if_sk.c revision 129413
1/*	$OpenBSD: if_sk.c,v 2.33 2003/08/12 05:23:06 nate Exp $	*/
2
3/*
4 * Copyright (c) 1997, 1998, 1999, 2000
5 *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 *    notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 *    notice, this list of conditions and the following disclaimer in the
14 *    documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 *    must display the following acknowledgement:
17 *	This product includes software developed by Bill Paul.
18 * 4. Neither the name of the author nor the names of any co-contributors
19 *    may be used to endorse or promote products derived from this software
20 *    without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
26 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
32 * THE POSSIBILITY OF SUCH DAMAGE.
33 */
34/*
35 * Copyright (c) 2003 Nathan L. Binkert <binkertn@umich.edu>
36 *
37 * Permission to use, copy, modify, and distribute this software for any
38 * purpose with or without fee is hereby granted, provided that the above
39 * copyright notice and this permission notice appear in all copies.
40 *
41 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
42 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
43 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
44 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
45 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
46 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
47 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
48 */
49
50#include <sys/cdefs.h>
51__FBSDID("$FreeBSD: head/sys/dev/sk/if_sk.c 129413 2004-05-19 02:16:46Z imp $");
52
53/*
54 * SysKonnect SK-NET gigabit ethernet driver for FreeBSD. Supports
55 * the SK-984x series adapters, both single port and dual port.
56 * References:
57 * 	The XaQti XMAC II datasheet,
58 *  http://www.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
59 *	The SysKonnect GEnesis manual, http://www.syskonnect.com
60 *
61 * Note: XaQti has been aquired by Vitesse, and Vitesse does not have the
62 * XMAC II datasheet online. I have put my copy at people.freebsd.org as a
63 * convenience to others until Vitesse corrects this problem:
64 *
65 * http://people.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
66 *
67 * Written by Bill Paul <wpaul@ee.columbia.edu>
68 * Department of Electrical Engineering
69 * Columbia University, New York City
70 */
71/*
72 * The SysKonnect gigabit ethernet adapters consist of two main
73 * components: the SysKonnect GEnesis controller chip and the XaQti Corp.
74 * XMAC II gigabit ethernet MAC. The XMAC provides all of the MAC
75 * components and a PHY while the GEnesis controller provides a PCI
76 * interface with DMA support. Each card may have between 512K and
77 * 2MB of SRAM on board depending on the configuration.
78 *
79 * The SysKonnect GEnesis controller can have either one or two XMAC
80 * chips connected to it, allowing single or dual port NIC configurations.
81 * SysKonnect has the distinction of being the only vendor on the market
82 * with a dual port gigabit ethernet NIC. The GEnesis provides dual FIFOs,
83 * dual DMA queues, packet/MAC/transmit arbiters and direct access to the
84 * XMAC registers. This driver takes advantage of these features to allow
85 * both XMACs to operate as independent interfaces.
86 */
87
88#include <sys/param.h>
89#include <sys/systm.h>
90#include <sys/sockio.h>
91#include <sys/mbuf.h>
92#include <sys/malloc.h>
93#include <sys/kernel.h>
94#include <sys/socket.h>
95#include <sys/queue.h>
96
97#include <net/if.h>
98#include <net/if_arp.h>
99#include <net/ethernet.h>
100#include <net/if_dl.h>
101#include <net/if_media.h>
102
103#include <net/bpf.h>
104
105#include <vm/vm.h>              /* for vtophys */
106#include <vm/pmap.h>            /* for vtophys */
107#include <machine/bus_pio.h>
108#include <machine/bus_memio.h>
109#include <machine/bus.h>
110#include <machine/resource.h>
111#include <sys/bus.h>
112#include <sys/rman.h>
113
114#include <dev/mii/mii.h>
115#include <dev/mii/miivar.h>
116#include <dev/mii/brgphyreg.h>
117
118#include <dev/pci/pcireg.h>
119#include <dev/pci/pcivar.h>
120
121#if 0
122#define SK_USEIOSPACE
123#endif
124
125#include <pci/if_skreg.h>
126#include <pci/xmaciireg.h>
127#include <pci/yukonreg.h>
128
129MODULE_DEPEND(sk, pci, 1, 1, 1);
130MODULE_DEPEND(sk, ether, 1, 1, 1);
131MODULE_DEPEND(sk, miibus, 1, 1, 1);
132
133/* "controller miibus0" required.  See GENERIC if you get errors here. */
134#include "miibus_if.h"
135
136#ifndef lint
137static const char rcsid[] =
138  "$FreeBSD: head/sys/dev/sk/if_sk.c 129413 2004-05-19 02:16:46Z imp $";
139#endif
140
141static struct sk_type sk_devs[] = {
142	{
143		VENDORID_SK,
144		DEVICEID_SK_V1,
145		"SysKonnect Gigabit Ethernet (V1.0)"
146	},
147	{
148		VENDORID_SK,
149		DEVICEID_SK_V2,
150		"SysKonnect Gigabit Ethernet (V2.0)"
151	},
152	{
153		VENDORID_MARVELL,
154		DEVICEID_SK_V2,
155		"Marvell Gigabit Ethernet"
156	},
157	{
158		VENDORID_3COM,
159		DEVICEID_3COM_3C940,
160		"3Com 3C940 Gigabit Ethernet"
161	},
162	{
163		VENDORID_LINKSYS,
164		DEVICEID_LINKSYS_EG1032,
165		"Linksys EG1032 Gigabit Ethernet"
166	},
167	{
168		VENDORID_DLINK,
169		DEVICEID_DLINK_DGE530T,
170		"D-Link DGE-530T Gigabit Ethernet"
171	},
172	{ 0, 0, NULL }
173};
174
175static int skc_probe		(device_t);
176static int skc_attach		(device_t);
177static int skc_detach		(device_t);
178static void skc_shutdown	(device_t);
179static int sk_detach		(device_t);
180static int sk_probe		(device_t);
181static int sk_attach		(device_t);
182static void sk_tick		(void *);
183static void sk_intr		(void *);
184static void sk_intr_xmac	(struct sk_if_softc *);
185static void sk_intr_bcom	(struct sk_if_softc *);
186static void sk_intr_yukon	(struct sk_if_softc *);
187static void sk_rxeof		(struct sk_if_softc *);
188static void sk_txeof		(struct sk_if_softc *);
189static int sk_encap		(struct sk_if_softc *, struct mbuf *,
190					u_int32_t *);
191static void sk_start		(struct ifnet *);
192static int sk_ioctl		(struct ifnet *, u_long, caddr_t);
193static void sk_init		(void *);
194static void sk_init_xmac	(struct sk_if_softc *);
195static void sk_init_yukon	(struct sk_if_softc *);
196static void sk_stop		(struct sk_if_softc *);
197static void sk_watchdog		(struct ifnet *);
198static int sk_ifmedia_upd	(struct ifnet *);
199static void sk_ifmedia_sts	(struct ifnet *, struct ifmediareq *);
200static void sk_reset		(struct sk_softc *);
201static int sk_newbuf		(struct sk_if_softc *,
202					struct sk_chain *, struct mbuf *);
203static int sk_alloc_jumbo_mem	(struct sk_if_softc *);
204static void *sk_jalloc		(struct sk_if_softc *);
205static void sk_jfree		(void *, void *);
206static int sk_init_rx_ring	(struct sk_if_softc *);
207static void sk_init_tx_ring	(struct sk_if_softc *);
208static u_int32_t sk_win_read_4	(struct sk_softc *, int);
209static u_int16_t sk_win_read_2	(struct sk_softc *, int);
210static u_int8_t sk_win_read_1	(struct sk_softc *, int);
211static void sk_win_write_4	(struct sk_softc *, int, u_int32_t);
212static void sk_win_write_2	(struct sk_softc *, int, u_int32_t);
213static void sk_win_write_1	(struct sk_softc *, int, u_int32_t);
214static u_int8_t sk_vpd_readbyte	(struct sk_softc *, int);
215static void sk_vpd_read_res	(struct sk_softc *, struct vpd_res *, int);
216static void sk_vpd_read		(struct sk_softc *);
217
218static int sk_miibus_readreg	(device_t, int, int);
219static int sk_miibus_writereg	(device_t, int, int, int);
220static void sk_miibus_statchg	(device_t);
221
222static int sk_xmac_miibus_readreg	(struct sk_if_softc *, int, int);
223static int sk_xmac_miibus_writereg	(struct sk_if_softc *, int, int,
224						int);
225static void sk_xmac_miibus_statchg	(struct sk_if_softc *);
226
227static int sk_marv_miibus_readreg	(struct sk_if_softc *, int, int);
228static int sk_marv_miibus_writereg	(struct sk_if_softc *, int, int,
229						int);
230static void sk_marv_miibus_statchg	(struct sk_if_softc *);
231
232static uint32_t sk_xmchash	(const uint8_t *);
233static uint32_t sk_gmchash	(const uint8_t *);
234static void sk_setfilt		(struct sk_if_softc *, caddr_t, int);
235static void sk_setmulti		(struct sk_if_softc *);
236static void sk_setpromisc	(struct sk_if_softc *);
237
238#ifdef SK_USEIOSPACE
239#define SK_RES		SYS_RES_IOPORT
240#define SK_RID		SK_PCI_LOIO
241#else
242#define SK_RES		SYS_RES_MEMORY
243#define SK_RID		SK_PCI_LOMEM
244#endif
245
246/*
247 * Note that we have newbus methods for both the GEnesis controller
248 * itself and the XMAC(s). The XMACs are children of the GEnesis, and
249 * the miibus code is a child of the XMACs. We need to do it this way
250 * so that the miibus drivers can access the PHY registers on the
251 * right PHY. It's not quite what I had in mind, but it's the only
252 * design that achieves the desired effect.
253 */
254static device_method_t skc_methods[] = {
255	/* Device interface */
256	DEVMETHOD(device_probe,		skc_probe),
257	DEVMETHOD(device_attach,	skc_attach),
258	DEVMETHOD(device_detach,	skc_detach),
259	DEVMETHOD(device_shutdown,	skc_shutdown),
260
261	/* bus interface */
262	DEVMETHOD(bus_print_child,	bus_generic_print_child),
263	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
264
265	{ 0, 0 }
266};
267
268static driver_t skc_driver = {
269	"skc",
270	skc_methods,
271	sizeof(struct sk_softc)
272};
273
274static devclass_t skc_devclass;
275
276static device_method_t sk_methods[] = {
277	/* Device interface */
278	DEVMETHOD(device_probe,		sk_probe),
279	DEVMETHOD(device_attach,	sk_attach),
280	DEVMETHOD(device_detach,	sk_detach),
281	DEVMETHOD(device_shutdown,	bus_generic_shutdown),
282
283	/* bus interface */
284	DEVMETHOD(bus_print_child,	bus_generic_print_child),
285	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
286
287	/* MII interface */
288	DEVMETHOD(miibus_readreg,	sk_miibus_readreg),
289	DEVMETHOD(miibus_writereg,	sk_miibus_writereg),
290	DEVMETHOD(miibus_statchg,	sk_miibus_statchg),
291
292	{ 0, 0 }
293};
294
295static driver_t sk_driver = {
296	"sk",
297	sk_methods,
298	sizeof(struct sk_if_softc)
299};
300
301static devclass_t sk_devclass;
302
303DRIVER_MODULE(sk, pci, skc_driver, skc_devclass, 0, 0);
304DRIVER_MODULE(sk, skc, sk_driver, sk_devclass, 0, 0);
305DRIVER_MODULE(miibus, sk, miibus_driver, miibus_devclass, 0, 0);
306
307#define SK_SETBIT(sc, reg, x)		\
308	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) | x)
309
310#define SK_CLRBIT(sc, reg, x)		\
311	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) & ~x)
312
313#define SK_WIN_SETBIT_4(sc, reg, x)	\
314	sk_win_write_4(sc, reg, sk_win_read_4(sc, reg) | x)
315
316#define SK_WIN_CLRBIT_4(sc, reg, x)	\
317	sk_win_write_4(sc, reg, sk_win_read_4(sc, reg) & ~x)
318
319#define SK_WIN_SETBIT_2(sc, reg, x)	\
320	sk_win_write_2(sc, reg, sk_win_read_2(sc, reg) | x)
321
322#define SK_WIN_CLRBIT_2(sc, reg, x)	\
323	sk_win_write_2(sc, reg, sk_win_read_2(sc, reg) & ~x)
324
325static u_int32_t
326sk_win_read_4(sc, reg)
327	struct sk_softc		*sc;
328	int			reg;
329{
330#ifdef SK_USEIOSPACE
331	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
332	return(CSR_READ_4(sc, SK_WIN_BASE + SK_REG(reg)));
333#else
334	return(CSR_READ_4(sc, reg));
335#endif
336}
337
338static u_int16_t
339sk_win_read_2(sc, reg)
340	struct sk_softc		*sc;
341	int			reg;
342{
343#ifdef SK_USEIOSPACE
344	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
345	return(CSR_READ_2(sc, SK_WIN_BASE + SK_REG(reg)));
346#else
347	return(CSR_READ_2(sc, reg));
348#endif
349}
350
351static u_int8_t
352sk_win_read_1(sc, reg)
353	struct sk_softc		*sc;
354	int			reg;
355{
356#ifdef SK_USEIOSPACE
357	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
358	return(CSR_READ_1(sc, SK_WIN_BASE + SK_REG(reg)));
359#else
360	return(CSR_READ_1(sc, reg));
361#endif
362}
363
364static void
365sk_win_write_4(sc, reg, val)
366	struct sk_softc		*sc;
367	int			reg;
368	u_int32_t		val;
369{
370#ifdef SK_USEIOSPACE
371	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
372	CSR_WRITE_4(sc, SK_WIN_BASE + SK_REG(reg), val);
373#else
374	CSR_WRITE_4(sc, reg, val);
375#endif
376	return;
377}
378
379static void
380sk_win_write_2(sc, reg, val)
381	struct sk_softc		*sc;
382	int			reg;
383	u_int32_t		val;
384{
385#ifdef SK_USEIOSPACE
386	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
387	CSR_WRITE_2(sc, SK_WIN_BASE + SK_REG(reg), val);
388#else
389	CSR_WRITE_2(sc, reg, val);
390#endif
391	return;
392}
393
394static void
395sk_win_write_1(sc, reg, val)
396	struct sk_softc		*sc;
397	int			reg;
398	u_int32_t		val;
399{
400#ifdef SK_USEIOSPACE
401	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
402	CSR_WRITE_1(sc, SK_WIN_BASE + SK_REG(reg), val);
403#else
404	CSR_WRITE_1(sc, reg, val);
405#endif
406	return;
407}
408
409/*
410 * The VPD EEPROM contains Vital Product Data, as suggested in
411 * the PCI 2.1 specification. The VPD data is separared into areas
412 * denoted by resource IDs. The SysKonnect VPD contains an ID string
413 * resource (the name of the adapter), a read-only area resource
414 * containing various key/data fields and a read/write area which
415 * can be used to store asset management information or log messages.
416 * We read the ID string and read-only into buffers attached to
417 * the controller softc structure for later use. At the moment,
418 * we only use the ID string during skc_attach().
419 */
420static u_int8_t
421sk_vpd_readbyte(sc, addr)
422	struct sk_softc		*sc;
423	int			addr;
424{
425	int			i;
426
427	sk_win_write_2(sc, SK_PCI_REG(SK_PCI_VPD_ADDR), addr);
428	for (i = 0; i < SK_TIMEOUT; i++) {
429		DELAY(1);
430		if (sk_win_read_2(sc,
431		    SK_PCI_REG(SK_PCI_VPD_ADDR)) & SK_VPD_FLAG)
432			break;
433	}
434
435	if (i == SK_TIMEOUT)
436		return(0);
437
438	return(sk_win_read_1(sc, SK_PCI_REG(SK_PCI_VPD_DATA)));
439}
440
441static void
442sk_vpd_read_res(sc, res, addr)
443	struct sk_softc		*sc;
444	struct vpd_res		*res;
445	int			addr;
446{
447	int			i;
448	u_int8_t		*ptr;
449
450	ptr = (u_int8_t *)res;
451	for (i = 0; i < sizeof(struct vpd_res); i++)
452		ptr[i] = sk_vpd_readbyte(sc, i + addr);
453
454	return;
455}
456
457static void
458sk_vpd_read(sc)
459	struct sk_softc		*sc;
460{
461	int			pos = 0, i;
462	struct vpd_res		res;
463
464	if (sc->sk_vpd_prodname != NULL)
465		free(sc->sk_vpd_prodname, M_DEVBUF);
466	if (sc->sk_vpd_readonly != NULL)
467		free(sc->sk_vpd_readonly, M_DEVBUF);
468	sc->sk_vpd_prodname = NULL;
469	sc->sk_vpd_readonly = NULL;
470
471	sk_vpd_read_res(sc, &res, pos);
472
473	/*
474	 * Bail out quietly if the eeprom appears to be missing or empty.
475	 */
476	if (res.vr_id == 0xff && res.vr_len == 0xff && res.vr_pad == 0xff)
477		return;
478
479	if (res.vr_id != VPD_RES_ID) {
480		printf("skc%d: bad VPD resource id: expected %x got %x\n",
481		    sc->sk_unit, VPD_RES_ID, res.vr_id);
482		return;
483	}
484
485	pos += sizeof(res);
486	sc->sk_vpd_prodname = malloc(res.vr_len + 1, M_DEVBUF, M_NOWAIT);
487	for (i = 0; i < res.vr_len; i++)
488		sc->sk_vpd_prodname[i] = sk_vpd_readbyte(sc, i + pos);
489	sc->sk_vpd_prodname[i] = '\0';
490	pos += i;
491
492	sk_vpd_read_res(sc, &res, pos);
493
494	if (res.vr_id != VPD_RES_READ) {
495		printf("skc%d: bad VPD resource id: expected %x got %x\n",
496		    sc->sk_unit, VPD_RES_READ, res.vr_id);
497		return;
498	}
499
500	pos += sizeof(res);
501	sc->sk_vpd_readonly = malloc(res.vr_len, M_DEVBUF, M_NOWAIT);
502	for (i = 0; i < res.vr_len + 1; i++)
503		sc->sk_vpd_readonly[i] = sk_vpd_readbyte(sc, i + pos);
504
505	return;
506}
507
508static int
509sk_miibus_readreg(dev, phy, reg)
510	device_t		dev;
511	int			phy, reg;
512{
513	struct sk_if_softc	*sc_if;
514
515	sc_if = device_get_softc(dev);
516
517	switch(sc_if->sk_softc->sk_type) {
518	case SK_GENESIS:
519		return(sk_xmac_miibus_readreg(sc_if, phy, reg));
520	case SK_YUKON:
521		return(sk_marv_miibus_readreg(sc_if, phy, reg));
522	}
523
524	return(0);
525}
526
527static int
528sk_miibus_writereg(dev, phy, reg, val)
529	device_t		dev;
530	int			phy, reg, val;
531{
532	struct sk_if_softc	*sc_if;
533
534	sc_if = device_get_softc(dev);
535
536	switch(sc_if->sk_softc->sk_type) {
537	case SK_GENESIS:
538		return(sk_xmac_miibus_writereg(sc_if, phy, reg, val));
539	case SK_YUKON:
540		return(sk_marv_miibus_writereg(sc_if, phy, reg, val));
541	}
542
543	return(0);
544}
545
546static void
547sk_miibus_statchg(dev)
548	device_t		dev;
549{
550	struct sk_if_softc	*sc_if;
551
552	sc_if = device_get_softc(dev);
553
554	switch(sc_if->sk_softc->sk_type) {
555	case SK_GENESIS:
556		sk_xmac_miibus_statchg(sc_if);
557		break;
558	case SK_YUKON:
559		sk_marv_miibus_statchg(sc_if);
560		break;
561	}
562
563	return;
564}
565
566static int
567sk_xmac_miibus_readreg(sc_if, phy, reg)
568	struct sk_if_softc	*sc_if;
569	int			phy, reg;
570{
571	int			i;
572
573	if (sc_if->sk_phytype == SK_PHYTYPE_XMAC && phy != 0)
574		return(0);
575
576	SK_IF_LOCK(sc_if);
577	SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8));
578	SK_XM_READ_2(sc_if, XM_PHY_DATA);
579	if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) {
580		for (i = 0; i < SK_TIMEOUT; i++) {
581			DELAY(1);
582			if (SK_XM_READ_2(sc_if, XM_MMUCMD) &
583			    XM_MMUCMD_PHYDATARDY)
584				break;
585		}
586
587		if (i == SK_TIMEOUT) {
588			printf("sk%d: phy failed to come ready\n",
589			    sc_if->sk_unit);
590			SK_IF_UNLOCK(sc_if);
591			return(0);
592		}
593	}
594	DELAY(1);
595	i = SK_XM_READ_2(sc_if, XM_PHY_DATA);
596	SK_IF_UNLOCK(sc_if);
597	return(i);
598}
599
600static int
601sk_xmac_miibus_writereg(sc_if, phy, reg, val)
602	struct sk_if_softc	*sc_if;
603	int			phy, reg, val;
604{
605	int			i;
606
607	SK_IF_LOCK(sc_if);
608	SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8));
609	for (i = 0; i < SK_TIMEOUT; i++) {
610		if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY))
611			break;
612	}
613
614	if (i == SK_TIMEOUT) {
615		printf("sk%d: phy failed to come ready\n", sc_if->sk_unit);
616		SK_IF_UNLOCK(sc_if);
617		return(ETIMEDOUT);
618	}
619
620	SK_XM_WRITE_2(sc_if, XM_PHY_DATA, val);
621	for (i = 0; i < SK_TIMEOUT; i++) {
622		DELAY(1);
623		if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY))
624			break;
625	}
626	SK_IF_UNLOCK(sc_if);
627	if (i == SK_TIMEOUT)
628		printf("sk%d: phy write timed out\n", sc_if->sk_unit);
629
630	return(0);
631}
632
633static void
634sk_xmac_miibus_statchg(sc_if)
635	struct sk_if_softc	*sc_if;
636{
637	struct mii_data		*mii;
638
639	mii = device_get_softc(sc_if->sk_miibus);
640
641	SK_IF_LOCK(sc_if);
642	/*
643	 * If this is a GMII PHY, manually set the XMAC's
644	 * duplex mode accordingly.
645	 */
646	if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) {
647		if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
648			SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX);
649		} else {
650			SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX);
651		}
652	}
653	SK_IF_UNLOCK(sc_if);
654
655	return;
656}
657
658static int
659sk_marv_miibus_readreg(sc_if, phy, reg)
660	struct sk_if_softc	*sc_if;
661	int			phy, reg;
662{
663	u_int16_t		val;
664	int			i;
665
666	if (phy != 0 ||
667	    (sc_if->sk_phytype != SK_PHYTYPE_MARV_COPPER &&
668	     sc_if->sk_phytype != SK_PHYTYPE_MARV_FIBER)) {
669		return(0);
670	}
671
672	SK_IF_LOCK(sc_if);
673        SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
674		      YU_SMICR_REGAD(reg) | YU_SMICR_OP_READ);
675
676	for (i = 0; i < SK_TIMEOUT; i++) {
677		DELAY(1);
678		val = SK_YU_READ_2(sc_if, YUKON_SMICR);
679		if (val & YU_SMICR_READ_VALID)
680			break;
681	}
682
683	if (i == SK_TIMEOUT) {
684		printf("sk%d: phy failed to come ready\n",
685		    sc_if->sk_unit);
686		SK_IF_UNLOCK(sc_if);
687		return(0);
688	}
689
690	val = SK_YU_READ_2(sc_if, YUKON_SMIDR);
691	SK_IF_UNLOCK(sc_if);
692
693	return(val);
694}
695
696static int
697sk_marv_miibus_writereg(sc_if, phy, reg, val)
698	struct sk_if_softc	*sc_if;
699	int			phy, reg, val;
700{
701	int			i;
702
703	SK_IF_LOCK(sc_if);
704	SK_YU_WRITE_2(sc_if, YUKON_SMIDR, val);
705	SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
706		      YU_SMICR_REGAD(reg) | YU_SMICR_OP_WRITE);
707
708	for (i = 0; i < SK_TIMEOUT; i++) {
709		DELAY(1);
710		if (SK_YU_READ_2(sc_if, YUKON_SMICR) & YU_SMICR_BUSY)
711			break;
712	}
713	SK_IF_UNLOCK(sc_if);
714
715	return(0);
716}
717
718static void
719sk_marv_miibus_statchg(sc_if)
720	struct sk_if_softc	*sc_if;
721{
722	return;
723}
724
725#define XMAC_POLY		0xEDB88320
726#define GMAC_POLY		0x04C11DB7L
727#define HASH_BITS		6
728
729static u_int32_t
730sk_xmchash(addr)
731	const uint8_t *addr;
732{
733	uint32_t crc;
734	int idx, bit;
735	uint8_t data;
736
737	/* Compute CRC for the address value. */
738	crc = 0xFFFFFFFF; /* initial value */
739
740	for (idx = 0; idx < 6; idx++) {
741		for (data = *addr++, bit = 0; bit < 8; bit++, data >>= 1)
742			crc = (crc >> 1) ^ (((crc ^ data) & 1) ? XMAC_POLY : 0);
743	}
744
745	return (~crc & ((1 << HASH_BITS) - 1));
746}
747
748/* gmchash is just a big endian crc */
749static u_int32_t
750sk_gmchash(addr)
751	const uint8_t *addr;
752{
753	uint32_t crc, carry;
754	int idx, bit;
755	uint8_t data;
756
757	/* Compute CRC for the address value. */
758	crc = 0xFFFFFFFF; /* initial value */
759
760	for (idx = 0; idx < 6; idx++) {
761		for (data = *addr++, bit = 0; bit < 8; bit++, data >>= 1) {
762			carry = ((crc & 0x80000000) ? 1 : 0) ^ (data & 0x01);
763			crc <<= 1;
764			if (carry)
765				crc = (crc ^ GMAC_POLY) | carry;
766		}
767	}
768
769	return (crc & ((1 << HASH_BITS) - 1));
770}
771
772static void
773sk_setfilt(sc_if, addr, slot)
774	struct sk_if_softc	*sc_if;
775	caddr_t			addr;
776	int			slot;
777{
778	int			base;
779
780	base = XM_RXFILT_ENTRY(slot);
781
782	SK_XM_WRITE_2(sc_if, base, *(u_int16_t *)(&addr[0]));
783	SK_XM_WRITE_2(sc_if, base + 2, *(u_int16_t *)(&addr[2]));
784	SK_XM_WRITE_2(sc_if, base + 4, *(u_int16_t *)(&addr[4]));
785
786	return;
787}
788
789static void
790sk_setmulti(sc_if)
791	struct sk_if_softc	*sc_if;
792{
793	struct sk_softc		*sc = sc_if->sk_softc;
794	struct ifnet		*ifp = &sc_if->arpcom.ac_if;
795	u_int32_t		hashes[2] = { 0, 0 };
796	int			h = 0, i;
797	struct ifmultiaddr	*ifma;
798	u_int8_t		dummy[] = { 0, 0, 0, 0, 0 ,0 };
799
800
801	/* First, zot all the existing filters. */
802	switch(sc->sk_type) {
803	case SK_GENESIS:
804		for (i = 1; i < XM_RXFILT_MAX; i++)
805			sk_setfilt(sc_if, (caddr_t)&dummy, i);
806
807		SK_XM_WRITE_4(sc_if, XM_MAR0, 0);
808		SK_XM_WRITE_4(sc_if, XM_MAR2, 0);
809		break;
810	case SK_YUKON:
811		SK_YU_WRITE_2(sc_if, YUKON_MCAH1, 0);
812		SK_YU_WRITE_2(sc_if, YUKON_MCAH2, 0);
813		SK_YU_WRITE_2(sc_if, YUKON_MCAH3, 0);
814		SK_YU_WRITE_2(sc_if, YUKON_MCAH4, 0);
815		break;
816	}
817
818	/* Now program new ones. */
819	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
820		hashes[0] = 0xFFFFFFFF;
821		hashes[1] = 0xFFFFFFFF;
822	} else {
823		i = 1;
824		TAILQ_FOREACH_REVERSE(ifma, &ifp->if_multiaddrs, ifmultihead, ifma_link) {
825			if (ifma->ifma_addr->sa_family != AF_LINK)
826				continue;
827			/*
828			 * Program the first XM_RXFILT_MAX multicast groups
829			 * into the perfect filter. For all others,
830			 * use the hash table.
831			 */
832			if (sc->sk_type == SK_GENESIS && i < XM_RXFILT_MAX) {
833				sk_setfilt(sc_if,
834			LLADDR((struct sockaddr_dl *)ifma->ifma_addr), i);
835				i++;
836				continue;
837			}
838
839			switch(sc->sk_type) {
840			case SK_GENESIS:
841				h = sk_xmchash(
842					LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
843				break;
844			case SK_YUKON:
845				h = sk_gmchash(
846					LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
847				break;
848			}
849			if (h < 32)
850				hashes[0] |= (1 << h);
851			else
852				hashes[1] |= (1 << (h - 32));
853		}
854	}
855
856	switch(sc->sk_type) {
857	case SK_GENESIS:
858		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_HASH|
859			       XM_MODE_RX_USE_PERFECT);
860		SK_XM_WRITE_4(sc_if, XM_MAR0, hashes[0]);
861		SK_XM_WRITE_4(sc_if, XM_MAR2, hashes[1]);
862		break;
863	case SK_YUKON:
864		SK_YU_WRITE_2(sc_if, YUKON_MCAH1, hashes[0] & 0xffff);
865		SK_YU_WRITE_2(sc_if, YUKON_MCAH2, (hashes[0] >> 16) & 0xffff);
866		SK_YU_WRITE_2(sc_if, YUKON_MCAH3, hashes[1] & 0xffff);
867		SK_YU_WRITE_2(sc_if, YUKON_MCAH4, (hashes[1] >> 16) & 0xffff);
868		break;
869	}
870
871	return;
872}
873
874static void
875sk_setpromisc(sc_if)
876	struct sk_if_softc	*sc_if;
877{
878	struct sk_softc		*sc = sc_if->sk_softc;
879	struct ifnet		*ifp = &sc_if->arpcom.ac_if;
880
881	switch(sc->sk_type) {
882	case SK_GENESIS:
883		if (ifp->if_flags & IFF_PROMISC) {
884			SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
885		} else {
886			SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
887		}
888		break;
889	case SK_YUKON:
890		if (ifp->if_flags & IFF_PROMISC) {
891			SK_YU_CLRBIT_2(sc_if, YUKON_RCR,
892			    YU_RCR_UFLEN | YU_RCR_MUFLEN);
893		} else {
894			SK_YU_SETBIT_2(sc_if, YUKON_RCR,
895			    YU_RCR_UFLEN | YU_RCR_MUFLEN);
896		}
897		break;
898	}
899
900	return;
901}
902
903static int
904sk_init_rx_ring(sc_if)
905	struct sk_if_softc	*sc_if;
906{
907	struct sk_chain_data	*cd = &sc_if->sk_cdata;
908	struct sk_ring_data	*rd = sc_if->sk_rdata;
909	int			i;
910
911	bzero((char *)rd->sk_rx_ring,
912	    sizeof(struct sk_rx_desc) * SK_RX_RING_CNT);
913
914	for (i = 0; i < SK_RX_RING_CNT; i++) {
915		cd->sk_rx_chain[i].sk_desc = &rd->sk_rx_ring[i];
916		if (sk_newbuf(sc_if, &cd->sk_rx_chain[i], NULL) == ENOBUFS)
917			return(ENOBUFS);
918		if (i == (SK_RX_RING_CNT - 1)) {
919			cd->sk_rx_chain[i].sk_next =
920			    &cd->sk_rx_chain[0];
921			rd->sk_rx_ring[i].sk_next =
922			    vtophys(&rd->sk_rx_ring[0]);
923		} else {
924			cd->sk_rx_chain[i].sk_next =
925			    &cd->sk_rx_chain[i + 1];
926			rd->sk_rx_ring[i].sk_next =
927			    vtophys(&rd->sk_rx_ring[i + 1]);
928		}
929	}
930
931	sc_if->sk_cdata.sk_rx_prod = 0;
932	sc_if->sk_cdata.sk_rx_cons = 0;
933
934	return(0);
935}
936
937static void
938sk_init_tx_ring(sc_if)
939	struct sk_if_softc	*sc_if;
940{
941	struct sk_chain_data	*cd = &sc_if->sk_cdata;
942	struct sk_ring_data	*rd = sc_if->sk_rdata;
943	int			i;
944
945	bzero((char *)sc_if->sk_rdata->sk_tx_ring,
946	    sizeof(struct sk_tx_desc) * SK_TX_RING_CNT);
947
948	for (i = 0; i < SK_TX_RING_CNT; i++) {
949		cd->sk_tx_chain[i].sk_desc = &rd->sk_tx_ring[i];
950		if (i == (SK_TX_RING_CNT - 1)) {
951			cd->sk_tx_chain[i].sk_next =
952			    &cd->sk_tx_chain[0];
953			rd->sk_tx_ring[i].sk_next =
954			    vtophys(&rd->sk_tx_ring[0]);
955		} else {
956			cd->sk_tx_chain[i].sk_next =
957			    &cd->sk_tx_chain[i + 1];
958			rd->sk_tx_ring[i].sk_next =
959			    vtophys(&rd->sk_tx_ring[i + 1]);
960		}
961	}
962
963	sc_if->sk_cdata.sk_tx_prod = 0;
964	sc_if->sk_cdata.sk_tx_cons = 0;
965	sc_if->sk_cdata.sk_tx_cnt = 0;
966
967	return;
968}
969
970static int
971sk_newbuf(sc_if, c, m)
972	struct sk_if_softc	*sc_if;
973	struct sk_chain		*c;
974	struct mbuf		*m;
975{
976	struct mbuf		*m_new = NULL;
977	struct sk_rx_desc	*r;
978
979	if (m == NULL) {
980		caddr_t			*buf = NULL;
981
982		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
983		if (m_new == NULL)
984			return(ENOBUFS);
985
986		/* Allocate the jumbo buffer */
987		buf = sk_jalloc(sc_if);
988		if (buf == NULL) {
989			m_freem(m_new);
990#ifdef SK_VERBOSE
991			printf("sk%d: jumbo allocation failed "
992			    "-- packet dropped!\n", sc_if->sk_unit);
993#endif
994			return(ENOBUFS);
995		}
996
997		/* Attach the buffer to the mbuf */
998		MEXTADD(m_new, buf, SK_JLEN, sk_jfree,
999		    (struct sk_if_softc *)sc_if, 0, EXT_NET_DRV);
1000		m_new->m_data = (void *)buf;
1001		m_new->m_pkthdr.len = m_new->m_len = SK_JLEN;
1002	} else {
1003		/*
1004	 	 * We're re-using a previously allocated mbuf;
1005		 * be sure to re-init pointers and lengths to
1006		 * default values.
1007		 */
1008		m_new = m;
1009		m_new->m_len = m_new->m_pkthdr.len = SK_JLEN;
1010		m_new->m_data = m_new->m_ext.ext_buf;
1011	}
1012
1013	/*
1014	 * Adjust alignment so packet payload begins on a
1015	 * longword boundary. Mandatory for Alpha, useful on
1016	 * x86 too.
1017	 */
1018	m_adj(m_new, ETHER_ALIGN);
1019
1020	r = c->sk_desc;
1021	c->sk_mbuf = m_new;
1022	r->sk_data_lo = vtophys(mtod(m_new, caddr_t));
1023	r->sk_ctl = m_new->m_len | SK_RXSTAT;
1024
1025	return(0);
1026}
1027
1028/*
1029 * Allocate jumbo buffer storage. The SysKonnect adapters support
1030 * "jumbograms" (9K frames), although SysKonnect doesn't currently
1031 * use them in their drivers. In order for us to use them, we need
1032 * large 9K receive buffers, however standard mbuf clusters are only
1033 * 2048 bytes in size. Consequently, we need to allocate and manage
1034 * our own jumbo buffer pool. Fortunately, this does not require an
1035 * excessive amount of additional code.
1036 */
1037static int
1038sk_alloc_jumbo_mem(sc_if)
1039	struct sk_if_softc	*sc_if;
1040{
1041	caddr_t			ptr;
1042	register int		i;
1043	struct sk_jpool_entry   *entry;
1044
1045	/* Grab a big chunk o' storage. */
1046	sc_if->sk_cdata.sk_jumbo_buf = contigmalloc(SK_JMEM, M_DEVBUF,
1047	    M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0);
1048
1049	if (sc_if->sk_cdata.sk_jumbo_buf == NULL) {
1050		printf("sk%d: no memory for jumbo buffers!\n", sc_if->sk_unit);
1051		return(ENOBUFS);
1052	}
1053
1054	SLIST_INIT(&sc_if->sk_jfree_listhead);
1055	SLIST_INIT(&sc_if->sk_jinuse_listhead);
1056
1057	/*
1058	 * Now divide it up into 9K pieces and save the addresses
1059	 * in an array.
1060	 */
1061	ptr = sc_if->sk_cdata.sk_jumbo_buf;
1062	for (i = 0; i < SK_JSLOTS; i++) {
1063		sc_if->sk_cdata.sk_jslots[i] = ptr;
1064		ptr += SK_JLEN;
1065		entry = malloc(sizeof(struct sk_jpool_entry),
1066		    M_DEVBUF, M_NOWAIT);
1067		if (entry == NULL) {
1068			free(sc_if->sk_cdata.sk_jumbo_buf, M_DEVBUF);
1069			sc_if->sk_cdata.sk_jumbo_buf = NULL;
1070			printf("sk%d: no memory for jumbo "
1071			    "buffer queue!\n", sc_if->sk_unit);
1072			return(ENOBUFS);
1073		}
1074		entry->slot = i;
1075		SLIST_INSERT_HEAD(&sc_if->sk_jfree_listhead,
1076		    entry, jpool_entries);
1077	}
1078
1079	return(0);
1080}
1081
1082/*
1083 * Allocate a jumbo buffer.
1084 */
1085static void *
1086sk_jalloc(sc_if)
1087	struct sk_if_softc	*sc_if;
1088{
1089	struct sk_jpool_entry   *entry;
1090
1091	entry = SLIST_FIRST(&sc_if->sk_jfree_listhead);
1092
1093	if (entry == NULL) {
1094#ifdef SK_VERBOSE
1095		printf("sk%d: no free jumbo buffers\n", sc_if->sk_unit);
1096#endif
1097		return(NULL);
1098	}
1099
1100	SLIST_REMOVE_HEAD(&sc_if->sk_jfree_listhead, jpool_entries);
1101	SLIST_INSERT_HEAD(&sc_if->sk_jinuse_listhead, entry, jpool_entries);
1102	return(sc_if->sk_cdata.sk_jslots[entry->slot]);
1103}
1104
1105/*
1106 * Release a jumbo buffer.
1107 */
1108static void
1109sk_jfree(buf, args)
1110	void			*buf;
1111	void			*args;
1112{
1113	struct sk_if_softc	*sc_if;
1114	int		        i;
1115	struct sk_jpool_entry   *entry;
1116
1117	/* Extract the softc struct pointer. */
1118	sc_if = (struct sk_if_softc *)args;
1119
1120	if (sc_if == NULL)
1121		panic("sk_jfree: didn't get softc pointer!");
1122
1123	/* calculate the slot this buffer belongs to */
1124	i = ((vm_offset_t)buf
1125	     - (vm_offset_t)sc_if->sk_cdata.sk_jumbo_buf) / SK_JLEN;
1126
1127	if ((i < 0) || (i >= SK_JSLOTS))
1128		panic("sk_jfree: asked to free buffer that we don't manage!");
1129
1130	entry = SLIST_FIRST(&sc_if->sk_jinuse_listhead);
1131	if (entry == NULL)
1132		panic("sk_jfree: buffer not in use!");
1133	entry->slot = i;
1134	SLIST_REMOVE_HEAD(&sc_if->sk_jinuse_listhead, jpool_entries);
1135	SLIST_INSERT_HEAD(&sc_if->sk_jfree_listhead, entry, jpool_entries);
1136
1137	return;
1138}
1139
1140/*
1141 * Set media options.
1142 */
1143static int
1144sk_ifmedia_upd(ifp)
1145	struct ifnet		*ifp;
1146{
1147	struct sk_if_softc	*sc_if = ifp->if_softc;
1148	struct mii_data		*mii;
1149
1150	mii = device_get_softc(sc_if->sk_miibus);
1151	sk_init(sc_if);
1152	mii_mediachg(mii);
1153
1154	return(0);
1155}
1156
1157/*
1158 * Report current media status.
1159 */
1160static void
1161sk_ifmedia_sts(ifp, ifmr)
1162	struct ifnet		*ifp;
1163	struct ifmediareq	*ifmr;
1164{
1165	struct sk_if_softc	*sc_if;
1166	struct mii_data		*mii;
1167
1168	sc_if = ifp->if_softc;
1169	mii = device_get_softc(sc_if->sk_miibus);
1170
1171	mii_pollstat(mii);
1172	ifmr->ifm_active = mii->mii_media_active;
1173	ifmr->ifm_status = mii->mii_media_status;
1174
1175	return;
1176}
1177
1178static int
1179sk_ioctl(ifp, command, data)
1180	struct ifnet		*ifp;
1181	u_long			command;
1182	caddr_t			data;
1183{
1184	struct sk_if_softc	*sc_if = ifp->if_softc;
1185	struct ifreq		*ifr = (struct ifreq *) data;
1186	int			error = 0;
1187	struct mii_data		*mii;
1188
1189	SK_IF_LOCK(sc_if);
1190
1191	switch(command) {
1192	case SIOCSIFMTU:
1193		if (ifr->ifr_mtu > SK_JUMBO_MTU)
1194			error = EINVAL;
1195		else {
1196			ifp->if_mtu = ifr->ifr_mtu;
1197			sk_init(sc_if);
1198		}
1199		break;
1200	case SIOCSIFFLAGS:
1201		if (ifp->if_flags & IFF_UP) {
1202			if (ifp->if_flags & IFF_RUNNING) {
1203				if ((ifp->if_flags ^ sc_if->sk_if_flags)
1204				    & IFF_PROMISC) {
1205					sk_setpromisc(sc_if);
1206					sk_setmulti(sc_if);
1207				}
1208			} else
1209				sk_init(sc_if);
1210		} else {
1211			if (ifp->if_flags & IFF_RUNNING)
1212				sk_stop(sc_if);
1213		}
1214		sc_if->sk_if_flags = ifp->if_flags;
1215		error = 0;
1216		break;
1217	case SIOCADDMULTI:
1218	case SIOCDELMULTI:
1219		sk_setmulti(sc_if);
1220		error = 0;
1221		break;
1222	case SIOCGIFMEDIA:
1223	case SIOCSIFMEDIA:
1224		mii = device_get_softc(sc_if->sk_miibus);
1225		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
1226		break;
1227	default:
1228		error = ether_ioctl(ifp, command, data);
1229		break;
1230	}
1231
1232	SK_IF_UNLOCK(sc_if);
1233
1234	return(error);
1235}
1236
1237/*
1238 * Probe for a SysKonnect GEnesis chip. Check the PCI vendor and device
1239 * IDs against our list and return a device name if we find a match.
1240 */
1241static int
1242skc_probe(dev)
1243	device_t		dev;
1244{
1245	struct sk_softc		*sc;
1246	struct sk_type		*t = sk_devs;
1247
1248	sc = device_get_softc(dev);
1249
1250	while(t->sk_name != NULL) {
1251		if ((pci_get_vendor(dev) == t->sk_vid) &&
1252		    (pci_get_device(dev) == t->sk_did)) {
1253			device_set_desc(dev, t->sk_name);
1254			return(0);
1255		}
1256		t++;
1257	}
1258
1259	return(ENXIO);
1260}
1261
1262/*
1263 * Force the GEnesis into reset, then bring it out of reset.
1264 */
1265static void
1266sk_reset(sc)
1267	struct sk_softc		*sc;
1268{
1269	CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_RESET);
1270	CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_RESET);
1271	if (sc->sk_type == SK_YUKON)
1272		CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_SET);
1273
1274	DELAY(1000);
1275	CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_UNRESET);
1276	DELAY(2);
1277	CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_UNRESET);
1278	if (sc->sk_type == SK_YUKON)
1279		CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_CLEAR);
1280
1281	if (sc->sk_type == SK_GENESIS) {
1282		/* Configure packet arbiter */
1283		sk_win_write_2(sc, SK_PKTARB_CTL, SK_PKTARBCTL_UNRESET);
1284		sk_win_write_2(sc, SK_RXPA1_TINIT, SK_PKTARB_TIMEOUT);
1285		sk_win_write_2(sc, SK_TXPA1_TINIT, SK_PKTARB_TIMEOUT);
1286		sk_win_write_2(sc, SK_RXPA2_TINIT, SK_PKTARB_TIMEOUT);
1287		sk_win_write_2(sc, SK_TXPA2_TINIT, SK_PKTARB_TIMEOUT);
1288	}
1289
1290	/* Enable RAM interface */
1291	sk_win_write_4(sc, SK_RAMCTL, SK_RAMCTL_UNRESET);
1292
1293	/*
1294         * Configure interrupt moderation. The moderation timer
1295	 * defers interrupts specified in the interrupt moderation
1296	 * timer mask based on the timeout specified in the interrupt
1297	 * moderation timer init register. Each bit in the timer
1298	 * register represents 18.825ns, so to specify a timeout in
1299	 * microseconds, we have to multiply by 54.
1300	 */
1301	sk_win_write_4(sc, SK_IMTIMERINIT, SK_IM_USECS(200));
1302	sk_win_write_4(sc, SK_IMMR, SK_ISR_TX1_S_EOF|SK_ISR_TX2_S_EOF|
1303	    SK_ISR_RX1_EOF|SK_ISR_RX2_EOF);
1304	sk_win_write_1(sc, SK_IMTIMERCTL, SK_IMCTL_START);
1305
1306	return;
1307}
1308
1309static int
1310sk_probe(dev)
1311	device_t		dev;
1312{
1313	struct sk_softc		*sc;
1314
1315	sc = device_get_softc(device_get_parent(dev));
1316
1317	/*
1318	 * Not much to do here. We always know there will be
1319	 * at least one XMAC present, and if there are two,
1320	 * skc_attach() will create a second device instance
1321	 * for us.
1322	 */
1323	switch (sc->sk_type) {
1324	case SK_GENESIS:
1325		device_set_desc(dev, "XaQti Corp. XMAC II");
1326		break;
1327	case SK_YUKON:
1328		device_set_desc(dev, "Marvell Semiconductor, Inc. Yukon");
1329		break;
1330	}
1331
1332	return(0);
1333}
1334
1335/*
1336 * Each XMAC chip is attached as a separate logical IP interface.
1337 * Single port cards will have only one logical interface of course.
1338 */
1339static int
1340sk_attach(dev)
1341	device_t		dev;
1342{
1343	struct sk_softc		*sc;
1344	struct sk_if_softc	*sc_if;
1345	struct ifnet		*ifp;
1346	int			i, port, error;
1347
1348	if (dev == NULL)
1349		return(EINVAL);
1350
1351	error = 0;
1352	sc_if = device_get_softc(dev);
1353	sc = device_get_softc(device_get_parent(dev));
1354	SK_LOCK(sc);
1355	port = *(int *)device_get_ivars(dev);
1356	free(device_get_ivars(dev), M_DEVBUF);
1357	device_set_ivars(dev, NULL);
1358
1359	sc_if->sk_dev = dev;
1360	sc_if->sk_unit = device_get_unit(dev);
1361	sc_if->sk_port = port;
1362	sc_if->sk_softc = sc;
1363	sc->sk_if[port] = sc_if;
1364	if (port == SK_PORT_A)
1365		sc_if->sk_tx_bmu = SK_BMU_TXS_CSR0;
1366	if (port == SK_PORT_B)
1367		sc_if->sk_tx_bmu = SK_BMU_TXS_CSR1;
1368
1369	/*
1370	 * Get station address for this interface. Note that
1371	 * dual port cards actually come with three station
1372	 * addresses: one for each port, plus an extra. The
1373	 * extra one is used by the SysKonnect driver software
1374	 * as a 'virtual' station address for when both ports
1375	 * are operating in failover mode. Currently we don't
1376	 * use this extra address.
1377	 */
1378	for (i = 0; i < ETHER_ADDR_LEN; i++)
1379		sc_if->arpcom.ac_enaddr[i] =
1380		    sk_win_read_1(sc, SK_MAC0_0 + (port * 8) + i);
1381
1382	/*
1383	 * Set up RAM buffer addresses. The NIC will have a certain
1384	 * amount of SRAM on it, somewhere between 512K and 2MB. We
1385	 * need to divide this up a) between the transmitter and
1386 	 * receiver and b) between the two XMACs, if this is a
1387	 * dual port NIC. Our algotithm is to divide up the memory
1388	 * evenly so that everyone gets a fair share.
1389	 */
1390	if (sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC) {
1391		u_int32_t		chunk, val;
1392
1393		chunk = sc->sk_ramsize / 2;
1394		val = sc->sk_rboff / sizeof(u_int64_t);
1395		sc_if->sk_rx_ramstart = val;
1396		val += (chunk / sizeof(u_int64_t));
1397		sc_if->sk_rx_ramend = val - 1;
1398		sc_if->sk_tx_ramstart = val;
1399		val += (chunk / sizeof(u_int64_t));
1400		sc_if->sk_tx_ramend = val - 1;
1401	} else {
1402		u_int32_t		chunk, val;
1403
1404		chunk = sc->sk_ramsize / 4;
1405		val = (sc->sk_rboff + (chunk * 2 * sc_if->sk_port)) /
1406		    sizeof(u_int64_t);
1407		sc_if->sk_rx_ramstart = val;
1408		val += (chunk / sizeof(u_int64_t));
1409		sc_if->sk_rx_ramend = val - 1;
1410		sc_if->sk_tx_ramstart = val;
1411		val += (chunk / sizeof(u_int64_t));
1412		sc_if->sk_tx_ramend = val - 1;
1413	}
1414
1415	/* Read and save PHY type and set PHY address */
1416	sc_if->sk_phytype = sk_win_read_1(sc, SK_EPROM1) & 0xF;
1417	switch(sc_if->sk_phytype) {
1418	case SK_PHYTYPE_XMAC:
1419		sc_if->sk_phyaddr = SK_PHYADDR_XMAC;
1420		break;
1421	case SK_PHYTYPE_BCOM:
1422		sc_if->sk_phyaddr = SK_PHYADDR_BCOM;
1423		break;
1424	case SK_PHYTYPE_MARV_COPPER:
1425		sc_if->sk_phyaddr = SK_PHYADDR_MARV;
1426		break;
1427	default:
1428		printf("skc%d: unsupported PHY type: %d\n",
1429		    sc->sk_unit, sc_if->sk_phytype);
1430		error = ENODEV;
1431		goto fail;
1432	}
1433
1434	/* Allocate the descriptor queues. */
1435	sc_if->sk_rdata = contigmalloc(sizeof(struct sk_ring_data), M_DEVBUF,
1436	    M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0);
1437
1438	if (sc_if->sk_rdata == NULL) {
1439		printf("sk%d: no memory for list buffers!\n", sc_if->sk_unit);
1440		error = ENOMEM;
1441		goto fail;
1442	}
1443
1444	bzero(sc_if->sk_rdata, sizeof(struct sk_ring_data));
1445
1446	/* Try to allocate memory for jumbo buffers. */
1447	if (sk_alloc_jumbo_mem(sc_if)) {
1448		printf("sk%d: jumbo buffer allocation failed\n",
1449		    sc_if->sk_unit);
1450		error = ENOMEM;
1451		goto fail;
1452	}
1453
1454	ifp = &sc_if->arpcom.ac_if;
1455	ifp->if_softc = sc_if;
1456	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1457	ifp->if_mtu = ETHERMTU;
1458	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1459	ifp->if_ioctl = sk_ioctl;
1460	ifp->if_start = sk_start;
1461	ifp->if_watchdog = sk_watchdog;
1462	ifp->if_init = sk_init;
1463	ifp->if_baudrate = 1000000000;
1464	ifp->if_snd.ifq_maxlen = SK_TX_RING_CNT - 1;
1465
1466	callout_handle_init(&sc_if->sk_tick_ch);
1467
1468	/*
1469	 * Call MI attach routine.
1470	 */
1471	ether_ifattach(ifp, sc_if->arpcom.ac_enaddr);
1472
1473	/*
1474	 * Do miibus setup.
1475	 */
1476	switch (sc->sk_type) {
1477	case SK_GENESIS:
1478		sk_init_xmac(sc_if);
1479		break;
1480	case SK_YUKON:
1481		sk_init_yukon(sc_if);
1482		break;
1483	}
1484
1485	if (mii_phy_probe(dev, &sc_if->sk_miibus,
1486	    sk_ifmedia_upd, sk_ifmedia_sts)) {
1487		printf("skc%d: no PHY found!\n", sc_if->sk_unit);
1488		ether_ifdetach(ifp);
1489		error = ENXIO;
1490		goto fail;
1491	}
1492
1493fail:
1494	SK_UNLOCK(sc);
1495	if (error) {
1496		/* Access should be ok even though lock has been dropped */
1497		sc->sk_if[port] = NULL;
1498		sk_detach(dev);
1499	}
1500
1501	return(error);
1502}
1503
1504/*
1505 * Attach the interface. Allocate softc structures, do ifmedia
1506 * setup and ethernet/BPF attach.
1507 */
1508static int
1509skc_attach(dev)
1510	device_t		dev;
1511{
1512	struct sk_softc		*sc;
1513	int			unit, error = 0, rid, *port;
1514
1515	sc = device_get_softc(dev);
1516	unit = device_get_unit(dev);
1517
1518	mtx_init(&sc->sk_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
1519	    MTX_DEF | MTX_RECURSE);
1520#ifndef BURN_BRIDGES
1521	/*
1522	 * Handle power management nonsense.
1523	 */
1524	if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
1525		u_int32_t		iobase, membase, irq;
1526
1527		/* Save important PCI config data. */
1528		iobase = pci_read_config(dev, SK_PCI_LOIO, 4);
1529		membase = pci_read_config(dev, SK_PCI_LOMEM, 4);
1530		irq = pci_read_config(dev, SK_PCI_INTLINE, 4);
1531
1532		/* Reset the power state. */
1533		printf("skc%d: chip is in D%d power mode "
1534		    "-- setting to D0\n", unit,
1535		    pci_get_powerstate(dev));
1536		pci_set_powerstate(dev, PCI_POWERSTATE_D0);
1537
1538		/* Restore PCI config data. */
1539		pci_write_config(dev, SK_PCI_LOIO, iobase, 4);
1540		pci_write_config(dev, SK_PCI_LOMEM, membase, 4);
1541		pci_write_config(dev, SK_PCI_INTLINE, irq, 4);
1542	}
1543#endif
1544	/*
1545	 * Map control/status registers.
1546	 */
1547	pci_enable_busmaster(dev);
1548
1549	rid = SK_RID;
1550	sc->sk_res = bus_alloc_resource_any(dev, SK_RES, &rid, RF_ACTIVE);
1551
1552	if (sc->sk_res == NULL) {
1553		printf("sk%d: couldn't map ports/memory\n", unit);
1554		error = ENXIO;
1555		goto fail;
1556	}
1557
1558	sc->sk_btag = rman_get_bustag(sc->sk_res);
1559	sc->sk_bhandle = rman_get_bushandle(sc->sk_res);
1560
1561	/* Allocate interrupt */
1562	rid = 0;
1563	sc->sk_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
1564	    RF_SHAREABLE | RF_ACTIVE);
1565
1566	if (sc->sk_irq == NULL) {
1567		printf("skc%d: couldn't map interrupt\n", unit);
1568		error = ENXIO;
1569		goto fail;
1570	}
1571
1572	/* Set adapter type */
1573	switch (pci_get_device(dev)) {
1574	case DEVICEID_SK_V1:
1575		sc->sk_type = SK_GENESIS;
1576		break;
1577	case DEVICEID_SK_V2:
1578	case DEVICEID_3COM_3C940:
1579	case DEVICEID_LINKSYS_EG1032:
1580	case DEVICEID_DLINK_DGE530T:
1581		sc->sk_type = SK_YUKON;
1582		break;
1583	default:
1584		printf("skc%d: unknown device!\n", unit);
1585		error = ENXIO;
1586		goto fail;
1587	}
1588
1589	/* Reset the adapter. */
1590	sk_reset(sc);
1591
1592	sc->sk_unit = unit;
1593
1594	/* Read and save vital product data from EEPROM. */
1595	sk_vpd_read(sc);
1596
1597	if (sc->sk_type == SK_GENESIS) {
1598		/* Read and save RAM size and RAMbuffer offset */
1599		switch(sk_win_read_1(sc, SK_EPROM0)) {
1600		case SK_RAMSIZE_512K_64:
1601			sc->sk_ramsize = 0x80000;
1602			sc->sk_rboff = SK_RBOFF_0;
1603			break;
1604		case SK_RAMSIZE_1024K_64:
1605			sc->sk_ramsize = 0x100000;
1606			sc->sk_rboff = SK_RBOFF_80000;
1607			break;
1608		case SK_RAMSIZE_1024K_128:
1609			sc->sk_ramsize = 0x100000;
1610			sc->sk_rboff = SK_RBOFF_0;
1611			break;
1612		case SK_RAMSIZE_2048K_128:
1613			sc->sk_ramsize = 0x200000;
1614			sc->sk_rboff = SK_RBOFF_0;
1615			break;
1616		default:
1617			printf("skc%d: unknown ram size: %d\n",
1618			    sc->sk_unit, sk_win_read_1(sc, SK_EPROM0));
1619			error = ENXIO;
1620			goto fail;
1621		}
1622	} else {
1623		sc->sk_ramsize = 0x20000;
1624		sc->sk_rboff = SK_RBOFF_0;
1625	}
1626
1627	/* Read and save physical media type */
1628	switch(sk_win_read_1(sc, SK_PMDTYPE)) {
1629	case SK_PMD_1000BASESX:
1630		sc->sk_pmd = IFM_1000_SX;
1631		break;
1632	case SK_PMD_1000BASELX:
1633		sc->sk_pmd = IFM_1000_LX;
1634		break;
1635	case SK_PMD_1000BASECX:
1636		sc->sk_pmd = IFM_1000_CX;
1637		break;
1638	case SK_PMD_1000BASETX:
1639		sc->sk_pmd = IFM_1000_T;
1640		break;
1641	default:
1642		printf("skc%d: unknown media type: 0x%x\n",
1643		    sc->sk_unit, sk_win_read_1(sc, SK_PMDTYPE));
1644		error = ENXIO;
1645		goto fail;
1646	}
1647
1648	/* Announce the product name. */
1649	if (sc->sk_vpd_prodname != NULL)
1650	    printf("skc%d: %s\n", sc->sk_unit, sc->sk_vpd_prodname);
1651	sc->sk_devs[SK_PORT_A] = device_add_child(dev, "sk", -1);
1652	port = malloc(sizeof(int), M_DEVBUF, M_NOWAIT);
1653	*port = SK_PORT_A;
1654	device_set_ivars(sc->sk_devs[SK_PORT_A], port);
1655
1656	if (!(sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC)) {
1657		sc->sk_devs[SK_PORT_B] = device_add_child(dev, "sk", -1);
1658		port = malloc(sizeof(int), M_DEVBUF, M_NOWAIT);
1659		*port = SK_PORT_B;
1660		device_set_ivars(sc->sk_devs[SK_PORT_B], port);
1661	}
1662
1663	/* Turn on the 'driver is loaded' LED. */
1664	CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_ON);
1665
1666	bus_generic_attach(dev);
1667
1668	/* Hook interrupt last to avoid having to lock softc */
1669	error = bus_setup_intr(dev, sc->sk_irq, INTR_TYPE_NET,
1670	    sk_intr, sc, &sc->sk_intrhand);
1671
1672	if (error) {
1673		printf("skc%d: couldn't set up irq\n", unit);
1674		goto fail;
1675	}
1676
1677fail:
1678	if (error)
1679		skc_detach(dev);
1680
1681	return(error);
1682}
1683
1684/*
1685 * Shutdown hardware and free up resources. This can be called any
1686 * time after the mutex has been initialized. It is called in both
1687 * the error case in attach and the normal detach case so it needs
1688 * to be careful about only freeing resources that have actually been
1689 * allocated.
1690 */
1691static int
1692sk_detach(dev)
1693	device_t		dev;
1694{
1695	struct sk_if_softc	*sc_if;
1696	struct ifnet		*ifp;
1697
1698	sc_if = device_get_softc(dev);
1699	KASSERT(mtx_initialized(&sc_if->sk_softc->sk_mtx),
1700	    ("sk mutex not initialized in sk_detach"));
1701	SK_IF_LOCK(sc_if);
1702
1703	ifp = &sc_if->arpcom.ac_if;
1704	/* These should only be active if attach_xmac succeeded */
1705	if (device_is_attached(dev)) {
1706		sk_stop(sc_if);
1707		ether_ifdetach(ifp);
1708	}
1709	if (sc_if->sk_miibus)
1710		device_delete_child(dev, sc_if->sk_miibus);
1711	bus_generic_detach(dev);
1712	if (sc_if->sk_cdata.sk_jumbo_buf)
1713		contigfree(sc_if->sk_cdata.sk_jumbo_buf, SK_JMEM, M_DEVBUF);
1714	if (sc_if->sk_rdata) {
1715		contigfree(sc_if->sk_rdata, sizeof(struct sk_ring_data),
1716		    M_DEVBUF);
1717	}
1718	SK_IF_UNLOCK(sc_if);
1719
1720	return(0);
1721}
1722
1723static int
1724skc_detach(dev)
1725	device_t		dev;
1726{
1727	struct sk_softc		*sc;
1728
1729	sc = device_get_softc(dev);
1730	KASSERT(mtx_initialized(&sc->sk_mtx), ("sk mutex not initialized"));
1731	SK_LOCK(sc);
1732
1733	if (device_is_alive(dev)) {
1734		if (sc->sk_devs[SK_PORT_A] != NULL)
1735			device_delete_child(dev, sc->sk_devs[SK_PORT_A]);
1736		if (sc->sk_devs[SK_PORT_B] != NULL)
1737			device_delete_child(dev, sc->sk_devs[SK_PORT_B]);
1738		bus_generic_detach(dev);
1739	}
1740
1741	if (sc->sk_intrhand)
1742		bus_teardown_intr(dev, sc->sk_irq, sc->sk_intrhand);
1743	if (sc->sk_irq)
1744		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sk_irq);
1745	if (sc->sk_res)
1746		bus_release_resource(dev, SK_RES, SK_RID, sc->sk_res);
1747
1748	SK_UNLOCK(sc);
1749	mtx_destroy(&sc->sk_mtx);
1750
1751	return(0);
1752}
1753
1754static int
1755sk_encap(sc_if, m_head, txidx)
1756        struct sk_if_softc	*sc_if;
1757        struct mbuf		*m_head;
1758        u_int32_t		*txidx;
1759{
1760	struct sk_tx_desc	*f = NULL;
1761	struct mbuf		*m;
1762	u_int32_t		frag, cur, cnt = 0;
1763
1764	m = m_head;
1765	cur = frag = *txidx;
1766
1767	/*
1768	 * Start packing the mbufs in this chain into
1769	 * the fragment pointers. Stop when we run out
1770	 * of fragments or hit the end of the mbuf chain.
1771	 */
1772	for (m = m_head; m != NULL; m = m->m_next) {
1773		if (m->m_len != 0) {
1774			if ((SK_TX_RING_CNT -
1775			    (sc_if->sk_cdata.sk_tx_cnt + cnt)) < 2)
1776				return(ENOBUFS);
1777			f = &sc_if->sk_rdata->sk_tx_ring[frag];
1778			f->sk_data_lo = vtophys(mtod(m, vm_offset_t));
1779			f->sk_ctl = m->m_len | SK_OPCODE_DEFAULT;
1780			if (cnt == 0)
1781				f->sk_ctl |= SK_TXCTL_FIRSTFRAG;
1782			else
1783				f->sk_ctl |= SK_TXCTL_OWN;
1784			cur = frag;
1785			SK_INC(frag, SK_TX_RING_CNT);
1786			cnt++;
1787		}
1788	}
1789
1790	if (m != NULL)
1791		return(ENOBUFS);
1792
1793	sc_if->sk_rdata->sk_tx_ring[cur].sk_ctl |=
1794		SK_TXCTL_LASTFRAG|SK_TXCTL_EOF_INTR;
1795	sc_if->sk_cdata.sk_tx_chain[cur].sk_mbuf = m_head;
1796	sc_if->sk_rdata->sk_tx_ring[*txidx].sk_ctl |= SK_TXCTL_OWN;
1797	sc_if->sk_cdata.sk_tx_cnt += cnt;
1798
1799	*txidx = frag;
1800
1801	return(0);
1802}
1803
1804static void
1805sk_start(ifp)
1806	struct ifnet		*ifp;
1807{
1808        struct sk_softc		*sc;
1809        struct sk_if_softc	*sc_if;
1810        struct mbuf		*m_head = NULL;
1811        u_int32_t		idx;
1812
1813	sc_if = ifp->if_softc;
1814	sc = sc_if->sk_softc;
1815
1816	SK_IF_LOCK(sc_if);
1817
1818	idx = sc_if->sk_cdata.sk_tx_prod;
1819
1820	while(sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf == NULL) {
1821		IF_DEQUEUE(&ifp->if_snd, m_head);
1822		if (m_head == NULL)
1823			break;
1824
1825		/*
1826		 * Pack the data into the transmit ring. If we
1827		 * don't have room, set the OACTIVE flag and wait
1828		 * for the NIC to drain the ring.
1829		 */
1830		if (sk_encap(sc_if, m_head, &idx)) {
1831			IF_PREPEND(&ifp->if_snd, m_head);
1832			ifp->if_flags |= IFF_OACTIVE;
1833			break;
1834		}
1835
1836		/*
1837		 * If there's a BPF listener, bounce a copy of this frame
1838		 * to him.
1839		 */
1840		BPF_MTAP(ifp, m_head);
1841	}
1842
1843	/* Transmit */
1844	sc_if->sk_cdata.sk_tx_prod = idx;
1845	CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_START);
1846
1847	/* Set a timeout in case the chip goes out to lunch. */
1848	ifp->if_timer = 5;
1849	SK_IF_UNLOCK(sc_if);
1850
1851	return;
1852}
1853
1854
1855static void
1856sk_watchdog(ifp)
1857	struct ifnet		*ifp;
1858{
1859	struct sk_if_softc	*sc_if;
1860
1861	sc_if = ifp->if_softc;
1862
1863	printf("sk%d: watchdog timeout\n", sc_if->sk_unit);
1864	sk_init(sc_if);
1865
1866	return;
1867}
1868
1869static void
1870skc_shutdown(dev)
1871	device_t		dev;
1872{
1873	struct sk_softc		*sc;
1874
1875	sc = device_get_softc(dev);
1876	SK_LOCK(sc);
1877
1878	/* Turn off the 'driver is loaded' LED. */
1879	CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_OFF);
1880
1881	/*
1882	 * Reset the GEnesis controller. Doing this should also
1883	 * assert the resets on the attached XMAC(s).
1884	 */
1885	sk_reset(sc);
1886	SK_UNLOCK(sc);
1887
1888	return;
1889}
1890
1891static void
1892sk_rxeof(sc_if)
1893	struct sk_if_softc	*sc_if;
1894{
1895	struct sk_softc		*sc;
1896	struct mbuf		*m;
1897	struct ifnet		*ifp;
1898	struct sk_chain		*cur_rx;
1899	int			total_len = 0;
1900	int			i;
1901	u_int32_t		rxstat;
1902
1903	sc = sc_if->sk_softc;
1904	ifp = &sc_if->arpcom.ac_if;
1905	i = sc_if->sk_cdata.sk_rx_prod;
1906	cur_rx = &sc_if->sk_cdata.sk_rx_chain[i];
1907
1908	SK_LOCK_ASSERT(sc);
1909
1910	while(!(sc_if->sk_rdata->sk_rx_ring[i].sk_ctl & SK_RXCTL_OWN)) {
1911
1912		cur_rx = &sc_if->sk_cdata.sk_rx_chain[i];
1913		rxstat = sc_if->sk_rdata->sk_rx_ring[i].sk_xmac_rxstat;
1914		m = cur_rx->sk_mbuf;
1915		cur_rx->sk_mbuf = NULL;
1916		total_len = SK_RXBYTES(sc_if->sk_rdata->sk_rx_ring[i].sk_ctl);
1917		SK_INC(i, SK_RX_RING_CNT);
1918
1919		if (rxstat & XM_RXSTAT_ERRFRAME) {
1920			ifp->if_ierrors++;
1921			sk_newbuf(sc_if, cur_rx, m);
1922			continue;
1923		}
1924
1925		/*
1926		 * Try to allocate a new jumbo buffer. If that
1927		 * fails, copy the packet to mbufs and put the
1928		 * jumbo buffer back in the ring so it can be
1929		 * re-used. If allocating mbufs fails, then we
1930		 * have to drop the packet.
1931		 */
1932		if (sk_newbuf(sc_if, cur_rx, NULL) == ENOBUFS) {
1933			struct mbuf		*m0;
1934			m0 = m_devget(mtod(m, char *), total_len, ETHER_ALIGN,
1935			    ifp, NULL);
1936			sk_newbuf(sc_if, cur_rx, m);
1937			if (m0 == NULL) {
1938				printf("sk%d: no receive buffers "
1939				    "available -- packet dropped!\n",
1940				    sc_if->sk_unit);
1941				ifp->if_ierrors++;
1942				continue;
1943			}
1944			m = m0;
1945		} else {
1946			m->m_pkthdr.rcvif = ifp;
1947			m->m_pkthdr.len = m->m_len = total_len;
1948		}
1949
1950		ifp->if_ipackets++;
1951		SK_UNLOCK(sc);
1952		(*ifp->if_input)(ifp, m);
1953		SK_LOCK(sc);
1954	}
1955
1956	sc_if->sk_cdata.sk_rx_prod = i;
1957
1958	return;
1959}
1960
1961static void
1962sk_txeof(sc_if)
1963	struct sk_if_softc	*sc_if;
1964{
1965	struct sk_tx_desc	*cur_tx = NULL;
1966	struct ifnet		*ifp;
1967	u_int32_t		idx;
1968
1969	ifp = &sc_if->arpcom.ac_if;
1970
1971	/*
1972	 * Go through our tx ring and free mbufs for those
1973	 * frames that have been sent.
1974	 */
1975	idx = sc_if->sk_cdata.sk_tx_cons;
1976	while(idx != sc_if->sk_cdata.sk_tx_prod) {
1977		cur_tx = &sc_if->sk_rdata->sk_tx_ring[idx];
1978		if (cur_tx->sk_ctl & SK_TXCTL_OWN)
1979			break;
1980		if (cur_tx->sk_ctl & SK_TXCTL_LASTFRAG)
1981			ifp->if_opackets++;
1982		if (sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf != NULL) {
1983			m_freem(sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf);
1984			sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf = NULL;
1985		}
1986		sc_if->sk_cdata.sk_tx_cnt--;
1987		SK_INC(idx, SK_TX_RING_CNT);
1988		ifp->if_timer = 0;
1989	}
1990
1991	sc_if->sk_cdata.sk_tx_cons = idx;
1992
1993	if (cur_tx != NULL)
1994		ifp->if_flags &= ~IFF_OACTIVE;
1995
1996	return;
1997}
1998
1999static void
2000sk_tick(xsc_if)
2001	void			*xsc_if;
2002{
2003	struct sk_if_softc	*sc_if;
2004	struct mii_data		*mii;
2005	struct ifnet		*ifp;
2006	int			i;
2007
2008	sc_if = xsc_if;
2009	SK_IF_LOCK(sc_if);
2010	ifp = &sc_if->arpcom.ac_if;
2011	mii = device_get_softc(sc_if->sk_miibus);
2012
2013	if (!(ifp->if_flags & IFF_UP)) {
2014		SK_IF_UNLOCK(sc_if);
2015		return;
2016	}
2017
2018	if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
2019		sk_intr_bcom(sc_if);
2020		SK_IF_UNLOCK(sc_if);
2021		return;
2022	}
2023
2024	/*
2025	 * According to SysKonnect, the correct way to verify that
2026	 * the link has come back up is to poll bit 0 of the GPIO
2027	 * register three times. This pin has the signal from the
2028	 * link_sync pin connected to it; if we read the same link
2029	 * state 3 times in a row, we know the link is up.
2030	 */
2031	for (i = 0; i < 3; i++) {
2032		if (SK_XM_READ_2(sc_if, XM_GPIO) & XM_GPIO_GP0_SET)
2033			break;
2034	}
2035
2036	if (i != 3) {
2037		sc_if->sk_tick_ch = timeout(sk_tick, sc_if, hz);
2038		SK_IF_UNLOCK(sc_if);
2039		return;
2040	}
2041
2042	/* Turn the GP0 interrupt back on. */
2043	SK_XM_CLRBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET);
2044	SK_XM_READ_2(sc_if, XM_ISR);
2045	mii_tick(mii);
2046	untimeout(sk_tick, sc_if, sc_if->sk_tick_ch);
2047
2048	SK_IF_UNLOCK(sc_if);
2049	return;
2050}
2051
2052static void
2053sk_intr_bcom(sc_if)
2054	struct sk_if_softc	*sc_if;
2055{
2056	struct mii_data		*mii;
2057	struct ifnet		*ifp;
2058	int			status;
2059	mii = device_get_softc(sc_if->sk_miibus);
2060	ifp = &sc_if->arpcom.ac_if;
2061
2062	SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
2063
2064	/*
2065	 * Read the PHY interrupt register to make sure
2066	 * we clear any pending interrupts.
2067	 */
2068	status = sk_xmac_miibus_readreg(sc_if, SK_PHYADDR_BCOM, BRGPHY_MII_ISR);
2069
2070	if (!(ifp->if_flags & IFF_RUNNING)) {
2071		sk_init_xmac(sc_if);
2072		return;
2073	}
2074
2075	if (status & (BRGPHY_ISR_LNK_CHG|BRGPHY_ISR_AN_PR)) {
2076		int			lstat;
2077		lstat = sk_xmac_miibus_readreg(sc_if, SK_PHYADDR_BCOM,
2078		    BRGPHY_MII_AUXSTS);
2079
2080		if (!(lstat & BRGPHY_AUXSTS_LINK) && sc_if->sk_link) {
2081			mii_mediachg(mii);
2082			/* Turn off the link LED. */
2083			SK_IF_WRITE_1(sc_if, 0,
2084			    SK_LINKLED1_CTL, SK_LINKLED_OFF);
2085			sc_if->sk_link = 0;
2086		} else if (status & BRGPHY_ISR_LNK_CHG) {
2087			sk_xmac_miibus_writereg(sc_if, SK_PHYADDR_BCOM,
2088	    		    BRGPHY_MII_IMR, 0xFF00);
2089			mii_tick(mii);
2090			sc_if->sk_link = 1;
2091			/* Turn on the link LED. */
2092			SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL,
2093			    SK_LINKLED_ON|SK_LINKLED_LINKSYNC_OFF|
2094			    SK_LINKLED_BLINK_OFF);
2095		} else {
2096			mii_tick(mii);
2097			sc_if->sk_tick_ch = timeout(sk_tick, sc_if, hz);
2098		}
2099	}
2100
2101	SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
2102
2103	return;
2104}
2105
2106static void
2107sk_intr_xmac(sc_if)
2108	struct sk_if_softc	*sc_if;
2109{
2110	struct sk_softc		*sc;
2111	u_int16_t		status;
2112
2113	sc = sc_if->sk_softc;
2114	status = SK_XM_READ_2(sc_if, XM_ISR);
2115
2116	/*
2117	 * Link has gone down. Start MII tick timeout to
2118	 * watch for link resync.
2119	 */
2120	if (sc_if->sk_phytype == SK_PHYTYPE_XMAC) {
2121		if (status & XM_ISR_GP0_SET) {
2122			SK_XM_SETBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET);
2123			sc_if->sk_tick_ch = timeout(sk_tick, sc_if, hz);
2124		}
2125
2126		if (status & XM_ISR_AUTONEG_DONE) {
2127			sc_if->sk_tick_ch = timeout(sk_tick, sc_if, hz);
2128		}
2129	}
2130
2131	if (status & XM_IMR_TX_UNDERRUN)
2132		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_TXFIFO);
2133
2134	if (status & XM_IMR_RX_OVERRUN)
2135		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_RXFIFO);
2136
2137	status = SK_XM_READ_2(sc_if, XM_ISR);
2138
2139	return;
2140}
2141
2142static void
2143sk_intr_yukon(sc_if)
2144	struct sk_if_softc	*sc_if;
2145{
2146	int status;
2147
2148	status = SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
2149
2150	return;
2151}
2152
2153static void
2154sk_intr(xsc)
2155	void			*xsc;
2156{
2157	struct sk_softc		*sc = xsc;
2158	struct sk_if_softc	*sc_if0 = NULL, *sc_if1 = NULL;
2159	struct ifnet		*ifp0 = NULL, *ifp1 = NULL;
2160	u_int32_t		status;
2161
2162	SK_LOCK(sc);
2163
2164	sc_if0 = sc->sk_if[SK_PORT_A];
2165	sc_if1 = sc->sk_if[SK_PORT_B];
2166
2167	if (sc_if0 != NULL)
2168		ifp0 = &sc_if0->arpcom.ac_if;
2169	if (sc_if1 != NULL)
2170		ifp1 = &sc_if1->arpcom.ac_if;
2171
2172	for (;;) {
2173		status = CSR_READ_4(sc, SK_ISSR);
2174		if (!(status & sc->sk_intrmask))
2175			break;
2176
2177		/* Handle receive interrupts first. */
2178		if (status & SK_ISR_RX1_EOF) {
2179			sk_rxeof(sc_if0);
2180			CSR_WRITE_4(sc, SK_BMU_RX_CSR0,
2181			    SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START);
2182		}
2183		if (status & SK_ISR_RX2_EOF) {
2184			sk_rxeof(sc_if1);
2185			CSR_WRITE_4(sc, SK_BMU_RX_CSR1,
2186			    SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START);
2187		}
2188
2189		/* Then transmit interrupts. */
2190		if (status & SK_ISR_TX1_S_EOF) {
2191			sk_txeof(sc_if0);
2192			CSR_WRITE_4(sc, SK_BMU_TXS_CSR0,
2193			    SK_TXBMU_CLR_IRQ_EOF);
2194		}
2195		if (status & SK_ISR_TX2_S_EOF) {
2196			sk_txeof(sc_if1);
2197			CSR_WRITE_4(sc, SK_BMU_TXS_CSR1,
2198			    SK_TXBMU_CLR_IRQ_EOF);
2199		}
2200
2201		/* Then MAC interrupts. */
2202		if (status & SK_ISR_MAC1 && ifp0->if_flags & IFF_RUNNING) {
2203			if (sc->sk_type == SK_GENESIS)
2204				sk_intr_xmac(sc_if0);
2205			else
2206				sk_intr_yukon(sc_if0);
2207		}
2208
2209		if (status & SK_ISR_MAC2 && ifp1->if_flags & IFF_RUNNING) {
2210			if (sc->sk_type == SK_GENESIS)
2211				sk_intr_xmac(sc_if1);
2212			else
2213				sk_intr_yukon(sc_if1);
2214		}
2215
2216		if (status & SK_ISR_EXTERNAL_REG) {
2217			if (ifp0 != NULL &&
2218			    sc_if0->sk_phytype == SK_PHYTYPE_BCOM)
2219				sk_intr_bcom(sc_if0);
2220			if (ifp1 != NULL &&
2221			    sc_if1->sk_phytype == SK_PHYTYPE_BCOM)
2222				sk_intr_bcom(sc_if1);
2223		}
2224	}
2225
2226	CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2227
2228	if (ifp0 != NULL && ifp0->if_snd.ifq_head != NULL)
2229		sk_start(ifp0);
2230	if (ifp1 != NULL && ifp1->if_snd.ifq_head != NULL)
2231		sk_start(ifp1);
2232
2233	SK_UNLOCK(sc);
2234
2235	return;
2236}
2237
2238static void
2239sk_init_xmac(sc_if)
2240	struct sk_if_softc	*sc_if;
2241{
2242	struct sk_softc		*sc;
2243	struct ifnet		*ifp;
2244	struct sk_bcom_hack	bhack[] = {
2245	{ 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 }, { 0x17, 0x0013 },
2246	{ 0x15, 0x0404 }, { 0x17, 0x8006 }, { 0x15, 0x0132 }, { 0x17, 0x8006 },
2247	{ 0x15, 0x0232 }, { 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 },
2248	{ 0, 0 } };
2249
2250	sc = sc_if->sk_softc;
2251	ifp = &sc_if->arpcom.ac_if;
2252
2253	/* Unreset the XMAC. */
2254	SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL, SK_TXMACCTL_XMAC_UNRESET);
2255	DELAY(1000);
2256
2257	/* Reset the XMAC's internal state. */
2258	SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
2259
2260	/* Save the XMAC II revision */
2261	sc_if->sk_xmac_rev = XM_XMAC_REV(SK_XM_READ_4(sc_if, XM_DEVID));
2262
2263	/*
2264	 * Perform additional initialization for external PHYs,
2265	 * namely for the 1000baseTX cards that use the XMAC's
2266	 * GMII mode.
2267	 */
2268	if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
2269		int			i = 0;
2270		u_int32_t		val;
2271
2272		/* Take PHY out of reset. */
2273		val = sk_win_read_4(sc, SK_GPIO);
2274		if (sc_if->sk_port == SK_PORT_A)
2275			val |= SK_GPIO_DIR0|SK_GPIO_DAT0;
2276		else
2277			val |= SK_GPIO_DIR2|SK_GPIO_DAT2;
2278		sk_win_write_4(sc, SK_GPIO, val);
2279
2280		/* Enable GMII mode on the XMAC. */
2281		SK_XM_SETBIT_2(sc_if, XM_HWCFG, XM_HWCFG_GMIIMODE);
2282
2283		sk_xmac_miibus_writereg(sc_if, SK_PHYADDR_BCOM,
2284		    BRGPHY_MII_BMCR, BRGPHY_BMCR_RESET);
2285		DELAY(10000);
2286		sk_xmac_miibus_writereg(sc_if, SK_PHYADDR_BCOM,
2287		    BRGPHY_MII_IMR, 0xFFF0);
2288
2289		/*
2290		 * Early versions of the BCM5400 apparently have
2291		 * a bug that requires them to have their reserved
2292		 * registers initialized to some magic values. I don't
2293		 * know what the numbers do, I'm just the messenger.
2294		 */
2295		if (sk_xmac_miibus_readreg(sc_if, SK_PHYADDR_BCOM, 0x03)
2296		    == 0x6041) {
2297			while(bhack[i].reg) {
2298				sk_xmac_miibus_writereg(sc_if, SK_PHYADDR_BCOM,
2299				    bhack[i].reg, bhack[i].val);
2300				i++;
2301			}
2302		}
2303	}
2304
2305	/* Set station address */
2306	SK_XM_WRITE_2(sc_if, XM_PAR0,
2307	    *(u_int16_t *)(&sc_if->arpcom.ac_enaddr[0]));
2308	SK_XM_WRITE_2(sc_if, XM_PAR1,
2309	    *(u_int16_t *)(&sc_if->arpcom.ac_enaddr[2]));
2310	SK_XM_WRITE_2(sc_if, XM_PAR2,
2311	    *(u_int16_t *)(&sc_if->arpcom.ac_enaddr[4]));
2312	SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_STATION);
2313
2314	if (ifp->if_flags & IFF_BROADCAST) {
2315		SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
2316	} else {
2317		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
2318	}
2319
2320	/* We don't need the FCS appended to the packet. */
2321	SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_STRIPFCS);
2322
2323	/* We want short frames padded to 60 bytes. */
2324	SK_XM_SETBIT_2(sc_if, XM_TXCMD, XM_TXCMD_AUTOPAD);
2325
2326	/*
2327	 * Enable the reception of all error frames. This is is
2328	 * a necessary evil due to the design of the XMAC. The
2329	 * XMAC's receive FIFO is only 8K in size, however jumbo
2330	 * frames can be up to 9000 bytes in length. When bad
2331	 * frame filtering is enabled, the XMAC's RX FIFO operates
2332	 * in 'store and forward' mode. For this to work, the
2333	 * entire frame has to fit into the FIFO, but that means
2334	 * that jumbo frames larger than 8192 bytes will be
2335	 * truncated. Disabling all bad frame filtering causes
2336	 * the RX FIFO to operate in streaming mode, in which
2337	 * case the XMAC will start transfering frames out of the
2338	 * RX FIFO as soon as the FIFO threshold is reached.
2339	 */
2340	SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_BADFRAMES|
2341	    XM_MODE_RX_GIANTS|XM_MODE_RX_RUNTS|XM_MODE_RX_CRCERRS|
2342	    XM_MODE_RX_INRANGELEN);
2343
2344	if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
2345		SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK);
2346	else
2347		SK_XM_CLRBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK);
2348
2349	/*
2350	 * Bump up the transmit threshold. This helps hold off transmit
2351	 * underruns when we're blasting traffic from both ports at once.
2352	 */
2353	SK_XM_WRITE_2(sc_if, XM_TX_REQTHRESH, SK_XM_TX_FIFOTHRESH);
2354
2355	/* Set promiscuous mode */
2356	sk_setpromisc(sc_if);
2357
2358	/* Set multicast filter */
2359	sk_setmulti(sc_if);
2360
2361	/* Clear and enable interrupts */
2362	SK_XM_READ_2(sc_if, XM_ISR);
2363	if (sc_if->sk_phytype == SK_PHYTYPE_XMAC)
2364		SK_XM_WRITE_2(sc_if, XM_IMR, XM_INTRS);
2365	else
2366		SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
2367
2368	/* Configure MAC arbiter */
2369	switch(sc_if->sk_xmac_rev) {
2370	case XM_XMAC_REV_B2:
2371		sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_B2);
2372		sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_B2);
2373		sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_B2);
2374		sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_B2);
2375		sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_B2);
2376		sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_B2);
2377		sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_B2);
2378		sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_B2);
2379		sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
2380		break;
2381	case XM_XMAC_REV_C1:
2382		sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_C1);
2383		sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_C1);
2384		sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_C1);
2385		sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_C1);
2386		sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_C1);
2387		sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_C1);
2388		sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_C1);
2389		sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_C1);
2390		sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
2391		break;
2392	default:
2393		break;
2394	}
2395	sk_win_write_2(sc, SK_MACARB_CTL,
2396	    SK_MACARBCTL_UNRESET|SK_MACARBCTL_FASTOE_OFF);
2397
2398	sc_if->sk_link = 1;
2399
2400	return;
2401}
2402
2403static void sk_init_yukon(sc_if)
2404	struct sk_if_softc	*sc_if;
2405{
2406	u_int32_t		phy;
2407	u_int16_t		reg;
2408	int			i;
2409
2410	/* GMAC and GPHY Reset */
2411	SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, SK_GPHY_RESET_SET);
2412	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
2413	DELAY(1000);
2414	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_CLEAR);
2415	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
2416	DELAY(1000);
2417
2418	phy = SK_GPHY_INT_POL_HI | SK_GPHY_DIS_FC | SK_GPHY_DIS_SLEEP |
2419		SK_GPHY_ENA_XC | SK_GPHY_ANEG_ALL | SK_GPHY_ENA_PAUSE;
2420
2421	switch(sc_if->sk_softc->sk_pmd) {
2422	case IFM_1000_SX:
2423	case IFM_1000_LX:
2424		phy |= SK_GPHY_FIBER;
2425		break;
2426
2427	case IFM_1000_CX:
2428	case IFM_1000_T:
2429		phy |= SK_GPHY_COPPER;
2430		break;
2431	}
2432
2433	SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_SET);
2434	DELAY(1000);
2435	SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_CLEAR);
2436	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_LOOP_OFF |
2437		      SK_GMAC_PAUSE_ON | SK_GMAC_RESET_CLEAR);
2438
2439	/* unused read of the interrupt source register */
2440	SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
2441
2442	reg = SK_YU_READ_2(sc_if, YUKON_PAR);
2443
2444	/* MIB Counter Clear Mode set */
2445	reg |= YU_PAR_MIB_CLR;
2446	SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
2447
2448	/* MIB Counter Clear Mode clear */
2449	reg &= ~YU_PAR_MIB_CLR;
2450	SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
2451
2452	/* receive control reg */
2453	SK_YU_WRITE_2(sc_if, YUKON_RCR, YU_RCR_CRCR);
2454
2455	/* transmit parameter register */
2456	SK_YU_WRITE_2(sc_if, YUKON_TPR, YU_TPR_JAM_LEN(0x3) |
2457		      YU_TPR_JAM_IPG(0xb) | YU_TPR_JAM2DATA_IPG(0x1a) );
2458
2459	/* serial mode register */
2460	SK_YU_WRITE_2(sc_if, YUKON_SMR, YU_SMR_DATA_BLIND(0x1c) |
2461		      YU_SMR_MFL_VLAN | YU_SMR_IPG_DATA(0x1e));
2462
2463	/* Setup Yukon's address */
2464	for (i = 0; i < 3; i++) {
2465		/* Write Source Address 1 (unicast filter) */
2466		SK_YU_WRITE_2(sc_if, YUKON_SAL1 + i * 4,
2467			      sc_if->arpcom.ac_enaddr[i * 2] |
2468			      sc_if->arpcom.ac_enaddr[i * 2 + 1] << 8);
2469	}
2470
2471	for (i = 0; i < 3; i++) {
2472		reg = sk_win_read_2(sc_if->sk_softc,
2473				    SK_MAC1_0 + i * 2 + sc_if->sk_port * 8);
2474		SK_YU_WRITE_2(sc_if, YUKON_SAL2 + i * 4, reg);
2475	}
2476
2477	/* Set promiscuous mode */
2478	sk_setpromisc(sc_if);
2479
2480	/* Set multicast filter */
2481	sk_setmulti(sc_if);
2482
2483	/* enable interrupt mask for counter overflows */
2484	SK_YU_WRITE_2(sc_if, YUKON_TIMR, 0);
2485	SK_YU_WRITE_2(sc_if, YUKON_RIMR, 0);
2486	SK_YU_WRITE_2(sc_if, YUKON_TRIMR, 0);
2487
2488	/* Configure RX MAC FIFO */
2489	SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_CLEAR);
2490	SK_IF_WRITE_4(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_OPERATION_ON);
2491
2492	/* Configure TX MAC FIFO */
2493	SK_IF_WRITE_1(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_CLEAR);
2494	SK_IF_WRITE_4(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_OPERATION_ON);
2495}
2496
2497/*
2498 * Note that to properly initialize any part of the GEnesis chip,
2499 * you first have to take it out of reset mode.
2500 */
2501static void
2502sk_init(xsc)
2503	void			*xsc;
2504{
2505	struct sk_if_softc	*sc_if = xsc;
2506	struct sk_softc		*sc;
2507	struct ifnet		*ifp;
2508	struct mii_data		*mii;
2509	u_int16_t		reg;
2510
2511	SK_IF_LOCK(sc_if);
2512
2513	ifp = &sc_if->arpcom.ac_if;
2514	sc = sc_if->sk_softc;
2515	mii = device_get_softc(sc_if->sk_miibus);
2516
2517	/* Cancel pending I/O and free all RX/TX buffers. */
2518	sk_stop(sc_if);
2519
2520	if (sc->sk_type == SK_GENESIS) {
2521		/* Configure LINK_SYNC LED */
2522		SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_ON);
2523		SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL,
2524			SK_LINKLED_LINKSYNC_ON);
2525
2526		/* Configure RX LED */
2527		SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL,
2528			SK_RXLEDCTL_COUNTER_START);
2529
2530		/* Configure TX LED */
2531		SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL,
2532			SK_TXLEDCTL_COUNTER_START);
2533	}
2534
2535	/* Configure I2C registers */
2536
2537	/* Configure XMAC(s) */
2538	switch (sc->sk_type) {
2539	case SK_GENESIS:
2540		sk_init_xmac(sc_if);
2541		break;
2542	case SK_YUKON:
2543		sk_init_yukon(sc_if);
2544		break;
2545	}
2546	mii_mediachg(mii);
2547
2548	if (sc->sk_type == SK_GENESIS) {
2549		/* Configure MAC FIFOs */
2550		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_UNRESET);
2551		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_END, SK_FIFO_END);
2552		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_ON);
2553
2554		SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_UNRESET);
2555		SK_IF_WRITE_4(sc_if, 0, SK_TXF1_END, SK_FIFO_END);
2556		SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_ON);
2557	}
2558
2559	/* Configure transmit arbiter(s) */
2560	SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL,
2561	    SK_TXARCTL_ON|SK_TXARCTL_FSYNC_ON);
2562
2563	/* Configure RAMbuffers */
2564	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_UNRESET);
2565	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_START, sc_if->sk_rx_ramstart);
2566	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_WR_PTR, sc_if->sk_rx_ramstart);
2567	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_RD_PTR, sc_if->sk_rx_ramstart);
2568	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_END, sc_if->sk_rx_ramend);
2569	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_ON);
2570
2571	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_UNRESET);
2572	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_STORENFWD_ON);
2573	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_START, sc_if->sk_tx_ramstart);
2574	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_WR_PTR, sc_if->sk_tx_ramstart);
2575	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_RD_PTR, sc_if->sk_tx_ramstart);
2576	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_END, sc_if->sk_tx_ramend);
2577	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_ON);
2578
2579	/* Configure BMUs */
2580	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_ONLINE);
2581	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_LO,
2582	    vtophys(&sc_if->sk_rdata->sk_rx_ring[0]));
2583	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_HI, 0);
2584
2585	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_ONLINE);
2586	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_LO,
2587	    vtophys(&sc_if->sk_rdata->sk_tx_ring[0]));
2588	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_HI, 0);
2589
2590	/* Init descriptors */
2591	if (sk_init_rx_ring(sc_if) == ENOBUFS) {
2592		printf("sk%d: initialization failed: no "
2593		    "memory for rx buffers\n", sc_if->sk_unit);
2594		sk_stop(sc_if);
2595		SK_IF_UNLOCK(sc_if);
2596		return;
2597	}
2598	sk_init_tx_ring(sc_if);
2599
2600	/* Configure interrupt handling */
2601	CSR_READ_4(sc, SK_ISSR);
2602	if (sc_if->sk_port == SK_PORT_A)
2603		sc->sk_intrmask |= SK_INTRS1;
2604	else
2605		sc->sk_intrmask |= SK_INTRS2;
2606
2607	sc->sk_intrmask |= SK_ISR_EXTERNAL_REG;
2608
2609	CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2610
2611	/* Start BMUs. */
2612	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_RX_START);
2613
2614	switch(sc->sk_type) {
2615	case SK_GENESIS:
2616		/* Enable XMACs TX and RX state machines */
2617		SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_IGNPAUSE);
2618		SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
2619		break;
2620	case SK_YUKON:
2621		reg = SK_YU_READ_2(sc_if, YUKON_GPCR);
2622		reg |= YU_GPCR_TXEN | YU_GPCR_RXEN;
2623		reg &= ~(YU_GPCR_SPEED_EN | YU_GPCR_DPLX_EN);
2624		SK_YU_WRITE_2(sc_if, YUKON_GPCR, reg);
2625	}
2626
2627	ifp->if_flags |= IFF_RUNNING;
2628	ifp->if_flags &= ~IFF_OACTIVE;
2629
2630	SK_IF_UNLOCK(sc_if);
2631
2632	return;
2633}
2634
2635static void
2636sk_stop(sc_if)
2637	struct sk_if_softc	*sc_if;
2638{
2639	int			i;
2640	struct sk_softc		*sc;
2641	struct ifnet		*ifp;
2642
2643	SK_IF_LOCK(sc_if);
2644	sc = sc_if->sk_softc;
2645	ifp = &sc_if->arpcom.ac_if;
2646
2647	untimeout(sk_tick, sc_if, sc_if->sk_tick_ch);
2648
2649	if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
2650		u_int32_t		val;
2651
2652		/* Put PHY back into reset. */
2653		val = sk_win_read_4(sc, SK_GPIO);
2654		if (sc_if->sk_port == SK_PORT_A) {
2655			val |= SK_GPIO_DIR0;
2656			val &= ~SK_GPIO_DAT0;
2657		} else {
2658			val |= SK_GPIO_DIR2;
2659			val &= ~SK_GPIO_DAT2;
2660		}
2661		sk_win_write_4(sc, SK_GPIO, val);
2662	}
2663
2664	/* Turn off various components of this interface. */
2665	SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
2666	switch (sc->sk_type) {
2667	case SK_GENESIS:
2668		SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL, SK_TXMACCTL_XMAC_RESET);
2669		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_RESET);
2670		break;
2671	case SK_YUKON:
2672		SK_IF_WRITE_1(sc_if,0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_SET);
2673		SK_IF_WRITE_1(sc_if,0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_SET);
2674		break;
2675	}
2676	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_OFFLINE);
2677	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
2678	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_OFFLINE);
2679	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
2680	SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL, SK_TXARCTL_OFF);
2681	SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
2682	SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
2683	SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_OFF);
2684	SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_LINKSYNC_OFF);
2685
2686	/* Disable interrupts */
2687	if (sc_if->sk_port == SK_PORT_A)
2688		sc->sk_intrmask &= ~SK_INTRS1;
2689	else
2690		sc->sk_intrmask &= ~SK_INTRS2;
2691	CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2692
2693	SK_XM_READ_2(sc_if, XM_ISR);
2694	SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
2695
2696	/* Free RX and TX mbufs still in the queues. */
2697	for (i = 0; i < SK_RX_RING_CNT; i++) {
2698		if (sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf != NULL) {
2699			m_freem(sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf);
2700			sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf = NULL;
2701		}
2702	}
2703
2704	for (i = 0; i < SK_TX_RING_CNT; i++) {
2705		if (sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf != NULL) {
2706			m_freem(sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf);
2707			sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf = NULL;
2708		}
2709	}
2710
2711	ifp->if_flags &= ~(IFF_RUNNING|IFF_OACTIVE);
2712	SK_IF_UNLOCK(sc_if);
2713	return;
2714}
2715