if_sk.c revision 142398
1/*	$OpenBSD: if_sk.c,v 2.33 2003/08/12 05:23:06 nate Exp $	*/
2
3/*-
4 * Copyright (c) 1997, 1998, 1999, 2000
5 *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 *    notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 *    notice, this list of conditions and the following disclaimer in the
14 *    documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 *    must display the following acknowledgement:
17 *	This product includes software developed by Bill Paul.
18 * 4. Neither the name of the author nor the names of any co-contributors
19 *    may be used to endorse or promote products derived from this software
20 *    without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
26 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
32 * THE POSSIBILITY OF SUCH DAMAGE.
33 */
34/*-
35 * Copyright (c) 2003 Nathan L. Binkert <binkertn@umich.edu>
36 *
37 * Permission to use, copy, modify, and distribute this software for any
38 * purpose with or without fee is hereby granted, provided that the above
39 * copyright notice and this permission notice appear in all copies.
40 *
41 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
42 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
43 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
44 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
45 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
46 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
47 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
48 */
49
50#include <sys/cdefs.h>
51__FBSDID("$FreeBSD: head/sys/dev/sk/if_sk.c 142398 2005-02-24 21:32:56Z imp $");
52
53/*
54 * SysKonnect SK-NET gigabit ethernet driver for FreeBSD. Supports
55 * the SK-984x series adapters, both single port and dual port.
56 * References:
57 * 	The XaQti XMAC II datasheet,
58 *  http://www.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
59 *	The SysKonnect GEnesis manual, http://www.syskonnect.com
60 *
61 * Note: XaQti has been aquired by Vitesse, and Vitesse does not have the
62 * XMAC II datasheet online. I have put my copy at people.freebsd.org as a
63 * convenience to others until Vitesse corrects this problem:
64 *
65 * http://people.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
66 *
67 * Written by Bill Paul <wpaul@ee.columbia.edu>
68 * Department of Electrical Engineering
69 * Columbia University, New York City
70 */
71/*
72 * The SysKonnect gigabit ethernet adapters consist of two main
73 * components: the SysKonnect GEnesis controller chip and the XaQti Corp.
74 * XMAC II gigabit ethernet MAC. The XMAC provides all of the MAC
75 * components and a PHY while the GEnesis controller provides a PCI
76 * interface with DMA support. Each card may have between 512K and
77 * 2MB of SRAM on board depending on the configuration.
78 *
79 * The SysKonnect GEnesis controller can have either one or two XMAC
80 * chips connected to it, allowing single or dual port NIC configurations.
81 * SysKonnect has the distinction of being the only vendor on the market
82 * with a dual port gigabit ethernet NIC. The GEnesis provides dual FIFOs,
83 * dual DMA queues, packet/MAC/transmit arbiters and direct access to the
84 * XMAC registers. This driver takes advantage of these features to allow
85 * both XMACs to operate as independent interfaces.
86 */
87
88#include <sys/param.h>
89#include <sys/systm.h>
90#include <sys/sockio.h>
91#include <sys/mbuf.h>
92#include <sys/malloc.h>
93#include <sys/kernel.h>
94#include <sys/module.h>
95#include <sys/socket.h>
96#include <sys/queue.h>
97
98#include <net/if.h>
99#include <net/if_arp.h>
100#include <net/ethernet.h>
101#include <net/if_dl.h>
102#include <net/if_media.h>
103
104#include <net/bpf.h>
105
106#include <vm/vm.h>              /* for vtophys */
107#include <vm/pmap.h>            /* for vtophys */
108#include <machine/bus_pio.h>
109#include <machine/bus_memio.h>
110#include <machine/bus.h>
111#include <machine/resource.h>
112#include <sys/bus.h>
113#include <sys/rman.h>
114
115#include <dev/mii/mii.h>
116#include <dev/mii/miivar.h>
117#include <dev/mii/brgphyreg.h>
118
119#include <dev/pci/pcireg.h>
120#include <dev/pci/pcivar.h>
121
122#if 0
123#define SK_USEIOSPACE
124#endif
125
126#include <pci/if_skreg.h>
127#include <pci/xmaciireg.h>
128#include <pci/yukonreg.h>
129
130MODULE_DEPEND(sk, pci, 1, 1, 1);
131MODULE_DEPEND(sk, ether, 1, 1, 1);
132MODULE_DEPEND(sk, miibus, 1, 1, 1);
133
134/* "controller miibus0" required.  See GENERIC if you get errors here. */
135#include "miibus_if.h"
136
137#ifndef lint
138static const char rcsid[] =
139  "$FreeBSD: head/sys/dev/sk/if_sk.c 142398 2005-02-24 21:32:56Z imp $";
140#endif
141
142static struct sk_type sk_devs[] = {
143	{
144		VENDORID_SK,
145		DEVICEID_SK_V1,
146		"SysKonnect Gigabit Ethernet (V1.0)"
147	},
148	{
149		VENDORID_SK,
150		DEVICEID_SK_V2,
151		"SysKonnect Gigabit Ethernet (V2.0)"
152	},
153	{
154		VENDORID_MARVELL,
155		DEVICEID_SK_V2,
156		"Marvell Gigabit Ethernet"
157	},
158	{
159		VENDORID_MARVELL,
160		DEVICEID_BELKIN_5005,
161		"Belkin F5D5005 Gigabit Ethernet"
162	},
163	{
164		VENDORID_3COM,
165		DEVICEID_3COM_3C940,
166		"3Com 3C940 Gigabit Ethernet"
167	},
168	{
169		VENDORID_LINKSYS,
170		DEVICEID_LINKSYS_EG1032,
171		"Linksys EG1032 Gigabit Ethernet"
172	},
173	{
174		VENDORID_DLINK,
175		DEVICEID_DLINK_DGE530T,
176		"D-Link DGE-530T Gigabit Ethernet"
177	},
178	{ 0, 0, NULL }
179};
180
181static int skc_probe		(device_t);
182static int skc_attach		(device_t);
183static int skc_detach		(device_t);
184static void skc_shutdown	(device_t);
185static int sk_detach		(device_t);
186static int sk_probe		(device_t);
187static int sk_attach		(device_t);
188static void sk_tick		(void *);
189static void sk_intr		(void *);
190static void sk_intr_xmac	(struct sk_if_softc *);
191static void sk_intr_bcom	(struct sk_if_softc *);
192static void sk_intr_yukon	(struct sk_if_softc *);
193static void sk_rxeof		(struct sk_if_softc *);
194static void sk_txeof		(struct sk_if_softc *);
195static int sk_encap		(struct sk_if_softc *, struct mbuf *,
196					u_int32_t *);
197static void sk_start		(struct ifnet *);
198static int sk_ioctl		(struct ifnet *, u_long, caddr_t);
199static void sk_init		(void *);
200static void sk_init_xmac	(struct sk_if_softc *);
201static void sk_init_yukon	(struct sk_if_softc *);
202static void sk_stop		(struct sk_if_softc *);
203static void sk_watchdog		(struct ifnet *);
204static int sk_ifmedia_upd	(struct ifnet *);
205static void sk_ifmedia_sts	(struct ifnet *, struct ifmediareq *);
206static void sk_reset		(struct sk_softc *);
207static int sk_newbuf		(struct sk_if_softc *,
208					struct sk_chain *, struct mbuf *);
209static int sk_alloc_jumbo_mem	(struct sk_if_softc *);
210static void *sk_jalloc		(struct sk_if_softc *);
211static void sk_jfree		(void *, void *);
212static int sk_init_rx_ring	(struct sk_if_softc *);
213static void sk_init_tx_ring	(struct sk_if_softc *);
214static u_int32_t sk_win_read_4	(struct sk_softc *, int);
215static u_int16_t sk_win_read_2	(struct sk_softc *, int);
216static u_int8_t sk_win_read_1	(struct sk_softc *, int);
217static void sk_win_write_4	(struct sk_softc *, int, u_int32_t);
218static void sk_win_write_2	(struct sk_softc *, int, u_int32_t);
219static void sk_win_write_1	(struct sk_softc *, int, u_int32_t);
220static u_int8_t sk_vpd_readbyte	(struct sk_softc *, int);
221static void sk_vpd_read_res	(struct sk_softc *, struct vpd_res *, int);
222static void sk_vpd_read		(struct sk_softc *);
223
224static int sk_miibus_readreg	(device_t, int, int);
225static int sk_miibus_writereg	(device_t, int, int, int);
226static void sk_miibus_statchg	(device_t);
227
228static int sk_xmac_miibus_readreg	(struct sk_if_softc *, int, int);
229static int sk_xmac_miibus_writereg	(struct sk_if_softc *, int, int,
230						int);
231static void sk_xmac_miibus_statchg	(struct sk_if_softc *);
232
233static int sk_marv_miibus_readreg	(struct sk_if_softc *, int, int);
234static int sk_marv_miibus_writereg	(struct sk_if_softc *, int, int,
235						int);
236static void sk_marv_miibus_statchg	(struct sk_if_softc *);
237
238static uint32_t sk_xmchash	(const uint8_t *);
239static uint32_t sk_gmchash	(const uint8_t *);
240static void sk_setfilt		(struct sk_if_softc *, caddr_t, int);
241static void sk_setmulti		(struct sk_if_softc *);
242static void sk_setpromisc	(struct sk_if_softc *);
243
244#ifdef SK_USEIOSPACE
245#define SK_RES		SYS_RES_IOPORT
246#define SK_RID		SK_PCI_LOIO
247#else
248#define SK_RES		SYS_RES_MEMORY
249#define SK_RID		SK_PCI_LOMEM
250#endif
251
252/*
253 * Note that we have newbus methods for both the GEnesis controller
254 * itself and the XMAC(s). The XMACs are children of the GEnesis, and
255 * the miibus code is a child of the XMACs. We need to do it this way
256 * so that the miibus drivers can access the PHY registers on the
257 * right PHY. It's not quite what I had in mind, but it's the only
258 * design that achieves the desired effect.
259 */
260static device_method_t skc_methods[] = {
261	/* Device interface */
262	DEVMETHOD(device_probe,		skc_probe),
263	DEVMETHOD(device_attach,	skc_attach),
264	DEVMETHOD(device_detach,	skc_detach),
265	DEVMETHOD(device_shutdown,	skc_shutdown),
266
267	/* bus interface */
268	DEVMETHOD(bus_print_child,	bus_generic_print_child),
269	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
270
271	{ 0, 0 }
272};
273
274static driver_t skc_driver = {
275	"skc",
276	skc_methods,
277	sizeof(struct sk_softc)
278};
279
280static devclass_t skc_devclass;
281
282static device_method_t sk_methods[] = {
283	/* Device interface */
284	DEVMETHOD(device_probe,		sk_probe),
285	DEVMETHOD(device_attach,	sk_attach),
286	DEVMETHOD(device_detach,	sk_detach),
287	DEVMETHOD(device_shutdown,	bus_generic_shutdown),
288
289	/* bus interface */
290	DEVMETHOD(bus_print_child,	bus_generic_print_child),
291	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
292
293	/* MII interface */
294	DEVMETHOD(miibus_readreg,	sk_miibus_readreg),
295	DEVMETHOD(miibus_writereg,	sk_miibus_writereg),
296	DEVMETHOD(miibus_statchg,	sk_miibus_statchg),
297
298	{ 0, 0 }
299};
300
301static driver_t sk_driver = {
302	"sk",
303	sk_methods,
304	sizeof(struct sk_if_softc)
305};
306
307static devclass_t sk_devclass;
308
309DRIVER_MODULE(sk, pci, skc_driver, skc_devclass, 0, 0);
310DRIVER_MODULE(sk, skc, sk_driver, sk_devclass, 0, 0);
311DRIVER_MODULE(miibus, sk, miibus_driver, miibus_devclass, 0, 0);
312
313#define SK_SETBIT(sc, reg, x)		\
314	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) | x)
315
316#define SK_CLRBIT(sc, reg, x)		\
317	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) & ~x)
318
319#define SK_WIN_SETBIT_4(sc, reg, x)	\
320	sk_win_write_4(sc, reg, sk_win_read_4(sc, reg) | x)
321
322#define SK_WIN_CLRBIT_4(sc, reg, x)	\
323	sk_win_write_4(sc, reg, sk_win_read_4(sc, reg) & ~x)
324
325#define SK_WIN_SETBIT_2(sc, reg, x)	\
326	sk_win_write_2(sc, reg, sk_win_read_2(sc, reg) | x)
327
328#define SK_WIN_CLRBIT_2(sc, reg, x)	\
329	sk_win_write_2(sc, reg, sk_win_read_2(sc, reg) & ~x)
330
331static u_int32_t
332sk_win_read_4(sc, reg)
333	struct sk_softc		*sc;
334	int			reg;
335{
336#ifdef SK_USEIOSPACE
337	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
338	return(CSR_READ_4(sc, SK_WIN_BASE + SK_REG(reg)));
339#else
340	return(CSR_READ_4(sc, reg));
341#endif
342}
343
344static u_int16_t
345sk_win_read_2(sc, reg)
346	struct sk_softc		*sc;
347	int			reg;
348{
349#ifdef SK_USEIOSPACE
350	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
351	return(CSR_READ_2(sc, SK_WIN_BASE + SK_REG(reg)));
352#else
353	return(CSR_READ_2(sc, reg));
354#endif
355}
356
357static u_int8_t
358sk_win_read_1(sc, reg)
359	struct sk_softc		*sc;
360	int			reg;
361{
362#ifdef SK_USEIOSPACE
363	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
364	return(CSR_READ_1(sc, SK_WIN_BASE + SK_REG(reg)));
365#else
366	return(CSR_READ_1(sc, reg));
367#endif
368}
369
370static void
371sk_win_write_4(sc, reg, val)
372	struct sk_softc		*sc;
373	int			reg;
374	u_int32_t		val;
375{
376#ifdef SK_USEIOSPACE
377	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
378	CSR_WRITE_4(sc, SK_WIN_BASE + SK_REG(reg), val);
379#else
380	CSR_WRITE_4(sc, reg, val);
381#endif
382	return;
383}
384
385static void
386sk_win_write_2(sc, reg, val)
387	struct sk_softc		*sc;
388	int			reg;
389	u_int32_t		val;
390{
391#ifdef SK_USEIOSPACE
392	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
393	CSR_WRITE_2(sc, SK_WIN_BASE + SK_REG(reg), val);
394#else
395	CSR_WRITE_2(sc, reg, val);
396#endif
397	return;
398}
399
400static void
401sk_win_write_1(sc, reg, val)
402	struct sk_softc		*sc;
403	int			reg;
404	u_int32_t		val;
405{
406#ifdef SK_USEIOSPACE
407	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
408	CSR_WRITE_1(sc, SK_WIN_BASE + SK_REG(reg), val);
409#else
410	CSR_WRITE_1(sc, reg, val);
411#endif
412	return;
413}
414
415/*
416 * The VPD EEPROM contains Vital Product Data, as suggested in
417 * the PCI 2.1 specification. The VPD data is separared into areas
418 * denoted by resource IDs. The SysKonnect VPD contains an ID string
419 * resource (the name of the adapter), a read-only area resource
420 * containing various key/data fields and a read/write area which
421 * can be used to store asset management information or log messages.
422 * We read the ID string and read-only into buffers attached to
423 * the controller softc structure for later use. At the moment,
424 * we only use the ID string during skc_attach().
425 */
426static u_int8_t
427sk_vpd_readbyte(sc, addr)
428	struct sk_softc		*sc;
429	int			addr;
430{
431	int			i;
432
433	sk_win_write_2(sc, SK_PCI_REG(SK_PCI_VPD_ADDR), addr);
434	for (i = 0; i < SK_TIMEOUT; i++) {
435		DELAY(1);
436		if (sk_win_read_2(sc,
437		    SK_PCI_REG(SK_PCI_VPD_ADDR)) & SK_VPD_FLAG)
438			break;
439	}
440
441	if (i == SK_TIMEOUT)
442		return(0);
443
444	return(sk_win_read_1(sc, SK_PCI_REG(SK_PCI_VPD_DATA)));
445}
446
447static void
448sk_vpd_read_res(sc, res, addr)
449	struct sk_softc		*sc;
450	struct vpd_res		*res;
451	int			addr;
452{
453	int			i;
454	u_int8_t		*ptr;
455
456	ptr = (u_int8_t *)res;
457	for (i = 0; i < sizeof(struct vpd_res); i++)
458		ptr[i] = sk_vpd_readbyte(sc, i + addr);
459
460	return;
461}
462
463static void
464sk_vpd_read(sc)
465	struct sk_softc		*sc;
466{
467	int			pos = 0, i;
468	struct vpd_res		res;
469
470	if (sc->sk_vpd_prodname != NULL)
471		free(sc->sk_vpd_prodname, M_DEVBUF);
472	if (sc->sk_vpd_readonly != NULL)
473		free(sc->sk_vpd_readonly, M_DEVBUF);
474	sc->sk_vpd_prodname = NULL;
475	sc->sk_vpd_readonly = NULL;
476	sc->sk_vpd_readonly_len = 0;
477
478	sk_vpd_read_res(sc, &res, pos);
479
480	/*
481	 * Bail out quietly if the eeprom appears to be missing or empty.
482	 */
483	if (res.vr_id == 0xff && res.vr_len == 0xff && res.vr_pad == 0xff)
484		return;
485
486	if (res.vr_id != VPD_RES_ID) {
487		printf("skc%d: bad VPD resource id: expected %x got %x\n",
488		    sc->sk_unit, VPD_RES_ID, res.vr_id);
489		return;
490	}
491
492	pos += sizeof(res);
493	sc->sk_vpd_prodname = malloc(res.vr_len + 1, M_DEVBUF, M_NOWAIT);
494	for (i = 0; i < res.vr_len; i++)
495		sc->sk_vpd_prodname[i] = sk_vpd_readbyte(sc, i + pos);
496	sc->sk_vpd_prodname[i] = '\0';
497	pos += i;
498
499	sk_vpd_read_res(sc, &res, pos);
500
501	if (res.vr_id != VPD_RES_READ) {
502		printf("skc%d: bad VPD resource id: expected %x got %x\n",
503		    sc->sk_unit, VPD_RES_READ, res.vr_id);
504		return;
505	}
506
507	pos += sizeof(res);
508	sc->sk_vpd_readonly = malloc(res.vr_len, M_DEVBUF, M_NOWAIT);
509	for (i = 0; i < res.vr_len; i++)
510		sc->sk_vpd_readonly[i] = sk_vpd_readbyte(sc, i + pos);
511	sc->sk_vpd_readonly_len = res.vr_len;
512
513	return;
514}
515
516static int
517sk_miibus_readreg(dev, phy, reg)
518	device_t		dev;
519	int			phy, reg;
520{
521	struct sk_if_softc	*sc_if;
522
523	sc_if = device_get_softc(dev);
524
525	switch(sc_if->sk_softc->sk_type) {
526	case SK_GENESIS:
527		return(sk_xmac_miibus_readreg(sc_if, phy, reg));
528	case SK_YUKON:
529		return(sk_marv_miibus_readreg(sc_if, phy, reg));
530	}
531
532	return(0);
533}
534
535static int
536sk_miibus_writereg(dev, phy, reg, val)
537	device_t		dev;
538	int			phy, reg, val;
539{
540	struct sk_if_softc	*sc_if;
541
542	sc_if = device_get_softc(dev);
543
544	switch(sc_if->sk_softc->sk_type) {
545	case SK_GENESIS:
546		return(sk_xmac_miibus_writereg(sc_if, phy, reg, val));
547	case SK_YUKON:
548		return(sk_marv_miibus_writereg(sc_if, phy, reg, val));
549	}
550
551	return(0);
552}
553
554static void
555sk_miibus_statchg(dev)
556	device_t		dev;
557{
558	struct sk_if_softc	*sc_if;
559
560	sc_if = device_get_softc(dev);
561
562	switch(sc_if->sk_softc->sk_type) {
563	case SK_GENESIS:
564		sk_xmac_miibus_statchg(sc_if);
565		break;
566	case SK_YUKON:
567		sk_marv_miibus_statchg(sc_if);
568		break;
569	}
570
571	return;
572}
573
574static int
575sk_xmac_miibus_readreg(sc_if, phy, reg)
576	struct sk_if_softc	*sc_if;
577	int			phy, reg;
578{
579	int			i;
580
581	if (sc_if->sk_phytype == SK_PHYTYPE_XMAC && phy != 0)
582		return(0);
583
584	SK_IF_LOCK(sc_if);
585	SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8));
586	SK_XM_READ_2(sc_if, XM_PHY_DATA);
587	if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) {
588		for (i = 0; i < SK_TIMEOUT; i++) {
589			DELAY(1);
590			if (SK_XM_READ_2(sc_if, XM_MMUCMD) &
591			    XM_MMUCMD_PHYDATARDY)
592				break;
593		}
594
595		if (i == SK_TIMEOUT) {
596			printf("sk%d: phy failed to come ready\n",
597			    sc_if->sk_unit);
598			SK_IF_UNLOCK(sc_if);
599			return(0);
600		}
601	}
602	DELAY(1);
603	i = SK_XM_READ_2(sc_if, XM_PHY_DATA);
604	SK_IF_UNLOCK(sc_if);
605	return(i);
606}
607
608static int
609sk_xmac_miibus_writereg(sc_if, phy, reg, val)
610	struct sk_if_softc	*sc_if;
611	int			phy, reg, val;
612{
613	int			i;
614
615	SK_IF_LOCK(sc_if);
616	SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8));
617	for (i = 0; i < SK_TIMEOUT; i++) {
618		if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY))
619			break;
620	}
621
622	if (i == SK_TIMEOUT) {
623		printf("sk%d: phy failed to come ready\n", sc_if->sk_unit);
624		SK_IF_UNLOCK(sc_if);
625		return(ETIMEDOUT);
626	}
627
628	SK_XM_WRITE_2(sc_if, XM_PHY_DATA, val);
629	for (i = 0; i < SK_TIMEOUT; i++) {
630		DELAY(1);
631		if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY))
632			break;
633	}
634	SK_IF_UNLOCK(sc_if);
635	if (i == SK_TIMEOUT)
636		printf("sk%d: phy write timed out\n", sc_if->sk_unit);
637
638	return(0);
639}
640
641static void
642sk_xmac_miibus_statchg(sc_if)
643	struct sk_if_softc	*sc_if;
644{
645	struct mii_data		*mii;
646
647	mii = device_get_softc(sc_if->sk_miibus);
648
649	SK_IF_LOCK(sc_if);
650	/*
651	 * If this is a GMII PHY, manually set the XMAC's
652	 * duplex mode accordingly.
653	 */
654	if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) {
655		if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
656			SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX);
657		} else {
658			SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX);
659		}
660	}
661	SK_IF_UNLOCK(sc_if);
662
663	return;
664}
665
666static int
667sk_marv_miibus_readreg(sc_if, phy, reg)
668	struct sk_if_softc	*sc_if;
669	int			phy, reg;
670{
671	u_int16_t		val;
672	int			i;
673
674	if (phy != 0 ||
675	    (sc_if->sk_phytype != SK_PHYTYPE_MARV_COPPER &&
676	     sc_if->sk_phytype != SK_PHYTYPE_MARV_FIBER)) {
677		return(0);
678	}
679
680	SK_IF_LOCK(sc_if);
681        SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
682		      YU_SMICR_REGAD(reg) | YU_SMICR_OP_READ);
683
684	for (i = 0; i < SK_TIMEOUT; i++) {
685		DELAY(1);
686		val = SK_YU_READ_2(sc_if, YUKON_SMICR);
687		if (val & YU_SMICR_READ_VALID)
688			break;
689	}
690
691	if (i == SK_TIMEOUT) {
692		printf("sk%d: phy failed to come ready\n",
693		    sc_if->sk_unit);
694		SK_IF_UNLOCK(sc_if);
695		return(0);
696	}
697
698	val = SK_YU_READ_2(sc_if, YUKON_SMIDR);
699	SK_IF_UNLOCK(sc_if);
700
701	return(val);
702}
703
704static int
705sk_marv_miibus_writereg(sc_if, phy, reg, val)
706	struct sk_if_softc	*sc_if;
707	int			phy, reg, val;
708{
709	int			i;
710
711	SK_IF_LOCK(sc_if);
712	SK_YU_WRITE_2(sc_if, YUKON_SMIDR, val);
713	SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
714		      YU_SMICR_REGAD(reg) | YU_SMICR_OP_WRITE);
715
716	for (i = 0; i < SK_TIMEOUT; i++) {
717		DELAY(1);
718		if (SK_YU_READ_2(sc_if, YUKON_SMICR) & YU_SMICR_BUSY)
719			break;
720	}
721	SK_IF_UNLOCK(sc_if);
722
723	return(0);
724}
725
726static void
727sk_marv_miibus_statchg(sc_if)
728	struct sk_if_softc	*sc_if;
729{
730	return;
731}
732
733#define HASH_BITS		6
734
735static u_int32_t
736sk_xmchash(addr)
737	const uint8_t *addr;
738{
739	uint32_t crc;
740
741	/* Compute CRC for the address value. */
742	crc = ether_crc32_le(addr, ETHER_ADDR_LEN);
743
744	return (~crc & ((1 << HASH_BITS) - 1));
745}
746
747/* gmchash is just a big endian crc */
748static u_int32_t
749sk_gmchash(addr)
750	const uint8_t *addr;
751{
752	uint32_t crc;
753
754	/* Compute CRC for the address value. */
755	crc = ether_crc32_be(addr, ETHER_ADDR_LEN);
756
757	return (crc & ((1 << HASH_BITS) - 1));
758}
759
760static void
761sk_setfilt(sc_if, addr, slot)
762	struct sk_if_softc	*sc_if;
763	caddr_t			addr;
764	int			slot;
765{
766	int			base;
767
768	base = XM_RXFILT_ENTRY(slot);
769
770	SK_XM_WRITE_2(sc_if, base, *(u_int16_t *)(&addr[0]));
771	SK_XM_WRITE_2(sc_if, base + 2, *(u_int16_t *)(&addr[2]));
772	SK_XM_WRITE_2(sc_if, base + 4, *(u_int16_t *)(&addr[4]));
773
774	return;
775}
776
777static void
778sk_setmulti(sc_if)
779	struct sk_if_softc	*sc_if;
780{
781	struct sk_softc		*sc = sc_if->sk_softc;
782	struct ifnet		*ifp = &sc_if->arpcom.ac_if;
783	u_int32_t		hashes[2] = { 0, 0 };
784	int			h = 0, i;
785	struct ifmultiaddr	*ifma;
786	u_int8_t		dummy[] = { 0, 0, 0, 0, 0 ,0 };
787
788
789	/* First, zot all the existing filters. */
790	switch(sc->sk_type) {
791	case SK_GENESIS:
792		for (i = 1; i < XM_RXFILT_MAX; i++)
793			sk_setfilt(sc_if, (caddr_t)&dummy, i);
794
795		SK_XM_WRITE_4(sc_if, XM_MAR0, 0);
796		SK_XM_WRITE_4(sc_if, XM_MAR2, 0);
797		break;
798	case SK_YUKON:
799		SK_YU_WRITE_2(sc_if, YUKON_MCAH1, 0);
800		SK_YU_WRITE_2(sc_if, YUKON_MCAH2, 0);
801		SK_YU_WRITE_2(sc_if, YUKON_MCAH3, 0);
802		SK_YU_WRITE_2(sc_if, YUKON_MCAH4, 0);
803		break;
804	}
805
806	/* Now program new ones. */
807	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
808		hashes[0] = 0xFFFFFFFF;
809		hashes[1] = 0xFFFFFFFF;
810	} else {
811		i = 1;
812		TAILQ_FOREACH_REVERSE(ifma, &ifp->if_multiaddrs, ifmultihead, ifma_link) {
813			if (ifma->ifma_addr->sa_family != AF_LINK)
814				continue;
815			/*
816			 * Program the first XM_RXFILT_MAX multicast groups
817			 * into the perfect filter. For all others,
818			 * use the hash table.
819			 */
820			if (sc->sk_type == SK_GENESIS && i < XM_RXFILT_MAX) {
821				sk_setfilt(sc_if,
822			LLADDR((struct sockaddr_dl *)ifma->ifma_addr), i);
823				i++;
824				continue;
825			}
826
827			switch(sc->sk_type) {
828			case SK_GENESIS:
829				h = sk_xmchash(
830					LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
831				break;
832			case SK_YUKON:
833				h = sk_gmchash(
834					LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
835				break;
836			}
837			if (h < 32)
838				hashes[0] |= (1 << h);
839			else
840				hashes[1] |= (1 << (h - 32));
841		}
842	}
843
844	switch(sc->sk_type) {
845	case SK_GENESIS:
846		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_HASH|
847			       XM_MODE_RX_USE_PERFECT);
848		SK_XM_WRITE_4(sc_if, XM_MAR0, hashes[0]);
849		SK_XM_WRITE_4(sc_if, XM_MAR2, hashes[1]);
850		break;
851	case SK_YUKON:
852		SK_YU_WRITE_2(sc_if, YUKON_MCAH1, hashes[0] & 0xffff);
853		SK_YU_WRITE_2(sc_if, YUKON_MCAH2, (hashes[0] >> 16) & 0xffff);
854		SK_YU_WRITE_2(sc_if, YUKON_MCAH3, hashes[1] & 0xffff);
855		SK_YU_WRITE_2(sc_if, YUKON_MCAH4, (hashes[1] >> 16) & 0xffff);
856		break;
857	}
858
859	return;
860}
861
862static void
863sk_setpromisc(sc_if)
864	struct sk_if_softc	*sc_if;
865{
866	struct sk_softc		*sc = sc_if->sk_softc;
867	struct ifnet		*ifp = &sc_if->arpcom.ac_if;
868
869	switch(sc->sk_type) {
870	case SK_GENESIS:
871		if (ifp->if_flags & IFF_PROMISC) {
872			SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
873		} else {
874			SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
875		}
876		break;
877	case SK_YUKON:
878		if (ifp->if_flags & IFF_PROMISC) {
879			SK_YU_CLRBIT_2(sc_if, YUKON_RCR,
880			    YU_RCR_UFLEN | YU_RCR_MUFLEN);
881		} else {
882			SK_YU_SETBIT_2(sc_if, YUKON_RCR,
883			    YU_RCR_UFLEN | YU_RCR_MUFLEN);
884		}
885		break;
886	}
887
888	return;
889}
890
891static int
892sk_init_rx_ring(sc_if)
893	struct sk_if_softc	*sc_if;
894{
895	struct sk_chain_data	*cd = &sc_if->sk_cdata;
896	struct sk_ring_data	*rd = sc_if->sk_rdata;
897	int			i;
898
899	bzero((char *)rd->sk_rx_ring,
900	    sizeof(struct sk_rx_desc) * SK_RX_RING_CNT);
901
902	for (i = 0; i < SK_RX_RING_CNT; i++) {
903		cd->sk_rx_chain[i].sk_desc = &rd->sk_rx_ring[i];
904		if (sk_newbuf(sc_if, &cd->sk_rx_chain[i], NULL) == ENOBUFS)
905			return(ENOBUFS);
906		if (i == (SK_RX_RING_CNT - 1)) {
907			cd->sk_rx_chain[i].sk_next =
908			    &cd->sk_rx_chain[0];
909			rd->sk_rx_ring[i].sk_next =
910			    vtophys(&rd->sk_rx_ring[0]);
911		} else {
912			cd->sk_rx_chain[i].sk_next =
913			    &cd->sk_rx_chain[i + 1];
914			rd->sk_rx_ring[i].sk_next =
915			    vtophys(&rd->sk_rx_ring[i + 1]);
916		}
917	}
918
919	sc_if->sk_cdata.sk_rx_prod = 0;
920	sc_if->sk_cdata.sk_rx_cons = 0;
921
922	return(0);
923}
924
925static void
926sk_init_tx_ring(sc_if)
927	struct sk_if_softc	*sc_if;
928{
929	struct sk_chain_data	*cd = &sc_if->sk_cdata;
930	struct sk_ring_data	*rd = sc_if->sk_rdata;
931	int			i;
932
933	bzero((char *)sc_if->sk_rdata->sk_tx_ring,
934	    sizeof(struct sk_tx_desc) * SK_TX_RING_CNT);
935
936	for (i = 0; i < SK_TX_RING_CNT; i++) {
937		cd->sk_tx_chain[i].sk_desc = &rd->sk_tx_ring[i];
938		if (i == (SK_TX_RING_CNT - 1)) {
939			cd->sk_tx_chain[i].sk_next =
940			    &cd->sk_tx_chain[0];
941			rd->sk_tx_ring[i].sk_next =
942			    vtophys(&rd->sk_tx_ring[0]);
943		} else {
944			cd->sk_tx_chain[i].sk_next =
945			    &cd->sk_tx_chain[i + 1];
946			rd->sk_tx_ring[i].sk_next =
947			    vtophys(&rd->sk_tx_ring[i + 1]);
948		}
949	}
950
951	sc_if->sk_cdata.sk_tx_prod = 0;
952	sc_if->sk_cdata.sk_tx_cons = 0;
953	sc_if->sk_cdata.sk_tx_cnt = 0;
954
955	return;
956}
957
958static int
959sk_newbuf(sc_if, c, m)
960	struct sk_if_softc	*sc_if;
961	struct sk_chain		*c;
962	struct mbuf		*m;
963{
964	struct mbuf		*m_new = NULL;
965	struct sk_rx_desc	*r;
966
967	if (m == NULL) {
968		caddr_t			*buf = NULL;
969
970		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
971		if (m_new == NULL)
972			return(ENOBUFS);
973
974		/* Allocate the jumbo buffer */
975		buf = sk_jalloc(sc_if);
976		if (buf == NULL) {
977			m_freem(m_new);
978#ifdef SK_VERBOSE
979			printf("sk%d: jumbo allocation failed "
980			    "-- packet dropped!\n", sc_if->sk_unit);
981#endif
982			return(ENOBUFS);
983		}
984
985		/* Attach the buffer to the mbuf */
986		MEXTADD(m_new, buf, SK_JLEN, sk_jfree,
987		    (struct sk_if_softc *)sc_if, 0, EXT_NET_DRV);
988		m_new->m_data = (void *)buf;
989		m_new->m_pkthdr.len = m_new->m_len = SK_JLEN;
990	} else {
991		/*
992	 	 * We're re-using a previously allocated mbuf;
993		 * be sure to re-init pointers and lengths to
994		 * default values.
995		 */
996		m_new = m;
997		m_new->m_len = m_new->m_pkthdr.len = SK_JLEN;
998		m_new->m_data = m_new->m_ext.ext_buf;
999	}
1000
1001	/*
1002	 * Adjust alignment so packet payload begins on a
1003	 * longword boundary. Mandatory for Alpha, useful on
1004	 * x86 too.
1005	 */
1006	m_adj(m_new, ETHER_ALIGN);
1007
1008	r = c->sk_desc;
1009	c->sk_mbuf = m_new;
1010	r->sk_data_lo = vtophys(mtod(m_new, caddr_t));
1011	r->sk_ctl = m_new->m_len | SK_RXSTAT;
1012
1013	return(0);
1014}
1015
1016/*
1017 * Allocate jumbo buffer storage. The SysKonnect adapters support
1018 * "jumbograms" (9K frames), although SysKonnect doesn't currently
1019 * use them in their drivers. In order for us to use them, we need
1020 * large 9K receive buffers, however standard mbuf clusters are only
1021 * 2048 bytes in size. Consequently, we need to allocate and manage
1022 * our own jumbo buffer pool. Fortunately, this does not require an
1023 * excessive amount of additional code.
1024 */
1025static int
1026sk_alloc_jumbo_mem(sc_if)
1027	struct sk_if_softc	*sc_if;
1028{
1029	caddr_t			ptr;
1030	register int		i;
1031	struct sk_jpool_entry   *entry;
1032
1033	/* Grab a big chunk o' storage. */
1034	sc_if->sk_cdata.sk_jumbo_buf = contigmalloc(SK_JMEM, M_DEVBUF,
1035	    M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0);
1036
1037	if (sc_if->sk_cdata.sk_jumbo_buf == NULL) {
1038		printf("sk%d: no memory for jumbo buffers!\n", sc_if->sk_unit);
1039		return(ENOBUFS);
1040	}
1041
1042	SLIST_INIT(&sc_if->sk_jfree_listhead);
1043	SLIST_INIT(&sc_if->sk_jinuse_listhead);
1044
1045	/*
1046	 * Now divide it up into 9K pieces and save the addresses
1047	 * in an array.
1048	 */
1049	ptr = sc_if->sk_cdata.sk_jumbo_buf;
1050	for (i = 0; i < SK_JSLOTS; i++) {
1051		sc_if->sk_cdata.sk_jslots[i] = ptr;
1052		ptr += SK_JLEN;
1053		entry = malloc(sizeof(struct sk_jpool_entry),
1054		    M_DEVBUF, M_NOWAIT);
1055		if (entry == NULL) {
1056			free(sc_if->sk_cdata.sk_jumbo_buf, M_DEVBUF);
1057			sc_if->sk_cdata.sk_jumbo_buf = NULL;
1058			printf("sk%d: no memory for jumbo "
1059			    "buffer queue!\n", sc_if->sk_unit);
1060			return(ENOBUFS);
1061		}
1062		entry->slot = i;
1063		SLIST_INSERT_HEAD(&sc_if->sk_jfree_listhead,
1064		    entry, jpool_entries);
1065	}
1066
1067	return(0);
1068}
1069
1070/*
1071 * Allocate a jumbo buffer.
1072 */
1073static void *
1074sk_jalloc(sc_if)
1075	struct sk_if_softc	*sc_if;
1076{
1077	struct sk_jpool_entry   *entry;
1078
1079	SK_IF_LOCK_ASSERT(sc_if);
1080
1081	entry = SLIST_FIRST(&sc_if->sk_jfree_listhead);
1082
1083	if (entry == NULL) {
1084#ifdef SK_VERBOSE
1085		printf("sk%d: no free jumbo buffers\n", sc_if->sk_unit);
1086#endif
1087		return(NULL);
1088	}
1089
1090	SLIST_REMOVE_HEAD(&sc_if->sk_jfree_listhead, jpool_entries);
1091	SLIST_INSERT_HEAD(&sc_if->sk_jinuse_listhead, entry, jpool_entries);
1092	return(sc_if->sk_cdata.sk_jslots[entry->slot]);
1093}
1094
1095/*
1096 * Release a jumbo buffer.
1097 */
1098static void
1099sk_jfree(buf, args)
1100	void			*buf;
1101	void			*args;
1102{
1103	struct sk_if_softc	*sc_if;
1104	int		        i;
1105	struct sk_jpool_entry   *entry;
1106
1107	/* Extract the softc struct pointer. */
1108	sc_if = (struct sk_if_softc *)args;
1109	if (sc_if == NULL)
1110		panic("sk_jfree: didn't get softc pointer!");
1111
1112	SK_IF_LOCK(sc_if);
1113
1114	/* calculate the slot this buffer belongs to */
1115	i = ((vm_offset_t)buf
1116	     - (vm_offset_t)sc_if->sk_cdata.sk_jumbo_buf) / SK_JLEN;
1117
1118	if ((i < 0) || (i >= SK_JSLOTS))
1119		panic("sk_jfree: asked to free buffer that we don't manage!");
1120
1121	entry = SLIST_FIRST(&sc_if->sk_jinuse_listhead);
1122	if (entry == NULL)
1123		panic("sk_jfree: buffer not in use!");
1124	entry->slot = i;
1125	SLIST_REMOVE_HEAD(&sc_if->sk_jinuse_listhead, jpool_entries);
1126	SLIST_INSERT_HEAD(&sc_if->sk_jfree_listhead, entry, jpool_entries);
1127
1128	SK_IF_UNLOCK(sc_if);
1129	return;
1130}
1131
1132/*
1133 * Set media options.
1134 */
1135static int
1136sk_ifmedia_upd(ifp)
1137	struct ifnet		*ifp;
1138{
1139	struct sk_if_softc	*sc_if = ifp->if_softc;
1140	struct mii_data		*mii;
1141
1142	mii = device_get_softc(sc_if->sk_miibus);
1143	sk_init(sc_if);
1144	mii_mediachg(mii);
1145
1146	return(0);
1147}
1148
1149/*
1150 * Report current media status.
1151 */
1152static void
1153sk_ifmedia_sts(ifp, ifmr)
1154	struct ifnet		*ifp;
1155	struct ifmediareq	*ifmr;
1156{
1157	struct sk_if_softc	*sc_if;
1158	struct mii_data		*mii;
1159
1160	sc_if = ifp->if_softc;
1161	mii = device_get_softc(sc_if->sk_miibus);
1162
1163	mii_pollstat(mii);
1164	ifmr->ifm_active = mii->mii_media_active;
1165	ifmr->ifm_status = mii->mii_media_status;
1166
1167	return;
1168}
1169
1170static int
1171sk_ioctl(ifp, command, data)
1172	struct ifnet		*ifp;
1173	u_long			command;
1174	caddr_t			data;
1175{
1176	struct sk_if_softc	*sc_if = ifp->if_softc;
1177	struct ifreq		*ifr = (struct ifreq *) data;
1178	int			error = 0;
1179	struct mii_data		*mii;
1180
1181	SK_IF_LOCK(sc_if);
1182
1183	switch(command) {
1184	case SIOCSIFMTU:
1185		if (ifr->ifr_mtu > SK_JUMBO_MTU)
1186			error = EINVAL;
1187		else {
1188			ifp->if_mtu = ifr->ifr_mtu;
1189			sk_init(sc_if);
1190		}
1191		break;
1192	case SIOCSIFFLAGS:
1193		if (ifp->if_flags & IFF_UP) {
1194			if (ifp->if_flags & IFF_RUNNING) {
1195				if ((ifp->if_flags ^ sc_if->sk_if_flags)
1196				    & IFF_PROMISC) {
1197					sk_setpromisc(sc_if);
1198					sk_setmulti(sc_if);
1199				}
1200			} else
1201				sk_init(sc_if);
1202		} else {
1203			if (ifp->if_flags & IFF_RUNNING)
1204				sk_stop(sc_if);
1205		}
1206		sc_if->sk_if_flags = ifp->if_flags;
1207		error = 0;
1208		break;
1209	case SIOCADDMULTI:
1210	case SIOCDELMULTI:
1211		sk_setmulti(sc_if);
1212		error = 0;
1213		break;
1214	case SIOCGIFMEDIA:
1215	case SIOCSIFMEDIA:
1216		mii = device_get_softc(sc_if->sk_miibus);
1217		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
1218		break;
1219	default:
1220		error = ether_ioctl(ifp, command, data);
1221		break;
1222	}
1223
1224	SK_IF_UNLOCK(sc_if);
1225
1226	return(error);
1227}
1228
1229/*
1230 * Probe for a SysKonnect GEnesis chip. Check the PCI vendor and device
1231 * IDs against our list and return a device name if we find a match.
1232 */
1233static int
1234skc_probe(dev)
1235	device_t		dev;
1236{
1237	struct sk_softc		*sc;
1238	struct sk_type		*t = sk_devs;
1239
1240	sc = device_get_softc(dev);
1241
1242	while(t->sk_name != NULL) {
1243		if ((pci_get_vendor(dev) == t->sk_vid) &&
1244		    (pci_get_device(dev) == t->sk_did)) {
1245			device_set_desc(dev, t->sk_name);
1246			return (BUS_PROBE_DEFAULT);
1247		}
1248		t++;
1249	}
1250
1251	return(ENXIO);
1252}
1253
1254/*
1255 * Force the GEnesis into reset, then bring it out of reset.
1256 */
1257static void
1258sk_reset(sc)
1259	struct sk_softc		*sc;
1260{
1261	CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_RESET);
1262	CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_RESET);
1263	if (sc->sk_type == SK_YUKON)
1264		CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_SET);
1265
1266	DELAY(1000);
1267	CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_UNRESET);
1268	DELAY(2);
1269	CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_UNRESET);
1270	if (sc->sk_type == SK_YUKON)
1271		CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_CLEAR);
1272
1273	if (sc->sk_type == SK_GENESIS) {
1274		/* Configure packet arbiter */
1275		sk_win_write_2(sc, SK_PKTARB_CTL, SK_PKTARBCTL_UNRESET);
1276		sk_win_write_2(sc, SK_RXPA1_TINIT, SK_PKTARB_TIMEOUT);
1277		sk_win_write_2(sc, SK_TXPA1_TINIT, SK_PKTARB_TIMEOUT);
1278		sk_win_write_2(sc, SK_RXPA2_TINIT, SK_PKTARB_TIMEOUT);
1279		sk_win_write_2(sc, SK_TXPA2_TINIT, SK_PKTARB_TIMEOUT);
1280	}
1281
1282	/* Enable RAM interface */
1283	sk_win_write_4(sc, SK_RAMCTL, SK_RAMCTL_UNRESET);
1284
1285	/*
1286         * Configure interrupt moderation. The moderation timer
1287	 * defers interrupts specified in the interrupt moderation
1288	 * timer mask based on the timeout specified in the interrupt
1289	 * moderation timer init register. Each bit in the timer
1290	 * register represents 18.825ns, so to specify a timeout in
1291	 * microseconds, we have to multiply by 54.
1292	 */
1293	sk_win_write_4(sc, SK_IMTIMERINIT, SK_IM_USECS(200));
1294	sk_win_write_4(sc, SK_IMMR, SK_ISR_TX1_S_EOF|SK_ISR_TX2_S_EOF|
1295	    SK_ISR_RX1_EOF|SK_ISR_RX2_EOF);
1296	sk_win_write_1(sc, SK_IMTIMERCTL, SK_IMCTL_START);
1297
1298	return;
1299}
1300
1301static int
1302sk_probe(dev)
1303	device_t		dev;
1304{
1305	struct sk_softc		*sc;
1306
1307	sc = device_get_softc(device_get_parent(dev));
1308
1309	/*
1310	 * Not much to do here. We always know there will be
1311	 * at least one XMAC present, and if there are two,
1312	 * skc_attach() will create a second device instance
1313	 * for us.
1314	 */
1315	switch (sc->sk_type) {
1316	case SK_GENESIS:
1317		device_set_desc(dev, "XaQti Corp. XMAC II");
1318		break;
1319	case SK_YUKON:
1320		device_set_desc(dev, "Marvell Semiconductor, Inc. Yukon");
1321		break;
1322	}
1323
1324	return (BUS_PROBE_DEFAULT);
1325}
1326
1327/*
1328 * Each XMAC chip is attached as a separate logical IP interface.
1329 * Single port cards will have only one logical interface of course.
1330 */
1331static int
1332sk_attach(dev)
1333	device_t		dev;
1334{
1335	struct sk_softc		*sc;
1336	struct sk_if_softc	*sc_if;
1337	struct ifnet		*ifp;
1338	int			i, port, error;
1339
1340	if (dev == NULL)
1341		return(EINVAL);
1342
1343	error = 0;
1344	sc_if = device_get_softc(dev);
1345	sc = device_get_softc(device_get_parent(dev));
1346	port = *(int *)device_get_ivars(dev);
1347	free(device_get_ivars(dev), M_DEVBUF);
1348	device_set_ivars(dev, NULL);
1349
1350	sc_if->sk_dev = dev;
1351	sc_if->sk_unit = device_get_unit(dev);
1352	sc_if->sk_port = port;
1353	sc_if->sk_softc = sc;
1354	sc->sk_if[port] = sc_if;
1355	if (port == SK_PORT_A)
1356		sc_if->sk_tx_bmu = SK_BMU_TXS_CSR0;
1357	if (port == SK_PORT_B)
1358		sc_if->sk_tx_bmu = SK_BMU_TXS_CSR1;
1359
1360	/* Allocate the descriptor queues. */
1361	sc_if->sk_rdata = contigmalloc(sizeof(struct sk_ring_data), M_DEVBUF,
1362	    M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0);
1363
1364	if (sc_if->sk_rdata == NULL) {
1365		printf("sk%d: no memory for list buffers!\n", sc_if->sk_unit);
1366		error = ENOMEM;
1367		goto fail;
1368	}
1369
1370	bzero(sc_if->sk_rdata, sizeof(struct sk_ring_data));
1371
1372	/* Try to allocate memory for jumbo buffers. */
1373	if (sk_alloc_jumbo_mem(sc_if)) {
1374		printf("sk%d: jumbo buffer allocation failed\n",
1375		    sc_if->sk_unit);
1376		error = ENOMEM;
1377		goto fail;
1378	}
1379
1380	ifp = &sc_if->arpcom.ac_if;
1381	ifp->if_softc = sc_if;
1382	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1383	ifp->if_mtu = ETHERMTU;
1384	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1385	ifp->if_ioctl = sk_ioctl;
1386	ifp->if_start = sk_start;
1387	ifp->if_watchdog = sk_watchdog;
1388	ifp->if_init = sk_init;
1389	ifp->if_baudrate = 1000000000;
1390	IFQ_SET_MAXLEN(&ifp->if_snd, SK_TX_RING_CNT - 1);
1391	ifp->if_snd.ifq_drv_maxlen = SK_TX_RING_CNT - 1;
1392	IFQ_SET_READY(&ifp->if_snd);
1393
1394	callout_handle_init(&sc_if->sk_tick_ch);
1395
1396	/*
1397	 * Get station address for this interface. Note that
1398	 * dual port cards actually come with three station
1399	 * addresses: one for each port, plus an extra. The
1400	 * extra one is used by the SysKonnect driver software
1401	 * as a 'virtual' station address for when both ports
1402	 * are operating in failover mode. Currently we don't
1403	 * use this extra address.
1404	 */
1405	SK_LOCK(sc);
1406	for (i = 0; i < ETHER_ADDR_LEN; i++)
1407		sc_if->arpcom.ac_enaddr[i] =
1408		    sk_win_read_1(sc, SK_MAC0_0 + (port * 8) + i);
1409
1410	/*
1411	 * Set up RAM buffer addresses. The NIC will have a certain
1412	 * amount of SRAM on it, somewhere between 512K and 2MB. We
1413	 * need to divide this up a) between the transmitter and
1414 	 * receiver and b) between the two XMACs, if this is a
1415	 * dual port NIC. Our algotithm is to divide up the memory
1416	 * evenly so that everyone gets a fair share.
1417	 */
1418	if (sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC) {
1419		u_int32_t		chunk, val;
1420
1421		chunk = sc->sk_ramsize / 2;
1422		val = sc->sk_rboff / sizeof(u_int64_t);
1423		sc_if->sk_rx_ramstart = val;
1424		val += (chunk / sizeof(u_int64_t));
1425		sc_if->sk_rx_ramend = val - 1;
1426		sc_if->sk_tx_ramstart = val;
1427		val += (chunk / sizeof(u_int64_t));
1428		sc_if->sk_tx_ramend = val - 1;
1429	} else {
1430		u_int32_t		chunk, val;
1431
1432		chunk = sc->sk_ramsize / 4;
1433		val = (sc->sk_rboff + (chunk * 2 * sc_if->sk_port)) /
1434		    sizeof(u_int64_t);
1435		sc_if->sk_rx_ramstart = val;
1436		val += (chunk / sizeof(u_int64_t));
1437		sc_if->sk_rx_ramend = val - 1;
1438		sc_if->sk_tx_ramstart = val;
1439		val += (chunk / sizeof(u_int64_t));
1440		sc_if->sk_tx_ramend = val - 1;
1441	}
1442
1443	/* Read and save PHY type and set PHY address */
1444	sc_if->sk_phytype = sk_win_read_1(sc, SK_EPROM1) & 0xF;
1445	switch(sc_if->sk_phytype) {
1446	case SK_PHYTYPE_XMAC:
1447		sc_if->sk_phyaddr = SK_PHYADDR_XMAC;
1448		break;
1449	case SK_PHYTYPE_BCOM:
1450		sc_if->sk_phyaddr = SK_PHYADDR_BCOM;
1451		break;
1452	case SK_PHYTYPE_MARV_COPPER:
1453		sc_if->sk_phyaddr = SK_PHYADDR_MARV;
1454		break;
1455	default:
1456		printf("skc%d: unsupported PHY type: %d\n",
1457		    sc->sk_unit, sc_if->sk_phytype);
1458		error = ENODEV;
1459		SK_UNLOCK(sc);
1460		goto fail;
1461	}
1462
1463
1464	/*
1465	 * Call MI attach routine.  Can't hold locks when calling into ether_*.
1466	 */
1467	SK_UNLOCK(sc);
1468	ether_ifattach(ifp, sc_if->arpcom.ac_enaddr);
1469	SK_LOCK(sc);
1470
1471	/*
1472	 * Do miibus setup.
1473	 */
1474	switch (sc->sk_type) {
1475	case SK_GENESIS:
1476		sk_init_xmac(sc_if);
1477		break;
1478	case SK_YUKON:
1479		sk_init_yukon(sc_if);
1480		break;
1481	}
1482
1483	SK_UNLOCK(sc);
1484	if (mii_phy_probe(dev, &sc_if->sk_miibus,
1485	    sk_ifmedia_upd, sk_ifmedia_sts)) {
1486		printf("skc%d: no PHY found!\n", sc_if->sk_unit);
1487		ether_ifdetach(ifp);
1488		error = ENXIO;
1489		goto fail;
1490	}
1491
1492fail:
1493	if (error) {
1494		/* Access should be ok even though lock has been dropped */
1495		sc->sk_if[port] = NULL;
1496		sk_detach(dev);
1497	}
1498
1499	return(error);
1500}
1501
1502/*
1503 * Attach the interface. Allocate softc structures, do ifmedia
1504 * setup and ethernet/BPF attach.
1505 */
1506static int
1507skc_attach(dev)
1508	device_t		dev;
1509{
1510	struct sk_softc		*sc;
1511	int			unit, error = 0, rid, *port;
1512	uint8_t			skrs;
1513
1514	sc = device_get_softc(dev);
1515	unit = device_get_unit(dev);
1516
1517	mtx_init(&sc->sk_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
1518	    MTX_DEF | MTX_RECURSE);
1519	/*
1520	 * Map control/status registers.
1521	 */
1522	pci_enable_busmaster(dev);
1523
1524	rid = SK_RID;
1525	sc->sk_res = bus_alloc_resource_any(dev, SK_RES, &rid, RF_ACTIVE);
1526
1527	if (sc->sk_res == NULL) {
1528		printf("sk%d: couldn't map ports/memory\n", unit);
1529		error = ENXIO;
1530		goto fail;
1531	}
1532
1533	sc->sk_btag = rman_get_bustag(sc->sk_res);
1534	sc->sk_bhandle = rman_get_bushandle(sc->sk_res);
1535
1536	/* Allocate interrupt */
1537	rid = 0;
1538	sc->sk_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
1539	    RF_SHAREABLE | RF_ACTIVE);
1540
1541	if (sc->sk_irq == NULL) {
1542		printf("skc%d: couldn't map interrupt\n", unit);
1543		error = ENXIO;
1544		goto fail;
1545	}
1546
1547	/* Set adapter type */
1548	switch (pci_get_device(dev)) {
1549	case DEVICEID_SK_V1:
1550		sc->sk_type = SK_GENESIS;
1551		break;
1552	case DEVICEID_SK_V2:
1553	case DEVICEID_BELKIN_5005:
1554	case DEVICEID_3COM_3C940:
1555	case DEVICEID_LINKSYS_EG1032:
1556	case DEVICEID_DLINK_DGE530T:
1557		sc->sk_type = SK_YUKON;
1558		break;
1559	default:
1560		printf("skc%d: unknown device!\n", unit);
1561		error = ENXIO;
1562		goto fail;
1563	}
1564
1565	/* Reset the adapter. */
1566	sk_reset(sc);
1567
1568	sc->sk_unit = unit;
1569
1570	/* Read and save vital product data from EEPROM. */
1571	sk_vpd_read(sc);
1572
1573	skrs = sk_win_read_1(sc, SK_EPROM0);
1574	if (sc->sk_type == SK_GENESIS) {
1575		/* Read and save RAM size and RAMbuffer offset */
1576		switch(skrs) {
1577		case SK_RAMSIZE_512K_64:
1578			sc->sk_ramsize = 0x80000;
1579			sc->sk_rboff = SK_RBOFF_0;
1580			break;
1581		case SK_RAMSIZE_1024K_64:
1582			sc->sk_ramsize = 0x100000;
1583			sc->sk_rboff = SK_RBOFF_80000;
1584			break;
1585		case SK_RAMSIZE_1024K_128:
1586			sc->sk_ramsize = 0x100000;
1587			sc->sk_rboff = SK_RBOFF_0;
1588			break;
1589		case SK_RAMSIZE_2048K_128:
1590			sc->sk_ramsize = 0x200000;
1591			sc->sk_rboff = SK_RBOFF_0;
1592			break;
1593		default:
1594			printf("skc%d: unknown ram size: %d\n",
1595			    sc->sk_unit, sk_win_read_1(sc, SK_EPROM0));
1596			error = ENXIO;
1597			goto fail;
1598		}
1599	} else { /* SK_YUKON */
1600		if (skrs == 0x00)
1601			sc->sk_ramsize = 0x20000;
1602		else
1603			sc->sk_ramsize = skrs * (1<<12);
1604		sc->sk_rboff = SK_RBOFF_0;
1605	}
1606
1607	/* Read and save physical media type */
1608	switch(sk_win_read_1(sc, SK_PMDTYPE)) {
1609	case SK_PMD_1000BASESX:
1610		sc->sk_pmd = IFM_1000_SX;
1611		break;
1612	case SK_PMD_1000BASELX:
1613		sc->sk_pmd = IFM_1000_LX;
1614		break;
1615	case SK_PMD_1000BASECX:
1616		sc->sk_pmd = IFM_1000_CX;
1617		break;
1618	case SK_PMD_1000BASETX:
1619		sc->sk_pmd = IFM_1000_T;
1620		break;
1621	default:
1622		printf("skc%d: unknown media type: 0x%x\n",
1623		    sc->sk_unit, sk_win_read_1(sc, SK_PMDTYPE));
1624		error = ENXIO;
1625		goto fail;
1626	}
1627
1628	/* Announce the product name and more VPD data if there. */
1629	if (sc->sk_vpd_prodname != NULL)
1630		printf("skc%d: %s\n", sc->sk_unit, sc->sk_vpd_prodname);
1631
1632	if (bootverbose) {
1633		if (sc->sk_vpd_readonly != NULL &&
1634		    sc->sk_vpd_readonly_len != 0) {
1635			char buf[256];
1636			char *dp = sc->sk_vpd_readonly;
1637			uint16_t l, len = sc->sk_vpd_readonly_len;
1638
1639			while (len >= 3) {
1640				if ((*dp == 'P' && *(dp+1) == 'N') ||
1641				    (*dp == 'E' && *(dp+1) == 'C') ||
1642				    (*dp == 'M' && *(dp+1) == 'N') ||
1643				    (*dp == 'S' && *(dp+1) == 'N')) {
1644					l = 0;
1645					while (l < *(dp+2)) {
1646						buf[l] = *(dp+3+l);
1647						++l;
1648					}
1649					buf[l] = '\0';
1650					device_printf(dev, "%c%c: %s\n",
1651					    *dp, *(dp+1), buf);
1652					len -= (3 + l);
1653					dp += (3 + l);
1654				} else {
1655					len -= (3 + *(dp+2));
1656					dp += (3 + *(dp+2));
1657				}
1658			}
1659		}
1660		device_printf(dev, "type = %s\n",
1661		    (sc->sk_type == SK_GENESIS) ? "GENESIS" : "YUKON");
1662		device_printf(dev, "SK_EPROM0 = 0x%02x\n", skrs);
1663		device_printf(dev, "SRAM size = 0x%06x\n", sc->sk_ramsize);
1664		device_printf(dev, "chip ver  0x%02x\n",
1665		    sk_win_read_1(sc, SK_CHIPVER));
1666		device_printf(dev, "chip conf 0x%02x\n",
1667		    sk_win_read_1(sc, SK_CONFIG));
1668	}
1669
1670	sc->sk_devs[SK_PORT_A] = device_add_child(dev, "sk", -1);
1671	port = malloc(sizeof(int), M_DEVBUF, M_NOWAIT);
1672	*port = SK_PORT_A;
1673	device_set_ivars(sc->sk_devs[SK_PORT_A], port);
1674
1675	if (!(sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC)) {
1676		sc->sk_devs[SK_PORT_B] = device_add_child(dev, "sk", -1);
1677		port = malloc(sizeof(int), M_DEVBUF, M_NOWAIT);
1678		*port = SK_PORT_B;
1679		device_set_ivars(sc->sk_devs[SK_PORT_B], port);
1680	}
1681
1682	/* Turn on the 'driver is loaded' LED. */
1683	CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_ON);
1684
1685	bus_generic_attach(dev);
1686
1687	/* Hook interrupt last to avoid having to lock softc */
1688	error = bus_setup_intr(dev, sc->sk_irq, INTR_TYPE_NET|INTR_MPSAFE,
1689	    sk_intr, sc, &sc->sk_intrhand);
1690
1691	if (error) {
1692		printf("skc%d: couldn't set up irq\n", unit);
1693		goto fail;
1694	}
1695
1696fail:
1697	if (error)
1698		skc_detach(dev);
1699
1700	return(error);
1701}
1702
1703/*
1704 * Shutdown hardware and free up resources. This can be called any
1705 * time after the mutex has been initialized. It is called in both
1706 * the error case in attach and the normal detach case so it needs
1707 * to be careful about only freeing resources that have actually been
1708 * allocated.
1709 */
1710static int
1711sk_detach(dev)
1712	device_t		dev;
1713{
1714	struct sk_if_softc	*sc_if;
1715	struct ifnet		*ifp;
1716
1717	sc_if = device_get_softc(dev);
1718	KASSERT(mtx_initialized(&sc_if->sk_softc->sk_mtx),
1719	    ("sk mutex not initialized in sk_detach"));
1720	SK_IF_LOCK(sc_if);
1721
1722	ifp = &sc_if->arpcom.ac_if;
1723	/* These should only be active if attach_xmac succeeded */
1724	if (device_is_attached(dev)) {
1725		sk_stop(sc_if);
1726		/* Can't hold locks while calling detach */
1727		SK_IF_UNLOCK(sc_if);
1728		ether_ifdetach(ifp);
1729		SK_IF_LOCK(sc_if);
1730	}
1731	/*
1732	 * We're generally called from skc_detach() which is using
1733	 * device_delete_child() to get to here. It's already trashed
1734	 * miibus for us, so don't do it here or we'll panic.
1735	 */
1736	/*
1737	if (sc_if->sk_miibus != NULL)
1738		device_delete_child(dev, sc_if->sk_miibus);
1739	*/
1740	bus_generic_detach(dev);
1741	if (sc_if->sk_cdata.sk_jumbo_buf != NULL)
1742		contigfree(sc_if->sk_cdata.sk_jumbo_buf, SK_JMEM, M_DEVBUF);
1743	if (sc_if->sk_rdata != NULL) {
1744		contigfree(sc_if->sk_rdata, sizeof(struct sk_ring_data),
1745		    M_DEVBUF);
1746	}
1747	SK_IF_UNLOCK(sc_if);
1748
1749	return(0);
1750}
1751
1752static int
1753skc_detach(dev)
1754	device_t		dev;
1755{
1756	struct sk_softc		*sc;
1757
1758	sc = device_get_softc(dev);
1759	KASSERT(mtx_initialized(&sc->sk_mtx), ("sk mutex not initialized"));
1760
1761	if (device_is_alive(dev)) {
1762		if (sc->sk_devs[SK_PORT_A] != NULL)
1763			device_delete_child(dev, sc->sk_devs[SK_PORT_A]);
1764		if (sc->sk_devs[SK_PORT_B] != NULL)
1765			device_delete_child(dev, sc->sk_devs[SK_PORT_B]);
1766		bus_generic_detach(dev);
1767	}
1768
1769	if (sc->sk_intrhand)
1770		bus_teardown_intr(dev, sc->sk_irq, sc->sk_intrhand);
1771	if (sc->sk_irq)
1772		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sk_irq);
1773	if (sc->sk_res)
1774		bus_release_resource(dev, SK_RES, SK_RID, sc->sk_res);
1775
1776	mtx_destroy(&sc->sk_mtx);
1777
1778	return(0);
1779}
1780
1781static int
1782sk_encap(sc_if, m_head, txidx)
1783        struct sk_if_softc	*sc_if;
1784        struct mbuf		*m_head;
1785        u_int32_t		*txidx;
1786{
1787	struct sk_tx_desc	*f = NULL;
1788	struct mbuf		*m;
1789	u_int32_t		frag, cur, cnt = 0;
1790
1791	SK_IF_LOCK_ASSERT(sc_if);
1792
1793	m = m_head;
1794	cur = frag = *txidx;
1795
1796	/*
1797	 * Start packing the mbufs in this chain into
1798	 * the fragment pointers. Stop when we run out
1799	 * of fragments or hit the end of the mbuf chain.
1800	 */
1801	for (m = m_head; m != NULL; m = m->m_next) {
1802		if (m->m_len != 0) {
1803			if ((SK_TX_RING_CNT -
1804			    (sc_if->sk_cdata.sk_tx_cnt + cnt)) < 2)
1805				return(ENOBUFS);
1806			f = &sc_if->sk_rdata->sk_tx_ring[frag];
1807			f->sk_data_lo = vtophys(mtod(m, vm_offset_t));
1808			f->sk_ctl = m->m_len | SK_OPCODE_DEFAULT;
1809			if (cnt == 0)
1810				f->sk_ctl |= SK_TXCTL_FIRSTFRAG;
1811			else
1812				f->sk_ctl |= SK_TXCTL_OWN;
1813			cur = frag;
1814			SK_INC(frag, SK_TX_RING_CNT);
1815			cnt++;
1816		}
1817	}
1818
1819	if (m != NULL)
1820		return(ENOBUFS);
1821
1822	sc_if->sk_rdata->sk_tx_ring[cur].sk_ctl |=
1823		SK_TXCTL_LASTFRAG|SK_TXCTL_EOF_INTR;
1824	sc_if->sk_cdata.sk_tx_chain[cur].sk_mbuf = m_head;
1825	sc_if->sk_rdata->sk_tx_ring[*txidx].sk_ctl |= SK_TXCTL_OWN;
1826	sc_if->sk_cdata.sk_tx_cnt += cnt;
1827
1828	*txidx = frag;
1829
1830	return(0);
1831}
1832
1833static void
1834sk_start(ifp)
1835	struct ifnet		*ifp;
1836{
1837        struct sk_softc		*sc;
1838        struct sk_if_softc	*sc_if;
1839        struct mbuf		*m_head = NULL;
1840        u_int32_t		idx;
1841
1842	sc_if = ifp->if_softc;
1843	sc = sc_if->sk_softc;
1844
1845	SK_IF_LOCK(sc_if);
1846
1847	idx = sc_if->sk_cdata.sk_tx_prod;
1848
1849	while(sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf == NULL) {
1850		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
1851		if (m_head == NULL)
1852			break;
1853
1854		/*
1855		 * Pack the data into the transmit ring. If we
1856		 * don't have room, set the OACTIVE flag and wait
1857		 * for the NIC to drain the ring.
1858		 */
1859		if (sk_encap(sc_if, m_head, &idx)) {
1860			IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
1861			ifp->if_flags |= IFF_OACTIVE;
1862			break;
1863		}
1864
1865		/*
1866		 * If there's a BPF listener, bounce a copy of this frame
1867		 * to him.
1868		 */
1869		BPF_MTAP(ifp, m_head);
1870	}
1871
1872	/* Transmit */
1873	if (idx != sc_if->sk_cdata.sk_tx_prod) {
1874		sc_if->sk_cdata.sk_tx_prod = idx;
1875		CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_START);
1876
1877		/* Set a timeout in case the chip goes out to lunch. */
1878		ifp->if_timer = 5;
1879	}
1880	SK_IF_UNLOCK(sc_if);
1881
1882	return;
1883}
1884
1885
1886static void
1887sk_watchdog(ifp)
1888	struct ifnet		*ifp;
1889{
1890	struct sk_if_softc	*sc_if;
1891
1892	sc_if = ifp->if_softc;
1893
1894	printf("sk%d: watchdog timeout\n", sc_if->sk_unit);
1895	sk_init(sc_if);
1896
1897	return;
1898}
1899
1900static void
1901skc_shutdown(dev)
1902	device_t		dev;
1903{
1904	struct sk_softc		*sc;
1905
1906	sc = device_get_softc(dev);
1907	SK_LOCK(sc);
1908
1909	/* Turn off the 'driver is loaded' LED. */
1910	CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_OFF);
1911
1912	/*
1913	 * Reset the GEnesis controller. Doing this should also
1914	 * assert the resets on the attached XMAC(s).
1915	 */
1916	sk_reset(sc);
1917	SK_UNLOCK(sc);
1918
1919	return;
1920}
1921
1922static void
1923sk_rxeof(sc_if)
1924	struct sk_if_softc	*sc_if;
1925{
1926	struct sk_softc		*sc;
1927	struct mbuf		*m;
1928	struct ifnet		*ifp;
1929	struct sk_chain		*cur_rx;
1930	int			total_len = 0;
1931	int			i;
1932	u_int32_t		rxstat;
1933
1934	sc = sc_if->sk_softc;
1935	ifp = &sc_if->arpcom.ac_if;
1936	i = sc_if->sk_cdata.sk_rx_prod;
1937	cur_rx = &sc_if->sk_cdata.sk_rx_chain[i];
1938
1939	SK_LOCK_ASSERT(sc);
1940
1941	while(!(sc_if->sk_rdata->sk_rx_ring[i].sk_ctl & SK_RXCTL_OWN)) {
1942
1943		cur_rx = &sc_if->sk_cdata.sk_rx_chain[i];
1944		rxstat = sc_if->sk_rdata->sk_rx_ring[i].sk_xmac_rxstat;
1945		m = cur_rx->sk_mbuf;
1946		cur_rx->sk_mbuf = NULL;
1947		total_len = SK_RXBYTES(sc_if->sk_rdata->sk_rx_ring[i].sk_ctl);
1948		SK_INC(i, SK_RX_RING_CNT);
1949
1950		if (rxstat & XM_RXSTAT_ERRFRAME) {
1951			ifp->if_ierrors++;
1952			sk_newbuf(sc_if, cur_rx, m);
1953			continue;
1954		}
1955
1956		/*
1957		 * Try to allocate a new jumbo buffer. If that
1958		 * fails, copy the packet to mbufs and put the
1959		 * jumbo buffer back in the ring so it can be
1960		 * re-used. If allocating mbufs fails, then we
1961		 * have to drop the packet.
1962		 */
1963		if (sk_newbuf(sc_if, cur_rx, NULL) == ENOBUFS) {
1964			struct mbuf		*m0;
1965			m0 = m_devget(mtod(m, char *), total_len, ETHER_ALIGN,
1966			    ifp, NULL);
1967			sk_newbuf(sc_if, cur_rx, m);
1968			if (m0 == NULL) {
1969				printf("sk%d: no receive buffers "
1970				    "available -- packet dropped!\n",
1971				    sc_if->sk_unit);
1972				ifp->if_ierrors++;
1973				continue;
1974			}
1975			m = m0;
1976		} else {
1977			m->m_pkthdr.rcvif = ifp;
1978			m->m_pkthdr.len = m->m_len = total_len;
1979		}
1980
1981		ifp->if_ipackets++;
1982		SK_UNLOCK(sc);
1983		(*ifp->if_input)(ifp, m);
1984		SK_LOCK(sc);
1985	}
1986
1987	sc_if->sk_cdata.sk_rx_prod = i;
1988
1989	return;
1990}
1991
1992static void
1993sk_txeof(sc_if)
1994	struct sk_if_softc	*sc_if;
1995{
1996	struct sk_softc		*sc;
1997	struct sk_tx_desc	*cur_tx;
1998	struct ifnet		*ifp;
1999	u_int32_t		idx;
2000
2001	sc = sc_if->sk_softc;
2002	ifp = &sc_if->arpcom.ac_if;
2003
2004	/*
2005	 * Go through our tx ring and free mbufs for those
2006	 * frames that have been sent.
2007	 */
2008	idx = sc_if->sk_cdata.sk_tx_cons;
2009	while(idx != sc_if->sk_cdata.sk_tx_prod) {
2010		cur_tx = &sc_if->sk_rdata->sk_tx_ring[idx];
2011		if (cur_tx->sk_ctl & SK_TXCTL_OWN)
2012			break;
2013		if (cur_tx->sk_ctl & SK_TXCTL_LASTFRAG)
2014			ifp->if_opackets++;
2015		if (sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf != NULL) {
2016			m_freem(sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf);
2017			sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf = NULL;
2018		}
2019		sc_if->sk_cdata.sk_tx_cnt--;
2020		SK_INC(idx, SK_TX_RING_CNT);
2021	}
2022
2023	if (sc_if->sk_cdata.sk_tx_cnt == 0) {
2024		ifp->if_timer = 0;
2025	} else /* nudge chip to keep tx ring moving */
2026		CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_START);
2027
2028	if (sc_if->sk_cdata.sk_tx_cnt < SK_TX_RING_CNT - 2)
2029		ifp->if_flags &= ~IFF_OACTIVE;
2030
2031	sc_if->sk_cdata.sk_tx_cons = idx;
2032}
2033
2034static void
2035sk_tick(xsc_if)
2036	void			*xsc_if;
2037{
2038	struct sk_if_softc	*sc_if;
2039	struct mii_data		*mii;
2040	struct ifnet		*ifp;
2041	int			i;
2042
2043	sc_if = xsc_if;
2044	SK_IF_LOCK(sc_if);
2045	ifp = &sc_if->arpcom.ac_if;
2046	mii = device_get_softc(sc_if->sk_miibus);
2047
2048	if (!(ifp->if_flags & IFF_UP)) {
2049		SK_IF_UNLOCK(sc_if);
2050		return;
2051	}
2052
2053	if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
2054		sk_intr_bcom(sc_if);
2055		SK_IF_UNLOCK(sc_if);
2056		return;
2057	}
2058
2059	/*
2060	 * According to SysKonnect, the correct way to verify that
2061	 * the link has come back up is to poll bit 0 of the GPIO
2062	 * register three times. This pin has the signal from the
2063	 * link_sync pin connected to it; if we read the same link
2064	 * state 3 times in a row, we know the link is up.
2065	 */
2066	for (i = 0; i < 3; i++) {
2067		if (SK_XM_READ_2(sc_if, XM_GPIO) & XM_GPIO_GP0_SET)
2068			break;
2069	}
2070
2071	if (i != 3) {
2072		sc_if->sk_tick_ch = timeout(sk_tick, sc_if, hz);
2073		SK_IF_UNLOCK(sc_if);
2074		return;
2075	}
2076
2077	/* Turn the GP0 interrupt back on. */
2078	SK_XM_CLRBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET);
2079	SK_XM_READ_2(sc_if, XM_ISR);
2080	mii_tick(mii);
2081	untimeout(sk_tick, sc_if, sc_if->sk_tick_ch);
2082
2083	SK_IF_UNLOCK(sc_if);
2084	return;
2085}
2086
2087static void
2088sk_intr_bcom(sc_if)
2089	struct sk_if_softc	*sc_if;
2090{
2091	struct mii_data		*mii;
2092	struct ifnet		*ifp;
2093	int			status;
2094	mii = device_get_softc(sc_if->sk_miibus);
2095	ifp = &sc_if->arpcom.ac_if;
2096
2097	SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
2098
2099	/*
2100	 * Read the PHY interrupt register to make sure
2101	 * we clear any pending interrupts.
2102	 */
2103	status = sk_xmac_miibus_readreg(sc_if, SK_PHYADDR_BCOM, BRGPHY_MII_ISR);
2104
2105	if (!(ifp->if_flags & IFF_RUNNING)) {
2106		sk_init_xmac(sc_if);
2107		return;
2108	}
2109
2110	if (status & (BRGPHY_ISR_LNK_CHG|BRGPHY_ISR_AN_PR)) {
2111		int			lstat;
2112		lstat = sk_xmac_miibus_readreg(sc_if, SK_PHYADDR_BCOM,
2113		    BRGPHY_MII_AUXSTS);
2114
2115		if (!(lstat & BRGPHY_AUXSTS_LINK) && sc_if->sk_link) {
2116			mii_mediachg(mii);
2117			/* Turn off the link LED. */
2118			SK_IF_WRITE_1(sc_if, 0,
2119			    SK_LINKLED1_CTL, SK_LINKLED_OFF);
2120			sc_if->sk_link = 0;
2121		} else if (status & BRGPHY_ISR_LNK_CHG) {
2122			sk_xmac_miibus_writereg(sc_if, SK_PHYADDR_BCOM,
2123	    		    BRGPHY_MII_IMR, 0xFF00);
2124			mii_tick(mii);
2125			sc_if->sk_link = 1;
2126			/* Turn on the link LED. */
2127			SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL,
2128			    SK_LINKLED_ON|SK_LINKLED_LINKSYNC_OFF|
2129			    SK_LINKLED_BLINK_OFF);
2130		} else {
2131			mii_tick(mii);
2132			sc_if->sk_tick_ch = timeout(sk_tick, sc_if, hz);
2133		}
2134	}
2135
2136	SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
2137
2138	return;
2139}
2140
2141static void
2142sk_intr_xmac(sc_if)
2143	struct sk_if_softc	*sc_if;
2144{
2145	struct sk_softc		*sc;
2146	u_int16_t		status;
2147
2148	sc = sc_if->sk_softc;
2149	status = SK_XM_READ_2(sc_if, XM_ISR);
2150
2151	/*
2152	 * Link has gone down. Start MII tick timeout to
2153	 * watch for link resync.
2154	 */
2155	if (sc_if->sk_phytype == SK_PHYTYPE_XMAC) {
2156		if (status & XM_ISR_GP0_SET) {
2157			SK_XM_SETBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET);
2158			sc_if->sk_tick_ch = timeout(sk_tick, sc_if, hz);
2159		}
2160
2161		if (status & XM_ISR_AUTONEG_DONE) {
2162			sc_if->sk_tick_ch = timeout(sk_tick, sc_if, hz);
2163		}
2164	}
2165
2166	if (status & XM_IMR_TX_UNDERRUN)
2167		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_TXFIFO);
2168
2169	if (status & XM_IMR_RX_OVERRUN)
2170		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_RXFIFO);
2171
2172	status = SK_XM_READ_2(sc_if, XM_ISR);
2173
2174	return;
2175}
2176
2177static void
2178sk_intr_yukon(sc_if)
2179	struct sk_if_softc	*sc_if;
2180{
2181	int status;
2182
2183	status = SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
2184
2185	return;
2186}
2187
2188static void
2189sk_intr(xsc)
2190	void			*xsc;
2191{
2192	struct sk_softc		*sc = xsc;
2193	struct sk_if_softc	*sc_if0 = NULL, *sc_if1 = NULL;
2194	struct ifnet		*ifp0 = NULL, *ifp1 = NULL;
2195	u_int32_t		status;
2196
2197	SK_LOCK(sc);
2198
2199	sc_if0 = sc->sk_if[SK_PORT_A];
2200	sc_if1 = sc->sk_if[SK_PORT_B];
2201
2202	if (sc_if0 != NULL)
2203		ifp0 = &sc_if0->arpcom.ac_if;
2204	if (sc_if1 != NULL)
2205		ifp1 = &sc_if1->arpcom.ac_if;
2206
2207	for (;;) {
2208		status = CSR_READ_4(sc, SK_ISSR);
2209		if (!(status & sc->sk_intrmask))
2210			break;
2211
2212		/* Handle receive interrupts first. */
2213		if (status & SK_ISR_RX1_EOF) {
2214			sk_rxeof(sc_if0);
2215			CSR_WRITE_4(sc, SK_BMU_RX_CSR0,
2216			    SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START);
2217		}
2218		if (status & SK_ISR_RX2_EOF) {
2219			sk_rxeof(sc_if1);
2220			CSR_WRITE_4(sc, SK_BMU_RX_CSR1,
2221			    SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START);
2222		}
2223
2224		/* Then transmit interrupts. */
2225		if (status & SK_ISR_TX1_S_EOF) {
2226			sk_txeof(sc_if0);
2227			CSR_WRITE_4(sc, SK_BMU_TXS_CSR0,
2228			    SK_TXBMU_CLR_IRQ_EOF);
2229		}
2230		if (status & SK_ISR_TX2_S_EOF) {
2231			sk_txeof(sc_if1);
2232			CSR_WRITE_4(sc, SK_BMU_TXS_CSR1,
2233			    SK_TXBMU_CLR_IRQ_EOF);
2234		}
2235
2236		/* Then MAC interrupts. */
2237		if (status & SK_ISR_MAC1 && ifp0->if_flags & IFF_RUNNING) {
2238			if (sc->sk_type == SK_GENESIS)
2239				sk_intr_xmac(sc_if0);
2240			else
2241				sk_intr_yukon(sc_if0);
2242		}
2243
2244		if (status & SK_ISR_MAC2 && ifp1->if_flags & IFF_RUNNING) {
2245			if (sc->sk_type == SK_GENESIS)
2246				sk_intr_xmac(sc_if1);
2247			else
2248				sk_intr_yukon(sc_if1);
2249		}
2250
2251		if (status & SK_ISR_EXTERNAL_REG) {
2252			if (ifp0 != NULL &&
2253			    sc_if0->sk_phytype == SK_PHYTYPE_BCOM)
2254				sk_intr_bcom(sc_if0);
2255			if (ifp1 != NULL &&
2256			    sc_if1->sk_phytype == SK_PHYTYPE_BCOM)
2257				sk_intr_bcom(sc_if1);
2258		}
2259	}
2260
2261	CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2262
2263	if (ifp0 != NULL && !IFQ_DRV_IS_EMPTY(&ifp0->if_snd))
2264		sk_start(ifp0);
2265	if (ifp1 != NULL && !IFQ_DRV_IS_EMPTY(&ifp1->if_snd))
2266		sk_start(ifp1);
2267
2268	SK_UNLOCK(sc);
2269
2270	return;
2271}
2272
2273static void
2274sk_init_xmac(sc_if)
2275	struct sk_if_softc	*sc_if;
2276{
2277	struct sk_softc		*sc;
2278	struct ifnet		*ifp;
2279	struct sk_bcom_hack	bhack[] = {
2280	{ 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 }, { 0x17, 0x0013 },
2281	{ 0x15, 0x0404 }, { 0x17, 0x8006 }, { 0x15, 0x0132 }, { 0x17, 0x8006 },
2282	{ 0x15, 0x0232 }, { 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 },
2283	{ 0, 0 } };
2284
2285	sc = sc_if->sk_softc;
2286	ifp = &sc_if->arpcom.ac_if;
2287
2288	/* Unreset the XMAC. */
2289	SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL, SK_TXMACCTL_XMAC_UNRESET);
2290	DELAY(1000);
2291
2292	/* Reset the XMAC's internal state. */
2293	SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
2294
2295	/* Save the XMAC II revision */
2296	sc_if->sk_xmac_rev = XM_XMAC_REV(SK_XM_READ_4(sc_if, XM_DEVID));
2297
2298	/*
2299	 * Perform additional initialization for external PHYs,
2300	 * namely for the 1000baseTX cards that use the XMAC's
2301	 * GMII mode.
2302	 */
2303	if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
2304		int			i = 0;
2305		u_int32_t		val;
2306
2307		/* Take PHY out of reset. */
2308		val = sk_win_read_4(sc, SK_GPIO);
2309		if (sc_if->sk_port == SK_PORT_A)
2310			val |= SK_GPIO_DIR0|SK_GPIO_DAT0;
2311		else
2312			val |= SK_GPIO_DIR2|SK_GPIO_DAT2;
2313		sk_win_write_4(sc, SK_GPIO, val);
2314
2315		/* Enable GMII mode on the XMAC. */
2316		SK_XM_SETBIT_2(sc_if, XM_HWCFG, XM_HWCFG_GMIIMODE);
2317
2318		sk_xmac_miibus_writereg(sc_if, SK_PHYADDR_BCOM,
2319		    BRGPHY_MII_BMCR, BRGPHY_BMCR_RESET);
2320		DELAY(10000);
2321		sk_xmac_miibus_writereg(sc_if, SK_PHYADDR_BCOM,
2322		    BRGPHY_MII_IMR, 0xFFF0);
2323
2324		/*
2325		 * Early versions of the BCM5400 apparently have
2326		 * a bug that requires them to have their reserved
2327		 * registers initialized to some magic values. I don't
2328		 * know what the numbers do, I'm just the messenger.
2329		 */
2330		if (sk_xmac_miibus_readreg(sc_if, SK_PHYADDR_BCOM, 0x03)
2331		    == 0x6041) {
2332			while(bhack[i].reg) {
2333				sk_xmac_miibus_writereg(sc_if, SK_PHYADDR_BCOM,
2334				    bhack[i].reg, bhack[i].val);
2335				i++;
2336			}
2337		}
2338	}
2339
2340	/* Set station address */
2341	SK_XM_WRITE_2(sc_if, XM_PAR0,
2342	    *(u_int16_t *)(&sc_if->arpcom.ac_enaddr[0]));
2343	SK_XM_WRITE_2(sc_if, XM_PAR1,
2344	    *(u_int16_t *)(&sc_if->arpcom.ac_enaddr[2]));
2345	SK_XM_WRITE_2(sc_if, XM_PAR2,
2346	    *(u_int16_t *)(&sc_if->arpcom.ac_enaddr[4]));
2347	SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_STATION);
2348
2349	if (ifp->if_flags & IFF_BROADCAST) {
2350		SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
2351	} else {
2352		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
2353	}
2354
2355	/* We don't need the FCS appended to the packet. */
2356	SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_STRIPFCS);
2357
2358	/* We want short frames padded to 60 bytes. */
2359	SK_XM_SETBIT_2(sc_if, XM_TXCMD, XM_TXCMD_AUTOPAD);
2360
2361	/*
2362	 * Enable the reception of all error frames. This is is
2363	 * a necessary evil due to the design of the XMAC. The
2364	 * XMAC's receive FIFO is only 8K in size, however jumbo
2365	 * frames can be up to 9000 bytes in length. When bad
2366	 * frame filtering is enabled, the XMAC's RX FIFO operates
2367	 * in 'store and forward' mode. For this to work, the
2368	 * entire frame has to fit into the FIFO, but that means
2369	 * that jumbo frames larger than 8192 bytes will be
2370	 * truncated. Disabling all bad frame filtering causes
2371	 * the RX FIFO to operate in streaming mode, in which
2372	 * case the XMAC will start transfering frames out of the
2373	 * RX FIFO as soon as the FIFO threshold is reached.
2374	 */
2375	SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_BADFRAMES|
2376	    XM_MODE_RX_GIANTS|XM_MODE_RX_RUNTS|XM_MODE_RX_CRCERRS|
2377	    XM_MODE_RX_INRANGELEN);
2378
2379	if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
2380		SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK);
2381	else
2382		SK_XM_CLRBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK);
2383
2384	/*
2385	 * Bump up the transmit threshold. This helps hold off transmit
2386	 * underruns when we're blasting traffic from both ports at once.
2387	 */
2388	SK_XM_WRITE_2(sc_if, XM_TX_REQTHRESH, SK_XM_TX_FIFOTHRESH);
2389
2390	/* Set promiscuous mode */
2391	sk_setpromisc(sc_if);
2392
2393	/* Set multicast filter */
2394	sk_setmulti(sc_if);
2395
2396	/* Clear and enable interrupts */
2397	SK_XM_READ_2(sc_if, XM_ISR);
2398	if (sc_if->sk_phytype == SK_PHYTYPE_XMAC)
2399		SK_XM_WRITE_2(sc_if, XM_IMR, XM_INTRS);
2400	else
2401		SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
2402
2403	/* Configure MAC arbiter */
2404	switch(sc_if->sk_xmac_rev) {
2405	case XM_XMAC_REV_B2:
2406		sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_B2);
2407		sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_B2);
2408		sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_B2);
2409		sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_B2);
2410		sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_B2);
2411		sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_B2);
2412		sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_B2);
2413		sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_B2);
2414		sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
2415		break;
2416	case XM_XMAC_REV_C1:
2417		sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_C1);
2418		sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_C1);
2419		sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_C1);
2420		sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_C1);
2421		sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_C1);
2422		sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_C1);
2423		sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_C1);
2424		sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_C1);
2425		sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
2426		break;
2427	default:
2428		break;
2429	}
2430	sk_win_write_2(sc, SK_MACARB_CTL,
2431	    SK_MACARBCTL_UNRESET|SK_MACARBCTL_FASTOE_OFF);
2432
2433	sc_if->sk_link = 1;
2434
2435	return;
2436}
2437
2438static void
2439sk_init_yukon(sc_if)
2440	struct sk_if_softc	*sc_if;
2441{
2442	u_int32_t		phy;
2443	u_int16_t		reg;
2444	struct sk_softc		*sc;
2445	struct ifnet		*ifp;
2446	int			i;
2447
2448	sc = sc_if->sk_softc;
2449	ifp = &sc_if->arpcom.ac_if;
2450
2451	/* GMAC and GPHY Reset */
2452	SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, SK_GPHY_RESET_SET);
2453	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
2454	DELAY(1000);
2455	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_CLEAR);
2456	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
2457	DELAY(1000);
2458
2459	phy = SK_GPHY_INT_POL_HI | SK_GPHY_DIS_FC | SK_GPHY_DIS_SLEEP |
2460		SK_GPHY_ENA_XC | SK_GPHY_ANEG_ALL | SK_GPHY_ENA_PAUSE;
2461
2462	switch(sc_if->sk_softc->sk_pmd) {
2463	case IFM_1000_SX:
2464	case IFM_1000_LX:
2465		phy |= SK_GPHY_FIBER;
2466		break;
2467
2468	case IFM_1000_CX:
2469	case IFM_1000_T:
2470		phy |= SK_GPHY_COPPER;
2471		break;
2472	}
2473
2474	SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_SET);
2475	DELAY(1000);
2476	SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_CLEAR);
2477	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_LOOP_OFF |
2478		      SK_GMAC_PAUSE_ON | SK_GMAC_RESET_CLEAR);
2479
2480	/* unused read of the interrupt source register */
2481	SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
2482
2483	reg = SK_YU_READ_2(sc_if, YUKON_PAR);
2484
2485	/* MIB Counter Clear Mode set */
2486	reg |= YU_PAR_MIB_CLR;
2487	SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
2488
2489	/* MIB Counter Clear Mode clear */
2490	reg &= ~YU_PAR_MIB_CLR;
2491	SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
2492
2493	/* receive control reg */
2494	SK_YU_WRITE_2(sc_if, YUKON_RCR, YU_RCR_CRCR);
2495
2496	/* transmit parameter register */
2497	SK_YU_WRITE_2(sc_if, YUKON_TPR, YU_TPR_JAM_LEN(0x3) |
2498		      YU_TPR_JAM_IPG(0xb) | YU_TPR_JAM2DATA_IPG(0x1a) );
2499
2500	/* serial mode register */
2501	reg = YU_SMR_DATA_BLIND(0x1c) | YU_SMR_MFL_VLAN | YU_SMR_IPG_DATA(0x1e);
2502	if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
2503		reg |= YU_SMR_MFL_JUMBO;
2504	SK_YU_WRITE_2(sc_if, YUKON_SMR, reg);
2505
2506	/* Setup Yukon's address */
2507	for (i = 0; i < 3; i++) {
2508		/* Write Source Address 1 (unicast filter) */
2509		SK_YU_WRITE_2(sc_if, YUKON_SAL1 + i * 4,
2510			      sc_if->arpcom.ac_enaddr[i * 2] |
2511			      sc_if->arpcom.ac_enaddr[i * 2 + 1] << 8);
2512	}
2513
2514	for (i = 0; i < 3; i++) {
2515		reg = sk_win_read_2(sc_if->sk_softc,
2516				    SK_MAC1_0 + i * 2 + sc_if->sk_port * 8);
2517		SK_YU_WRITE_2(sc_if, YUKON_SAL2 + i * 4, reg);
2518	}
2519
2520	/* Set promiscuous mode */
2521	sk_setpromisc(sc_if);
2522
2523	/* Set multicast filter */
2524	sk_setmulti(sc_if);
2525
2526	/* enable interrupt mask for counter overflows */
2527	SK_YU_WRITE_2(sc_if, YUKON_TIMR, 0);
2528	SK_YU_WRITE_2(sc_if, YUKON_RIMR, 0);
2529	SK_YU_WRITE_2(sc_if, YUKON_TRIMR, 0);
2530
2531	/* Configure RX MAC FIFO */
2532	SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_CLEAR);
2533	SK_IF_WRITE_4(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_OPERATION_ON);
2534
2535	/* Configure TX MAC FIFO */
2536	SK_IF_WRITE_1(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_CLEAR);
2537	SK_IF_WRITE_4(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_OPERATION_ON);
2538}
2539
2540/*
2541 * Note that to properly initialize any part of the GEnesis chip,
2542 * you first have to take it out of reset mode.
2543 */
2544static void
2545sk_init(xsc)
2546	void			*xsc;
2547{
2548	struct sk_if_softc	*sc_if = xsc;
2549	struct sk_softc		*sc;
2550	struct ifnet		*ifp;
2551	struct mii_data		*mii;
2552	u_int16_t		reg;
2553
2554	SK_IF_LOCK(sc_if);
2555
2556	ifp = &sc_if->arpcom.ac_if;
2557	sc = sc_if->sk_softc;
2558	mii = device_get_softc(sc_if->sk_miibus);
2559
2560	/* Cancel pending I/O and free all RX/TX buffers. */
2561	sk_stop(sc_if);
2562
2563	if (sc->sk_type == SK_GENESIS) {
2564		/* Configure LINK_SYNC LED */
2565		SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_ON);
2566		SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL,
2567			SK_LINKLED_LINKSYNC_ON);
2568
2569		/* Configure RX LED */
2570		SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL,
2571			SK_RXLEDCTL_COUNTER_START);
2572
2573		/* Configure TX LED */
2574		SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL,
2575			SK_TXLEDCTL_COUNTER_START);
2576	}
2577
2578	/* Configure I2C registers */
2579
2580	/* Configure XMAC(s) */
2581	switch (sc->sk_type) {
2582	case SK_GENESIS:
2583		sk_init_xmac(sc_if);
2584		break;
2585	case SK_YUKON:
2586		sk_init_yukon(sc_if);
2587		break;
2588	}
2589	mii_mediachg(mii);
2590
2591	if (sc->sk_type == SK_GENESIS) {
2592		/* Configure MAC FIFOs */
2593		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_UNRESET);
2594		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_END, SK_FIFO_END);
2595		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_ON);
2596
2597		SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_UNRESET);
2598		SK_IF_WRITE_4(sc_if, 0, SK_TXF1_END, SK_FIFO_END);
2599		SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_ON);
2600	}
2601
2602	/* Configure transmit arbiter(s) */
2603	SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL,
2604	    SK_TXARCTL_ON|SK_TXARCTL_FSYNC_ON);
2605
2606	/* Configure RAMbuffers */
2607	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_UNRESET);
2608	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_START, sc_if->sk_rx_ramstart);
2609	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_WR_PTR, sc_if->sk_rx_ramstart);
2610	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_RD_PTR, sc_if->sk_rx_ramstart);
2611	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_END, sc_if->sk_rx_ramend);
2612	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_ON);
2613
2614	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_UNRESET);
2615	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_STORENFWD_ON);
2616	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_START, sc_if->sk_tx_ramstart);
2617	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_WR_PTR, sc_if->sk_tx_ramstart);
2618	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_RD_PTR, sc_if->sk_tx_ramstart);
2619	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_END, sc_if->sk_tx_ramend);
2620	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_ON);
2621
2622	/* Configure BMUs */
2623	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_ONLINE);
2624	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_LO,
2625	    vtophys(&sc_if->sk_rdata->sk_rx_ring[0]));
2626	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_HI, 0);
2627
2628	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_ONLINE);
2629	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_LO,
2630	    vtophys(&sc_if->sk_rdata->sk_tx_ring[0]));
2631	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_HI, 0);
2632
2633	/* Init descriptors */
2634	if (sk_init_rx_ring(sc_if) == ENOBUFS) {
2635		printf("sk%d: initialization failed: no "
2636		    "memory for rx buffers\n", sc_if->sk_unit);
2637		sk_stop(sc_if);
2638		SK_IF_UNLOCK(sc_if);
2639		return;
2640	}
2641	sk_init_tx_ring(sc_if);
2642
2643	/* Configure interrupt handling */
2644	CSR_READ_4(sc, SK_ISSR);
2645	if (sc_if->sk_port == SK_PORT_A)
2646		sc->sk_intrmask |= SK_INTRS1;
2647	else
2648		sc->sk_intrmask |= SK_INTRS2;
2649
2650	sc->sk_intrmask |= SK_ISR_EXTERNAL_REG;
2651
2652	CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2653
2654	/* Start BMUs. */
2655	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_RX_START);
2656
2657	switch(sc->sk_type) {
2658	case SK_GENESIS:
2659		/* Enable XMACs TX and RX state machines */
2660		SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_IGNPAUSE);
2661		SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
2662		break;
2663	case SK_YUKON:
2664		reg = SK_YU_READ_2(sc_if, YUKON_GPCR);
2665		reg |= YU_GPCR_TXEN | YU_GPCR_RXEN;
2666		reg &= ~(YU_GPCR_SPEED_EN | YU_GPCR_DPLX_EN);
2667		SK_YU_WRITE_2(sc_if, YUKON_GPCR, reg);
2668	}
2669
2670	ifp->if_flags |= IFF_RUNNING;
2671	ifp->if_flags &= ~IFF_OACTIVE;
2672
2673	SK_IF_UNLOCK(sc_if);
2674
2675	return;
2676}
2677
2678static void
2679sk_stop(sc_if)
2680	struct sk_if_softc	*sc_if;
2681{
2682	int			i;
2683	struct sk_softc		*sc;
2684	struct ifnet		*ifp;
2685
2686	SK_IF_LOCK(sc_if);
2687	sc = sc_if->sk_softc;
2688	ifp = &sc_if->arpcom.ac_if;
2689
2690	untimeout(sk_tick, sc_if, sc_if->sk_tick_ch);
2691
2692	if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
2693		u_int32_t		val;
2694
2695		/* Put PHY back into reset. */
2696		val = sk_win_read_4(sc, SK_GPIO);
2697		if (sc_if->sk_port == SK_PORT_A) {
2698			val |= SK_GPIO_DIR0;
2699			val &= ~SK_GPIO_DAT0;
2700		} else {
2701			val |= SK_GPIO_DIR2;
2702			val &= ~SK_GPIO_DAT2;
2703		}
2704		sk_win_write_4(sc, SK_GPIO, val);
2705	}
2706
2707	/* Turn off various components of this interface. */
2708	SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
2709	switch (sc->sk_type) {
2710	case SK_GENESIS:
2711		SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL, SK_TXMACCTL_XMAC_RESET);
2712		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_RESET);
2713		break;
2714	case SK_YUKON:
2715		SK_IF_WRITE_1(sc_if,0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_SET);
2716		SK_IF_WRITE_1(sc_if,0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_SET);
2717		break;
2718	}
2719	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_OFFLINE);
2720	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
2721	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_OFFLINE);
2722	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
2723	SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL, SK_TXARCTL_OFF);
2724	SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
2725	SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
2726	SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_OFF);
2727	SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_LINKSYNC_OFF);
2728
2729	/* Disable interrupts */
2730	if (sc_if->sk_port == SK_PORT_A)
2731		sc->sk_intrmask &= ~SK_INTRS1;
2732	else
2733		sc->sk_intrmask &= ~SK_INTRS2;
2734	CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2735
2736	SK_XM_READ_2(sc_if, XM_ISR);
2737	SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
2738
2739	/* Free RX and TX mbufs still in the queues. */
2740	for (i = 0; i < SK_RX_RING_CNT; i++) {
2741		if (sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf != NULL) {
2742			m_freem(sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf);
2743			sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf = NULL;
2744		}
2745	}
2746
2747	for (i = 0; i < SK_TX_RING_CNT; i++) {
2748		if (sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf != NULL) {
2749			m_freem(sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf);
2750			sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf = NULL;
2751		}
2752	}
2753
2754	ifp->if_flags &= ~(IFF_RUNNING|IFF_OACTIVE);
2755	SK_IF_UNLOCK(sc_if);
2756	return;
2757}
2758