if_sk.c revision 134072
1/*	$OpenBSD: if_sk.c,v 2.33 2003/08/12 05:23:06 nate Exp $	*/
2
3/*
4 * Copyright (c) 1997, 1998, 1999, 2000
5 *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 *    notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 *    notice, this list of conditions and the following disclaimer in the
14 *    documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 *    must display the following acknowledgement:
17 *	This product includes software developed by Bill Paul.
18 * 4. Neither the name of the author nor the names of any co-contributors
19 *    may be used to endorse or promote products derived from this software
20 *    without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
26 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
32 * THE POSSIBILITY OF SUCH DAMAGE.
33 */
34/*
35 * Copyright (c) 2003 Nathan L. Binkert <binkertn@umich.edu>
36 *
37 * Permission to use, copy, modify, and distribute this software for any
38 * purpose with or without fee is hereby granted, provided that the above
39 * copyright notice and this permission notice appear in all copies.
40 *
41 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
42 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
43 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
44 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
45 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
46 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
47 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
48 */
49
50#include <sys/cdefs.h>
51__FBSDID("$FreeBSD: head/sys/dev/sk/if_sk.c 134072 2004-08-20 06:22:04Z jmg $");
52
53/*
54 * SysKonnect SK-NET gigabit ethernet driver for FreeBSD. Supports
55 * the SK-984x series adapters, both single port and dual port.
56 * References:
57 * 	The XaQti XMAC II datasheet,
58 *  http://www.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
59 *	The SysKonnect GEnesis manual, http://www.syskonnect.com
60 *
61 * Note: XaQti has been aquired by Vitesse, and Vitesse does not have the
62 * XMAC II datasheet online. I have put my copy at people.freebsd.org as a
63 * convenience to others until Vitesse corrects this problem:
64 *
65 * http://people.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
66 *
67 * Written by Bill Paul <wpaul@ee.columbia.edu>
68 * Department of Electrical Engineering
69 * Columbia University, New York City
70 */
71/*
72 * The SysKonnect gigabit ethernet adapters consist of two main
73 * components: the SysKonnect GEnesis controller chip and the XaQti Corp.
74 * XMAC II gigabit ethernet MAC. The XMAC provides all of the MAC
75 * components and a PHY while the GEnesis controller provides a PCI
76 * interface with DMA support. Each card may have between 512K and
77 * 2MB of SRAM on board depending on the configuration.
78 *
79 * The SysKonnect GEnesis controller can have either one or two XMAC
80 * chips connected to it, allowing single or dual port NIC configurations.
81 * SysKonnect has the distinction of being the only vendor on the market
82 * with a dual port gigabit ethernet NIC. The GEnesis provides dual FIFOs,
83 * dual DMA queues, packet/MAC/transmit arbiters and direct access to the
84 * XMAC registers. This driver takes advantage of these features to allow
85 * both XMACs to operate as independent interfaces.
86 */
87
88#include <sys/param.h>
89#include <sys/systm.h>
90#include <sys/sockio.h>
91#include <sys/mbuf.h>
92#include <sys/malloc.h>
93#include <sys/kernel.h>
94#include <sys/module.h>
95#include <sys/socket.h>
96#include <sys/queue.h>
97
98#include <net/if.h>
99#include <net/if_arp.h>
100#include <net/ethernet.h>
101#include <net/if_dl.h>
102#include <net/if_media.h>
103
104#include <net/bpf.h>
105
106#include <vm/vm.h>              /* for vtophys */
107#include <vm/pmap.h>            /* for vtophys */
108#include <machine/bus_pio.h>
109#include <machine/bus_memio.h>
110#include <machine/bus.h>
111#include <machine/resource.h>
112#include <sys/bus.h>
113#include <sys/rman.h>
114
115#include <dev/mii/mii.h>
116#include <dev/mii/miivar.h>
117#include <dev/mii/brgphyreg.h>
118
119#include <dev/pci/pcireg.h>
120#include <dev/pci/pcivar.h>
121
122#if 0
123#define SK_USEIOSPACE
124#endif
125
126#include <pci/if_skreg.h>
127#include <pci/xmaciireg.h>
128#include <pci/yukonreg.h>
129
130MODULE_DEPEND(sk, pci, 1, 1, 1);
131MODULE_DEPEND(sk, ether, 1, 1, 1);
132MODULE_DEPEND(sk, miibus, 1, 1, 1);
133
134/* "controller miibus0" required.  See GENERIC if you get errors here. */
135#include "miibus_if.h"
136
137#ifndef lint
138static const char rcsid[] =
139  "$FreeBSD: head/sys/dev/sk/if_sk.c 134072 2004-08-20 06:22:04Z jmg $";
140#endif
141
142static struct sk_type sk_devs[] = {
143	{
144		VENDORID_SK,
145		DEVICEID_SK_V1,
146		"SysKonnect Gigabit Ethernet (V1.0)"
147	},
148	{
149		VENDORID_SK,
150		DEVICEID_SK_V2,
151		"SysKonnect Gigabit Ethernet (V2.0)"
152	},
153	{
154		VENDORID_MARVELL,
155		DEVICEID_SK_V2,
156		"Marvell Gigabit Ethernet"
157	},
158	{
159		VENDORID_MARVELL,
160		DEVICEID_BELKIN_5005,
161		"Belkin F5D5005 Gigabit Ethernet"
162	},
163	{
164		VENDORID_3COM,
165		DEVICEID_3COM_3C940,
166		"3Com 3C940 Gigabit Ethernet"
167	},
168	{
169		VENDORID_LINKSYS,
170		DEVICEID_LINKSYS_EG1032,
171		"Linksys EG1032 Gigabit Ethernet"
172	},
173	{
174		VENDORID_DLINK,
175		DEVICEID_DLINK_DGE530T,
176		"D-Link DGE-530T Gigabit Ethernet"
177	},
178	{ 0, 0, NULL }
179};
180
181static int skc_probe		(device_t);
182static int skc_attach		(device_t);
183static int skc_detach		(device_t);
184static void skc_shutdown	(device_t);
185static int sk_detach		(device_t);
186static int sk_probe		(device_t);
187static int sk_attach		(device_t);
188static void sk_tick		(void *);
189static void sk_intr		(void *);
190static void sk_intr_xmac	(struct sk_if_softc *);
191static void sk_intr_bcom	(struct sk_if_softc *);
192static void sk_intr_yukon	(struct sk_if_softc *);
193static void sk_rxeof		(struct sk_if_softc *);
194static void sk_txeof		(struct sk_if_softc *);
195static int sk_encap		(struct sk_if_softc *, struct mbuf *,
196					u_int32_t *);
197static void sk_start		(struct ifnet *);
198static int sk_ioctl		(struct ifnet *, u_long, caddr_t);
199static void sk_init		(void *);
200static void sk_init_xmac	(struct sk_if_softc *);
201static void sk_init_yukon	(struct sk_if_softc *);
202static void sk_stop		(struct sk_if_softc *);
203static void sk_watchdog		(struct ifnet *);
204static int sk_ifmedia_upd	(struct ifnet *);
205static void sk_ifmedia_sts	(struct ifnet *, struct ifmediareq *);
206static void sk_reset		(struct sk_softc *);
207static int sk_newbuf		(struct sk_if_softc *,
208					struct sk_chain *, struct mbuf *);
209static int sk_alloc_jumbo_mem	(struct sk_if_softc *);
210static void *sk_jalloc		(struct sk_if_softc *);
211static void sk_jfree		(void *, void *);
212static int sk_init_rx_ring	(struct sk_if_softc *);
213static void sk_init_tx_ring	(struct sk_if_softc *);
214static u_int32_t sk_win_read_4	(struct sk_softc *, int);
215static u_int16_t sk_win_read_2	(struct sk_softc *, int);
216static u_int8_t sk_win_read_1	(struct sk_softc *, int);
217static void sk_win_write_4	(struct sk_softc *, int, u_int32_t);
218static void sk_win_write_2	(struct sk_softc *, int, u_int32_t);
219static void sk_win_write_1	(struct sk_softc *, int, u_int32_t);
220static u_int8_t sk_vpd_readbyte	(struct sk_softc *, int);
221static void sk_vpd_read_res	(struct sk_softc *, struct vpd_res *, int);
222static void sk_vpd_read		(struct sk_softc *);
223
224static int sk_miibus_readreg	(device_t, int, int);
225static int sk_miibus_writereg	(device_t, int, int, int);
226static void sk_miibus_statchg	(device_t);
227
228static int sk_xmac_miibus_readreg	(struct sk_if_softc *, int, int);
229static int sk_xmac_miibus_writereg	(struct sk_if_softc *, int, int,
230						int);
231static void sk_xmac_miibus_statchg	(struct sk_if_softc *);
232
233static int sk_marv_miibus_readreg	(struct sk_if_softc *, int, int);
234static int sk_marv_miibus_writereg	(struct sk_if_softc *, int, int,
235						int);
236static void sk_marv_miibus_statchg	(struct sk_if_softc *);
237
238static uint32_t sk_xmchash	(const uint8_t *);
239static uint32_t sk_gmchash	(const uint8_t *);
240static void sk_setfilt		(struct sk_if_softc *, caddr_t, int);
241static void sk_setmulti		(struct sk_if_softc *);
242static void sk_setpromisc	(struct sk_if_softc *);
243
244#ifdef SK_USEIOSPACE
245#define SK_RES		SYS_RES_IOPORT
246#define SK_RID		SK_PCI_LOIO
247#else
248#define SK_RES		SYS_RES_MEMORY
249#define SK_RID		SK_PCI_LOMEM
250#endif
251
252/*
253 * Note that we have newbus methods for both the GEnesis controller
254 * itself and the XMAC(s). The XMACs are children of the GEnesis, and
255 * the miibus code is a child of the XMACs. We need to do it this way
256 * so that the miibus drivers can access the PHY registers on the
257 * right PHY. It's not quite what I had in mind, but it's the only
258 * design that achieves the desired effect.
259 */
260static device_method_t skc_methods[] = {
261	/* Device interface */
262	DEVMETHOD(device_probe,		skc_probe),
263	DEVMETHOD(device_attach,	skc_attach),
264	DEVMETHOD(device_detach,	skc_detach),
265	DEVMETHOD(device_shutdown,	skc_shutdown),
266
267	/* bus interface */
268	DEVMETHOD(bus_print_child,	bus_generic_print_child),
269	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
270
271	{ 0, 0 }
272};
273
274static driver_t skc_driver = {
275	"skc",
276	skc_methods,
277	sizeof(struct sk_softc)
278};
279
280static devclass_t skc_devclass;
281
282static device_method_t sk_methods[] = {
283	/* Device interface */
284	DEVMETHOD(device_probe,		sk_probe),
285	DEVMETHOD(device_attach,	sk_attach),
286	DEVMETHOD(device_detach,	sk_detach),
287	DEVMETHOD(device_shutdown,	bus_generic_shutdown),
288
289	/* bus interface */
290	DEVMETHOD(bus_print_child,	bus_generic_print_child),
291	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
292
293	/* MII interface */
294	DEVMETHOD(miibus_readreg,	sk_miibus_readreg),
295	DEVMETHOD(miibus_writereg,	sk_miibus_writereg),
296	DEVMETHOD(miibus_statchg,	sk_miibus_statchg),
297
298	{ 0, 0 }
299};
300
301static driver_t sk_driver = {
302	"sk",
303	sk_methods,
304	sizeof(struct sk_if_softc)
305};
306
307static devclass_t sk_devclass;
308
309DRIVER_MODULE(sk, pci, skc_driver, skc_devclass, 0, 0);
310DRIVER_MODULE(sk, skc, sk_driver, sk_devclass, 0, 0);
311DRIVER_MODULE(miibus, sk, miibus_driver, miibus_devclass, 0, 0);
312
313#define SK_SETBIT(sc, reg, x)		\
314	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) | x)
315
316#define SK_CLRBIT(sc, reg, x)		\
317	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) & ~x)
318
319#define SK_WIN_SETBIT_4(sc, reg, x)	\
320	sk_win_write_4(sc, reg, sk_win_read_4(sc, reg) | x)
321
322#define SK_WIN_CLRBIT_4(sc, reg, x)	\
323	sk_win_write_4(sc, reg, sk_win_read_4(sc, reg) & ~x)
324
325#define SK_WIN_SETBIT_2(sc, reg, x)	\
326	sk_win_write_2(sc, reg, sk_win_read_2(sc, reg) | x)
327
328#define SK_WIN_CLRBIT_2(sc, reg, x)	\
329	sk_win_write_2(sc, reg, sk_win_read_2(sc, reg) & ~x)
330
331static u_int32_t
332sk_win_read_4(sc, reg)
333	struct sk_softc		*sc;
334	int			reg;
335{
336#ifdef SK_USEIOSPACE
337	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
338	return(CSR_READ_4(sc, SK_WIN_BASE + SK_REG(reg)));
339#else
340	return(CSR_READ_4(sc, reg));
341#endif
342}
343
344static u_int16_t
345sk_win_read_2(sc, reg)
346	struct sk_softc		*sc;
347	int			reg;
348{
349#ifdef SK_USEIOSPACE
350	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
351	return(CSR_READ_2(sc, SK_WIN_BASE + SK_REG(reg)));
352#else
353	return(CSR_READ_2(sc, reg));
354#endif
355}
356
357static u_int8_t
358sk_win_read_1(sc, reg)
359	struct sk_softc		*sc;
360	int			reg;
361{
362#ifdef SK_USEIOSPACE
363	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
364	return(CSR_READ_1(sc, SK_WIN_BASE + SK_REG(reg)));
365#else
366	return(CSR_READ_1(sc, reg));
367#endif
368}
369
370static void
371sk_win_write_4(sc, reg, val)
372	struct sk_softc		*sc;
373	int			reg;
374	u_int32_t		val;
375{
376#ifdef SK_USEIOSPACE
377	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
378	CSR_WRITE_4(sc, SK_WIN_BASE + SK_REG(reg), val);
379#else
380	CSR_WRITE_4(sc, reg, val);
381#endif
382	return;
383}
384
385static void
386sk_win_write_2(sc, reg, val)
387	struct sk_softc		*sc;
388	int			reg;
389	u_int32_t		val;
390{
391#ifdef SK_USEIOSPACE
392	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
393	CSR_WRITE_2(sc, SK_WIN_BASE + SK_REG(reg), val);
394#else
395	CSR_WRITE_2(sc, reg, val);
396#endif
397	return;
398}
399
400static void
401sk_win_write_1(sc, reg, val)
402	struct sk_softc		*sc;
403	int			reg;
404	u_int32_t		val;
405{
406#ifdef SK_USEIOSPACE
407	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
408	CSR_WRITE_1(sc, SK_WIN_BASE + SK_REG(reg), val);
409#else
410	CSR_WRITE_1(sc, reg, val);
411#endif
412	return;
413}
414
415/*
416 * The VPD EEPROM contains Vital Product Data, as suggested in
417 * the PCI 2.1 specification. The VPD data is separared into areas
418 * denoted by resource IDs. The SysKonnect VPD contains an ID string
419 * resource (the name of the adapter), a read-only area resource
420 * containing various key/data fields and a read/write area which
421 * can be used to store asset management information or log messages.
422 * We read the ID string and read-only into buffers attached to
423 * the controller softc structure for later use. At the moment,
424 * we only use the ID string during skc_attach().
425 */
426static u_int8_t
427sk_vpd_readbyte(sc, addr)
428	struct sk_softc		*sc;
429	int			addr;
430{
431	int			i;
432
433	sk_win_write_2(sc, SK_PCI_REG(SK_PCI_VPD_ADDR), addr);
434	for (i = 0; i < SK_TIMEOUT; i++) {
435		DELAY(1);
436		if (sk_win_read_2(sc,
437		    SK_PCI_REG(SK_PCI_VPD_ADDR)) & SK_VPD_FLAG)
438			break;
439	}
440
441	if (i == SK_TIMEOUT)
442		return(0);
443
444	return(sk_win_read_1(sc, SK_PCI_REG(SK_PCI_VPD_DATA)));
445}
446
447static void
448sk_vpd_read_res(sc, res, addr)
449	struct sk_softc		*sc;
450	struct vpd_res		*res;
451	int			addr;
452{
453	int			i;
454	u_int8_t		*ptr;
455
456	ptr = (u_int8_t *)res;
457	for (i = 0; i < sizeof(struct vpd_res); i++)
458		ptr[i] = sk_vpd_readbyte(sc, i + addr);
459
460	return;
461}
462
463static void
464sk_vpd_read(sc)
465	struct sk_softc		*sc;
466{
467	int			pos = 0, i;
468	struct vpd_res		res;
469
470	if (sc->sk_vpd_prodname != NULL)
471		free(sc->sk_vpd_prodname, M_DEVBUF);
472	if (sc->sk_vpd_readonly != NULL)
473		free(sc->sk_vpd_readonly, M_DEVBUF);
474	sc->sk_vpd_prodname = NULL;
475	sc->sk_vpd_readonly = NULL;
476
477	sk_vpd_read_res(sc, &res, pos);
478
479	/*
480	 * Bail out quietly if the eeprom appears to be missing or empty.
481	 */
482	if (res.vr_id == 0xff && res.vr_len == 0xff && res.vr_pad == 0xff)
483		return;
484
485	if (res.vr_id != VPD_RES_ID) {
486		printf("skc%d: bad VPD resource id: expected %x got %x\n",
487		    sc->sk_unit, VPD_RES_ID, res.vr_id);
488		return;
489	}
490
491	pos += sizeof(res);
492	sc->sk_vpd_prodname = malloc(res.vr_len + 1, M_DEVBUF, M_NOWAIT);
493	for (i = 0; i < res.vr_len; i++)
494		sc->sk_vpd_prodname[i] = sk_vpd_readbyte(sc, i + pos);
495	sc->sk_vpd_prodname[i] = '\0';
496	pos += i;
497
498	sk_vpd_read_res(sc, &res, pos);
499
500	if (res.vr_id != VPD_RES_READ) {
501		printf("skc%d: bad VPD resource id: expected %x got %x\n",
502		    sc->sk_unit, VPD_RES_READ, res.vr_id);
503		return;
504	}
505
506	pos += sizeof(res);
507	sc->sk_vpd_readonly = malloc(res.vr_len, M_DEVBUF, M_NOWAIT);
508	for (i = 0; i < res.vr_len + 1; i++)
509		sc->sk_vpd_readonly[i] = sk_vpd_readbyte(sc, i + pos);
510
511	return;
512}
513
514static int
515sk_miibus_readreg(dev, phy, reg)
516	device_t		dev;
517	int			phy, reg;
518{
519	struct sk_if_softc	*sc_if;
520
521	sc_if = device_get_softc(dev);
522
523	switch(sc_if->sk_softc->sk_type) {
524	case SK_GENESIS:
525		return(sk_xmac_miibus_readreg(sc_if, phy, reg));
526	case SK_YUKON:
527		return(sk_marv_miibus_readreg(sc_if, phy, reg));
528	}
529
530	return(0);
531}
532
533static int
534sk_miibus_writereg(dev, phy, reg, val)
535	device_t		dev;
536	int			phy, reg, val;
537{
538	struct sk_if_softc	*sc_if;
539
540	sc_if = device_get_softc(dev);
541
542	switch(sc_if->sk_softc->sk_type) {
543	case SK_GENESIS:
544		return(sk_xmac_miibus_writereg(sc_if, phy, reg, val));
545	case SK_YUKON:
546		return(sk_marv_miibus_writereg(sc_if, phy, reg, val));
547	}
548
549	return(0);
550}
551
552static void
553sk_miibus_statchg(dev)
554	device_t		dev;
555{
556	struct sk_if_softc	*sc_if;
557
558	sc_if = device_get_softc(dev);
559
560	switch(sc_if->sk_softc->sk_type) {
561	case SK_GENESIS:
562		sk_xmac_miibus_statchg(sc_if);
563		break;
564	case SK_YUKON:
565		sk_marv_miibus_statchg(sc_if);
566		break;
567	}
568
569	return;
570}
571
572static int
573sk_xmac_miibus_readreg(sc_if, phy, reg)
574	struct sk_if_softc	*sc_if;
575	int			phy, reg;
576{
577	int			i;
578
579	if (sc_if->sk_phytype == SK_PHYTYPE_XMAC && phy != 0)
580		return(0);
581
582	SK_IF_LOCK(sc_if);
583	SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8));
584	SK_XM_READ_2(sc_if, XM_PHY_DATA);
585	if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) {
586		for (i = 0; i < SK_TIMEOUT; i++) {
587			DELAY(1);
588			if (SK_XM_READ_2(sc_if, XM_MMUCMD) &
589			    XM_MMUCMD_PHYDATARDY)
590				break;
591		}
592
593		if (i == SK_TIMEOUT) {
594			printf("sk%d: phy failed to come ready\n",
595			    sc_if->sk_unit);
596			SK_IF_UNLOCK(sc_if);
597			return(0);
598		}
599	}
600	DELAY(1);
601	i = SK_XM_READ_2(sc_if, XM_PHY_DATA);
602	SK_IF_UNLOCK(sc_if);
603	return(i);
604}
605
606static int
607sk_xmac_miibus_writereg(sc_if, phy, reg, val)
608	struct sk_if_softc	*sc_if;
609	int			phy, reg, val;
610{
611	int			i;
612
613	SK_IF_LOCK(sc_if);
614	SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8));
615	for (i = 0; i < SK_TIMEOUT; i++) {
616		if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY))
617			break;
618	}
619
620	if (i == SK_TIMEOUT) {
621		printf("sk%d: phy failed to come ready\n", sc_if->sk_unit);
622		SK_IF_UNLOCK(sc_if);
623		return(ETIMEDOUT);
624	}
625
626	SK_XM_WRITE_2(sc_if, XM_PHY_DATA, val);
627	for (i = 0; i < SK_TIMEOUT; i++) {
628		DELAY(1);
629		if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY))
630			break;
631	}
632	SK_IF_UNLOCK(sc_if);
633	if (i == SK_TIMEOUT)
634		printf("sk%d: phy write timed out\n", sc_if->sk_unit);
635
636	return(0);
637}
638
639static void
640sk_xmac_miibus_statchg(sc_if)
641	struct sk_if_softc	*sc_if;
642{
643	struct mii_data		*mii;
644
645	mii = device_get_softc(sc_if->sk_miibus);
646
647	SK_IF_LOCK(sc_if);
648	/*
649	 * If this is a GMII PHY, manually set the XMAC's
650	 * duplex mode accordingly.
651	 */
652	if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) {
653		if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
654			SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX);
655		} else {
656			SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX);
657		}
658	}
659	SK_IF_UNLOCK(sc_if);
660
661	return;
662}
663
664static int
665sk_marv_miibus_readreg(sc_if, phy, reg)
666	struct sk_if_softc	*sc_if;
667	int			phy, reg;
668{
669	u_int16_t		val;
670	int			i;
671
672	if (phy != 0 ||
673	    (sc_if->sk_phytype != SK_PHYTYPE_MARV_COPPER &&
674	     sc_if->sk_phytype != SK_PHYTYPE_MARV_FIBER)) {
675		return(0);
676	}
677
678	SK_IF_LOCK(sc_if);
679        SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
680		      YU_SMICR_REGAD(reg) | YU_SMICR_OP_READ);
681
682	for (i = 0; i < SK_TIMEOUT; i++) {
683		DELAY(1);
684		val = SK_YU_READ_2(sc_if, YUKON_SMICR);
685		if (val & YU_SMICR_READ_VALID)
686			break;
687	}
688
689	if (i == SK_TIMEOUT) {
690		printf("sk%d: phy failed to come ready\n",
691		    sc_if->sk_unit);
692		SK_IF_UNLOCK(sc_if);
693		return(0);
694	}
695
696	val = SK_YU_READ_2(sc_if, YUKON_SMIDR);
697	SK_IF_UNLOCK(sc_if);
698
699	return(val);
700}
701
702static int
703sk_marv_miibus_writereg(sc_if, phy, reg, val)
704	struct sk_if_softc	*sc_if;
705	int			phy, reg, val;
706{
707	int			i;
708
709	SK_IF_LOCK(sc_if);
710	SK_YU_WRITE_2(sc_if, YUKON_SMIDR, val);
711	SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
712		      YU_SMICR_REGAD(reg) | YU_SMICR_OP_WRITE);
713
714	for (i = 0; i < SK_TIMEOUT; i++) {
715		DELAY(1);
716		if (SK_YU_READ_2(sc_if, YUKON_SMICR) & YU_SMICR_BUSY)
717			break;
718	}
719	SK_IF_UNLOCK(sc_if);
720
721	return(0);
722}
723
724static void
725sk_marv_miibus_statchg(sc_if)
726	struct sk_if_softc	*sc_if;
727{
728	return;
729}
730
731#define HASH_BITS		6
732
733static u_int32_t
734sk_xmchash(addr)
735	const uint8_t *addr;
736{
737	uint32_t crc;
738
739	/* Compute CRC for the address value. */
740	crc = ether_crc32_le(addr, ETHER_ADDR_LEN);
741
742	return (~crc & ((1 << HASH_BITS) - 1));
743}
744
745/* gmchash is just a big endian crc */
746static u_int32_t
747sk_gmchash(addr)
748	const uint8_t *addr;
749{
750	uint32_t crc;
751
752	/* Compute CRC for the address value. */
753	crc = ether_crc32_be(addr, ETHER_ADDR_LEN);
754
755	return (crc & ((1 << HASH_BITS) - 1));
756}
757
758static void
759sk_setfilt(sc_if, addr, slot)
760	struct sk_if_softc	*sc_if;
761	caddr_t			addr;
762	int			slot;
763{
764	int			base;
765
766	base = XM_RXFILT_ENTRY(slot);
767
768	SK_XM_WRITE_2(sc_if, base, *(u_int16_t *)(&addr[0]));
769	SK_XM_WRITE_2(sc_if, base + 2, *(u_int16_t *)(&addr[2]));
770	SK_XM_WRITE_2(sc_if, base + 4, *(u_int16_t *)(&addr[4]));
771
772	return;
773}
774
775static void
776sk_setmulti(sc_if)
777	struct sk_if_softc	*sc_if;
778{
779	struct sk_softc		*sc = sc_if->sk_softc;
780	struct ifnet		*ifp = &sc_if->arpcom.ac_if;
781	u_int32_t		hashes[2] = { 0, 0 };
782	int			h = 0, i;
783	struct ifmultiaddr	*ifma;
784	u_int8_t		dummy[] = { 0, 0, 0, 0, 0 ,0 };
785
786
787	/* First, zot all the existing filters. */
788	switch(sc->sk_type) {
789	case SK_GENESIS:
790		for (i = 1; i < XM_RXFILT_MAX; i++)
791			sk_setfilt(sc_if, (caddr_t)&dummy, i);
792
793		SK_XM_WRITE_4(sc_if, XM_MAR0, 0);
794		SK_XM_WRITE_4(sc_if, XM_MAR2, 0);
795		break;
796	case SK_YUKON:
797		SK_YU_WRITE_2(sc_if, YUKON_MCAH1, 0);
798		SK_YU_WRITE_2(sc_if, YUKON_MCAH2, 0);
799		SK_YU_WRITE_2(sc_if, YUKON_MCAH3, 0);
800		SK_YU_WRITE_2(sc_if, YUKON_MCAH4, 0);
801		break;
802	}
803
804	/* Now program new ones. */
805	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
806		hashes[0] = 0xFFFFFFFF;
807		hashes[1] = 0xFFFFFFFF;
808	} else {
809		i = 1;
810		TAILQ_FOREACH_REVERSE(ifma, &ifp->if_multiaddrs, ifmultihead, ifma_link) {
811			if (ifma->ifma_addr->sa_family != AF_LINK)
812				continue;
813			/*
814			 * Program the first XM_RXFILT_MAX multicast groups
815			 * into the perfect filter. For all others,
816			 * use the hash table.
817			 */
818			if (sc->sk_type == SK_GENESIS && i < XM_RXFILT_MAX) {
819				sk_setfilt(sc_if,
820			LLADDR((struct sockaddr_dl *)ifma->ifma_addr), i);
821				i++;
822				continue;
823			}
824
825			switch(sc->sk_type) {
826			case SK_GENESIS:
827				h = sk_xmchash(
828					LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
829				break;
830			case SK_YUKON:
831				h = sk_gmchash(
832					LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
833				break;
834			}
835			if (h < 32)
836				hashes[0] |= (1 << h);
837			else
838				hashes[1] |= (1 << (h - 32));
839		}
840	}
841
842	switch(sc->sk_type) {
843	case SK_GENESIS:
844		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_HASH|
845			       XM_MODE_RX_USE_PERFECT);
846		SK_XM_WRITE_4(sc_if, XM_MAR0, hashes[0]);
847		SK_XM_WRITE_4(sc_if, XM_MAR2, hashes[1]);
848		break;
849	case SK_YUKON:
850		SK_YU_WRITE_2(sc_if, YUKON_MCAH1, hashes[0] & 0xffff);
851		SK_YU_WRITE_2(sc_if, YUKON_MCAH2, (hashes[0] >> 16) & 0xffff);
852		SK_YU_WRITE_2(sc_if, YUKON_MCAH3, hashes[1] & 0xffff);
853		SK_YU_WRITE_2(sc_if, YUKON_MCAH4, (hashes[1] >> 16) & 0xffff);
854		break;
855	}
856
857	return;
858}
859
860static void
861sk_setpromisc(sc_if)
862	struct sk_if_softc	*sc_if;
863{
864	struct sk_softc		*sc = sc_if->sk_softc;
865	struct ifnet		*ifp = &sc_if->arpcom.ac_if;
866
867	switch(sc->sk_type) {
868	case SK_GENESIS:
869		if (ifp->if_flags & IFF_PROMISC) {
870			SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
871		} else {
872			SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
873		}
874		break;
875	case SK_YUKON:
876		if (ifp->if_flags & IFF_PROMISC) {
877			SK_YU_CLRBIT_2(sc_if, YUKON_RCR,
878			    YU_RCR_UFLEN | YU_RCR_MUFLEN);
879		} else {
880			SK_YU_SETBIT_2(sc_if, YUKON_RCR,
881			    YU_RCR_UFLEN | YU_RCR_MUFLEN);
882		}
883		break;
884	}
885
886	return;
887}
888
889static int
890sk_init_rx_ring(sc_if)
891	struct sk_if_softc	*sc_if;
892{
893	struct sk_chain_data	*cd = &sc_if->sk_cdata;
894	struct sk_ring_data	*rd = sc_if->sk_rdata;
895	int			i;
896
897	bzero((char *)rd->sk_rx_ring,
898	    sizeof(struct sk_rx_desc) * SK_RX_RING_CNT);
899
900	for (i = 0; i < SK_RX_RING_CNT; i++) {
901		cd->sk_rx_chain[i].sk_desc = &rd->sk_rx_ring[i];
902		if (sk_newbuf(sc_if, &cd->sk_rx_chain[i], NULL) == ENOBUFS)
903			return(ENOBUFS);
904		if (i == (SK_RX_RING_CNT - 1)) {
905			cd->sk_rx_chain[i].sk_next =
906			    &cd->sk_rx_chain[0];
907			rd->sk_rx_ring[i].sk_next =
908			    vtophys(&rd->sk_rx_ring[0]);
909		} else {
910			cd->sk_rx_chain[i].sk_next =
911			    &cd->sk_rx_chain[i + 1];
912			rd->sk_rx_ring[i].sk_next =
913			    vtophys(&rd->sk_rx_ring[i + 1]);
914		}
915	}
916
917	sc_if->sk_cdata.sk_rx_prod = 0;
918	sc_if->sk_cdata.sk_rx_cons = 0;
919
920	return(0);
921}
922
923static void
924sk_init_tx_ring(sc_if)
925	struct sk_if_softc	*sc_if;
926{
927	struct sk_chain_data	*cd = &sc_if->sk_cdata;
928	struct sk_ring_data	*rd = sc_if->sk_rdata;
929	int			i;
930
931	bzero((char *)sc_if->sk_rdata->sk_tx_ring,
932	    sizeof(struct sk_tx_desc) * SK_TX_RING_CNT);
933
934	for (i = 0; i < SK_TX_RING_CNT; i++) {
935		cd->sk_tx_chain[i].sk_desc = &rd->sk_tx_ring[i];
936		if (i == (SK_TX_RING_CNT - 1)) {
937			cd->sk_tx_chain[i].sk_next =
938			    &cd->sk_tx_chain[0];
939			rd->sk_tx_ring[i].sk_next =
940			    vtophys(&rd->sk_tx_ring[0]);
941		} else {
942			cd->sk_tx_chain[i].sk_next =
943			    &cd->sk_tx_chain[i + 1];
944			rd->sk_tx_ring[i].sk_next =
945			    vtophys(&rd->sk_tx_ring[i + 1]);
946		}
947	}
948
949	sc_if->sk_cdata.sk_tx_prod = 0;
950	sc_if->sk_cdata.sk_tx_cons = 0;
951	sc_if->sk_cdata.sk_tx_cnt = 0;
952
953	return;
954}
955
956static int
957sk_newbuf(sc_if, c, m)
958	struct sk_if_softc	*sc_if;
959	struct sk_chain		*c;
960	struct mbuf		*m;
961{
962	struct mbuf		*m_new = NULL;
963	struct sk_rx_desc	*r;
964
965	if (m == NULL) {
966		caddr_t			*buf = NULL;
967
968		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
969		if (m_new == NULL)
970			return(ENOBUFS);
971
972		/* Allocate the jumbo buffer */
973		buf = sk_jalloc(sc_if);
974		if (buf == NULL) {
975			m_freem(m_new);
976#ifdef SK_VERBOSE
977			printf("sk%d: jumbo allocation failed "
978			    "-- packet dropped!\n", sc_if->sk_unit);
979#endif
980			return(ENOBUFS);
981		}
982
983		/* Attach the buffer to the mbuf */
984		MEXTADD(m_new, buf, SK_JLEN, sk_jfree,
985		    (struct sk_if_softc *)sc_if, 0, EXT_NET_DRV);
986		m_new->m_data = (void *)buf;
987		m_new->m_pkthdr.len = m_new->m_len = SK_JLEN;
988	} else {
989		/*
990	 	 * We're re-using a previously allocated mbuf;
991		 * be sure to re-init pointers and lengths to
992		 * default values.
993		 */
994		m_new = m;
995		m_new->m_len = m_new->m_pkthdr.len = SK_JLEN;
996		m_new->m_data = m_new->m_ext.ext_buf;
997	}
998
999	/*
1000	 * Adjust alignment so packet payload begins on a
1001	 * longword boundary. Mandatory for Alpha, useful on
1002	 * x86 too.
1003	 */
1004	m_adj(m_new, ETHER_ALIGN);
1005
1006	r = c->sk_desc;
1007	c->sk_mbuf = m_new;
1008	r->sk_data_lo = vtophys(mtod(m_new, caddr_t));
1009	r->sk_ctl = m_new->m_len | SK_RXSTAT;
1010
1011	return(0);
1012}
1013
1014/*
1015 * Allocate jumbo buffer storage. The SysKonnect adapters support
1016 * "jumbograms" (9K frames), although SysKonnect doesn't currently
1017 * use them in their drivers. In order for us to use them, we need
1018 * large 9K receive buffers, however standard mbuf clusters are only
1019 * 2048 bytes in size. Consequently, we need to allocate and manage
1020 * our own jumbo buffer pool. Fortunately, this does not require an
1021 * excessive amount of additional code.
1022 */
1023static int
1024sk_alloc_jumbo_mem(sc_if)
1025	struct sk_if_softc	*sc_if;
1026{
1027	caddr_t			ptr;
1028	register int		i;
1029	struct sk_jpool_entry   *entry;
1030
1031	/* Grab a big chunk o' storage. */
1032	sc_if->sk_cdata.sk_jumbo_buf = contigmalloc(SK_JMEM, M_DEVBUF,
1033	    M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0);
1034
1035	if (sc_if->sk_cdata.sk_jumbo_buf == NULL) {
1036		printf("sk%d: no memory for jumbo buffers!\n", sc_if->sk_unit);
1037		return(ENOBUFS);
1038	}
1039
1040	SLIST_INIT(&sc_if->sk_jfree_listhead);
1041	SLIST_INIT(&sc_if->sk_jinuse_listhead);
1042
1043	/*
1044	 * Now divide it up into 9K pieces and save the addresses
1045	 * in an array.
1046	 */
1047	ptr = sc_if->sk_cdata.sk_jumbo_buf;
1048	for (i = 0; i < SK_JSLOTS; i++) {
1049		sc_if->sk_cdata.sk_jslots[i] = ptr;
1050		ptr += SK_JLEN;
1051		entry = malloc(sizeof(struct sk_jpool_entry),
1052		    M_DEVBUF, M_NOWAIT);
1053		if (entry == NULL) {
1054			free(sc_if->sk_cdata.sk_jumbo_buf, M_DEVBUF);
1055			sc_if->sk_cdata.sk_jumbo_buf = NULL;
1056			printf("sk%d: no memory for jumbo "
1057			    "buffer queue!\n", sc_if->sk_unit);
1058			return(ENOBUFS);
1059		}
1060		entry->slot = i;
1061		SLIST_INSERT_HEAD(&sc_if->sk_jfree_listhead,
1062		    entry, jpool_entries);
1063	}
1064
1065	return(0);
1066}
1067
1068/*
1069 * Allocate a jumbo buffer.
1070 */
1071static void *
1072sk_jalloc(sc_if)
1073	struct sk_if_softc	*sc_if;
1074{
1075	struct sk_jpool_entry   *entry;
1076
1077	entry = SLIST_FIRST(&sc_if->sk_jfree_listhead);
1078
1079	if (entry == NULL) {
1080#ifdef SK_VERBOSE
1081		printf("sk%d: no free jumbo buffers\n", sc_if->sk_unit);
1082#endif
1083		return(NULL);
1084	}
1085
1086	SLIST_REMOVE_HEAD(&sc_if->sk_jfree_listhead, jpool_entries);
1087	SLIST_INSERT_HEAD(&sc_if->sk_jinuse_listhead, entry, jpool_entries);
1088	return(sc_if->sk_cdata.sk_jslots[entry->slot]);
1089}
1090
1091/*
1092 * Release a jumbo buffer.
1093 */
1094static void
1095sk_jfree(buf, args)
1096	void			*buf;
1097	void			*args;
1098{
1099	struct sk_if_softc	*sc_if;
1100	int		        i;
1101	struct sk_jpool_entry   *entry;
1102
1103	/* Extract the softc struct pointer. */
1104	sc_if = (struct sk_if_softc *)args;
1105
1106	if (sc_if == NULL)
1107		panic("sk_jfree: didn't get softc pointer!");
1108
1109	/* calculate the slot this buffer belongs to */
1110	i = ((vm_offset_t)buf
1111	     - (vm_offset_t)sc_if->sk_cdata.sk_jumbo_buf) / SK_JLEN;
1112
1113	if ((i < 0) || (i >= SK_JSLOTS))
1114		panic("sk_jfree: asked to free buffer that we don't manage!");
1115
1116	entry = SLIST_FIRST(&sc_if->sk_jinuse_listhead);
1117	if (entry == NULL)
1118		panic("sk_jfree: buffer not in use!");
1119	entry->slot = i;
1120	SLIST_REMOVE_HEAD(&sc_if->sk_jinuse_listhead, jpool_entries);
1121	SLIST_INSERT_HEAD(&sc_if->sk_jfree_listhead, entry, jpool_entries);
1122
1123	return;
1124}
1125
1126/*
1127 * Set media options.
1128 */
1129static int
1130sk_ifmedia_upd(ifp)
1131	struct ifnet		*ifp;
1132{
1133	struct sk_if_softc	*sc_if = ifp->if_softc;
1134	struct mii_data		*mii;
1135
1136	mii = device_get_softc(sc_if->sk_miibus);
1137	sk_init(sc_if);
1138	mii_mediachg(mii);
1139
1140	return(0);
1141}
1142
1143/*
1144 * Report current media status.
1145 */
1146static void
1147sk_ifmedia_sts(ifp, ifmr)
1148	struct ifnet		*ifp;
1149	struct ifmediareq	*ifmr;
1150{
1151	struct sk_if_softc	*sc_if;
1152	struct mii_data		*mii;
1153
1154	sc_if = ifp->if_softc;
1155	mii = device_get_softc(sc_if->sk_miibus);
1156
1157	mii_pollstat(mii);
1158	ifmr->ifm_active = mii->mii_media_active;
1159	ifmr->ifm_status = mii->mii_media_status;
1160
1161	return;
1162}
1163
1164static int
1165sk_ioctl(ifp, command, data)
1166	struct ifnet		*ifp;
1167	u_long			command;
1168	caddr_t			data;
1169{
1170	struct sk_if_softc	*sc_if = ifp->if_softc;
1171	struct ifreq		*ifr = (struct ifreq *) data;
1172	int			error = 0;
1173	struct mii_data		*mii;
1174
1175	SK_IF_LOCK(sc_if);
1176
1177	switch(command) {
1178	case SIOCSIFMTU:
1179		if (ifr->ifr_mtu > SK_JUMBO_MTU)
1180			error = EINVAL;
1181		else {
1182			ifp->if_mtu = ifr->ifr_mtu;
1183			sk_init(sc_if);
1184		}
1185		break;
1186	case SIOCSIFFLAGS:
1187		if (ifp->if_flags & IFF_UP) {
1188			if (ifp->if_flags & IFF_RUNNING) {
1189				if ((ifp->if_flags ^ sc_if->sk_if_flags)
1190				    & IFF_PROMISC) {
1191					sk_setpromisc(sc_if);
1192					sk_setmulti(sc_if);
1193				}
1194			} else
1195				sk_init(sc_if);
1196		} else {
1197			if (ifp->if_flags & IFF_RUNNING)
1198				sk_stop(sc_if);
1199		}
1200		sc_if->sk_if_flags = ifp->if_flags;
1201		error = 0;
1202		break;
1203	case SIOCADDMULTI:
1204	case SIOCDELMULTI:
1205		sk_setmulti(sc_if);
1206		error = 0;
1207		break;
1208	case SIOCGIFMEDIA:
1209	case SIOCSIFMEDIA:
1210		mii = device_get_softc(sc_if->sk_miibus);
1211		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
1212		break;
1213	default:
1214		error = ether_ioctl(ifp, command, data);
1215		break;
1216	}
1217
1218	SK_IF_UNLOCK(sc_if);
1219
1220	return(error);
1221}
1222
1223/*
1224 * Probe for a SysKonnect GEnesis chip. Check the PCI vendor and device
1225 * IDs against our list and return a device name if we find a match.
1226 */
1227static int
1228skc_probe(dev)
1229	device_t		dev;
1230{
1231	struct sk_softc		*sc;
1232	struct sk_type		*t = sk_devs;
1233
1234	sc = device_get_softc(dev);
1235
1236	while(t->sk_name != NULL) {
1237		if ((pci_get_vendor(dev) == t->sk_vid) &&
1238		    (pci_get_device(dev) == t->sk_did)) {
1239			device_set_desc(dev, t->sk_name);
1240			return(0);
1241		}
1242		t++;
1243	}
1244
1245	return(ENXIO);
1246}
1247
1248/*
1249 * Force the GEnesis into reset, then bring it out of reset.
1250 */
1251static void
1252sk_reset(sc)
1253	struct sk_softc		*sc;
1254{
1255	CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_RESET);
1256	CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_RESET);
1257	if (sc->sk_type == SK_YUKON)
1258		CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_SET);
1259
1260	DELAY(1000);
1261	CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_UNRESET);
1262	DELAY(2);
1263	CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_UNRESET);
1264	if (sc->sk_type == SK_YUKON)
1265		CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_CLEAR);
1266
1267	if (sc->sk_type == SK_GENESIS) {
1268		/* Configure packet arbiter */
1269		sk_win_write_2(sc, SK_PKTARB_CTL, SK_PKTARBCTL_UNRESET);
1270		sk_win_write_2(sc, SK_RXPA1_TINIT, SK_PKTARB_TIMEOUT);
1271		sk_win_write_2(sc, SK_TXPA1_TINIT, SK_PKTARB_TIMEOUT);
1272		sk_win_write_2(sc, SK_RXPA2_TINIT, SK_PKTARB_TIMEOUT);
1273		sk_win_write_2(sc, SK_TXPA2_TINIT, SK_PKTARB_TIMEOUT);
1274	}
1275
1276	/* Enable RAM interface */
1277	sk_win_write_4(sc, SK_RAMCTL, SK_RAMCTL_UNRESET);
1278
1279	/*
1280         * Configure interrupt moderation. The moderation timer
1281	 * defers interrupts specified in the interrupt moderation
1282	 * timer mask based on the timeout specified in the interrupt
1283	 * moderation timer init register. Each bit in the timer
1284	 * register represents 18.825ns, so to specify a timeout in
1285	 * microseconds, we have to multiply by 54.
1286	 */
1287	sk_win_write_4(sc, SK_IMTIMERINIT, SK_IM_USECS(200));
1288	sk_win_write_4(sc, SK_IMMR, SK_ISR_TX1_S_EOF|SK_ISR_TX2_S_EOF|
1289	    SK_ISR_RX1_EOF|SK_ISR_RX2_EOF);
1290	sk_win_write_1(sc, SK_IMTIMERCTL, SK_IMCTL_START);
1291
1292	return;
1293}
1294
1295static int
1296sk_probe(dev)
1297	device_t		dev;
1298{
1299	struct sk_softc		*sc;
1300
1301	sc = device_get_softc(device_get_parent(dev));
1302
1303	/*
1304	 * Not much to do here. We always know there will be
1305	 * at least one XMAC present, and if there are two,
1306	 * skc_attach() will create a second device instance
1307	 * for us.
1308	 */
1309	switch (sc->sk_type) {
1310	case SK_GENESIS:
1311		device_set_desc(dev, "XaQti Corp. XMAC II");
1312		break;
1313	case SK_YUKON:
1314		device_set_desc(dev, "Marvell Semiconductor, Inc. Yukon");
1315		break;
1316	}
1317
1318	return(0);
1319}
1320
1321/*
1322 * Each XMAC chip is attached as a separate logical IP interface.
1323 * Single port cards will have only one logical interface of course.
1324 */
1325static int
1326sk_attach(dev)
1327	device_t		dev;
1328{
1329	struct sk_softc		*sc;
1330	struct sk_if_softc	*sc_if;
1331	struct ifnet		*ifp;
1332	int			i, port, error;
1333
1334	if (dev == NULL)
1335		return(EINVAL);
1336
1337	error = 0;
1338	sc_if = device_get_softc(dev);
1339	sc = device_get_softc(device_get_parent(dev));
1340	port = *(int *)device_get_ivars(dev);
1341	free(device_get_ivars(dev), M_DEVBUF);
1342	device_set_ivars(dev, NULL);
1343
1344	sc_if->sk_dev = dev;
1345	sc_if->sk_unit = device_get_unit(dev);
1346	sc_if->sk_port = port;
1347	sc_if->sk_softc = sc;
1348	sc->sk_if[port] = sc_if;
1349	if (port == SK_PORT_A)
1350		sc_if->sk_tx_bmu = SK_BMU_TXS_CSR0;
1351	if (port == SK_PORT_B)
1352		sc_if->sk_tx_bmu = SK_BMU_TXS_CSR1;
1353
1354	/* Allocate the descriptor queues. */
1355	sc_if->sk_rdata = contigmalloc(sizeof(struct sk_ring_data), M_DEVBUF,
1356	    M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0);
1357
1358	if (sc_if->sk_rdata == NULL) {
1359		printf("sk%d: no memory for list buffers!\n", sc_if->sk_unit);
1360		error = ENOMEM;
1361		goto fail;
1362	}
1363
1364	bzero(sc_if->sk_rdata, sizeof(struct sk_ring_data));
1365
1366	/* Try to allocate memory for jumbo buffers. */
1367	if (sk_alloc_jumbo_mem(sc_if)) {
1368		printf("sk%d: jumbo buffer allocation failed\n",
1369		    sc_if->sk_unit);
1370		error = ENOMEM;
1371		goto fail;
1372	}
1373
1374	ifp = &sc_if->arpcom.ac_if;
1375	ifp->if_softc = sc_if;
1376	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1377	ifp->if_mtu = ETHERMTU;
1378	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1379	ifp->if_ioctl = sk_ioctl;
1380	ifp->if_start = sk_start;
1381	ifp->if_watchdog = sk_watchdog;
1382	ifp->if_init = sk_init;
1383	ifp->if_baudrate = 1000000000;
1384	ifp->if_snd.ifq_maxlen = SK_TX_RING_CNT - 1;
1385
1386	callout_handle_init(&sc_if->sk_tick_ch);
1387
1388	/*
1389	 * Get station address for this interface. Note that
1390	 * dual port cards actually come with three station
1391	 * addresses: one for each port, plus an extra. The
1392	 * extra one is used by the SysKonnect driver software
1393	 * as a 'virtual' station address for when both ports
1394	 * are operating in failover mode. Currently we don't
1395	 * use this extra address.
1396	 */
1397	SK_LOCK(sc);
1398	for (i = 0; i < ETHER_ADDR_LEN; i++)
1399		sc_if->arpcom.ac_enaddr[i] =
1400		    sk_win_read_1(sc, SK_MAC0_0 + (port * 8) + i);
1401
1402	/*
1403	 * Set up RAM buffer addresses. The NIC will have a certain
1404	 * amount of SRAM on it, somewhere between 512K and 2MB. We
1405	 * need to divide this up a) between the transmitter and
1406 	 * receiver and b) between the two XMACs, if this is a
1407	 * dual port NIC. Our algotithm is to divide up the memory
1408	 * evenly so that everyone gets a fair share.
1409	 */
1410	if (sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC) {
1411		u_int32_t		chunk, val;
1412
1413		chunk = sc->sk_ramsize / 2;
1414		val = sc->sk_rboff / sizeof(u_int64_t);
1415		sc_if->sk_rx_ramstart = val;
1416		val += (chunk / sizeof(u_int64_t));
1417		sc_if->sk_rx_ramend = val - 1;
1418		sc_if->sk_tx_ramstart = val;
1419		val += (chunk / sizeof(u_int64_t));
1420		sc_if->sk_tx_ramend = val - 1;
1421	} else {
1422		u_int32_t		chunk, val;
1423
1424		chunk = sc->sk_ramsize / 4;
1425		val = (sc->sk_rboff + (chunk * 2 * sc_if->sk_port)) /
1426		    sizeof(u_int64_t);
1427		sc_if->sk_rx_ramstart = val;
1428		val += (chunk / sizeof(u_int64_t));
1429		sc_if->sk_rx_ramend = val - 1;
1430		sc_if->sk_tx_ramstart = val;
1431		val += (chunk / sizeof(u_int64_t));
1432		sc_if->sk_tx_ramend = val - 1;
1433	}
1434
1435	/* Read and save PHY type and set PHY address */
1436	sc_if->sk_phytype = sk_win_read_1(sc, SK_EPROM1) & 0xF;
1437	switch(sc_if->sk_phytype) {
1438	case SK_PHYTYPE_XMAC:
1439		sc_if->sk_phyaddr = SK_PHYADDR_XMAC;
1440		break;
1441	case SK_PHYTYPE_BCOM:
1442		sc_if->sk_phyaddr = SK_PHYADDR_BCOM;
1443		break;
1444	case SK_PHYTYPE_MARV_COPPER:
1445		sc_if->sk_phyaddr = SK_PHYADDR_MARV;
1446		break;
1447	default:
1448		printf("skc%d: unsupported PHY type: %d\n",
1449		    sc->sk_unit, sc_if->sk_phytype);
1450		error = ENODEV;
1451		SK_UNLOCK(sc);
1452		goto fail;
1453	}
1454
1455
1456	/*
1457	 * Call MI attach routine.  Can't hold locks when calling into ether_*.
1458	 */
1459	SK_UNLOCK(sc);
1460	ether_ifattach(ifp, sc_if->arpcom.ac_enaddr);
1461	SK_LOCK(sc);
1462
1463	/*
1464	 * Do miibus setup.
1465	 */
1466	switch (sc->sk_type) {
1467	case SK_GENESIS:
1468		sk_init_xmac(sc_if);
1469		break;
1470	case SK_YUKON:
1471		sk_init_yukon(sc_if);
1472		break;
1473	}
1474
1475	SK_UNLOCK(sc);
1476	if (mii_phy_probe(dev, &sc_if->sk_miibus,
1477	    sk_ifmedia_upd, sk_ifmedia_sts)) {
1478		printf("skc%d: no PHY found!\n", sc_if->sk_unit);
1479		ether_ifdetach(ifp);
1480		error = ENXIO;
1481		goto fail;
1482	}
1483
1484fail:
1485	if (error) {
1486		/* Access should be ok even though lock has been dropped */
1487		sc->sk_if[port] = NULL;
1488		sk_detach(dev);
1489	}
1490
1491	return(error);
1492}
1493
1494/*
1495 * Attach the interface. Allocate softc structures, do ifmedia
1496 * setup and ethernet/BPF attach.
1497 */
1498static int
1499skc_attach(dev)
1500	device_t		dev;
1501{
1502	struct sk_softc		*sc;
1503	int			unit, error = 0, rid, *port;
1504
1505	sc = device_get_softc(dev);
1506	unit = device_get_unit(dev);
1507
1508	mtx_init(&sc->sk_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
1509	    MTX_DEF | MTX_RECURSE);
1510	/*
1511	 * Map control/status registers.
1512	 */
1513	pci_enable_busmaster(dev);
1514
1515	rid = SK_RID;
1516	sc->sk_res = bus_alloc_resource_any(dev, SK_RES, &rid, RF_ACTIVE);
1517
1518	if (sc->sk_res == NULL) {
1519		printf("sk%d: couldn't map ports/memory\n", unit);
1520		error = ENXIO;
1521		goto fail;
1522	}
1523
1524	sc->sk_btag = rman_get_bustag(sc->sk_res);
1525	sc->sk_bhandle = rman_get_bushandle(sc->sk_res);
1526
1527	/* Allocate interrupt */
1528	rid = 0;
1529	sc->sk_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
1530	    RF_SHAREABLE | RF_ACTIVE);
1531
1532	if (sc->sk_irq == NULL) {
1533		printf("skc%d: couldn't map interrupt\n", unit);
1534		error = ENXIO;
1535		goto fail;
1536	}
1537
1538	/* Set adapter type */
1539	switch (pci_get_device(dev)) {
1540	case DEVICEID_SK_V1:
1541		sc->sk_type = SK_GENESIS;
1542		break;
1543	case DEVICEID_SK_V2:
1544	case DEVICEID_BELKIN_5005:
1545	case DEVICEID_3COM_3C940:
1546	case DEVICEID_LINKSYS_EG1032:
1547	case DEVICEID_DLINK_DGE530T:
1548		sc->sk_type = SK_YUKON;
1549		break;
1550	default:
1551		printf("skc%d: unknown device!\n", unit);
1552		error = ENXIO;
1553		goto fail;
1554	}
1555
1556	/* Reset the adapter. */
1557	sk_reset(sc);
1558
1559	sc->sk_unit = unit;
1560
1561	/* Read and save vital product data from EEPROM. */
1562	sk_vpd_read(sc);
1563
1564	if (sc->sk_type == SK_GENESIS) {
1565		/* Read and save RAM size and RAMbuffer offset */
1566		switch(sk_win_read_1(sc, SK_EPROM0)) {
1567		case SK_RAMSIZE_512K_64:
1568			sc->sk_ramsize = 0x80000;
1569			sc->sk_rboff = SK_RBOFF_0;
1570			break;
1571		case SK_RAMSIZE_1024K_64:
1572			sc->sk_ramsize = 0x100000;
1573			sc->sk_rboff = SK_RBOFF_80000;
1574			break;
1575		case SK_RAMSIZE_1024K_128:
1576			sc->sk_ramsize = 0x100000;
1577			sc->sk_rboff = SK_RBOFF_0;
1578			break;
1579		case SK_RAMSIZE_2048K_128:
1580			sc->sk_ramsize = 0x200000;
1581			sc->sk_rboff = SK_RBOFF_0;
1582			break;
1583		default:
1584			printf("skc%d: unknown ram size: %d\n",
1585			    sc->sk_unit, sk_win_read_1(sc, SK_EPROM0));
1586			error = ENXIO;
1587			goto fail;
1588		}
1589	} else {
1590		sc->sk_ramsize = 0x20000;
1591		sc->sk_rboff = SK_RBOFF_0;
1592	}
1593
1594	/* Read and save physical media type */
1595	switch(sk_win_read_1(sc, SK_PMDTYPE)) {
1596	case SK_PMD_1000BASESX:
1597		sc->sk_pmd = IFM_1000_SX;
1598		break;
1599	case SK_PMD_1000BASELX:
1600		sc->sk_pmd = IFM_1000_LX;
1601		break;
1602	case SK_PMD_1000BASECX:
1603		sc->sk_pmd = IFM_1000_CX;
1604		break;
1605	case SK_PMD_1000BASETX:
1606		sc->sk_pmd = IFM_1000_T;
1607		break;
1608	default:
1609		printf("skc%d: unknown media type: 0x%x\n",
1610		    sc->sk_unit, sk_win_read_1(sc, SK_PMDTYPE));
1611		error = ENXIO;
1612		goto fail;
1613	}
1614
1615	/* Announce the product name. */
1616	if (sc->sk_vpd_prodname != NULL)
1617	    printf("skc%d: %s\n", sc->sk_unit, sc->sk_vpd_prodname);
1618	sc->sk_devs[SK_PORT_A] = device_add_child(dev, "sk", -1);
1619	port = malloc(sizeof(int), M_DEVBUF, M_NOWAIT);
1620	*port = SK_PORT_A;
1621	device_set_ivars(sc->sk_devs[SK_PORT_A], port);
1622
1623	if (!(sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC)) {
1624		sc->sk_devs[SK_PORT_B] = device_add_child(dev, "sk", -1);
1625		port = malloc(sizeof(int), M_DEVBUF, M_NOWAIT);
1626		*port = SK_PORT_B;
1627		device_set_ivars(sc->sk_devs[SK_PORT_B], port);
1628	}
1629
1630	/* Turn on the 'driver is loaded' LED. */
1631	CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_ON);
1632
1633	bus_generic_attach(dev);
1634
1635	/* Hook interrupt last to avoid having to lock softc */
1636	error = bus_setup_intr(dev, sc->sk_irq, INTR_TYPE_NET|INTR_MPSAFE,
1637	    sk_intr, sc, &sc->sk_intrhand);
1638
1639	if (error) {
1640		printf("skc%d: couldn't set up irq\n", unit);
1641		goto fail;
1642	}
1643
1644fail:
1645	if (error)
1646		skc_detach(dev);
1647
1648	return(error);
1649}
1650
1651/*
1652 * Shutdown hardware and free up resources. This can be called any
1653 * time after the mutex has been initialized. It is called in both
1654 * the error case in attach and the normal detach case so it needs
1655 * to be careful about only freeing resources that have actually been
1656 * allocated.
1657 */
1658static int
1659sk_detach(dev)
1660	device_t		dev;
1661{
1662	struct sk_if_softc	*sc_if;
1663	struct ifnet		*ifp;
1664
1665	sc_if = device_get_softc(dev);
1666	KASSERT(mtx_initialized(&sc_if->sk_softc->sk_mtx),
1667	    ("sk mutex not initialized in sk_detach"));
1668	SK_IF_LOCK(sc_if);
1669
1670	ifp = &sc_if->arpcom.ac_if;
1671	/* These should only be active if attach_xmac succeeded */
1672	if (device_is_attached(dev)) {
1673		sk_stop(sc_if);
1674		/* Can't hold locks while calling detach */
1675		SK_IF_UNLOCK(sc_if);
1676		ether_ifdetach(ifp);
1677		SK_IF_LOCK(sc_if);
1678	}
1679	/*
1680	 * We're generally called from skc_detach() which is using
1681	 * device_delete_child() to get to here. It's already trashed
1682	 * miibus for us, so don't do it here or we'll panic.
1683	 */
1684	/*
1685	if (sc_if->sk_miibus != NULL)
1686		device_delete_child(dev, sc_if->sk_miibus);
1687	*/
1688	bus_generic_detach(dev);
1689	if (sc_if->sk_cdata.sk_jumbo_buf != NULL)
1690		contigfree(sc_if->sk_cdata.sk_jumbo_buf, SK_JMEM, M_DEVBUF);
1691	if (sc_if->sk_rdata != NULL) {
1692		contigfree(sc_if->sk_rdata, sizeof(struct sk_ring_data),
1693		    M_DEVBUF);
1694	}
1695	SK_IF_UNLOCK(sc_if);
1696
1697	return(0);
1698}
1699
1700static int
1701skc_detach(dev)
1702	device_t		dev;
1703{
1704	struct sk_softc		*sc;
1705
1706	sc = device_get_softc(dev);
1707	KASSERT(mtx_initialized(&sc->sk_mtx), ("sk mutex not initialized"));
1708
1709	if (device_is_alive(dev)) {
1710		if (sc->sk_devs[SK_PORT_A] != NULL)
1711			device_delete_child(dev, sc->sk_devs[SK_PORT_A]);
1712		if (sc->sk_devs[SK_PORT_B] != NULL)
1713			device_delete_child(dev, sc->sk_devs[SK_PORT_B]);
1714		bus_generic_detach(dev);
1715	}
1716
1717	if (sc->sk_intrhand)
1718		bus_teardown_intr(dev, sc->sk_irq, sc->sk_intrhand);
1719	if (sc->sk_irq)
1720		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sk_irq);
1721	if (sc->sk_res)
1722		bus_release_resource(dev, SK_RES, SK_RID, sc->sk_res);
1723
1724	mtx_destroy(&sc->sk_mtx);
1725
1726	return(0);
1727}
1728
1729static int
1730sk_encap(sc_if, m_head, txidx)
1731        struct sk_if_softc	*sc_if;
1732        struct mbuf		*m_head;
1733        u_int32_t		*txidx;
1734{
1735	struct sk_tx_desc	*f = NULL;
1736	struct mbuf		*m;
1737	u_int32_t		frag, cur, cnt = 0;
1738
1739	m = m_head;
1740	cur = frag = *txidx;
1741
1742	/*
1743	 * Start packing the mbufs in this chain into
1744	 * the fragment pointers. Stop when we run out
1745	 * of fragments or hit the end of the mbuf chain.
1746	 */
1747	for (m = m_head; m != NULL; m = m->m_next) {
1748		if (m->m_len != 0) {
1749			if ((SK_TX_RING_CNT -
1750			    (sc_if->sk_cdata.sk_tx_cnt + cnt)) < 2)
1751				return(ENOBUFS);
1752			f = &sc_if->sk_rdata->sk_tx_ring[frag];
1753			f->sk_data_lo = vtophys(mtod(m, vm_offset_t));
1754			f->sk_ctl = m->m_len | SK_OPCODE_DEFAULT;
1755			if (cnt == 0)
1756				f->sk_ctl |= SK_TXCTL_FIRSTFRAG;
1757			else
1758				f->sk_ctl |= SK_TXCTL_OWN;
1759			cur = frag;
1760			SK_INC(frag, SK_TX_RING_CNT);
1761			cnt++;
1762		}
1763	}
1764
1765	if (m != NULL)
1766		return(ENOBUFS);
1767
1768	sc_if->sk_rdata->sk_tx_ring[cur].sk_ctl |=
1769		SK_TXCTL_LASTFRAG|SK_TXCTL_EOF_INTR;
1770	sc_if->sk_cdata.sk_tx_chain[cur].sk_mbuf = m_head;
1771	sc_if->sk_rdata->sk_tx_ring[*txidx].sk_ctl |= SK_TXCTL_OWN;
1772	sc_if->sk_cdata.sk_tx_cnt += cnt;
1773
1774	*txidx = frag;
1775
1776	return(0);
1777}
1778
1779static void
1780sk_start(ifp)
1781	struct ifnet		*ifp;
1782{
1783        struct sk_softc		*sc;
1784        struct sk_if_softc	*sc_if;
1785        struct mbuf		*m_head = NULL;
1786        u_int32_t		idx;
1787
1788	sc_if = ifp->if_softc;
1789	sc = sc_if->sk_softc;
1790
1791	SK_IF_LOCK(sc_if);
1792
1793	idx = sc_if->sk_cdata.sk_tx_prod;
1794
1795	while(sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf == NULL) {
1796		IF_DEQUEUE(&ifp->if_snd, m_head);
1797		if (m_head == NULL)
1798			break;
1799
1800		/*
1801		 * Pack the data into the transmit ring. If we
1802		 * don't have room, set the OACTIVE flag and wait
1803		 * for the NIC to drain the ring.
1804		 */
1805		if (sk_encap(sc_if, m_head, &idx)) {
1806			IF_PREPEND(&ifp->if_snd, m_head);
1807			ifp->if_flags |= IFF_OACTIVE;
1808			break;
1809		}
1810
1811		/*
1812		 * If there's a BPF listener, bounce a copy of this frame
1813		 * to him.
1814		 */
1815		BPF_MTAP(ifp, m_head);
1816	}
1817
1818	/* Transmit */
1819	sc_if->sk_cdata.sk_tx_prod = idx;
1820	CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_START);
1821
1822	/* Set a timeout in case the chip goes out to lunch. */
1823	ifp->if_timer = 5;
1824	SK_IF_UNLOCK(sc_if);
1825
1826	return;
1827}
1828
1829
1830static void
1831sk_watchdog(ifp)
1832	struct ifnet		*ifp;
1833{
1834	struct sk_if_softc	*sc_if;
1835
1836	sc_if = ifp->if_softc;
1837
1838	printf("sk%d: watchdog timeout\n", sc_if->sk_unit);
1839	sk_init(sc_if);
1840
1841	return;
1842}
1843
1844static void
1845skc_shutdown(dev)
1846	device_t		dev;
1847{
1848	struct sk_softc		*sc;
1849
1850	sc = device_get_softc(dev);
1851	SK_LOCK(sc);
1852
1853	/* Turn off the 'driver is loaded' LED. */
1854	CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_OFF);
1855
1856	/*
1857	 * Reset the GEnesis controller. Doing this should also
1858	 * assert the resets on the attached XMAC(s).
1859	 */
1860	sk_reset(sc);
1861	SK_UNLOCK(sc);
1862
1863	return;
1864}
1865
1866static void
1867sk_rxeof(sc_if)
1868	struct sk_if_softc	*sc_if;
1869{
1870	struct sk_softc		*sc;
1871	struct mbuf		*m;
1872	struct ifnet		*ifp;
1873	struct sk_chain		*cur_rx;
1874	int			total_len = 0;
1875	int			i;
1876	u_int32_t		rxstat;
1877
1878	sc = sc_if->sk_softc;
1879	ifp = &sc_if->arpcom.ac_if;
1880	i = sc_if->sk_cdata.sk_rx_prod;
1881	cur_rx = &sc_if->sk_cdata.sk_rx_chain[i];
1882
1883	SK_LOCK_ASSERT(sc);
1884
1885	while(!(sc_if->sk_rdata->sk_rx_ring[i].sk_ctl & SK_RXCTL_OWN)) {
1886
1887		cur_rx = &sc_if->sk_cdata.sk_rx_chain[i];
1888		rxstat = sc_if->sk_rdata->sk_rx_ring[i].sk_xmac_rxstat;
1889		m = cur_rx->sk_mbuf;
1890		cur_rx->sk_mbuf = NULL;
1891		total_len = SK_RXBYTES(sc_if->sk_rdata->sk_rx_ring[i].sk_ctl);
1892		SK_INC(i, SK_RX_RING_CNT);
1893
1894		if (rxstat & XM_RXSTAT_ERRFRAME) {
1895			ifp->if_ierrors++;
1896			sk_newbuf(sc_if, cur_rx, m);
1897			continue;
1898		}
1899
1900		/*
1901		 * Try to allocate a new jumbo buffer. If that
1902		 * fails, copy the packet to mbufs and put the
1903		 * jumbo buffer back in the ring so it can be
1904		 * re-used. If allocating mbufs fails, then we
1905		 * have to drop the packet.
1906		 */
1907		if (sk_newbuf(sc_if, cur_rx, NULL) == ENOBUFS) {
1908			struct mbuf		*m0;
1909			m0 = m_devget(mtod(m, char *), total_len, ETHER_ALIGN,
1910			    ifp, NULL);
1911			sk_newbuf(sc_if, cur_rx, m);
1912			if (m0 == NULL) {
1913				printf("sk%d: no receive buffers "
1914				    "available -- packet dropped!\n",
1915				    sc_if->sk_unit);
1916				ifp->if_ierrors++;
1917				continue;
1918			}
1919			m = m0;
1920		} else {
1921			m->m_pkthdr.rcvif = ifp;
1922			m->m_pkthdr.len = m->m_len = total_len;
1923		}
1924
1925		ifp->if_ipackets++;
1926		SK_UNLOCK(sc);
1927		(*ifp->if_input)(ifp, m);
1928		SK_LOCK(sc);
1929	}
1930
1931	sc_if->sk_cdata.sk_rx_prod = i;
1932
1933	return;
1934}
1935
1936static void
1937sk_txeof(sc_if)
1938	struct sk_if_softc	*sc_if;
1939{
1940	struct sk_tx_desc	*cur_tx = NULL;
1941	struct ifnet		*ifp;
1942	u_int32_t		idx;
1943
1944	ifp = &sc_if->arpcom.ac_if;
1945
1946	/*
1947	 * Go through our tx ring and free mbufs for those
1948	 * frames that have been sent.
1949	 */
1950	idx = sc_if->sk_cdata.sk_tx_cons;
1951	while(idx != sc_if->sk_cdata.sk_tx_prod) {
1952		cur_tx = &sc_if->sk_rdata->sk_tx_ring[idx];
1953		if (cur_tx->sk_ctl & SK_TXCTL_OWN)
1954			break;
1955		if (cur_tx->sk_ctl & SK_TXCTL_LASTFRAG)
1956			ifp->if_opackets++;
1957		if (sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf != NULL) {
1958			m_freem(sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf);
1959			sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf = NULL;
1960		}
1961		sc_if->sk_cdata.sk_tx_cnt--;
1962		SK_INC(idx, SK_TX_RING_CNT);
1963		ifp->if_timer = 0;
1964	}
1965
1966	sc_if->sk_cdata.sk_tx_cons = idx;
1967
1968	if (cur_tx != NULL)
1969		ifp->if_flags &= ~IFF_OACTIVE;
1970
1971	return;
1972}
1973
1974static void
1975sk_tick(xsc_if)
1976	void			*xsc_if;
1977{
1978	struct sk_if_softc	*sc_if;
1979	struct mii_data		*mii;
1980	struct ifnet		*ifp;
1981	int			i;
1982
1983	sc_if = xsc_if;
1984	SK_IF_LOCK(sc_if);
1985	ifp = &sc_if->arpcom.ac_if;
1986	mii = device_get_softc(sc_if->sk_miibus);
1987
1988	if (!(ifp->if_flags & IFF_UP)) {
1989		SK_IF_UNLOCK(sc_if);
1990		return;
1991	}
1992
1993	if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
1994		sk_intr_bcom(sc_if);
1995		SK_IF_UNLOCK(sc_if);
1996		return;
1997	}
1998
1999	/*
2000	 * According to SysKonnect, the correct way to verify that
2001	 * the link has come back up is to poll bit 0 of the GPIO
2002	 * register three times. This pin has the signal from the
2003	 * link_sync pin connected to it; if we read the same link
2004	 * state 3 times in a row, we know the link is up.
2005	 */
2006	for (i = 0; i < 3; i++) {
2007		if (SK_XM_READ_2(sc_if, XM_GPIO) & XM_GPIO_GP0_SET)
2008			break;
2009	}
2010
2011	if (i != 3) {
2012		sc_if->sk_tick_ch = timeout(sk_tick, sc_if, hz);
2013		SK_IF_UNLOCK(sc_if);
2014		return;
2015	}
2016
2017	/* Turn the GP0 interrupt back on. */
2018	SK_XM_CLRBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET);
2019	SK_XM_READ_2(sc_if, XM_ISR);
2020	mii_tick(mii);
2021	untimeout(sk_tick, sc_if, sc_if->sk_tick_ch);
2022
2023	SK_IF_UNLOCK(sc_if);
2024	return;
2025}
2026
2027static void
2028sk_intr_bcom(sc_if)
2029	struct sk_if_softc	*sc_if;
2030{
2031	struct mii_data		*mii;
2032	struct ifnet		*ifp;
2033	int			status;
2034	mii = device_get_softc(sc_if->sk_miibus);
2035	ifp = &sc_if->arpcom.ac_if;
2036
2037	SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
2038
2039	/*
2040	 * Read the PHY interrupt register to make sure
2041	 * we clear any pending interrupts.
2042	 */
2043	status = sk_xmac_miibus_readreg(sc_if, SK_PHYADDR_BCOM, BRGPHY_MII_ISR);
2044
2045	if (!(ifp->if_flags & IFF_RUNNING)) {
2046		sk_init_xmac(sc_if);
2047		return;
2048	}
2049
2050	if (status & (BRGPHY_ISR_LNK_CHG|BRGPHY_ISR_AN_PR)) {
2051		int			lstat;
2052		lstat = sk_xmac_miibus_readreg(sc_if, SK_PHYADDR_BCOM,
2053		    BRGPHY_MII_AUXSTS);
2054
2055		if (!(lstat & BRGPHY_AUXSTS_LINK) && sc_if->sk_link) {
2056			mii_mediachg(mii);
2057			/* Turn off the link LED. */
2058			SK_IF_WRITE_1(sc_if, 0,
2059			    SK_LINKLED1_CTL, SK_LINKLED_OFF);
2060			sc_if->sk_link = 0;
2061		} else if (status & BRGPHY_ISR_LNK_CHG) {
2062			sk_xmac_miibus_writereg(sc_if, SK_PHYADDR_BCOM,
2063	    		    BRGPHY_MII_IMR, 0xFF00);
2064			mii_tick(mii);
2065			sc_if->sk_link = 1;
2066			/* Turn on the link LED. */
2067			SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL,
2068			    SK_LINKLED_ON|SK_LINKLED_LINKSYNC_OFF|
2069			    SK_LINKLED_BLINK_OFF);
2070		} else {
2071			mii_tick(mii);
2072			sc_if->sk_tick_ch = timeout(sk_tick, sc_if, hz);
2073		}
2074	}
2075
2076	SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
2077
2078	return;
2079}
2080
2081static void
2082sk_intr_xmac(sc_if)
2083	struct sk_if_softc	*sc_if;
2084{
2085	struct sk_softc		*sc;
2086	u_int16_t		status;
2087
2088	sc = sc_if->sk_softc;
2089	status = SK_XM_READ_2(sc_if, XM_ISR);
2090
2091	/*
2092	 * Link has gone down. Start MII tick timeout to
2093	 * watch for link resync.
2094	 */
2095	if (sc_if->sk_phytype == SK_PHYTYPE_XMAC) {
2096		if (status & XM_ISR_GP0_SET) {
2097			SK_XM_SETBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET);
2098			sc_if->sk_tick_ch = timeout(sk_tick, sc_if, hz);
2099		}
2100
2101		if (status & XM_ISR_AUTONEG_DONE) {
2102			sc_if->sk_tick_ch = timeout(sk_tick, sc_if, hz);
2103		}
2104	}
2105
2106	if (status & XM_IMR_TX_UNDERRUN)
2107		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_TXFIFO);
2108
2109	if (status & XM_IMR_RX_OVERRUN)
2110		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_RXFIFO);
2111
2112	status = SK_XM_READ_2(sc_if, XM_ISR);
2113
2114	return;
2115}
2116
2117static void
2118sk_intr_yukon(sc_if)
2119	struct sk_if_softc	*sc_if;
2120{
2121	int status;
2122
2123	status = SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
2124
2125	return;
2126}
2127
2128static void
2129sk_intr(xsc)
2130	void			*xsc;
2131{
2132	struct sk_softc		*sc = xsc;
2133	struct sk_if_softc	*sc_if0 = NULL, *sc_if1 = NULL;
2134	struct ifnet		*ifp0 = NULL, *ifp1 = NULL;
2135	u_int32_t		status;
2136
2137	SK_LOCK(sc);
2138
2139	sc_if0 = sc->sk_if[SK_PORT_A];
2140	sc_if1 = sc->sk_if[SK_PORT_B];
2141
2142	if (sc_if0 != NULL)
2143		ifp0 = &sc_if0->arpcom.ac_if;
2144	if (sc_if1 != NULL)
2145		ifp1 = &sc_if1->arpcom.ac_if;
2146
2147	for (;;) {
2148		status = CSR_READ_4(sc, SK_ISSR);
2149		if (!(status & sc->sk_intrmask))
2150			break;
2151
2152		/* Handle receive interrupts first. */
2153		if (status & SK_ISR_RX1_EOF) {
2154			sk_rxeof(sc_if0);
2155			CSR_WRITE_4(sc, SK_BMU_RX_CSR0,
2156			    SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START);
2157		}
2158		if (status & SK_ISR_RX2_EOF) {
2159			sk_rxeof(sc_if1);
2160			CSR_WRITE_4(sc, SK_BMU_RX_CSR1,
2161			    SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START);
2162		}
2163
2164		/* Then transmit interrupts. */
2165		if (status & SK_ISR_TX1_S_EOF) {
2166			sk_txeof(sc_if0);
2167			CSR_WRITE_4(sc, SK_BMU_TXS_CSR0,
2168			    SK_TXBMU_CLR_IRQ_EOF);
2169		}
2170		if (status & SK_ISR_TX2_S_EOF) {
2171			sk_txeof(sc_if1);
2172			CSR_WRITE_4(sc, SK_BMU_TXS_CSR1,
2173			    SK_TXBMU_CLR_IRQ_EOF);
2174		}
2175
2176		/* Then MAC interrupts. */
2177		if (status & SK_ISR_MAC1 && ifp0->if_flags & IFF_RUNNING) {
2178			if (sc->sk_type == SK_GENESIS)
2179				sk_intr_xmac(sc_if0);
2180			else
2181				sk_intr_yukon(sc_if0);
2182		}
2183
2184		if (status & SK_ISR_MAC2 && ifp1->if_flags & IFF_RUNNING) {
2185			if (sc->sk_type == SK_GENESIS)
2186				sk_intr_xmac(sc_if1);
2187			else
2188				sk_intr_yukon(sc_if1);
2189		}
2190
2191		if (status & SK_ISR_EXTERNAL_REG) {
2192			if (ifp0 != NULL &&
2193			    sc_if0->sk_phytype == SK_PHYTYPE_BCOM)
2194				sk_intr_bcom(sc_if0);
2195			if (ifp1 != NULL &&
2196			    sc_if1->sk_phytype == SK_PHYTYPE_BCOM)
2197				sk_intr_bcom(sc_if1);
2198		}
2199	}
2200
2201	CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2202
2203	if (ifp0 != NULL && ifp0->if_snd.ifq_head != NULL)
2204		sk_start(ifp0);
2205	if (ifp1 != NULL && ifp1->if_snd.ifq_head != NULL)
2206		sk_start(ifp1);
2207
2208	SK_UNLOCK(sc);
2209
2210	return;
2211}
2212
2213static void
2214sk_init_xmac(sc_if)
2215	struct sk_if_softc	*sc_if;
2216{
2217	struct sk_softc		*sc;
2218	struct ifnet		*ifp;
2219	struct sk_bcom_hack	bhack[] = {
2220	{ 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 }, { 0x17, 0x0013 },
2221	{ 0x15, 0x0404 }, { 0x17, 0x8006 }, { 0x15, 0x0132 }, { 0x17, 0x8006 },
2222	{ 0x15, 0x0232 }, { 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 },
2223	{ 0, 0 } };
2224
2225	sc = sc_if->sk_softc;
2226	ifp = &sc_if->arpcom.ac_if;
2227
2228	/* Unreset the XMAC. */
2229	SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL, SK_TXMACCTL_XMAC_UNRESET);
2230	DELAY(1000);
2231
2232	/* Reset the XMAC's internal state. */
2233	SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
2234
2235	/* Save the XMAC II revision */
2236	sc_if->sk_xmac_rev = XM_XMAC_REV(SK_XM_READ_4(sc_if, XM_DEVID));
2237
2238	/*
2239	 * Perform additional initialization for external PHYs,
2240	 * namely for the 1000baseTX cards that use the XMAC's
2241	 * GMII mode.
2242	 */
2243	if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
2244		int			i = 0;
2245		u_int32_t		val;
2246
2247		/* Take PHY out of reset. */
2248		val = sk_win_read_4(sc, SK_GPIO);
2249		if (sc_if->sk_port == SK_PORT_A)
2250			val |= SK_GPIO_DIR0|SK_GPIO_DAT0;
2251		else
2252			val |= SK_GPIO_DIR2|SK_GPIO_DAT2;
2253		sk_win_write_4(sc, SK_GPIO, val);
2254
2255		/* Enable GMII mode on the XMAC. */
2256		SK_XM_SETBIT_2(sc_if, XM_HWCFG, XM_HWCFG_GMIIMODE);
2257
2258		sk_xmac_miibus_writereg(sc_if, SK_PHYADDR_BCOM,
2259		    BRGPHY_MII_BMCR, BRGPHY_BMCR_RESET);
2260		DELAY(10000);
2261		sk_xmac_miibus_writereg(sc_if, SK_PHYADDR_BCOM,
2262		    BRGPHY_MII_IMR, 0xFFF0);
2263
2264		/*
2265		 * Early versions of the BCM5400 apparently have
2266		 * a bug that requires them to have their reserved
2267		 * registers initialized to some magic values. I don't
2268		 * know what the numbers do, I'm just the messenger.
2269		 */
2270		if (sk_xmac_miibus_readreg(sc_if, SK_PHYADDR_BCOM, 0x03)
2271		    == 0x6041) {
2272			while(bhack[i].reg) {
2273				sk_xmac_miibus_writereg(sc_if, SK_PHYADDR_BCOM,
2274				    bhack[i].reg, bhack[i].val);
2275				i++;
2276			}
2277		}
2278	}
2279
2280	/* Set station address */
2281	SK_XM_WRITE_2(sc_if, XM_PAR0,
2282	    *(u_int16_t *)(&sc_if->arpcom.ac_enaddr[0]));
2283	SK_XM_WRITE_2(sc_if, XM_PAR1,
2284	    *(u_int16_t *)(&sc_if->arpcom.ac_enaddr[2]));
2285	SK_XM_WRITE_2(sc_if, XM_PAR2,
2286	    *(u_int16_t *)(&sc_if->arpcom.ac_enaddr[4]));
2287	SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_STATION);
2288
2289	if (ifp->if_flags & IFF_BROADCAST) {
2290		SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
2291	} else {
2292		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
2293	}
2294
2295	/* We don't need the FCS appended to the packet. */
2296	SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_STRIPFCS);
2297
2298	/* We want short frames padded to 60 bytes. */
2299	SK_XM_SETBIT_2(sc_if, XM_TXCMD, XM_TXCMD_AUTOPAD);
2300
2301	/*
2302	 * Enable the reception of all error frames. This is is
2303	 * a necessary evil due to the design of the XMAC. The
2304	 * XMAC's receive FIFO is only 8K in size, however jumbo
2305	 * frames can be up to 9000 bytes in length. When bad
2306	 * frame filtering is enabled, the XMAC's RX FIFO operates
2307	 * in 'store and forward' mode. For this to work, the
2308	 * entire frame has to fit into the FIFO, but that means
2309	 * that jumbo frames larger than 8192 bytes will be
2310	 * truncated. Disabling all bad frame filtering causes
2311	 * the RX FIFO to operate in streaming mode, in which
2312	 * case the XMAC will start transfering frames out of the
2313	 * RX FIFO as soon as the FIFO threshold is reached.
2314	 */
2315	SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_BADFRAMES|
2316	    XM_MODE_RX_GIANTS|XM_MODE_RX_RUNTS|XM_MODE_RX_CRCERRS|
2317	    XM_MODE_RX_INRANGELEN);
2318
2319	if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
2320		SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK);
2321	else
2322		SK_XM_CLRBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK);
2323
2324	/*
2325	 * Bump up the transmit threshold. This helps hold off transmit
2326	 * underruns when we're blasting traffic from both ports at once.
2327	 */
2328	SK_XM_WRITE_2(sc_if, XM_TX_REQTHRESH, SK_XM_TX_FIFOTHRESH);
2329
2330	/* Set promiscuous mode */
2331	sk_setpromisc(sc_if);
2332
2333	/* Set multicast filter */
2334	sk_setmulti(sc_if);
2335
2336	/* Clear and enable interrupts */
2337	SK_XM_READ_2(sc_if, XM_ISR);
2338	if (sc_if->sk_phytype == SK_PHYTYPE_XMAC)
2339		SK_XM_WRITE_2(sc_if, XM_IMR, XM_INTRS);
2340	else
2341		SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
2342
2343	/* Configure MAC arbiter */
2344	switch(sc_if->sk_xmac_rev) {
2345	case XM_XMAC_REV_B2:
2346		sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_B2);
2347		sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_B2);
2348		sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_B2);
2349		sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_B2);
2350		sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_B2);
2351		sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_B2);
2352		sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_B2);
2353		sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_B2);
2354		sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
2355		break;
2356	case XM_XMAC_REV_C1:
2357		sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_C1);
2358		sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_C1);
2359		sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_C1);
2360		sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_C1);
2361		sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_C1);
2362		sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_C1);
2363		sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_C1);
2364		sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_C1);
2365		sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
2366		break;
2367	default:
2368		break;
2369	}
2370	sk_win_write_2(sc, SK_MACARB_CTL,
2371	    SK_MACARBCTL_UNRESET|SK_MACARBCTL_FASTOE_OFF);
2372
2373	sc_if->sk_link = 1;
2374
2375	return;
2376}
2377
2378static void
2379sk_init_yukon(sc_if)
2380	struct sk_if_softc	*sc_if;
2381{
2382	u_int32_t		phy;
2383	u_int16_t		reg;
2384	int			i;
2385
2386	/* GMAC and GPHY Reset */
2387	SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, SK_GPHY_RESET_SET);
2388	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
2389	DELAY(1000);
2390	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_CLEAR);
2391	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
2392	DELAY(1000);
2393
2394	phy = SK_GPHY_INT_POL_HI | SK_GPHY_DIS_FC | SK_GPHY_DIS_SLEEP |
2395		SK_GPHY_ENA_XC | SK_GPHY_ANEG_ALL | SK_GPHY_ENA_PAUSE;
2396
2397	switch(sc_if->sk_softc->sk_pmd) {
2398	case IFM_1000_SX:
2399	case IFM_1000_LX:
2400		phy |= SK_GPHY_FIBER;
2401		break;
2402
2403	case IFM_1000_CX:
2404	case IFM_1000_T:
2405		phy |= SK_GPHY_COPPER;
2406		break;
2407	}
2408
2409	SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_SET);
2410	DELAY(1000);
2411	SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_CLEAR);
2412	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_LOOP_OFF |
2413		      SK_GMAC_PAUSE_ON | SK_GMAC_RESET_CLEAR);
2414
2415	/* unused read of the interrupt source register */
2416	SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
2417
2418	reg = SK_YU_READ_2(sc_if, YUKON_PAR);
2419
2420	/* MIB Counter Clear Mode set */
2421	reg |= YU_PAR_MIB_CLR;
2422	SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
2423
2424	/* MIB Counter Clear Mode clear */
2425	reg &= ~YU_PAR_MIB_CLR;
2426	SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
2427
2428	/* receive control reg */
2429	SK_YU_WRITE_2(sc_if, YUKON_RCR, YU_RCR_CRCR);
2430
2431	/* transmit parameter register */
2432	SK_YU_WRITE_2(sc_if, YUKON_TPR, YU_TPR_JAM_LEN(0x3) |
2433		      YU_TPR_JAM_IPG(0xb) | YU_TPR_JAM2DATA_IPG(0x1a) );
2434
2435	/* serial mode register */
2436	SK_YU_WRITE_2(sc_if, YUKON_SMR, YU_SMR_DATA_BLIND(0x1c) |
2437		      YU_SMR_MFL_VLAN | YU_SMR_IPG_DATA(0x1e));
2438
2439	/* Setup Yukon's address */
2440	for (i = 0; i < 3; i++) {
2441		/* Write Source Address 1 (unicast filter) */
2442		SK_YU_WRITE_2(sc_if, YUKON_SAL1 + i * 4,
2443			      sc_if->arpcom.ac_enaddr[i * 2] |
2444			      sc_if->arpcom.ac_enaddr[i * 2 + 1] << 8);
2445	}
2446
2447	for (i = 0; i < 3; i++) {
2448		reg = sk_win_read_2(sc_if->sk_softc,
2449				    SK_MAC1_0 + i * 2 + sc_if->sk_port * 8);
2450		SK_YU_WRITE_2(sc_if, YUKON_SAL2 + i * 4, reg);
2451	}
2452
2453	/* Set promiscuous mode */
2454	sk_setpromisc(sc_if);
2455
2456	/* Set multicast filter */
2457	sk_setmulti(sc_if);
2458
2459	/* enable interrupt mask for counter overflows */
2460	SK_YU_WRITE_2(sc_if, YUKON_TIMR, 0);
2461	SK_YU_WRITE_2(sc_if, YUKON_RIMR, 0);
2462	SK_YU_WRITE_2(sc_if, YUKON_TRIMR, 0);
2463
2464	/* Configure RX MAC FIFO */
2465	SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_CLEAR);
2466	SK_IF_WRITE_4(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_OPERATION_ON);
2467
2468	/* Configure TX MAC FIFO */
2469	SK_IF_WRITE_1(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_CLEAR);
2470	SK_IF_WRITE_4(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_OPERATION_ON);
2471}
2472
2473/*
2474 * Note that to properly initialize any part of the GEnesis chip,
2475 * you first have to take it out of reset mode.
2476 */
2477static void
2478sk_init(xsc)
2479	void			*xsc;
2480{
2481	struct sk_if_softc	*sc_if = xsc;
2482	struct sk_softc		*sc;
2483	struct ifnet		*ifp;
2484	struct mii_data		*mii;
2485	u_int16_t		reg;
2486
2487	SK_IF_LOCK(sc_if);
2488
2489	ifp = &sc_if->arpcom.ac_if;
2490	sc = sc_if->sk_softc;
2491	mii = device_get_softc(sc_if->sk_miibus);
2492
2493	/* Cancel pending I/O and free all RX/TX buffers. */
2494	sk_stop(sc_if);
2495
2496	if (sc->sk_type == SK_GENESIS) {
2497		/* Configure LINK_SYNC LED */
2498		SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_ON);
2499		SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL,
2500			SK_LINKLED_LINKSYNC_ON);
2501
2502		/* Configure RX LED */
2503		SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL,
2504			SK_RXLEDCTL_COUNTER_START);
2505
2506		/* Configure TX LED */
2507		SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL,
2508			SK_TXLEDCTL_COUNTER_START);
2509	}
2510
2511	/* Configure I2C registers */
2512
2513	/* Configure XMAC(s) */
2514	switch (sc->sk_type) {
2515	case SK_GENESIS:
2516		sk_init_xmac(sc_if);
2517		break;
2518	case SK_YUKON:
2519		sk_init_yukon(sc_if);
2520		break;
2521	}
2522	mii_mediachg(mii);
2523
2524	if (sc->sk_type == SK_GENESIS) {
2525		/* Configure MAC FIFOs */
2526		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_UNRESET);
2527		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_END, SK_FIFO_END);
2528		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_ON);
2529
2530		SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_UNRESET);
2531		SK_IF_WRITE_4(sc_if, 0, SK_TXF1_END, SK_FIFO_END);
2532		SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_ON);
2533	}
2534
2535	/* Configure transmit arbiter(s) */
2536	SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL,
2537	    SK_TXARCTL_ON|SK_TXARCTL_FSYNC_ON);
2538
2539	/* Configure RAMbuffers */
2540	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_UNRESET);
2541	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_START, sc_if->sk_rx_ramstart);
2542	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_WR_PTR, sc_if->sk_rx_ramstart);
2543	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_RD_PTR, sc_if->sk_rx_ramstart);
2544	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_END, sc_if->sk_rx_ramend);
2545	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_ON);
2546
2547	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_UNRESET);
2548	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_STORENFWD_ON);
2549	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_START, sc_if->sk_tx_ramstart);
2550	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_WR_PTR, sc_if->sk_tx_ramstart);
2551	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_RD_PTR, sc_if->sk_tx_ramstart);
2552	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_END, sc_if->sk_tx_ramend);
2553	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_ON);
2554
2555	/* Configure BMUs */
2556	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_ONLINE);
2557	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_LO,
2558	    vtophys(&sc_if->sk_rdata->sk_rx_ring[0]));
2559	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_HI, 0);
2560
2561	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_ONLINE);
2562	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_LO,
2563	    vtophys(&sc_if->sk_rdata->sk_tx_ring[0]));
2564	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_HI, 0);
2565
2566	/* Init descriptors */
2567	if (sk_init_rx_ring(sc_if) == ENOBUFS) {
2568		printf("sk%d: initialization failed: no "
2569		    "memory for rx buffers\n", sc_if->sk_unit);
2570		sk_stop(sc_if);
2571		SK_IF_UNLOCK(sc_if);
2572		return;
2573	}
2574	sk_init_tx_ring(sc_if);
2575
2576	/* Configure interrupt handling */
2577	CSR_READ_4(sc, SK_ISSR);
2578	if (sc_if->sk_port == SK_PORT_A)
2579		sc->sk_intrmask |= SK_INTRS1;
2580	else
2581		sc->sk_intrmask |= SK_INTRS2;
2582
2583	sc->sk_intrmask |= SK_ISR_EXTERNAL_REG;
2584
2585	CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2586
2587	/* Start BMUs. */
2588	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_RX_START);
2589
2590	switch(sc->sk_type) {
2591	case SK_GENESIS:
2592		/* Enable XMACs TX and RX state machines */
2593		SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_IGNPAUSE);
2594		SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
2595		break;
2596	case SK_YUKON:
2597		reg = SK_YU_READ_2(sc_if, YUKON_GPCR);
2598		reg |= YU_GPCR_TXEN | YU_GPCR_RXEN;
2599		reg &= ~(YU_GPCR_SPEED_EN | YU_GPCR_DPLX_EN);
2600		SK_YU_WRITE_2(sc_if, YUKON_GPCR, reg);
2601	}
2602
2603	ifp->if_flags |= IFF_RUNNING;
2604	ifp->if_flags &= ~IFF_OACTIVE;
2605
2606	SK_IF_UNLOCK(sc_if);
2607
2608	return;
2609}
2610
2611static void
2612sk_stop(sc_if)
2613	struct sk_if_softc	*sc_if;
2614{
2615	int			i;
2616	struct sk_softc		*sc;
2617	struct ifnet		*ifp;
2618
2619	SK_IF_LOCK(sc_if);
2620	sc = sc_if->sk_softc;
2621	ifp = &sc_if->arpcom.ac_if;
2622
2623	untimeout(sk_tick, sc_if, sc_if->sk_tick_ch);
2624
2625	if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
2626		u_int32_t		val;
2627
2628		/* Put PHY back into reset. */
2629		val = sk_win_read_4(sc, SK_GPIO);
2630		if (sc_if->sk_port == SK_PORT_A) {
2631			val |= SK_GPIO_DIR0;
2632			val &= ~SK_GPIO_DAT0;
2633		} else {
2634			val |= SK_GPIO_DIR2;
2635			val &= ~SK_GPIO_DAT2;
2636		}
2637		sk_win_write_4(sc, SK_GPIO, val);
2638	}
2639
2640	/* Turn off various components of this interface. */
2641	SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
2642	switch (sc->sk_type) {
2643	case SK_GENESIS:
2644		SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL, SK_TXMACCTL_XMAC_RESET);
2645		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_RESET);
2646		break;
2647	case SK_YUKON:
2648		SK_IF_WRITE_1(sc_if,0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_SET);
2649		SK_IF_WRITE_1(sc_if,0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_SET);
2650		break;
2651	}
2652	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_OFFLINE);
2653	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
2654	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_OFFLINE);
2655	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
2656	SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL, SK_TXARCTL_OFF);
2657	SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
2658	SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
2659	SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_OFF);
2660	SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_LINKSYNC_OFF);
2661
2662	/* Disable interrupts */
2663	if (sc_if->sk_port == SK_PORT_A)
2664		sc->sk_intrmask &= ~SK_INTRS1;
2665	else
2666		sc->sk_intrmask &= ~SK_INTRS2;
2667	CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2668
2669	SK_XM_READ_2(sc_if, XM_ISR);
2670	SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
2671
2672	/* Free RX and TX mbufs still in the queues. */
2673	for (i = 0; i < SK_RX_RING_CNT; i++) {
2674		if (sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf != NULL) {
2675			m_freem(sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf);
2676			sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf = NULL;
2677		}
2678	}
2679
2680	for (i = 0; i < SK_TX_RING_CNT; i++) {
2681		if (sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf != NULL) {
2682			m_freem(sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf);
2683			sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf = NULL;
2684		}
2685	}
2686
2687	ifp->if_flags &= ~(IFF_RUNNING|IFF_OACTIVE);
2688	SK_IF_UNLOCK(sc_if);
2689	return;
2690}
2691