if_sk.c revision 159366
1/*	$OpenBSD: if_sk.c,v 2.33 2003/08/12 05:23:06 nate Exp $	*/
2
3/*-
4 * Copyright (c) 1997, 1998, 1999, 2000
5 *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 *    notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 *    notice, this list of conditions and the following disclaimer in the
14 *    documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 *    must display the following acknowledgement:
17 *	This product includes software developed by Bill Paul.
18 * 4. Neither the name of the author nor the names of any co-contributors
19 *    may be used to endorse or promote products derived from this software
20 *    without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
26 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
32 * THE POSSIBILITY OF SUCH DAMAGE.
33 */
34/*-
35 * Copyright (c) 2003 Nathan L. Binkert <binkertn@umich.edu>
36 *
37 * Permission to use, copy, modify, and distribute this software for any
38 * purpose with or without fee is hereby granted, provided that the above
39 * copyright notice and this permission notice appear in all copies.
40 *
41 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
42 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
43 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
44 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
45 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
46 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
47 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
48 */
49
50#include <sys/cdefs.h>
51__FBSDID("$FreeBSD: head/sys/dev/sk/if_sk.c 159366 2006-06-07 09:05:20Z yongari $");
52
53/*
54 * SysKonnect SK-NET gigabit ethernet driver for FreeBSD. Supports
55 * the SK-984x series adapters, both single port and dual port.
56 * References:
57 * 	The XaQti XMAC II datasheet,
58 *  http://www.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
59 *	The SysKonnect GEnesis manual, http://www.syskonnect.com
60 *
61 * Note: XaQti has been aquired by Vitesse, and Vitesse does not have the
62 * XMAC II datasheet online. I have put my copy at people.freebsd.org as a
63 * convenience to others until Vitesse corrects this problem:
64 *
65 * http://people.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
66 *
67 * Written by Bill Paul <wpaul@ee.columbia.edu>
68 * Department of Electrical Engineering
69 * Columbia University, New York City
70 */
71/*
72 * The SysKonnect gigabit ethernet adapters consist of two main
73 * components: the SysKonnect GEnesis controller chip and the XaQti Corp.
74 * XMAC II gigabit ethernet MAC. The XMAC provides all of the MAC
75 * components and a PHY while the GEnesis controller provides a PCI
76 * interface with DMA support. Each card may have between 512K and
77 * 2MB of SRAM on board depending on the configuration.
78 *
79 * The SysKonnect GEnesis controller can have either one or two XMAC
80 * chips connected to it, allowing single or dual port NIC configurations.
81 * SysKonnect has the distinction of being the only vendor on the market
82 * with a dual port gigabit ethernet NIC. The GEnesis provides dual FIFOs,
83 * dual DMA queues, packet/MAC/transmit arbiters and direct access to the
84 * XMAC registers. This driver takes advantage of these features to allow
85 * both XMACs to operate as independent interfaces.
86 */
87
88#include <sys/param.h>
89#include <sys/systm.h>
90#include <sys/bus.h>
91#include <sys/endian.h>
92#include <sys/mbuf.h>
93#include <sys/malloc.h>
94#include <sys/kernel.h>
95#include <sys/module.h>
96#include <sys/socket.h>
97#include <sys/sockio.h>
98#include <sys/queue.h>
99#include <sys/sysctl.h>
100
101#include <net/bpf.h>
102#include <net/ethernet.h>
103#include <net/if.h>
104#include <net/if_arp.h>
105#include <net/if_dl.h>
106#include <net/if_media.h>
107#include <net/if_types.h>
108#include <net/if_vlan_var.h>
109
110#include <netinet/in.h>
111#include <netinet/in_systm.h>
112#include <netinet/ip.h>
113
114#include <machine/bus.h>
115#include <machine/in_cksum.h>
116#include <machine/resource.h>
117#include <sys/rman.h>
118
119#include <dev/mii/mii.h>
120#include <dev/mii/miivar.h>
121#include <dev/mii/brgphyreg.h>
122
123#include <dev/pci/pcireg.h>
124#include <dev/pci/pcivar.h>
125
126#if 0
127#define SK_USEIOSPACE
128#endif
129
130#include <dev/sk/if_skreg.h>
131#include <dev/sk/xmaciireg.h>
132#include <dev/sk/yukonreg.h>
133
134MODULE_DEPEND(sk, pci, 1, 1, 1);
135MODULE_DEPEND(sk, ether, 1, 1, 1);
136MODULE_DEPEND(sk, miibus, 1, 1, 1);
137
138/* "device miibus" required.  See GENERIC if you get errors here. */
139#include "miibus_if.h"
140
141#ifndef lint
142static const char rcsid[] =
143  "$FreeBSD: head/sys/dev/sk/if_sk.c 159366 2006-06-07 09:05:20Z yongari $";
144#endif
145
146static struct sk_type sk_devs[] = {
147	{
148		VENDORID_SK,
149		DEVICEID_SK_V1,
150		"SysKonnect Gigabit Ethernet (V1.0)"
151	},
152	{
153		VENDORID_SK,
154		DEVICEID_SK_V2,
155		"SysKonnect Gigabit Ethernet (V2.0)"
156	},
157	{
158		VENDORID_MARVELL,
159		DEVICEID_SK_V2,
160		"Marvell Gigabit Ethernet"
161	},
162#ifdef not_yet
163	{
164		VENDORID_MARVELL,
165		DEVICEID_MRVL_4360,
166		"Marvell 88E8052 Gigabit Ethernet Controller"
167	},
168	{
169		VENDORID_MARVELL,
170		DEVICEID_MRVL_4361,
171		"Marvell 88E8050 Gigabit Ethernet Controller"
172	},
173	{
174		VENDORID_MARVELL,
175		DEVICEID_MRVL_4362,
176		"Marvell 88E8053 Gigabit Ethernet Controller"
177	},
178#endif
179	{
180		VENDORID_MARVELL,
181		DEVICEID_BELKIN_5005,
182		"Belkin F5D5005 Gigabit Ethernet"
183	},
184	{
185		VENDORID_3COM,
186		DEVICEID_3COM_3C940,
187		"3Com 3C940 Gigabit Ethernet"
188	},
189	{
190		VENDORID_LINKSYS,
191		DEVICEID_LINKSYS_EG1032,
192		"Linksys EG1032 Gigabit Ethernet"
193	},
194	{
195		VENDORID_DLINK,
196		DEVICEID_DLINK_DGE530T,
197		"D-Link DGE-530T Gigabit Ethernet"
198	},
199	{ 0, 0, NULL }
200};
201
202static int skc_probe(device_t);
203static int skc_attach(device_t);
204static int skc_detach(device_t);
205static void skc_shutdown(device_t);
206static int skc_suspend(device_t);
207static int skc_resume(device_t);
208static int sk_detach(device_t);
209static int sk_probe(device_t);
210static int sk_attach(device_t);
211static void sk_tick(void *);
212static void sk_yukon_tick(void *);
213static void sk_intr(void *);
214static void sk_intr_xmac(struct sk_if_softc *);
215static void sk_intr_bcom(struct sk_if_softc *);
216static void sk_intr_yukon(struct sk_if_softc *);
217static __inline void sk_rxcksum(struct ifnet *, struct mbuf *, u_int32_t);
218static __inline int sk_rxvalid(struct sk_softc *, u_int32_t, u_int32_t);
219static void sk_rxeof(struct sk_if_softc *);
220static void sk_jumbo_rxeof(struct sk_if_softc *);
221static void sk_txeof(struct sk_if_softc *);
222static void sk_txcksum(struct ifnet *, struct mbuf *, struct sk_tx_desc *);
223static int sk_encap(struct sk_if_softc *, struct mbuf **);
224static void sk_start(struct ifnet *);
225static void sk_start_locked(struct ifnet *);
226static int sk_ioctl(struct ifnet *, u_long, caddr_t);
227static void sk_init(void *);
228static void sk_init_locked(struct sk_if_softc *);
229static void sk_init_xmac(struct sk_if_softc *);
230static void sk_init_yukon(struct sk_if_softc *);
231static void sk_stop(struct sk_if_softc *);
232static void sk_watchdog(struct ifnet *);
233static int sk_ifmedia_upd(struct ifnet *);
234static void sk_ifmedia_sts(struct ifnet *, struct ifmediareq *);
235static void sk_reset(struct sk_softc *);
236static __inline void sk_discard_rxbuf(struct sk_if_softc *, int);
237static __inline void sk_discard_jumbo_rxbuf(struct sk_if_softc *, int);
238static int sk_newbuf(struct sk_if_softc *, int);
239static int sk_jumbo_newbuf(struct sk_if_softc *, int);
240static void sk_dmamap_cb(void *, bus_dma_segment_t *, int, int);
241static int sk_dma_alloc(struct sk_if_softc *);
242static void sk_dma_free(struct sk_if_softc *);
243static void *sk_jalloc(struct sk_if_softc *);
244static void sk_jfree(void *, void *);
245static int sk_init_rx_ring(struct sk_if_softc *);
246static int sk_init_jumbo_rx_ring(struct sk_if_softc *);
247static void sk_init_tx_ring(struct sk_if_softc *);
248static u_int32_t sk_win_read_4(struct sk_softc *, int);
249static u_int16_t sk_win_read_2(struct sk_softc *, int);
250static u_int8_t sk_win_read_1(struct sk_softc *, int);
251static void sk_win_write_4(struct sk_softc *, int, u_int32_t);
252static void sk_win_write_2(struct sk_softc *, int, u_int32_t);
253static void sk_win_write_1(struct sk_softc *, int, u_int32_t);
254static u_int8_t sk_vpd_readbyte(struct sk_softc *, int);
255static void sk_vpd_read_res(struct sk_softc *, struct vpd_res *, int);
256static void sk_vpd_read(struct sk_softc *);
257
258static int sk_miibus_readreg(device_t, int, int);
259static int sk_miibus_writereg(device_t, int, int, int);
260static void sk_miibus_statchg(device_t);
261
262static int sk_xmac_miibus_readreg(struct sk_if_softc *, int, int);
263static int sk_xmac_miibus_writereg(struct sk_if_softc *, int, int,
264						int);
265static void sk_xmac_miibus_statchg(struct sk_if_softc *);
266
267static int sk_marv_miibus_readreg(struct sk_if_softc *, int, int);
268static int sk_marv_miibus_writereg(struct sk_if_softc *, int, int,
269						int);
270static void sk_marv_miibus_statchg(struct sk_if_softc *);
271
272static uint32_t sk_xmchash(const uint8_t *);
273static uint32_t sk_gmchash(const uint8_t *);
274static void sk_setfilt(struct sk_if_softc *, u_int16_t *, int);
275static void sk_setmulti(struct sk_if_softc *);
276static void sk_setpromisc(struct sk_if_softc *);
277
278static int sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high);
279static int sysctl_hw_sk_int_mod(SYSCTL_HANDLER_ARGS);
280
281#ifdef SK_USEIOSPACE
282#define SK_RES		SYS_RES_IOPORT
283#define SK_RID		SK_PCI_LOIO
284#else
285#define SK_RES		SYS_RES_MEMORY
286#define SK_RID		SK_PCI_LOMEM
287#endif
288
289/*
290 * It seems that SK-NET GENESIS supports very simple checksum offload
291 * capability for Tx and I believe it can generate 0 checksum value for
292 * UDP packets in Tx as the hardware can't differenciate UDP packets from
293 * TCP packets. 0 chcecksum value for UDP packet is an invalid one as it
294 * means sender didn't perforam checksum computation. For the safety I
295 * disabled UDP checksum offload capability at the moment. Alternatively
296 * we can intrduce a LINK0/LINK1 flag as hme(4) did in its Tx checksum
297 * offload routine.
298 */
299#define SK_CSUM_FEATURES	(CSUM_TCP)
300
301/*
302 * Note that we have newbus methods for both the GEnesis controller
303 * itself and the XMAC(s). The XMACs are children of the GEnesis, and
304 * the miibus code is a child of the XMACs. We need to do it this way
305 * so that the miibus drivers can access the PHY registers on the
306 * right PHY. It's not quite what I had in mind, but it's the only
307 * design that achieves the desired effect.
308 */
309static device_method_t skc_methods[] = {
310	/* Device interface */
311	DEVMETHOD(device_probe,		skc_probe),
312	DEVMETHOD(device_attach,	skc_attach),
313	DEVMETHOD(device_detach,	skc_detach),
314	DEVMETHOD(device_suspend,	skc_suspend),
315	DEVMETHOD(device_resume,	skc_resume),
316	DEVMETHOD(device_shutdown,	skc_shutdown),
317
318	/* bus interface */
319	DEVMETHOD(bus_print_child,	bus_generic_print_child),
320	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
321
322	{ 0, 0 }
323};
324
325static driver_t skc_driver = {
326	"skc",
327	skc_methods,
328	sizeof(struct sk_softc)
329};
330
331static devclass_t skc_devclass;
332
333static device_method_t sk_methods[] = {
334	/* Device interface */
335	DEVMETHOD(device_probe,		sk_probe),
336	DEVMETHOD(device_attach,	sk_attach),
337	DEVMETHOD(device_detach,	sk_detach),
338	DEVMETHOD(device_shutdown,	bus_generic_shutdown),
339
340	/* bus interface */
341	DEVMETHOD(bus_print_child,	bus_generic_print_child),
342	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
343
344	/* MII interface */
345	DEVMETHOD(miibus_readreg,	sk_miibus_readreg),
346	DEVMETHOD(miibus_writereg,	sk_miibus_writereg),
347	DEVMETHOD(miibus_statchg,	sk_miibus_statchg),
348
349	{ 0, 0 }
350};
351
352static driver_t sk_driver = {
353	"sk",
354	sk_methods,
355	sizeof(struct sk_if_softc)
356};
357
358static devclass_t sk_devclass;
359
360DRIVER_MODULE(skc, pci, skc_driver, skc_devclass, 0, 0);
361DRIVER_MODULE(sk, skc, sk_driver, sk_devclass, 0, 0);
362DRIVER_MODULE(miibus, sk, miibus_driver, miibus_devclass, 0, 0);
363
364#define SK_SETBIT(sc, reg, x)		\
365	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) | x)
366
367#define SK_CLRBIT(sc, reg, x)		\
368	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) & ~x)
369
370#define SK_WIN_SETBIT_4(sc, reg, x)	\
371	sk_win_write_4(sc, reg, sk_win_read_4(sc, reg) | x)
372
373#define SK_WIN_CLRBIT_4(sc, reg, x)	\
374	sk_win_write_4(sc, reg, sk_win_read_4(sc, reg) & ~x)
375
376#define SK_WIN_SETBIT_2(sc, reg, x)	\
377	sk_win_write_2(sc, reg, sk_win_read_2(sc, reg) | x)
378
379#define SK_WIN_CLRBIT_2(sc, reg, x)	\
380	sk_win_write_2(sc, reg, sk_win_read_2(sc, reg) & ~x)
381
382static u_int32_t
383sk_win_read_4(sc, reg)
384	struct sk_softc		*sc;
385	int			reg;
386{
387#ifdef SK_USEIOSPACE
388	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
389	return(CSR_READ_4(sc, SK_WIN_BASE + SK_REG(reg)));
390#else
391	return(CSR_READ_4(sc, reg));
392#endif
393}
394
395static u_int16_t
396sk_win_read_2(sc, reg)
397	struct sk_softc		*sc;
398	int			reg;
399{
400#ifdef SK_USEIOSPACE
401	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
402	return(CSR_READ_2(sc, SK_WIN_BASE + SK_REG(reg)));
403#else
404	return(CSR_READ_2(sc, reg));
405#endif
406}
407
408static u_int8_t
409sk_win_read_1(sc, reg)
410	struct sk_softc		*sc;
411	int			reg;
412{
413#ifdef SK_USEIOSPACE
414	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
415	return(CSR_READ_1(sc, SK_WIN_BASE + SK_REG(reg)));
416#else
417	return(CSR_READ_1(sc, reg));
418#endif
419}
420
421static void
422sk_win_write_4(sc, reg, val)
423	struct sk_softc		*sc;
424	int			reg;
425	u_int32_t		val;
426{
427#ifdef SK_USEIOSPACE
428	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
429	CSR_WRITE_4(sc, SK_WIN_BASE + SK_REG(reg), val);
430#else
431	CSR_WRITE_4(sc, reg, val);
432#endif
433	return;
434}
435
436static void
437sk_win_write_2(sc, reg, val)
438	struct sk_softc		*sc;
439	int			reg;
440	u_int32_t		val;
441{
442#ifdef SK_USEIOSPACE
443	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
444	CSR_WRITE_2(sc, SK_WIN_BASE + SK_REG(reg), val);
445#else
446	CSR_WRITE_2(sc, reg, val);
447#endif
448	return;
449}
450
451static void
452sk_win_write_1(sc, reg, val)
453	struct sk_softc		*sc;
454	int			reg;
455	u_int32_t		val;
456{
457#ifdef SK_USEIOSPACE
458	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
459	CSR_WRITE_1(sc, SK_WIN_BASE + SK_REG(reg), val);
460#else
461	CSR_WRITE_1(sc, reg, val);
462#endif
463	return;
464}
465
466/*
467 * The VPD EEPROM contains Vital Product Data, as suggested in
468 * the PCI 2.1 specification. The VPD data is separared into areas
469 * denoted by resource IDs. The SysKonnect VPD contains an ID string
470 * resource (the name of the adapter), a read-only area resource
471 * containing various key/data fields and a read/write area which
472 * can be used to store asset management information or log messages.
473 * We read the ID string and read-only into buffers attached to
474 * the controller softc structure for later use. At the moment,
475 * we only use the ID string during skc_attach().
476 */
477static u_int8_t
478sk_vpd_readbyte(sc, addr)
479	struct sk_softc		*sc;
480	int			addr;
481{
482	int			i;
483
484	sk_win_write_2(sc, SK_PCI_REG(SK_PCI_VPD_ADDR), addr);
485	for (i = 0; i < SK_TIMEOUT; i++) {
486		/* ASUS LOM takes a very long time to read VPD. */
487		DELAY(100);
488		if (sk_win_read_2(sc,
489		    SK_PCI_REG(SK_PCI_VPD_ADDR)) & SK_VPD_FLAG)
490			break;
491	}
492
493	if (i == SK_TIMEOUT)
494		return(0);
495
496	return(sk_win_read_1(sc, SK_PCI_REG(SK_PCI_VPD_DATA)));
497}
498
499static void
500sk_vpd_read_res(sc, res, addr)
501	struct sk_softc		*sc;
502	struct vpd_res		*res;
503	int			addr;
504{
505	int			i;
506	u_int8_t		*ptr;
507
508	ptr = (u_int8_t *)res;
509	for (i = 0; i < sizeof(struct vpd_res); i++)
510		ptr[i] = sk_vpd_readbyte(sc, i + addr);
511
512	return;
513}
514
515static void
516sk_vpd_read(sc)
517	struct sk_softc		*sc;
518{
519	int			pos = 0, i;
520	struct vpd_res		res;
521
522	/* Check VPD capability */
523	if (sk_win_read_1(sc, SK_PCI_REG(SK_PCI_VPD_CAPID)) != PCIY_VPD)
524		return;
525	if (sc->sk_vpd_prodname != NULL)
526		free(sc->sk_vpd_prodname, M_DEVBUF);
527	if (sc->sk_vpd_readonly != NULL)
528		free(sc->sk_vpd_readonly, M_DEVBUF);
529	sc->sk_vpd_prodname = NULL;
530	sc->sk_vpd_readonly = NULL;
531	sc->sk_vpd_readonly_len = 0;
532
533	sk_vpd_read_res(sc, &res, pos);
534
535	/*
536	 * Bail out quietly if the eeprom appears to be missing or empty.
537	 */
538	if (res.vr_id == 0xff && res.vr_len == 0xff && res.vr_pad == 0xff)
539		return;
540
541	if (res.vr_id != VPD_RES_ID) {
542		device_printf(sc->sk_dev, "bad VPD resource id: expected %x "
543		    "got %x\n", VPD_RES_ID, res.vr_id);
544		return;
545	}
546
547	pos += sizeof(res);
548	sc->sk_vpd_prodname = malloc(res.vr_len + 1, M_DEVBUF, M_NOWAIT);
549	if (sc->sk_vpd_prodname != NULL) {
550		for (i = 0; i < res.vr_len; i++)
551			sc->sk_vpd_prodname[i] = sk_vpd_readbyte(sc, i + pos);
552		sc->sk_vpd_prodname[i] = '\0';
553	}
554	pos += res.vr_len;
555
556	sk_vpd_read_res(sc, &res, pos);
557
558	if (res.vr_id != VPD_RES_READ) {
559		device_printf(sc->sk_dev, "bad VPD resource id: expected %x "
560		    "got %x\n", VPD_RES_READ, res.vr_id);
561		return;
562	}
563
564	pos += sizeof(res);
565	sc->sk_vpd_readonly = malloc(res.vr_len, M_DEVBUF, M_NOWAIT);
566	for (i = 0; i < res.vr_len; i++)
567		sc->sk_vpd_readonly[i] = sk_vpd_readbyte(sc, i + pos);
568	sc->sk_vpd_readonly_len = res.vr_len;
569
570	return;
571}
572
573static int
574sk_miibus_readreg(dev, phy, reg)
575	device_t		dev;
576	int			phy, reg;
577{
578	struct sk_if_softc	*sc_if;
579	int			v;
580
581	sc_if = device_get_softc(dev);
582
583	SK_IF_MII_LOCK(sc_if);
584	switch(sc_if->sk_softc->sk_type) {
585	case SK_GENESIS:
586		v = sk_xmac_miibus_readreg(sc_if, phy, reg);
587		break;
588	case SK_YUKON:
589	case SK_YUKON_LITE:
590	case SK_YUKON_LP:
591	case SK_YUKON_EC:
592		v = sk_marv_miibus_readreg(sc_if, phy, reg);
593		break;
594	default:
595		v = 0;
596		break;
597	}
598	SK_IF_MII_UNLOCK(sc_if);
599
600	return (v);
601}
602
603static int
604sk_miibus_writereg(dev, phy, reg, val)
605	device_t		dev;
606	int			phy, reg, val;
607{
608	struct sk_if_softc	*sc_if;
609	int			v;
610
611	sc_if = device_get_softc(dev);
612
613	SK_IF_MII_LOCK(sc_if);
614	switch(sc_if->sk_softc->sk_type) {
615	case SK_GENESIS:
616		v = sk_xmac_miibus_writereg(sc_if, phy, reg, val);
617		break;
618	case SK_YUKON:
619	case SK_YUKON_LITE:
620	case SK_YUKON_LP:
621	case SK_YUKON_EC:
622		v = sk_marv_miibus_writereg(sc_if, phy, reg, val);
623		break;
624	default:
625		v = 0;
626		break;
627	}
628	SK_IF_MII_UNLOCK(sc_if);
629
630	return (v);
631}
632
633static void
634sk_miibus_statchg(dev)
635	device_t		dev;
636{
637	struct sk_if_softc	*sc_if;
638
639	sc_if = device_get_softc(dev);
640
641	SK_IF_MII_LOCK(sc_if);
642	switch(sc_if->sk_softc->sk_type) {
643	case SK_GENESIS:
644		sk_xmac_miibus_statchg(sc_if);
645		break;
646	case SK_YUKON:
647	case SK_YUKON_LITE:
648	case SK_YUKON_LP:
649	case SK_YUKON_EC:
650		sk_marv_miibus_statchg(sc_if);
651		break;
652	}
653	SK_IF_MII_UNLOCK(sc_if);
654
655	return;
656}
657
658static int
659sk_xmac_miibus_readreg(sc_if, phy, reg)
660	struct sk_if_softc	*sc_if;
661	int			phy, reg;
662{
663	int			i;
664
665	if (sc_if->sk_phytype == SK_PHYTYPE_XMAC && phy != 0)
666		return(0);
667
668	SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8));
669	SK_XM_READ_2(sc_if, XM_PHY_DATA);
670	if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) {
671		for (i = 0; i < SK_TIMEOUT; i++) {
672			DELAY(1);
673			if (SK_XM_READ_2(sc_if, XM_MMUCMD) &
674			    XM_MMUCMD_PHYDATARDY)
675				break;
676		}
677
678		if (i == SK_TIMEOUT) {
679			if_printf(sc_if->sk_ifp, "phy failed to come ready\n");
680			return(0);
681		}
682	}
683	DELAY(1);
684	i = SK_XM_READ_2(sc_if, XM_PHY_DATA);
685
686	return(i);
687}
688
689static int
690sk_xmac_miibus_writereg(sc_if, phy, reg, val)
691	struct sk_if_softc	*sc_if;
692	int			phy, reg, val;
693{
694	int			i;
695
696	SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8));
697	for (i = 0; i < SK_TIMEOUT; i++) {
698		if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY))
699			break;
700	}
701
702	if (i == SK_TIMEOUT) {
703		if_printf(sc_if->sk_ifp, "phy failed to come ready\n");
704		return (ETIMEDOUT);
705	}
706
707	SK_XM_WRITE_2(sc_if, XM_PHY_DATA, val);
708	for (i = 0; i < SK_TIMEOUT; i++) {
709		DELAY(1);
710		if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY))
711			break;
712	}
713	if (i == SK_TIMEOUT)
714		if_printf(sc_if->sk_ifp, "phy write timed out\n");
715
716	return(0);
717}
718
719static void
720sk_xmac_miibus_statchg(sc_if)
721	struct sk_if_softc	*sc_if;
722{
723	struct mii_data		*mii;
724
725	mii = device_get_softc(sc_if->sk_miibus);
726
727	/*
728	 * If this is a GMII PHY, manually set the XMAC's
729	 * duplex mode accordingly.
730	 */
731	if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) {
732		if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
733			SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX);
734		} else {
735			SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX);
736		}
737	}
738}
739
740static int
741sk_marv_miibus_readreg(sc_if, phy, reg)
742	struct sk_if_softc	*sc_if;
743	int			phy, reg;
744{
745	u_int16_t		val;
746	int			i;
747
748	if (phy != 0 ||
749	    (sc_if->sk_phytype != SK_PHYTYPE_MARV_COPPER &&
750	     sc_if->sk_phytype != SK_PHYTYPE_MARV_FIBER)) {
751		return(0);
752	}
753
754        SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
755		      YU_SMICR_REGAD(reg) | YU_SMICR_OP_READ);
756
757	for (i = 0; i < SK_TIMEOUT; i++) {
758		DELAY(1);
759		val = SK_YU_READ_2(sc_if, YUKON_SMICR);
760		if (val & YU_SMICR_READ_VALID)
761			break;
762	}
763
764	if (i == SK_TIMEOUT) {
765		if_printf(sc_if->sk_ifp, "phy failed to come ready\n");
766		return(0);
767	}
768
769	val = SK_YU_READ_2(sc_if, YUKON_SMIDR);
770
771	return(val);
772}
773
774static int
775sk_marv_miibus_writereg(sc_if, phy, reg, val)
776	struct sk_if_softc	*sc_if;
777	int			phy, reg, val;
778{
779	int			i;
780
781	SK_YU_WRITE_2(sc_if, YUKON_SMIDR, val);
782	SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
783		      YU_SMICR_REGAD(reg) | YU_SMICR_OP_WRITE);
784
785	for (i = 0; i < SK_TIMEOUT; i++) {
786		DELAY(1);
787		if (SK_YU_READ_2(sc_if, YUKON_SMICR) & YU_SMICR_BUSY)
788			break;
789	}
790	if (i == SK_TIMEOUT) {
791		if_printf(sc_if->sk_ifp, "phy write timeout\n");
792		return (0);
793	}
794
795	return(0);
796}
797
798static void
799sk_marv_miibus_statchg(sc_if)
800	struct sk_if_softc	*sc_if;
801{
802	return;
803}
804
805#define HASH_BITS		6
806
807static u_int32_t
808sk_xmchash(addr)
809	const uint8_t *addr;
810{
811	uint32_t crc;
812
813	/* Compute CRC for the address value. */
814	crc = ether_crc32_le(addr, ETHER_ADDR_LEN);
815
816	return (~crc & ((1 << HASH_BITS) - 1));
817}
818
819/* gmchash is just a big endian crc */
820static u_int32_t
821sk_gmchash(addr)
822	const uint8_t *addr;
823{
824	uint32_t crc;
825
826	/* Compute CRC for the address value. */
827	crc = ether_crc32_be(addr, ETHER_ADDR_LEN);
828
829	return (crc & ((1 << HASH_BITS) - 1));
830}
831
832static void
833sk_setfilt(sc_if, addr, slot)
834	struct sk_if_softc	*sc_if;
835	u_int16_t		*addr;
836	int			slot;
837{
838	int			base;
839
840	base = XM_RXFILT_ENTRY(slot);
841
842	SK_XM_WRITE_2(sc_if, base, addr[0]);
843	SK_XM_WRITE_2(sc_if, base + 2, addr[1]);
844	SK_XM_WRITE_2(sc_if, base + 4, addr[2]);
845
846	return;
847}
848
849static void
850sk_setmulti(sc_if)
851	struct sk_if_softc	*sc_if;
852{
853	struct sk_softc		*sc = sc_if->sk_softc;
854	struct ifnet		*ifp = sc_if->sk_ifp;
855	u_int32_t		hashes[2] = { 0, 0 };
856	int			h = 0, i;
857	struct ifmultiaddr	*ifma;
858	u_int16_t		dummy[] = { 0, 0, 0 };
859	u_int16_t		maddr[(ETHER_ADDR_LEN+1)/2];
860
861	SK_IF_LOCK_ASSERT(sc_if);
862
863	/* First, zot all the existing filters. */
864	switch(sc->sk_type) {
865	case SK_GENESIS:
866		for (i = 1; i < XM_RXFILT_MAX; i++)
867			sk_setfilt(sc_if, dummy, i);
868
869		SK_XM_WRITE_4(sc_if, XM_MAR0, 0);
870		SK_XM_WRITE_4(sc_if, XM_MAR2, 0);
871		break;
872	case SK_YUKON:
873	case SK_YUKON_LITE:
874	case SK_YUKON_LP:
875	case SK_YUKON_EC:
876		SK_YU_WRITE_2(sc_if, YUKON_MCAH1, 0);
877		SK_YU_WRITE_2(sc_if, YUKON_MCAH2, 0);
878		SK_YU_WRITE_2(sc_if, YUKON_MCAH3, 0);
879		SK_YU_WRITE_2(sc_if, YUKON_MCAH4, 0);
880		break;
881	}
882
883	/* Now program new ones. */
884	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
885		hashes[0] = 0xFFFFFFFF;
886		hashes[1] = 0xFFFFFFFF;
887	} else {
888		i = 1;
889		IF_ADDR_LOCK(ifp);
890		TAILQ_FOREACH_REVERSE(ifma, &ifp->if_multiaddrs, ifmultihead, ifma_link) {
891			if (ifma->ifma_addr->sa_family != AF_LINK)
892				continue;
893			/*
894			 * Program the first XM_RXFILT_MAX multicast groups
895			 * into the perfect filter. For all others,
896			 * use the hash table.
897			 */
898			if (sc->sk_type == SK_GENESIS && i < XM_RXFILT_MAX) {
899				bcopy(LLADDR(
900				    (struct sockaddr_dl *)ifma->ifma_addr),
901				    maddr, ETHER_ADDR_LEN);
902				sk_setfilt(sc_if, maddr, i);
903				i++;
904				continue;
905			}
906
907			switch(sc->sk_type) {
908			case SK_GENESIS:
909				bcopy(LLADDR(
910				    (struct sockaddr_dl *)ifma->ifma_addr),
911				    maddr, ETHER_ADDR_LEN);
912				h = sk_xmchash((const uint8_t *)maddr);
913				break;
914			case SK_YUKON:
915			case SK_YUKON_LITE:
916			case SK_YUKON_LP:
917			case SK_YUKON_EC:
918				bcopy(LLADDR(
919				    (struct sockaddr_dl *)ifma->ifma_addr),
920				    maddr, ETHER_ADDR_LEN);
921				h = sk_gmchash((const uint8_t *)maddr);
922				break;
923			}
924			if (h < 32)
925				hashes[0] |= (1 << h);
926			else
927				hashes[1] |= (1 << (h - 32));
928		}
929		IF_ADDR_UNLOCK(ifp);
930	}
931
932	switch(sc->sk_type) {
933	case SK_GENESIS:
934		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_HASH|
935			       XM_MODE_RX_USE_PERFECT);
936		SK_XM_WRITE_4(sc_if, XM_MAR0, hashes[0]);
937		SK_XM_WRITE_4(sc_if, XM_MAR2, hashes[1]);
938		break;
939	case SK_YUKON:
940	case SK_YUKON_LITE:
941	case SK_YUKON_LP:
942	case SK_YUKON_EC:
943		SK_YU_WRITE_2(sc_if, YUKON_MCAH1, hashes[0] & 0xffff);
944		SK_YU_WRITE_2(sc_if, YUKON_MCAH2, (hashes[0] >> 16) & 0xffff);
945		SK_YU_WRITE_2(sc_if, YUKON_MCAH3, hashes[1] & 0xffff);
946		SK_YU_WRITE_2(sc_if, YUKON_MCAH4, (hashes[1] >> 16) & 0xffff);
947		break;
948	}
949
950	return;
951}
952
953static void
954sk_setpromisc(sc_if)
955	struct sk_if_softc	*sc_if;
956{
957	struct sk_softc		*sc = sc_if->sk_softc;
958	struct ifnet		*ifp = sc_if->sk_ifp;
959
960	SK_IF_LOCK_ASSERT(sc_if);
961
962	switch(sc->sk_type) {
963	case SK_GENESIS:
964		if (ifp->if_flags & IFF_PROMISC) {
965			SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
966		} else {
967			SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
968		}
969		break;
970	case SK_YUKON:
971	case SK_YUKON_LITE:
972	case SK_YUKON_LP:
973	case SK_YUKON_EC:
974		if (ifp->if_flags & IFF_PROMISC) {
975			SK_YU_CLRBIT_2(sc_if, YUKON_RCR,
976			    YU_RCR_UFLEN | YU_RCR_MUFLEN);
977		} else {
978			SK_YU_SETBIT_2(sc_if, YUKON_RCR,
979			    YU_RCR_UFLEN | YU_RCR_MUFLEN);
980		}
981		break;
982	}
983
984	return;
985}
986
987static int
988sk_init_rx_ring(sc_if)
989	struct sk_if_softc	*sc_if;
990{
991	struct sk_ring_data	*rd;
992	bus_addr_t		addr;
993	u_int32_t		csum_start;
994	int			i;
995
996	sc_if->sk_cdata.sk_rx_cons = 0;
997
998	csum_start = (ETHER_HDR_LEN + sizeof(struct ip))  << 16 |
999	    ETHER_HDR_LEN;
1000	rd = &sc_if->sk_rdata;
1001	bzero(rd->sk_rx_ring, sizeof(struct sk_rx_desc) * SK_RX_RING_CNT);
1002	for (i = 0; i < SK_RX_RING_CNT; i++) {
1003		if (sk_newbuf(sc_if, i) != 0)
1004			return (ENOBUFS);
1005		if (i == (SK_RX_RING_CNT - 1))
1006			addr = SK_RX_RING_ADDR(sc_if, 0);
1007		else
1008			addr = SK_RX_RING_ADDR(sc_if, i + 1);
1009		rd->sk_rx_ring[i].sk_next = htole32(SK_ADDR_LO(addr));
1010		rd->sk_rx_ring[i].sk_csum_start = htole32(csum_start);
1011	}
1012
1013	bus_dmamap_sync(sc_if->sk_cdata.sk_rx_ring_tag,
1014	    sc_if->sk_cdata.sk_rx_ring_map,
1015	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1016
1017	return(0);
1018}
1019
1020static int
1021sk_init_jumbo_rx_ring(sc_if)
1022	struct sk_if_softc	*sc_if;
1023{
1024	struct sk_ring_data	*rd;
1025	bus_addr_t		addr;
1026	u_int32_t		csum_start;
1027	int			i;
1028
1029	sc_if->sk_cdata.sk_jumbo_rx_cons = 0;
1030
1031	csum_start = ((ETHER_HDR_LEN + sizeof(struct ip)) << 16) |
1032	    ETHER_HDR_LEN;
1033	rd = &sc_if->sk_rdata;
1034	bzero(rd->sk_jumbo_rx_ring,
1035	    sizeof(struct sk_rx_desc) * SK_JUMBO_RX_RING_CNT);
1036	for (i = 0; i < SK_JUMBO_RX_RING_CNT; i++) {
1037		if (sk_jumbo_newbuf(sc_if, i) != 0)
1038			return (ENOBUFS);
1039		if (i == (SK_JUMBO_RX_RING_CNT - 1))
1040			addr = SK_JUMBO_RX_RING_ADDR(sc_if, 0);
1041		else
1042			addr = SK_JUMBO_RX_RING_ADDR(sc_if, i + 1);
1043		rd->sk_jumbo_rx_ring[i].sk_next = htole32(SK_ADDR_LO(addr));
1044		rd->sk_jumbo_rx_ring[i].sk_csum_start = htole32(csum_start);
1045	}
1046
1047	bus_dmamap_sync(sc_if->sk_cdata.sk_jumbo_rx_ring_tag,
1048	    sc_if->sk_cdata.sk_jumbo_rx_ring_map,
1049	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1050
1051	return (0);
1052}
1053
1054static void
1055sk_init_tx_ring(sc_if)
1056	struct sk_if_softc	*sc_if;
1057{
1058	struct sk_ring_data	*rd;
1059	struct sk_txdesc	*txd;
1060	bus_addr_t		addr;
1061	int			i;
1062
1063	STAILQ_INIT(&sc_if->sk_cdata.sk_txfreeq);
1064	STAILQ_INIT(&sc_if->sk_cdata.sk_txbusyq);
1065
1066	sc_if->sk_cdata.sk_tx_prod = 0;
1067	sc_if->sk_cdata.sk_tx_cons = 0;
1068	sc_if->sk_cdata.sk_tx_cnt = 0;
1069
1070	rd = &sc_if->sk_rdata;
1071	bzero(rd->sk_tx_ring, sizeof(struct sk_tx_desc) * SK_TX_RING_CNT);
1072	for (i = 0; i < SK_TX_RING_CNT; i++) {
1073		if (i == (SK_TX_RING_CNT - 1))
1074			addr = SK_TX_RING_ADDR(sc_if, 0);
1075		else
1076			addr = SK_TX_RING_ADDR(sc_if, i + 1);
1077		rd->sk_tx_ring[i].sk_next = htole32(SK_ADDR_LO(addr));
1078		txd = &sc_if->sk_cdata.sk_txdesc[i];
1079		STAILQ_INSERT_TAIL(&sc_if->sk_cdata.sk_txfreeq, txd, tx_q);
1080	}
1081
1082	bus_dmamap_sync(sc_if->sk_cdata.sk_tx_ring_tag,
1083	    sc_if->sk_cdata.sk_tx_ring_map,
1084	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1085}
1086
1087static __inline void
1088sk_discard_rxbuf(sc_if, idx)
1089	struct sk_if_softc	*sc_if;
1090	int			idx;
1091{
1092	struct sk_rx_desc	*r;
1093	struct sk_rxdesc	*rxd;
1094	struct mbuf		*m;
1095
1096
1097	r = &sc_if->sk_rdata.sk_rx_ring[idx];
1098	rxd = &sc_if->sk_cdata.sk_rxdesc[idx];
1099	m = rxd->rx_m;
1100	r->sk_ctl = htole32(m->m_len | SK_RXSTAT | SK_OPCODE_CSUM);
1101}
1102
1103static __inline void
1104sk_discard_jumbo_rxbuf(sc_if, idx)
1105	struct sk_if_softc	*sc_if;
1106	int			idx;
1107{
1108	struct sk_rx_desc	*r;
1109	struct sk_rxdesc	*rxd;
1110	struct mbuf		*m;
1111
1112	r = &sc_if->sk_rdata.sk_jumbo_rx_ring[idx];
1113	rxd = &sc_if->sk_cdata.sk_jumbo_rxdesc[idx];
1114	m = rxd->rx_m;
1115	r->sk_ctl = htole32(m->m_len | SK_RXSTAT | SK_OPCODE_CSUM);
1116}
1117
1118static int
1119sk_newbuf(sc_if, idx)
1120	struct sk_if_softc	*sc_if;
1121	int 			idx;
1122{
1123	struct sk_rx_desc	*r;
1124	struct sk_rxdesc	*rxd;
1125	struct mbuf		*m;
1126	bus_dma_segment_t	segs[1];
1127	bus_dmamap_t		map;
1128	int			nsegs;
1129
1130	m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
1131	if (m == NULL)
1132		return (ENOBUFS);
1133	m->m_len = m->m_pkthdr.len = MCLBYTES;
1134	m_adj(m, ETHER_ALIGN);
1135
1136	if (bus_dmamap_load_mbuf_sg(sc_if->sk_cdata.sk_rx_tag,
1137	    sc_if->sk_cdata.sk_rx_sparemap, m, segs, &nsegs, 0) != 0) {
1138		m_freem(m);
1139		return (ENOBUFS);
1140	}
1141	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
1142
1143	rxd = &sc_if->sk_cdata.sk_rxdesc[idx];
1144	if (rxd->rx_m != NULL) {
1145		bus_dmamap_sync(sc_if->sk_cdata.sk_rx_tag, rxd->rx_dmamap,
1146		    BUS_DMASYNC_POSTREAD);
1147		bus_dmamap_unload(sc_if->sk_cdata.sk_rx_tag, rxd->rx_dmamap);
1148	}
1149	map = rxd->rx_dmamap;
1150	rxd->rx_dmamap = sc_if->sk_cdata.sk_rx_sparemap;
1151	sc_if->sk_cdata.sk_rx_sparemap = map;
1152	bus_dmamap_sync(sc_if->sk_cdata.sk_rx_tag, rxd->rx_dmamap,
1153	    BUS_DMASYNC_PREREAD);
1154	rxd->rx_m = m;
1155	r = &sc_if->sk_rdata.sk_rx_ring[idx];
1156	r->sk_data_lo = htole32(SK_ADDR_LO(segs[0].ds_addr));
1157	r->sk_data_hi = htole32(SK_ADDR_HI(segs[0].ds_addr));
1158	r->sk_ctl = htole32(segs[0].ds_len | SK_RXSTAT | SK_OPCODE_CSUM);
1159
1160	return (0);
1161}
1162
1163static int
1164sk_jumbo_newbuf(sc_if, idx)
1165	struct sk_if_softc	*sc_if;
1166	int			idx;
1167{
1168	struct sk_rx_desc	*r;
1169	struct sk_rxdesc	*rxd;
1170	struct mbuf		*m;
1171	bus_dma_segment_t	segs[1];
1172	bus_dmamap_t		map;
1173	int			nsegs;
1174	void			*buf;
1175
1176	MGETHDR(m, M_DONTWAIT, MT_DATA);
1177	if (m == NULL)
1178		return (ENOBUFS);
1179	buf = sk_jalloc(sc_if);
1180	if (buf == NULL) {
1181		m_freem(m);
1182		return (ENOBUFS);
1183	}
1184	/* Attach the buffer to the mbuf */
1185	MEXTADD(m, buf, SK_JLEN, sk_jfree, (struct sk_if_softc *)sc_if, 0,
1186	    EXT_NET_DRV);
1187	if ((m->m_flags & M_EXT) == 0) {
1188		m_freem(m);
1189		return (ENOBUFS);
1190	}
1191	m->m_pkthdr.len = m->m_len = SK_JLEN;
1192	/*
1193	 * Adjust alignment so packet payload begins on a
1194	 * longword boundary. Mandatory for Alpha, useful on
1195	 * x86 too.
1196	 */
1197	m_adj(m, ETHER_ALIGN);
1198
1199	if (bus_dmamap_load_mbuf_sg(sc_if->sk_cdata.sk_jumbo_rx_tag,
1200	    sc_if->sk_cdata.sk_jumbo_rx_sparemap, m, segs, &nsegs, 0) != 0) {
1201		m_freem(m);
1202		return (ENOBUFS);
1203	}
1204	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
1205
1206	rxd = &sc_if->sk_cdata.sk_jumbo_rxdesc[idx];
1207	if (rxd->rx_m != NULL) {
1208		bus_dmamap_sync(sc_if->sk_cdata.sk_jumbo_rx_tag, rxd->rx_dmamap,
1209		    BUS_DMASYNC_POSTREAD);
1210		bus_dmamap_unload(sc_if->sk_cdata.sk_jumbo_rx_tag,
1211		    rxd->rx_dmamap);
1212	}
1213	map = rxd->rx_dmamap;
1214	rxd->rx_dmamap = sc_if->sk_cdata.sk_jumbo_rx_sparemap;
1215	sc_if->sk_cdata.sk_jumbo_rx_sparemap = map;
1216	bus_dmamap_sync(sc_if->sk_cdata.sk_jumbo_rx_tag, rxd->rx_dmamap,
1217	    BUS_DMASYNC_PREREAD);
1218	rxd->rx_m = m;
1219	r = &sc_if->sk_rdata.sk_jumbo_rx_ring[idx];
1220	r->sk_data_lo = htole32(SK_ADDR_LO(segs[0].ds_addr));
1221	r->sk_data_hi = htole32(SK_ADDR_HI(segs[0].ds_addr));
1222	r->sk_ctl = htole32(segs[0].ds_len | SK_RXSTAT | SK_OPCODE_CSUM);
1223
1224	return (0);
1225}
1226
1227/*
1228 * Set media options.
1229 */
1230static int
1231sk_ifmedia_upd(ifp)
1232	struct ifnet		*ifp;
1233{
1234	struct sk_if_softc	*sc_if = ifp->if_softc;
1235	struct mii_data		*mii;
1236
1237	mii = device_get_softc(sc_if->sk_miibus);
1238	sk_init(sc_if);
1239	mii_mediachg(mii);
1240
1241	return(0);
1242}
1243
1244/*
1245 * Report current media status.
1246 */
1247static void
1248sk_ifmedia_sts(ifp, ifmr)
1249	struct ifnet		*ifp;
1250	struct ifmediareq	*ifmr;
1251{
1252	struct sk_if_softc	*sc_if;
1253	struct mii_data		*mii;
1254
1255	sc_if = ifp->if_softc;
1256	mii = device_get_softc(sc_if->sk_miibus);
1257
1258	mii_pollstat(mii);
1259	ifmr->ifm_active = mii->mii_media_active;
1260	ifmr->ifm_status = mii->mii_media_status;
1261
1262	return;
1263}
1264
1265static int
1266sk_ioctl(ifp, command, data)
1267	struct ifnet		*ifp;
1268	u_long			command;
1269	caddr_t			data;
1270{
1271	struct sk_if_softc	*sc_if = ifp->if_softc;
1272	struct ifreq		*ifr = (struct ifreq *) data;
1273	int			error, mask;
1274	struct mii_data		*mii;
1275
1276	error = 0;
1277	switch(command) {
1278	case SIOCSIFMTU:
1279		SK_IF_LOCK(sc_if);
1280		if (ifr->ifr_mtu > SK_JUMBO_MTU)
1281			error = EINVAL;
1282		else {
1283			ifp->if_mtu = ifr->ifr_mtu;
1284			ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1285			sk_init_locked(sc_if);
1286		}
1287		SK_IF_UNLOCK(sc_if);
1288		break;
1289	case SIOCSIFFLAGS:
1290		SK_IF_LOCK(sc_if);
1291		if (ifp->if_flags & IFF_UP) {
1292			if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1293				if ((ifp->if_flags ^ sc_if->sk_if_flags)
1294				    & IFF_PROMISC) {
1295					sk_setpromisc(sc_if);
1296					sk_setmulti(sc_if);
1297				}
1298			} else
1299				sk_init_locked(sc_if);
1300		} else {
1301			if (ifp->if_drv_flags & IFF_DRV_RUNNING)
1302				sk_stop(sc_if);
1303		}
1304		sc_if->sk_if_flags = ifp->if_flags;
1305		SK_IF_UNLOCK(sc_if);
1306		break;
1307	case SIOCADDMULTI:
1308	case SIOCDELMULTI:
1309		SK_IF_LOCK(sc_if);
1310		if (ifp->if_drv_flags & IFF_DRV_RUNNING)
1311			sk_setmulti(sc_if);
1312		SK_IF_UNLOCK(sc_if);
1313		break;
1314	case SIOCGIFMEDIA:
1315	case SIOCSIFMEDIA:
1316		mii = device_get_softc(sc_if->sk_miibus);
1317		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
1318		break;
1319	case SIOCSIFCAP:
1320		SK_IF_LOCK(sc_if);
1321		if (sc_if->sk_softc->sk_type == SK_GENESIS) {
1322			SK_IF_UNLOCK(sc_if);
1323			break;
1324		}
1325		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
1326		if (mask & IFCAP_HWCSUM) {
1327			ifp->if_capenable ^= IFCAP_HWCSUM;
1328			if (IFCAP_HWCSUM & ifp->if_capenable &&
1329			    IFCAP_HWCSUM & ifp->if_capabilities)
1330				ifp->if_hwassist = SK_CSUM_FEATURES;
1331			else
1332				ifp->if_hwassist = 0;
1333		}
1334		SK_IF_UNLOCK(sc_if);
1335		break;
1336	default:
1337		error = ether_ioctl(ifp, command, data);
1338		break;
1339	}
1340
1341	return (error);
1342}
1343
1344/*
1345 * Probe for a SysKonnect GEnesis chip. Check the PCI vendor and device
1346 * IDs against our list and return a device name if we find a match.
1347 */
1348static int
1349skc_probe(dev)
1350	device_t		dev;
1351{
1352	struct sk_type		*t = sk_devs;
1353
1354	while(t->sk_name != NULL) {
1355		if ((pci_get_vendor(dev) == t->sk_vid) &&
1356		    (pci_get_device(dev) == t->sk_did)) {
1357			/*
1358			 * Only attach to rev. 2 of the Linksys EG1032 adapter.
1359			 * Rev. 3 is supported by re(4).
1360			 */
1361			if ((t->sk_vid == VENDORID_LINKSYS) &&
1362				(t->sk_did == DEVICEID_LINKSYS_EG1032) &&
1363				(pci_get_subdevice(dev) !=
1364				 SUBDEVICEID_LINKSYS_EG1032_REV2)) {
1365				t++;
1366				continue;
1367			}
1368			device_set_desc(dev, t->sk_name);
1369			return (BUS_PROBE_DEFAULT);
1370		}
1371		t++;
1372	}
1373
1374	return(ENXIO);
1375}
1376
1377/*
1378 * Force the GEnesis into reset, then bring it out of reset.
1379 */
1380static void
1381sk_reset(sc)
1382	struct sk_softc		*sc;
1383{
1384
1385	CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_RESET);
1386	CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_RESET);
1387	if (SK_YUKON_FAMILY(sc->sk_type))
1388		CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_SET);
1389
1390	DELAY(1000);
1391	CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_UNRESET);
1392	DELAY(2);
1393	CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_UNRESET);
1394	if (SK_YUKON_FAMILY(sc->sk_type))
1395		CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_CLEAR);
1396
1397	if (sc->sk_type == SK_GENESIS) {
1398		/* Configure packet arbiter */
1399		sk_win_write_2(sc, SK_PKTARB_CTL, SK_PKTARBCTL_UNRESET);
1400		sk_win_write_2(sc, SK_RXPA1_TINIT, SK_PKTARB_TIMEOUT);
1401		sk_win_write_2(sc, SK_TXPA1_TINIT, SK_PKTARB_TIMEOUT);
1402		sk_win_write_2(sc, SK_RXPA2_TINIT, SK_PKTARB_TIMEOUT);
1403		sk_win_write_2(sc, SK_TXPA2_TINIT, SK_PKTARB_TIMEOUT);
1404	}
1405
1406	/* Enable RAM interface */
1407	sk_win_write_4(sc, SK_RAMCTL, SK_RAMCTL_UNRESET);
1408
1409	/*
1410         * Configure interrupt moderation. The moderation timer
1411	 * defers interrupts specified in the interrupt moderation
1412	 * timer mask based on the timeout specified in the interrupt
1413	 * moderation timer init register. Each bit in the timer
1414	 * register represents one tick, so to specify a timeout in
1415	 * microseconds, we have to multiply by the correct number of
1416	 * ticks-per-microsecond.
1417	 */
1418	switch (sc->sk_type) {
1419	case SK_GENESIS:
1420		sc->sk_int_ticks = SK_IMTIMER_TICKS_GENESIS;
1421		break;
1422	case SK_YUKON_EC:
1423		sc->sk_int_ticks = SK_IMTIMER_TICKS_YUKON_EC;
1424		break;
1425	default:
1426		sc->sk_int_ticks = SK_IMTIMER_TICKS_YUKON;
1427		break;
1428	}
1429	if (bootverbose)
1430		device_printf(sc->sk_dev, "interrupt moderation is %d us\n",
1431		    sc->sk_int_mod);
1432	sk_win_write_4(sc, SK_IMTIMERINIT, SK_IM_USECS(sc->sk_int_mod,
1433	    sc->sk_int_ticks));
1434	sk_win_write_4(sc, SK_IMMR, SK_ISR_TX1_S_EOF|SK_ISR_TX2_S_EOF|
1435	    SK_ISR_RX1_EOF|SK_ISR_RX2_EOF);
1436	sk_win_write_1(sc, SK_IMTIMERCTL, SK_IMCTL_START);
1437
1438	return;
1439}
1440
1441static int
1442sk_probe(dev)
1443	device_t		dev;
1444{
1445	struct sk_softc		*sc;
1446
1447	sc = device_get_softc(device_get_parent(dev));
1448
1449	/*
1450	 * Not much to do here. We always know there will be
1451	 * at least one XMAC present, and if there are two,
1452	 * skc_attach() will create a second device instance
1453	 * for us.
1454	 */
1455	switch (sc->sk_type) {
1456	case SK_GENESIS:
1457		device_set_desc(dev, "XaQti Corp. XMAC II");
1458		break;
1459	case SK_YUKON:
1460	case SK_YUKON_LITE:
1461	case SK_YUKON_LP:
1462	case SK_YUKON_EC:
1463		device_set_desc(dev, "Marvell Semiconductor, Inc. Yukon");
1464		break;
1465	}
1466
1467	return (BUS_PROBE_DEFAULT);
1468}
1469
1470/*
1471 * Each XMAC chip is attached as a separate logical IP interface.
1472 * Single port cards will have only one logical interface of course.
1473 */
1474static int
1475sk_attach(dev)
1476	device_t		dev;
1477{
1478	struct sk_softc		*sc;
1479	struct sk_if_softc	*sc_if;
1480	struct ifnet		*ifp;
1481	int			i, port, error;
1482	u_char			eaddr[6];
1483
1484	if (dev == NULL)
1485		return(EINVAL);
1486
1487	error = 0;
1488	sc_if = device_get_softc(dev);
1489	sc = device_get_softc(device_get_parent(dev));
1490	port = *(int *)device_get_ivars(dev);
1491
1492	sc_if->sk_if_dev = dev;
1493	sc_if->sk_port = port;
1494	sc_if->sk_softc = sc;
1495	sc->sk_if[port] = sc_if;
1496	if (port == SK_PORT_A)
1497		sc_if->sk_tx_bmu = SK_BMU_TXS_CSR0;
1498	if (port == SK_PORT_B)
1499		sc_if->sk_tx_bmu = SK_BMU_TXS_CSR1;
1500
1501	callout_init_mtx(&sc_if->sk_tick_ch, &sc_if->sk_softc->sk_mtx, 0);
1502
1503	if (sk_dma_alloc(sc_if) != 0) {
1504		error = ENOMEM;
1505		goto fail;
1506	}
1507
1508	ifp = sc_if->sk_ifp = if_alloc(IFT_ETHER);
1509	if (ifp == NULL) {
1510		device_printf(sc_if->sk_if_dev, "can not if_alloc()\n");
1511		error = ENOSPC;
1512		goto fail;
1513	}
1514	ifp->if_softc = sc_if;
1515	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1516	ifp->if_mtu = ETHERMTU;
1517	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1518	/*
1519	 * SK_GENESIS has a bug in checksum offload - From linux.
1520	 */
1521	if (sc_if->sk_softc->sk_type != SK_GENESIS) {
1522		ifp->if_capabilities = IFCAP_HWCSUM;
1523		ifp->if_hwassist = SK_CSUM_FEATURES;
1524	} else {
1525		ifp->if_capabilities = 0;
1526		ifp->if_hwassist = 0;
1527	}
1528	ifp->if_capenable = ifp->if_capabilities;
1529	ifp->if_ioctl = sk_ioctl;
1530	ifp->if_start = sk_start;
1531	ifp->if_watchdog = sk_watchdog;
1532	ifp->if_init = sk_init;
1533	IFQ_SET_MAXLEN(&ifp->if_snd, SK_TX_RING_CNT - 1);
1534	ifp->if_snd.ifq_drv_maxlen = SK_TX_RING_CNT - 1;
1535	IFQ_SET_READY(&ifp->if_snd);
1536
1537	/*
1538	 * Get station address for this interface. Note that
1539	 * dual port cards actually come with three station
1540	 * addresses: one for each port, plus an extra. The
1541	 * extra one is used by the SysKonnect driver software
1542	 * as a 'virtual' station address for when both ports
1543	 * are operating in failover mode. Currently we don't
1544	 * use this extra address.
1545	 */
1546	SK_IF_LOCK(sc_if);
1547	for (i = 0; i < ETHER_ADDR_LEN; i++)
1548		eaddr[i] =
1549		    sk_win_read_1(sc, SK_MAC0_0 + (port * 8) + i);
1550
1551	/*
1552	 * Set up RAM buffer addresses. The NIC will have a certain
1553	 * amount of SRAM on it, somewhere between 512K and 2MB. We
1554	 * need to divide this up a) between the transmitter and
1555 	 * receiver and b) between the two XMACs, if this is a
1556	 * dual port NIC. Our algotithm is to divide up the memory
1557	 * evenly so that everyone gets a fair share.
1558	 *
1559	 * Just to be contrary, Yukon2 appears to have separate memory
1560	 * for each MAC.
1561	 */
1562	if (SK_IS_YUKON2(sc) ||
1563	    sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC) {
1564		u_int32_t		chunk, val;
1565
1566		chunk = sc->sk_ramsize / 2;
1567		val = sc->sk_rboff / sizeof(u_int64_t);
1568		sc_if->sk_rx_ramstart = val;
1569		val += (chunk / sizeof(u_int64_t));
1570		sc_if->sk_rx_ramend = val - 1;
1571		sc_if->sk_tx_ramstart = val;
1572		val += (chunk / sizeof(u_int64_t));
1573		sc_if->sk_tx_ramend = val - 1;
1574	} else {
1575		u_int32_t		chunk, val;
1576
1577		chunk = sc->sk_ramsize / 4;
1578		val = (sc->sk_rboff + (chunk * 2 * sc_if->sk_port)) /
1579		    sizeof(u_int64_t);
1580		sc_if->sk_rx_ramstart = val;
1581		val += (chunk / sizeof(u_int64_t));
1582		sc_if->sk_rx_ramend = val - 1;
1583		sc_if->sk_tx_ramstart = val;
1584		val += (chunk / sizeof(u_int64_t));
1585		sc_if->sk_tx_ramend = val - 1;
1586	}
1587
1588	/* Read and save PHY type and set PHY address */
1589	sc_if->sk_phytype = sk_win_read_1(sc, SK_EPROM1) & 0xF;
1590	if (!SK_YUKON_FAMILY(sc->sk_type)) {
1591		switch(sc_if->sk_phytype) {
1592		case SK_PHYTYPE_XMAC:
1593			sc_if->sk_phyaddr = SK_PHYADDR_XMAC;
1594			break;
1595		case SK_PHYTYPE_BCOM:
1596			sc_if->sk_phyaddr = SK_PHYADDR_BCOM;
1597			break;
1598		default:
1599			device_printf(sc->sk_dev, "unsupported PHY type: %d\n",
1600			    sc_if->sk_phytype);
1601			error = ENODEV;
1602			SK_IF_UNLOCK(sc_if);
1603			goto fail;
1604		}
1605	} else {
1606		if (sc_if->sk_phytype < SK_PHYTYPE_MARV_COPPER &&
1607		    sc->sk_pmd != 'S') {
1608			/* not initialized, punt */
1609			sc_if->sk_phytype = SK_PHYTYPE_MARV_COPPER;
1610			sc->sk_coppertype = 1;
1611		}
1612
1613		sc_if->sk_phyaddr = SK_PHYADDR_MARV;
1614
1615		if (!(sc->sk_coppertype))
1616			sc_if->sk_phytype = SK_PHYTYPE_MARV_FIBER;
1617	}
1618
1619	/*
1620	 * Call MI attach routine.  Can't hold locks when calling into ether_*.
1621	 */
1622	SK_IF_UNLOCK(sc_if);
1623	ether_ifattach(ifp, eaddr);
1624	SK_IF_LOCK(sc_if);
1625
1626	/*
1627	 * The hardware should be ready for VLAN_MTU by default:
1628	 * XMAC II has 0x8100 in VLAN Tag Level 1 register initially;
1629	 * YU_SMR_MFL_VLAN is set by this driver in Yukon.
1630	 *
1631	 */
1632        ifp->if_capabilities |= IFCAP_VLAN_MTU;
1633        ifp->if_capenable |= IFCAP_VLAN_MTU;
1634	/*
1635	 * Tell the upper layer(s) we support long frames.
1636	 * Must appear after the call to ether_ifattach() because
1637	 * ether_ifattach() sets ifi_hdrlen to the default value.
1638	 */
1639        ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
1640
1641	/*
1642	 * Do miibus setup.
1643	 */
1644	switch (sc->sk_type) {
1645	case SK_GENESIS:
1646		sk_init_xmac(sc_if);
1647		break;
1648	case SK_YUKON:
1649	case SK_YUKON_LITE:
1650	case SK_YUKON_LP:
1651	case SK_YUKON_EC:
1652		sk_init_yukon(sc_if);
1653		break;
1654	}
1655
1656	SK_IF_UNLOCK(sc_if);
1657	if (mii_phy_probe(dev, &sc_if->sk_miibus,
1658	    sk_ifmedia_upd, sk_ifmedia_sts)) {
1659		device_printf(sc_if->sk_if_dev, "no PHY found!\n");
1660		ether_ifdetach(ifp);
1661		error = ENXIO;
1662		goto fail;
1663	}
1664
1665fail:
1666	if (error) {
1667		/* Access should be ok even though lock has been dropped */
1668		sc->sk_if[port] = NULL;
1669		sk_detach(dev);
1670	}
1671
1672	return(error);
1673}
1674
1675/*
1676 * Attach the interface. Allocate softc structures, do ifmedia
1677 * setup and ethernet/BPF attach.
1678 */
1679static int
1680skc_attach(dev)
1681	device_t		dev;
1682{
1683	struct sk_softc		*sc;
1684	int			error = 0, rid, *port, sk_macs;
1685	uint8_t			skrs;
1686	char			*pname, *revstr;
1687
1688	sc = device_get_softc(dev);
1689	sc->sk_dev = dev;
1690
1691	mtx_init(&sc->sk_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
1692	    MTX_DEF);
1693	mtx_init(&sc->sk_mii_mtx, "sk_mii_mutex", NULL, MTX_DEF);
1694	/*
1695	 * Map control/status registers.
1696	 */
1697	pci_enable_busmaster(dev);
1698
1699	rid = SK_RID;
1700	sc->sk_res = bus_alloc_resource_any(dev, SK_RES, &rid, RF_ACTIVE);
1701
1702	if (sc->sk_res == NULL) {
1703		device_printf(dev, "couldn't map ports/memory\n");
1704		error = ENXIO;
1705		goto fail;
1706	}
1707
1708	sc->sk_btag = rman_get_bustag(sc->sk_res);
1709	sc->sk_bhandle = rman_get_bushandle(sc->sk_res);
1710
1711	sc->sk_type = sk_win_read_1(sc, SK_CHIPVER);
1712	sc->sk_rev = (sk_win_read_1(sc, SK_CONFIG) >> 4) & 0xf;
1713
1714	/* Bail out if chip is not recognized. */
1715	if (sc->sk_type != SK_GENESIS && !SK_YUKON_FAMILY(sc->sk_type)) {
1716		device_printf(dev, "unknown device: chipver=%02x, rev=%x\n",
1717		    sc->sk_type, sc->sk_rev);
1718		error = ENXIO;
1719		goto fail;
1720	}
1721
1722	/* Allocate interrupt */
1723	rid = 0;
1724	sc->sk_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
1725	    RF_SHAREABLE | RF_ACTIVE);
1726
1727	if (sc->sk_irq == NULL) {
1728		device_printf(dev, "couldn't map interrupt\n");
1729		error = ENXIO;
1730		goto fail;
1731	}
1732
1733	SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
1734		SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
1735		OID_AUTO, "int_mod", CTLTYPE_INT|CTLFLAG_RW,
1736		&sc->sk_int_mod, 0, sysctl_hw_sk_int_mod, "I",
1737		"SK interrupt moderation");
1738
1739	/* Pull in device tunables. */
1740	sc->sk_int_mod = SK_IM_DEFAULT;
1741	error = resource_int_value(device_get_name(dev), device_get_unit(dev),
1742		"int_mod", &sc->sk_int_mod);
1743	if (error == 0) {
1744		if (sc->sk_int_mod < SK_IM_MIN ||
1745		    sc->sk_int_mod > SK_IM_MAX) {
1746			device_printf(dev, "int_mod value out of range; "
1747			    "using default: %d\n", SK_IM_DEFAULT);
1748			sc->sk_int_mod = SK_IM_DEFAULT;
1749		}
1750	}
1751
1752	/* Reset the adapter. */
1753	sk_reset(sc);
1754
1755	/* Read and save vital product data from EEPROM. */
1756	sk_vpd_read(sc);
1757
1758	skrs = sk_win_read_1(sc, SK_EPROM0);
1759	if (sc->sk_type == SK_GENESIS) {
1760		/* Read and save RAM size and RAMbuffer offset */
1761		switch(skrs) {
1762		case SK_RAMSIZE_512K_64:
1763			sc->sk_ramsize = 0x80000;
1764			sc->sk_rboff = SK_RBOFF_0;
1765			break;
1766		case SK_RAMSIZE_1024K_64:
1767			sc->sk_ramsize = 0x100000;
1768			sc->sk_rboff = SK_RBOFF_80000;
1769			break;
1770		case SK_RAMSIZE_1024K_128:
1771			sc->sk_ramsize = 0x100000;
1772			sc->sk_rboff = SK_RBOFF_0;
1773			break;
1774		case SK_RAMSIZE_2048K_128:
1775			sc->sk_ramsize = 0x200000;
1776			sc->sk_rboff = SK_RBOFF_0;
1777			break;
1778		default:
1779			device_printf(dev, "unknown ram size: %d\n", skrs);
1780			error = ENXIO;
1781			goto fail;
1782		}
1783	} else { /* SK_YUKON_FAMILY */
1784		if (skrs == 0x00)
1785			sc->sk_ramsize = 0x20000;
1786		else
1787			sc->sk_ramsize = skrs * (1<<12);
1788		sc->sk_rboff = SK_RBOFF_0;
1789	}
1790
1791	/* Read and save physical media type */
1792	 sc->sk_pmd = sk_win_read_1(sc, SK_PMDTYPE);
1793
1794	 if (sc->sk_pmd == 'T' || sc->sk_pmd == '1')
1795		 sc->sk_coppertype = 1;
1796	 else
1797		 sc->sk_coppertype = 0;
1798
1799	/* Determine whether to name it with VPD PN or just make it up.
1800	 * Marvell Yukon VPD PN seems to freqently be bogus. */
1801	switch (pci_get_device(dev)) {
1802	case DEVICEID_SK_V1:
1803	case DEVICEID_BELKIN_5005:
1804	case DEVICEID_3COM_3C940:
1805	case DEVICEID_LINKSYS_EG1032:
1806	case DEVICEID_DLINK_DGE530T:
1807		/* Stay with VPD PN. */
1808		pname = sc->sk_vpd_prodname;
1809		break;
1810	case DEVICEID_SK_V2:
1811	case DEVICEID_MRVL_4360:
1812	case DEVICEID_MRVL_4361:
1813	case DEVICEID_MRVL_4362:
1814		/* YUKON VPD PN might bear no resemblance to reality. */
1815		switch (sc->sk_type) {
1816		case SK_GENESIS:
1817			/* Stay with VPD PN. */
1818			pname = sc->sk_vpd_prodname;
1819			break;
1820		case SK_YUKON:
1821			pname = "Marvell Yukon Gigabit Ethernet";
1822			break;
1823		case SK_YUKON_LITE:
1824			pname = "Marvell Yukon Lite Gigabit Ethernet";
1825			break;
1826		case SK_YUKON_LP:
1827			pname = "Marvell Yukon LP Gigabit Ethernet";
1828			break;
1829		case SK_YUKON_EC:
1830			pname = "Marvell Yukon-2 EC Gigabit Ethernet";
1831			break;
1832		default:
1833			pname = "Marvell Yukon (Unknown) Gigabit Ethernet";
1834			break;
1835		}
1836
1837		/* Yukon Lite Rev. A0 needs special test. */
1838		if (sc->sk_type == SK_YUKON || sc->sk_type == SK_YUKON_LP) {
1839			u_int32_t far;
1840			u_int8_t testbyte;
1841
1842			/* Save flash address register before testing. */
1843			far = sk_win_read_4(sc, SK_EP_ADDR);
1844
1845			sk_win_write_1(sc, SK_EP_ADDR+0x03, 0xff);
1846			testbyte = sk_win_read_1(sc, SK_EP_ADDR+0x03);
1847
1848			if (testbyte != 0x00) {
1849				/* Yukon Lite Rev. A0 detected. */
1850				sc->sk_type = SK_YUKON_LITE;
1851				sc->sk_rev = SK_YUKON_LITE_REV_A0;
1852				/* Restore flash address register. */
1853				sk_win_write_4(sc, SK_EP_ADDR, far);
1854			}
1855		}
1856		break;
1857	default:
1858		device_printf(dev, "unknown device: vendor=%04x, device=%04x, "
1859			"chipver=%02x, rev=%x\n",
1860			pci_get_vendor(dev), pci_get_device(dev),
1861			sc->sk_type, sc->sk_rev);
1862		error = ENXIO;
1863		goto fail;
1864	}
1865
1866	if (sc->sk_type == SK_YUKON_LITE) {
1867		switch (sc->sk_rev) {
1868		case SK_YUKON_LITE_REV_A0:
1869			revstr = "A0";
1870			break;
1871		case SK_YUKON_LITE_REV_A1:
1872			revstr = "A1";
1873			break;
1874		case SK_YUKON_LITE_REV_A3:
1875			revstr = "A3";
1876			break;
1877		default:
1878			revstr = "";
1879			break;
1880		}
1881	} else if (sc->sk_type == SK_YUKON_EC) {
1882		switch (sc->sk_rev) {
1883		case SK_YUKON_EC_REV_A1:
1884			revstr = "A1";
1885			break;
1886		case SK_YUKON_EC_REV_A2:
1887			revstr = "A2";
1888			break;
1889		case SK_YUKON_EC_REV_A3:
1890			revstr = "A3";
1891			break;
1892		default:
1893			revstr = "";
1894			break;
1895		}
1896	} else {
1897		revstr = "";
1898	}
1899
1900	/* Announce the product name and more VPD data if there. */
1901	device_printf(dev, "%s rev. %s(0x%x)\n",
1902		pname != NULL ? pname : "<unknown>", revstr, sc->sk_rev);
1903
1904	if (bootverbose) {
1905		if (sc->sk_vpd_readonly != NULL &&
1906		    sc->sk_vpd_readonly_len != 0) {
1907			char buf[256];
1908			char *dp = sc->sk_vpd_readonly;
1909			uint16_t l, len = sc->sk_vpd_readonly_len;
1910
1911			while (len >= 3) {
1912				if ((*dp == 'P' && *(dp+1) == 'N') ||
1913				    (*dp == 'E' && *(dp+1) == 'C') ||
1914				    (*dp == 'M' && *(dp+1) == 'N') ||
1915				    (*dp == 'S' && *(dp+1) == 'N')) {
1916					l = 0;
1917					while (l < *(dp+2)) {
1918						buf[l] = *(dp+3+l);
1919						++l;
1920					}
1921					buf[l] = '\0';
1922					device_printf(dev, "%c%c: %s\n",
1923					    *dp, *(dp+1), buf);
1924					len -= (3 + l);
1925					dp += (3 + l);
1926				} else {
1927					len -= (3 + *(dp+2));
1928					dp += (3 + *(dp+2));
1929				}
1930			}
1931		}
1932		device_printf(dev, "chip ver  = 0x%02x\n", sc->sk_type);
1933		device_printf(dev, "chip rev  = 0x%02x\n", sc->sk_rev);
1934		device_printf(dev, "SK_EPROM0 = 0x%02x\n", skrs);
1935		device_printf(dev, "SRAM size = 0x%06x\n", sc->sk_ramsize);
1936	}
1937
1938	sc->sk_devs[SK_PORT_A] = device_add_child(dev, "sk", -1);
1939	if (sc->sk_devs[SK_PORT_A] == NULL) {
1940		device_printf(dev, "failed to add child for PORT_A\n");
1941		error = ENXIO;
1942		goto fail;
1943	}
1944	port = malloc(sizeof(int), M_DEVBUF, M_NOWAIT);
1945	if (port == NULL) {
1946		device_printf(dev, "failed to allocate memory for "
1947		    "ivars of PORT_A\n");
1948		error = ENXIO;
1949		goto fail;
1950	}
1951	*port = SK_PORT_A;
1952	device_set_ivars(sc->sk_devs[SK_PORT_A], port);
1953
1954	sk_macs = 1;
1955
1956	if (SK_IS_YUKON2(sc)) {
1957		u_int8_t hw;
1958
1959		hw = sk_win_read_1(sc, SK_Y2_HWRES);
1960		if ((hw & SK_Y2_HWRES_LINK_MASK) == SK_Y2_HWRES_LINK_DUAL) {
1961			if ((sk_win_read_1(sc, SK_Y2_CLKGATE) &
1962			    SK_Y2_CLKGATE_LINK2_INACTIVE) == 0)
1963				sk_macs++;
1964		}
1965	} else  {
1966		if (!(sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC))
1967			sk_macs++;
1968	}
1969
1970	if (sk_macs > 1) {
1971		sc->sk_devs[SK_PORT_B] = device_add_child(dev, "sk", -1);
1972		if (sc->sk_devs[SK_PORT_B] == NULL) {
1973			device_printf(dev, "failed to add child for PORT_B\n");
1974			error = ENXIO;
1975			goto fail;
1976		}
1977		port = malloc(sizeof(int), M_DEVBUF, M_NOWAIT);
1978		if (port == NULL) {
1979			device_printf(dev, "failed to allocate memory for "
1980			    "ivars of PORT_B\n");
1981			error = ENXIO;
1982			goto fail;
1983		}
1984		*port = SK_PORT_B;
1985		device_set_ivars(sc->sk_devs[SK_PORT_B], port);
1986	}
1987
1988	/* Turn on the 'driver is loaded' LED. */
1989	CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_ON);
1990
1991	error = bus_generic_attach(dev);
1992	if (error) {
1993		device_printf(dev, "failed to attach port(s)\n");
1994		goto fail;
1995	}
1996
1997	/* Hook interrupt last to avoid having to lock softc */
1998	error = bus_setup_intr(dev, sc->sk_irq, INTR_TYPE_NET|INTR_MPSAFE,
1999	    sk_intr, sc, &sc->sk_intrhand);
2000
2001	if (error) {
2002		device_printf(dev, "couldn't set up irq\n");
2003		goto fail;
2004	}
2005
2006fail:
2007	if (error)
2008		skc_detach(dev);
2009
2010	return(error);
2011}
2012
2013/*
2014 * Shutdown hardware and free up resources. This can be called any
2015 * time after the mutex has been initialized. It is called in both
2016 * the error case in attach and the normal detach case so it needs
2017 * to be careful about only freeing resources that have actually been
2018 * allocated.
2019 */
2020static int
2021sk_detach(dev)
2022	device_t		dev;
2023{
2024	struct sk_if_softc	*sc_if;
2025	struct ifnet		*ifp;
2026
2027	sc_if = device_get_softc(dev);
2028	KASSERT(mtx_initialized(&sc_if->sk_softc->sk_mtx),
2029	    ("sk mutex not initialized in sk_detach"));
2030	SK_IF_LOCK(sc_if);
2031
2032	ifp = sc_if->sk_ifp;
2033	/* These should only be active if attach_xmac succeeded */
2034	if (device_is_attached(dev)) {
2035		sk_stop(sc_if);
2036		/* Can't hold locks while calling detach */
2037		SK_IF_UNLOCK(sc_if);
2038		callout_drain(&sc_if->sk_tick_ch);
2039		ether_ifdetach(ifp);
2040		SK_IF_LOCK(sc_if);
2041	}
2042	if (ifp)
2043		if_free(ifp);
2044	/*
2045	 * We're generally called from skc_detach() which is using
2046	 * device_delete_child() to get to here. It's already trashed
2047	 * miibus for us, so don't do it here or we'll panic.
2048	 */
2049	/*
2050	if (sc_if->sk_miibus != NULL)
2051		device_delete_child(dev, sc_if->sk_miibus);
2052	*/
2053	bus_generic_detach(dev);
2054	sk_dma_free(sc_if);
2055	SK_IF_UNLOCK(sc_if);
2056
2057	return(0);
2058}
2059
2060static int
2061skc_detach(dev)
2062	device_t		dev;
2063{
2064	struct sk_softc		*sc;
2065
2066	sc = device_get_softc(dev);
2067	KASSERT(mtx_initialized(&sc->sk_mtx), ("sk mutex not initialized"));
2068
2069	if (device_is_alive(dev)) {
2070		if (sc->sk_devs[SK_PORT_A] != NULL) {
2071			free(device_get_ivars(sc->sk_devs[SK_PORT_A]), M_DEVBUF);
2072			device_delete_child(dev, sc->sk_devs[SK_PORT_A]);
2073		}
2074		if (sc->sk_devs[SK_PORT_B] != NULL) {
2075			free(device_get_ivars(sc->sk_devs[SK_PORT_B]), M_DEVBUF);
2076			device_delete_child(dev, sc->sk_devs[SK_PORT_B]);
2077		}
2078		bus_generic_detach(dev);
2079	}
2080
2081	if (sc->sk_vpd_prodname != NULL)
2082		free(sc->sk_vpd_prodname, M_DEVBUF);
2083	if (sc->sk_vpd_readonly != NULL)
2084		free(sc->sk_vpd_readonly, M_DEVBUF);
2085
2086	if (sc->sk_intrhand)
2087		bus_teardown_intr(dev, sc->sk_irq, sc->sk_intrhand);
2088	if (sc->sk_irq)
2089		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sk_irq);
2090	if (sc->sk_res)
2091		bus_release_resource(dev, SK_RES, SK_RID, sc->sk_res);
2092
2093	mtx_destroy(&sc->sk_mii_mtx);
2094	mtx_destroy(&sc->sk_mtx);
2095
2096	return(0);
2097}
2098
2099struct sk_dmamap_arg {
2100	bus_addr_t	sk_busaddr;
2101};
2102
2103static void
2104sk_dmamap_cb(arg, segs, nseg, error)
2105	void			*arg;
2106	bus_dma_segment_t	*segs;
2107	int			nseg;
2108	int			error;
2109{
2110	struct sk_dmamap_arg	*ctx;
2111
2112	if (error != 0)
2113		return;
2114
2115	ctx = arg;
2116	ctx->sk_busaddr = segs[0].ds_addr;
2117}
2118
2119/*
2120 * Allocate jumbo buffer storage. The SysKonnect adapters support
2121 * "jumbograms" (9K frames), although SysKonnect doesn't currently
2122 * use them in their drivers. In order for us to use them, we need
2123 * large 9K receive buffers, however standard mbuf clusters are only
2124 * 2048 bytes in size. Consequently, we need to allocate and manage
2125 * our own jumbo buffer pool. Fortunately, this does not require an
2126 * excessive amount of additional code.
2127 */
2128static int
2129sk_dma_alloc(sc_if)
2130	struct sk_if_softc	*sc_if;
2131{
2132	struct sk_dmamap_arg	ctx;
2133	struct sk_txdesc	*txd;
2134	struct sk_rxdesc	*rxd;
2135	struct sk_rxdesc	*jrxd;
2136	u_int8_t		*ptr;
2137	struct sk_jpool_entry	*entry;
2138	int			error, i;
2139
2140	mtx_init(&sc_if->sk_jlist_mtx, "sk_jlist_mtx", NULL, MTX_DEF);
2141	SLIST_INIT(&sc_if->sk_jfree_listhead);
2142	SLIST_INIT(&sc_if->sk_jinuse_listhead);
2143
2144	/* create parent tag */
2145	/*
2146	 * XXX
2147	 * This driver should use BUS_SPACE_MAXADDR for lowaddr argument
2148	 * in bus_dma_tag_create(9) as the NIC would support DAC mode.
2149	 * However bz@ reported that it does not work on amd64 with > 4GB
2150	 * RAM. Until we have more clues of the breakage, disable DAC mode
2151	 * by limiting DMA address to be in 32bit address space.
2152	 */
2153	error = bus_dma_tag_create(NULL,	/* parent */
2154		    1, 0,			/* algnmnt, boundary */
2155		    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
2156		    BUS_SPACE_MAXADDR,		/* highaddr */
2157		    NULL, NULL,			/* filter, filterarg */
2158		    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
2159		    0,				/* nsegments */
2160		    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
2161		    0,				/* flags */
2162		    NULL, NULL,			/* lockfunc, lockarg */
2163		    &sc_if->sk_cdata.sk_parent_tag);
2164	if (error != 0) {
2165		device_printf(sc_if->sk_if_dev,
2166		    "failed to create parent DMA tag\n");
2167		goto fail;
2168	}
2169	/* create tag for Tx ring */
2170	error = bus_dma_tag_create(sc_if->sk_cdata.sk_parent_tag,/* parent */
2171		    SK_RING_ALIGN, 0,		/* algnmnt, boundary */
2172		    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
2173		    BUS_SPACE_MAXADDR,		/* highaddr */
2174		    NULL, NULL,			/* filter, filterarg */
2175		    SK_TX_RING_SZ,		/* maxsize */
2176		    1,				/* nsegments */
2177		    SK_TX_RING_SZ,		/* maxsegsize */
2178		    0,				/* flags */
2179		    NULL, NULL,			/* lockfunc, lockarg */
2180		    &sc_if->sk_cdata.sk_tx_ring_tag);
2181	if (error != 0) {
2182		device_printf(sc_if->sk_if_dev,
2183		    "failed to allocate Tx ring DMA tag\n");
2184		goto fail;
2185	}
2186
2187	/* create tag for Rx ring */
2188	error = bus_dma_tag_create(sc_if->sk_cdata.sk_parent_tag,/* parent */
2189		    SK_RING_ALIGN, 0,		/* algnmnt, boundary */
2190		    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
2191		    BUS_SPACE_MAXADDR,		/* highaddr */
2192		    NULL, NULL,			/* filter, filterarg */
2193		    SK_RX_RING_SZ,		/* maxsize */
2194		    1,				/* nsegments */
2195		    SK_RX_RING_SZ,		/* maxsegsize */
2196		    0,				/* flags */
2197		    NULL, NULL,			/* lockfunc, lockarg */
2198		    &sc_if->sk_cdata.sk_rx_ring_tag);
2199	if (error != 0) {
2200		device_printf(sc_if->sk_if_dev,
2201		    "failed to allocate Rx ring DMA tag\n");
2202		goto fail;
2203	}
2204
2205	/* create tag for jumbo Rx ring */
2206	error = bus_dma_tag_create(sc_if->sk_cdata.sk_parent_tag,/* parent */
2207		    SK_RING_ALIGN, 0,		/* algnmnt, boundary */
2208		    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
2209		    BUS_SPACE_MAXADDR,		/* highaddr */
2210		    NULL, NULL,			/* filter, filterarg */
2211		    SK_JUMBO_RX_RING_SZ,	/* maxsize */
2212		    1,				/* nsegments */
2213		    SK_JUMBO_RX_RING_SZ,	/* maxsegsize */
2214		    0,				/* flags */
2215		    NULL, NULL,			/* lockfunc, lockarg */
2216		    &sc_if->sk_cdata.sk_jumbo_rx_ring_tag);
2217	if (error != 0) {
2218		device_printf(sc_if->sk_if_dev,
2219		    "failed to allocate jumbo Rx ring DMA tag\n");
2220		goto fail;
2221	}
2222
2223	/* create tag for jumbo buffer blocks */
2224	error = bus_dma_tag_create(sc_if->sk_cdata.sk_parent_tag,/* parent */
2225		    PAGE_SIZE, 0,		/* algnmnt, boundary */
2226		    BUS_SPACE_MAXADDR,		/* lowaddr */
2227		    BUS_SPACE_MAXADDR,		/* highaddr */
2228		    NULL, NULL,			/* filter, filterarg */
2229		    SK_JMEM,			/* maxsize */
2230		    1,				/* nsegments */
2231		    SK_JMEM,			/* maxsegsize */
2232		    0,				/* flags */
2233		    NULL, NULL,			/* lockfunc, lockarg */
2234		    &sc_if->sk_cdata.sk_jumbo_tag);
2235	if (error != 0) {
2236		device_printf(sc_if->sk_if_dev,
2237		    "failed to allocate jumbo Rx buffer block DMA tag\n");
2238		goto fail;
2239	}
2240
2241	/* create tag for Tx buffers */
2242	error = bus_dma_tag_create(sc_if->sk_cdata.sk_parent_tag,/* parent */
2243		    1, 0,			/* algnmnt, boundary */
2244		    BUS_SPACE_MAXADDR,		/* lowaddr */
2245		    BUS_SPACE_MAXADDR,		/* highaddr */
2246		    NULL, NULL,			/* filter, filterarg */
2247		    MCLBYTES * SK_MAXTXSEGS,	/* maxsize */
2248		    SK_MAXTXSEGS,		/* nsegments */
2249		    MCLBYTES,			/* maxsegsize */
2250		    0,				/* flags */
2251		    NULL, NULL,			/* lockfunc, lockarg */
2252		    &sc_if->sk_cdata.sk_tx_tag);
2253	if (error != 0) {
2254		device_printf(sc_if->sk_if_dev,
2255		    "failed to allocate Tx DMA tag\n");
2256		goto fail;
2257	}
2258
2259	/* create tag for Rx buffers */
2260	error = bus_dma_tag_create(sc_if->sk_cdata.sk_parent_tag,/* parent */
2261		    1, 0,			/* algnmnt, boundary */
2262		    BUS_SPACE_MAXADDR,		/* lowaddr */
2263		    BUS_SPACE_MAXADDR,		/* highaddr */
2264		    NULL, NULL,			/* filter, filterarg */
2265		    MCLBYTES,			/* maxsize */
2266		    1,				/* nsegments */
2267		    MCLBYTES,			/* maxsegsize */
2268		    0,				/* flags */
2269		    NULL, NULL,			/* lockfunc, lockarg */
2270		    &sc_if->sk_cdata.sk_rx_tag);
2271	if (error != 0) {
2272		device_printf(sc_if->sk_if_dev,
2273		    "failed to allocate Rx DMA tag\n");
2274		goto fail;
2275	}
2276
2277	/* create tag for jumbo Rx buffers */
2278	error = bus_dma_tag_create(sc_if->sk_cdata.sk_parent_tag,/* parent */
2279		    PAGE_SIZE, 0,		/* algnmnt, boundary */
2280		    BUS_SPACE_MAXADDR,		/* lowaddr */
2281		    BUS_SPACE_MAXADDR,		/* highaddr */
2282		    NULL, NULL,			/* filter, filterarg */
2283		    MCLBYTES * SK_MAXRXSEGS,	/* maxsize */
2284		    SK_MAXRXSEGS,		/* nsegments */
2285		    SK_JLEN,			/* maxsegsize */
2286		    0,				/* flags */
2287		    NULL, NULL,			/* lockfunc, lockarg */
2288		    &sc_if->sk_cdata.sk_jumbo_rx_tag);
2289	if (error != 0) {
2290		device_printf(sc_if->sk_if_dev,
2291		    "failed to allocate jumbo Rx DMA tag\n");
2292		goto fail;
2293	}
2294
2295	/* allocate DMA'able memory and load the DMA map for Tx ring */
2296	error = bus_dmamem_alloc(sc_if->sk_cdata.sk_tx_ring_tag,
2297	    (void **)&sc_if->sk_rdata.sk_tx_ring, BUS_DMA_NOWAIT | BUS_DMA_ZERO,
2298	    &sc_if->sk_cdata.sk_tx_ring_map);
2299	if (error != 0) {
2300		device_printf(sc_if->sk_if_dev,
2301		    "failed to allocate DMA'able memory for Tx ring\n");
2302		goto fail;
2303	}
2304
2305	ctx.sk_busaddr = 0;
2306	error = bus_dmamap_load(sc_if->sk_cdata.sk_tx_ring_tag,
2307	    sc_if->sk_cdata.sk_tx_ring_map, sc_if->sk_rdata.sk_tx_ring,
2308	    SK_TX_RING_SZ, sk_dmamap_cb, &ctx, BUS_DMA_NOWAIT);
2309	if (error != 0) {
2310		device_printf(sc_if->sk_if_dev,
2311		    "failed to load DMA'able memory for Tx ring\n");
2312		goto fail;
2313	}
2314	sc_if->sk_rdata.sk_tx_ring_paddr = ctx.sk_busaddr;
2315
2316	/* allocate DMA'able memory and load the DMA map for Rx ring */
2317	error = bus_dmamem_alloc(sc_if->sk_cdata.sk_rx_ring_tag,
2318	    (void **)&sc_if->sk_rdata.sk_rx_ring, BUS_DMA_NOWAIT | BUS_DMA_ZERO,
2319	    &sc_if->sk_cdata.sk_rx_ring_map);
2320	if (error != 0) {
2321		device_printf(sc_if->sk_if_dev,
2322		    "failed to allocate DMA'able memory for Rx ring\n");
2323		goto fail;
2324	}
2325
2326	ctx.sk_busaddr = 0;
2327	error = bus_dmamap_load(sc_if->sk_cdata.sk_rx_ring_tag,
2328	    sc_if->sk_cdata.sk_rx_ring_map, sc_if->sk_rdata.sk_rx_ring,
2329	    SK_RX_RING_SZ, sk_dmamap_cb, &ctx, BUS_DMA_NOWAIT);
2330	if (error != 0) {
2331		device_printf(sc_if->sk_if_dev,
2332		    "failed to load DMA'able memory for Rx ring\n");
2333		goto fail;
2334	}
2335	sc_if->sk_rdata.sk_rx_ring_paddr = ctx.sk_busaddr;
2336
2337	/* allocate DMA'able memory and load the DMA map for jumbo Rx ring */
2338	error = bus_dmamem_alloc(sc_if->sk_cdata.sk_jumbo_rx_ring_tag,
2339	    (void **)&sc_if->sk_rdata.sk_jumbo_rx_ring,
2340	    BUS_DMA_NOWAIT|BUS_DMA_ZERO, &sc_if->sk_cdata.sk_jumbo_rx_ring_map);
2341	if (error != 0) {
2342		device_printf(sc_if->sk_if_dev,
2343		    "failed to allocate DMA'able memory for jumbo Rx ring\n");
2344		goto fail;
2345	}
2346
2347	ctx.sk_busaddr = 0;
2348	error = bus_dmamap_load(sc_if->sk_cdata.sk_jumbo_rx_ring_tag,
2349	    sc_if->sk_cdata.sk_jumbo_rx_ring_map,
2350	    sc_if->sk_rdata.sk_jumbo_rx_ring, SK_JUMBO_RX_RING_SZ, sk_dmamap_cb,
2351	    &ctx, BUS_DMA_NOWAIT);
2352	if (error != 0) {
2353		device_printf(sc_if->sk_if_dev,
2354		    "failed to load DMA'able memory for jumbo Rx ring\n");
2355		goto fail;
2356	}
2357	sc_if->sk_rdata.sk_jumbo_rx_ring_paddr = ctx.sk_busaddr;
2358
2359	/* create DMA maps for Tx buffers */
2360	for (i = 0; i < SK_TX_RING_CNT; i++) {
2361		txd = &sc_if->sk_cdata.sk_txdesc[i];
2362		txd->tx_m = NULL;
2363		txd->tx_dmamap = 0;
2364		error = bus_dmamap_create(sc_if->sk_cdata.sk_tx_tag, 0,
2365		    &txd->tx_dmamap);
2366		if (error != 0) {
2367			device_printf(sc_if->sk_if_dev,
2368			    "failed to create Tx dmamap\n");
2369			goto fail;
2370		}
2371	}
2372	/* create DMA maps for Rx buffers */
2373	if ((error = bus_dmamap_create(sc_if->sk_cdata.sk_rx_tag, 0,
2374	    &sc_if->sk_cdata.sk_rx_sparemap)) != 0) {
2375		device_printf(sc_if->sk_if_dev,
2376		    "failed to create spare Rx dmamap\n");
2377		goto fail;
2378	}
2379	for (i = 0; i < SK_RX_RING_CNT; i++) {
2380		rxd = &sc_if->sk_cdata.sk_rxdesc[i];
2381		rxd->rx_m = NULL;
2382		rxd->rx_dmamap = 0;
2383		error = bus_dmamap_create(sc_if->sk_cdata.sk_rx_tag, 0,
2384		    &rxd->rx_dmamap);
2385		if (error != 0) {
2386			device_printf(sc_if->sk_if_dev,
2387			    "failed to create Rx dmamap\n");
2388			goto fail;
2389		}
2390	}
2391	/* create DMA maps for jumbo Rx buffers */
2392	if ((error = bus_dmamap_create(sc_if->sk_cdata.sk_jumbo_rx_tag, 0,
2393	    &sc_if->sk_cdata.sk_jumbo_rx_sparemap)) != 0) {
2394		device_printf(sc_if->sk_if_dev,
2395		    "failed to create spare jumbo Rx dmamap\n");
2396		goto fail;
2397	}
2398	for (i = 0; i < SK_JUMBO_RX_RING_CNT; i++) {
2399		jrxd = &sc_if->sk_cdata.sk_jumbo_rxdesc[i];
2400		jrxd->rx_m = NULL;
2401		jrxd->rx_dmamap = 0;
2402		error = bus_dmamap_create(sc_if->sk_cdata.sk_jumbo_rx_tag, 0,
2403		    &jrxd->rx_dmamap);
2404		if (error != 0) {
2405			device_printf(sc_if->sk_if_dev,
2406			    "failed to create jumbo Rx dmamap\n");
2407			goto fail;
2408		}
2409	}
2410
2411	/* allocate DMA'able memory and load the DMA map for jumbo buf */
2412	error = bus_dmamem_alloc(sc_if->sk_cdata.sk_jumbo_tag,
2413	    (void **)&sc_if->sk_rdata.sk_jumbo_buf,
2414	    BUS_DMA_NOWAIT|BUS_DMA_ZERO, &sc_if->sk_cdata.sk_jumbo_map);
2415	if (error != 0) {
2416		device_printf(sc_if->sk_if_dev,
2417		    "failed to allocate DMA'able memory for jumbo buf\n");
2418		goto fail;
2419	}
2420
2421	ctx.sk_busaddr = 0;
2422	error = bus_dmamap_load(sc_if->sk_cdata.sk_jumbo_tag,
2423	    sc_if->sk_cdata.sk_jumbo_map,
2424	    sc_if->sk_rdata.sk_jumbo_buf, SK_JMEM, sk_dmamap_cb,
2425	    &ctx, BUS_DMA_NOWAIT);
2426	if (error != 0) {
2427		device_printf(sc_if->sk_if_dev,
2428		    "failed to load DMA'able memory for jumbobuf\n");
2429		goto fail;
2430	}
2431	sc_if->sk_rdata.sk_jumbo_buf_paddr = ctx.sk_busaddr;
2432
2433	/*
2434	 * Now divide it up into 9K pieces and save the addresses
2435	 * in an array.
2436	 */
2437	ptr = sc_if->sk_rdata.sk_jumbo_buf;
2438	for (i = 0; i < SK_JSLOTS; i++) {
2439		sc_if->sk_cdata.sk_jslots[i] = ptr;
2440		ptr += SK_JLEN;
2441		entry = malloc(sizeof(struct sk_jpool_entry),
2442		    M_DEVBUF, M_NOWAIT);
2443		if (entry == NULL) {
2444			device_printf(sc_if->sk_if_dev,
2445			    "no memory for jumbo buffers!\n");
2446			error = ENOMEM;
2447			goto fail;
2448		}
2449		entry->slot = i;
2450		SLIST_INSERT_HEAD(&sc_if->sk_jfree_listhead, entry,
2451		    jpool_entries);
2452	}
2453
2454fail:
2455	return (error);
2456}
2457
2458static void
2459sk_dma_free(sc_if)
2460	struct sk_if_softc	*sc_if;
2461{
2462	struct sk_txdesc	*txd;
2463	struct sk_rxdesc	*rxd;
2464	struct sk_rxdesc	*jrxd;
2465	struct sk_jpool_entry 	*entry;
2466	int			i;
2467
2468	SK_JLIST_LOCK(sc_if);
2469	while ((entry = SLIST_FIRST(&sc_if->sk_jinuse_listhead))) {
2470		device_printf(sc_if->sk_if_dev,
2471		    "asked to free buffer that is in use!\n");
2472		SLIST_REMOVE_HEAD(&sc_if->sk_jinuse_listhead, jpool_entries);
2473		SLIST_INSERT_HEAD(&sc_if->sk_jfree_listhead, entry,
2474		    jpool_entries);
2475	}
2476
2477	while (!SLIST_EMPTY(&sc_if->sk_jfree_listhead)) {
2478		entry = SLIST_FIRST(&sc_if->sk_jfree_listhead);
2479		SLIST_REMOVE_HEAD(&sc_if->sk_jfree_listhead, jpool_entries);
2480		free(entry, M_DEVBUF);
2481	}
2482	SK_JLIST_UNLOCK(sc_if);
2483
2484	/* destroy jumbo buffer block */
2485	if (sc_if->sk_cdata.sk_jumbo_map)
2486		bus_dmamap_unload(sc_if->sk_cdata.sk_jumbo_tag,
2487		    sc_if->sk_cdata.sk_jumbo_map);
2488
2489	if (sc_if->sk_rdata.sk_jumbo_buf) {
2490		bus_dmamem_free(sc_if->sk_cdata.sk_jumbo_tag,
2491		    sc_if->sk_rdata.sk_jumbo_buf,
2492		    sc_if->sk_cdata.sk_jumbo_map);
2493		sc_if->sk_rdata.sk_jumbo_buf = NULL;
2494		sc_if->sk_cdata.sk_jumbo_map = 0;
2495	}
2496
2497	/* Tx ring */
2498	if (sc_if->sk_cdata.sk_tx_ring_tag) {
2499		if (sc_if->sk_cdata.sk_tx_ring_map)
2500			bus_dmamap_unload(sc_if->sk_cdata.sk_tx_ring_tag,
2501			    sc_if->sk_cdata.sk_tx_ring_map);
2502		if (sc_if->sk_cdata.sk_tx_ring_map &&
2503		    sc_if->sk_rdata.sk_tx_ring)
2504			bus_dmamem_free(sc_if->sk_cdata.sk_tx_ring_tag,
2505			    sc_if->sk_rdata.sk_tx_ring,
2506			    sc_if->sk_cdata.sk_tx_ring_map);
2507		sc_if->sk_rdata.sk_tx_ring = NULL;
2508		sc_if->sk_cdata.sk_tx_ring_map = 0;
2509		bus_dma_tag_destroy(sc_if->sk_cdata.sk_tx_ring_tag);
2510		sc_if->sk_cdata.sk_tx_ring_tag = NULL;
2511	}
2512	/* Rx ring */
2513	if (sc_if->sk_cdata.sk_rx_ring_tag) {
2514		if (sc_if->sk_cdata.sk_rx_ring_map)
2515			bus_dmamap_unload(sc_if->sk_cdata.sk_rx_ring_tag,
2516			    sc_if->sk_cdata.sk_rx_ring_map);
2517		if (sc_if->sk_cdata.sk_rx_ring_map &&
2518		    sc_if->sk_rdata.sk_rx_ring)
2519			bus_dmamem_free(sc_if->sk_cdata.sk_rx_ring_tag,
2520			    sc_if->sk_rdata.sk_rx_ring,
2521			    sc_if->sk_cdata.sk_rx_ring_map);
2522		sc_if->sk_rdata.sk_rx_ring = NULL;
2523		sc_if->sk_cdata.sk_rx_ring_map = 0;
2524		bus_dma_tag_destroy(sc_if->sk_cdata.sk_rx_ring_tag);
2525		sc_if->sk_cdata.sk_rx_ring_tag = NULL;
2526	}
2527	/* jumbo Rx ring */
2528	if (sc_if->sk_cdata.sk_jumbo_rx_ring_tag) {
2529		if (sc_if->sk_cdata.sk_jumbo_rx_ring_map)
2530			bus_dmamap_unload(sc_if->sk_cdata.sk_jumbo_rx_ring_tag,
2531			    sc_if->sk_cdata.sk_jumbo_rx_ring_map);
2532		if (sc_if->sk_cdata.sk_jumbo_rx_ring_map &&
2533		    sc_if->sk_rdata.sk_jumbo_rx_ring)
2534			bus_dmamem_free(sc_if->sk_cdata.sk_jumbo_rx_ring_tag,
2535			    sc_if->sk_rdata.sk_jumbo_rx_ring,
2536			    sc_if->sk_cdata.sk_jumbo_rx_ring_map);
2537		sc_if->sk_rdata.sk_jumbo_rx_ring = NULL;
2538		sc_if->sk_cdata.sk_jumbo_rx_ring_map = 0;
2539		bus_dma_tag_destroy(sc_if->sk_cdata.sk_jumbo_rx_ring_tag);
2540		sc_if->sk_cdata.sk_jumbo_rx_ring_tag = NULL;
2541	}
2542	/* Tx buffers */
2543	if (sc_if->sk_cdata.sk_tx_tag) {
2544		for (i = 0; i < SK_TX_RING_CNT; i++) {
2545			txd = &sc_if->sk_cdata.sk_txdesc[i];
2546			if (txd->tx_dmamap) {
2547				bus_dmamap_destroy(sc_if->sk_cdata.sk_tx_tag,
2548				    txd->tx_dmamap);
2549				txd->tx_dmamap = 0;
2550			}
2551		}
2552		bus_dma_tag_destroy(sc_if->sk_cdata.sk_tx_tag);
2553		sc_if->sk_cdata.sk_tx_tag = NULL;
2554	}
2555	/* Rx buffers */
2556	if (sc_if->sk_cdata.sk_rx_tag) {
2557		for (i = 0; i < SK_RX_RING_CNT; i++) {
2558			rxd = &sc_if->sk_cdata.sk_rxdesc[i];
2559			if (rxd->rx_dmamap) {
2560				bus_dmamap_destroy(sc_if->sk_cdata.sk_rx_tag,
2561				    rxd->rx_dmamap);
2562				rxd->rx_dmamap = 0;
2563			}
2564		}
2565		if (sc_if->sk_cdata.sk_rx_sparemap) {
2566			bus_dmamap_destroy(sc_if->sk_cdata.sk_rx_tag,
2567			    sc_if->sk_cdata.sk_rx_sparemap);
2568			sc_if->sk_cdata.sk_rx_sparemap = 0;
2569		}
2570		bus_dma_tag_destroy(sc_if->sk_cdata.sk_rx_tag);
2571		sc_if->sk_cdata.sk_rx_tag = NULL;
2572	}
2573	/* jumbo Rx buffers */
2574	if (sc_if->sk_cdata.sk_jumbo_rx_tag) {
2575		for (i = 0; i < SK_JUMBO_RX_RING_CNT; i++) {
2576			jrxd = &sc_if->sk_cdata.sk_jumbo_rxdesc[i];
2577			if (jrxd->rx_dmamap) {
2578				bus_dmamap_destroy(
2579				    sc_if->sk_cdata.sk_jumbo_rx_tag,
2580				    jrxd->rx_dmamap);
2581				jrxd->rx_dmamap = 0;
2582			}
2583		}
2584		if (sc_if->sk_cdata.sk_jumbo_rx_sparemap) {
2585			bus_dmamap_destroy(sc_if->sk_cdata.sk_jumbo_rx_tag,
2586			    sc_if->sk_cdata.sk_jumbo_rx_sparemap);
2587			sc_if->sk_cdata.sk_jumbo_rx_sparemap = 0;
2588		}
2589		bus_dma_tag_destroy(sc_if->sk_cdata.sk_jumbo_rx_tag);
2590		sc_if->sk_cdata.sk_jumbo_rx_tag = NULL;
2591	}
2592
2593	if (sc_if->sk_cdata.sk_parent_tag) {
2594		bus_dma_tag_destroy(sc_if->sk_cdata.sk_parent_tag);
2595		sc_if->sk_cdata.sk_parent_tag = NULL;
2596	}
2597	mtx_destroy(&sc_if->sk_jlist_mtx);
2598}
2599
2600/*
2601 * Allocate a jumbo buffer.
2602 */
2603static void *
2604sk_jalloc(sc_if)
2605	struct sk_if_softc		*sc_if;
2606{
2607	struct sk_jpool_entry   *entry;
2608
2609	SK_JLIST_LOCK(sc_if);
2610
2611	entry = SLIST_FIRST(&sc_if->sk_jfree_listhead);
2612
2613	if (entry == NULL) {
2614		SK_JLIST_UNLOCK(sc_if);
2615		return (NULL);
2616	}
2617
2618	SLIST_REMOVE_HEAD(&sc_if->sk_jfree_listhead, jpool_entries);
2619	SLIST_INSERT_HEAD(&sc_if->sk_jinuse_listhead, entry, jpool_entries);
2620
2621	SK_JLIST_UNLOCK(sc_if);
2622
2623	return (sc_if->sk_cdata.sk_jslots[entry->slot]);
2624}
2625
2626/*
2627 * Release a jumbo buffer.
2628 */
2629static void
2630sk_jfree(buf, args)
2631	void 			*buf;
2632	void			*args;
2633{
2634	struct sk_if_softc 	*sc_if;
2635	struct sk_jpool_entry 	*entry;
2636	int 			i;
2637
2638	/* Extract the softc struct pointer. */
2639	sc_if = (struct sk_if_softc *)args;
2640	KASSERT(sc_if != NULL, ("%s: can't find softc pointer!", __func__));
2641
2642	SK_JLIST_LOCK(sc_if);
2643	/* calculate the slot this buffer belongs to */
2644	i = ((vm_offset_t)buf
2645	     - (vm_offset_t)sc_if->sk_rdata.sk_jumbo_buf) / SK_JLEN;
2646	KASSERT(i >= 0 && i < SK_JSLOTS,
2647	    ("%s: asked to free buffer that we don't manage!", __func__));
2648
2649	entry = SLIST_FIRST(&sc_if->sk_jinuse_listhead);
2650	KASSERT(entry != NULL, ("%s: buffer not in use!", __func__));
2651	entry->slot = i;
2652	SLIST_REMOVE_HEAD(&sc_if->sk_jinuse_listhead, jpool_entries);
2653	SLIST_INSERT_HEAD(&sc_if->sk_jfree_listhead, entry, jpool_entries);
2654	if (SLIST_EMPTY(&sc_if->sk_jinuse_listhead))
2655		wakeup(sc_if);
2656
2657	SK_JLIST_UNLOCK(sc_if);
2658}
2659
2660static void
2661sk_txcksum(ifp, m, f)
2662	struct ifnet		*ifp;
2663	struct mbuf		*m;
2664	struct sk_tx_desc	*f;
2665{
2666	struct ip		*ip;
2667	u_int16_t		offset;
2668	u_int8_t 		*p;
2669
2670	offset = sizeof(struct ip) + ETHER_HDR_LEN;
2671	for(; m && m->m_len == 0; m = m->m_next)
2672		;
2673	if (m == NULL || m->m_len < ETHER_HDR_LEN) {
2674		if_printf(ifp, "%s: m_len < ETHER_HDR_LEN\n", __func__);
2675		/* checksum may be corrupted */
2676		goto sendit;
2677	}
2678	if (m->m_len < ETHER_HDR_LEN + sizeof(u_int32_t)) {
2679		if (m->m_len != ETHER_HDR_LEN) {
2680			if_printf(ifp, "%s: m_len != ETHER_HDR_LEN\n",
2681			    __func__);
2682			/* checksum may be corrupted */
2683			goto sendit;
2684		}
2685		for(m = m->m_next; m && m->m_len == 0; m = m->m_next)
2686			;
2687		if (m == NULL) {
2688			offset = sizeof(struct ip) + ETHER_HDR_LEN;
2689			/* checksum may be corrupted */
2690			goto sendit;
2691		}
2692		ip = mtod(m, struct ip *);
2693	} else {
2694		p = mtod(m, u_int8_t *);
2695		p += ETHER_HDR_LEN;
2696		ip = (struct ip *)p;
2697	}
2698	offset = (ip->ip_hl << 2) + ETHER_HDR_LEN;
2699
2700sendit:
2701	f->sk_csum_startval = 0;
2702	f->sk_csum_start = htole32(((offset + m->m_pkthdr.csum_data) & 0xffff) |
2703	    (offset << 16));
2704}
2705
2706static int
2707sk_encap(sc_if, m_head)
2708        struct sk_if_softc	*sc_if;
2709        struct mbuf		**m_head;
2710{
2711	struct sk_txdesc	*txd;
2712	struct sk_tx_desc	*f = NULL;
2713	struct mbuf		*m, *n;
2714	bus_dma_segment_t	txsegs[SK_MAXTXSEGS];
2715	u_int32_t		cflags, frag, si, sk_ctl;
2716	int			error, i, nseg;
2717
2718	SK_IF_LOCK_ASSERT(sc_if);
2719
2720	if ((txd = STAILQ_FIRST(&sc_if->sk_cdata.sk_txfreeq)) == NULL)
2721		return (ENOBUFS);
2722
2723	m = *m_head;
2724	error = bus_dmamap_load_mbuf_sg(sc_if->sk_cdata.sk_tx_tag,
2725	    txd->tx_dmamap, m, txsegs, &nseg, 0);
2726	if (error == EFBIG) {
2727		n = m_defrag(m, M_DONTWAIT);
2728		if (n == NULL) {
2729			m_freem(m);
2730			m = NULL;
2731			return (ENOMEM);
2732		}
2733		m = n;
2734		error = bus_dmamap_load_mbuf_sg(sc_if->sk_cdata.sk_tx_tag,
2735		    txd->tx_dmamap, m, txsegs, &nseg, 0);
2736		if (error != 0) {
2737			m_freem(m);
2738			m = NULL;
2739			return (error);
2740		}
2741	} else if (error != 0)
2742		return (error);
2743	if (nseg == 0) {
2744		m_freem(m);
2745		m = NULL;
2746		return (EIO);
2747	}
2748	if (sc_if->sk_cdata.sk_tx_cnt + nseg >= SK_TX_RING_CNT) {
2749		bus_dmamap_unload(sc_if->sk_cdata.sk_tx_tag, txd->tx_dmamap);
2750		return (ENOBUFS);
2751	}
2752
2753	if ((m->m_pkthdr.csum_flags & sc_if->sk_ifp->if_hwassist) != 0)
2754		cflags = SK_OPCODE_CSUM;
2755	else
2756		cflags = SK_OPCODE_DEFAULT;
2757	si = frag = sc_if->sk_cdata.sk_tx_prod;
2758	for (i = 0; i < nseg; i++) {
2759		f = &sc_if->sk_rdata.sk_tx_ring[frag];
2760		f->sk_data_lo = htole32(SK_ADDR_LO(txsegs[i].ds_addr));
2761		f->sk_data_hi = htole32(SK_ADDR_HI(txsegs[i].ds_addr));
2762		sk_ctl = txsegs[i].ds_len | cflags;
2763		if (i == 0) {
2764			if (cflags == SK_OPCODE_CSUM)
2765				sk_txcksum(sc_if->sk_ifp, m, f);
2766			sk_ctl |= SK_TXCTL_FIRSTFRAG;
2767		} else
2768			sk_ctl |= SK_TXCTL_OWN;
2769		f->sk_ctl = htole32(sk_ctl);
2770		sc_if->sk_cdata.sk_tx_cnt++;
2771		SK_INC(frag, SK_TX_RING_CNT);
2772	}
2773	sc_if->sk_cdata.sk_tx_prod = frag;
2774
2775	/* set EOF on the last desciptor */
2776	frag = (frag + SK_TX_RING_CNT - 1) % SK_TX_RING_CNT;
2777	f = &sc_if->sk_rdata.sk_tx_ring[frag];
2778	f->sk_ctl |= htole32(SK_TXCTL_LASTFRAG | SK_TXCTL_EOF_INTR);
2779
2780	/* turn the first descriptor ownership to NIC */
2781	f = &sc_if->sk_rdata.sk_tx_ring[si];
2782	f->sk_ctl |= htole32(SK_TXCTL_OWN);
2783
2784	STAILQ_REMOVE_HEAD(&sc_if->sk_cdata.sk_txfreeq, tx_q);
2785	STAILQ_INSERT_TAIL(&sc_if->sk_cdata.sk_txbusyq, txd, tx_q);
2786	txd->tx_m = m;
2787
2788	/* sync descriptors */
2789	bus_dmamap_sync(sc_if->sk_cdata.sk_tx_tag, txd->tx_dmamap,
2790	    BUS_DMASYNC_PREWRITE);
2791	bus_dmamap_sync(sc_if->sk_cdata.sk_tx_ring_tag,
2792	    sc_if->sk_cdata.sk_tx_ring_map,
2793	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2794
2795	return (0);
2796}
2797
2798static void
2799sk_start(ifp)
2800	struct ifnet		*ifp;
2801{
2802	struct sk_if_softc *sc_if;
2803
2804	sc_if = ifp->if_softc;
2805
2806	SK_IF_LOCK(sc_if);
2807	sk_start_locked(ifp);
2808	SK_IF_UNLOCK(sc_if);
2809
2810	return;
2811}
2812
2813static void
2814sk_start_locked(ifp)
2815	struct ifnet		*ifp;
2816{
2817        struct sk_softc		*sc;
2818        struct sk_if_softc	*sc_if;
2819        struct mbuf		*m_head;
2820	int			enq;
2821
2822	sc_if = ifp->if_softc;
2823	sc = sc_if->sk_softc;
2824
2825	SK_IF_LOCK_ASSERT(sc_if);
2826
2827	for (enq = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd) &&
2828	    sc_if->sk_cdata.sk_tx_cnt < SK_TX_RING_CNT - 1; ) {
2829		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
2830		if (m_head == NULL)
2831			break;
2832
2833		/*
2834		 * Pack the data into the transmit ring. If we
2835		 * don't have room, set the OACTIVE flag and wait
2836		 * for the NIC to drain the ring.
2837		 */
2838		if (sk_encap(sc_if, &m_head)) {
2839			if (m_head == NULL)
2840				break;
2841			IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
2842			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2843			break;
2844		}
2845
2846		enq++;
2847		/*
2848		 * If there's a BPF listener, bounce a copy of this frame
2849		 * to him.
2850		 */
2851		BPF_MTAP(ifp, m_head);
2852	}
2853
2854	if (enq > 0) {
2855		/* Transmit */
2856		CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_START);
2857
2858		/* Set a timeout in case the chip goes out to lunch. */
2859		ifp->if_timer = 5;
2860	}
2861}
2862
2863
2864static void
2865sk_watchdog(ifp)
2866	struct ifnet		*ifp;
2867{
2868	struct sk_if_softc	*sc_if;
2869
2870	sc_if = ifp->if_softc;
2871
2872	SK_IF_LOCK(sc_if);
2873	/*
2874	 * Reclaim first as there is a possibility of loosing Tx completion
2875	 * interrupt.
2876	 */
2877	sk_txeof(sc_if);
2878	if (sc_if->sk_cdata.sk_tx_cnt != 0) {
2879		if_printf(sc_if->sk_ifp, "watchdog timeout\n");
2880		ifp->if_oerrors++;
2881		ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2882		sk_init_locked(sc_if);
2883	}
2884	SK_IF_UNLOCK(sc_if);
2885
2886	return;
2887}
2888
2889static void
2890skc_shutdown(dev)
2891	device_t		dev;
2892{
2893	struct sk_softc		*sc;
2894
2895	sc = device_get_softc(dev);
2896	SK_LOCK(sc);
2897
2898	/* Turn off the 'driver is loaded' LED. */
2899	CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_OFF);
2900
2901	/*
2902	 * Reset the GEnesis controller. Doing this should also
2903	 * assert the resets on the attached XMAC(s).
2904	 */
2905	sk_reset(sc);
2906	SK_UNLOCK(sc);
2907
2908	return;
2909}
2910
2911static int
2912skc_suspend(dev)
2913	device_t		dev;
2914{
2915	struct sk_softc		*sc;
2916	struct sk_if_softc	*sc_if0, *sc_if1;
2917	struct ifnet		*ifp0 = NULL, *ifp1 = NULL;
2918
2919	sc = device_get_softc(dev);
2920
2921	SK_LOCK(sc);
2922
2923	sc_if0 = sc->sk_if[SK_PORT_A];
2924	sc_if1 = sc->sk_if[SK_PORT_B];
2925	if (sc_if0 != NULL)
2926		ifp0 = sc_if0->sk_ifp;
2927	if (sc_if1 != NULL)
2928		ifp1 = sc_if1->sk_ifp;
2929	if (ifp0 != NULL)
2930		sk_stop(sc_if0);
2931	if (ifp1 != NULL)
2932		sk_stop(sc_if1);
2933	sc->sk_suspended = 1;
2934
2935	SK_UNLOCK(sc);
2936
2937	return (0);
2938}
2939
2940static int
2941skc_resume(dev)
2942	device_t		dev;
2943{
2944	struct sk_softc		*sc;
2945	struct sk_if_softc	*sc_if0, *sc_if1;
2946	struct ifnet		*ifp0 = NULL, *ifp1 = NULL;
2947
2948	sc = device_get_softc(dev);
2949
2950	SK_LOCK(sc);
2951
2952	sc_if0 = sc->sk_if[SK_PORT_A];
2953	sc_if1 = sc->sk_if[SK_PORT_B];
2954	if (sc_if0 != NULL)
2955		ifp0 = sc_if0->sk_ifp;
2956	if (sc_if1 != NULL)
2957		ifp1 = sc_if1->sk_ifp;
2958	if (ifp0 != NULL && ifp0->if_flags & IFF_UP)
2959		sk_init_locked(sc_if0);
2960	if (ifp1 != NULL && ifp1->if_flags & IFF_UP)
2961		sk_init_locked(sc_if1);
2962	sc->sk_suspended = 0;
2963
2964	SK_UNLOCK(sc);
2965
2966	return (0);
2967}
2968
2969/*
2970 * According to the data sheet from SK-NET GENESIS the hardware can compute
2971 * two Rx checksums at the same time(Each checksum start position is
2972 * programmed in Rx descriptors). However it seems that TCP/UDP checksum
2973 * does not work at least on my Yukon hardware. I tried every possible ways
2974 * to get correct checksum value but couldn't get correct one. So TCP/UDP
2975 * checksum offload was disabled at the moment and only IP checksum offload
2976 * was enabled.
2977 * As nomral IP header size is 20 bytes I can't expect it would give an
2978 * increase in throughput. However it seems it doesn't hurt performance in
2979 * my testing. If there is a more detailed information for checksum secret
2980 * of the hardware in question please contact yongari@FreeBSD.org to add
2981 * TCP/UDP checksum offload support.
2982 */
2983static __inline void
2984sk_rxcksum(ifp, m, csum)
2985	struct ifnet		*ifp;
2986	struct mbuf		*m;
2987	u_int32_t		csum;
2988{
2989	struct ether_header	*eh;
2990	struct ip		*ip;
2991	int32_t			hlen, len, pktlen;
2992	u_int16_t		csum1, csum2, ipcsum;
2993
2994	pktlen = m->m_pkthdr.len;
2995	if (pktlen < sizeof(struct ether_header) + sizeof(struct ip))
2996		return;
2997	eh = mtod(m, struct ether_header *);
2998	if (eh->ether_type != htons(ETHERTYPE_IP))
2999		return;
3000	ip = (struct ip *)(eh + 1);
3001	if (ip->ip_v != IPVERSION)
3002		return;
3003	hlen = ip->ip_hl << 2;
3004	pktlen -= sizeof(struct ether_header);
3005	if (hlen < sizeof(struct ip))
3006		return;
3007	if (ntohs(ip->ip_len) < hlen)
3008		return;
3009	if (ntohs(ip->ip_len) != pktlen)
3010		return;
3011
3012	csum1 = htons(csum & 0xffff);
3013	csum2 = htons((csum >> 16) & 0xffff);
3014	ipcsum = in_addword(csum1, ~csum2 & 0xffff);
3015	/* checksum fixup for IP options */
3016	len = hlen - sizeof(struct ip);
3017	if (len > 0) {
3018		/*
3019		 * If the second checksum value is correct we can compute IP
3020		 * checksum with simple math. Unfortunately the second checksum
3021		 * value is wrong so we can't verify the checksum from the
3022		 * value(It seems there is some magic here to get correct
3023		 * value). If the second checksum value is correct it also
3024		 * means we can get TCP/UDP checksum) here. However, it still
3025		 * needs pseudo header checksum calculation due to hardware
3026		 * limitations.
3027		 */
3028		return;
3029	}
3030	m->m_pkthdr.csum_flags = CSUM_IP_CHECKED;
3031	if (ipcsum == 0xffff)
3032		m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
3033}
3034
3035static __inline int
3036sk_rxvalid(sc, stat, len)
3037	struct sk_softc		*sc;
3038	u_int32_t		stat, len;
3039{
3040
3041	if (sc->sk_type == SK_GENESIS) {
3042		if ((stat & XM_RXSTAT_ERRFRAME) == XM_RXSTAT_ERRFRAME ||
3043		    XM_RXSTAT_BYTES(stat) != len)
3044			return (0);
3045	} else {
3046		if ((stat & (YU_RXSTAT_CRCERR | YU_RXSTAT_LONGERR |
3047		    YU_RXSTAT_MIIERR | YU_RXSTAT_BADFC | YU_RXSTAT_GOODFC |
3048		    YU_RXSTAT_JABBER)) != 0 ||
3049		    (stat & YU_RXSTAT_RXOK) != YU_RXSTAT_RXOK ||
3050		    YU_RXSTAT_BYTES(stat) != len)
3051			return (0);
3052	}
3053
3054	return (1);
3055}
3056
3057static void
3058sk_rxeof(sc_if)
3059	struct sk_if_softc	*sc_if;
3060{
3061	struct sk_softc		*sc;
3062	struct mbuf		*m;
3063	struct ifnet		*ifp;
3064	struct sk_rx_desc	*cur_rx;
3065	struct sk_rxdesc	*rxd;
3066	int			cons, prog;
3067	u_int32_t		csum, rxstat, sk_ctl;
3068
3069	sc = sc_if->sk_softc;
3070	ifp = sc_if->sk_ifp;
3071
3072	SK_IF_LOCK_ASSERT(sc_if);
3073
3074	bus_dmamap_sync(sc_if->sk_cdata.sk_rx_ring_tag,
3075	    sc_if->sk_cdata.sk_rx_ring_map, BUS_DMASYNC_POSTREAD);
3076
3077	prog = 0;
3078	for (cons = sc_if->sk_cdata.sk_rx_cons; prog < SK_RX_RING_CNT;
3079	    prog++, SK_INC(cons, SK_RX_RING_CNT)) {
3080		cur_rx = &sc_if->sk_rdata.sk_rx_ring[cons];
3081		sk_ctl = le32toh(cur_rx->sk_ctl);
3082		if ((sk_ctl & SK_RXCTL_OWN) != 0)
3083			break;
3084		rxd = &sc_if->sk_cdata.sk_rxdesc[cons];
3085		rxstat = le32toh(cur_rx->sk_xmac_rxstat);
3086
3087		if ((sk_ctl & (SK_RXCTL_STATUS_VALID | SK_RXCTL_FIRSTFRAG |
3088		    SK_RXCTL_LASTFRAG)) != (SK_RXCTL_STATUS_VALID |
3089		    SK_RXCTL_FIRSTFRAG | SK_RXCTL_LASTFRAG) ||
3090		    SK_RXBYTES(sk_ctl) < SK_MIN_FRAMELEN ||
3091		    SK_RXBYTES(sk_ctl) > SK_MAX_FRAMELEN ||
3092		    sk_rxvalid(sc, rxstat, SK_RXBYTES(sk_ctl)) == 0) {
3093			ifp->if_ierrors++;
3094			sk_discard_rxbuf(sc_if, cons);
3095			continue;
3096		}
3097
3098		m = rxd->rx_m;
3099		csum = le32toh(cur_rx->sk_csum);
3100		if (sk_newbuf(sc_if, cons) != 0) {
3101			ifp->if_iqdrops++;
3102			/* reuse old buffer */
3103			sk_discard_rxbuf(sc_if, cons);
3104			continue;
3105		}
3106		m->m_pkthdr.rcvif = ifp;
3107		m->m_pkthdr.len = m->m_len = SK_RXBYTES(sk_ctl);
3108		ifp->if_ipackets++;
3109		if ((ifp->if_capenable & IFCAP_RXCSUM) != 0)
3110			sk_rxcksum(ifp, m, csum);
3111		SK_IF_UNLOCK(sc_if);
3112		(*ifp->if_input)(ifp, m);
3113		SK_IF_LOCK(sc_if);
3114	}
3115
3116	if (prog > 0) {
3117		sc_if->sk_cdata.sk_rx_cons = cons;
3118		bus_dmamap_sync(sc_if->sk_cdata.sk_rx_ring_tag,
3119		    sc_if->sk_cdata.sk_rx_ring_map,
3120		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3121	}
3122}
3123
3124static void
3125sk_jumbo_rxeof(sc_if)
3126	struct sk_if_softc	*sc_if;
3127{
3128	struct sk_softc		*sc;
3129	struct mbuf		*m;
3130	struct ifnet		*ifp;
3131	struct sk_rx_desc	*cur_rx;
3132	struct sk_rxdesc	*jrxd;
3133	int			cons, prog;
3134	u_int32_t		csum, rxstat, sk_ctl;
3135
3136	sc = sc_if->sk_softc;
3137	ifp = sc_if->sk_ifp;
3138
3139	SK_IF_LOCK_ASSERT(sc_if);
3140
3141	bus_dmamap_sync(sc_if->sk_cdata.sk_jumbo_rx_ring_tag,
3142	    sc_if->sk_cdata.sk_jumbo_rx_ring_map, BUS_DMASYNC_POSTREAD);
3143
3144	prog = 0;
3145	for (cons = sc_if->sk_cdata.sk_jumbo_rx_cons;
3146	    prog < SK_JUMBO_RX_RING_CNT;
3147	    prog++, SK_INC(cons, SK_JUMBO_RX_RING_CNT)) {
3148		cur_rx = &sc_if->sk_rdata.sk_jumbo_rx_ring[cons];
3149		sk_ctl = le32toh(cur_rx->sk_ctl);
3150		if ((sk_ctl & SK_RXCTL_OWN) != 0)
3151			break;
3152		jrxd = &sc_if->sk_cdata.sk_jumbo_rxdesc[cons];
3153		rxstat = le32toh(cur_rx->sk_xmac_rxstat);
3154
3155		if ((sk_ctl & (SK_RXCTL_STATUS_VALID | SK_RXCTL_FIRSTFRAG |
3156		    SK_RXCTL_LASTFRAG)) != (SK_RXCTL_STATUS_VALID |
3157		    SK_RXCTL_FIRSTFRAG | SK_RXCTL_LASTFRAG) ||
3158		    SK_RXBYTES(sk_ctl) < SK_MIN_FRAMELEN ||
3159		    SK_RXBYTES(sk_ctl) > SK_JUMBO_FRAMELEN ||
3160		    sk_rxvalid(sc, rxstat, SK_RXBYTES(sk_ctl)) == 0) {
3161			ifp->if_ierrors++;
3162			sk_discard_jumbo_rxbuf(sc_if, cons);
3163			continue;
3164		}
3165
3166		m = jrxd->rx_m;
3167		csum = le32toh(cur_rx->sk_csum);
3168		if (sk_jumbo_newbuf(sc_if, cons) != 0) {
3169			ifp->if_iqdrops++;
3170			/* reuse old buffer */
3171			sk_discard_jumbo_rxbuf(sc_if, cons);
3172			continue;
3173		}
3174		m->m_pkthdr.rcvif = ifp;
3175		m->m_pkthdr.len = m->m_len = SK_RXBYTES(sk_ctl);
3176		ifp->if_ipackets++;
3177		if ((ifp->if_capenable & IFCAP_RXCSUM) != 0)
3178			sk_rxcksum(ifp, m, csum);
3179		SK_IF_UNLOCK(sc_if);
3180		(*ifp->if_input)(ifp, m);
3181		SK_IF_LOCK(sc_if);
3182	}
3183
3184	if (prog > 0) {
3185		sc_if->sk_cdata.sk_jumbo_rx_cons = cons;
3186		bus_dmamap_sync(sc_if->sk_cdata.sk_jumbo_rx_ring_tag,
3187		    sc_if->sk_cdata.sk_jumbo_rx_ring_map,
3188		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3189	}
3190}
3191
3192static void
3193sk_txeof(sc_if)
3194	struct sk_if_softc	*sc_if;
3195{
3196	struct sk_softc		*sc;
3197	struct sk_txdesc	*txd;
3198	struct sk_tx_desc	*cur_tx;
3199	struct ifnet		*ifp;
3200	u_int32_t		idx, sk_ctl;
3201
3202	sc = sc_if->sk_softc;
3203	ifp = sc_if->sk_ifp;
3204
3205	txd = STAILQ_FIRST(&sc_if->sk_cdata.sk_txbusyq);
3206	if (txd == NULL)
3207		return;
3208	bus_dmamap_sync(sc_if->sk_cdata.sk_tx_ring_tag,
3209	    sc_if->sk_cdata.sk_tx_ring_map, BUS_DMASYNC_POSTREAD);
3210	/*
3211	 * Go through our tx ring and free mbufs for those
3212	 * frames that have been sent.
3213	 */
3214	for (idx = sc_if->sk_cdata.sk_tx_cons;; SK_INC(idx, SK_TX_RING_CNT)) {
3215		if (sc_if->sk_cdata.sk_tx_cnt <= 0)
3216			break;
3217		cur_tx = &sc_if->sk_rdata.sk_tx_ring[idx];
3218		sk_ctl = le32toh(cur_tx->sk_ctl);
3219		if (sk_ctl & SK_TXCTL_OWN)
3220			break;
3221		sc_if->sk_cdata.sk_tx_cnt--;
3222		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3223		if ((sk_ctl & SK_TXCTL_LASTFRAG) == 0)
3224			continue;
3225		bus_dmamap_sync(sc_if->sk_cdata.sk_tx_tag, txd->tx_dmamap,
3226		    BUS_DMASYNC_POSTWRITE);
3227		bus_dmamap_unload(sc_if->sk_cdata.sk_tx_tag, txd->tx_dmamap);
3228
3229		ifp->if_opackets++;
3230		m_freem(txd->tx_m);
3231		txd->tx_m = NULL;
3232		STAILQ_REMOVE_HEAD(&sc_if->sk_cdata.sk_txbusyq, tx_q);
3233		STAILQ_INSERT_TAIL(&sc_if->sk_cdata.sk_txfreeq, txd, tx_q);
3234		txd = STAILQ_FIRST(&sc_if->sk_cdata.sk_txbusyq);
3235	}
3236	sc_if->sk_cdata.sk_tx_cons = idx;
3237	ifp->if_timer = sc_if->sk_cdata.sk_tx_cnt > 0 ? 5 : 0;
3238
3239	bus_dmamap_sync(sc_if->sk_cdata.sk_tx_ring_tag,
3240	    sc_if->sk_cdata.sk_tx_ring_map,
3241	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3242}
3243
3244static void
3245sk_tick(xsc_if)
3246	void			*xsc_if;
3247{
3248	struct sk_if_softc	*sc_if;
3249	struct mii_data		*mii;
3250	struct ifnet		*ifp;
3251	int			i;
3252
3253	sc_if = xsc_if;
3254	ifp = sc_if->sk_ifp;
3255	mii = device_get_softc(sc_if->sk_miibus);
3256
3257	if (!(ifp->if_flags & IFF_UP))
3258		return;
3259
3260	if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
3261		sk_intr_bcom(sc_if);
3262		return;
3263	}
3264
3265	/*
3266	 * According to SysKonnect, the correct way to verify that
3267	 * the link has come back up is to poll bit 0 of the GPIO
3268	 * register three times. This pin has the signal from the
3269	 * link_sync pin connected to it; if we read the same link
3270	 * state 3 times in a row, we know the link is up.
3271	 */
3272	for (i = 0; i < 3; i++) {
3273		if (SK_XM_READ_2(sc_if, XM_GPIO) & XM_GPIO_GP0_SET)
3274			break;
3275	}
3276
3277	if (i != 3) {
3278		callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
3279		return;
3280	}
3281
3282	/* Turn the GP0 interrupt back on. */
3283	SK_XM_CLRBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET);
3284	SK_XM_READ_2(sc_if, XM_ISR);
3285	mii_tick(mii);
3286	callout_stop(&sc_if->sk_tick_ch);
3287}
3288
3289static void
3290sk_yukon_tick(xsc_if)
3291	void			*xsc_if;
3292{
3293	struct sk_if_softc	*sc_if;
3294	struct mii_data		*mii;
3295
3296	sc_if = xsc_if;
3297	mii = device_get_softc(sc_if->sk_miibus);
3298
3299	mii_tick(mii);
3300	callout_reset(&sc_if->sk_tick_ch, hz, sk_yukon_tick, sc_if);
3301}
3302
3303static void
3304sk_intr_bcom(sc_if)
3305	struct sk_if_softc	*sc_if;
3306{
3307	struct mii_data		*mii;
3308	struct ifnet		*ifp;
3309	int			status;
3310	mii = device_get_softc(sc_if->sk_miibus);
3311	ifp = sc_if->sk_ifp;
3312
3313	SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
3314
3315	/*
3316	 * Read the PHY interrupt register to make sure
3317	 * we clear any pending interrupts.
3318	 */
3319	status = sk_xmac_miibus_readreg(sc_if, SK_PHYADDR_BCOM, BRGPHY_MII_ISR);
3320
3321	if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
3322		sk_init_xmac(sc_if);
3323		return;
3324	}
3325
3326	if (status & (BRGPHY_ISR_LNK_CHG|BRGPHY_ISR_AN_PR)) {
3327		int			lstat;
3328		lstat = sk_xmac_miibus_readreg(sc_if, SK_PHYADDR_BCOM,
3329		    BRGPHY_MII_AUXSTS);
3330
3331		if (!(lstat & BRGPHY_AUXSTS_LINK) && sc_if->sk_link) {
3332			mii_mediachg(mii);
3333			/* Turn off the link LED. */
3334			SK_IF_WRITE_1(sc_if, 0,
3335			    SK_LINKLED1_CTL, SK_LINKLED_OFF);
3336			sc_if->sk_link = 0;
3337		} else if (status & BRGPHY_ISR_LNK_CHG) {
3338			sk_xmac_miibus_writereg(sc_if, SK_PHYADDR_BCOM,
3339	    		    BRGPHY_MII_IMR, 0xFF00);
3340			mii_tick(mii);
3341			sc_if->sk_link = 1;
3342			/* Turn on the link LED. */
3343			SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL,
3344			    SK_LINKLED_ON|SK_LINKLED_LINKSYNC_OFF|
3345			    SK_LINKLED_BLINK_OFF);
3346		} else {
3347			mii_tick(mii);
3348			callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
3349		}
3350	}
3351
3352	SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
3353
3354	return;
3355}
3356
3357static void
3358sk_intr_xmac(sc_if)
3359	struct sk_if_softc	*sc_if;
3360{
3361	struct sk_softc		*sc;
3362	u_int16_t		status;
3363
3364	sc = sc_if->sk_softc;
3365	status = SK_XM_READ_2(sc_if, XM_ISR);
3366
3367	/*
3368	 * Link has gone down. Start MII tick timeout to
3369	 * watch for link resync.
3370	 */
3371	if (sc_if->sk_phytype == SK_PHYTYPE_XMAC) {
3372		if (status & XM_ISR_GP0_SET) {
3373			SK_XM_SETBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET);
3374			callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
3375		}
3376
3377		if (status & XM_ISR_AUTONEG_DONE) {
3378			callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
3379		}
3380	}
3381
3382	if (status & XM_IMR_TX_UNDERRUN)
3383		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_TXFIFO);
3384
3385	if (status & XM_IMR_RX_OVERRUN)
3386		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_RXFIFO);
3387
3388	status = SK_XM_READ_2(sc_if, XM_ISR);
3389
3390	return;
3391}
3392
3393static void
3394sk_intr_yukon(sc_if)
3395	struct sk_if_softc	*sc_if;
3396{
3397	u_int8_t status;
3398
3399	status = SK_IF_READ_1(sc_if, 0, SK_GMAC_ISR);
3400	/* RX overrun */
3401	if ((status & SK_GMAC_INT_RX_OVER) != 0) {
3402		SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST,
3403		    SK_RFCTL_RX_FIFO_OVER);
3404	}
3405	/* TX underrun */
3406	if ((status & SK_GMAC_INT_TX_UNDER) != 0) {
3407		SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST,
3408		    SK_TFCTL_TX_FIFO_UNDER);
3409	}
3410}
3411
3412static void
3413sk_intr(xsc)
3414	void			*xsc;
3415{
3416	struct sk_softc		*sc = xsc;
3417	struct sk_if_softc	*sc_if0, *sc_if1;
3418	struct ifnet		*ifp0 = NULL, *ifp1 = NULL;
3419	u_int32_t		status;
3420
3421	SK_LOCK(sc);
3422
3423	status = CSR_READ_4(sc, SK_ISSR);
3424	if (status == 0 || status == 0xffffffff || sc->sk_suspended)
3425		goto done_locked;
3426
3427	sc_if0 = sc->sk_if[SK_PORT_A];
3428	sc_if1 = sc->sk_if[SK_PORT_B];
3429
3430	if (sc_if0 != NULL)
3431		ifp0 = sc_if0->sk_ifp;
3432	if (sc_if1 != NULL)
3433		ifp1 = sc_if1->sk_ifp;
3434
3435	for (; (status &= sc->sk_intrmask) != 0;) {
3436		/* Handle receive interrupts first. */
3437		if (status & SK_ISR_RX1_EOF) {
3438			if (ifp0->if_mtu > SK_MAX_FRAMELEN)
3439				sk_jumbo_rxeof(sc_if0);
3440			else
3441				sk_rxeof(sc_if0);
3442			CSR_WRITE_4(sc, SK_BMU_RX_CSR0,
3443			    SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START);
3444		}
3445		if (status & SK_ISR_RX2_EOF) {
3446			if (ifp1->if_mtu > SK_MAX_FRAMELEN)
3447				sk_jumbo_rxeof(sc_if1);
3448			else
3449				sk_rxeof(sc_if1);
3450			CSR_WRITE_4(sc, SK_BMU_RX_CSR1,
3451			    SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START);
3452		}
3453
3454		/* Then transmit interrupts. */
3455		if (status & SK_ISR_TX1_S_EOF) {
3456			sk_txeof(sc_if0);
3457			CSR_WRITE_4(sc, SK_BMU_TXS_CSR0, SK_TXBMU_CLR_IRQ_EOF);
3458		}
3459		if (status & SK_ISR_TX2_S_EOF) {
3460			sk_txeof(sc_if1);
3461			CSR_WRITE_4(sc, SK_BMU_TXS_CSR1, SK_TXBMU_CLR_IRQ_EOF);
3462		}
3463
3464		/* Then MAC interrupts. */
3465		if (status & SK_ISR_MAC1 &&
3466		    ifp0->if_drv_flags & IFF_DRV_RUNNING) {
3467			if (sc->sk_type == SK_GENESIS)
3468				sk_intr_xmac(sc_if0);
3469			else
3470				sk_intr_yukon(sc_if0);
3471		}
3472
3473		if (status & SK_ISR_MAC2 &&
3474		    ifp1->if_drv_flags & IFF_DRV_RUNNING) {
3475			if (sc->sk_type == SK_GENESIS)
3476				sk_intr_xmac(sc_if1);
3477			else
3478				sk_intr_yukon(sc_if1);
3479		}
3480
3481		if (status & SK_ISR_EXTERNAL_REG) {
3482			if (ifp0 != NULL &&
3483			    sc_if0->sk_phytype == SK_PHYTYPE_BCOM)
3484				sk_intr_bcom(sc_if0);
3485			if (ifp1 != NULL &&
3486			    sc_if1->sk_phytype == SK_PHYTYPE_BCOM)
3487				sk_intr_bcom(sc_if1);
3488		}
3489		status = CSR_READ_4(sc, SK_ISSR);
3490	}
3491
3492	CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
3493
3494	if (ifp0 != NULL && !IFQ_DRV_IS_EMPTY(&ifp0->if_snd))
3495		sk_start_locked(ifp0);
3496	if (ifp1 != NULL && !IFQ_DRV_IS_EMPTY(&ifp1->if_snd))
3497		sk_start_locked(ifp1);
3498
3499done_locked:
3500	SK_UNLOCK(sc);
3501}
3502
3503static void
3504sk_init_xmac(sc_if)
3505	struct sk_if_softc	*sc_if;
3506{
3507	struct sk_softc		*sc;
3508	struct ifnet		*ifp;
3509	u_int16_t		eaddr[(ETHER_ADDR_LEN+1)/2];
3510	struct sk_bcom_hack	bhack[] = {
3511	{ 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 }, { 0x17, 0x0013 },
3512	{ 0x15, 0x0404 }, { 0x17, 0x8006 }, { 0x15, 0x0132 }, { 0x17, 0x8006 },
3513	{ 0x15, 0x0232 }, { 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 },
3514	{ 0, 0 } };
3515
3516	SK_IF_LOCK_ASSERT(sc_if);
3517
3518	sc = sc_if->sk_softc;
3519	ifp = sc_if->sk_ifp;
3520
3521	/* Unreset the XMAC. */
3522	SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL, SK_TXMACCTL_XMAC_UNRESET);
3523	DELAY(1000);
3524
3525	/* Reset the XMAC's internal state. */
3526	SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
3527
3528	/* Save the XMAC II revision */
3529	sc_if->sk_xmac_rev = XM_XMAC_REV(SK_XM_READ_4(sc_if, XM_DEVID));
3530
3531	/*
3532	 * Perform additional initialization for external PHYs,
3533	 * namely for the 1000baseTX cards that use the XMAC's
3534	 * GMII mode.
3535	 */
3536	if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
3537		int			i = 0;
3538		u_int32_t		val;
3539
3540		/* Take PHY out of reset. */
3541		val = sk_win_read_4(sc, SK_GPIO);
3542		if (sc_if->sk_port == SK_PORT_A)
3543			val |= SK_GPIO_DIR0|SK_GPIO_DAT0;
3544		else
3545			val |= SK_GPIO_DIR2|SK_GPIO_DAT2;
3546		sk_win_write_4(sc, SK_GPIO, val);
3547
3548		/* Enable GMII mode on the XMAC. */
3549		SK_XM_SETBIT_2(sc_if, XM_HWCFG, XM_HWCFG_GMIIMODE);
3550
3551		sk_xmac_miibus_writereg(sc_if, SK_PHYADDR_BCOM,
3552		    BRGPHY_MII_BMCR, BRGPHY_BMCR_RESET);
3553		DELAY(10000);
3554		sk_xmac_miibus_writereg(sc_if, SK_PHYADDR_BCOM,
3555		    BRGPHY_MII_IMR, 0xFFF0);
3556
3557		/*
3558		 * Early versions of the BCM5400 apparently have
3559		 * a bug that requires them to have their reserved
3560		 * registers initialized to some magic values. I don't
3561		 * know what the numbers do, I'm just the messenger.
3562		 */
3563		if (sk_xmac_miibus_readreg(sc_if, SK_PHYADDR_BCOM, 0x03)
3564		    == 0x6041) {
3565			while(bhack[i].reg) {
3566				sk_xmac_miibus_writereg(sc_if, SK_PHYADDR_BCOM,
3567				    bhack[i].reg, bhack[i].val);
3568				i++;
3569			}
3570		}
3571	}
3572
3573	/* Set station address */
3574	bcopy(IF_LLADDR(sc_if->sk_ifp), eaddr, ETHER_ADDR_LEN);
3575	SK_XM_WRITE_2(sc_if, XM_PAR0, eaddr[0]);
3576	SK_XM_WRITE_2(sc_if, XM_PAR1, eaddr[1]);
3577	SK_XM_WRITE_2(sc_if, XM_PAR2, eaddr[2]);
3578	SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_STATION);
3579
3580	if (ifp->if_flags & IFF_BROADCAST) {
3581		SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
3582	} else {
3583		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
3584	}
3585
3586	/* We don't need the FCS appended to the packet. */
3587	SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_STRIPFCS);
3588
3589	/* We want short frames padded to 60 bytes. */
3590	SK_XM_SETBIT_2(sc_if, XM_TXCMD, XM_TXCMD_AUTOPAD);
3591
3592	/*
3593	 * Enable the reception of all error frames. This is is
3594	 * a necessary evil due to the design of the XMAC. The
3595	 * XMAC's receive FIFO is only 8K in size, however jumbo
3596	 * frames can be up to 9000 bytes in length. When bad
3597	 * frame filtering is enabled, the XMAC's RX FIFO operates
3598	 * in 'store and forward' mode. For this to work, the
3599	 * entire frame has to fit into the FIFO, but that means
3600	 * that jumbo frames larger than 8192 bytes will be
3601	 * truncated. Disabling all bad frame filtering causes
3602	 * the RX FIFO to operate in streaming mode, in which
3603	 * case the XMAC will start transfering frames out of the
3604	 * RX FIFO as soon as the FIFO threshold is reached.
3605	 */
3606	if (ifp->if_mtu > SK_MAX_FRAMELEN) {
3607		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_BADFRAMES|
3608		    XM_MODE_RX_GIANTS|XM_MODE_RX_RUNTS|XM_MODE_RX_CRCERRS|
3609		    XM_MODE_RX_INRANGELEN);
3610		SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK);
3611	} else
3612		SK_XM_CLRBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK);
3613
3614	/*
3615	 * Bump up the transmit threshold. This helps hold off transmit
3616	 * underruns when we're blasting traffic from both ports at once.
3617	 */
3618	SK_XM_WRITE_2(sc_if, XM_TX_REQTHRESH, SK_XM_TX_FIFOTHRESH);
3619
3620	/* Set promiscuous mode */
3621	sk_setpromisc(sc_if);
3622
3623	/* Set multicast filter */
3624	sk_setmulti(sc_if);
3625
3626	/* Clear and enable interrupts */
3627	SK_XM_READ_2(sc_if, XM_ISR);
3628	if (sc_if->sk_phytype == SK_PHYTYPE_XMAC)
3629		SK_XM_WRITE_2(sc_if, XM_IMR, XM_INTRS);
3630	else
3631		SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
3632
3633	/* Configure MAC arbiter */
3634	switch(sc_if->sk_xmac_rev) {
3635	case XM_XMAC_REV_B2:
3636		sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_B2);
3637		sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_B2);
3638		sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_B2);
3639		sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_B2);
3640		sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_B2);
3641		sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_B2);
3642		sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_B2);
3643		sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_B2);
3644		sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
3645		break;
3646	case XM_XMAC_REV_C1:
3647		sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_C1);
3648		sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_C1);
3649		sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_C1);
3650		sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_C1);
3651		sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_C1);
3652		sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_C1);
3653		sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_C1);
3654		sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_C1);
3655		sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
3656		break;
3657	default:
3658		break;
3659	}
3660	sk_win_write_2(sc, SK_MACARB_CTL,
3661	    SK_MACARBCTL_UNRESET|SK_MACARBCTL_FASTOE_OFF);
3662
3663	sc_if->sk_link = 1;
3664
3665	return;
3666}
3667
3668static void
3669sk_init_yukon(sc_if)
3670	struct sk_if_softc	*sc_if;
3671{
3672	u_int32_t		phy, v;
3673	u_int16_t		reg;
3674	struct sk_softc		*sc;
3675	struct ifnet		*ifp;
3676	int			i;
3677
3678	SK_IF_LOCK_ASSERT(sc_if);
3679
3680	sc = sc_if->sk_softc;
3681	ifp = sc_if->sk_ifp;
3682
3683	if (sc->sk_type == SK_YUKON_LITE &&
3684	    sc->sk_rev >= SK_YUKON_LITE_REV_A3) {
3685		/*
3686		 * Workaround code for COMA mode, set PHY reset.
3687		 * Otherwise it will not correctly take chip out of
3688		 * powerdown (coma)
3689		 */
3690		v = sk_win_read_4(sc, SK_GPIO);
3691		v |= SK_GPIO_DIR9 | SK_GPIO_DAT9;
3692		sk_win_write_4(sc, SK_GPIO, v);
3693	}
3694
3695	/* GMAC and GPHY Reset */
3696	SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, SK_GPHY_RESET_SET);
3697	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
3698	DELAY(1000);
3699
3700	if (sc->sk_type == SK_YUKON_LITE &&
3701	    sc->sk_rev >= SK_YUKON_LITE_REV_A3) {
3702		/*
3703		 * Workaround code for COMA mode, clear PHY reset
3704		 */
3705		v = sk_win_read_4(sc, SK_GPIO);
3706		v |= SK_GPIO_DIR9;
3707		v &= ~SK_GPIO_DAT9;
3708		sk_win_write_4(sc, SK_GPIO, v);
3709	}
3710
3711	phy = SK_GPHY_INT_POL_HI | SK_GPHY_DIS_FC | SK_GPHY_DIS_SLEEP |
3712		SK_GPHY_ENA_XC | SK_GPHY_ANEG_ALL | SK_GPHY_ENA_PAUSE;
3713
3714	if (sc->sk_coppertype)
3715		phy |= SK_GPHY_COPPER;
3716	else
3717		phy |= SK_GPHY_FIBER;
3718
3719	SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_SET);
3720	DELAY(1000);
3721	SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_CLEAR);
3722	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_LOOP_OFF |
3723		      SK_GMAC_PAUSE_ON | SK_GMAC_RESET_CLEAR);
3724
3725	/* unused read of the interrupt source register */
3726	SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
3727
3728	reg = SK_YU_READ_2(sc_if, YUKON_PAR);
3729
3730	/* MIB Counter Clear Mode set */
3731	reg |= YU_PAR_MIB_CLR;
3732	SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
3733
3734	/* MIB Counter Clear Mode clear */
3735	reg &= ~YU_PAR_MIB_CLR;
3736	SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
3737
3738	/* receive control reg */
3739	SK_YU_WRITE_2(sc_if, YUKON_RCR, YU_RCR_CRCR);
3740
3741	/* transmit parameter register */
3742	SK_YU_WRITE_2(sc_if, YUKON_TPR, YU_TPR_JAM_LEN(0x3) |
3743		      YU_TPR_JAM_IPG(0xb) | YU_TPR_JAM2DATA_IPG(0x1a) );
3744
3745	/* serial mode register */
3746	reg = YU_SMR_DATA_BLIND(0x1c) | YU_SMR_MFL_VLAN | YU_SMR_IPG_DATA(0x1e);
3747	if (ifp->if_mtu > SK_MAX_FRAMELEN)
3748		reg |= YU_SMR_MFL_JUMBO;
3749	SK_YU_WRITE_2(sc_if, YUKON_SMR, reg);
3750
3751	/* Setup Yukon's address */
3752	for (i = 0; i < 3; i++) {
3753		/* Write Source Address 1 (unicast filter) */
3754		SK_YU_WRITE_2(sc_if, YUKON_SAL1 + i * 4,
3755			      IF_LLADDR(sc_if->sk_ifp)[i * 2] |
3756			      IF_LLADDR(sc_if->sk_ifp)[i * 2 + 1] << 8);
3757	}
3758
3759	for (i = 0; i < 3; i++) {
3760		reg = sk_win_read_2(sc_if->sk_softc,
3761				    SK_MAC1_0 + i * 2 + sc_if->sk_port * 8);
3762		SK_YU_WRITE_2(sc_if, YUKON_SAL2 + i * 4, reg);
3763	}
3764
3765	/* Set promiscuous mode */
3766	sk_setpromisc(sc_if);
3767
3768	/* Set multicast filter */
3769	sk_setmulti(sc_if);
3770
3771	/* enable interrupt mask for counter overflows */
3772	SK_YU_WRITE_2(sc_if, YUKON_TIMR, 0);
3773	SK_YU_WRITE_2(sc_if, YUKON_RIMR, 0);
3774	SK_YU_WRITE_2(sc_if, YUKON_TRIMR, 0);
3775
3776	/* Configure RX MAC FIFO Flush Mask */
3777	v = YU_RXSTAT_FOFL | YU_RXSTAT_CRCERR | YU_RXSTAT_MIIERR |
3778	    YU_RXSTAT_BADFC | YU_RXSTAT_GOODFC | YU_RXSTAT_RUNT |
3779	    YU_RXSTAT_JABBER;
3780	SK_IF_WRITE_2(sc_if, 0, SK_RXMF1_FLUSH_MASK, v);
3781
3782	/* Disable RX MAC FIFO Flush for YUKON-Lite Rev. A0 only */
3783	if (sc->sk_type == SK_YUKON_LITE && sc->sk_rev == SK_YUKON_LITE_REV_A0)
3784		v = SK_TFCTL_OPERATION_ON;
3785	else
3786		v = SK_TFCTL_OPERATION_ON | SK_RFCTL_FIFO_FLUSH_ON;
3787	/* Configure RX MAC FIFO */
3788	SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_CLEAR);
3789	SK_IF_WRITE_2(sc_if, 0, SK_RXMF1_CTRL_TEST, v);
3790
3791	/* Increase flush threshould to 64 bytes */
3792	SK_IF_WRITE_2(sc_if, 0, SK_RXMF1_FLUSH_THRESHOLD,
3793	    SK_RFCTL_FIFO_THRESHOLD + 1);
3794
3795	/* Configure TX MAC FIFO */
3796	SK_IF_WRITE_1(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_CLEAR);
3797	SK_IF_WRITE_2(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_OPERATION_ON);
3798}
3799
3800/*
3801 * Note that to properly initialize any part of the GEnesis chip,
3802 * you first have to take it out of reset mode.
3803 */
3804static void
3805sk_init(xsc)
3806	void			*xsc;
3807{
3808	struct sk_if_softc	*sc_if = xsc;
3809
3810	SK_IF_LOCK(sc_if);
3811	sk_init_locked(sc_if);
3812	SK_IF_UNLOCK(sc_if);
3813
3814	return;
3815}
3816
3817static void
3818sk_init_locked(sc_if)
3819	struct sk_if_softc	*sc_if;
3820{
3821	struct sk_softc		*sc;
3822	struct ifnet		*ifp;
3823	struct mii_data		*mii;
3824	u_int16_t		reg;
3825	u_int32_t		imr;
3826	int			error;
3827
3828	SK_IF_LOCK_ASSERT(sc_if);
3829
3830	ifp = sc_if->sk_ifp;
3831	sc = sc_if->sk_softc;
3832	mii = device_get_softc(sc_if->sk_miibus);
3833
3834	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
3835		return;
3836
3837	/* Cancel pending I/O and free all RX/TX buffers. */
3838	sk_stop(sc_if);
3839
3840	if (sc->sk_type == SK_GENESIS) {
3841		/* Configure LINK_SYNC LED */
3842		SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_ON);
3843		SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL,
3844			SK_LINKLED_LINKSYNC_ON);
3845
3846		/* Configure RX LED */
3847		SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL,
3848			SK_RXLEDCTL_COUNTER_START);
3849
3850		/* Configure TX LED */
3851		SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL,
3852			SK_TXLEDCTL_COUNTER_START);
3853	}
3854
3855	/*
3856	 * Configure descriptor poll timer
3857	 *
3858	 * SK-NET GENESIS data sheet says that possibility of losing Start
3859	 * transmit command due to CPU/cache related interim storage problems
3860	 * under certain conditions. The document recommends a polling
3861	 * mechanism to send a Start transmit command to initiate transfer
3862	 * of ready descriptors regulary. To cope with this issue sk(4) now
3863	 * enables descriptor poll timer to initiate descriptor processing
3864	 * periodically as defined by SK_DPT_TIMER_MAX. However sk(4) still
3865	 * issue SK_TXBMU_TX_START to Tx BMU to get fast execution of Tx
3866	 * command instead of waiting for next descriptor polling time.
3867	 * The same rule may apply to Rx side too but it seems that is not
3868	 * needed at the moment.
3869	 * Since sk(4) uses descriptor polling as a last resort there is no
3870	 * need to set smaller polling time than maximum allowable one.
3871	 */
3872	SK_IF_WRITE_4(sc_if, 0, SK_DPT_INIT, SK_DPT_TIMER_MAX);
3873
3874	/* Configure I2C registers */
3875
3876	/* Configure XMAC(s) */
3877	switch (sc->sk_type) {
3878	case SK_GENESIS:
3879		sk_init_xmac(sc_if);
3880		break;
3881	case SK_YUKON:
3882	case SK_YUKON_LITE:
3883	case SK_YUKON_LP:
3884	case SK_YUKON_EC:
3885		sk_init_yukon(sc_if);
3886		break;
3887	}
3888	mii_mediachg(mii);
3889
3890	if (sc->sk_type == SK_GENESIS) {
3891		/* Configure MAC FIFOs */
3892		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_UNRESET);
3893		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_END, SK_FIFO_END);
3894		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_ON);
3895
3896		SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_UNRESET);
3897		SK_IF_WRITE_4(sc_if, 0, SK_TXF1_END, SK_FIFO_END);
3898		SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_ON);
3899	}
3900
3901	/* Configure transmit arbiter(s) */
3902	SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL,
3903	    SK_TXARCTL_ON|SK_TXARCTL_FSYNC_ON);
3904
3905	/* Configure RAMbuffers */
3906	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_UNRESET);
3907	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_START, sc_if->sk_rx_ramstart);
3908	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_WR_PTR, sc_if->sk_rx_ramstart);
3909	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_RD_PTR, sc_if->sk_rx_ramstart);
3910	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_END, sc_if->sk_rx_ramend);
3911	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_ON);
3912
3913	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_UNRESET);
3914	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_STORENFWD_ON);
3915	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_START, sc_if->sk_tx_ramstart);
3916	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_WR_PTR, sc_if->sk_tx_ramstart);
3917	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_RD_PTR, sc_if->sk_tx_ramstart);
3918	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_END, sc_if->sk_tx_ramend);
3919	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_ON);
3920
3921	/* Configure BMUs */
3922	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_ONLINE);
3923	if (ifp->if_mtu > SK_MAX_FRAMELEN) {
3924		SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_LO,
3925		    SK_ADDR_LO(SK_JUMBO_RX_RING_ADDR(sc_if, 0)));
3926		SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_HI,
3927		    SK_ADDR_HI(SK_JUMBO_RX_RING_ADDR(sc_if, 0)));
3928	} else {
3929		SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_LO,
3930		    SK_ADDR_LO(SK_RX_RING_ADDR(sc_if, 0)));
3931		SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_HI,
3932		    SK_ADDR_HI(SK_RX_RING_ADDR(sc_if, 0)));
3933	}
3934
3935	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_ONLINE);
3936	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_LO,
3937	    SK_ADDR_LO(SK_TX_RING_ADDR(sc_if, 0)));
3938	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_HI,
3939	    SK_ADDR_HI(SK_TX_RING_ADDR(sc_if, 0)));
3940
3941	/* Init descriptors */
3942	if (ifp->if_mtu > SK_MAX_FRAMELEN)
3943		error = sk_init_jumbo_rx_ring(sc_if);
3944	else
3945		error = sk_init_rx_ring(sc_if);
3946	if (error != 0) {
3947		device_printf(sc_if->sk_if_dev,
3948		    "initialization failed: no memory for rx buffers\n");
3949		sk_stop(sc_if);
3950		return;
3951	}
3952	sk_init_tx_ring(sc_if);
3953
3954	/* Set interrupt moderation if changed via sysctl. */
3955	imr = sk_win_read_4(sc, SK_IMTIMERINIT);
3956	if (imr != SK_IM_USECS(sc->sk_int_mod, sc->sk_int_ticks)) {
3957		sk_win_write_4(sc, SK_IMTIMERINIT, SK_IM_USECS(sc->sk_int_mod,
3958		    sc->sk_int_ticks));
3959		if (bootverbose)
3960			device_printf(sc_if->sk_if_dev,
3961			    "interrupt moderation is %d us.\n",
3962			    sc->sk_int_mod);
3963	}
3964
3965	/* Configure interrupt handling */
3966	CSR_READ_4(sc, SK_ISSR);
3967	if (sc_if->sk_port == SK_PORT_A)
3968		sc->sk_intrmask |= SK_INTRS1;
3969	else
3970		sc->sk_intrmask |= SK_INTRS2;
3971
3972	sc->sk_intrmask |= SK_ISR_EXTERNAL_REG;
3973
3974	CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
3975
3976	/* Start BMUs. */
3977	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_RX_START);
3978
3979	switch(sc->sk_type) {
3980	case SK_GENESIS:
3981		/* Enable XMACs TX and RX state machines */
3982		SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_IGNPAUSE);
3983		SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
3984		break;
3985	case SK_YUKON:
3986	case SK_YUKON_LITE:
3987	case SK_YUKON_LP:
3988	case SK_YUKON_EC:
3989		reg = SK_YU_READ_2(sc_if, YUKON_GPCR);
3990		reg |= YU_GPCR_TXEN | YU_GPCR_RXEN;
3991#if 0
3992		/* XXX disable 100Mbps and full duplex mode? */
3993		reg &= ~(YU_GPCR_SPEED | YU_GPCR_DPLX_DIS);
3994#endif
3995		SK_YU_WRITE_2(sc_if, YUKON_GPCR, reg);
3996	}
3997
3998	/* Activate descriptor polling timer */
3999	SK_IF_WRITE_4(sc_if, 0, SK_DPT_TIMER_CTRL, SK_DPT_TCTL_START);
4000	/* start transfer of Tx descriptors */
4001	CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_START);
4002
4003	ifp->if_drv_flags |= IFF_DRV_RUNNING;
4004	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
4005
4006	switch (sc->sk_type) {
4007	case SK_YUKON:
4008	case SK_YUKON_LITE:
4009	case SK_YUKON_LP:
4010	case SK_YUKON_EC:
4011		callout_reset(&sc_if->sk_tick_ch, hz, sk_yukon_tick, sc_if);
4012		break;
4013	}
4014
4015	return;
4016}
4017
4018static void
4019sk_stop(sc_if)
4020	struct sk_if_softc	*sc_if;
4021{
4022	int			i;
4023	struct sk_softc		*sc;
4024	struct sk_txdesc	*txd;
4025	struct sk_rxdesc	*rxd;
4026	struct sk_rxdesc	*jrxd;
4027	struct ifnet		*ifp;
4028	u_int32_t		val;
4029
4030	SK_IF_LOCK_ASSERT(sc_if);
4031	sc = sc_if->sk_softc;
4032	ifp = sc_if->sk_ifp;
4033
4034	callout_stop(&sc_if->sk_tick_ch);
4035
4036	/* stop Tx descriptor polling timer */
4037	SK_IF_WRITE_4(sc_if, 0, SK_DPT_TIMER_CTRL, SK_DPT_TCTL_STOP);
4038	/* stop transfer of Tx descriptors */
4039	CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_STOP);
4040	for (i = 0; i < SK_TIMEOUT; i++) {
4041		val = CSR_READ_4(sc, sc_if->sk_tx_bmu);
4042		if ((val & SK_TXBMU_TX_STOP) == 0)
4043			break;
4044		DELAY(1);
4045	}
4046	if (i == SK_TIMEOUT)
4047		device_printf(sc_if->sk_if_dev,
4048		    "can not stop transfer of Tx descriptor\n");
4049	/* stop transfer of Rx descriptors */
4050	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_RX_STOP);
4051	for (i = 0; i < SK_TIMEOUT; i++) {
4052		val = SK_IF_READ_4(sc_if, 0, SK_RXQ1_BMU_CSR);
4053		if ((val & SK_RXBMU_RX_STOP) == 0)
4054			break;
4055		DELAY(1);
4056	}
4057	if (i == SK_TIMEOUT)
4058		device_printf(sc_if->sk_if_dev,
4059		    "can not stop transfer of Rx descriptor\n");
4060
4061	if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
4062		/* Put PHY back into reset. */
4063		val = sk_win_read_4(sc, SK_GPIO);
4064		if (sc_if->sk_port == SK_PORT_A) {
4065			val |= SK_GPIO_DIR0;
4066			val &= ~SK_GPIO_DAT0;
4067		} else {
4068			val |= SK_GPIO_DIR2;
4069			val &= ~SK_GPIO_DAT2;
4070		}
4071		sk_win_write_4(sc, SK_GPIO, val);
4072	}
4073
4074	/* Turn off various components of this interface. */
4075	SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
4076	switch (sc->sk_type) {
4077	case SK_GENESIS:
4078		SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL, SK_TXMACCTL_XMAC_RESET);
4079		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_RESET);
4080		break;
4081	case SK_YUKON:
4082	case SK_YUKON_LITE:
4083	case SK_YUKON_LP:
4084	case SK_YUKON_EC:
4085		SK_IF_WRITE_1(sc_if,0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_SET);
4086		SK_IF_WRITE_1(sc_if,0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_SET);
4087		break;
4088	}
4089	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_OFFLINE);
4090	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
4091	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_OFFLINE);
4092	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
4093	SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL, SK_TXARCTL_OFF);
4094	SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
4095	SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
4096	SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_OFF);
4097	SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_LINKSYNC_OFF);
4098
4099	/* Disable interrupts */
4100	if (sc_if->sk_port == SK_PORT_A)
4101		sc->sk_intrmask &= ~SK_INTRS1;
4102	else
4103		sc->sk_intrmask &= ~SK_INTRS2;
4104	CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
4105
4106	SK_XM_READ_2(sc_if, XM_ISR);
4107	SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
4108
4109	/* Free RX and TX mbufs still in the queues. */
4110	for (i = 0; i < SK_RX_RING_CNT; i++) {
4111		rxd = &sc_if->sk_cdata.sk_rxdesc[i];
4112		if (rxd->rx_m != NULL) {
4113			bus_dmamap_sync(sc_if->sk_cdata.sk_rx_tag,
4114			    rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
4115			bus_dmamap_unload(sc_if->sk_cdata.sk_rx_tag,
4116			    rxd->rx_dmamap);
4117			m_freem(rxd->rx_m);
4118			rxd->rx_m = NULL;
4119		}
4120	}
4121	for (i = 0; i < SK_JUMBO_RX_RING_CNT; i++) {
4122		jrxd = &sc_if->sk_cdata.sk_jumbo_rxdesc[i];
4123		if (jrxd->rx_m != NULL) {
4124			bus_dmamap_sync(sc_if->sk_cdata.sk_jumbo_rx_tag,
4125			    jrxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
4126			bus_dmamap_unload(sc_if->sk_cdata.sk_jumbo_rx_tag,
4127			    jrxd->rx_dmamap);
4128			m_freem(jrxd->rx_m);
4129			jrxd->rx_m = NULL;
4130		}
4131	}
4132	for (i = 0; i < SK_TX_RING_CNT; i++) {
4133		txd = &sc_if->sk_cdata.sk_txdesc[i];
4134		if (txd->tx_m != NULL) {
4135			bus_dmamap_sync(sc_if->sk_cdata.sk_tx_tag,
4136			    txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
4137			bus_dmamap_unload(sc_if->sk_cdata.sk_tx_tag,
4138			    txd->tx_dmamap);
4139			m_freem(txd->tx_m);
4140			txd->tx_m = NULL;
4141		}
4142	}
4143
4144	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING|IFF_DRV_OACTIVE);
4145
4146	return;
4147}
4148
4149static int
4150sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
4151{
4152	int error, value;
4153
4154	if (!arg1)
4155		return (EINVAL);
4156	value = *(int *)arg1;
4157	error = sysctl_handle_int(oidp, &value, 0, req);
4158	if (error || !req->newptr)
4159		return (error);
4160	if (value < low || value > high)
4161		return (EINVAL);
4162	*(int *)arg1 = value;
4163	return (0);
4164}
4165
4166static int
4167sysctl_hw_sk_int_mod(SYSCTL_HANDLER_ARGS)
4168{
4169	return (sysctl_int_range(oidp, arg1, arg2, req, SK_IM_MIN, SK_IM_MAX));
4170}
4171