348	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1349	/*
1350	 * SK_GENESIS has a bug in checksum offload - From linux.
1351	 */
1352	if (sc_if->sk_softc->sk_type != SK_GENESIS) {
1353		ifp->if_capabilities = IFCAP_TXCSUM | IFCAP_RXCSUM;
1354		ifp->if_hwassist = 0;
1355	} else {
1356		ifp->if_capabilities = 0;
1357		ifp->if_hwassist = 0;
1358	}
1359	ifp->if_capenable = ifp->if_capabilities;
1360	/*
1361	 * Some revision of Yukon controller generates corrupted
1362	 * frame when TX checksum offloading is enabled.  The
1363	 * frame has a valid checksum value so payload might be
1364	 * modified during TX checksum calculation. Disable TX
1365	 * checksum offloading but give users chance to enable it
1366	 * when they know their controller works without problems
1367	 * with TX checksum offloading.
1368	 */
1369	ifp->if_capenable &= ~IFCAP_TXCSUM;
1370	ifp->if_ioctl = sk_ioctl;
1371	ifp->if_start = sk_start;
1372	ifp->if_init = sk_init;
1373	IFQ_SET_MAXLEN(&ifp->if_snd, SK_TX_RING_CNT - 1);
1374	ifp->if_snd.ifq_drv_maxlen = SK_TX_RING_CNT - 1;
1375	IFQ_SET_READY(&ifp->if_snd);
1376
1377	/*
1378	 * Get station address for this interface. Note that
1379	 * dual port cards actually come with three station
1380	 * addresses: one for each port, plus an extra. The
1381	 * extra one is used by the SysKonnect driver software
1382	 * as a 'virtual' station address for when both ports
1383	 * are operating in failover mode. Currently we don't
1384	 * use this extra address.
1385	 */
1386	SK_IF_LOCK(sc_if);
1387	for (i = 0; i < ETHER_ADDR_LEN; i++)
1388		eaddr[i] =
1389		    sk_win_read_1(sc, SK_MAC0_0 + (port * 8) + i);
1390
1391	/* Verify whether the station address is invalid or not. */
1392	if (bcmp(eaddr, inv_mac, sizeof(inv_mac)) == 0) {
1393		device_printf(sc_if->sk_if_dev,
1394		    "Generating random ethernet address\n");
1395		r = arc4random();
1396		/*
1397		 * Set OUI to convenient locally assigned address.  'b'
1398		 * is 0x62, which has the locally assigned bit set, and
1399		 * the broadcast/multicast bit clear.
1400		 */
1401		eaddr[0] = 'b';
1402		eaddr[1] = 's';
1403		eaddr[2] = 'd';
1404		eaddr[3] = (r >> 16) & 0xff;
1405		eaddr[4] = (r >>  8) & 0xff;
1406		eaddr[5] = (r >>  0) & 0xff;
1407	}
1408	/*
1409	 * Set up RAM buffer addresses. The NIC will have a certain
1410	 * amount of SRAM on it, somewhere between 512K and 2MB. We
1411	 * need to divide this up a) between the transmitter and
1412 	 * receiver and b) between the two XMACs, if this is a
1413	 * dual port NIC. Our algotithm is to divide up the memory
1414	 * evenly so that everyone gets a fair share.
1415	 *
1416	 * Just to be contrary, Yukon2 appears to have separate memory
1417	 * for each MAC.
1418	 */
1419	if (sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC) {
1420		u_int32_t		chunk, val;
1421
1422		chunk = sc->sk_ramsize / 2;
1423		val = sc->sk_rboff / sizeof(u_int64_t);
1424		sc_if->sk_rx_ramstart = val;
1425		val += (chunk / sizeof(u_int64_t));
1426		sc_if->sk_rx_ramend = val - 1;
1427		sc_if->sk_tx_ramstart = val;
1428		val += (chunk / sizeof(u_int64_t));
1429		sc_if->sk_tx_ramend = val - 1;
1430	} else {
1431		u_int32_t		chunk, val;
1432
1433		chunk = sc->sk_ramsize / 4;
1434		val = (sc->sk_rboff + (chunk * 2 * sc_if->sk_port)) /
1435		    sizeof(u_int64_t);
1436		sc_if->sk_rx_ramstart = val;
1437		val += (chunk / sizeof(u_int64_t));
1438		sc_if->sk_rx_ramend = val - 1;
1439		sc_if->sk_tx_ramstart = val;
1440		val += (chunk / sizeof(u_int64_t));
1441		sc_if->sk_tx_ramend = val - 1;
1442	}
1443
1444	/* Read and save PHY type and set PHY address */
1445	sc_if->sk_phytype = sk_win_read_1(sc, SK_EPROM1) & 0xF;
1446	if (!SK_YUKON_FAMILY(sc->sk_type)) {
1447		switch(sc_if->sk_phytype) {
1448		case SK_PHYTYPE_XMAC:
1449			sc_if->sk_phyaddr = SK_PHYADDR_XMAC;
1450			break;
1451		case SK_PHYTYPE_BCOM:
1452			sc_if->sk_phyaddr = SK_PHYADDR_BCOM;
1453			break;
1454		default:
1455			device_printf(sc->sk_dev, "unsupported PHY type: %d\n",
1456			    sc_if->sk_phytype);
1457			error = ENODEV;
1458			SK_IF_UNLOCK(sc_if);
1459			goto fail;
1460		}
1461	} else {
1462		if (sc_if->sk_phytype < SK_PHYTYPE_MARV_COPPER &&
1463		    sc->sk_pmd != 'S') {
1464			/* not initialized, punt */
1465			sc_if->sk_phytype = SK_PHYTYPE_MARV_COPPER;
1466			sc->sk_coppertype = 1;
1467		}
1468
1469		sc_if->sk_phyaddr = SK_PHYADDR_MARV;
1470
1471		if (!(sc->sk_coppertype))
1472			sc_if->sk_phytype = SK_PHYTYPE_MARV_FIBER;
1473	}
1474
1475	/*
1476	 * Call MI attach routine.  Can't hold locks when calling into ether_*.
1477	 */
1478	SK_IF_UNLOCK(sc_if);
1479	ether_ifattach(ifp, eaddr);
1480	SK_IF_LOCK(sc_if);
1481
1482	/*
1483	 * The hardware should be ready for VLAN_MTU by default:
1484	 * XMAC II has 0x8100 in VLAN Tag Level 1 register initially;
1485	 * YU_SMR_MFL_VLAN is set by this driver in Yukon.
1486	 *
1487	 */
1488        ifp->if_capabilities |= IFCAP_VLAN_MTU;
1489        ifp->if_capenable |= IFCAP_VLAN_MTU;
1490	/*
1491	 * Tell the upper layer(s) we support long frames.
1492	 * Must appear after the call to ether_ifattach() because
1493	 * ether_ifattach() sets ifi_hdrlen to the default value.
1494	 */
1495        ifp->if_hdrlen = sizeof(struct ether_vlan_header);
1496
1497	/*
1498	 * Do miibus setup.
1499	 */
1500	phy = MII_PHY_ANY;
1501	switch (sc->sk_type) {
1502	case SK_GENESIS:
1503		sk_init_xmac(sc_if);
1504		if (sc_if->sk_phytype == SK_PHYTYPE_XMAC)
1505			phy = 0;
1506		break;
1507	case SK_YUKON:
1508	case SK_YUKON_LITE:
1509	case SK_YUKON_LP:
1510		sk_init_yukon(sc_if);
1511		phy = 0;
1512		break;
1513	}
1514
1515	SK_IF_UNLOCK(sc_if);
1516	error = mii_attach(dev, &sc_if->sk_miibus, ifp, sk_ifmedia_upd,
1517	    sk_ifmedia_sts, BMSR_DEFCAPMASK, phy, MII_OFFSET_ANY, 0);
1518	if (error != 0) {
1519		device_printf(sc_if->sk_if_dev, "attaching PHYs failed\n");
1520		ether_ifdetach(ifp);
1521		goto fail;
1522	}
1523
1524fail:
1525	if (error) {
1526		/* Access should be ok even though lock has been dropped */
1527		sc->sk_if[port] = NULL;
1528		sk_detach(dev);
1529	}
1530
1531	return(error);
1532}
1533
1534/*
1535 * Attach the interface. Allocate softc structures, do ifmedia
1536 * setup and ethernet/BPF attach.
1537 */
1538static int
1539skc_attach(dev)
1540	device_t		dev;
1541{
1542	struct sk_softc		*sc;
1543	int			error = 0, *port;
1544	uint8_t			skrs;
1545	const char		*pname = NULL;
1546	char			*revstr;
1547
1548	sc = device_get_softc(dev);
1549	sc->sk_dev = dev;
1550
1551	mtx_init(&sc->sk_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
1552	    MTX_DEF);
1553	mtx_init(&sc->sk_mii_mtx, "sk_mii_mutex", NULL, MTX_DEF);
1554	/*
1555	 * Map control/status registers.
1556	 */
1557	pci_enable_busmaster(dev);
1558
1559	/* Allocate resources */
1560#ifdef SK_USEIOSPACE
1561	sc->sk_res_spec = sk_res_spec_io;
1562#else
1563	sc->sk_res_spec = sk_res_spec_mem;
1564#endif
1565	error = bus_alloc_resources(dev, sc->sk_res_spec, sc->sk_res);
1566	if (error) {
1567		if (sc->sk_res_spec == sk_res_spec_mem)
1568			sc->sk_res_spec = sk_res_spec_io;
1569		else
1570			sc->sk_res_spec = sk_res_spec_mem;
1571		error = bus_alloc_resources(dev, sc->sk_res_spec, sc->sk_res);
1572		if (error) {
1573			device_printf(dev, "couldn't allocate %s resources\n",
1574			    sc->sk_res_spec == sk_res_spec_mem ? "memory" :
1575			    "I/O");
1576			goto fail;
1577		}
1578	}
1579
1580	sc->sk_type = sk_win_read_1(sc, SK_CHIPVER);
1581	sc->sk_rev = (sk_win_read_1(sc, SK_CONFIG) >> 4) & 0xf;
1582
1583	/* Bail out if chip is not recognized. */
1584	if (sc->sk_type != SK_GENESIS && !SK_YUKON_FAMILY(sc->sk_type)) {
1585		device_printf(dev, "unknown device: chipver=%02x, rev=%x\n",
1586		    sc->sk_type, sc->sk_rev);
1587		error = ENXIO;
1588		goto fail;
1589	}
1590
1591	SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
1592		SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
1593		OID_AUTO, "int_mod", CTLTYPE_INT|CTLFLAG_RW,
1594		&sc->sk_int_mod, 0, sysctl_hw_sk_int_mod, "I",
1595		"SK interrupt moderation");
1596
1597	/* Pull in device tunables. */
1598	sc->sk_int_mod = SK_IM_DEFAULT;
1599	error = resource_int_value(device_get_name(dev), device_get_unit(dev),
1600		"int_mod", &sc->sk_int_mod);
1601	if (error == 0) {
1602		if (sc->sk_int_mod < SK_IM_MIN ||
1603		    sc->sk_int_mod > SK_IM_MAX) {
1604			device_printf(dev, "int_mod value out of range; "
1605			    "using default: %d\n", SK_IM_DEFAULT);
1606			sc->sk_int_mod = SK_IM_DEFAULT;
1607		}
1608	}
1609
1610	/* Reset the adapter. */
1611	sk_reset(sc);
1612
1613	skrs = sk_win_read_1(sc, SK_EPROM0);
1614	if (sc->sk_type == SK_GENESIS) {
1615		/* Read and save RAM size and RAMbuffer offset */
1616		switch(skrs) {
1617		case SK_RAMSIZE_512K_64:
1618			sc->sk_ramsize = 0x80000;
1619			sc->sk_rboff = SK_RBOFF_0;
1620			break;
1621		case SK_RAMSIZE_1024K_64:
1622			sc->sk_ramsize = 0x100000;
1623			sc->sk_rboff = SK_RBOFF_80000;
1624			break;
1625		case SK_RAMSIZE_1024K_128:
1626			sc->sk_ramsize = 0x100000;
1627			sc->sk_rboff = SK_RBOFF_0;
1628			break;
1629		case SK_RAMSIZE_2048K_128:
1630			sc->sk_ramsize = 0x200000;
1631			sc->sk_rboff = SK_RBOFF_0;
1632			break;
1633		default:
1634			device_printf(dev, "unknown ram size: %d\n", skrs);
1635			error = ENXIO;
1636			goto fail;
1637		}
1638	} else { /* SK_YUKON_FAMILY */
1639		if (skrs == 0x00)
1640			sc->sk_ramsize = 0x20000;
1641		else
1642			sc->sk_ramsize = skrs * (1<<12);
1643		sc->sk_rboff = SK_RBOFF_0;
1644	}
1645
1646	/* Read and save physical media type */
1647	 sc->sk_pmd = sk_win_read_1(sc, SK_PMDTYPE);
1648
1649	 if (sc->sk_pmd == 'T' || sc->sk_pmd == '1')
1650		 sc->sk_coppertype = 1;
1651	 else
1652		 sc->sk_coppertype = 0;
1653
1654	/* Determine whether to name it with VPD PN or just make it up.
1655	 * Marvell Yukon VPD PN seems to freqently be bogus. */
1656	switch (pci_get_device(dev)) {
1657	case DEVICEID_SK_V1:
1658	case DEVICEID_BELKIN_5005:
1659	case DEVICEID_3COM_3C940:
1660	case DEVICEID_LINKSYS_EG1032:
1661	case DEVICEID_DLINK_DGE530T_A1:
1662	case DEVICEID_DLINK_DGE530T_B1:
1663		/* Stay with VPD PN. */
1664		(void) pci_get_vpd_ident(dev, &pname);
1665		break;
1666	case DEVICEID_SK_V2:
1667		/* YUKON VPD PN might bear no resemblance to reality. */
1668		switch (sc->sk_type) {
1669		case SK_GENESIS:
1670			/* Stay with VPD PN. */
1671			(void) pci_get_vpd_ident(dev, &pname);
1672			break;
1673		case SK_YUKON:
1674			pname = "Marvell Yukon Gigabit Ethernet";
1675			break;
1676		case SK_YUKON_LITE:
1677			pname = "Marvell Yukon Lite Gigabit Ethernet";
1678			break;
1679		case SK_YUKON_LP:
1680			pname = "Marvell Yukon LP Gigabit Ethernet";
1681			break;
1682		default:
1683			pname = "Marvell Yukon (Unknown) Gigabit Ethernet";
1684			break;
1685		}
1686
1687		/* Yukon Lite Rev. A0 needs special test. */
1688		if (sc->sk_type == SK_YUKON || sc->sk_type == SK_YUKON_LP) {
1689			u_int32_t far;
1690			u_int8_t testbyte;
1691
1692			/* Save flash address register before testing. */
1693			far = sk_win_read_4(sc, SK_EP_ADDR);
1694
1695			sk_win_write_1(sc, SK_EP_ADDR+0x03, 0xff);
1696			testbyte = sk_win_read_1(sc, SK_EP_ADDR+0x03);
1697
1698			if (testbyte != 0x00) {
1699				/* Yukon Lite Rev. A0 detected. */
1700				sc->sk_type = SK_YUKON_LITE;
1701				sc->sk_rev = SK_YUKON_LITE_REV_A0;
1702				/* Restore flash address register. */
1703				sk_win_write_4(sc, SK_EP_ADDR, far);
1704			}
1705		}
1706		break;
1707	default:
1708		device_printf(dev, "unknown device: vendor=%04x, device=%04x, "
1709			"chipver=%02x, rev=%x\n",
1710			pci_get_vendor(dev), pci_get_device(dev),
1711			sc->sk_type, sc->sk_rev);
1712		error = ENXIO;
1713		goto fail;
1714	}
1715
1716	if (sc->sk_type == SK_YUKON_LITE) {
1717		switch (sc->sk_rev) {
1718		case SK_YUKON_LITE_REV_A0:
1719			revstr = "A0";
1720			break;
1721		case SK_YUKON_LITE_REV_A1:
1722			revstr = "A1";
1723			break;
1724		case SK_YUKON_LITE_REV_A3:
1725			revstr = "A3";
1726			break;
1727		default:
1728			revstr = "";
1729			break;
1730		}
1731	} else {
1732		revstr = "";
1733	}
1734
1735	/* Announce the product name and more VPD data if there. */
1736	if (pname != NULL)
1737		device_printf(dev, "%s rev. %s(0x%x)\n",
1738			pname, revstr, sc->sk_rev);
1739
1740	if (bootverbose) {
1741		device_printf(dev, "chip ver  = 0x%02x\n", sc->sk_type);
1742		device_printf(dev, "chip rev  = 0x%02x\n", sc->sk_rev);
1743		device_printf(dev, "SK_EPROM0 = 0x%02x\n", skrs);
1744		device_printf(dev, "SRAM size = 0x%06x\n", sc->sk_ramsize);
1745	}
1746
1747	sc->sk_devs[SK_PORT_A] = device_add_child(dev, "sk", -1);
1748	if (sc->sk_devs[SK_PORT_A] == NULL) {
1749		device_printf(dev, "failed to add child for PORT_A\n");
1750		error = ENXIO;
1751		goto fail;
1752	}
1753	port = malloc(sizeof(int), M_DEVBUF, M_NOWAIT);
1754	if (port == NULL) {
1755		device_printf(dev, "failed to allocate memory for "
1756		    "ivars of PORT_A\n");
1757		error = ENXIO;
1758		goto fail;
1759	}
1760	*port = SK_PORT_A;
1761	device_set_ivars(sc->sk_devs[SK_PORT_A], port);
1762
1763	if (!(sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC)) {
1764		sc->sk_devs[SK_PORT_B] = device_add_child(dev, "sk", -1);
1765		if (sc->sk_devs[SK_PORT_B] == NULL) {
1766			device_printf(dev, "failed to add child for PORT_B\n");
1767			error = ENXIO;
1768			goto fail;
1769		}
1770		port = malloc(sizeof(int), M_DEVBUF, M_NOWAIT);
1771		if (port == NULL) {
1772			device_printf(dev, "failed to allocate memory for "
1773			    "ivars of PORT_B\n");
1774			error = ENXIO;
1775			goto fail;
1776		}
1777		*port = SK_PORT_B;
1778		device_set_ivars(sc->sk_devs[SK_PORT_B], port);
1779	}
1780
1781	/* Turn on the 'driver is loaded' LED. */
1782	CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_ON);
1783
1784	error = bus_generic_attach(dev);
1785	if (error) {
1786		device_printf(dev, "failed to attach port(s)\n");
1787		goto fail;
1788	}
1789
1790	/* Hook interrupt last to avoid having to lock softc */
1791	error = bus_setup_intr(dev, sc->sk_res[1], INTR_TYPE_NET|INTR_MPSAFE,
1792	    NULL, sk_intr, sc, &sc->sk_intrhand);
1793
1794	if (error) {
1795		device_printf(dev, "couldn't set up irq\n");
1796		goto fail;
1797	}
1798
1799fail:
1800	if (error)
1801		skc_detach(dev);
1802
1803	return(error);
1804}
1805
1806/*
1807 * Shutdown hardware and free up resources. This can be called any
1808 * time after the mutex has been initialized. It is called in both
1809 * the error case in attach and the normal detach case so it needs
1810 * to be careful about only freeing resources that have actually been
1811 * allocated.
1812 */
1813static int
1814sk_detach(dev)
1815	device_t		dev;
1816{
1817	struct sk_if_softc	*sc_if;
1818	struct ifnet		*ifp;
1819
1820	sc_if = device_get_softc(dev);
1821	KASSERT(mtx_initialized(&sc_if->sk_softc->sk_mtx),
1822	    ("sk mutex not initialized in sk_detach"));
1823	SK_IF_LOCK(sc_if);
1824
1825	ifp = sc_if->sk_ifp;
1826	/* These should only be active if attach_xmac succeeded */
1827	if (device_is_attached(dev)) {
1828		sk_stop(sc_if);
1829		/* Can't hold locks while calling detach */
1830		SK_IF_UNLOCK(sc_if);
1831		callout_drain(&sc_if->sk_tick_ch);
1832		callout_drain(&sc_if->sk_watchdog_ch);
1833		ether_ifdetach(ifp);
1834		SK_IF_LOCK(sc_if);
1835	}
1836	/*
1837	 * We're generally called from skc_detach() which is using
1838	 * device_delete_child() to get to here. It's already trashed
1839	 * miibus for us, so don't do it here or we'll panic.
1840	 */
1841	/*
1842	if (sc_if->sk_miibus != NULL)
1843		device_delete_child(dev, sc_if->sk_miibus);
1844	*/
1845	bus_generic_detach(dev);
1846	sk_dma_jumbo_free(sc_if);
1847	sk_dma_free(sc_if);
1848	SK_IF_UNLOCK(sc_if);
1849	if (ifp)
1850		if_free(ifp);
1851
1852	return(0);
1853}
1854
1855static int
1856skc_detach(dev)
1857	device_t		dev;
1858{
1859	struct sk_softc		*sc;
1860
1861	sc = device_get_softc(dev);
1862	KASSERT(mtx_initialized(&sc->sk_mtx), ("sk mutex not initialized"));
1863
1864	if (device_is_alive(dev)) {
1865		if (sc->sk_devs[SK_PORT_A] != NULL) {
1866			free(device_get_ivars(sc->sk_devs[SK_PORT_A]), M_DEVBUF);
1867			device_delete_child(dev, sc->sk_devs[SK_PORT_A]);
1868		}
1869		if (sc->sk_devs[SK_PORT_B] != NULL) {
1870			free(device_get_ivars(sc->sk_devs[SK_PORT_B]), M_DEVBUF);
1871			device_delete_child(dev, sc->sk_devs[SK_PORT_B]);
1872		}
1873		bus_generic_detach(dev);
1874	}
1875
1876	if (sc->sk_intrhand)
1877		bus_teardown_intr(dev, sc->sk_res[1], sc->sk_intrhand);
1878	bus_release_resources(dev, sc->sk_res_spec, sc->sk_res);
1879
1880	mtx_destroy(&sc->sk_mii_mtx);
1881	mtx_destroy(&sc->sk_mtx);
1882
1883	return(0);
1884}
1885
1886static bus_dma_tag_t
1887skc_get_dma_tag(device_t bus, device_t child __unused)
1888{
1889
1890	return (bus_get_dma_tag(bus));
1891}
1892
1893struct sk_dmamap_arg {
1894	bus_addr_t	sk_busaddr;
1895};
1896
1897static void
1898sk_dmamap_cb(arg, segs, nseg, error)
1899	void			*arg;
1900	bus_dma_segment_t	*segs;
1901	int			nseg;
1902	int			error;
1903{
1904	struct sk_dmamap_arg	*ctx;
1905
1906	if (error != 0)
1907		return;
1908
1909	ctx = arg;
1910	ctx->sk_busaddr = segs[0].ds_addr;
1911}
1912
1913/*
1914 * Allocate jumbo buffer storage. The SysKonnect adapters support
1915 * "jumbograms" (9K frames), although SysKonnect doesn't currently
1916 * use them in their drivers. In order for us to use them, we need
1917 * large 9K receive buffers, however standard mbuf clusters are only
1918 * 2048 bytes in size. Consequently, we need to allocate and manage
1919 * our own jumbo buffer pool. Fortunately, this does not require an
1920 * excessive amount of additional code.
1921 */
1922static int
1923sk_dma_alloc(sc_if)
1924	struct sk_if_softc	*sc_if;
1925{
1926	struct sk_dmamap_arg	ctx;
1927	struct sk_txdesc	*txd;
1928	struct sk_rxdesc	*rxd;
1929	int			error, i;
1930
1931	/* create parent tag */
1932	/*
1933	 * XXX
1934	 * This driver should use BUS_SPACE_MAXADDR for lowaddr argument
1935	 * in bus_dma_tag_create(9) as the NIC would support DAC mode.
1936	 * However bz@ reported that it does not work on amd64 with > 4GB
1937	 * RAM. Until we have more clues of the breakage, disable DAC mode
1938	 * by limiting DMA address to be in 32bit address space.
1939	 */
1940	error = bus_dma_tag_create(
1941		    bus_get_dma_tag(sc_if->sk_if_dev),/* parent */
1942		    1, 0,			/* algnmnt, boundary */
1943		    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
1944		    BUS_SPACE_MAXADDR,		/* highaddr */
1945		    NULL, NULL,			/* filter, filterarg */
1946		    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
1947		    0,				/* nsegments */
1948		    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
1949		    0,				/* flags */
1950		    NULL, NULL,			/* lockfunc, lockarg */
1951		    &sc_if->sk_cdata.sk_parent_tag);
1952	if (error != 0) {
1953		device_printf(sc_if->sk_if_dev,
1954		    "failed to create parent DMA tag\n");
1955		goto fail;
1956	}
1957
1958	/* create tag for Tx ring */
1959	error = bus_dma_tag_create(sc_if->sk_cdata.sk_parent_tag,/* parent */
1960		    SK_RING_ALIGN, 0,		/* algnmnt, boundary */
1961		    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
1962		    BUS_SPACE_MAXADDR,		/* highaddr */
1963		    NULL, NULL,			/* filter, filterarg */
1964		    SK_TX_RING_SZ,		/* maxsize */
1965		    1,				/* nsegments */
1966		    SK_TX_RING_SZ,		/* maxsegsize */
1967		    0,				/* flags */
1968		    NULL, NULL,			/* lockfunc, lockarg */
1969		    &sc_if->sk_cdata.sk_tx_ring_tag);
1970	if (error != 0) {
1971		device_printf(sc_if->sk_if_dev,
1972		    "failed to allocate Tx ring DMA tag\n");
1973		goto fail;
1974	}
1975
1976	/* create tag for Rx ring */
1977	error = bus_dma_tag_create(sc_if->sk_cdata.sk_parent_tag,/* parent */
1978		    SK_RING_ALIGN, 0,		/* algnmnt, boundary */
1979		    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
1980		    BUS_SPACE_MAXADDR,		/* highaddr */
1981		    NULL, NULL,			/* filter, filterarg */
1982		    SK_RX_RING_SZ,		/* maxsize */
1983		    1,				/* nsegments */
1984		    SK_RX_RING_SZ,		/* maxsegsize */
1985		    0,				/* flags */
1986		    NULL, NULL,			/* lockfunc, lockarg */
1987		    &sc_if->sk_cdata.sk_rx_ring_tag);
1988	if (error != 0) {
1989		device_printf(sc_if->sk_if_dev,
1990		    "failed to allocate Rx ring DMA tag\n");
1991		goto fail;
1992	}
1993
1994	/* create tag for Tx buffers */
1995	error = bus_dma_tag_create(sc_if->sk_cdata.sk_parent_tag,/* parent */
1996		    1, 0,			/* algnmnt, boundary */
1997		    BUS_SPACE_MAXADDR,		/* lowaddr */
1998		    BUS_SPACE_MAXADDR,		/* highaddr */
1999		    NULL, NULL,			/* filter, filterarg */
2000		    MCLBYTES * SK_MAXTXSEGS,	/* maxsize */
2001		    SK_MAXTXSEGS,		/* nsegments */
2002		    MCLBYTES,			/* maxsegsize */
2003		    0,				/* flags */
2004		    NULL, NULL,			/* lockfunc, lockarg */
2005		    &sc_if->sk_cdata.sk_tx_tag);
2006	if (error != 0) {
2007		device_printf(sc_if->sk_if_dev,
2008		    "failed to allocate Tx DMA tag\n");
2009		goto fail;
2010	}
2011
2012	/* create tag for Rx buffers */
2013	error = bus_dma_tag_create(sc_if->sk_cdata.sk_parent_tag,/* parent */
2014		    1, 0,			/* algnmnt, boundary */
2015		    BUS_SPACE_MAXADDR,		/* lowaddr */
2016		    BUS_SPACE_MAXADDR,		/* highaddr */
2017		    NULL, NULL,			/* filter, filterarg */
2018		    MCLBYTES,			/* maxsize */
2019		    1,				/* nsegments */
2020		    MCLBYTES,			/* maxsegsize */
2021		    0,				/* flags */
2022		    NULL, NULL,			/* lockfunc, lockarg */
2023		    &sc_if->sk_cdata.sk_rx_tag);
2024	if (error != 0) {
2025		device_printf(sc_if->sk_if_dev,
2026		    "failed to allocate Rx DMA tag\n");
2027		goto fail;
2028	}
2029
2030	/* allocate DMA'able memory and load the DMA map for Tx ring */
2031	error = bus_dmamem_alloc(sc_if->sk_cdata.sk_tx_ring_tag,
2032	    (void **)&sc_if->sk_rdata.sk_tx_ring, BUS_DMA_NOWAIT |
2033	    BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc_if->sk_cdata.sk_tx_ring_map);
2034	if (error != 0) {
2035		device_printf(sc_if->sk_if_dev,
2036		    "failed to allocate DMA'able memory for Tx ring\n");
2037		goto fail;
2038	}
2039
2040	ctx.sk_busaddr = 0;
2041	error = bus_dmamap_load(sc_if->sk_cdata.sk_tx_ring_tag,
2042	    sc_if->sk_cdata.sk_tx_ring_map, sc_if->sk_rdata.sk_tx_ring,
2043	    SK_TX_RING_SZ, sk_dmamap_cb, &ctx, BUS_DMA_NOWAIT);
2044	if (error != 0) {
2045		device_printf(sc_if->sk_if_dev,
2046		    "failed to load DMA'able memory for Tx ring\n");
2047		goto fail;
2048	}
2049	sc_if->sk_rdata.sk_tx_ring_paddr = ctx.sk_busaddr;
2050
2051	/* allocate DMA'able memory and load the DMA map for Rx ring */
2052	error = bus_dmamem_alloc(sc_if->sk_cdata.sk_rx_ring_tag,
2053	    (void **)&sc_if->sk_rdata.sk_rx_ring, BUS_DMA_NOWAIT |
2054	    BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc_if->sk_cdata.sk_rx_ring_map);
2055	if (error != 0) {
2056		device_printf(sc_if->sk_if_dev,
2057		    "failed to allocate DMA'able memory for Rx ring\n");
2058		goto fail;
2059	}
2060
2061	ctx.sk_busaddr = 0;
2062	error = bus_dmamap_load(sc_if->sk_cdata.sk_rx_ring_tag,
2063	    sc_if->sk_cdata.sk_rx_ring_map, sc_if->sk_rdata.sk_rx_ring,
2064	    SK_RX_RING_SZ, sk_dmamap_cb, &ctx, BUS_DMA_NOWAIT);
2065	if (error != 0) {
2066		device_printf(sc_if->sk_if_dev,
2067		    "failed to load DMA'able memory for Rx ring\n");
2068		goto fail;
2069	}
2070	sc_if->sk_rdata.sk_rx_ring_paddr = ctx.sk_busaddr;
2071
2072	/* create DMA maps for Tx buffers */
2073	for (i = 0; i < SK_TX_RING_CNT; i++) {
2074		txd = &sc_if->sk_cdata.sk_txdesc[i];
2075		txd->tx_m = NULL;
2076		txd->tx_dmamap = NULL;
2077		error = bus_dmamap_create(sc_if->sk_cdata.sk_tx_tag, 0,
2078		    &txd->tx_dmamap);
2079		if (error != 0) {
2080			device_printf(sc_if->sk_if_dev,
2081			    "failed to create Tx dmamap\n");
2082			goto fail;
2083		}
2084	}
2085
2086	/* create DMA maps for Rx buffers */
2087	if ((error = bus_dmamap_create(sc_if->sk_cdata.sk_rx_tag, 0,
2088	    &sc_if->sk_cdata.sk_rx_sparemap)) != 0) {
2089		device_printf(sc_if->sk_if_dev,
2090		    "failed to create spare Rx dmamap\n");
2091		goto fail;
2092	}
2093	for (i = 0; i < SK_RX_RING_CNT; i++) {
2094		rxd = &sc_if->sk_cdata.sk_rxdesc[i];
2095		rxd->rx_m = NULL;
2096		rxd->rx_dmamap = NULL;
2097		error = bus_dmamap_create(sc_if->sk_cdata.sk_rx_tag, 0,
2098		    &rxd->rx_dmamap);
2099		if (error != 0) {
2100			device_printf(sc_if->sk_if_dev,
2101			    "failed to create Rx dmamap\n");
2102			goto fail;
2103		}
2104	}
2105
2106fail:
2107	return (error);
2108}
2109
2110static int
2111sk_dma_jumbo_alloc(sc_if)
2112	struct sk_if_softc	*sc_if;
2113{
2114	struct sk_dmamap_arg	ctx;
2115	struct sk_rxdesc	*jrxd;
2116	int			error, i;
2117
2118	if (jumbo_disable != 0) {
2119		device_printf(sc_if->sk_if_dev, "disabling jumbo frame support\n");
2120		sc_if->sk_jumbo_disable = 1;
2121		return (0);
2122	}
2123	/* create tag for jumbo Rx ring */
2124	error = bus_dma_tag_create(sc_if->sk_cdata.sk_parent_tag,/* parent */
2125		    SK_RING_ALIGN, 0,		/* algnmnt, boundary */
2126		    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
2127		    BUS_SPACE_MAXADDR,		/* highaddr */
2128		    NULL, NULL,			/* filter, filterarg */
2129		    SK_JUMBO_RX_RING_SZ,	/* maxsize */
2130		    1,				/* nsegments */
2131		    SK_JUMBO_RX_RING_SZ,	/* maxsegsize */
2132		    0,				/* flags */
2133		    NULL, NULL,			/* lockfunc, lockarg */
2134		    &sc_if->sk_cdata.sk_jumbo_rx_ring_tag);
2135	if (error != 0) {
2136		device_printf(sc_if->sk_if_dev,
2137		    "failed to allocate jumbo Rx ring DMA tag\n");
2138		goto jumbo_fail;
2139	}
2140
2141	/* create tag for jumbo Rx buffers */
2142	error = bus_dma_tag_create(sc_if->sk_cdata.sk_parent_tag,/* parent */
2143		    1, 0,			/* algnmnt, boundary */
2144		    BUS_SPACE_MAXADDR,		/* lowaddr */
2145		    BUS_SPACE_MAXADDR,		/* highaddr */
2146		    NULL, NULL,			/* filter, filterarg */
2147		    MJUM9BYTES,			/* maxsize */
2148		    1,				/* nsegments */
2149		    MJUM9BYTES,			/* maxsegsize */
2150		    0,				/* flags */
2151		    NULL, NULL,			/* lockfunc, lockarg */
2152		    &sc_if->sk_cdata.sk_jumbo_rx_tag);
2153	if (error != 0) {
2154		device_printf(sc_if->sk_if_dev,
2155		    "failed to allocate jumbo Rx DMA tag\n");
2156		goto jumbo_fail;
2157	}
2158
2159	/* allocate DMA'able memory and load the DMA map for jumbo Rx ring */
2160	error = bus_dmamem_alloc(sc_if->sk_cdata.sk_jumbo_rx_ring_tag,
2161	    (void **)&sc_if->sk_rdata.sk_jumbo_rx_ring, BUS_DMA_NOWAIT |
2162	    BUS_DMA_COHERENT | BUS_DMA_ZERO,
2163	    &sc_if->sk_cdata.sk_jumbo_rx_ring_map);
2164	if (error != 0) {
2165		device_printf(sc_if->sk_if_dev,
2166		    "failed to allocate DMA'able memory for jumbo Rx ring\n");
2167		goto jumbo_fail;
2168	}
2169
2170	ctx.sk_busaddr = 0;
2171	error = bus_dmamap_load(sc_if->sk_cdata.sk_jumbo_rx_ring_tag,
2172	    sc_if->sk_cdata.sk_jumbo_rx_ring_map,
2173	    sc_if->sk_rdata.sk_jumbo_rx_ring, SK_JUMBO_RX_RING_SZ, sk_dmamap_cb,
2174	    &ctx, BUS_DMA_NOWAIT);
2175	if (error != 0) {
2176		device_printf(sc_if->sk_if_dev,
2177		    "failed to load DMA'able memory for jumbo Rx ring\n");
2178		goto jumbo_fail;
2179	}
2180	sc_if->sk_rdata.sk_jumbo_rx_ring_paddr = ctx.sk_busaddr;
2181
2182	/* create DMA maps for jumbo Rx buffers */
2183	if ((error = bus_dmamap_create(sc_if->sk_cdata.sk_jumbo_rx_tag, 0,
2184	    &sc_if->sk_cdata.sk_jumbo_rx_sparemap)) != 0) {
2185		device_printf(sc_if->sk_if_dev,
2186		    "failed to create spare jumbo Rx dmamap\n");
2187		goto jumbo_fail;
2188	}
2189	for (i = 0; i < SK_JUMBO_RX_RING_CNT; i++) {
2190		jrxd = &sc_if->sk_cdata.sk_jumbo_rxdesc[i];
2191		jrxd->rx_m = NULL;
2192		jrxd->rx_dmamap = NULL;
2193		error = bus_dmamap_create(sc_if->sk_cdata.sk_jumbo_rx_tag, 0,
2194		    &jrxd->rx_dmamap);
2195		if (error != 0) {
2196			device_printf(sc_if->sk_if_dev,
2197			    "failed to create jumbo Rx dmamap\n");
2198			goto jumbo_fail;
2199		}
2200	}
2201
2202	return (0);
2203
2204jumbo_fail:
2205	sk_dma_jumbo_free(sc_if);
2206	device_printf(sc_if->sk_if_dev, "disabling jumbo frame support due to "
2207	    "resource shortage\n");
2208	sc_if->sk_jumbo_disable = 1;
2209	return (0);
2210}
2211
2212static void
2213sk_dma_free(sc_if)
2214	struct sk_if_softc	*sc_if;
2215{
2216	struct sk_txdesc	*txd;
2217	struct sk_rxdesc	*rxd;
2218	int			i;
2219
2220	/* Tx ring */
2221	if (sc_if->sk_cdata.sk_tx_ring_tag) {
2222		if (sc_if->sk_rdata.sk_tx_ring_paddr)
2223			bus_dmamap_unload(sc_if->sk_cdata.sk_tx_ring_tag,
2224			    sc_if->sk_cdata.sk_tx_ring_map);
2225		if (sc_if->sk_rdata.sk_tx_ring)
2226			bus_dmamem_free(sc_if->sk_cdata.sk_tx_ring_tag,
2227			    sc_if->sk_rdata.sk_tx_ring,
2228			    sc_if->sk_cdata.sk_tx_ring_map);
2229		sc_if->sk_rdata.sk_tx_ring = NULL;
2230		sc_if->sk_rdata.sk_tx_ring_paddr = 0;
2231		bus_dma_tag_destroy(sc_if->sk_cdata.sk_tx_ring_tag);
2232		sc_if->sk_cdata.sk_tx_ring_tag = NULL;
2233	}
2234	/* Rx ring */
2235	if (sc_if->sk_cdata.sk_rx_ring_tag) {
2236		if (sc_if->sk_rdata.sk_rx_ring_paddr)
2237			bus_dmamap_unload(sc_if->sk_cdata.sk_rx_ring_tag,
2238			    sc_if->sk_cdata.sk_rx_ring_map);
2239		if (sc_if->sk_rdata.sk_rx_ring)
2240			bus_dmamem_free(sc_if->sk_cdata.sk_rx_ring_tag,
2241			    sc_if->sk_rdata.sk_rx_ring,
2242			    sc_if->sk_cdata.sk_rx_ring_map);
2243		sc_if->sk_rdata.sk_rx_ring = NULL;
2244		sc_if->sk_rdata.sk_rx_ring_paddr = 0;
2245		bus_dma_tag_destroy(sc_if->sk_cdata.sk_rx_ring_tag);
2246		sc_if->sk_cdata.sk_rx_ring_tag = NULL;
2247	}
2248	/* Tx buffers */
2249	if (sc_if->sk_cdata.sk_tx_tag) {
2250		for (i = 0; i < SK_TX_RING_CNT; i++) {
2251			txd = &sc_if->sk_cdata.sk_txdesc[i];
2252			if (txd->tx_dmamap) {
2253				bus_dmamap_destroy(sc_if->sk_cdata.sk_tx_tag,
2254				    txd->tx_dmamap);
2255				txd->tx_dmamap = NULL;
2256			}
2257		}
2258		bus_dma_tag_destroy(sc_if->sk_cdata.sk_tx_tag);
2259		sc_if->sk_cdata.sk_tx_tag = NULL;
2260	}
2261	/* Rx buffers */
2262	if (sc_if->sk_cdata.sk_rx_tag) {
2263		for (i = 0; i < SK_RX_RING_CNT; i++) {
2264			rxd = &sc_if->sk_cdata.sk_rxdesc[i];
2265			if (rxd->rx_dmamap) {
2266				bus_dmamap_destroy(sc_if->sk_cdata.sk_rx_tag,
2267				    rxd->rx_dmamap);
2268				rxd->rx_dmamap = NULL;
2269			}
2270		}
2271		if (sc_if->sk_cdata.sk_rx_sparemap) {
2272			bus_dmamap_destroy(sc_if->sk_cdata.sk_rx_tag,
2273			    sc_if->sk_cdata.sk_rx_sparemap);
2274			sc_if->sk_cdata.sk_rx_sparemap = NULL;
2275		}
2276		bus_dma_tag_destroy(sc_if->sk_cdata.sk_rx_tag);
2277		sc_if->sk_cdata.sk_rx_tag = NULL;
2278	}
2279
2280	if (sc_if->sk_cdata.sk_parent_tag) {
2281		bus_dma_tag_destroy(sc_if->sk_cdata.sk_parent_tag);
2282		sc_if->sk_cdata.sk_parent_tag = NULL;
2283	}
2284}
2285
2286static void
2287sk_dma_jumbo_free(sc_if)
2288	struct sk_if_softc	*sc_if;
2289{
2290	struct sk_rxdesc	*jrxd;
2291	int			i;
2292
2293	/* jumbo Rx ring */
2294	if (sc_if->sk_cdata.sk_jumbo_rx_ring_tag) {
2295		if (sc_if->sk_rdata.sk_jumbo_rx_ring_paddr)
2296			bus_dmamap_unload(sc_if->sk_cdata.sk_jumbo_rx_ring_tag,
2297			    sc_if->sk_cdata.sk_jumbo_rx_ring_map);
2298		if (sc_if->sk_rdata.sk_jumbo_rx_ring)
2299			bus_dmamem_free(sc_if->sk_cdata.sk_jumbo_rx_ring_tag,
2300			    sc_if->sk_rdata.sk_jumbo_rx_ring,
2301			    sc_if->sk_cdata.sk_jumbo_rx_ring_map);
2302		sc_if->sk_rdata.sk_jumbo_rx_ring = NULL;
2303		sc_if->sk_rdata.sk_jumbo_rx_ring_paddr = 0;
2304		bus_dma_tag_destroy(sc_if->sk_cdata.sk_jumbo_rx_ring_tag);
2305		sc_if->sk_cdata.sk_jumbo_rx_ring_tag = NULL;
2306	}
2307
2308	/* jumbo Rx buffers */
2309	if (sc_if->sk_cdata.sk_jumbo_rx_tag) {
2310		for (i = 0; i < SK_JUMBO_RX_RING_CNT; i++) {
2311			jrxd = &sc_if->sk_cdata.sk_jumbo_rxdesc[i];
2312			if (jrxd->rx_dmamap) {
2313				bus_dmamap_destroy(
2314				    sc_if->sk_cdata.sk_jumbo_rx_tag,
2315				    jrxd->rx_dmamap);
2316				jrxd->rx_dmamap = NULL;
2317			}
2318		}
2319		if (sc_if->sk_cdata.sk_jumbo_rx_sparemap) {
2320			bus_dmamap_destroy(sc_if->sk_cdata.sk_jumbo_rx_tag,
2321			    sc_if->sk_cdata.sk_jumbo_rx_sparemap);
2322			sc_if->sk_cdata.sk_jumbo_rx_sparemap = NULL;
2323		}
2324		bus_dma_tag_destroy(sc_if->sk_cdata.sk_jumbo_rx_tag);
2325		sc_if->sk_cdata.sk_jumbo_rx_tag = NULL;
2326	}
2327}
2328
2329static void
2330sk_txcksum(ifp, m, f)
2331	struct ifnet		*ifp;
2332	struct mbuf		*m;
2333	struct sk_tx_desc	*f;
2334{
2335	struct ip		*ip;
2336	u_int16_t		offset;
2337	u_int8_t 		*p;
2338
2339	offset = sizeof(struct ip) + ETHER_HDR_LEN;
2340	for(; m && m->m_len == 0; m = m->m_next)
2341		;
2342	if (m == NULL || m->m_len < ETHER_HDR_LEN) {
2343		if_printf(ifp, "%s: m_len < ETHER_HDR_LEN\n", __func__);
2344		/* checksum may be corrupted */
2345		goto sendit;
2346	}
2347	if (m->m_len < ETHER_HDR_LEN + sizeof(u_int32_t)) {
2348		if (m->m_len != ETHER_HDR_LEN) {
2349			if_printf(ifp, "%s: m_len != ETHER_HDR_LEN\n",
2350			    __func__);
2351			/* checksum may be corrupted */
2352			goto sendit;
2353		}
2354		for(m = m->m_next; m && m->m_len == 0; m = m->m_next)
2355			;
2356		if (m == NULL) {
2357			offset = sizeof(struct ip) + ETHER_HDR_LEN;
2358			/* checksum may be corrupted */
2359			goto sendit;
2360		}
2361		ip = mtod(m, struct ip *);
2362	} else {
2363		p = mtod(m, u_int8_t *);
2364		p += ETHER_HDR_LEN;
2365		ip = (struct ip *)p;
2366	}
2367	offset = (ip->ip_hl << 2) + ETHER_HDR_LEN;
2368
2369sendit:
2370	f->sk_csum_startval = 0;
2371	f->sk_csum_start = htole32(((offset + m->m_pkthdr.csum_data) & 0xffff) |
2372	    (offset << 16));
2373}
2374
2375static int
2376sk_encap(sc_if, m_head)
2377        struct sk_if_softc	*sc_if;
2378        struct mbuf		**m_head;
2379{
2380	struct sk_txdesc	*txd;
2381	struct sk_tx_desc	*f = NULL;
2382	struct mbuf		*m;
2383	bus_dma_segment_t	txsegs[SK_MAXTXSEGS];
2384	u_int32_t		cflags, frag, si, sk_ctl;
2385	int			error, i, nseg;
2386
2387	SK_IF_LOCK_ASSERT(sc_if);
2388
2389	if ((txd = STAILQ_FIRST(&sc_if->sk_cdata.sk_txfreeq)) == NULL)
2390		return (ENOBUFS);
2391
2392	error = bus_dmamap_load_mbuf_sg(sc_if->sk_cdata.sk_tx_tag,
2393	    txd->tx_dmamap, *m_head, txsegs, &nseg, 0);
2394	if (error == EFBIG) {
2395		m = m_defrag(*m_head, M_NOWAIT);
2396		if (m == NULL) {
2397			m_freem(*m_head);
2398			*m_head = NULL;
2399			return (ENOMEM);
2400		}
2401		*m_head = m;
2402		error = bus_dmamap_load_mbuf_sg(sc_if->sk_cdata.sk_tx_tag,
2403		    txd->tx_dmamap, *m_head, txsegs, &nseg, 0);
2404		if (error != 0) {
2405			m_freem(*m_head);
2406			*m_head = NULL;
2407			return (error);
2408		}
2409	} else if (error != 0)
2410		return (error);
2411	if (nseg == 0) {
2412		m_freem(*m_head);
2413		*m_head = NULL;
2414		return (EIO);
2415	}
2416	if (sc_if->sk_cdata.sk_tx_cnt + nseg >= SK_TX_RING_CNT) {
2417		bus_dmamap_unload(sc_if->sk_cdata.sk_tx_tag, txd->tx_dmamap);
2418		return (ENOBUFS);
2419	}
2420
2421	m = *m_head;
2422	if ((m->m_pkthdr.csum_flags & sc_if->sk_ifp->if_hwassist) != 0)
2423		cflags = SK_OPCODE_CSUM;
2424	else
2425		cflags = SK_OPCODE_DEFAULT;
2426	si = frag = sc_if->sk_cdata.sk_tx_prod;
2427	for (i = 0; i < nseg; i++) {
2428		f = &sc_if->sk_rdata.sk_tx_ring[frag];
2429		f->sk_data_lo = htole32(SK_ADDR_LO(txsegs[i].ds_addr));
2430		f->sk_data_hi = htole32(SK_ADDR_HI(txsegs[i].ds_addr));
2431		sk_ctl = txsegs[i].ds_len | cflags;
2432		if (i == 0) {
2433			if (cflags == SK_OPCODE_CSUM)
2434				sk_txcksum(sc_if->sk_ifp, m, f);
2435			sk_ctl |= SK_TXCTL_FIRSTFRAG;
2436		} else
2437			sk_ctl |= SK_TXCTL_OWN;
2438		f->sk_ctl = htole32(sk_ctl);
2439		sc_if->sk_cdata.sk_tx_cnt++;
2440		SK_INC(frag, SK_TX_RING_CNT);
2441	}
2442	sc_if->sk_cdata.sk_tx_prod = frag;
2443
2444	/* set EOF on the last desciptor */
2445	frag = (frag + SK_TX_RING_CNT - 1) % SK_TX_RING_CNT;
2446	f = &sc_if->sk_rdata.sk_tx_ring[frag];
2447	f->sk_ctl |= htole32(SK_TXCTL_LASTFRAG | SK_TXCTL_EOF_INTR);
2448
2449	/* turn the first descriptor ownership to NIC */
2450	f = &sc_if->sk_rdata.sk_tx_ring[si];
2451	f->sk_ctl |= htole32(SK_TXCTL_OWN);
2452
2453	STAILQ_REMOVE_HEAD(&sc_if->sk_cdata.sk_txfreeq, tx_q);
2454	STAILQ_INSERT_TAIL(&sc_if->sk_cdata.sk_txbusyq, txd, tx_q);
2455	txd->tx_m = m;
2456
2457	/* sync descriptors */
2458	bus_dmamap_sync(sc_if->sk_cdata.sk_tx_tag, txd->tx_dmamap,
2459	    BUS_DMASYNC_PREWRITE);
2460	bus_dmamap_sync(sc_if->sk_cdata.sk_tx_ring_tag,
2461	    sc_if->sk_cdata.sk_tx_ring_map,
2462	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2463
2464	return (0);
2465}
2466
2467static void
2468sk_start(ifp)
2469	struct ifnet		*ifp;
2470{
2471	struct sk_if_softc *sc_if;
2472
2473	sc_if = ifp->if_softc;
2474
2475	SK_IF_LOCK(sc_if);
2476	sk_start_locked(ifp);
2477	SK_IF_UNLOCK(sc_if);
2478
2479	return;
2480}
2481
2482static void
2483sk_start_locked(ifp)
2484	struct ifnet		*ifp;
2485{
2486        struct sk_softc		*sc;
2487        struct sk_if_softc	*sc_if;
2488        struct mbuf		*m_head;
2489	int			enq;
2490
2491	sc_if = ifp->if_softc;
2492	sc = sc_if->sk_softc;
2493
2494	SK_IF_LOCK_ASSERT(sc_if);
2495
2496	for (enq = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd) &&
2497	    sc_if->sk_cdata.sk_tx_cnt < SK_TX_RING_CNT - 1; ) {
2498		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
2499		if (m_head == NULL)
2500			break;
2501
2502		/*
2503		 * Pack the data into the transmit ring. If we
2504		 * don't have room, set the OACTIVE flag and wait
2505		 * for the NIC to drain the ring.
2506		 */
2507		if (sk_encap(sc_if, &m_head)) {
2508			if (m_head == NULL)
2509				break;
2510			IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
2511			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2512			break;
2513		}
2514
2515		enq++;
2516		/*
2517		 * If there's a BPF listener, bounce a copy of this frame
2518		 * to him.
2519		 */
2520		BPF_MTAP(ifp, m_head);
2521	}
2522
2523	if (enq > 0) {
2524		/* Transmit */
2525		CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_START);
2526
2527		/* Set a timeout in case the chip goes out to lunch. */
2528		sc_if->sk_watchdog_timer = 5;
2529	}
2530}
2531
2532
2533static void
2534sk_watchdog(arg)
2535	void			*arg;
2536{
2537	struct sk_if_softc	*sc_if;
2538	struct ifnet		*ifp;
2539
2540	ifp = arg;
2541	sc_if = ifp->if_softc;
2542
2543	SK_IF_LOCK_ASSERT(sc_if);
2544
2545	if (sc_if->sk_watchdog_timer == 0 || --sc_if->sk_watchdog_timer)
2546		goto done;
2547
2548	/*
2549	 * Reclaim first as there is a possibility of losing Tx completion
2550	 * interrupts.
2551	 */
2552	sk_txeof(sc_if);
2553	if (sc_if->sk_cdata.sk_tx_cnt != 0) {
2554		if_printf(sc_if->sk_ifp, "watchdog timeout\n");
2555		if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
2556		ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2557		sk_init_locked(sc_if);
2558	}
2559
2560done:
2561	callout_reset(&sc_if->sk_watchdog_ch, hz, sk_watchdog, ifp);
2562
2563	return;
2564}
2565
2566static int
2567skc_shutdown(dev)
2568	device_t		dev;
2569{
2570	struct sk_softc		*sc;
2571
2572	sc = device_get_softc(dev);
2573	SK_LOCK(sc);
2574
2575	/* Turn off the 'driver is loaded' LED. */
2576	CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_OFF);
2577
2578	/*
2579	 * Reset the GEnesis controller. Doing this should also
2580	 * assert the resets on the attached XMAC(s).
2581	 */
2582	sk_reset(sc);
2583	SK_UNLOCK(sc);
2584
2585	return (0);
2586}
2587
2588static int
2589skc_suspend(dev)
2590	device_t		dev;
2591{
2592	struct sk_softc		*sc;
2593	struct sk_if_softc	*sc_if0, *sc_if1;
2594	struct ifnet		*ifp0 = NULL, *ifp1 = NULL;
2595
2596	sc = device_get_softc(dev);
2597
2598	SK_LOCK(sc);
2599
2600	sc_if0 = sc->sk_if[SK_PORT_A];
2601	sc_if1 = sc->sk_if[SK_PORT_B];
2602	if (sc_if0 != NULL)
2603		ifp0 = sc_if0->sk_ifp;
2604	if (sc_if1 != NULL)
2605		ifp1 = sc_if1->sk_ifp;
2606	if (ifp0 != NULL)
2607		sk_stop(sc_if0);
2608	if (ifp1 != NULL)
2609		sk_stop(sc_if1);
2610	sc->sk_suspended = 1;
2611
2612	SK_UNLOCK(sc);
2613
2614	return (0);
2615}
2616
2617static int
2618skc_resume(dev)
2619	device_t		dev;
2620{
2621	struct sk_softc		*sc;
2622	struct sk_if_softc	*sc_if0, *sc_if1;
2623	struct ifnet		*ifp0 = NULL, *ifp1 = NULL;
2624
2625	sc = device_get_softc(dev);
2626
2627	SK_LOCK(sc);
2628
2629	sc_if0 = sc->sk_if[SK_PORT_A];
2630	sc_if1 = sc->sk_if[SK_PORT_B];
2631	if (sc_if0 != NULL)
2632		ifp0 = sc_if0->sk_ifp;
2633	if (sc_if1 != NULL)
2634		ifp1 = sc_if1->sk_ifp;
2635	if (ifp0 != NULL && ifp0->if_flags & IFF_UP)
2636		sk_init_locked(sc_if0);
2637	if (ifp1 != NULL && ifp1->if_flags & IFF_UP)
2638		sk_init_locked(sc_if1);
2639	sc->sk_suspended = 0;
2640
2641	SK_UNLOCK(sc);
2642
2643	return (0);
2644}
2645
2646/*
2647 * According to the data sheet from SK-NET GENESIS the hardware can compute
2648 * two Rx checksums at the same time(Each checksum start position is
2649 * programmed in Rx descriptors). However it seems that TCP/UDP checksum
2650 * does not work at least on my Yukon hardware. I tried every possible ways
2651 * to get correct checksum value but couldn't get correct one. So TCP/UDP
2652 * checksum offload was disabled at the moment and only IP checksum offload
2653 * was enabled.
2654 * As nomral IP header size is 20 bytes I can't expect it would give an
2655 * increase in throughput. However it seems it doesn't hurt performance in
2656 * my testing. If there is a more detailed information for checksum secret
2657 * of the hardware in question please contact yongari@FreeBSD.org to add
2658 * TCP/UDP checksum offload support.
2659 */
2660static __inline void
2661sk_rxcksum(ifp, m, csum)
2662	struct ifnet		*ifp;
2663	struct mbuf		*m;
2664	u_int32_t		csum;
2665{
2666	struct ether_header	*eh;
2667	struct ip		*ip;
2668	int32_t			hlen, len, pktlen;
2669	u_int16_t		csum1, csum2, ipcsum;
2670
2671	pktlen = m->m_pkthdr.len;
2672	if (pktlen < sizeof(struct ether_header) + sizeof(struct ip))
2673		return;
2674	eh = mtod(m, struct ether_header *);
2675	if (eh->ether_type != htons(ETHERTYPE_IP))
2676		return;
2677	ip = (struct ip *)(eh + 1);
2678	if (ip->ip_v != IPVERSION)
2679		return;
2680	hlen = ip->ip_hl << 2;
2681	pktlen -= sizeof(struct ether_header);
2682	if (hlen < sizeof(struct ip))
2683		return;
2684	if (ntohs(ip->ip_len) < hlen)
2685		return;
2686	if (ntohs(ip->ip_len) != pktlen)
2687		return;
2688
2689	csum1 = htons(csum & 0xffff);
2690	csum2 = htons((csum >> 16) & 0xffff);
2691	ipcsum = in_addword(csum1, ~csum2 & 0xffff);
2692	/* checksum fixup for IP options */
2693	len = hlen - sizeof(struct ip);
2694	if (len > 0) {
2695		/*
2696		 * If the second checksum value is correct we can compute IP
2697		 * checksum with simple math. Unfortunately the second checksum
2698		 * value is wrong so we can't verify the checksum from the
2699		 * value(It seems there is some magic here to get correct
2700		 * value). If the second checksum value is correct it also
2701		 * means we can get TCP/UDP checksum) here. However, it still
2702		 * needs pseudo header checksum calculation due to hardware
2703		 * limitations.
2704		 */
2705		return;
2706	}
2707	m->m_pkthdr.csum_flags = CSUM_IP_CHECKED;
2708	if (ipcsum == 0xffff)
2709		m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
2710}
2711
2712static __inline int
2713sk_rxvalid(sc, stat, len)
2714	struct sk_softc		*sc;
2715	u_int32_t		stat, len;
2716{
2717
2718	if (sc->sk_type == SK_GENESIS) {
2719		if ((stat & XM_RXSTAT_ERRFRAME) == XM_RXSTAT_ERRFRAME ||
2720		    XM_RXSTAT_BYTES(stat) != len)
2721			return (0);
2722	} else {
2723		if ((stat & (YU_RXSTAT_CRCERR | YU_RXSTAT_LONGERR |
2724		    YU_RXSTAT_MIIERR | YU_RXSTAT_BADFC | YU_RXSTAT_GOODFC |
2725		    YU_RXSTAT_JABBER)) != 0 ||
2726		    (stat & YU_RXSTAT_RXOK) != YU_RXSTAT_RXOK ||
2727		    YU_RXSTAT_BYTES(stat) != len)
2728			return (0);
2729	}
2730
2731	return (1);
2732}
2733
2734static void
2735sk_rxeof(sc_if)
2736	struct sk_if_softc	*sc_if;
2737{
2738	struct sk_softc		*sc;
2739	struct mbuf		*m;
2740	struct ifnet		*ifp;
2741	struct sk_rx_desc	*cur_rx;
2742	struct sk_rxdesc	*rxd;
2743	int			cons, prog;
2744	u_int32_t		csum, rxstat, sk_ctl;
2745
2746	sc = sc_if->sk_softc;
2747	ifp = sc_if->sk_ifp;
2748
2749	SK_IF_LOCK_ASSERT(sc_if);
2750
2751	bus_dmamap_sync(sc_if->sk_cdata.sk_rx_ring_tag,
2752	    sc_if->sk_cdata.sk_rx_ring_map, BUS_DMASYNC_POSTREAD);
2753
2754	prog = 0;
2755	for (cons = sc_if->sk_cdata.sk_rx_cons; prog < SK_RX_RING_CNT;
2756	    prog++, SK_INC(cons, SK_RX_RING_CNT)) {
2757		cur_rx = &sc_if->sk_rdata.sk_rx_ring[cons];
2758		sk_ctl = le32toh(cur_rx->sk_ctl);
2759		if ((sk_ctl & SK_RXCTL_OWN) != 0)
2760			break;
2761		rxd = &sc_if->sk_cdata.sk_rxdesc[cons];
2762		rxstat = le32toh(cur_rx->sk_xmac_rxstat);
2763
2764		if ((sk_ctl & (SK_RXCTL_STATUS_VALID | SK_RXCTL_FIRSTFRAG |
2765		    SK_RXCTL_LASTFRAG)) != (SK_RXCTL_STATUS_VALID |
2766		    SK_RXCTL_FIRSTFRAG | SK_RXCTL_LASTFRAG) ||
2767		    SK_RXBYTES(sk_ctl) < SK_MIN_FRAMELEN ||
2768		    SK_RXBYTES(sk_ctl) > SK_MAX_FRAMELEN ||
2769		    sk_rxvalid(sc, rxstat, SK_RXBYTES(sk_ctl)) == 0) {
2770			if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
2771			sk_discard_rxbuf(sc_if, cons);
2772			continue;
2773		}
2774
2775		m = rxd->rx_m;
2776		csum = le32toh(cur_rx->sk_csum);
2777		if (sk_newbuf(sc_if, cons) != 0) {
2778			if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
2779			/* reuse old buffer */
2780			sk_discard_rxbuf(sc_if, cons);
2781			continue;
2782		}
2783		m->m_pkthdr.rcvif = ifp;
2784		m->m_pkthdr.len = m->m_len = SK_RXBYTES(sk_ctl);
2785		if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
2786		if ((ifp->if_capenable & IFCAP_RXCSUM) != 0)
2787			sk_rxcksum(ifp, m, csum);
2788		SK_IF_UNLOCK(sc_if);
2789		(*ifp->if_input)(ifp, m);
2790		SK_IF_LOCK(sc_if);
2791	}
2792
2793	if (prog > 0) {
2794		sc_if->sk_cdata.sk_rx_cons = cons;
2795		bus_dmamap_sync(sc_if->sk_cdata.sk_rx_ring_tag,
2796		    sc_if->sk_cdata.sk_rx_ring_map,
2797		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2798	}
2799}
2800
2801static void
2802sk_jumbo_rxeof(sc_if)
2803	struct sk_if_softc	*sc_if;
2804{
2805	struct sk_softc		*sc;
2806	struct mbuf		*m;
2807	struct ifnet		*ifp;
2808	struct sk_rx_desc	*cur_rx;
2809	struct sk_rxdesc	*jrxd;
2810	int			cons, prog;
2811	u_int32_t		csum, rxstat, sk_ctl;
2812
2813	sc = sc_if->sk_softc;
2814	ifp = sc_if->sk_ifp;
2815
2816	SK_IF_LOCK_ASSERT(sc_if);
2817
2818	bus_dmamap_sync(sc_if->sk_cdata.sk_jumbo_rx_ring_tag,
2819	    sc_if->sk_cdata.sk_jumbo_rx_ring_map, BUS_DMASYNC_POSTREAD);
2820
2821	prog = 0;
2822	for (cons = sc_if->sk_cdata.sk_jumbo_rx_cons;
2823	    prog < SK_JUMBO_RX_RING_CNT;
2824	    prog++, SK_INC(cons, SK_JUMBO_RX_RING_CNT)) {
2825		cur_rx = &sc_if->sk_rdata.sk_jumbo_rx_ring[cons];
2826		sk_ctl = le32toh(cur_rx->sk_ctl);
2827		if ((sk_ctl & SK_RXCTL_OWN) != 0)
2828			break;
2829		jrxd = &sc_if->sk_cdata.sk_jumbo_rxdesc[cons];
2830		rxstat = le32toh(cur_rx->sk_xmac_rxstat);
2831
2832		if ((sk_ctl & (SK_RXCTL_STATUS_VALID | SK_RXCTL_FIRSTFRAG |
2833		    SK_RXCTL_LASTFRAG)) != (SK_RXCTL_STATUS_VALID |
2834		    SK_RXCTL_FIRSTFRAG | SK_RXCTL_LASTFRAG) ||
2835		    SK_RXBYTES(sk_ctl) < SK_MIN_FRAMELEN ||
2836		    SK_RXBYTES(sk_ctl) > SK_JUMBO_FRAMELEN ||
2837		    sk_rxvalid(sc, rxstat, SK_RXBYTES(sk_ctl)) == 0) {
2838			if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
2839			sk_discard_jumbo_rxbuf(sc_if, cons);
2840			continue;
2841		}
2842
2843		m = jrxd->rx_m;
2844		csum = le32toh(cur_rx->sk_csum);
2845		if (sk_jumbo_newbuf(sc_if, cons) != 0) {
2846			if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
2847			/* reuse old buffer */
2848			sk_discard_jumbo_rxbuf(sc_if, cons);
2849			continue;
2850		}
2851		m->m_pkthdr.rcvif = ifp;
2852		m->m_pkthdr.len = m->m_len = SK_RXBYTES(sk_ctl);
2853		if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
2854		if ((ifp->if_capenable & IFCAP_RXCSUM) != 0)
2855			sk_rxcksum(ifp, m, csum);
2856		SK_IF_UNLOCK(sc_if);
2857		(*ifp->if_input)(ifp, m);
2858		SK_IF_LOCK(sc_if);
2859	}
2860
2861	if (prog > 0) {
2862		sc_if->sk_cdata.sk_jumbo_rx_cons = cons;
2863		bus_dmamap_sync(sc_if->sk_cdata.sk_jumbo_rx_ring_tag,
2864		    sc_if->sk_cdata.sk_jumbo_rx_ring_map,
2865		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2866	}
2867}
2868
2869static void
2870sk_txeof(sc_if)
2871	struct sk_if_softc	*sc_if;
2872{
2873	struct sk_txdesc	*txd;
2874	struct sk_tx_desc	*cur_tx;
2875	struct ifnet		*ifp;
2876	u_int32_t		idx, sk_ctl;
2877
2878	ifp = sc_if->sk_ifp;
2879
2880	txd = STAILQ_FIRST(&sc_if->sk_cdata.sk_txbusyq);
2881	if (txd == NULL)
2882		return;
2883	bus_dmamap_sync(sc_if->sk_cdata.sk_tx_ring_tag,
2884	    sc_if->sk_cdata.sk_tx_ring_map, BUS_DMASYNC_POSTREAD);
2885	/*
2886	 * Go through our tx ring and free mbufs for those
2887	 * frames that have been sent.
2888	 */
2889	for (idx = sc_if->sk_cdata.sk_tx_cons;; SK_INC(idx, SK_TX_RING_CNT)) {
2890		if (sc_if->sk_cdata.sk_tx_cnt <= 0)
2891			break;
2892		cur_tx = &sc_if->sk_rdata.sk_tx_ring[idx];
2893		sk_ctl = le32toh(cur_tx->sk_ctl);
2894		if (sk_ctl & SK_TXCTL_OWN)
2895			break;
2896		sc_if->sk_cdata.sk_tx_cnt--;
2897		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2898		if ((sk_ctl & SK_TXCTL_LASTFRAG) == 0)
2899			continue;
2900		bus_dmamap_sync(sc_if->sk_cdata.sk_tx_tag, txd->tx_dmamap,
2901		    BUS_DMASYNC_POSTWRITE);
2902		bus_dmamap_unload(sc_if->sk_cdata.sk_tx_tag, txd->tx_dmamap);
2903
2904		if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
2905		m_freem(txd->tx_m);
2906		txd->tx_m = NULL;
2907		STAILQ_REMOVE_HEAD(&sc_if->sk_cdata.sk_txbusyq, tx_q);
2908		STAILQ_INSERT_TAIL(&sc_if->sk_cdata.sk_txfreeq, txd, tx_q);
2909		txd = STAILQ_FIRST(&sc_if->sk_cdata.sk_txbusyq);
2910	}
2911	sc_if->sk_cdata.sk_tx_cons = idx;
2912	sc_if->sk_watchdog_timer = sc_if->sk_cdata.sk_tx_cnt > 0 ? 5 : 0;
2913
2914	bus_dmamap_sync(sc_if->sk_cdata.sk_tx_ring_tag,
2915	    sc_if->sk_cdata.sk_tx_ring_map,
2916	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2917}
2918
2919static void
2920sk_tick(xsc_if)
2921	void			*xsc_if;
2922{
2923	struct sk_if_softc	*sc_if;
2924	struct mii_data		*mii;
2925	struct ifnet		*ifp;
2926	int			i;
2927
2928	sc_if = xsc_if;
2929	ifp = sc_if->sk_ifp;
2930	mii = device_get_softc(sc_if->sk_miibus);
2931
2932	if (!(ifp->if_flags & IFF_UP))
2933		return;
2934
2935	if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
2936		sk_intr_bcom(sc_if);
2937		return;
2938	}
2939
2940	/*
2941	 * According to SysKonnect, the correct way to verify that
2942	 * the link has come back up is to poll bit 0 of the GPIO
2943	 * register three times. This pin has the signal from the
2944	 * link_sync pin connected to it; if we read the same link
2945	 * state 3 times in a row, we know the link is up.
2946	 */
2947	for (i = 0; i < 3; i++) {
2948		if (SK_XM_READ_2(sc_if, XM_GPIO) & XM_GPIO_GP0_SET)
2949			break;
2950	}
2951
2952	if (i != 3) {
2953		callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
2954		return;
2955	}
2956
2957	/* Turn the GP0 interrupt back on. */
2958	SK_XM_CLRBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET);
2959	SK_XM_READ_2(sc_if, XM_ISR);
2960	mii_tick(mii);
2961	callout_stop(&sc_if->sk_tick_ch);
2962}
2963
2964static void
2965sk_yukon_tick(xsc_if)
2966	void			*xsc_if;
2967{
2968	struct sk_if_softc	*sc_if;
2969	struct mii_data		*mii;
2970
2971	sc_if = xsc_if;
2972	mii = device_get_softc(sc_if->sk_miibus);
2973
2974	mii_tick(mii);
2975	callout_reset(&sc_if->sk_tick_ch, hz, sk_yukon_tick, sc_if);
2976}
2977
2978static void
2979sk_intr_bcom(sc_if)
2980	struct sk_if_softc	*sc_if;
2981{
2982	struct mii_data		*mii;
2983	struct ifnet		*ifp;
2984	int			status;
2985	mii = device_get_softc(sc_if->sk_miibus);
2986	ifp = sc_if->sk_ifp;
2987
2988	SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
2989
2990	/*
2991	 * Read the PHY interrupt register to make sure
2992	 * we clear any pending interrupts.
2993	 */
2994	status = sk_xmac_miibus_readreg(sc_if, SK_PHYADDR_BCOM, BRGPHY_MII_ISR);
2995
2996	if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
2997		sk_init_xmac(sc_if);
2998		return;
2999	}
3000
3001	if (status & (BRGPHY_ISR_LNK_CHG|BRGPHY_ISR_AN_PR)) {
3002		int			lstat;
3003		lstat = sk_xmac_miibus_readreg(sc_if, SK_PHYADDR_BCOM,
3004		    BRGPHY_MII_AUXSTS);
3005
3006		if (!(lstat & BRGPHY_AUXSTS_LINK) && sc_if->sk_link) {
3007			mii_mediachg(mii);
3008			/* Turn off the link LED. */
3009			SK_IF_WRITE_1(sc_if, 0,
3010			    SK_LINKLED1_CTL, SK_LINKLED_OFF);
3011			sc_if->sk_link = 0;
3012		} else if (status & BRGPHY_ISR_LNK_CHG) {
3013			sk_xmac_miibus_writereg(sc_if, SK_PHYADDR_BCOM,
3014	    		    BRGPHY_MII_IMR, 0xFF00);
3015			mii_tick(mii);
3016			sc_if->sk_link = 1;
3017			/* Turn on the link LED. */
3018			SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL,
3019			    SK_LINKLED_ON|SK_LINKLED_LINKSYNC_OFF|
3020			    SK_LINKLED_BLINK_OFF);
3021		} else {
3022			mii_tick(mii);
3023			callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
3024		}
3025	}
3026
3027	SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
3028
3029	return;
3030}
3031
3032static void
3033sk_intr_xmac(sc_if)
3034	struct sk_if_softc	*sc_if;
3035{
3036	struct sk_softc		*sc;
3037	u_int16_t		status;
3038
3039	sc = sc_if->sk_softc;
3040	status = SK_XM_READ_2(sc_if, XM_ISR);
3041
3042	/*
3043	 * Link has gone down. Start MII tick timeout to
3044	 * watch for link resync.
3045	 */
3046	if (sc_if->sk_phytype == SK_PHYTYPE_XMAC) {
3047		if (status & XM_ISR_GP0_SET) {
3048			SK_XM_SETBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET);
3049			callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
3050		}
3051
3052		if (status & XM_ISR_AUTONEG_DONE) {
3053			callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
3054		}
3055	}
3056
3057	if (status & XM_IMR_TX_UNDERRUN)
3058		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_TXFIFO);
3059
3060	if (status & XM_IMR_RX_OVERRUN)
3061		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_RXFIFO);
3062
3063	status = SK_XM_READ_2(sc_if, XM_ISR);
3064
3065	return;
3066}
3067
3068static void
3069sk_intr_yukon(sc_if)
3070	struct sk_if_softc	*sc_if;
3071{
3072	u_int8_t status;
3073
3074	status = SK_IF_READ_1(sc_if, 0, SK_GMAC_ISR);
3075	/* RX overrun */
3076	if ((status & SK_GMAC_INT_RX_OVER) != 0) {
3077		SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST,
3078		    SK_RFCTL_RX_FIFO_OVER);
3079	}
3080	/* TX underrun */
3081	if ((status & SK_GMAC_INT_TX_UNDER) != 0) {
3082		SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST,
3083		    SK_TFCTL_TX_FIFO_UNDER);
3084	}
3085}
3086
3087static void
3088sk_intr(xsc)
3089	void			*xsc;
3090{
3091	struct sk_softc		*sc = xsc;
3092	struct sk_if_softc	*sc_if0, *sc_if1;
3093	struct ifnet		*ifp0 = NULL, *ifp1 = NULL;
3094	u_int32_t		status;
3095
3096	SK_LOCK(sc);
3097
3098	status = CSR_READ_4(sc, SK_ISSR);
3099	if (status == 0 || status == 0xffffffff || sc->sk_suspended)
3100		goto done_locked;
3101
3102	sc_if0 = sc->sk_if[SK_PORT_A];
3103	sc_if1 = sc->sk_if[SK_PORT_B];
3104
3105	if (sc_if0 != NULL)
3106		ifp0 = sc_if0->sk_ifp;
3107	if (sc_if1 != NULL)
3108		ifp1 = sc_if1->sk_ifp;
3109
3110	for (; (status &= sc->sk_intrmask) != 0;) {
3111		/* Handle receive interrupts first. */
3112		if (status & SK_ISR_RX1_EOF) {
3113			if (ifp0->if_mtu > SK_MAX_FRAMELEN)
3114				sk_jumbo_rxeof(sc_if0);
3115			else
3116				sk_rxeof(sc_if0);
3117			CSR_WRITE_4(sc, SK_BMU_RX_CSR0,
3118			    SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START);
3119		}
3120		if (status & SK_ISR_RX2_EOF) {
3121			if (ifp1->if_mtu > SK_MAX_FRAMELEN)
3122				sk_jumbo_rxeof(sc_if1);
3123			else
3124				sk_rxeof(sc_if1);
3125			CSR_WRITE_4(sc, SK_BMU_RX_CSR1,
3126			    SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START);
3127		}
3128
3129		/* Then transmit interrupts. */
3130		if (status & SK_ISR_TX1_S_EOF) {
3131			sk_txeof(sc_if0);
3132			CSR_WRITE_4(sc, SK_BMU_TXS_CSR0, SK_TXBMU_CLR_IRQ_EOF);
3133		}
3134		if (status & SK_ISR_TX2_S_EOF) {
3135			sk_txeof(sc_if1);
3136			CSR_WRITE_4(sc, SK_BMU_TXS_CSR1, SK_TXBMU_CLR_IRQ_EOF);
3137		}
3138
3139		/* Then MAC interrupts. */
3140		if (status & SK_ISR_MAC1 &&
3141		    ifp0->if_drv_flags & IFF_DRV_RUNNING) {
3142			if (sc->sk_type == SK_GENESIS)
3143				sk_intr_xmac(sc_if0);
3144			else
3145				sk_intr_yukon(sc_if0);
3146		}
3147
3148		if (status & SK_ISR_MAC2 &&
3149		    ifp1->if_drv_flags & IFF_DRV_RUNNING) {
3150			if (sc->sk_type == SK_GENESIS)
3151				sk_intr_xmac(sc_if1);
3152			else
3153				sk_intr_yukon(sc_if1);
3154		}
3155
3156		if (status & SK_ISR_EXTERNAL_REG) {
3157			if (ifp0 != NULL &&
3158			    sc_if0->sk_phytype == SK_PHYTYPE_BCOM)
3159				sk_intr_bcom(sc_if0);
3160			if (ifp1 != NULL &&
3161			    sc_if1->sk_phytype == SK_PHYTYPE_BCOM)
3162				sk_intr_bcom(sc_if1);
3163		}
3164		status = CSR_READ_4(sc, SK_ISSR);
3165	}
3166
3167	CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
3168
3169	if (ifp0 != NULL && !IFQ_DRV_IS_EMPTY(&ifp0->if_snd))
3170		sk_start_locked(ifp0);
3171	if (ifp1 != NULL && !IFQ_DRV_IS_EMPTY(&ifp1->if_snd))
3172		sk_start_locked(ifp1);
3173
3174done_locked:
3175	SK_UNLOCK(sc);
3176}
3177
3178static void
3179sk_init_xmac(sc_if)
3180	struct sk_if_softc	*sc_if;
3181{
3182	struct sk_softc		*sc;
3183	struct ifnet		*ifp;
3184	u_int16_t		eaddr[(ETHER_ADDR_LEN+1)/2];
3185	static const struct sk_bcom_hack bhack[] = {
3186	{ 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 }, { 0x17, 0x0013 },
3187	{ 0x15, 0x0404 }, { 0x17, 0x8006 }, { 0x15, 0x0132 }, { 0x17, 0x8006 },
3188	{ 0x15, 0x0232 }, { 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 },
3189	{ 0, 0 } };
3190
3191	SK_IF_LOCK_ASSERT(sc_if);
3192
3193	sc = sc_if->sk_softc;
3194	ifp = sc_if->sk_ifp;
3195
3196	/* Unreset the XMAC. */
3197	SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL, SK_TXMACCTL_XMAC_UNRESET);
3198	DELAY(1000);
3199
3200	/* Reset the XMAC's internal state. */
3201	SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
3202
3203	/* Save the XMAC II revision */
3204	sc_if->sk_xmac_rev = XM_XMAC_REV(SK_XM_READ_4(sc_if, XM_DEVID));
3205
3206	/*
3207	 * Perform additional initialization for external PHYs,
3208	 * namely for the 1000baseTX cards that use the XMAC's
3209	 * GMII mode.
3210	 */
3211	if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
3212		int			i = 0;
3213		u_int32_t		val;
3214
3215		/* Take PHY out of reset. */
3216		val = sk_win_read_4(sc, SK_GPIO);
3217		if (sc_if->sk_port == SK_PORT_A)
3218			val |= SK_GPIO_DIR0|SK_GPIO_DAT0;
3219		else
3220			val |= SK_GPIO_DIR2|SK_GPIO_DAT2;
3221		sk_win_write_4(sc, SK_GPIO, val);
3222
3223		/* Enable GMII mode on the XMAC. */
3224		SK_XM_SETBIT_2(sc_if, XM_HWCFG, XM_HWCFG_GMIIMODE);
3225
3226		sk_xmac_miibus_writereg(sc_if, SK_PHYADDR_BCOM,
3227		    BRGPHY_MII_BMCR, BRGPHY_BMCR_RESET);
3228		DELAY(10000);
3229		sk_xmac_miibus_writereg(sc_if, SK_PHYADDR_BCOM,
3230		    BRGPHY_MII_IMR, 0xFFF0);
3231
3232		/*
3233		 * Early versions of the BCM5400 apparently have
3234		 * a bug that requires them to have their reserved
3235		 * registers initialized to some magic values. I don't
3236		 * know what the numbers do, I'm just the messenger.
3237		 */
3238		if (sk_xmac_miibus_readreg(sc_if, SK_PHYADDR_BCOM, 0x03)
3239		    == 0x6041) {
3240			while(bhack[i].reg) {
3241				sk_xmac_miibus_writereg(sc_if, SK_PHYADDR_BCOM,
3242				    bhack[i].reg, bhack[i].val);
3243				i++;
3244			}
3245		}
3246	}
3247
3248	/* Set station address */
3249	bcopy(IF_LLADDR(sc_if->sk_ifp), eaddr, ETHER_ADDR_LEN);
3250	SK_XM_WRITE_2(sc_if, XM_PAR0, eaddr[0]);
3251	SK_XM_WRITE_2(sc_if, XM_PAR1, eaddr[1]);
3252	SK_XM_WRITE_2(sc_if, XM_PAR2, eaddr[2]);
3253	SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_STATION);
3254
3255	if (ifp->if_flags & IFF_BROADCAST) {
3256		SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
3257	} else {
3258		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
3259	}
3260
3261	/* We don't need the FCS appended to the packet. */
3262	SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_STRIPFCS);
3263
3264	/* We want short frames padded to 60 bytes. */
3265	SK_XM_SETBIT_2(sc_if, XM_TXCMD, XM_TXCMD_AUTOPAD);
3266
3267	/*
3268	 * Enable the reception of all error frames. This is is
3269	 * a necessary evil due to the design of the XMAC. The
3270	 * XMAC's receive FIFO is only 8K in size, however jumbo
3271	 * frames can be up to 9000 bytes in length. When bad
3272	 * frame filtering is enabled, the XMAC's RX FIFO operates
3273	 * in 'store and forward' mode. For this to work, the
3274	 * entire frame has to fit into the FIFO, but that means
3275	 * that jumbo frames larger than 8192 bytes will be
3276	 * truncated. Disabling all bad frame filtering causes
3277	 * the RX FIFO to operate in streaming mode, in which
3278	 * case the XMAC will start transferring frames out of the
3279	 * RX FIFO as soon as the FIFO threshold is reached.
3280	 */
3281	if (ifp->if_mtu > SK_MAX_FRAMELEN) {
3282		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_BADFRAMES|
3283		    XM_MODE_RX_GIANTS|XM_MODE_RX_RUNTS|XM_MODE_RX_CRCERRS|
3284		    XM_MODE_RX_INRANGELEN);
3285		SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK);
3286	} else
3287		SK_XM_CLRBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK);
3288
3289	/*
3290	 * Bump up the transmit threshold. This helps hold off transmit
3291	 * underruns when we're blasting traffic from both ports at once.
3292	 */
3293	SK_XM_WRITE_2(sc_if, XM_TX_REQTHRESH, SK_XM_TX_FIFOTHRESH);
3294
3295	/* Set Rx filter */
3296	sk_rxfilter_genesis(sc_if);
3297
3298	/* Clear and enable interrupts */
3299	SK_XM_READ_2(sc_if, XM_ISR);
3300	if (sc_if->sk_phytype == SK_PHYTYPE_XMAC)
3301		SK_XM_WRITE_2(sc_if, XM_IMR, XM_INTRS);
3302	else
3303		SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
3304
3305	/* Configure MAC arbiter */
3306	switch(sc_if->sk_xmac_rev) {
3307	case XM_XMAC_REV_B2:
3308		sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_B2);
3309		sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_B2);
3310		sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_B2);
3311		sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_B2);
3312		sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_B2);
3313		sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_B2);
3314		sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_B2);
3315		sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_B2);
3316		sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
3317		break;
3318	case XM_XMAC_REV_C1:
3319		sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_C1);
3320		sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_C1);
3321		sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_C1);
3322		sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_C1);
3323		sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_C1);
3324		sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_C1);
3325		sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_C1);
3326		sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_C1);
3327		sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
3328		break;
3329	default:
3330		break;
3331	}
3332	sk_win_write_2(sc, SK_MACARB_CTL,
3333	    SK_MACARBCTL_UNRESET|SK_MACARBCTL_FASTOE_OFF);
3334
3335	sc_if->sk_link = 1;
3336
3337	return;
3338}
3339
3340static void
3341sk_init_yukon(sc_if)
3342	struct sk_if_softc	*sc_if;
3343{
3344	u_int32_t		phy, v;
3345	u_int16_t		reg;
3346	struct sk_softc		*sc;
3347	struct ifnet		*ifp;
3348	u_int8_t		*eaddr;
3349	int			i;
3350
3351	SK_IF_LOCK_ASSERT(sc_if);
3352
3353	sc = sc_if->sk_softc;
3354	ifp = sc_if->sk_ifp;
3355
3356	if (sc->sk_type == SK_YUKON_LITE &&
3357	    sc->sk_rev >= SK_YUKON_LITE_REV_A3) {
3358		/*
3359		 * Workaround code for COMA mode, set PHY reset.
3360		 * Otherwise it will not correctly take chip out of
3361		 * powerdown (coma)
3362		 */
3363		v = sk_win_read_4(sc, SK_GPIO);
3364		v |= SK_GPIO_DIR9 | SK_GPIO_DAT9;
3365		sk_win_write_4(sc, SK_GPIO, v);
3366	}
3367
3368	/* GMAC and GPHY Reset */
3369	SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, SK_GPHY_RESET_SET);
3370	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
3371	DELAY(1000);
3372
3373	if (sc->sk_type == SK_YUKON_LITE &&
3374	    sc->sk_rev >= SK_YUKON_LITE_REV_A3) {
3375		/*
3376		 * Workaround code for COMA mode, clear PHY reset
3377		 */
3378		v = sk_win_read_4(sc, SK_GPIO);
3379		v |= SK_GPIO_DIR9;
3380		v &= ~SK_GPIO_DAT9;
3381		sk_win_write_4(sc, SK_GPIO, v);
3382	}
3383
3384	phy = SK_GPHY_INT_POL_HI | SK_GPHY_DIS_FC | SK_GPHY_DIS_SLEEP |
3385		SK_GPHY_ENA_XC | SK_GPHY_ANEG_ALL | SK_GPHY_ENA_PAUSE;
3386
3387	if (sc->sk_coppertype)
3388		phy |= SK_GPHY_COPPER;
3389	else
3390		phy |= SK_GPHY_FIBER;
3391
3392	SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_SET);
3393	DELAY(1000);
3394	SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_CLEAR);
3395	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_LOOP_OFF |
3396		      SK_GMAC_PAUSE_ON | SK_GMAC_RESET_CLEAR);
3397
3398	/* unused read of the interrupt source register */
3399	SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
3400
3401	reg = SK_YU_READ_2(sc_if, YUKON_PAR);
3402
3403	/* MIB Counter Clear Mode set */
3404	reg |= YU_PAR_MIB_CLR;
3405	SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
3406
3407	/* MIB Counter Clear Mode clear */
3408	reg &= ~YU_PAR_MIB_CLR;
3409	SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
3410
3411	/* receive control reg */
3412	SK_YU_WRITE_2(sc_if, YUKON_RCR, YU_RCR_CRCR);
3413
3414	/* transmit parameter register */
3415	SK_YU_WRITE_2(sc_if, YUKON_TPR, YU_TPR_JAM_LEN(0x3) |
3416		      YU_TPR_JAM_IPG(0xb) | YU_TPR_JAM2DATA_IPG(0x1a) );
3417
3418	/* serial mode register */
3419	reg = YU_SMR_DATA_BLIND(0x1c) | YU_SMR_MFL_VLAN | YU_SMR_IPG_DATA(0x1e);
3420	if (ifp->if_mtu > SK_MAX_FRAMELEN)
3421		reg |= YU_SMR_MFL_JUMBO;
3422	SK_YU_WRITE_2(sc_if, YUKON_SMR, reg);
3423
3424	/* Setup Yukon's station address */
3425	eaddr = IF_LLADDR(sc_if->sk_ifp);
3426	for (i = 0; i < 3; i++)
3427		SK_YU_WRITE_2(sc_if, SK_MAC0_0 + i * 4,
3428		    eaddr[i * 2] | eaddr[i * 2 + 1] << 8);
3429	/* Set GMAC source address of flow control. */
3430	for (i = 0; i < 3; i++)
3431		SK_YU_WRITE_2(sc_if, YUKON_SAL1 + i * 4,
3432		    eaddr[i * 2] | eaddr[i * 2 + 1] << 8);
3433	/* Set GMAC virtual address. */
3434	for (i = 0; i < 3; i++)
3435		SK_YU_WRITE_2(sc_if, YUKON_SAL2 + i * 4,
3436		    eaddr[i * 2] | eaddr[i * 2 + 1] << 8);
3437
3438	/* Set Rx filter */
3439	sk_rxfilter_yukon(sc_if);
3440
3441	/* enable interrupt mask for counter overflows */
3442	SK_YU_WRITE_2(sc_if, YUKON_TIMR, 0);
3443	SK_YU_WRITE_2(sc_if, YUKON_RIMR, 0);
3444	SK_YU_WRITE_2(sc_if, YUKON_TRIMR, 0);
3445
3446	/* Configure RX MAC FIFO Flush Mask */
3447	v = YU_RXSTAT_FOFL | YU_RXSTAT_CRCERR | YU_RXSTAT_MIIERR |
3448	    YU_RXSTAT_BADFC | YU_RXSTAT_GOODFC | YU_RXSTAT_RUNT |
3449	    YU_RXSTAT_JABBER;
3450	SK_IF_WRITE_2(sc_if, 0, SK_RXMF1_FLUSH_MASK, v);
3451
3452	/* Disable RX MAC FIFO Flush for YUKON-Lite Rev. A0 only */
3453	if (sc->sk_type == SK_YUKON_LITE && sc->sk_rev == SK_YUKON_LITE_REV_A0)
3454		v = SK_TFCTL_OPERATION_ON;
3455	else
3456		v = SK_TFCTL_OPERATION_ON | SK_RFCTL_FIFO_FLUSH_ON;
3457	/* Configure RX MAC FIFO */
3458	SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_CLEAR);
3459	SK_IF_WRITE_2(sc_if, 0, SK_RXMF1_CTRL_TEST, v);
3460
3461	/* Increase flush threshould to 64 bytes */
3462	SK_IF_WRITE_2(sc_if, 0, SK_RXMF1_FLUSH_THRESHOLD,
3463	    SK_RFCTL_FIFO_THRESHOLD + 1);
3464
3465	/* Configure TX MAC FIFO */
3466	SK_IF_WRITE_1(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_CLEAR);
3467	SK_IF_WRITE_2(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_OPERATION_ON);
3468}
3469
3470/*
3471 * Note that to properly initialize any part of the GEnesis chip,
3472 * you first have to take it out of reset mode.
3473 */
3474static void
3475sk_init(xsc)
3476	void			*xsc;
3477{
3478	struct sk_if_softc	*sc_if = xsc;
3479
3480	SK_IF_LOCK(sc_if);
3481	sk_init_locked(sc_if);
3482	SK_IF_UNLOCK(sc_if);
3483
3484	return;
3485}
3486
3487static void
3488sk_init_locked(sc_if)
3489	struct sk_if_softc	*sc_if;
3490{
3491	struct sk_softc		*sc;
3492	struct ifnet		*ifp;
3493	struct mii_data		*mii;
3494	u_int16_t		reg;
3495	u_int32_t		imr;
3496	int			error;
3497
3498	SK_IF_LOCK_ASSERT(sc_if);
3499
3500	ifp = sc_if->sk_ifp;
3501	sc = sc_if->sk_softc;
3502	mii = device_get_softc(sc_if->sk_miibus);
3503
3504	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
3505		return;
3506
3507	/* Cancel pending I/O and free all RX/TX buffers. */
3508	sk_stop(sc_if);
3509
3510	if (sc->sk_type == SK_GENESIS) {
3511		/* Configure LINK_SYNC LED */
3512		SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_ON);
3513		SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL,
3514			SK_LINKLED_LINKSYNC_ON);
3515
3516		/* Configure RX LED */
3517		SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL,
3518			SK_RXLEDCTL_COUNTER_START);
3519
3520		/* Configure TX LED */
3521		SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL,
3522			SK_TXLEDCTL_COUNTER_START);
3523	}
3524
3525	/*
3526	 * Configure descriptor poll timer
3527	 *
3528	 * SK-NET GENESIS data sheet says that possibility of losing Start
3529	 * transmit command due to CPU/cache related interim storage problems
3530	 * under certain conditions. The document recommends a polling
3531	 * mechanism to send a Start transmit command to initiate transfer
3532	 * of ready descriptors regulary. To cope with this issue sk(4) now
3533	 * enables descriptor poll timer to initiate descriptor processing
3534	 * periodically as defined by SK_DPT_TIMER_MAX. However sk(4) still
3535	 * issue SK_TXBMU_TX_START to Tx BMU to get fast execution of Tx
3536	 * command instead of waiting for next descriptor polling time.
3537	 * The same rule may apply to Rx side too but it seems that is not
3538	 * needed at the moment.
3539	 * Since sk(4) uses descriptor polling as a last resort there is no
3540	 * need to set smaller polling time than maximum allowable one.
3541	 */
3542	SK_IF_WRITE_4(sc_if, 0, SK_DPT_INIT, SK_DPT_TIMER_MAX);
3543
3544	/* Configure I2C registers */
3545
3546	/* Configure XMAC(s) */
3547	switch (sc->sk_type) {
3548	case SK_GENESIS:
3549		sk_init_xmac(sc_if);
3550		break;
3551	case SK_YUKON:
3552	case SK_YUKON_LITE:
3553	case SK_YUKON_LP:
3554		sk_init_yukon(sc_if);
3555		break;
3556	}
3557	mii_mediachg(mii);
3558
3559	if (sc->sk_type == SK_GENESIS) {
3560		/* Configure MAC FIFOs */
3561		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_UNRESET);
3562		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_END, SK_FIFO_END);
3563		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_ON);
3564
3565		SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_UNRESET);
3566		SK_IF_WRITE_4(sc_if, 0, SK_TXF1_END, SK_FIFO_END);
3567		SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_ON);
3568	}
3569
3570	/* Configure transmit arbiter(s) */
3571	SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL,
3572	    SK_TXARCTL_ON|SK_TXARCTL_FSYNC_ON);
3573
3574	/* Configure RAMbuffers */
3575	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_UNRESET);
3576	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_START, sc_if->sk_rx_ramstart);
3577	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_WR_PTR, sc_if->sk_rx_ramstart);
3578	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_RD_PTR, sc_if->sk_rx_ramstart);
3579	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_END, sc_if->sk_rx_ramend);
3580	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_ON);
3581
3582	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_UNRESET);
3583	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_STORENFWD_ON);
3584	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_START, sc_if->sk_tx_ramstart);
3585	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_WR_PTR, sc_if->sk_tx_ramstart);
3586	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_RD_PTR, sc_if->sk_tx_ramstart);
3587	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_END, sc_if->sk_tx_ramend);
3588	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_ON);
3589
3590	/* Configure BMUs */
3591	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_ONLINE);
3592	if (ifp->if_mtu > SK_MAX_FRAMELEN) {
3593		SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_LO,
3594		    SK_ADDR_LO(SK_JUMBO_RX_RING_ADDR(sc_if, 0)));
3595		SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_HI,
3596		    SK_ADDR_HI(SK_JUMBO_RX_RING_ADDR(sc_if, 0)));
3597	} else {
3598		SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_LO,
3599		    SK_ADDR_LO(SK_RX_RING_ADDR(sc_if, 0)));
3600		SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_HI,
3601		    SK_ADDR_HI(SK_RX_RING_ADDR(sc_if, 0)));
3602	}
3603
3604	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_ONLINE);
3605	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_LO,
3606	    SK_ADDR_LO(SK_TX_RING_ADDR(sc_if, 0)));
3607	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_HI,
3608	    SK_ADDR_HI(SK_TX_RING_ADDR(sc_if, 0)));
3609
3610	/* Init descriptors */
3611	if (ifp->if_mtu > SK_MAX_FRAMELEN)
3612		error = sk_init_jumbo_rx_ring(sc_if);
3613	else
3614		error = sk_init_rx_ring(sc_if);
3615	if (error != 0) {
3616		device_printf(sc_if->sk_if_dev,
3617		    "initialization failed: no memory for rx buffers\n");
3618		sk_stop(sc_if);
3619		return;
3620	}
3621	sk_init_tx_ring(sc_if);
3622
3623	/* Set interrupt moderation if changed via sysctl. */
3624	imr = sk_win_read_4(sc, SK_IMTIMERINIT);
3625	if (imr != SK_IM_USECS(sc->sk_int_mod, sc->sk_int_ticks)) {
3626		sk_win_write_4(sc, SK_IMTIMERINIT, SK_IM_USECS(sc->sk_int_mod,
3627		    sc->sk_int_ticks));
3628		if (bootverbose)
3629			device_printf(sc_if->sk_if_dev,
3630			    "interrupt moderation is %d us.\n",
3631			    sc->sk_int_mod);
3632	}
3633
3634	/* Configure interrupt handling */
3635	CSR_READ_4(sc, SK_ISSR);
3636	if (sc_if->sk_port == SK_PORT_A)
3637		sc->sk_intrmask |= SK_INTRS1;
3638	else
3639		sc->sk_intrmask |= SK_INTRS2;
3640
3641	sc->sk_intrmask |= SK_ISR_EXTERNAL_REG;
3642
3643	CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
3644
3645	/* Start BMUs. */
3646	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_RX_START);
3647
3648	switch(sc->sk_type) {
3649	case SK_GENESIS:
3650		/* Enable XMACs TX and RX state machines */
3651		SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_IGNPAUSE);
3652		SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
3653		break;
3654	case SK_YUKON:
3655	case SK_YUKON_LITE:
3656	case SK_YUKON_LP:
3657		reg = SK_YU_READ_2(sc_if, YUKON_GPCR);
3658		reg |= YU_GPCR_TXEN | YU_GPCR_RXEN;
3659#if 0
3660		/* XXX disable 100Mbps and full duplex mode? */
3661		reg &= ~(YU_GPCR_SPEED | YU_GPCR_DPLX_DIS);
3662#endif
3663		SK_YU_WRITE_2(sc_if, YUKON_GPCR, reg);
3664	}
3665
3666	/* Activate descriptor polling timer */
3667	SK_IF_WRITE_4(sc_if, 0, SK_DPT_TIMER_CTRL, SK_DPT_TCTL_START);
3668	/* start transfer of Tx descriptors */
3669	CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_START);
3670
3671	ifp->if_drv_flags |= IFF_DRV_RUNNING;
3672	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3673
3674	switch (sc->sk_type) {
3675	case SK_YUKON:
3676	case SK_YUKON_LITE:
3677	case SK_YUKON_LP:
3678		callout_reset(&sc_if->sk_tick_ch, hz, sk_yukon_tick, sc_if);
3679		break;
3680	}
3681
3682	callout_reset(&sc_if->sk_watchdog_ch, hz, sk_watchdog, ifp);
3683
3684	return;
3685}
3686
3687static void
3688sk_stop(sc_if)
3689	struct sk_if_softc	*sc_if;
3690{
3691	int			i;
3692	struct sk_softc		*sc;
3693	struct sk_txdesc	*txd;
3694	struct sk_rxdesc	*rxd;
3695	struct sk_rxdesc	*jrxd;
3696	struct ifnet		*ifp;
3697	u_int32_t		val;
3698
3699	SK_IF_LOCK_ASSERT(sc_if);
3700	sc = sc_if->sk_softc;
3701	ifp = sc_if->sk_ifp;
3702
3703	callout_stop(&sc_if->sk_tick_ch);
3704	callout_stop(&sc_if->sk_watchdog_ch);
3705
3706	/* stop Tx descriptor polling timer */
3707	SK_IF_WRITE_4(sc_if, 0, SK_DPT_TIMER_CTRL, SK_DPT_TCTL_STOP);
3708	/* stop transfer of Tx descriptors */
3709	CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_STOP);
3710	for (i = 0; i < SK_TIMEOUT; i++) {
3711		val = CSR_READ_4(sc, sc_if->sk_tx_bmu);
3712		if ((val & SK_TXBMU_TX_STOP) == 0)
3713			break;
3714		DELAY(1);
3715	}
3716	if (i == SK_TIMEOUT)
3717		device_printf(sc_if->sk_if_dev,
3718		    "can not stop transfer of Tx descriptor\n");
3719	/* stop transfer of Rx descriptors */
3720	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_RX_STOP);
3721	for (i = 0; i < SK_TIMEOUT; i++) {
3722		val = SK_IF_READ_4(sc_if, 0, SK_RXQ1_BMU_CSR);
3723		if ((val & SK_RXBMU_RX_STOP) == 0)
3724			break;
3725		DELAY(1);
3726	}
3727	if (i == SK_TIMEOUT)
3728		device_printf(sc_if->sk_if_dev,
3729		    "can not stop transfer of Rx descriptor\n");
3730
3731	if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
3732		/* Put PHY back into reset. */
3733		val = sk_win_read_4(sc, SK_GPIO);
3734		if (sc_if->sk_port == SK_PORT_A) {
3735			val |= SK_GPIO_DIR0;
3736			val &= ~SK_GPIO_DAT0;
3737		} else {
3738			val |= SK_GPIO_DIR2;
3739			val &= ~SK_GPIO_DAT2;
3740		}
3741		sk_win_write_4(sc, SK_GPIO, val);
3742	}
3743
3744	/* Turn off various components of this interface. */
3745	SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
3746	switch (sc->sk_type) {
3747	case SK_GENESIS:
3748		SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL, SK_TXMACCTL_XMAC_RESET);
3749		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_RESET);
3750		break;
3751	case SK_YUKON:
3752	case SK_YUKON_LITE:
3753	case SK_YUKON_LP:
3754		SK_IF_WRITE_1(sc_if,0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_SET);
3755		SK_IF_WRITE_1(sc_if,0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_SET);
3756		break;
3757	}
3758	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_OFFLINE);
3759	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
3760	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_OFFLINE);
3761	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
3762	SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL, SK_TXARCTL_OFF);
3763	SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
3764	SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
3765	SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_OFF);
3766	SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_LINKSYNC_OFF);
3767
3768	/* Disable interrupts */
3769	if (sc_if->sk_port == SK_PORT_A)
3770		sc->sk_intrmask &= ~SK_INTRS1;
3771	else
3772		sc->sk_intrmask &= ~SK_INTRS2;
3773	CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
3774
3775	SK_XM_READ_2(sc_if, XM_ISR);
3776	SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
3777
3778	/* Free RX and TX mbufs still in the queues. */
3779	for (i = 0; i < SK_RX_RING_CNT; i++) {
3780		rxd = &sc_if->sk_cdata.sk_rxdesc[i];
3781		if (rxd->rx_m != NULL) {
3782			bus_dmamap_sync(sc_if->sk_cdata.sk_rx_tag,
3783			    rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
3784			bus_dmamap_unload(sc_if->sk_cdata.sk_rx_tag,
3785			    rxd->rx_dmamap);
3786			m_freem(rxd->rx_m);
3787			rxd->rx_m = NULL;
3788		}
3789	}
3790	for (i = 0; i < SK_JUMBO_RX_RING_CNT; i++) {
3791		jrxd = &sc_if->sk_cdata.sk_jumbo_rxdesc[i];
3792		if (jrxd->rx_m != NULL) {
3793			bus_dmamap_sync(sc_if->sk_cdata.sk_jumbo_rx_tag,
3794			    jrxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
3795			bus_dmamap_unload(sc_if->sk_cdata.sk_jumbo_rx_tag,
3796			    jrxd->rx_dmamap);
3797			m_freem(jrxd->rx_m);
3798			jrxd->rx_m = NULL;
3799		}
3800	}
3801	for (i = 0; i < SK_TX_RING_CNT; i++) {
3802		txd = &sc_if->sk_cdata.sk_txdesc[i];
3803		if (txd->tx_m != NULL) {
3804			bus_dmamap_sync(sc_if->sk_cdata.sk_tx_tag,
3805			    txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
3806			bus_dmamap_unload(sc_if->sk_cdata.sk_tx_tag,
3807			    txd->tx_dmamap);
3808			m_freem(txd->tx_m);
3809			txd->tx_m = NULL;
3810		}
3811	}
3812
3813	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING|IFF_DRV_OACTIVE);
3814
3815	return;
3816}
3817
3818static int
3819sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
3820{
3821	int error, value;
3822
3823	if (!arg1)
3824		return (EINVAL);
3825	value = *(int *)arg1;
3826	error = sysctl_handle_int(oidp, &value, 0, req);
3827	if (error || !req->newptr)
3828		return (error);
3829	if (value < low || value > high)
3830		return (EINVAL);
3831	*(int *)arg1 = value;
3832	return (0);
3833}
3834
3835static int
3836sysctl_hw_sk_int_mod(SYSCTL_HANDLER_ARGS)
3837{
3838	return (sysctl_int_range(oidp, arg1, arg2, req, SK_IM_MIN, SK_IM_MAX));
3839}
3840