if_sk.c revision 139825
1/*	$OpenBSD: if_sk.c,v 2.33 2003/08/12 05:23:06 nate Exp $	*/
2
3/*-
4 * Copyright (c) 1997, 1998, 1999, 2000
5 *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 *    notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 *    notice, this list of conditions and the following disclaimer in the
14 *    documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 *    must display the following acknowledgement:
17 *	This product includes software developed by Bill Paul.
18 * 4. Neither the name of the author nor the names of any co-contributors
19 *    may be used to endorse or promote products derived from this software
20 *    without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
26 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
32 * THE POSSIBILITY OF SUCH DAMAGE.
33 */
34/*-
35 * Copyright (c) 2003 Nathan L. Binkert <binkertn@umich.edu>
36 *
37 * Permission to use, copy, modify, and distribute this software for any
38 * purpose with or without fee is hereby granted, provided that the above
39 * copyright notice and this permission notice appear in all copies.
40 *
41 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
42 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
43 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
44 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
45 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
46 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
47 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
48 */
49
50#include <sys/cdefs.h>
51__FBSDID("$FreeBSD: head/sys/dev/sk/if_sk.c 139825 2005-01-07 02:29:27Z imp $");
52
53/*
54 * SysKonnect SK-NET gigabit ethernet driver for FreeBSD. Supports
55 * the SK-984x series adapters, both single port and dual port.
56 * References:
57 * 	The XaQti XMAC II datasheet,
58 *  http://www.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
59 *	The SysKonnect GEnesis manual, http://www.syskonnect.com
60 *
61 * Note: XaQti has been aquired by Vitesse, and Vitesse does not have the
62 * XMAC II datasheet online. I have put my copy at people.freebsd.org as a
63 * convenience to others until Vitesse corrects this problem:
64 *
65 * http://people.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
66 *
67 * Written by Bill Paul <wpaul@ee.columbia.edu>
68 * Department of Electrical Engineering
69 * Columbia University, New York City
70 */
71/*
72 * The SysKonnect gigabit ethernet adapters consist of two main
73 * components: the SysKonnect GEnesis controller chip and the XaQti Corp.
74 * XMAC II gigabit ethernet MAC. The XMAC provides all of the MAC
75 * components and a PHY while the GEnesis controller provides a PCI
76 * interface with DMA support. Each card may have between 512K and
77 * 2MB of SRAM on board depending on the configuration.
78 *
79 * The SysKonnect GEnesis controller can have either one or two XMAC
80 * chips connected to it, allowing single or dual port NIC configurations.
81 * SysKonnect has the distinction of being the only vendor on the market
82 * with a dual port gigabit ethernet NIC. The GEnesis provides dual FIFOs,
83 * dual DMA queues, packet/MAC/transmit arbiters and direct access to the
84 * XMAC registers. This driver takes advantage of these features to allow
85 * both XMACs to operate as independent interfaces.
86 */
87
88#include <sys/param.h>
89#include <sys/systm.h>
90#include <sys/sockio.h>
91#include <sys/mbuf.h>
92#include <sys/malloc.h>
93#include <sys/kernel.h>
94#include <sys/module.h>
95#include <sys/socket.h>
96#include <sys/queue.h>
97
98#include <net/if.h>
99#include <net/if_arp.h>
100#include <net/ethernet.h>
101#include <net/if_dl.h>
102#include <net/if_media.h>
103
104#include <net/bpf.h>
105
106#include <vm/vm.h>              /* for vtophys */
107#include <vm/pmap.h>            /* for vtophys */
108#include <machine/bus_pio.h>
109#include <machine/bus_memio.h>
110#include <machine/bus.h>
111#include <machine/resource.h>
112#include <sys/bus.h>
113#include <sys/rman.h>
114
115#include <dev/mii/mii.h>
116#include <dev/mii/miivar.h>
117#include <dev/mii/brgphyreg.h>
118
119#include <dev/pci/pcireg.h>
120#include <dev/pci/pcivar.h>
121
122#if 0
123#define SK_USEIOSPACE
124#endif
125
126#include <pci/if_skreg.h>
127#include <pci/xmaciireg.h>
128#include <pci/yukonreg.h>
129
130MODULE_DEPEND(sk, pci, 1, 1, 1);
131MODULE_DEPEND(sk, ether, 1, 1, 1);
132MODULE_DEPEND(sk, miibus, 1, 1, 1);
133
134/* "controller miibus0" required.  See GENERIC if you get errors here. */
135#include "miibus_if.h"
136
137#ifndef lint
138static const char rcsid[] =
139  "$FreeBSD: head/sys/dev/sk/if_sk.c 139825 2005-01-07 02:29:27Z imp $";
140#endif
141
142static struct sk_type sk_devs[] = {
143	{
144		VENDORID_SK,
145		DEVICEID_SK_V1,
146		"SysKonnect Gigabit Ethernet (V1.0)"
147	},
148	{
149		VENDORID_SK,
150		DEVICEID_SK_V2,
151		"SysKonnect Gigabit Ethernet (V2.0)"
152	},
153	{
154		VENDORID_MARVELL,
155		DEVICEID_SK_V2,
156		"Marvell Gigabit Ethernet"
157	},
158	{
159		VENDORID_MARVELL,
160		DEVICEID_BELKIN_5005,
161		"Belkin F5D5005 Gigabit Ethernet"
162	},
163	{
164		VENDORID_3COM,
165		DEVICEID_3COM_3C940,
166		"3Com 3C940 Gigabit Ethernet"
167	},
168	{
169		VENDORID_LINKSYS,
170		DEVICEID_LINKSYS_EG1032,
171		"Linksys EG1032 Gigabit Ethernet"
172	},
173	{
174		VENDORID_DLINK,
175		DEVICEID_DLINK_DGE530T,
176		"D-Link DGE-530T Gigabit Ethernet"
177	},
178	{ 0, 0, NULL }
179};
180
181static int skc_probe		(device_t);
182static int skc_attach		(device_t);
183static int skc_detach		(device_t);
184static void skc_shutdown	(device_t);
185static int sk_detach		(device_t);
186static int sk_probe		(device_t);
187static int sk_attach		(device_t);
188static void sk_tick		(void *);
189static void sk_intr		(void *);
190static void sk_intr_xmac	(struct sk_if_softc *);
191static void sk_intr_bcom	(struct sk_if_softc *);
192static void sk_intr_yukon	(struct sk_if_softc *);
193static void sk_rxeof		(struct sk_if_softc *);
194static void sk_txeof		(struct sk_if_softc *);
195static int sk_encap		(struct sk_if_softc *, struct mbuf *,
196					u_int32_t *);
197static void sk_start		(struct ifnet *);
198static int sk_ioctl		(struct ifnet *, u_long, caddr_t);
199static void sk_init		(void *);
200static void sk_init_xmac	(struct sk_if_softc *);
201static void sk_init_yukon	(struct sk_if_softc *);
202static void sk_stop		(struct sk_if_softc *);
203static void sk_watchdog		(struct ifnet *);
204static int sk_ifmedia_upd	(struct ifnet *);
205static void sk_ifmedia_sts	(struct ifnet *, struct ifmediareq *);
206static void sk_reset		(struct sk_softc *);
207static int sk_newbuf		(struct sk_if_softc *,
208					struct sk_chain *, struct mbuf *);
209static int sk_alloc_jumbo_mem	(struct sk_if_softc *);
210static void *sk_jalloc		(struct sk_if_softc *);
211static void sk_jfree		(void *, void *);
212static int sk_init_rx_ring	(struct sk_if_softc *);
213static void sk_init_tx_ring	(struct sk_if_softc *);
214static u_int32_t sk_win_read_4	(struct sk_softc *, int);
215static u_int16_t sk_win_read_2	(struct sk_softc *, int);
216static u_int8_t sk_win_read_1	(struct sk_softc *, int);
217static void sk_win_write_4	(struct sk_softc *, int, u_int32_t);
218static void sk_win_write_2	(struct sk_softc *, int, u_int32_t);
219static void sk_win_write_1	(struct sk_softc *, int, u_int32_t);
220static u_int8_t sk_vpd_readbyte	(struct sk_softc *, int);
221static void sk_vpd_read_res	(struct sk_softc *, struct vpd_res *, int);
222static void sk_vpd_read		(struct sk_softc *);
223
224static int sk_miibus_readreg	(device_t, int, int);
225static int sk_miibus_writereg	(device_t, int, int, int);
226static void sk_miibus_statchg	(device_t);
227
228static int sk_xmac_miibus_readreg	(struct sk_if_softc *, int, int);
229static int sk_xmac_miibus_writereg	(struct sk_if_softc *, int, int,
230						int);
231static void sk_xmac_miibus_statchg	(struct sk_if_softc *);
232
233static int sk_marv_miibus_readreg	(struct sk_if_softc *, int, int);
234static int sk_marv_miibus_writereg	(struct sk_if_softc *, int, int,
235						int);
236static void sk_marv_miibus_statchg	(struct sk_if_softc *);
237
238static uint32_t sk_xmchash	(const uint8_t *);
239static uint32_t sk_gmchash	(const uint8_t *);
240static void sk_setfilt		(struct sk_if_softc *, caddr_t, int);
241static void sk_setmulti		(struct sk_if_softc *);
242static void sk_setpromisc	(struct sk_if_softc *);
243
244#ifdef SK_USEIOSPACE
245#define SK_RES		SYS_RES_IOPORT
246#define SK_RID		SK_PCI_LOIO
247#else
248#define SK_RES		SYS_RES_MEMORY
249#define SK_RID		SK_PCI_LOMEM
250#endif
251
252/*
253 * Note that we have newbus methods for both the GEnesis controller
254 * itself and the XMAC(s). The XMACs are children of the GEnesis, and
255 * the miibus code is a child of the XMACs. We need to do it this way
256 * so that the miibus drivers can access the PHY registers on the
257 * right PHY. It's not quite what I had in mind, but it's the only
258 * design that achieves the desired effect.
259 */
260static device_method_t skc_methods[] = {
261	/* Device interface */
262	DEVMETHOD(device_probe,		skc_probe),
263	DEVMETHOD(device_attach,	skc_attach),
264	DEVMETHOD(device_detach,	skc_detach),
265	DEVMETHOD(device_shutdown,	skc_shutdown),
266
267	/* bus interface */
268	DEVMETHOD(bus_print_child,	bus_generic_print_child),
269	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
270
271	{ 0, 0 }
272};
273
274static driver_t skc_driver = {
275	"skc",
276	skc_methods,
277	sizeof(struct sk_softc)
278};
279
280static devclass_t skc_devclass;
281
282static device_method_t sk_methods[] = {
283	/* Device interface */
284	DEVMETHOD(device_probe,		sk_probe),
285	DEVMETHOD(device_attach,	sk_attach),
286	DEVMETHOD(device_detach,	sk_detach),
287	DEVMETHOD(device_shutdown,	bus_generic_shutdown),
288
289	/* bus interface */
290	DEVMETHOD(bus_print_child,	bus_generic_print_child),
291	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
292
293	/* MII interface */
294	DEVMETHOD(miibus_readreg,	sk_miibus_readreg),
295	DEVMETHOD(miibus_writereg,	sk_miibus_writereg),
296	DEVMETHOD(miibus_statchg,	sk_miibus_statchg),
297
298	{ 0, 0 }
299};
300
301static driver_t sk_driver = {
302	"sk",
303	sk_methods,
304	sizeof(struct sk_if_softc)
305};
306
307static devclass_t sk_devclass;
308
309DRIVER_MODULE(sk, pci, skc_driver, skc_devclass, 0, 0);
310DRIVER_MODULE(sk, skc, sk_driver, sk_devclass, 0, 0);
311DRIVER_MODULE(miibus, sk, miibus_driver, miibus_devclass, 0, 0);
312
313#define SK_SETBIT(sc, reg, x)		\
314	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) | x)
315
316#define SK_CLRBIT(sc, reg, x)		\
317	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) & ~x)
318
319#define SK_WIN_SETBIT_4(sc, reg, x)	\
320	sk_win_write_4(sc, reg, sk_win_read_4(sc, reg) | x)
321
322#define SK_WIN_CLRBIT_4(sc, reg, x)	\
323	sk_win_write_4(sc, reg, sk_win_read_4(sc, reg) & ~x)
324
325#define SK_WIN_SETBIT_2(sc, reg, x)	\
326	sk_win_write_2(sc, reg, sk_win_read_2(sc, reg) | x)
327
328#define SK_WIN_CLRBIT_2(sc, reg, x)	\
329	sk_win_write_2(sc, reg, sk_win_read_2(sc, reg) & ~x)
330
331static u_int32_t
332sk_win_read_4(sc, reg)
333	struct sk_softc		*sc;
334	int			reg;
335{
336#ifdef SK_USEIOSPACE
337	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
338	return(CSR_READ_4(sc, SK_WIN_BASE + SK_REG(reg)));
339#else
340	return(CSR_READ_4(sc, reg));
341#endif
342}
343
344static u_int16_t
345sk_win_read_2(sc, reg)
346	struct sk_softc		*sc;
347	int			reg;
348{
349#ifdef SK_USEIOSPACE
350	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
351	return(CSR_READ_2(sc, SK_WIN_BASE + SK_REG(reg)));
352#else
353	return(CSR_READ_2(sc, reg));
354#endif
355}
356
357static u_int8_t
358sk_win_read_1(sc, reg)
359	struct sk_softc		*sc;
360	int			reg;
361{
362#ifdef SK_USEIOSPACE
363	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
364	return(CSR_READ_1(sc, SK_WIN_BASE + SK_REG(reg)));
365#else
366	return(CSR_READ_1(sc, reg));
367#endif
368}
369
370static void
371sk_win_write_4(sc, reg, val)
372	struct sk_softc		*sc;
373	int			reg;
374	u_int32_t		val;
375{
376#ifdef SK_USEIOSPACE
377	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
378	CSR_WRITE_4(sc, SK_WIN_BASE + SK_REG(reg), val);
379#else
380	CSR_WRITE_4(sc, reg, val);
381#endif
382	return;
383}
384
385static void
386sk_win_write_2(sc, reg, val)
387	struct sk_softc		*sc;
388	int			reg;
389	u_int32_t		val;
390{
391#ifdef SK_USEIOSPACE
392	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
393	CSR_WRITE_2(sc, SK_WIN_BASE + SK_REG(reg), val);
394#else
395	CSR_WRITE_2(sc, reg, val);
396#endif
397	return;
398}
399
400static void
401sk_win_write_1(sc, reg, val)
402	struct sk_softc		*sc;
403	int			reg;
404	u_int32_t		val;
405{
406#ifdef SK_USEIOSPACE
407	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
408	CSR_WRITE_1(sc, SK_WIN_BASE + SK_REG(reg), val);
409#else
410	CSR_WRITE_1(sc, reg, val);
411#endif
412	return;
413}
414
415/*
416 * The VPD EEPROM contains Vital Product Data, as suggested in
417 * the PCI 2.1 specification. The VPD data is separared into areas
418 * denoted by resource IDs. The SysKonnect VPD contains an ID string
419 * resource (the name of the adapter), a read-only area resource
420 * containing various key/data fields and a read/write area which
421 * can be used to store asset management information or log messages.
422 * We read the ID string and read-only into buffers attached to
423 * the controller softc structure for later use. At the moment,
424 * we only use the ID string during skc_attach().
425 */
426static u_int8_t
427sk_vpd_readbyte(sc, addr)
428	struct sk_softc		*sc;
429	int			addr;
430{
431	int			i;
432
433	sk_win_write_2(sc, SK_PCI_REG(SK_PCI_VPD_ADDR), addr);
434	for (i = 0; i < SK_TIMEOUT; i++) {
435		DELAY(1);
436		if (sk_win_read_2(sc,
437		    SK_PCI_REG(SK_PCI_VPD_ADDR)) & SK_VPD_FLAG)
438			break;
439	}
440
441	if (i == SK_TIMEOUT)
442		return(0);
443
444	return(sk_win_read_1(sc, SK_PCI_REG(SK_PCI_VPD_DATA)));
445}
446
447static void
448sk_vpd_read_res(sc, res, addr)
449	struct sk_softc		*sc;
450	struct vpd_res		*res;
451	int			addr;
452{
453	int			i;
454	u_int8_t		*ptr;
455
456	ptr = (u_int8_t *)res;
457	for (i = 0; i < sizeof(struct vpd_res); i++)
458		ptr[i] = sk_vpd_readbyte(sc, i + addr);
459
460	return;
461}
462
463static void
464sk_vpd_read(sc)
465	struct sk_softc		*sc;
466{
467	int			pos = 0, i;
468	struct vpd_res		res;
469
470	if (sc->sk_vpd_prodname != NULL)
471		free(sc->sk_vpd_prodname, M_DEVBUF);
472	if (sc->sk_vpd_readonly != NULL)
473		free(sc->sk_vpd_readonly, M_DEVBUF);
474	sc->sk_vpd_prodname = NULL;
475	sc->sk_vpd_readonly = NULL;
476	sc->sk_vpd_readonly_len = 0;
477
478	sk_vpd_read_res(sc, &res, pos);
479
480	/*
481	 * Bail out quietly if the eeprom appears to be missing or empty.
482	 */
483	if (res.vr_id == 0xff && res.vr_len == 0xff && res.vr_pad == 0xff)
484		return;
485
486	if (res.vr_id != VPD_RES_ID) {
487		printf("skc%d: bad VPD resource id: expected %x got %x\n",
488		    sc->sk_unit, VPD_RES_ID, res.vr_id);
489		return;
490	}
491
492	pos += sizeof(res);
493	sc->sk_vpd_prodname = malloc(res.vr_len + 1, M_DEVBUF, M_NOWAIT);
494	for (i = 0; i < res.vr_len; i++)
495		sc->sk_vpd_prodname[i] = sk_vpd_readbyte(sc, i + pos);
496	sc->sk_vpd_prodname[i] = '\0';
497	pos += i;
498
499	sk_vpd_read_res(sc, &res, pos);
500
501	if (res.vr_id != VPD_RES_READ) {
502		printf("skc%d: bad VPD resource id: expected %x got %x\n",
503		    sc->sk_unit, VPD_RES_READ, res.vr_id);
504		return;
505	}
506
507	pos += sizeof(res);
508	sc->sk_vpd_readonly = malloc(res.vr_len, M_DEVBUF, M_NOWAIT);
509	for (i = 0; i < res.vr_len; i++)
510		sc->sk_vpd_readonly[i] = sk_vpd_readbyte(sc, i + pos);
511	sc->sk_vpd_readonly_len = res.vr_len;
512
513	return;
514}
515
516static int
517sk_miibus_readreg(dev, phy, reg)
518	device_t		dev;
519	int			phy, reg;
520{
521	struct sk_if_softc	*sc_if;
522
523	sc_if = device_get_softc(dev);
524
525	switch(sc_if->sk_softc->sk_type) {
526	case SK_GENESIS:
527		return(sk_xmac_miibus_readreg(sc_if, phy, reg));
528	case SK_YUKON:
529		return(sk_marv_miibus_readreg(sc_if, phy, reg));
530	}
531
532	return(0);
533}
534
535static int
536sk_miibus_writereg(dev, phy, reg, val)
537	device_t		dev;
538	int			phy, reg, val;
539{
540	struct sk_if_softc	*sc_if;
541
542	sc_if = device_get_softc(dev);
543
544	switch(sc_if->sk_softc->sk_type) {
545	case SK_GENESIS:
546		return(sk_xmac_miibus_writereg(sc_if, phy, reg, val));
547	case SK_YUKON:
548		return(sk_marv_miibus_writereg(sc_if, phy, reg, val));
549	}
550
551	return(0);
552}
553
554static void
555sk_miibus_statchg(dev)
556	device_t		dev;
557{
558	struct sk_if_softc	*sc_if;
559
560	sc_if = device_get_softc(dev);
561
562	switch(sc_if->sk_softc->sk_type) {
563	case SK_GENESIS:
564		sk_xmac_miibus_statchg(sc_if);
565		break;
566	case SK_YUKON:
567		sk_marv_miibus_statchg(sc_if);
568		break;
569	}
570
571	return;
572}
573
574static int
575sk_xmac_miibus_readreg(sc_if, phy, reg)
576	struct sk_if_softc	*sc_if;
577	int			phy, reg;
578{
579	int			i;
580
581	if (sc_if->sk_phytype == SK_PHYTYPE_XMAC && phy != 0)
582		return(0);
583
584	SK_IF_LOCK(sc_if);
585	SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8));
586	SK_XM_READ_2(sc_if, XM_PHY_DATA);
587	if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) {
588		for (i = 0; i < SK_TIMEOUT; i++) {
589			DELAY(1);
590			if (SK_XM_READ_2(sc_if, XM_MMUCMD) &
591			    XM_MMUCMD_PHYDATARDY)
592				break;
593		}
594
595		if (i == SK_TIMEOUT) {
596			printf("sk%d: phy failed to come ready\n",
597			    sc_if->sk_unit);
598			SK_IF_UNLOCK(sc_if);
599			return(0);
600		}
601	}
602	DELAY(1);
603	i = SK_XM_READ_2(sc_if, XM_PHY_DATA);
604	SK_IF_UNLOCK(sc_if);
605	return(i);
606}
607
608static int
609sk_xmac_miibus_writereg(sc_if, phy, reg, val)
610	struct sk_if_softc	*sc_if;
611	int			phy, reg, val;
612{
613	int			i;
614
615	SK_IF_LOCK(sc_if);
616	SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8));
617	for (i = 0; i < SK_TIMEOUT; i++) {
618		if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY))
619			break;
620	}
621
622	if (i == SK_TIMEOUT) {
623		printf("sk%d: phy failed to come ready\n", sc_if->sk_unit);
624		SK_IF_UNLOCK(sc_if);
625		return(ETIMEDOUT);
626	}
627
628	SK_XM_WRITE_2(sc_if, XM_PHY_DATA, val);
629	for (i = 0; i < SK_TIMEOUT; i++) {
630		DELAY(1);
631		if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY))
632			break;
633	}
634	SK_IF_UNLOCK(sc_if);
635	if (i == SK_TIMEOUT)
636		printf("sk%d: phy write timed out\n", sc_if->sk_unit);
637
638	return(0);
639}
640
641static void
642sk_xmac_miibus_statchg(sc_if)
643	struct sk_if_softc	*sc_if;
644{
645	struct mii_data		*mii;
646
647	mii = device_get_softc(sc_if->sk_miibus);
648
649	SK_IF_LOCK(sc_if);
650	/*
651	 * If this is a GMII PHY, manually set the XMAC's
652	 * duplex mode accordingly.
653	 */
654	if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) {
655		if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
656			SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX);
657		} else {
658			SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX);
659		}
660	}
661	SK_IF_UNLOCK(sc_if);
662
663	return;
664}
665
666static int
667sk_marv_miibus_readreg(sc_if, phy, reg)
668	struct sk_if_softc	*sc_if;
669	int			phy, reg;
670{
671	u_int16_t		val;
672	int			i;
673
674	if (phy != 0 ||
675	    (sc_if->sk_phytype != SK_PHYTYPE_MARV_COPPER &&
676	     sc_if->sk_phytype != SK_PHYTYPE_MARV_FIBER)) {
677		return(0);
678	}
679
680	SK_IF_LOCK(sc_if);
681        SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
682		      YU_SMICR_REGAD(reg) | YU_SMICR_OP_READ);
683
684	for (i = 0; i < SK_TIMEOUT; i++) {
685		DELAY(1);
686		val = SK_YU_READ_2(sc_if, YUKON_SMICR);
687		if (val & YU_SMICR_READ_VALID)
688			break;
689	}
690
691	if (i == SK_TIMEOUT) {
692		printf("sk%d: phy failed to come ready\n",
693		    sc_if->sk_unit);
694		SK_IF_UNLOCK(sc_if);
695		return(0);
696	}
697
698	val = SK_YU_READ_2(sc_if, YUKON_SMIDR);
699	SK_IF_UNLOCK(sc_if);
700
701	return(val);
702}
703
704static int
705sk_marv_miibus_writereg(sc_if, phy, reg, val)
706	struct sk_if_softc	*sc_if;
707	int			phy, reg, val;
708{
709	int			i;
710
711	SK_IF_LOCK(sc_if);
712	SK_YU_WRITE_2(sc_if, YUKON_SMIDR, val);
713	SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
714		      YU_SMICR_REGAD(reg) | YU_SMICR_OP_WRITE);
715
716	for (i = 0; i < SK_TIMEOUT; i++) {
717		DELAY(1);
718		if (SK_YU_READ_2(sc_if, YUKON_SMICR) & YU_SMICR_BUSY)
719			break;
720	}
721	SK_IF_UNLOCK(sc_if);
722
723	return(0);
724}
725
726static void
727sk_marv_miibus_statchg(sc_if)
728	struct sk_if_softc	*sc_if;
729{
730	return;
731}
732
733#define HASH_BITS		6
734
735static u_int32_t
736sk_xmchash(addr)
737	const uint8_t *addr;
738{
739	uint32_t crc;
740
741	/* Compute CRC for the address value. */
742	crc = ether_crc32_le(addr, ETHER_ADDR_LEN);
743
744	return (~crc & ((1 << HASH_BITS) - 1));
745}
746
747/* gmchash is just a big endian crc */
748static u_int32_t
749sk_gmchash(addr)
750	const uint8_t *addr;
751{
752	uint32_t crc;
753
754	/* Compute CRC for the address value. */
755	crc = ether_crc32_be(addr, ETHER_ADDR_LEN);
756
757	return (crc & ((1 << HASH_BITS) - 1));
758}
759
760static void
761sk_setfilt(sc_if, addr, slot)
762	struct sk_if_softc	*sc_if;
763	caddr_t			addr;
764	int			slot;
765{
766	int			base;
767
768	base = XM_RXFILT_ENTRY(slot);
769
770	SK_XM_WRITE_2(sc_if, base, *(u_int16_t *)(&addr[0]));
771	SK_XM_WRITE_2(sc_if, base + 2, *(u_int16_t *)(&addr[2]));
772	SK_XM_WRITE_2(sc_if, base + 4, *(u_int16_t *)(&addr[4]));
773
774	return;
775}
776
777static void
778sk_setmulti(sc_if)
779	struct sk_if_softc	*sc_if;
780{
781	struct sk_softc		*sc = sc_if->sk_softc;
782	struct ifnet		*ifp = &sc_if->arpcom.ac_if;
783	u_int32_t		hashes[2] = { 0, 0 };
784	int			h = 0, i;
785	struct ifmultiaddr	*ifma;
786	u_int8_t		dummy[] = { 0, 0, 0, 0, 0 ,0 };
787
788
789	/* First, zot all the existing filters. */
790	switch(sc->sk_type) {
791	case SK_GENESIS:
792		for (i = 1; i < XM_RXFILT_MAX; i++)
793			sk_setfilt(sc_if, (caddr_t)&dummy, i);
794
795		SK_XM_WRITE_4(sc_if, XM_MAR0, 0);
796		SK_XM_WRITE_4(sc_if, XM_MAR2, 0);
797		break;
798	case SK_YUKON:
799		SK_YU_WRITE_2(sc_if, YUKON_MCAH1, 0);
800		SK_YU_WRITE_2(sc_if, YUKON_MCAH2, 0);
801		SK_YU_WRITE_2(sc_if, YUKON_MCAH3, 0);
802		SK_YU_WRITE_2(sc_if, YUKON_MCAH4, 0);
803		break;
804	}
805
806	/* Now program new ones. */
807	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
808		hashes[0] = 0xFFFFFFFF;
809		hashes[1] = 0xFFFFFFFF;
810	} else {
811		i = 1;
812		TAILQ_FOREACH_REVERSE(ifma, &ifp->if_multiaddrs, ifmultihead, ifma_link) {
813			if (ifma->ifma_addr->sa_family != AF_LINK)
814				continue;
815			/*
816			 * Program the first XM_RXFILT_MAX multicast groups
817			 * into the perfect filter. For all others,
818			 * use the hash table.
819			 */
820			if (sc->sk_type == SK_GENESIS && i < XM_RXFILT_MAX) {
821				sk_setfilt(sc_if,
822			LLADDR((struct sockaddr_dl *)ifma->ifma_addr), i);
823				i++;
824				continue;
825			}
826
827			switch(sc->sk_type) {
828			case SK_GENESIS:
829				h = sk_xmchash(
830					LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
831				break;
832			case SK_YUKON:
833				h = sk_gmchash(
834					LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
835				break;
836			}
837			if (h < 32)
838				hashes[0] |= (1 << h);
839			else
840				hashes[1] |= (1 << (h - 32));
841		}
842	}
843
844	switch(sc->sk_type) {
845	case SK_GENESIS:
846		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_HASH|
847			       XM_MODE_RX_USE_PERFECT);
848		SK_XM_WRITE_4(sc_if, XM_MAR0, hashes[0]);
849		SK_XM_WRITE_4(sc_if, XM_MAR2, hashes[1]);
850		break;
851	case SK_YUKON:
852		SK_YU_WRITE_2(sc_if, YUKON_MCAH1, hashes[0] & 0xffff);
853		SK_YU_WRITE_2(sc_if, YUKON_MCAH2, (hashes[0] >> 16) & 0xffff);
854		SK_YU_WRITE_2(sc_if, YUKON_MCAH3, hashes[1] & 0xffff);
855		SK_YU_WRITE_2(sc_if, YUKON_MCAH4, (hashes[1] >> 16) & 0xffff);
856		break;
857	}
858
859	return;
860}
861
862static void
863sk_setpromisc(sc_if)
864	struct sk_if_softc	*sc_if;
865{
866	struct sk_softc		*sc = sc_if->sk_softc;
867	struct ifnet		*ifp = &sc_if->arpcom.ac_if;
868
869	switch(sc->sk_type) {
870	case SK_GENESIS:
871		if (ifp->if_flags & IFF_PROMISC) {
872			SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
873		} else {
874			SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
875		}
876		break;
877	case SK_YUKON:
878		if (ifp->if_flags & IFF_PROMISC) {
879			SK_YU_CLRBIT_2(sc_if, YUKON_RCR,
880			    YU_RCR_UFLEN | YU_RCR_MUFLEN);
881		} else {
882			SK_YU_SETBIT_2(sc_if, YUKON_RCR,
883			    YU_RCR_UFLEN | YU_RCR_MUFLEN);
884		}
885		break;
886	}
887
888	return;
889}
890
891static int
892sk_init_rx_ring(sc_if)
893	struct sk_if_softc	*sc_if;
894{
895	struct sk_chain_data	*cd = &sc_if->sk_cdata;
896	struct sk_ring_data	*rd = sc_if->sk_rdata;
897	int			i;
898
899	bzero((char *)rd->sk_rx_ring,
900	    sizeof(struct sk_rx_desc) * SK_RX_RING_CNT);
901
902	for (i = 0; i < SK_RX_RING_CNT; i++) {
903		cd->sk_rx_chain[i].sk_desc = &rd->sk_rx_ring[i];
904		if (sk_newbuf(sc_if, &cd->sk_rx_chain[i], NULL) == ENOBUFS)
905			return(ENOBUFS);
906		if (i == (SK_RX_RING_CNT - 1)) {
907			cd->sk_rx_chain[i].sk_next =
908			    &cd->sk_rx_chain[0];
909			rd->sk_rx_ring[i].sk_next =
910			    vtophys(&rd->sk_rx_ring[0]);
911		} else {
912			cd->sk_rx_chain[i].sk_next =
913			    &cd->sk_rx_chain[i + 1];
914			rd->sk_rx_ring[i].sk_next =
915			    vtophys(&rd->sk_rx_ring[i + 1]);
916		}
917	}
918
919	sc_if->sk_cdata.sk_rx_prod = 0;
920	sc_if->sk_cdata.sk_rx_cons = 0;
921
922	return(0);
923}
924
925static void
926sk_init_tx_ring(sc_if)
927	struct sk_if_softc	*sc_if;
928{
929	struct sk_chain_data	*cd = &sc_if->sk_cdata;
930	struct sk_ring_data	*rd = sc_if->sk_rdata;
931	int			i;
932
933	bzero((char *)sc_if->sk_rdata->sk_tx_ring,
934	    sizeof(struct sk_tx_desc) * SK_TX_RING_CNT);
935
936	for (i = 0; i < SK_TX_RING_CNT; i++) {
937		cd->sk_tx_chain[i].sk_desc = &rd->sk_tx_ring[i];
938		if (i == (SK_TX_RING_CNT - 1)) {
939			cd->sk_tx_chain[i].sk_next =
940			    &cd->sk_tx_chain[0];
941			rd->sk_tx_ring[i].sk_next =
942			    vtophys(&rd->sk_tx_ring[0]);
943		} else {
944			cd->sk_tx_chain[i].sk_next =
945			    &cd->sk_tx_chain[i + 1];
946			rd->sk_tx_ring[i].sk_next =
947			    vtophys(&rd->sk_tx_ring[i + 1]);
948		}
949	}
950
951	sc_if->sk_cdata.sk_tx_prod = 0;
952	sc_if->sk_cdata.sk_tx_cons = 0;
953	sc_if->sk_cdata.sk_tx_cnt = 0;
954
955	return;
956}
957
958static int
959sk_newbuf(sc_if, c, m)
960	struct sk_if_softc	*sc_if;
961	struct sk_chain		*c;
962	struct mbuf		*m;
963{
964	struct mbuf		*m_new = NULL;
965	struct sk_rx_desc	*r;
966
967	if (m == NULL) {
968		caddr_t			*buf = NULL;
969
970		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
971		if (m_new == NULL)
972			return(ENOBUFS);
973
974		/* Allocate the jumbo buffer */
975		buf = sk_jalloc(sc_if);
976		if (buf == NULL) {
977			m_freem(m_new);
978#ifdef SK_VERBOSE
979			printf("sk%d: jumbo allocation failed "
980			    "-- packet dropped!\n", sc_if->sk_unit);
981#endif
982			return(ENOBUFS);
983		}
984
985		/* Attach the buffer to the mbuf */
986		MEXTADD(m_new, buf, SK_JLEN, sk_jfree,
987		    (struct sk_if_softc *)sc_if, 0, EXT_NET_DRV);
988		m_new->m_data = (void *)buf;
989		m_new->m_pkthdr.len = m_new->m_len = SK_JLEN;
990	} else {
991		/*
992	 	 * We're re-using a previously allocated mbuf;
993		 * be sure to re-init pointers and lengths to
994		 * default values.
995		 */
996		m_new = m;
997		m_new->m_len = m_new->m_pkthdr.len = SK_JLEN;
998		m_new->m_data = m_new->m_ext.ext_buf;
999	}
1000
1001	/*
1002	 * Adjust alignment so packet payload begins on a
1003	 * longword boundary. Mandatory for Alpha, useful on
1004	 * x86 too.
1005	 */
1006	m_adj(m_new, ETHER_ALIGN);
1007
1008	r = c->sk_desc;
1009	c->sk_mbuf = m_new;
1010	r->sk_data_lo = vtophys(mtod(m_new, caddr_t));
1011	r->sk_ctl = m_new->m_len | SK_RXSTAT;
1012
1013	return(0);
1014}
1015
1016/*
1017 * Allocate jumbo buffer storage. The SysKonnect adapters support
1018 * "jumbograms" (9K frames), although SysKonnect doesn't currently
1019 * use them in their drivers. In order for us to use them, we need
1020 * large 9K receive buffers, however standard mbuf clusters are only
1021 * 2048 bytes in size. Consequently, we need to allocate and manage
1022 * our own jumbo buffer pool. Fortunately, this does not require an
1023 * excessive amount of additional code.
1024 */
1025static int
1026sk_alloc_jumbo_mem(sc_if)
1027	struct sk_if_softc	*sc_if;
1028{
1029	caddr_t			ptr;
1030	register int		i;
1031	struct sk_jpool_entry   *entry;
1032
1033	/* Grab a big chunk o' storage. */
1034	sc_if->sk_cdata.sk_jumbo_buf = contigmalloc(SK_JMEM, M_DEVBUF,
1035	    M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0);
1036
1037	if (sc_if->sk_cdata.sk_jumbo_buf == NULL) {
1038		printf("sk%d: no memory for jumbo buffers!\n", sc_if->sk_unit);
1039		return(ENOBUFS);
1040	}
1041
1042	SLIST_INIT(&sc_if->sk_jfree_listhead);
1043	SLIST_INIT(&sc_if->sk_jinuse_listhead);
1044
1045	/*
1046	 * Now divide it up into 9K pieces and save the addresses
1047	 * in an array.
1048	 */
1049	ptr = sc_if->sk_cdata.sk_jumbo_buf;
1050	for (i = 0; i < SK_JSLOTS; i++) {
1051		sc_if->sk_cdata.sk_jslots[i] = ptr;
1052		ptr += SK_JLEN;
1053		entry = malloc(sizeof(struct sk_jpool_entry),
1054		    M_DEVBUF, M_NOWAIT);
1055		if (entry == NULL) {
1056			free(sc_if->sk_cdata.sk_jumbo_buf, M_DEVBUF);
1057			sc_if->sk_cdata.sk_jumbo_buf = NULL;
1058			printf("sk%d: no memory for jumbo "
1059			    "buffer queue!\n", sc_if->sk_unit);
1060			return(ENOBUFS);
1061		}
1062		entry->slot = i;
1063		SLIST_INSERT_HEAD(&sc_if->sk_jfree_listhead,
1064		    entry, jpool_entries);
1065	}
1066
1067	return(0);
1068}
1069
1070/*
1071 * Allocate a jumbo buffer.
1072 */
1073static void *
1074sk_jalloc(sc_if)
1075	struct sk_if_softc	*sc_if;
1076{
1077	struct sk_jpool_entry   *entry;
1078
1079	SK_IF_LOCK_ASSERT(sc_if);
1080
1081	entry = SLIST_FIRST(&sc_if->sk_jfree_listhead);
1082
1083	if (entry == NULL) {
1084#ifdef SK_VERBOSE
1085		printf("sk%d: no free jumbo buffers\n", sc_if->sk_unit);
1086#endif
1087		return(NULL);
1088	}
1089
1090	SLIST_REMOVE_HEAD(&sc_if->sk_jfree_listhead, jpool_entries);
1091	SLIST_INSERT_HEAD(&sc_if->sk_jinuse_listhead, entry, jpool_entries);
1092	return(sc_if->sk_cdata.sk_jslots[entry->slot]);
1093}
1094
1095/*
1096 * Release a jumbo buffer.
1097 */
1098static void
1099sk_jfree(buf, args)
1100	void			*buf;
1101	void			*args;
1102{
1103	struct sk_if_softc	*sc_if;
1104	int		        i;
1105	struct sk_jpool_entry   *entry;
1106
1107	/* Extract the softc struct pointer. */
1108	sc_if = (struct sk_if_softc *)args;
1109	if (sc_if == NULL)
1110		panic("sk_jfree: didn't get softc pointer!");
1111
1112	SK_IF_LOCK(sc_if);
1113
1114	/* calculate the slot this buffer belongs to */
1115	i = ((vm_offset_t)buf
1116	     - (vm_offset_t)sc_if->sk_cdata.sk_jumbo_buf) / SK_JLEN;
1117
1118	if ((i < 0) || (i >= SK_JSLOTS))
1119		panic("sk_jfree: asked to free buffer that we don't manage!");
1120
1121	entry = SLIST_FIRST(&sc_if->sk_jinuse_listhead);
1122	if (entry == NULL)
1123		panic("sk_jfree: buffer not in use!");
1124	entry->slot = i;
1125	SLIST_REMOVE_HEAD(&sc_if->sk_jinuse_listhead, jpool_entries);
1126	SLIST_INSERT_HEAD(&sc_if->sk_jfree_listhead, entry, jpool_entries);
1127
1128	SK_IF_UNLOCK(sc_if);
1129	return;
1130}
1131
1132/*
1133 * Set media options.
1134 */
1135static int
1136sk_ifmedia_upd(ifp)
1137	struct ifnet		*ifp;
1138{
1139	struct sk_if_softc	*sc_if = ifp->if_softc;
1140	struct mii_data		*mii;
1141
1142	mii = device_get_softc(sc_if->sk_miibus);
1143	sk_init(sc_if);
1144	mii_mediachg(mii);
1145
1146	return(0);
1147}
1148
1149/*
1150 * Report current media status.
1151 */
1152static void
1153sk_ifmedia_sts(ifp, ifmr)
1154	struct ifnet		*ifp;
1155	struct ifmediareq	*ifmr;
1156{
1157	struct sk_if_softc	*sc_if;
1158	struct mii_data		*mii;
1159
1160	sc_if = ifp->if_softc;
1161	mii = device_get_softc(sc_if->sk_miibus);
1162
1163	mii_pollstat(mii);
1164	ifmr->ifm_active = mii->mii_media_active;
1165	ifmr->ifm_status = mii->mii_media_status;
1166
1167	return;
1168}
1169
1170static int
1171sk_ioctl(ifp, command, data)
1172	struct ifnet		*ifp;
1173	u_long			command;
1174	caddr_t			data;
1175{
1176	struct sk_if_softc	*sc_if = ifp->if_softc;
1177	struct ifreq		*ifr = (struct ifreq *) data;
1178	int			error = 0;
1179	struct mii_data		*mii;
1180
1181	SK_IF_LOCK(sc_if);
1182
1183	switch(command) {
1184	case SIOCSIFMTU:
1185		if (ifr->ifr_mtu > SK_JUMBO_MTU)
1186			error = EINVAL;
1187		else {
1188			ifp->if_mtu = ifr->ifr_mtu;
1189			sk_init(sc_if);
1190		}
1191		break;
1192	case SIOCSIFFLAGS:
1193		if (ifp->if_flags & IFF_UP) {
1194			if (ifp->if_flags & IFF_RUNNING) {
1195				if ((ifp->if_flags ^ sc_if->sk_if_flags)
1196				    & IFF_PROMISC) {
1197					sk_setpromisc(sc_if);
1198					sk_setmulti(sc_if);
1199				}
1200			} else
1201				sk_init(sc_if);
1202		} else {
1203			if (ifp->if_flags & IFF_RUNNING)
1204				sk_stop(sc_if);
1205		}
1206		sc_if->sk_if_flags = ifp->if_flags;
1207		error = 0;
1208		break;
1209	case SIOCADDMULTI:
1210	case SIOCDELMULTI:
1211		sk_setmulti(sc_if);
1212		error = 0;
1213		break;
1214	case SIOCGIFMEDIA:
1215	case SIOCSIFMEDIA:
1216		mii = device_get_softc(sc_if->sk_miibus);
1217		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
1218		break;
1219	default:
1220		error = ether_ioctl(ifp, command, data);
1221		break;
1222	}
1223
1224	SK_IF_UNLOCK(sc_if);
1225
1226	return(error);
1227}
1228
1229/*
1230 * Probe for a SysKonnect GEnesis chip. Check the PCI vendor and device
1231 * IDs against our list and return a device name if we find a match.
1232 */
1233static int
1234skc_probe(dev)
1235	device_t		dev;
1236{
1237	struct sk_softc		*sc;
1238	struct sk_type		*t = sk_devs;
1239
1240	sc = device_get_softc(dev);
1241
1242	while(t->sk_name != NULL) {
1243		if ((pci_get_vendor(dev) == t->sk_vid) &&
1244		    (pci_get_device(dev) == t->sk_did)) {
1245			device_set_desc(dev, t->sk_name);
1246			return(0);
1247		}
1248		t++;
1249	}
1250
1251	return(ENXIO);
1252}
1253
1254/*
1255 * Force the GEnesis into reset, then bring it out of reset.
1256 */
1257static void
1258sk_reset(sc)
1259	struct sk_softc		*sc;
1260{
1261	CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_RESET);
1262	CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_RESET);
1263	if (sc->sk_type == SK_YUKON)
1264		CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_SET);
1265
1266	DELAY(1000);
1267	CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_UNRESET);
1268	DELAY(2);
1269	CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_UNRESET);
1270	if (sc->sk_type == SK_YUKON)
1271		CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_CLEAR);
1272
1273	if (sc->sk_type == SK_GENESIS) {
1274		/* Configure packet arbiter */
1275		sk_win_write_2(sc, SK_PKTARB_CTL, SK_PKTARBCTL_UNRESET);
1276		sk_win_write_2(sc, SK_RXPA1_TINIT, SK_PKTARB_TIMEOUT);
1277		sk_win_write_2(sc, SK_TXPA1_TINIT, SK_PKTARB_TIMEOUT);
1278		sk_win_write_2(sc, SK_RXPA2_TINIT, SK_PKTARB_TIMEOUT);
1279		sk_win_write_2(sc, SK_TXPA2_TINIT, SK_PKTARB_TIMEOUT);
1280	}
1281
1282	/* Enable RAM interface */
1283	sk_win_write_4(sc, SK_RAMCTL, SK_RAMCTL_UNRESET);
1284
1285	/*
1286         * Configure interrupt moderation. The moderation timer
1287	 * defers interrupts specified in the interrupt moderation
1288	 * timer mask based on the timeout specified in the interrupt
1289	 * moderation timer init register. Each bit in the timer
1290	 * register represents 18.825ns, so to specify a timeout in
1291	 * microseconds, we have to multiply by 54.
1292	 */
1293	sk_win_write_4(sc, SK_IMTIMERINIT, SK_IM_USECS(200));
1294	sk_win_write_4(sc, SK_IMMR, SK_ISR_TX1_S_EOF|SK_ISR_TX2_S_EOF|
1295	    SK_ISR_RX1_EOF|SK_ISR_RX2_EOF);
1296	sk_win_write_1(sc, SK_IMTIMERCTL, SK_IMCTL_START);
1297
1298	return;
1299}
1300
1301static int
1302sk_probe(dev)
1303	device_t		dev;
1304{
1305	struct sk_softc		*sc;
1306
1307	sc = device_get_softc(device_get_parent(dev));
1308
1309	/*
1310	 * Not much to do here. We always know there will be
1311	 * at least one XMAC present, and if there are two,
1312	 * skc_attach() will create a second device instance
1313	 * for us.
1314	 */
1315	switch (sc->sk_type) {
1316	case SK_GENESIS:
1317		device_set_desc(dev, "XaQti Corp. XMAC II");
1318		break;
1319	case SK_YUKON:
1320		device_set_desc(dev, "Marvell Semiconductor, Inc. Yukon");
1321		break;
1322	}
1323
1324	return(0);
1325}
1326
1327/*
1328 * Each XMAC chip is attached as a separate logical IP interface.
1329 * Single port cards will have only one logical interface of course.
1330 */
1331static int
1332sk_attach(dev)
1333	device_t		dev;
1334{
1335	struct sk_softc		*sc;
1336	struct sk_if_softc	*sc_if;
1337	struct ifnet		*ifp;
1338	int			i, port, error;
1339
1340	if (dev == NULL)
1341		return(EINVAL);
1342
1343	error = 0;
1344	sc_if = device_get_softc(dev);
1345	sc = device_get_softc(device_get_parent(dev));
1346	port = *(int *)device_get_ivars(dev);
1347	free(device_get_ivars(dev), M_DEVBUF);
1348	device_set_ivars(dev, NULL);
1349
1350	sc_if->sk_dev = dev;
1351	sc_if->sk_unit = device_get_unit(dev);
1352	sc_if->sk_port = port;
1353	sc_if->sk_softc = sc;
1354	sc->sk_if[port] = sc_if;
1355	if (port == SK_PORT_A)
1356		sc_if->sk_tx_bmu = SK_BMU_TXS_CSR0;
1357	if (port == SK_PORT_B)
1358		sc_if->sk_tx_bmu = SK_BMU_TXS_CSR1;
1359
1360	/* Allocate the descriptor queues. */
1361	sc_if->sk_rdata = contigmalloc(sizeof(struct sk_ring_data), M_DEVBUF,
1362	    M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0);
1363
1364	if (sc_if->sk_rdata == NULL) {
1365		printf("sk%d: no memory for list buffers!\n", sc_if->sk_unit);
1366		error = ENOMEM;
1367		goto fail;
1368	}
1369
1370	bzero(sc_if->sk_rdata, sizeof(struct sk_ring_data));
1371
1372	/* Try to allocate memory for jumbo buffers. */
1373	if (sk_alloc_jumbo_mem(sc_if)) {
1374		printf("sk%d: jumbo buffer allocation failed\n",
1375		    sc_if->sk_unit);
1376		error = ENOMEM;
1377		goto fail;
1378	}
1379
1380	ifp = &sc_if->arpcom.ac_if;
1381	ifp->if_softc = sc_if;
1382	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1383	ifp->if_mtu = ETHERMTU;
1384	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1385	ifp->if_ioctl = sk_ioctl;
1386	ifp->if_start = sk_start;
1387	ifp->if_watchdog = sk_watchdog;
1388	ifp->if_init = sk_init;
1389	ifp->if_baudrate = 1000000000;
1390	IFQ_SET_MAXLEN(&ifp->if_snd, SK_TX_RING_CNT - 1);
1391	ifp->if_snd.ifq_drv_maxlen = SK_TX_RING_CNT - 1;
1392	IFQ_SET_READY(&ifp->if_snd);
1393
1394	callout_handle_init(&sc_if->sk_tick_ch);
1395
1396	/*
1397	 * Get station address for this interface. Note that
1398	 * dual port cards actually come with three station
1399	 * addresses: one for each port, plus an extra. The
1400	 * extra one is used by the SysKonnect driver software
1401	 * as a 'virtual' station address for when both ports
1402	 * are operating in failover mode. Currently we don't
1403	 * use this extra address.
1404	 */
1405	SK_LOCK(sc);
1406	for (i = 0; i < ETHER_ADDR_LEN; i++)
1407		sc_if->arpcom.ac_enaddr[i] =
1408		    sk_win_read_1(sc, SK_MAC0_0 + (port * 8) + i);
1409
1410	/*
1411	 * Set up RAM buffer addresses. The NIC will have a certain
1412	 * amount of SRAM on it, somewhere between 512K and 2MB. We
1413	 * need to divide this up a) between the transmitter and
1414 	 * receiver and b) between the two XMACs, if this is a
1415	 * dual port NIC. Our algotithm is to divide up the memory
1416	 * evenly so that everyone gets a fair share.
1417	 */
1418	if (sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC) {
1419		u_int32_t		chunk, val;
1420
1421		chunk = sc->sk_ramsize / 2;
1422		val = sc->sk_rboff / sizeof(u_int64_t);
1423		sc_if->sk_rx_ramstart = val;
1424		val += (chunk / sizeof(u_int64_t));
1425		sc_if->sk_rx_ramend = val - 1;
1426		sc_if->sk_tx_ramstart = val;
1427		val += (chunk / sizeof(u_int64_t));
1428		sc_if->sk_tx_ramend = val - 1;
1429	} else {
1430		u_int32_t		chunk, val;
1431
1432		chunk = sc->sk_ramsize / 4;
1433		val = (sc->sk_rboff + (chunk * 2 * sc_if->sk_port)) /
1434		    sizeof(u_int64_t);
1435		sc_if->sk_rx_ramstart = val;
1436		val += (chunk / sizeof(u_int64_t));
1437		sc_if->sk_rx_ramend = val - 1;
1438		sc_if->sk_tx_ramstart = val;
1439		val += (chunk / sizeof(u_int64_t));
1440		sc_if->sk_tx_ramend = val - 1;
1441	}
1442
1443	/* Read and save PHY type and set PHY address */
1444	sc_if->sk_phytype = sk_win_read_1(sc, SK_EPROM1) & 0xF;
1445	switch(sc_if->sk_phytype) {
1446	case SK_PHYTYPE_XMAC:
1447		sc_if->sk_phyaddr = SK_PHYADDR_XMAC;
1448		break;
1449	case SK_PHYTYPE_BCOM:
1450		sc_if->sk_phyaddr = SK_PHYADDR_BCOM;
1451		break;
1452	case SK_PHYTYPE_MARV_COPPER:
1453		sc_if->sk_phyaddr = SK_PHYADDR_MARV;
1454		break;
1455	default:
1456		printf("skc%d: unsupported PHY type: %d\n",
1457		    sc->sk_unit, sc_if->sk_phytype);
1458		error = ENODEV;
1459		SK_UNLOCK(sc);
1460		goto fail;
1461	}
1462
1463
1464	/*
1465	 * Call MI attach routine.  Can't hold locks when calling into ether_*.
1466	 */
1467	SK_UNLOCK(sc);
1468	ether_ifattach(ifp, sc_if->arpcom.ac_enaddr);
1469	SK_LOCK(sc);
1470
1471	/*
1472	 * Do miibus setup.
1473	 */
1474	switch (sc->sk_type) {
1475	case SK_GENESIS:
1476		sk_init_xmac(sc_if);
1477		break;
1478	case SK_YUKON:
1479		sk_init_yukon(sc_if);
1480		break;
1481	}
1482
1483	SK_UNLOCK(sc);
1484	if (mii_phy_probe(dev, &sc_if->sk_miibus,
1485	    sk_ifmedia_upd, sk_ifmedia_sts)) {
1486		printf("skc%d: no PHY found!\n", sc_if->sk_unit);
1487		ether_ifdetach(ifp);
1488		error = ENXIO;
1489		goto fail;
1490	}
1491
1492fail:
1493	if (error) {
1494		/* Access should be ok even though lock has been dropped */
1495		sc->sk_if[port] = NULL;
1496		sk_detach(dev);
1497	}
1498
1499	return(error);
1500}
1501
1502/*
1503 * Attach the interface. Allocate softc structures, do ifmedia
1504 * setup and ethernet/BPF attach.
1505 */
1506static int
1507skc_attach(dev)
1508	device_t		dev;
1509{
1510	struct sk_softc		*sc;
1511	int			unit, error = 0, rid, *port;
1512	uint8_t			skrs;
1513
1514	sc = device_get_softc(dev);
1515	unit = device_get_unit(dev);
1516
1517	mtx_init(&sc->sk_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
1518	    MTX_DEF | MTX_RECURSE);
1519	/*
1520	 * Map control/status registers.
1521	 */
1522	pci_enable_busmaster(dev);
1523
1524	rid = SK_RID;
1525	sc->sk_res = bus_alloc_resource_any(dev, SK_RES, &rid, RF_ACTIVE);
1526
1527	if (sc->sk_res == NULL) {
1528		printf("sk%d: couldn't map ports/memory\n", unit);
1529		error = ENXIO;
1530		goto fail;
1531	}
1532
1533	sc->sk_btag = rman_get_bustag(sc->sk_res);
1534	sc->sk_bhandle = rman_get_bushandle(sc->sk_res);
1535
1536	/* Allocate interrupt */
1537	rid = 0;
1538	sc->sk_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
1539	    RF_SHAREABLE | RF_ACTIVE);
1540
1541	if (sc->sk_irq == NULL) {
1542		printf("skc%d: couldn't map interrupt\n", unit);
1543		error = ENXIO;
1544		goto fail;
1545	}
1546
1547	/* Set adapter type */
1548	switch (pci_get_device(dev)) {
1549	case DEVICEID_SK_V1:
1550		sc->sk_type = SK_GENESIS;
1551		break;
1552	case DEVICEID_SK_V2:
1553	case DEVICEID_BELKIN_5005:
1554	case DEVICEID_3COM_3C940:
1555	case DEVICEID_LINKSYS_EG1032:
1556	case DEVICEID_DLINK_DGE530T:
1557		sc->sk_type = SK_YUKON;
1558		break;
1559	default:
1560		printf("skc%d: unknown device!\n", unit);
1561		error = ENXIO;
1562		goto fail;
1563	}
1564
1565	/* Reset the adapter. */
1566	sk_reset(sc);
1567
1568	sc->sk_unit = unit;
1569
1570	/* Read and save vital product data from EEPROM. */
1571	sk_vpd_read(sc);
1572
1573	skrs = sk_win_read_1(sc, SK_EPROM0);
1574	if (sc->sk_type == SK_GENESIS) {
1575		/* Read and save RAM size and RAMbuffer offset */
1576		switch(skrs) {
1577		case SK_RAMSIZE_512K_64:
1578			sc->sk_ramsize = 0x80000;
1579			sc->sk_rboff = SK_RBOFF_0;
1580			break;
1581		case SK_RAMSIZE_1024K_64:
1582			sc->sk_ramsize = 0x100000;
1583			sc->sk_rboff = SK_RBOFF_80000;
1584			break;
1585		case SK_RAMSIZE_1024K_128:
1586			sc->sk_ramsize = 0x100000;
1587			sc->sk_rboff = SK_RBOFF_0;
1588			break;
1589		case SK_RAMSIZE_2048K_128:
1590			sc->sk_ramsize = 0x200000;
1591			sc->sk_rboff = SK_RBOFF_0;
1592			break;
1593		default:
1594			printf("skc%d: unknown ram size: %d\n",
1595			    sc->sk_unit, sk_win_read_1(sc, SK_EPROM0));
1596			error = ENXIO;
1597			goto fail;
1598		}
1599	} else { /* SK_YUKON */
1600		if (skrs == 0x00) {
1601			sc->sk_ramsize = 0x20000;
1602		} else {
1603			sc->sk_ramsize = skrs * (1<<12);
1604		}
1605		sc->sk_rboff = SK_RBOFF_0;
1606	}
1607	device_printf(dev, "type = %s\n",
1608	    (sc->sk_type == SK_GENESIS) ? "GENESIS" : "YUKON");
1609	device_printf(dev, "SK_EPROM0 = 0x%02x\n", skrs);
1610	device_printf(dev, "SRAM size = 0x%06x\n", sc->sk_ramsize);
1611
1612	/* Read and save physical media type */
1613	switch(sk_win_read_1(sc, SK_PMDTYPE)) {
1614	case SK_PMD_1000BASESX:
1615		sc->sk_pmd = IFM_1000_SX;
1616		break;
1617	case SK_PMD_1000BASELX:
1618		sc->sk_pmd = IFM_1000_LX;
1619		break;
1620	case SK_PMD_1000BASECX:
1621		sc->sk_pmd = IFM_1000_CX;
1622		break;
1623	case SK_PMD_1000BASETX:
1624		sc->sk_pmd = IFM_1000_T;
1625		break;
1626	default:
1627		printf("skc%d: unknown media type: 0x%x\n",
1628		    sc->sk_unit, sk_win_read_1(sc, SK_PMDTYPE));
1629		error = ENXIO;
1630		goto fail;
1631	}
1632
1633	/* Announce the product name and more VPD data if there. */
1634	if (sc->sk_vpd_prodname != NULL)
1635		printf("skc%d: %s\n", sc->sk_unit, sc->sk_vpd_prodname);
1636	if (sc->sk_vpd_readonly != NULL && sc->sk_vpd_readonly_len != 0) {
1637		char buf[256];
1638		char *dp = sc->sk_vpd_readonly;
1639		uint16_t l, len = sc->sk_vpd_readonly_len;
1640
1641		while (len >= 3) {
1642			if ( (*dp == 'P' && *(dp+1) == 'N') ||
1643				(*dp == 'E' && *(dp+1) == 'C') ||
1644				(*dp == 'M' && *(dp+1) == 'N') ||
1645				(*dp == 'S' && *(dp+1) == 'N') ) {
1646
1647				l = 0;
1648				while(l < *(dp+2)) {
1649					buf[l] = *(dp+3+l);
1650					++l;
1651				}
1652				buf[l] = '\0';
1653				printf("skc%d: %c%c: %s\n",
1654					sc->sk_unit, *dp, *(dp+1), buf);
1655				len -= (3 + l);
1656				dp += (3 + l);
1657			} else {
1658				len -= (3 + *(dp+2));
1659				dp += (3 + *(dp+2));
1660			}
1661		}
1662	}
1663
1664	/* read CHIPVER 0xb1. */
1665	device_printf(dev, "chip ver  0x%02x\n", sk_win_read_1(sc, SK_CHIPVER));
1666	/* read CONFIG 0x73. */
1667	device_printf(dev, "chip conf 0x%02x\n", sk_win_read_1(sc, SK_CONFIG));
1668
1669	sc->sk_devs[SK_PORT_A] = device_add_child(dev, "sk", -1);
1670	port = malloc(sizeof(int), M_DEVBUF, M_NOWAIT);
1671	*port = SK_PORT_A;
1672	device_set_ivars(sc->sk_devs[SK_PORT_A], port);
1673
1674	if (!(sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC)) {
1675		sc->sk_devs[SK_PORT_B] = device_add_child(dev, "sk", -1);
1676		port = malloc(sizeof(int), M_DEVBUF, M_NOWAIT);
1677		*port = SK_PORT_B;
1678		device_set_ivars(sc->sk_devs[SK_PORT_B], port);
1679	}
1680
1681	/* Turn on the 'driver is loaded' LED. */
1682	CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_ON);
1683
1684	bus_generic_attach(dev);
1685
1686	/* Hook interrupt last to avoid having to lock softc */
1687	error = bus_setup_intr(dev, sc->sk_irq, INTR_TYPE_NET|INTR_MPSAFE,
1688	    sk_intr, sc, &sc->sk_intrhand);
1689
1690	if (error) {
1691		printf("skc%d: couldn't set up irq\n", unit);
1692		goto fail;
1693	}
1694
1695fail:
1696	if (error)
1697		skc_detach(dev);
1698
1699	return(error);
1700}
1701
1702/*
1703 * Shutdown hardware and free up resources. This can be called any
1704 * time after the mutex has been initialized. It is called in both
1705 * the error case in attach and the normal detach case so it needs
1706 * to be careful about only freeing resources that have actually been
1707 * allocated.
1708 */
1709static int
1710sk_detach(dev)
1711	device_t		dev;
1712{
1713	struct sk_if_softc	*sc_if;
1714	struct ifnet		*ifp;
1715
1716	sc_if = device_get_softc(dev);
1717	KASSERT(mtx_initialized(&sc_if->sk_softc->sk_mtx),
1718	    ("sk mutex not initialized in sk_detach"));
1719	SK_IF_LOCK(sc_if);
1720
1721	ifp = &sc_if->arpcom.ac_if;
1722	/* These should only be active if attach_xmac succeeded */
1723	if (device_is_attached(dev)) {
1724		sk_stop(sc_if);
1725		/* Can't hold locks while calling detach */
1726		SK_IF_UNLOCK(sc_if);
1727		ether_ifdetach(ifp);
1728		SK_IF_LOCK(sc_if);
1729	}
1730	/*
1731	 * We're generally called from skc_detach() which is using
1732	 * device_delete_child() to get to here. It's already trashed
1733	 * miibus for us, so don't do it here or we'll panic.
1734	 */
1735	/*
1736	if (sc_if->sk_miibus != NULL)
1737		device_delete_child(dev, sc_if->sk_miibus);
1738	*/
1739	bus_generic_detach(dev);
1740	if (sc_if->sk_cdata.sk_jumbo_buf != NULL)
1741		contigfree(sc_if->sk_cdata.sk_jumbo_buf, SK_JMEM, M_DEVBUF);
1742	if (sc_if->sk_rdata != NULL) {
1743		contigfree(sc_if->sk_rdata, sizeof(struct sk_ring_data),
1744		    M_DEVBUF);
1745	}
1746	SK_IF_UNLOCK(sc_if);
1747
1748	return(0);
1749}
1750
1751static int
1752skc_detach(dev)
1753	device_t		dev;
1754{
1755	struct sk_softc		*sc;
1756
1757	sc = device_get_softc(dev);
1758	KASSERT(mtx_initialized(&sc->sk_mtx), ("sk mutex not initialized"));
1759
1760	if (device_is_alive(dev)) {
1761		if (sc->sk_devs[SK_PORT_A] != NULL)
1762			device_delete_child(dev, sc->sk_devs[SK_PORT_A]);
1763		if (sc->sk_devs[SK_PORT_B] != NULL)
1764			device_delete_child(dev, sc->sk_devs[SK_PORT_B]);
1765		bus_generic_detach(dev);
1766	}
1767
1768	if (sc->sk_intrhand)
1769		bus_teardown_intr(dev, sc->sk_irq, sc->sk_intrhand);
1770	if (sc->sk_irq)
1771		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sk_irq);
1772	if (sc->sk_res)
1773		bus_release_resource(dev, SK_RES, SK_RID, sc->sk_res);
1774
1775	mtx_destroy(&sc->sk_mtx);
1776
1777	return(0);
1778}
1779
1780static int
1781sk_encap(sc_if, m_head, txidx)
1782        struct sk_if_softc	*sc_if;
1783        struct mbuf		*m_head;
1784        u_int32_t		*txidx;
1785{
1786	struct sk_tx_desc	*f = NULL;
1787	struct mbuf		*m;
1788	u_int32_t		frag, cur, cnt = 0;
1789
1790	SK_IF_LOCK_ASSERT(sc_if);
1791
1792	m = m_head;
1793	cur = frag = *txidx;
1794
1795	/*
1796	 * Start packing the mbufs in this chain into
1797	 * the fragment pointers. Stop when we run out
1798	 * of fragments or hit the end of the mbuf chain.
1799	 */
1800	for (m = m_head; m != NULL; m = m->m_next) {
1801		if (m->m_len != 0) {
1802			if ((SK_TX_RING_CNT -
1803			    (sc_if->sk_cdata.sk_tx_cnt + cnt)) < 2)
1804				return(ENOBUFS);
1805			f = &sc_if->sk_rdata->sk_tx_ring[frag];
1806			f->sk_data_lo = vtophys(mtod(m, vm_offset_t));
1807			f->sk_ctl = m->m_len | SK_OPCODE_DEFAULT;
1808			if (cnt == 0)
1809				f->sk_ctl |= SK_TXCTL_FIRSTFRAG;
1810			else
1811				f->sk_ctl |= SK_TXCTL_OWN;
1812			cur = frag;
1813			SK_INC(frag, SK_TX_RING_CNT);
1814			cnt++;
1815		}
1816	}
1817
1818	if (m != NULL)
1819		return(ENOBUFS);
1820
1821	sc_if->sk_rdata->sk_tx_ring[cur].sk_ctl |=
1822		SK_TXCTL_LASTFRAG|SK_TXCTL_EOF_INTR;
1823	sc_if->sk_cdata.sk_tx_chain[cur].sk_mbuf = m_head;
1824	sc_if->sk_rdata->sk_tx_ring[*txidx].sk_ctl |= SK_TXCTL_OWN;
1825	sc_if->sk_cdata.sk_tx_cnt += cnt;
1826
1827	*txidx = frag;
1828
1829	return(0);
1830}
1831
1832static void
1833sk_start(ifp)
1834	struct ifnet		*ifp;
1835{
1836        struct sk_softc		*sc;
1837        struct sk_if_softc	*sc_if;
1838        struct mbuf		*m_head = NULL;
1839        u_int32_t		idx;
1840
1841	sc_if = ifp->if_softc;
1842	sc = sc_if->sk_softc;
1843
1844	SK_IF_LOCK(sc_if);
1845
1846	idx = sc_if->sk_cdata.sk_tx_prod;
1847
1848	while(sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf == NULL) {
1849		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
1850		if (m_head == NULL)
1851			break;
1852
1853		/*
1854		 * Pack the data into the transmit ring. If we
1855		 * don't have room, set the OACTIVE flag and wait
1856		 * for the NIC to drain the ring.
1857		 */
1858		if (sk_encap(sc_if, m_head, &idx)) {
1859			IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
1860			ifp->if_flags |= IFF_OACTIVE;
1861			break;
1862		}
1863
1864		/*
1865		 * If there's a BPF listener, bounce a copy of this frame
1866		 * to him.
1867		 */
1868		BPF_MTAP(ifp, m_head);
1869	}
1870
1871	/* Transmit */
1872	if (idx != sc_if->sk_cdata.sk_tx_prod) {
1873		sc_if->sk_cdata.sk_tx_prod = idx;
1874		CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_START);
1875
1876		/* Set a timeout in case the chip goes out to lunch. */
1877		ifp->if_timer = 5;
1878	}
1879	SK_IF_UNLOCK(sc_if);
1880
1881	return;
1882}
1883
1884
1885static void
1886sk_watchdog(ifp)
1887	struct ifnet		*ifp;
1888{
1889	struct sk_if_softc	*sc_if;
1890
1891	sc_if = ifp->if_softc;
1892
1893	printf("sk%d: watchdog timeout\n", sc_if->sk_unit);
1894	sk_init(sc_if);
1895
1896	return;
1897}
1898
1899static void
1900skc_shutdown(dev)
1901	device_t		dev;
1902{
1903	struct sk_softc		*sc;
1904
1905	sc = device_get_softc(dev);
1906	SK_LOCK(sc);
1907
1908	/* Turn off the 'driver is loaded' LED. */
1909	CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_OFF);
1910
1911	/*
1912	 * Reset the GEnesis controller. Doing this should also
1913	 * assert the resets on the attached XMAC(s).
1914	 */
1915	sk_reset(sc);
1916	SK_UNLOCK(sc);
1917
1918	return;
1919}
1920
1921static void
1922sk_rxeof(sc_if)
1923	struct sk_if_softc	*sc_if;
1924{
1925	struct sk_softc		*sc;
1926	struct mbuf		*m;
1927	struct ifnet		*ifp;
1928	struct sk_chain		*cur_rx;
1929	int			total_len = 0;
1930	int			i;
1931	u_int32_t		rxstat;
1932
1933	sc = sc_if->sk_softc;
1934	ifp = &sc_if->arpcom.ac_if;
1935	i = sc_if->sk_cdata.sk_rx_prod;
1936	cur_rx = &sc_if->sk_cdata.sk_rx_chain[i];
1937
1938	SK_LOCK_ASSERT(sc);
1939
1940	while(!(sc_if->sk_rdata->sk_rx_ring[i].sk_ctl & SK_RXCTL_OWN)) {
1941
1942		cur_rx = &sc_if->sk_cdata.sk_rx_chain[i];
1943		rxstat = sc_if->sk_rdata->sk_rx_ring[i].sk_xmac_rxstat;
1944		m = cur_rx->sk_mbuf;
1945		cur_rx->sk_mbuf = NULL;
1946		total_len = SK_RXBYTES(sc_if->sk_rdata->sk_rx_ring[i].sk_ctl);
1947		SK_INC(i, SK_RX_RING_CNT);
1948
1949		if (rxstat & XM_RXSTAT_ERRFRAME) {
1950			ifp->if_ierrors++;
1951			sk_newbuf(sc_if, cur_rx, m);
1952			continue;
1953		}
1954
1955		/*
1956		 * Try to allocate a new jumbo buffer. If that
1957		 * fails, copy the packet to mbufs and put the
1958		 * jumbo buffer back in the ring so it can be
1959		 * re-used. If allocating mbufs fails, then we
1960		 * have to drop the packet.
1961		 */
1962		if (sk_newbuf(sc_if, cur_rx, NULL) == ENOBUFS) {
1963			struct mbuf		*m0;
1964			m0 = m_devget(mtod(m, char *), total_len, ETHER_ALIGN,
1965			    ifp, NULL);
1966			sk_newbuf(sc_if, cur_rx, m);
1967			if (m0 == NULL) {
1968				printf("sk%d: no receive buffers "
1969				    "available -- packet dropped!\n",
1970				    sc_if->sk_unit);
1971				ifp->if_ierrors++;
1972				continue;
1973			}
1974			m = m0;
1975		} else {
1976			m->m_pkthdr.rcvif = ifp;
1977			m->m_pkthdr.len = m->m_len = total_len;
1978		}
1979
1980		ifp->if_ipackets++;
1981		SK_UNLOCK(sc);
1982		(*ifp->if_input)(ifp, m);
1983		SK_LOCK(sc);
1984	}
1985
1986	sc_if->sk_cdata.sk_rx_prod = i;
1987
1988	return;
1989}
1990
1991static void
1992sk_txeof(sc_if)
1993	struct sk_if_softc	*sc_if;
1994{
1995	struct sk_softc		*sc;
1996	struct sk_tx_desc	*cur_tx;
1997	struct ifnet		*ifp;
1998	u_int32_t		idx;
1999
2000	sc = sc_if->sk_softc;
2001	ifp = &sc_if->arpcom.ac_if;
2002
2003	/*
2004	 * Go through our tx ring and free mbufs for those
2005	 * frames that have been sent.
2006	 */
2007	idx = sc_if->sk_cdata.sk_tx_cons;
2008	while(idx != sc_if->sk_cdata.sk_tx_prod) {
2009		cur_tx = &sc_if->sk_rdata->sk_tx_ring[idx];
2010		if (cur_tx->sk_ctl & SK_TXCTL_OWN)
2011			break;
2012		if (cur_tx->sk_ctl & SK_TXCTL_LASTFRAG)
2013			ifp->if_opackets++;
2014		if (sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf != NULL) {
2015			m_freem(sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf);
2016			sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf = NULL;
2017		}
2018		sc_if->sk_cdata.sk_tx_cnt--;
2019		SK_INC(idx, SK_TX_RING_CNT);
2020	}
2021
2022	if (sc_if->sk_cdata.sk_tx_cnt == 0) {
2023		ifp->if_timer = 0;
2024	} else /* nudge chip to keep tx ring moving */
2025		CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_START);
2026
2027	if (sc_if->sk_cdata.sk_tx_cnt < SK_TX_RING_CNT - 2)
2028		ifp->if_flags &= ~IFF_OACTIVE;
2029
2030	sc_if->sk_cdata.sk_tx_cons = idx;
2031}
2032
2033static void
2034sk_tick(xsc_if)
2035	void			*xsc_if;
2036{
2037	struct sk_if_softc	*sc_if;
2038	struct mii_data		*mii;
2039	struct ifnet		*ifp;
2040	int			i;
2041
2042	sc_if = xsc_if;
2043	SK_IF_LOCK(sc_if);
2044	ifp = &sc_if->arpcom.ac_if;
2045	mii = device_get_softc(sc_if->sk_miibus);
2046
2047	if (!(ifp->if_flags & IFF_UP)) {
2048		SK_IF_UNLOCK(sc_if);
2049		return;
2050	}
2051
2052	if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
2053		sk_intr_bcom(sc_if);
2054		SK_IF_UNLOCK(sc_if);
2055		return;
2056	}
2057
2058	/*
2059	 * According to SysKonnect, the correct way to verify that
2060	 * the link has come back up is to poll bit 0 of the GPIO
2061	 * register three times. This pin has the signal from the
2062	 * link_sync pin connected to it; if we read the same link
2063	 * state 3 times in a row, we know the link is up.
2064	 */
2065	for (i = 0; i < 3; i++) {
2066		if (SK_XM_READ_2(sc_if, XM_GPIO) & XM_GPIO_GP0_SET)
2067			break;
2068	}
2069
2070	if (i != 3) {
2071		sc_if->sk_tick_ch = timeout(sk_tick, sc_if, hz);
2072		SK_IF_UNLOCK(sc_if);
2073		return;
2074	}
2075
2076	/* Turn the GP0 interrupt back on. */
2077	SK_XM_CLRBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET);
2078	SK_XM_READ_2(sc_if, XM_ISR);
2079	mii_tick(mii);
2080	untimeout(sk_tick, sc_if, sc_if->sk_tick_ch);
2081
2082	SK_IF_UNLOCK(sc_if);
2083	return;
2084}
2085
2086static void
2087sk_intr_bcom(sc_if)
2088	struct sk_if_softc	*sc_if;
2089{
2090	struct mii_data		*mii;
2091	struct ifnet		*ifp;
2092	int			status;
2093	mii = device_get_softc(sc_if->sk_miibus);
2094	ifp = &sc_if->arpcom.ac_if;
2095
2096	SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
2097
2098	/*
2099	 * Read the PHY interrupt register to make sure
2100	 * we clear any pending interrupts.
2101	 */
2102	status = sk_xmac_miibus_readreg(sc_if, SK_PHYADDR_BCOM, BRGPHY_MII_ISR);
2103
2104	if (!(ifp->if_flags & IFF_RUNNING)) {
2105		sk_init_xmac(sc_if);
2106		return;
2107	}
2108
2109	if (status & (BRGPHY_ISR_LNK_CHG|BRGPHY_ISR_AN_PR)) {
2110		int			lstat;
2111		lstat = sk_xmac_miibus_readreg(sc_if, SK_PHYADDR_BCOM,
2112		    BRGPHY_MII_AUXSTS);
2113
2114		if (!(lstat & BRGPHY_AUXSTS_LINK) && sc_if->sk_link) {
2115			mii_mediachg(mii);
2116			/* Turn off the link LED. */
2117			SK_IF_WRITE_1(sc_if, 0,
2118			    SK_LINKLED1_CTL, SK_LINKLED_OFF);
2119			sc_if->sk_link = 0;
2120		} else if (status & BRGPHY_ISR_LNK_CHG) {
2121			sk_xmac_miibus_writereg(sc_if, SK_PHYADDR_BCOM,
2122	    		    BRGPHY_MII_IMR, 0xFF00);
2123			mii_tick(mii);
2124			sc_if->sk_link = 1;
2125			/* Turn on the link LED. */
2126			SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL,
2127			    SK_LINKLED_ON|SK_LINKLED_LINKSYNC_OFF|
2128			    SK_LINKLED_BLINK_OFF);
2129		} else {
2130			mii_tick(mii);
2131			sc_if->sk_tick_ch = timeout(sk_tick, sc_if, hz);
2132		}
2133	}
2134
2135	SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
2136
2137	return;
2138}
2139
2140static void
2141sk_intr_xmac(sc_if)
2142	struct sk_if_softc	*sc_if;
2143{
2144	struct sk_softc		*sc;
2145	u_int16_t		status;
2146
2147	sc = sc_if->sk_softc;
2148	status = SK_XM_READ_2(sc_if, XM_ISR);
2149
2150	/*
2151	 * Link has gone down. Start MII tick timeout to
2152	 * watch for link resync.
2153	 */
2154	if (sc_if->sk_phytype == SK_PHYTYPE_XMAC) {
2155		if (status & XM_ISR_GP0_SET) {
2156			SK_XM_SETBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET);
2157			sc_if->sk_tick_ch = timeout(sk_tick, sc_if, hz);
2158		}
2159
2160		if (status & XM_ISR_AUTONEG_DONE) {
2161			sc_if->sk_tick_ch = timeout(sk_tick, sc_if, hz);
2162		}
2163	}
2164
2165	if (status & XM_IMR_TX_UNDERRUN)
2166		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_TXFIFO);
2167
2168	if (status & XM_IMR_RX_OVERRUN)
2169		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_RXFIFO);
2170
2171	status = SK_XM_READ_2(sc_if, XM_ISR);
2172
2173	return;
2174}
2175
2176static void
2177sk_intr_yukon(sc_if)
2178	struct sk_if_softc	*sc_if;
2179{
2180	int status;
2181
2182	status = SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
2183
2184	return;
2185}
2186
2187static void
2188sk_intr(xsc)
2189	void			*xsc;
2190{
2191	struct sk_softc		*sc = xsc;
2192	struct sk_if_softc	*sc_if0 = NULL, *sc_if1 = NULL;
2193	struct ifnet		*ifp0 = NULL, *ifp1 = NULL;
2194	u_int32_t		status;
2195
2196	SK_LOCK(sc);
2197
2198	sc_if0 = sc->sk_if[SK_PORT_A];
2199	sc_if1 = sc->sk_if[SK_PORT_B];
2200
2201	if (sc_if0 != NULL)
2202		ifp0 = &sc_if0->arpcom.ac_if;
2203	if (sc_if1 != NULL)
2204		ifp1 = &sc_if1->arpcom.ac_if;
2205
2206	for (;;) {
2207		status = CSR_READ_4(sc, SK_ISSR);
2208		if (!(status & sc->sk_intrmask))
2209			break;
2210
2211		/* Handle receive interrupts first. */
2212		if (status & SK_ISR_RX1_EOF) {
2213			sk_rxeof(sc_if0);
2214			CSR_WRITE_4(sc, SK_BMU_RX_CSR0,
2215			    SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START);
2216		}
2217		if (status & SK_ISR_RX2_EOF) {
2218			sk_rxeof(sc_if1);
2219			CSR_WRITE_4(sc, SK_BMU_RX_CSR1,
2220			    SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START);
2221		}
2222
2223		/* Then transmit interrupts. */
2224		if (status & SK_ISR_TX1_S_EOF) {
2225			sk_txeof(sc_if0);
2226			CSR_WRITE_4(sc, SK_BMU_TXS_CSR0,
2227			    SK_TXBMU_CLR_IRQ_EOF);
2228		}
2229		if (status & SK_ISR_TX2_S_EOF) {
2230			sk_txeof(sc_if1);
2231			CSR_WRITE_4(sc, SK_BMU_TXS_CSR1,
2232			    SK_TXBMU_CLR_IRQ_EOF);
2233		}
2234
2235		/* Then MAC interrupts. */
2236		if (status & SK_ISR_MAC1 && ifp0->if_flags & IFF_RUNNING) {
2237			if (sc->sk_type == SK_GENESIS)
2238				sk_intr_xmac(sc_if0);
2239			else
2240				sk_intr_yukon(sc_if0);
2241		}
2242
2243		if (status & SK_ISR_MAC2 && ifp1->if_flags & IFF_RUNNING) {
2244			if (sc->sk_type == SK_GENESIS)
2245				sk_intr_xmac(sc_if1);
2246			else
2247				sk_intr_yukon(sc_if1);
2248		}
2249
2250		if (status & SK_ISR_EXTERNAL_REG) {
2251			if (ifp0 != NULL &&
2252			    sc_if0->sk_phytype == SK_PHYTYPE_BCOM)
2253				sk_intr_bcom(sc_if0);
2254			if (ifp1 != NULL &&
2255			    sc_if1->sk_phytype == SK_PHYTYPE_BCOM)
2256				sk_intr_bcom(sc_if1);
2257		}
2258	}
2259
2260	CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2261
2262	if (ifp0 != NULL && !IFQ_DRV_IS_EMPTY(&ifp0->if_snd))
2263		sk_start(ifp0);
2264	if (ifp1 != NULL && !IFQ_DRV_IS_EMPTY(&ifp1->if_snd))
2265		sk_start(ifp1);
2266
2267	SK_UNLOCK(sc);
2268
2269	return;
2270}
2271
2272static void
2273sk_init_xmac(sc_if)
2274	struct sk_if_softc	*sc_if;
2275{
2276	struct sk_softc		*sc;
2277	struct ifnet		*ifp;
2278	struct sk_bcom_hack	bhack[] = {
2279	{ 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 }, { 0x17, 0x0013 },
2280	{ 0x15, 0x0404 }, { 0x17, 0x8006 }, { 0x15, 0x0132 }, { 0x17, 0x8006 },
2281	{ 0x15, 0x0232 }, { 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 },
2282	{ 0, 0 } };
2283
2284	sc = sc_if->sk_softc;
2285	ifp = &sc_if->arpcom.ac_if;
2286
2287	/* Unreset the XMAC. */
2288	SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL, SK_TXMACCTL_XMAC_UNRESET);
2289	DELAY(1000);
2290
2291	/* Reset the XMAC's internal state. */
2292	SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
2293
2294	/* Save the XMAC II revision */
2295	sc_if->sk_xmac_rev = XM_XMAC_REV(SK_XM_READ_4(sc_if, XM_DEVID));
2296
2297	/*
2298	 * Perform additional initialization for external PHYs,
2299	 * namely for the 1000baseTX cards that use the XMAC's
2300	 * GMII mode.
2301	 */
2302	if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
2303		int			i = 0;
2304		u_int32_t		val;
2305
2306		/* Take PHY out of reset. */
2307		val = sk_win_read_4(sc, SK_GPIO);
2308		if (sc_if->sk_port == SK_PORT_A)
2309			val |= SK_GPIO_DIR0|SK_GPIO_DAT0;
2310		else
2311			val |= SK_GPIO_DIR2|SK_GPIO_DAT2;
2312		sk_win_write_4(sc, SK_GPIO, val);
2313
2314		/* Enable GMII mode on the XMAC. */
2315		SK_XM_SETBIT_2(sc_if, XM_HWCFG, XM_HWCFG_GMIIMODE);
2316
2317		sk_xmac_miibus_writereg(sc_if, SK_PHYADDR_BCOM,
2318		    BRGPHY_MII_BMCR, BRGPHY_BMCR_RESET);
2319		DELAY(10000);
2320		sk_xmac_miibus_writereg(sc_if, SK_PHYADDR_BCOM,
2321		    BRGPHY_MII_IMR, 0xFFF0);
2322
2323		/*
2324		 * Early versions of the BCM5400 apparently have
2325		 * a bug that requires them to have their reserved
2326		 * registers initialized to some magic values. I don't
2327		 * know what the numbers do, I'm just the messenger.
2328		 */
2329		if (sk_xmac_miibus_readreg(sc_if, SK_PHYADDR_BCOM, 0x03)
2330		    == 0x6041) {
2331			while(bhack[i].reg) {
2332				sk_xmac_miibus_writereg(sc_if, SK_PHYADDR_BCOM,
2333				    bhack[i].reg, bhack[i].val);
2334				i++;
2335			}
2336		}
2337	}
2338
2339	/* Set station address */
2340	SK_XM_WRITE_2(sc_if, XM_PAR0,
2341	    *(u_int16_t *)(&sc_if->arpcom.ac_enaddr[0]));
2342	SK_XM_WRITE_2(sc_if, XM_PAR1,
2343	    *(u_int16_t *)(&sc_if->arpcom.ac_enaddr[2]));
2344	SK_XM_WRITE_2(sc_if, XM_PAR2,
2345	    *(u_int16_t *)(&sc_if->arpcom.ac_enaddr[4]));
2346	SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_STATION);
2347
2348	if (ifp->if_flags & IFF_BROADCAST) {
2349		SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
2350	} else {
2351		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
2352	}
2353
2354	/* We don't need the FCS appended to the packet. */
2355	SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_STRIPFCS);
2356
2357	/* We want short frames padded to 60 bytes. */
2358	SK_XM_SETBIT_2(sc_if, XM_TXCMD, XM_TXCMD_AUTOPAD);
2359
2360	/*
2361	 * Enable the reception of all error frames. This is is
2362	 * a necessary evil due to the design of the XMAC. The
2363	 * XMAC's receive FIFO is only 8K in size, however jumbo
2364	 * frames can be up to 9000 bytes in length. When bad
2365	 * frame filtering is enabled, the XMAC's RX FIFO operates
2366	 * in 'store and forward' mode. For this to work, the
2367	 * entire frame has to fit into the FIFO, but that means
2368	 * that jumbo frames larger than 8192 bytes will be
2369	 * truncated. Disabling all bad frame filtering causes
2370	 * the RX FIFO to operate in streaming mode, in which
2371	 * case the XMAC will start transfering frames out of the
2372	 * RX FIFO as soon as the FIFO threshold is reached.
2373	 */
2374	SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_BADFRAMES|
2375	    XM_MODE_RX_GIANTS|XM_MODE_RX_RUNTS|XM_MODE_RX_CRCERRS|
2376	    XM_MODE_RX_INRANGELEN);
2377
2378	if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
2379		SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK);
2380	else
2381		SK_XM_CLRBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK);
2382
2383	/*
2384	 * Bump up the transmit threshold. This helps hold off transmit
2385	 * underruns when we're blasting traffic from both ports at once.
2386	 */
2387	SK_XM_WRITE_2(sc_if, XM_TX_REQTHRESH, SK_XM_TX_FIFOTHRESH);
2388
2389	/* Set promiscuous mode */
2390	sk_setpromisc(sc_if);
2391
2392	/* Set multicast filter */
2393	sk_setmulti(sc_if);
2394
2395	/* Clear and enable interrupts */
2396	SK_XM_READ_2(sc_if, XM_ISR);
2397	if (sc_if->sk_phytype == SK_PHYTYPE_XMAC)
2398		SK_XM_WRITE_2(sc_if, XM_IMR, XM_INTRS);
2399	else
2400		SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
2401
2402	/* Configure MAC arbiter */
2403	switch(sc_if->sk_xmac_rev) {
2404	case XM_XMAC_REV_B2:
2405		sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_B2);
2406		sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_B2);
2407		sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_B2);
2408		sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_B2);
2409		sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_B2);
2410		sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_B2);
2411		sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_B2);
2412		sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_B2);
2413		sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
2414		break;
2415	case XM_XMAC_REV_C1:
2416		sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_C1);
2417		sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_C1);
2418		sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_C1);
2419		sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_C1);
2420		sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_C1);
2421		sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_C1);
2422		sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_C1);
2423		sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_C1);
2424		sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
2425		break;
2426	default:
2427		break;
2428	}
2429	sk_win_write_2(sc, SK_MACARB_CTL,
2430	    SK_MACARBCTL_UNRESET|SK_MACARBCTL_FASTOE_OFF);
2431
2432	sc_if->sk_link = 1;
2433
2434	return;
2435}
2436
2437static void
2438sk_init_yukon(sc_if)
2439	struct sk_if_softc	*sc_if;
2440{
2441	u_int32_t		phy;
2442	u_int16_t		reg;
2443	struct sk_softc		*sc;
2444	struct ifnet		*ifp;
2445	int			i;
2446
2447	sc = sc_if->sk_softc;
2448	ifp = &sc_if->arpcom.ac_if;
2449
2450	/* GMAC and GPHY Reset */
2451	SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, SK_GPHY_RESET_SET);
2452	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
2453	DELAY(1000);
2454	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_CLEAR);
2455	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
2456	DELAY(1000);
2457
2458	phy = SK_GPHY_INT_POL_HI | SK_GPHY_DIS_FC | SK_GPHY_DIS_SLEEP |
2459		SK_GPHY_ENA_XC | SK_GPHY_ANEG_ALL | SK_GPHY_ENA_PAUSE;
2460
2461	switch(sc_if->sk_softc->sk_pmd) {
2462	case IFM_1000_SX:
2463	case IFM_1000_LX:
2464		phy |= SK_GPHY_FIBER;
2465		break;
2466
2467	case IFM_1000_CX:
2468	case IFM_1000_T:
2469		phy |= SK_GPHY_COPPER;
2470		break;
2471	}
2472
2473	SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_SET);
2474	DELAY(1000);
2475	SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_CLEAR);
2476	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_LOOP_OFF |
2477		      SK_GMAC_PAUSE_ON | SK_GMAC_RESET_CLEAR);
2478
2479	/* unused read of the interrupt source register */
2480	SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
2481
2482	reg = SK_YU_READ_2(sc_if, YUKON_PAR);
2483
2484	/* MIB Counter Clear Mode set */
2485	reg |= YU_PAR_MIB_CLR;
2486	SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
2487
2488	/* MIB Counter Clear Mode clear */
2489	reg &= ~YU_PAR_MIB_CLR;
2490	SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
2491
2492	/* receive control reg */
2493	SK_YU_WRITE_2(sc_if, YUKON_RCR, YU_RCR_CRCR);
2494
2495	/* transmit parameter register */
2496	SK_YU_WRITE_2(sc_if, YUKON_TPR, YU_TPR_JAM_LEN(0x3) |
2497		      YU_TPR_JAM_IPG(0xb) | YU_TPR_JAM2DATA_IPG(0x1a) );
2498
2499	/* serial mode register */
2500	reg = YU_SMR_DATA_BLIND(0x1c) | YU_SMR_MFL_VLAN | YU_SMR_IPG_DATA(0x1e);
2501	if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
2502		reg |= YU_SMR_MFL_JUMBO;
2503	SK_YU_WRITE_2(sc_if, YUKON_SMR, reg);
2504
2505	/* Setup Yukon's address */
2506	for (i = 0; i < 3; i++) {
2507		/* Write Source Address 1 (unicast filter) */
2508		SK_YU_WRITE_2(sc_if, YUKON_SAL1 + i * 4,
2509			      sc_if->arpcom.ac_enaddr[i * 2] |
2510			      sc_if->arpcom.ac_enaddr[i * 2 + 1] << 8);
2511	}
2512
2513	for (i = 0; i < 3; i++) {
2514		reg = sk_win_read_2(sc_if->sk_softc,
2515				    SK_MAC1_0 + i * 2 + sc_if->sk_port * 8);
2516		SK_YU_WRITE_2(sc_if, YUKON_SAL2 + i * 4, reg);
2517	}
2518
2519	/* Set promiscuous mode */
2520	sk_setpromisc(sc_if);
2521
2522	/* Set multicast filter */
2523	sk_setmulti(sc_if);
2524
2525	/* enable interrupt mask for counter overflows */
2526	SK_YU_WRITE_2(sc_if, YUKON_TIMR, 0);
2527	SK_YU_WRITE_2(sc_if, YUKON_RIMR, 0);
2528	SK_YU_WRITE_2(sc_if, YUKON_TRIMR, 0);
2529
2530	/* Configure RX MAC FIFO */
2531	SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_CLEAR);
2532	SK_IF_WRITE_4(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_OPERATION_ON);
2533
2534	/* Configure TX MAC FIFO */
2535	SK_IF_WRITE_1(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_CLEAR);
2536	SK_IF_WRITE_4(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_OPERATION_ON);
2537}
2538
2539/*
2540 * Note that to properly initialize any part of the GEnesis chip,
2541 * you first have to take it out of reset mode.
2542 */
2543static void
2544sk_init(xsc)
2545	void			*xsc;
2546{
2547	struct sk_if_softc	*sc_if = xsc;
2548	struct sk_softc		*sc;
2549	struct ifnet		*ifp;
2550	struct mii_data		*mii;
2551	u_int16_t		reg;
2552
2553	SK_IF_LOCK(sc_if);
2554
2555	ifp = &sc_if->arpcom.ac_if;
2556	sc = sc_if->sk_softc;
2557	mii = device_get_softc(sc_if->sk_miibus);
2558
2559	/* Cancel pending I/O and free all RX/TX buffers. */
2560	sk_stop(sc_if);
2561
2562	if (sc->sk_type == SK_GENESIS) {
2563		/* Configure LINK_SYNC LED */
2564		SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_ON);
2565		SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL,
2566			SK_LINKLED_LINKSYNC_ON);
2567
2568		/* Configure RX LED */
2569		SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL,
2570			SK_RXLEDCTL_COUNTER_START);
2571
2572		/* Configure TX LED */
2573		SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL,
2574			SK_TXLEDCTL_COUNTER_START);
2575	}
2576
2577	/* Configure I2C registers */
2578
2579	/* Configure XMAC(s) */
2580	switch (sc->sk_type) {
2581	case SK_GENESIS:
2582		sk_init_xmac(sc_if);
2583		break;
2584	case SK_YUKON:
2585		sk_init_yukon(sc_if);
2586		break;
2587	}
2588	mii_mediachg(mii);
2589
2590	if (sc->sk_type == SK_GENESIS) {
2591		/* Configure MAC FIFOs */
2592		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_UNRESET);
2593		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_END, SK_FIFO_END);
2594		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_ON);
2595
2596		SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_UNRESET);
2597		SK_IF_WRITE_4(sc_if, 0, SK_TXF1_END, SK_FIFO_END);
2598		SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_ON);
2599	}
2600
2601	/* Configure transmit arbiter(s) */
2602	SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL,
2603	    SK_TXARCTL_ON|SK_TXARCTL_FSYNC_ON);
2604
2605	/* Configure RAMbuffers */
2606	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_UNRESET);
2607	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_START, sc_if->sk_rx_ramstart);
2608	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_WR_PTR, sc_if->sk_rx_ramstart);
2609	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_RD_PTR, sc_if->sk_rx_ramstart);
2610	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_END, sc_if->sk_rx_ramend);
2611	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_ON);
2612
2613	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_UNRESET);
2614	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_STORENFWD_ON);
2615	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_START, sc_if->sk_tx_ramstart);
2616	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_WR_PTR, sc_if->sk_tx_ramstart);
2617	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_RD_PTR, sc_if->sk_tx_ramstart);
2618	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_END, sc_if->sk_tx_ramend);
2619	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_ON);
2620
2621	/* Configure BMUs */
2622	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_ONLINE);
2623	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_LO,
2624	    vtophys(&sc_if->sk_rdata->sk_rx_ring[0]));
2625	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_HI, 0);
2626
2627	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_ONLINE);
2628	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_LO,
2629	    vtophys(&sc_if->sk_rdata->sk_tx_ring[0]));
2630	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_HI, 0);
2631
2632	/* Init descriptors */
2633	if (sk_init_rx_ring(sc_if) == ENOBUFS) {
2634		printf("sk%d: initialization failed: no "
2635		    "memory for rx buffers\n", sc_if->sk_unit);
2636		sk_stop(sc_if);
2637		SK_IF_UNLOCK(sc_if);
2638		return;
2639	}
2640	sk_init_tx_ring(sc_if);
2641
2642	/* Configure interrupt handling */
2643	CSR_READ_4(sc, SK_ISSR);
2644	if (sc_if->sk_port == SK_PORT_A)
2645		sc->sk_intrmask |= SK_INTRS1;
2646	else
2647		sc->sk_intrmask |= SK_INTRS2;
2648
2649	sc->sk_intrmask |= SK_ISR_EXTERNAL_REG;
2650
2651	CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2652
2653	/* Start BMUs. */
2654	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_RX_START);
2655
2656	switch(sc->sk_type) {
2657	case SK_GENESIS:
2658		/* Enable XMACs TX and RX state machines */
2659		SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_IGNPAUSE);
2660		SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
2661		break;
2662	case SK_YUKON:
2663		reg = SK_YU_READ_2(sc_if, YUKON_GPCR);
2664		reg |= YU_GPCR_TXEN | YU_GPCR_RXEN;
2665		reg &= ~(YU_GPCR_SPEED_EN | YU_GPCR_DPLX_EN);
2666		SK_YU_WRITE_2(sc_if, YUKON_GPCR, reg);
2667	}
2668
2669	ifp->if_flags |= IFF_RUNNING;
2670	ifp->if_flags &= ~IFF_OACTIVE;
2671
2672	SK_IF_UNLOCK(sc_if);
2673
2674	return;
2675}
2676
2677static void
2678sk_stop(sc_if)
2679	struct sk_if_softc	*sc_if;
2680{
2681	int			i;
2682	struct sk_softc		*sc;
2683	struct ifnet		*ifp;
2684
2685	SK_IF_LOCK(sc_if);
2686	sc = sc_if->sk_softc;
2687	ifp = &sc_if->arpcom.ac_if;
2688
2689	untimeout(sk_tick, sc_if, sc_if->sk_tick_ch);
2690
2691	if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
2692		u_int32_t		val;
2693
2694		/* Put PHY back into reset. */
2695		val = sk_win_read_4(sc, SK_GPIO);
2696		if (sc_if->sk_port == SK_PORT_A) {
2697			val |= SK_GPIO_DIR0;
2698			val &= ~SK_GPIO_DAT0;
2699		} else {
2700			val |= SK_GPIO_DIR2;
2701			val &= ~SK_GPIO_DAT2;
2702		}
2703		sk_win_write_4(sc, SK_GPIO, val);
2704	}
2705
2706	/* Turn off various components of this interface. */
2707	SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
2708	switch (sc->sk_type) {
2709	case SK_GENESIS:
2710		SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL, SK_TXMACCTL_XMAC_RESET);
2711		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_RESET);
2712		break;
2713	case SK_YUKON:
2714		SK_IF_WRITE_1(sc_if,0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_SET);
2715		SK_IF_WRITE_1(sc_if,0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_SET);
2716		break;
2717	}
2718	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_OFFLINE);
2719	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
2720	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_OFFLINE);
2721	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
2722	SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL, SK_TXARCTL_OFF);
2723	SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
2724	SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
2725	SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_OFF);
2726	SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_LINKSYNC_OFF);
2727
2728	/* Disable interrupts */
2729	if (sc_if->sk_port == SK_PORT_A)
2730		sc->sk_intrmask &= ~SK_INTRS1;
2731	else
2732		sc->sk_intrmask &= ~SK_INTRS2;
2733	CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2734
2735	SK_XM_READ_2(sc_if, XM_ISR);
2736	SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
2737
2738	/* Free RX and TX mbufs still in the queues. */
2739	for (i = 0; i < SK_RX_RING_CNT; i++) {
2740		if (sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf != NULL) {
2741			m_freem(sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf);
2742			sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf = NULL;
2743		}
2744	}
2745
2746	for (i = 0; i < SK_TX_RING_CNT; i++) {
2747		if (sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf != NULL) {
2748			m_freem(sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf);
2749			sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf = NULL;
2750		}
2751	}
2752
2753	ifp->if_flags &= ~(IFF_RUNNING|IFF_OACTIVE);
2754	SK_IF_UNLOCK(sc_if);
2755	return;
2756}
2757