1/*-
2 * Copyright (c) 2008-2010 Nikolay Denev <ndenev@gmail.com>
3 * Copyright (c) 2007-2008 Alexander Pohoyda <alexander.pohoyda@gmx.net>
4 * Copyright (c) 1997, 1998, 1999
5 *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 *    notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 *    notice, this list of conditions and the following disclaimer in the
14 *    documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 *    must display the following acknowledgement:
17 *	This product includes software developed by Bill Paul.
18 * 4. Neither the name of the author nor the names of any co-contributors
19 *    may be used to endorse or promote products derived from this software
20 *    without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS''
23 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
24 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
25 * PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL AUTHORS OR
26 * THE VOICES IN THEIR HEADS BE LIABLE FOR ANY DIRECT, INDIRECT,
27 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
28 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
29 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
31 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
33 * OF THE POSSIBILITY OF SUCH DAMAGE.
34 */
35
36#include <sys/cdefs.h>
37__FBSDID("$FreeBSD$");
38
39/*
40 * SiS 190/191 PCI Ethernet NIC driver.
41 *
42 * Adapted to SiS 190 NIC by Alexander Pohoyda based on the original
43 * SiS 900 driver by Bill Paul, using SiS 190/191 Solaris driver by
44 * Masayuki Murayama and SiS 190/191 GNU/Linux driver by K.M. Liu
45 * <kmliu@sis.com>.  Thanks to Pyun YongHyeon <pyunyh@gmail.com> for
46 * review and very useful comments.
47 *
48 * Adapted to SiS 191 NIC by Nikolay Denev with further ideas from the
49 * Linux and Solaris drivers.
50 */
51
52#include <sys/param.h>
53#include <sys/systm.h>
54#include <sys/bus.h>
55#include <sys/endian.h>
56#include <sys/kernel.h>
57#include <sys/lock.h>
58#include <sys/malloc.h>
59#include <sys/mbuf.h>
60#include <sys/module.h>
61#include <sys/mutex.h>
62#include <sys/rman.h>
63#include <sys/socket.h>
64#include <sys/sockio.h>
65
66#include <net/bpf.h>
67#include <net/if.h>
68#include <net/if_var.h>
69#include <net/if_arp.h>
70#include <net/ethernet.h>
71#include <net/if_dl.h>
72#include <net/if_media.h>
73#include <net/if_types.h>
74#include <net/if_vlan_var.h>
75
76#include <netinet/in.h>
77#include <netinet/in_systm.h>
78#include <netinet/ip.h>
79#include <netinet/tcp.h>
80
81#include <machine/bus.h>
82#include <machine/in_cksum.h>
83
84#include <dev/mii/mii.h>
85#include <dev/mii/miivar.h>
86
87#include <dev/pci/pcireg.h>
88#include <dev/pci/pcivar.h>
89
90#include <dev/sge/if_sgereg.h>
91
92MODULE_DEPEND(sge, pci, 1, 1, 1);
93MODULE_DEPEND(sge, ether, 1, 1, 1);
94MODULE_DEPEND(sge, miibus, 1, 1, 1);
95
96/* "device miibus0" required.  See GENERIC if you get errors here. */
97#include "miibus_if.h"
98
99/*
100 * Various supported device vendors/types and their names.
101 */
102static struct sge_type sge_devs[] = {
103	{ SIS_VENDORID, SIS_DEVICEID_190, "SiS190 Fast Ethernet" },
104	{ SIS_VENDORID, SIS_DEVICEID_191, "SiS191 Fast/Gigabit Ethernet" },
105	{ 0, 0, NULL }
106};
107
108static int	sge_probe(device_t);
109static int	sge_attach(device_t);
110static int	sge_detach(device_t);
111static int	sge_shutdown(device_t);
112static int	sge_suspend(device_t);
113static int	sge_resume(device_t);
114
115static int	sge_miibus_readreg(device_t, int, int);
116static int	sge_miibus_writereg(device_t, int, int, int);
117static void	sge_miibus_statchg(device_t);
118
119static int	sge_newbuf(struct sge_softc *, int);
120static int	sge_encap(struct sge_softc *, struct mbuf **);
121static __inline void
122		sge_discard_rxbuf(struct sge_softc *, int);
123static void	sge_rxeof(struct sge_softc *);
124static void	sge_txeof(struct sge_softc *);
125static void	sge_intr(void *);
126static void	sge_tick(void *);
127static void	sge_start(struct ifnet *);
128static void	sge_start_locked(struct ifnet *);
129static int	sge_ioctl(struct ifnet *, u_long, caddr_t);
130static void	sge_init(void *);
131static void	sge_init_locked(struct sge_softc *);
132static void	sge_stop(struct sge_softc *);
133static void	sge_watchdog(struct sge_softc *);
134static int	sge_ifmedia_upd(struct ifnet *);
135static void	sge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
136
137static int	sge_get_mac_addr_apc(struct sge_softc *, uint8_t *);
138static int	sge_get_mac_addr_eeprom(struct sge_softc *, uint8_t *);
139static uint16_t	sge_read_eeprom(struct sge_softc *, int);
140
141static void	sge_rxfilter(struct sge_softc *);
142static void	sge_setvlan(struct sge_softc *);
143static void	sge_reset(struct sge_softc *);
144static int	sge_list_rx_init(struct sge_softc *);
145static int	sge_list_rx_free(struct sge_softc *);
146static int	sge_list_tx_init(struct sge_softc *);
147static int	sge_list_tx_free(struct sge_softc *);
148
149static int	sge_dma_alloc(struct sge_softc *);
150static void	sge_dma_free(struct sge_softc *);
151static void	sge_dma_map_addr(void *, bus_dma_segment_t *, int, int);
152
153static device_method_t sge_methods[] = {
154	/* Device interface */
155	DEVMETHOD(device_probe,		sge_probe),
156	DEVMETHOD(device_attach,	sge_attach),
157	DEVMETHOD(device_detach,	sge_detach),
158	DEVMETHOD(device_suspend,	sge_suspend),
159	DEVMETHOD(device_resume,	sge_resume),
160	DEVMETHOD(device_shutdown,	sge_shutdown),
161
162	/* MII interface */
163	DEVMETHOD(miibus_readreg,	sge_miibus_readreg),
164	DEVMETHOD(miibus_writereg,	sge_miibus_writereg),
165	DEVMETHOD(miibus_statchg,	sge_miibus_statchg),
166
167	DEVMETHOD_END
168};
169
170static driver_t sge_driver = {
171	"sge", sge_methods, sizeof(struct sge_softc)
172};
173
174static devclass_t sge_devclass;
175
176DRIVER_MODULE(sge, pci, sge_driver, sge_devclass, 0, 0);
177DRIVER_MODULE(miibus, sge, miibus_driver, miibus_devclass, 0, 0);
178
179/*
180 * Register space access macros.
181 */
182#define	CSR_WRITE_4(sc, reg, val)	bus_write_4(sc->sge_res, reg, val)
183#define	CSR_WRITE_2(sc, reg, val)	bus_write_2(sc->sge_res, reg, val)
184#define	CSR_WRITE_1(cs, reg, val)	bus_write_1(sc->sge_res, reg, val)
185
186#define	CSR_READ_4(sc, reg)		bus_read_4(sc->sge_res, reg)
187#define	CSR_READ_2(sc, reg)		bus_read_2(sc->sge_res, reg)
188#define	CSR_READ_1(sc, reg)		bus_read_1(sc->sge_res, reg)
189
190/* Define to show Tx/Rx error status. */
191#undef SGE_SHOW_ERRORS
192
193#define	SGE_CSUM_FEATURES	(CSUM_IP | CSUM_TCP | CSUM_UDP)
194
195static void
196sge_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
197{
198	bus_addr_t *p;
199
200	if (error != 0)
201		return;
202	KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg));
203	p  = arg;
204	*p = segs->ds_addr;
205}
206
207/*
208 * Read a sequence of words from the EEPROM.
209 */
210static uint16_t
211sge_read_eeprom(struct sge_softc *sc, int offset)
212{
213	uint32_t val;
214	int i;
215
216	KASSERT(offset <= EI_OFFSET, ("EEPROM offset too big"));
217	CSR_WRITE_4(sc, ROMInterface,
218	    EI_REQ | EI_OP_RD | (offset << EI_OFFSET_SHIFT));
219	DELAY(500);
220	for (i = 0; i < SGE_TIMEOUT; i++) {
221		val = CSR_READ_4(sc, ROMInterface);
222		if ((val & EI_REQ) == 0)
223			break;
224		DELAY(100);
225	}
226	if (i == SGE_TIMEOUT) {
227		device_printf(sc->sge_dev,
228		    "EEPROM read timeout : 0x%08x\n", val);
229		return (0xffff);
230	}
231
232	return ((val & EI_DATA) >> EI_DATA_SHIFT);
233}
234
235static int
236sge_get_mac_addr_eeprom(struct sge_softc *sc, uint8_t *dest)
237{
238	uint16_t val;
239	int i;
240
241	val = sge_read_eeprom(sc, EEPROMSignature);
242	if (val == 0xffff || val == 0) {
243		device_printf(sc->sge_dev,
244		    "invalid EEPROM signature : 0x%04x\n", val);
245		return (EINVAL);
246	}
247
248	for (i = 0; i < ETHER_ADDR_LEN; i += 2) {
249		val = sge_read_eeprom(sc, EEPROMMACAddr + i / 2);
250		dest[i + 0] = (uint8_t)val;
251		dest[i + 1] = (uint8_t)(val >> 8);
252	}
253
254	if ((sge_read_eeprom(sc, EEPROMInfo) & 0x80) != 0)
255		sc->sge_flags |= SGE_FLAG_RGMII;
256	return (0);
257}
258
259/*
260 * For SiS96x, APC CMOS RAM is used to store ethernet address.
261 * APC CMOS RAM is accessed through ISA bridge.
262 */
263static int
264sge_get_mac_addr_apc(struct sge_softc *sc, uint8_t *dest)
265{
266#if defined(__amd64__) || defined(__i386__)
267	devclass_t pci;
268	device_t bus, dev = NULL;
269	device_t *kids;
270	struct apc_tbl {
271		uint16_t vid;
272		uint16_t did;
273	} *tp, apc_tbls[] = {
274		{ SIS_VENDORID, 0x0965 },
275		{ SIS_VENDORID, 0x0966 },
276		{ SIS_VENDORID, 0x0968 }
277	};
278	uint8_t reg;
279	int busnum, i, j, numkids;
280
281	pci = devclass_find("pci");
282	for (busnum = 0; busnum < devclass_get_maxunit(pci); busnum++) {
283		bus = devclass_get_device(pci, busnum);
284		if (!bus)
285			continue;
286		if (device_get_children(bus, &kids, &numkids) != 0)
287			continue;
288		for (i = 0; i < numkids; i++) {
289			dev = kids[i];
290			if (pci_get_class(dev) == PCIC_BRIDGE &&
291			    pci_get_subclass(dev) == PCIS_BRIDGE_ISA) {
292				tp = apc_tbls;
293				for (j = 0; j < nitems(apc_tbls); j++) {
294					if (pci_get_vendor(dev) == tp->vid &&
295					    pci_get_device(dev) == tp->did) {
296						free(kids, M_TEMP);
297						goto apc_found;
298					}
299					tp++;
300				}
301			}
302                }
303		free(kids, M_TEMP);
304	}
305	device_printf(sc->sge_dev, "couldn't find PCI-ISA bridge\n");
306	return (EINVAL);
307apc_found:
308	/* Enable port 0x78 and 0x79 to access APC registers. */
309	reg = pci_read_config(dev, 0x48, 1);
310	pci_write_config(dev, 0x48, reg & ~0x02, 1);
311	DELAY(50);
312	pci_read_config(dev, 0x48, 1);
313	/* Read stored ethernet address. */
314	for (i = 0; i < ETHER_ADDR_LEN; i++) {
315		outb(0x78, 0x09 + i);
316		dest[i] = inb(0x79);
317	}
318	outb(0x78, 0x12);
319	if ((inb(0x79) & 0x80) != 0)
320		sc->sge_flags |= SGE_FLAG_RGMII;
321	/* Restore access to APC registers. */
322	pci_write_config(dev, 0x48, reg, 1);
323
324	return (0);
325#else
326	return (EINVAL);
327#endif
328}
329
330static int
331sge_miibus_readreg(device_t dev, int phy, int reg)
332{
333	struct sge_softc *sc;
334	uint32_t val;
335	int i;
336
337	sc = device_get_softc(dev);
338	CSR_WRITE_4(sc, GMIIControl, (phy << GMI_PHY_SHIFT) |
339	    (reg << GMI_REG_SHIFT) | GMI_OP_RD | GMI_REQ);
340	DELAY(10);
341	for (i = 0; i < SGE_TIMEOUT; i++) {
342		val = CSR_READ_4(sc, GMIIControl);
343		if ((val & GMI_REQ) == 0)
344			break;
345		DELAY(10);
346	}
347	if (i == SGE_TIMEOUT) {
348		device_printf(sc->sge_dev, "PHY read timeout : %d\n", reg);
349		return (0);
350	}
351	return ((val & GMI_DATA) >> GMI_DATA_SHIFT);
352}
353
354static int
355sge_miibus_writereg(device_t dev, int phy, int reg, int data)
356{
357	struct sge_softc *sc;
358	uint32_t val;
359	int i;
360
361	sc = device_get_softc(dev);
362	CSR_WRITE_4(sc, GMIIControl, (phy << GMI_PHY_SHIFT) |
363	    (reg << GMI_REG_SHIFT) | (data << GMI_DATA_SHIFT) |
364	    GMI_OP_WR | GMI_REQ);
365	DELAY(10);
366	for (i = 0; i < SGE_TIMEOUT; i++) {
367		val = CSR_READ_4(sc, GMIIControl);
368		if ((val & GMI_REQ) == 0)
369			break;
370		DELAY(10);
371	}
372	if (i == SGE_TIMEOUT)
373		device_printf(sc->sge_dev, "PHY write timeout : %d\n", reg);
374	return (0);
375}
376
377static void
378sge_miibus_statchg(device_t dev)
379{
380	struct sge_softc *sc;
381	struct mii_data *mii;
382	struct ifnet *ifp;
383	uint32_t ctl, speed;
384
385	sc = device_get_softc(dev);
386	mii = device_get_softc(sc->sge_miibus);
387	ifp = sc->sge_ifp;
388	if (mii == NULL || ifp == NULL ||
389	    (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
390		return;
391	speed = 0;
392	sc->sge_flags &= ~SGE_FLAG_LINK;
393	if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
394	    (IFM_ACTIVE | IFM_AVALID)) {
395		switch (IFM_SUBTYPE(mii->mii_media_active)) {
396		case IFM_10_T:
397			sc->sge_flags |= SGE_FLAG_LINK;
398			speed = SC_SPEED_10;
399			break;
400		case IFM_100_TX:
401			sc->sge_flags |= SGE_FLAG_LINK;
402			speed = SC_SPEED_100;
403			break;
404		case IFM_1000_T:
405			if ((sc->sge_flags & SGE_FLAG_FASTETHER) == 0) {
406				sc->sge_flags |= SGE_FLAG_LINK;
407				speed = SC_SPEED_1000;
408			}
409			break;
410		default:
411			break;
412                }
413        }
414	if ((sc->sge_flags & SGE_FLAG_LINK) == 0)
415		return;
416	/* Reprogram MAC to resolved speed/duplex/flow-control parameters. */
417	ctl = CSR_READ_4(sc, StationControl);
418	ctl &= ~(0x0f000000 | SC_FDX | SC_SPEED_MASK);
419	if (speed == SC_SPEED_1000) {
420		ctl |= 0x07000000;
421		sc->sge_flags |= SGE_FLAG_SPEED_1000;
422	} else {
423		ctl |= 0x04000000;
424		sc->sge_flags &= ~SGE_FLAG_SPEED_1000;
425	}
426#ifdef notyet
427	if ((sc->sge_flags & SGE_FLAG_GMII) != 0)
428		ctl |= 0x03000000;
429#endif
430	ctl |= speed;
431	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
432		ctl |= SC_FDX;
433		sc->sge_flags |= SGE_FLAG_FDX;
434	} else
435		sc->sge_flags &= ~SGE_FLAG_FDX;
436	CSR_WRITE_4(sc, StationControl, ctl);
437	if ((sc->sge_flags & SGE_FLAG_RGMII) != 0) {
438		CSR_WRITE_4(sc, RGMIIDelay, 0x0441);
439		CSR_WRITE_4(sc, RGMIIDelay, 0x0440);
440	}
441}
442
443static void
444sge_rxfilter(struct sge_softc *sc)
445{
446	struct ifnet *ifp;
447	struct ifmultiaddr *ifma;
448	uint32_t crc, hashes[2];
449	uint16_t rxfilt;
450
451	SGE_LOCK_ASSERT(sc);
452
453	ifp = sc->sge_ifp;
454	rxfilt = CSR_READ_2(sc, RxMacControl);
455	rxfilt &= ~(AcceptBroadcast | AcceptAllPhys | AcceptMulticast);
456	rxfilt |= AcceptMyPhys;
457	if ((ifp->if_flags & IFF_BROADCAST) != 0)
458		rxfilt |= AcceptBroadcast;
459	if ((ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) != 0) {
460		if ((ifp->if_flags & IFF_PROMISC) != 0)
461			rxfilt |= AcceptAllPhys;
462		rxfilt |= AcceptMulticast;
463		hashes[0] = 0xFFFFFFFF;
464		hashes[1] = 0xFFFFFFFF;
465	} else {
466		rxfilt |= AcceptMulticast;
467		hashes[0] = hashes[1] = 0;
468		/* Now program new ones. */
469		if_maddr_rlock(ifp);
470		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
471			if (ifma->ifma_addr->sa_family != AF_LINK)
472				continue;
473			crc = ether_crc32_be(LLADDR((struct sockaddr_dl *)
474			    ifma->ifma_addr), ETHER_ADDR_LEN);
475			hashes[crc >> 31] |= 1 << ((crc >> 26) & 0x1f);
476		}
477		if_maddr_runlock(ifp);
478	}
479	CSR_WRITE_2(sc, RxMacControl, rxfilt);
480	CSR_WRITE_4(sc, RxHashTable, hashes[0]);
481	CSR_WRITE_4(sc, RxHashTable2, hashes[1]);
482}
483
484static void
485sge_setvlan(struct sge_softc *sc)
486{
487	struct ifnet *ifp;
488	uint16_t rxfilt;
489
490	SGE_LOCK_ASSERT(sc);
491
492	ifp = sc->sge_ifp;
493	if ((ifp->if_capabilities & IFCAP_VLAN_HWTAGGING) == 0)
494		return;
495	rxfilt = CSR_READ_2(sc, RxMacControl);
496	if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0)
497		rxfilt |= RXMAC_STRIP_VLAN;
498	else
499		rxfilt &= ~RXMAC_STRIP_VLAN;
500	CSR_WRITE_2(sc, RxMacControl, rxfilt);
501}
502
503static void
504sge_reset(struct sge_softc *sc)
505{
506
507	CSR_WRITE_4(sc, IntrMask, 0);
508	CSR_WRITE_4(sc, IntrStatus, 0xffffffff);
509
510	/* Soft reset. */
511	CSR_WRITE_4(sc, IntrControl, 0x8000);
512	CSR_READ_4(sc, IntrControl);
513	DELAY(100);
514	CSR_WRITE_4(sc, IntrControl, 0);
515	/* Stop MAC. */
516	CSR_WRITE_4(sc, TX_CTL, 0x1a00);
517	CSR_WRITE_4(sc, RX_CTL, 0x1a00);
518
519	CSR_WRITE_4(sc, IntrMask, 0);
520	CSR_WRITE_4(sc, IntrStatus, 0xffffffff);
521
522	CSR_WRITE_4(sc, GMIIControl, 0);
523}
524
525/*
526 * Probe for an SiS chip. Check the PCI vendor and device
527 * IDs against our list and return a device name if we find a match.
528 */
529static int
530sge_probe(device_t dev)
531{
532	struct sge_type *t;
533
534	t = sge_devs;
535	while (t->sge_name != NULL) {
536		if ((pci_get_vendor(dev) == t->sge_vid) &&
537		    (pci_get_device(dev) == t->sge_did)) {
538			device_set_desc(dev, t->sge_name);
539			return (BUS_PROBE_DEFAULT);
540		}
541		t++;
542	}
543
544	return (ENXIO);
545}
546
547/*
548 * Attach the interface.  Allocate softc structures, do ifmedia
549 * setup and ethernet/BPF attach.
550 */
551static int
552sge_attach(device_t dev)
553{
554	struct sge_softc *sc;
555	struct ifnet *ifp;
556	uint8_t eaddr[ETHER_ADDR_LEN];
557	int error = 0, rid;
558
559	sc = device_get_softc(dev);
560	sc->sge_dev = dev;
561
562	mtx_init(&sc->sge_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
563	    MTX_DEF);
564        callout_init_mtx(&sc->sge_stat_ch, &sc->sge_mtx, 0);
565
566	/*
567	 * Map control/status registers.
568	 */
569	pci_enable_busmaster(dev);
570
571	/* Allocate resources. */
572	sc->sge_res_id = PCIR_BAR(0);
573	sc->sge_res_type = SYS_RES_MEMORY;
574	sc->sge_res = bus_alloc_resource_any(dev, sc->sge_res_type,
575	    &sc->sge_res_id, RF_ACTIVE);
576	if (sc->sge_res == NULL) {
577		device_printf(dev, "couldn't allocate resource\n");
578		error = ENXIO;
579		goto fail;
580	}
581
582	rid = 0;
583	sc->sge_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
584	    RF_SHAREABLE | RF_ACTIVE);
585	if (sc->sge_irq == NULL) {
586		device_printf(dev, "couldn't allocate IRQ resources\n");
587		error = ENXIO;
588		goto fail;
589	}
590	sc->sge_rev = pci_get_revid(dev);
591	if (pci_get_device(dev) == SIS_DEVICEID_190)
592		sc->sge_flags |= SGE_FLAG_FASTETHER | SGE_FLAG_SIS190;
593	/* Reset the adapter. */
594	sge_reset(sc);
595
596	/* Get MAC address from the EEPROM. */
597	if ((pci_read_config(dev, 0x73, 1) & 0x01) != 0)
598		sge_get_mac_addr_apc(sc, eaddr);
599	else
600		sge_get_mac_addr_eeprom(sc, eaddr);
601
602	if ((error = sge_dma_alloc(sc)) != 0)
603		goto fail;
604
605	ifp = sc->sge_ifp = if_alloc(IFT_ETHER);
606	if (ifp == NULL) {
607		device_printf(dev, "cannot allocate ifnet structure.\n");
608		error = ENOSPC;
609		goto fail;
610	}
611	ifp->if_softc = sc;
612	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
613	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
614	ifp->if_ioctl = sge_ioctl;
615	ifp->if_start = sge_start;
616	ifp->if_init = sge_init;
617	ifp->if_snd.ifq_drv_maxlen = SGE_TX_RING_CNT - 1;
618	IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen);
619	IFQ_SET_READY(&ifp->if_snd);
620	ifp->if_capabilities = IFCAP_TXCSUM | IFCAP_RXCSUM | IFCAP_TSO4;
621	ifp->if_hwassist = SGE_CSUM_FEATURES | CSUM_TSO;
622	ifp->if_capenable = ifp->if_capabilities;
623	/*
624	 * Do MII setup.
625	 */
626	error = mii_attach(dev, &sc->sge_miibus, ifp, sge_ifmedia_upd,
627	    sge_ifmedia_sts, BMSR_DEFCAPMASK, MII_PHY_ANY, MII_OFFSET_ANY, 0);
628	if (error != 0) {
629		device_printf(dev, "attaching PHYs failed\n");
630		goto fail;
631	}
632
633	/*
634	 * Call MI attach routine.
635	 */
636	ether_ifattach(ifp, eaddr);
637
638	/* VLAN setup. */
639	ifp->if_capabilities |= IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_HWCSUM |
640	    IFCAP_VLAN_HWTSO | IFCAP_VLAN_MTU;
641	ifp->if_capenable = ifp->if_capabilities;
642	/* Tell the upper layer(s) we support long frames. */
643	ifp->if_hdrlen = sizeof(struct ether_vlan_header);
644
645	/* Hook interrupt last to avoid having to lock softc */
646	error = bus_setup_intr(dev, sc->sge_irq, INTR_TYPE_NET | INTR_MPSAFE,
647	    NULL, sge_intr, sc, &sc->sge_intrhand);
648	if (error) {
649		device_printf(dev, "couldn't set up irq\n");
650		ether_ifdetach(ifp);
651		goto fail;
652	}
653
654fail:
655	if (error)
656		sge_detach(dev);
657
658	return (error);
659}
660
661/*
662 * Shutdown hardware and free up resources.  This can be called any
663 * time after the mutex has been initialized.  It is called in both
664 * the error case in attach and the normal detach case so it needs
665 * to be careful about only freeing resources that have actually been
666 * allocated.
667 */
668static int
669sge_detach(device_t dev)
670{
671	struct sge_softc *sc;
672	struct ifnet *ifp;
673
674	sc = device_get_softc(dev);
675	ifp = sc->sge_ifp;
676	/* These should only be active if attach succeeded. */
677	if (device_is_attached(dev)) {
678		ether_ifdetach(ifp);
679		SGE_LOCK(sc);
680		sge_stop(sc);
681		SGE_UNLOCK(sc);
682		callout_drain(&sc->sge_stat_ch);
683	}
684	if (sc->sge_miibus)
685		device_delete_child(dev, sc->sge_miibus);
686	bus_generic_detach(dev);
687
688	if (sc->sge_intrhand)
689		bus_teardown_intr(dev, sc->sge_irq, sc->sge_intrhand);
690	if (sc->sge_irq)
691		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sge_irq);
692	if (sc->sge_res)
693		bus_release_resource(dev, sc->sge_res_type, sc->sge_res_id,
694		    sc->sge_res);
695	if (ifp)
696		if_free(ifp);
697	sge_dma_free(sc);
698	mtx_destroy(&sc->sge_mtx);
699
700	return (0);
701}
702
703/*
704 * Stop all chip I/O so that the kernel's probe routines don't
705 * get confused by errant DMAs when rebooting.
706 */
707static int
708sge_shutdown(device_t dev)
709{
710	struct sge_softc *sc;
711
712	sc = device_get_softc(dev);
713	SGE_LOCK(sc);
714	sge_stop(sc);
715	SGE_UNLOCK(sc);
716	return (0);
717}
718
719static int
720sge_suspend(device_t dev)
721{
722	struct sge_softc *sc;
723	struct ifnet *ifp;
724
725	sc = device_get_softc(dev);
726	SGE_LOCK(sc);
727	ifp = sc->sge_ifp;
728	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
729		sge_stop(sc);
730	SGE_UNLOCK(sc);
731	return (0);
732}
733
734static int
735sge_resume(device_t dev)
736{
737	struct sge_softc *sc;
738	struct ifnet *ifp;
739
740	sc = device_get_softc(dev);
741	SGE_LOCK(sc);
742	ifp = sc->sge_ifp;
743	if ((ifp->if_flags & IFF_UP) != 0)
744		sge_init_locked(sc);
745	SGE_UNLOCK(sc);
746	return (0);
747}
748
749static int
750sge_dma_alloc(struct sge_softc *sc)
751{
752	struct sge_chain_data *cd;
753	struct sge_list_data *ld;
754	struct sge_rxdesc *rxd;
755	struct sge_txdesc *txd;
756	int error, i;
757
758	cd = &sc->sge_cdata;
759	ld = &sc->sge_ldata;
760	error = bus_dma_tag_create(bus_get_dma_tag(sc->sge_dev),
761	    1, 0,			/* alignment, boundary */
762	    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
763	    BUS_SPACE_MAXADDR,		/* highaddr */
764	    NULL, NULL,			/* filter, filterarg */
765	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
766	    1,				/* nsegments */
767	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
768	    0,				/* flags */
769	    NULL,			/* lockfunc */
770	    NULL,			/* lockarg */
771	    &cd->sge_tag);
772	if (error != 0) {
773		device_printf(sc->sge_dev,
774		    "could not create parent DMA tag.\n");
775		goto fail;
776	}
777
778	/* RX descriptor ring */
779	error = bus_dma_tag_create(cd->sge_tag,
780	    SGE_DESC_ALIGN, 0,		/* alignment, boundary */
781	    BUS_SPACE_MAXADDR,		/* lowaddr */
782	    BUS_SPACE_MAXADDR,		/* highaddr */
783	    NULL, NULL,			/* filter, filterarg */
784	    SGE_RX_RING_SZ, 1,		/* maxsize,nsegments */
785	    SGE_RX_RING_SZ,		/* maxsegsize */
786	    0,				/* flags */
787	    NULL,			/* lockfunc */
788	    NULL,			/* lockarg */
789	    &cd->sge_rx_tag);
790	if (error != 0) {
791		device_printf(sc->sge_dev,
792		    "could not create Rx ring DMA tag.\n");
793		goto fail;
794	}
795	/* Allocate DMA'able memory and load DMA map for RX ring. */
796	error = bus_dmamem_alloc(cd->sge_rx_tag, (void **)&ld->sge_rx_ring,
797	    BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT,
798	    &cd->sge_rx_dmamap);
799	if (error != 0) {
800		device_printf(sc->sge_dev,
801		    "could not allocate DMA'able memory for Rx ring.\n");
802		goto fail;
803	}
804	error = bus_dmamap_load(cd->sge_rx_tag, cd->sge_rx_dmamap,
805	    ld->sge_rx_ring, SGE_RX_RING_SZ, sge_dma_map_addr,
806	    &ld->sge_rx_paddr, BUS_DMA_NOWAIT);
807	if (error != 0) {
808		device_printf(sc->sge_dev,
809		    "could not load DMA'able memory for Rx ring.\n");
810	}
811
812	/* TX descriptor ring */
813	error = bus_dma_tag_create(cd->sge_tag,
814	    SGE_DESC_ALIGN, 0,		/* alignment, boundary */
815	    BUS_SPACE_MAXADDR,		/* lowaddr */
816	    BUS_SPACE_MAXADDR,		/* highaddr */
817	    NULL, NULL,			/* filter, filterarg */
818	    SGE_TX_RING_SZ, 1,		/* maxsize,nsegments */
819	    SGE_TX_RING_SZ,		/* maxsegsize */
820	    0,				/* flags */
821	    NULL,			/* lockfunc */
822	    NULL,			/* lockarg */
823	    &cd->sge_tx_tag);
824	if (error != 0) {
825		device_printf(sc->sge_dev,
826		    "could not create Rx ring DMA tag.\n");
827		goto fail;
828	}
829	/* Allocate DMA'able memory and load DMA map for TX ring. */
830	error = bus_dmamem_alloc(cd->sge_tx_tag, (void **)&ld->sge_tx_ring,
831	    BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT,
832	    &cd->sge_tx_dmamap);
833	if (error != 0) {
834		device_printf(sc->sge_dev,
835		    "could not allocate DMA'able memory for Tx ring.\n");
836		goto fail;
837	}
838	error = bus_dmamap_load(cd->sge_tx_tag, cd->sge_tx_dmamap,
839	    ld->sge_tx_ring, SGE_TX_RING_SZ, sge_dma_map_addr,
840	    &ld->sge_tx_paddr, BUS_DMA_NOWAIT);
841	if (error != 0) {
842		device_printf(sc->sge_dev,
843		    "could not load DMA'able memory for Rx ring.\n");
844		goto fail;
845	}
846
847	/* Create DMA tag for Tx buffers. */
848	error = bus_dma_tag_create(cd->sge_tag, 1, 0, BUS_SPACE_MAXADDR,
849	    BUS_SPACE_MAXADDR, NULL, NULL, SGE_TSO_MAXSIZE, SGE_MAXTXSEGS,
850	    SGE_TSO_MAXSEGSIZE, 0, NULL, NULL, &cd->sge_txmbuf_tag);
851	if (error != 0) {
852		device_printf(sc->sge_dev,
853		    "could not create Tx mbuf DMA tag.\n");
854		goto fail;
855	}
856
857	/* Create DMA tag for Rx buffers. */
858	error = bus_dma_tag_create(cd->sge_tag, SGE_RX_BUF_ALIGN, 0,
859	    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, 1,
860	    MCLBYTES, 0, NULL, NULL, &cd->sge_rxmbuf_tag);
861	if (error != 0) {
862		device_printf(sc->sge_dev,
863		    "could not create Rx mbuf DMA tag.\n");
864		goto fail;
865	}
866
867	/* Create DMA maps for Tx buffers. */
868	for (i = 0; i < SGE_TX_RING_CNT; i++) {
869		txd = &cd->sge_txdesc[i];
870		txd->tx_m = NULL;
871		txd->tx_dmamap = NULL;
872		txd->tx_ndesc = 0;
873		error = bus_dmamap_create(cd->sge_txmbuf_tag, 0,
874		    &txd->tx_dmamap);
875		if (error != 0) {
876			device_printf(sc->sge_dev,
877			    "could not create Tx DMA map.\n");
878			goto fail;
879		}
880	}
881	/* Create spare DMA map for Rx buffer. */
882	error = bus_dmamap_create(cd->sge_rxmbuf_tag, 0, &cd->sge_rx_spare_map);
883	if (error != 0) {
884		device_printf(sc->sge_dev,
885		    "could not create spare Rx DMA map.\n");
886		goto fail;
887	}
888	/* Create DMA maps for Rx buffers. */
889	for (i = 0; i < SGE_RX_RING_CNT; i++) {
890		rxd = &cd->sge_rxdesc[i];
891		rxd->rx_m = NULL;
892		rxd->rx_dmamap = NULL;
893		error = bus_dmamap_create(cd->sge_rxmbuf_tag, 0,
894		    &rxd->rx_dmamap);
895		if (error) {
896			device_printf(sc->sge_dev,
897			    "could not create Rx DMA map.\n");
898			goto fail;
899		}
900	}
901fail:
902	return (error);
903}
904
905static void
906sge_dma_free(struct sge_softc *sc)
907{
908	struct sge_chain_data *cd;
909	struct sge_list_data *ld;
910	struct sge_rxdesc *rxd;
911	struct sge_txdesc *txd;
912	int i;
913
914	cd = &sc->sge_cdata;
915	ld = &sc->sge_ldata;
916	/* Rx ring. */
917	if (cd->sge_rx_tag != NULL) {
918		if (ld->sge_rx_paddr != 0)
919			bus_dmamap_unload(cd->sge_rx_tag, cd->sge_rx_dmamap);
920		if (ld->sge_rx_ring != NULL)
921			bus_dmamem_free(cd->sge_rx_tag, ld->sge_rx_ring,
922			    cd->sge_rx_dmamap);
923		ld->sge_rx_ring = NULL;
924		ld->sge_rx_paddr = 0;
925		bus_dma_tag_destroy(cd->sge_rx_tag);
926		cd->sge_rx_tag = NULL;
927	}
928	/* Tx ring. */
929	if (cd->sge_tx_tag != NULL) {
930		if (ld->sge_tx_paddr != 0)
931			bus_dmamap_unload(cd->sge_tx_tag, cd->sge_tx_dmamap);
932		if (ld->sge_tx_ring != NULL)
933			bus_dmamem_free(cd->sge_tx_tag, ld->sge_tx_ring,
934			    cd->sge_tx_dmamap);
935		ld->sge_tx_ring = NULL;
936		ld->sge_tx_paddr = 0;
937		bus_dma_tag_destroy(cd->sge_tx_tag);
938		cd->sge_tx_tag = NULL;
939	}
940	/* Rx buffers. */
941	if (cd->sge_rxmbuf_tag != NULL) {
942		for (i = 0; i < SGE_RX_RING_CNT; i++) {
943			rxd = &cd->sge_rxdesc[i];
944			if (rxd->rx_dmamap != NULL) {
945				bus_dmamap_destroy(cd->sge_rxmbuf_tag,
946				    rxd->rx_dmamap);
947				rxd->rx_dmamap = NULL;
948			}
949		}
950		if (cd->sge_rx_spare_map != NULL) {
951			bus_dmamap_destroy(cd->sge_rxmbuf_tag,
952			    cd->sge_rx_spare_map);
953			cd->sge_rx_spare_map = NULL;
954		}
955		bus_dma_tag_destroy(cd->sge_rxmbuf_tag);
956		cd->sge_rxmbuf_tag = NULL;
957	}
958	/* Tx buffers. */
959	if (cd->sge_txmbuf_tag != NULL) {
960		for (i = 0; i < SGE_TX_RING_CNT; i++) {
961			txd = &cd->sge_txdesc[i];
962			if (txd->tx_dmamap != NULL) {
963				bus_dmamap_destroy(cd->sge_txmbuf_tag,
964				    txd->tx_dmamap);
965				txd->tx_dmamap = NULL;
966			}
967		}
968		bus_dma_tag_destroy(cd->sge_txmbuf_tag);
969		cd->sge_txmbuf_tag = NULL;
970	}
971	if (cd->sge_tag != NULL)
972		bus_dma_tag_destroy(cd->sge_tag);
973	cd->sge_tag = NULL;
974}
975
976/*
977 * Initialize the TX descriptors.
978 */
979static int
980sge_list_tx_init(struct sge_softc *sc)
981{
982	struct sge_list_data *ld;
983	struct sge_chain_data *cd;
984
985	SGE_LOCK_ASSERT(sc);
986	ld = &sc->sge_ldata;
987	cd = &sc->sge_cdata;
988	bzero(ld->sge_tx_ring, SGE_TX_RING_SZ);
989	ld->sge_tx_ring[SGE_TX_RING_CNT - 1].sge_flags = htole32(RING_END);
990	bus_dmamap_sync(cd->sge_tx_tag, cd->sge_tx_dmamap,
991	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
992	cd->sge_tx_prod = 0;
993	cd->sge_tx_cons = 0;
994	cd->sge_tx_cnt = 0;
995	return (0);
996}
997
998static int
999sge_list_tx_free(struct sge_softc *sc)
1000{
1001	struct sge_chain_data *cd;
1002	struct sge_txdesc *txd;
1003	int i;
1004
1005	SGE_LOCK_ASSERT(sc);
1006	cd = &sc->sge_cdata;
1007	for (i = 0; i < SGE_TX_RING_CNT; i++) {
1008		txd = &cd->sge_txdesc[i];
1009		if (txd->tx_m != NULL) {
1010			bus_dmamap_sync(cd->sge_txmbuf_tag, txd->tx_dmamap,
1011			    BUS_DMASYNC_POSTWRITE);
1012			bus_dmamap_unload(cd->sge_txmbuf_tag, txd->tx_dmamap);
1013			m_freem(txd->tx_m);
1014			txd->tx_m = NULL;
1015			txd->tx_ndesc = 0;
1016		}
1017	}
1018
1019	return (0);
1020}
1021
1022/*
1023 * Initialize the RX descriptors and allocate mbufs for them.  Note that
1024 * we arrange the descriptors in a closed ring, so that the last descriptor
1025 * has RING_END flag set.
1026 */
1027static int
1028sge_list_rx_init(struct sge_softc *sc)
1029{
1030	struct sge_chain_data *cd;
1031	int i;
1032
1033	SGE_LOCK_ASSERT(sc);
1034	cd = &sc->sge_cdata;
1035	cd->sge_rx_cons = 0;
1036	bzero(sc->sge_ldata.sge_rx_ring, SGE_RX_RING_SZ);
1037	for (i = 0; i < SGE_RX_RING_CNT; i++) {
1038		if (sge_newbuf(sc, i) != 0)
1039			return (ENOBUFS);
1040	}
1041	bus_dmamap_sync(cd->sge_rx_tag, cd->sge_rx_dmamap,
1042	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1043	return (0);
1044}
1045
1046static int
1047sge_list_rx_free(struct sge_softc *sc)
1048{
1049	struct sge_chain_data *cd;
1050	struct sge_rxdesc *rxd;
1051	int i;
1052
1053	SGE_LOCK_ASSERT(sc);
1054	cd = &sc->sge_cdata;
1055	for (i = 0; i < SGE_RX_RING_CNT; i++) {
1056		rxd = &cd->sge_rxdesc[i];
1057		if (rxd->rx_m != NULL) {
1058			bus_dmamap_sync(cd->sge_rxmbuf_tag, rxd->rx_dmamap,
1059			    BUS_DMASYNC_POSTREAD);
1060			bus_dmamap_unload(cd->sge_rxmbuf_tag,
1061			    rxd->rx_dmamap);
1062			m_freem(rxd->rx_m);
1063			rxd->rx_m = NULL;
1064		}
1065	}
1066	return (0);
1067}
1068
1069/*
1070 * Initialize an RX descriptor and attach an MBUF cluster.
1071 */
1072static int
1073sge_newbuf(struct sge_softc *sc, int prod)
1074{
1075	struct mbuf *m;
1076	struct sge_desc *desc;
1077	struct sge_chain_data *cd;
1078	struct sge_rxdesc *rxd;
1079	bus_dma_segment_t segs[1];
1080	bus_dmamap_t map;
1081	int error, nsegs;
1082
1083	SGE_LOCK_ASSERT(sc);
1084
1085	cd = &sc->sge_cdata;
1086	m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
1087	if (m == NULL)
1088		return (ENOBUFS);
1089	m->m_len = m->m_pkthdr.len = MCLBYTES;
1090	m_adj(m, SGE_RX_BUF_ALIGN);
1091	error = bus_dmamap_load_mbuf_sg(cd->sge_rxmbuf_tag,
1092	    cd->sge_rx_spare_map, m, segs, &nsegs, 0);
1093	if (error != 0) {
1094		m_freem(m);
1095		return (error);
1096	}
1097	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
1098	rxd = &cd->sge_rxdesc[prod];
1099	if (rxd->rx_m != NULL) {
1100		bus_dmamap_sync(cd->sge_rxmbuf_tag, rxd->rx_dmamap,
1101		    BUS_DMASYNC_POSTREAD);
1102		bus_dmamap_unload(cd->sge_rxmbuf_tag, rxd->rx_dmamap);
1103	}
1104	map = rxd->rx_dmamap;
1105	rxd->rx_dmamap = cd->sge_rx_spare_map;
1106	cd->sge_rx_spare_map = map;
1107	bus_dmamap_sync(cd->sge_rxmbuf_tag, rxd->rx_dmamap,
1108	    BUS_DMASYNC_PREREAD);
1109	rxd->rx_m = m;
1110
1111	desc = &sc->sge_ldata.sge_rx_ring[prod];
1112	desc->sge_sts_size = 0;
1113	desc->sge_ptr = htole32(SGE_ADDR_LO(segs[0].ds_addr));
1114	desc->sge_flags = htole32(segs[0].ds_len);
1115	if (prod == SGE_RX_RING_CNT - 1)
1116		desc->sge_flags |= htole32(RING_END);
1117	desc->sge_cmdsts = htole32(RDC_OWN | RDC_INTR);
1118	return (0);
1119}
1120
1121static __inline void
1122sge_discard_rxbuf(struct sge_softc *sc, int index)
1123{
1124	struct sge_desc *desc;
1125
1126	desc = &sc->sge_ldata.sge_rx_ring[index];
1127	desc->sge_sts_size = 0;
1128	desc->sge_flags = htole32(MCLBYTES - SGE_RX_BUF_ALIGN);
1129	if (index == SGE_RX_RING_CNT - 1)
1130		desc->sge_flags |= htole32(RING_END);
1131	desc->sge_cmdsts = htole32(RDC_OWN | RDC_INTR);
1132}
1133
1134/*
1135 * A frame has been uploaded: pass the resulting mbuf chain up to
1136 * the higher level protocols.
1137 */
1138static void
1139sge_rxeof(struct sge_softc *sc)
1140{
1141        struct ifnet *ifp;
1142        struct mbuf *m;
1143	struct sge_chain_data *cd;
1144	struct sge_desc	*cur_rx;
1145	uint32_t rxinfo, rxstat;
1146	int cons, prog;
1147
1148	SGE_LOCK_ASSERT(sc);
1149
1150	ifp = sc->sge_ifp;
1151	cd = &sc->sge_cdata;
1152
1153	bus_dmamap_sync(cd->sge_rx_tag, cd->sge_rx_dmamap,
1154	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1155	cons = cd->sge_rx_cons;
1156	for (prog = 0; prog < SGE_RX_RING_CNT; prog++,
1157	    SGE_INC(cons, SGE_RX_RING_CNT)) {
1158		if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
1159			break;
1160		cur_rx = &sc->sge_ldata.sge_rx_ring[cons];
1161		rxinfo = le32toh(cur_rx->sge_cmdsts);
1162		if ((rxinfo & RDC_OWN) != 0)
1163			break;
1164		rxstat = le32toh(cur_rx->sge_sts_size);
1165		if ((rxstat & RDS_CRCOK) == 0 || SGE_RX_ERROR(rxstat) != 0 ||
1166		    SGE_RX_NSEGS(rxstat) != 1) {
1167			/* XXX We don't support multi-segment frames yet. */
1168#ifdef SGE_SHOW_ERRORS
1169			device_printf(sc->sge_dev, "Rx error : 0x%b\n", rxstat,
1170			    RX_ERR_BITS);
1171#endif
1172			sge_discard_rxbuf(sc, cons);
1173			if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
1174			continue;
1175		}
1176		m = cd->sge_rxdesc[cons].rx_m;
1177		if (sge_newbuf(sc, cons) != 0) {
1178			sge_discard_rxbuf(sc, cons);
1179			if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
1180			continue;
1181		}
1182		if ((ifp->if_capenable & IFCAP_RXCSUM) != 0) {
1183			if ((rxinfo & RDC_IP_CSUM) != 0 &&
1184			    (rxinfo & RDC_IP_CSUM_OK) != 0)
1185				m->m_pkthdr.csum_flags |=
1186				    CSUM_IP_CHECKED | CSUM_IP_VALID;
1187			if (((rxinfo & RDC_TCP_CSUM) != 0 &&
1188			    (rxinfo & RDC_TCP_CSUM_OK) != 0) ||
1189			    ((rxinfo & RDC_UDP_CSUM) != 0 &&
1190			    (rxinfo & RDC_UDP_CSUM_OK) != 0)) {
1191				m->m_pkthdr.csum_flags |=
1192				    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
1193				m->m_pkthdr.csum_data = 0xffff;
1194			}
1195		}
1196		/* Check for VLAN tagged frame. */
1197		if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0 &&
1198		    (rxstat & RDS_VLAN) != 0) {
1199			m->m_pkthdr.ether_vtag = rxinfo & RDC_VLAN_MASK;
1200			m->m_flags |= M_VLANTAG;
1201		}
1202		/*
1203		 * Account for 10bytes auto padding which is used
1204		 * to align IP header on 32bit boundary.  Also note,
1205		 * CRC bytes is automatically removed by the
1206		 * hardware.
1207		 */
1208		m->m_data += SGE_RX_PAD_BYTES;
1209		m->m_pkthdr.len = m->m_len = SGE_RX_BYTES(rxstat) -
1210		    SGE_RX_PAD_BYTES;
1211		m->m_pkthdr.rcvif = ifp;
1212		if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
1213		SGE_UNLOCK(sc);
1214		(*ifp->if_input)(ifp, m);
1215		SGE_LOCK(sc);
1216	}
1217
1218	if (prog > 0) {
1219		bus_dmamap_sync(cd->sge_rx_tag, cd->sge_rx_dmamap,
1220		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1221		cd->sge_rx_cons = cons;
1222	}
1223}
1224
1225/*
1226 * A frame was downloaded to the chip.  It's safe for us to clean up
1227 * the list buffers.
1228 */
1229static void
1230sge_txeof(struct sge_softc *sc)
1231{
1232	struct ifnet *ifp;
1233	struct sge_list_data *ld;
1234	struct sge_chain_data *cd;
1235	struct sge_txdesc *txd;
1236	uint32_t txstat;
1237	int cons, nsegs, prod;
1238
1239	SGE_LOCK_ASSERT(sc);
1240
1241	ifp = sc->sge_ifp;
1242	ld = &sc->sge_ldata;
1243	cd = &sc->sge_cdata;
1244
1245	if (cd->sge_tx_cnt == 0)
1246		return;
1247	bus_dmamap_sync(cd->sge_tx_tag, cd->sge_tx_dmamap,
1248	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1249	cons = cd->sge_tx_cons;
1250	prod = cd->sge_tx_prod;
1251	for (; cons != prod;) {
1252		txstat = le32toh(ld->sge_tx_ring[cons].sge_cmdsts);
1253		if ((txstat & TDC_OWN) != 0)
1254			break;
1255		/*
1256		 * Only the first descriptor of multi-descriptor transmission
1257		 * is updated by controller.  Driver should skip entire
1258		 * chained buffers for the transmitted frame. In other words
1259		 * TDC_OWN bit is valid only at the first descriptor of a
1260		 * multi-descriptor transmission.
1261		 */
1262		if (SGE_TX_ERROR(txstat) != 0) {
1263#ifdef SGE_SHOW_ERRORS
1264			device_printf(sc->sge_dev, "Tx error : 0x%b\n",
1265			    txstat, TX_ERR_BITS);
1266#endif
1267			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1268		} else {
1269#ifdef notyet
1270			if_inc_counter(ifp, IFCOUNTER_COLLISIONS, (txstat & 0xFFFF) - 1);
1271#endif
1272			if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
1273		}
1274		txd = &cd->sge_txdesc[cons];
1275		for (nsegs = 0; nsegs < txd->tx_ndesc; nsegs++) {
1276			ld->sge_tx_ring[cons].sge_cmdsts = 0;
1277			SGE_INC(cons, SGE_TX_RING_CNT);
1278		}
1279		/* Reclaim transmitted mbuf. */
1280		KASSERT(txd->tx_m != NULL,
1281		    ("%s: freeing NULL mbuf\n", __func__));
1282		bus_dmamap_sync(cd->sge_txmbuf_tag, txd->tx_dmamap,
1283		    BUS_DMASYNC_POSTWRITE);
1284		bus_dmamap_unload(cd->sge_txmbuf_tag, txd->tx_dmamap);
1285		m_freem(txd->tx_m);
1286		txd->tx_m = NULL;
1287		cd->sge_tx_cnt -= txd->tx_ndesc;
1288		KASSERT(cd->sge_tx_cnt >= 0,
1289		    ("%s: Active Tx desc counter was garbled\n", __func__));
1290		txd->tx_ndesc = 0;
1291		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1292	}
1293	cd->sge_tx_cons = cons;
1294	if (cd->sge_tx_cnt == 0)
1295		sc->sge_timer = 0;
1296}
1297
1298static void
1299sge_tick(void *arg)
1300{
1301	struct sge_softc *sc;
1302	struct mii_data *mii;
1303	struct ifnet *ifp;
1304
1305	sc = arg;
1306	SGE_LOCK_ASSERT(sc);
1307
1308	ifp = sc->sge_ifp;
1309	mii = device_get_softc(sc->sge_miibus);
1310	mii_tick(mii);
1311	if ((sc->sge_flags & SGE_FLAG_LINK) == 0) {
1312		sge_miibus_statchg(sc->sge_dev);
1313		if ((sc->sge_flags & SGE_FLAG_LINK) != 0 &&
1314		    !IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1315			sge_start_locked(ifp);
1316	}
1317	/*
1318	 * Reclaim transmitted frames here as we do not request
1319	 * Tx completion interrupt for every queued frames to
1320	 * reduce excessive interrupts.
1321	 */
1322	sge_txeof(sc);
1323	sge_watchdog(sc);
1324	callout_reset(&sc->sge_stat_ch, hz, sge_tick, sc);
1325}
1326
1327static void
1328sge_intr(void *arg)
1329{
1330	struct sge_softc *sc;
1331	struct ifnet *ifp;
1332	uint32_t status;
1333
1334	sc = arg;
1335	SGE_LOCK(sc);
1336	ifp = sc->sge_ifp;
1337
1338	status = CSR_READ_4(sc, IntrStatus);
1339	if (status == 0xFFFFFFFF || (status & SGE_INTRS) == 0) {
1340		/* Not ours. */
1341		SGE_UNLOCK(sc);
1342		return;
1343	}
1344	/* Acknowledge interrupts. */
1345	CSR_WRITE_4(sc, IntrStatus, status);
1346	/* Disable further interrupts. */
1347	CSR_WRITE_4(sc, IntrMask, 0);
1348	/*
1349	 * It seems the controller supports some kind of interrupt
1350	 * moderation mechanism but we still don't know how to
1351	 * enable that.  To reduce number of generated interrupts
1352	 * under load we check pending interrupts in a loop.  This
1353	 * will increase number of register access and is not correct
1354	 * way to handle interrupt moderation but there seems to be
1355	 * no other way at this time.
1356	 */
1357	for (;;) {
1358		if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
1359			break;
1360		if ((status & (INTR_RX_DONE | INTR_RX_IDLE)) != 0) {
1361			sge_rxeof(sc);
1362			/* Wakeup Rx MAC. */
1363			if ((status & INTR_RX_IDLE) != 0)
1364				CSR_WRITE_4(sc, RX_CTL,
1365				    0x1a00 | 0x000c | RX_CTL_POLL | RX_CTL_ENB);
1366		}
1367		if ((status & (INTR_TX_DONE | INTR_TX_IDLE)) != 0)
1368			sge_txeof(sc);
1369		status = CSR_READ_4(sc, IntrStatus);
1370		if ((status & SGE_INTRS) == 0)
1371			break;
1372		/* Acknowledge interrupts. */
1373		CSR_WRITE_4(sc, IntrStatus, status);
1374	}
1375	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
1376		/* Re-enable interrupts */
1377		CSR_WRITE_4(sc, IntrMask, SGE_INTRS);
1378		if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1379			sge_start_locked(ifp);
1380	}
1381	SGE_UNLOCK(sc);
1382}
1383
1384/*
1385 * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
1386 * pointers to the fragment pointers.
1387 */
1388static int
1389sge_encap(struct sge_softc *sc, struct mbuf **m_head)
1390{
1391	struct mbuf *m;
1392	struct sge_desc *desc;
1393	struct sge_txdesc *txd;
1394	bus_dma_segment_t txsegs[SGE_MAXTXSEGS];
1395	uint32_t cflags, mss;
1396	int error, i, nsegs, prod, si;
1397
1398	SGE_LOCK_ASSERT(sc);
1399
1400	si = prod = sc->sge_cdata.sge_tx_prod;
1401	txd = &sc->sge_cdata.sge_txdesc[prod];
1402	if (((*m_head)->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
1403		struct ether_header *eh;
1404		struct ip *ip;
1405		struct tcphdr *tcp;
1406		uint32_t ip_off, poff;
1407
1408		if (M_WRITABLE(*m_head) == 0) {
1409			/* Get a writable copy. */
1410			m = m_dup(*m_head, M_NOWAIT);
1411			m_freem(*m_head);
1412			if (m == NULL) {
1413				*m_head = NULL;
1414				return (ENOBUFS);
1415			}
1416			*m_head = m;
1417		}
1418		ip_off = sizeof(struct ether_header);
1419		m = m_pullup(*m_head, ip_off);
1420		if (m == NULL) {
1421			*m_head = NULL;
1422			return (ENOBUFS);
1423		}
1424		eh = mtod(m, struct ether_header *);
1425		/* Check the existence of VLAN tag. */
1426		if (eh->ether_type == htons(ETHERTYPE_VLAN)) {
1427			ip_off = sizeof(struct ether_vlan_header);
1428			m = m_pullup(m, ip_off);
1429			if (m == NULL) {
1430				*m_head = NULL;
1431				return (ENOBUFS);
1432			}
1433		}
1434		m = m_pullup(m, ip_off + sizeof(struct ip));
1435		if (m == NULL) {
1436			*m_head = NULL;
1437			return (ENOBUFS);
1438		}
1439		ip = (struct ip *)(mtod(m, char *) + ip_off);
1440		poff = ip_off + (ip->ip_hl << 2);
1441		m = m_pullup(m, poff + sizeof(struct tcphdr));
1442		if (m == NULL) {
1443			*m_head = NULL;
1444			return (ENOBUFS);
1445		}
1446		tcp = (struct tcphdr *)(mtod(m, char *) + poff);
1447		m = m_pullup(m, poff + (tcp->th_off << 2));
1448		if (m == NULL) {
1449			*m_head = NULL;
1450			return (ENOBUFS);
1451		}
1452		/*
1453		 * Reset IP checksum and recompute TCP pseudo
1454		 * checksum that NDIS specification requires.
1455		 */
1456		ip = (struct ip *)(mtod(m, char *) + ip_off);
1457		ip->ip_sum = 0;
1458		tcp = (struct tcphdr *)(mtod(m, char *) + poff);
1459		tcp->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
1460		    htons(IPPROTO_TCP));
1461		*m_head = m;
1462	}
1463
1464	error = bus_dmamap_load_mbuf_sg(sc->sge_cdata.sge_txmbuf_tag,
1465	    txd->tx_dmamap, *m_head, txsegs, &nsegs, 0);
1466	if (error == EFBIG) {
1467		m = m_collapse(*m_head, M_NOWAIT, SGE_MAXTXSEGS);
1468		if (m == NULL) {
1469			m_freem(*m_head);
1470			*m_head = NULL;
1471			return (ENOBUFS);
1472		}
1473		*m_head = m;
1474		error = bus_dmamap_load_mbuf_sg(sc->sge_cdata.sge_txmbuf_tag,
1475		    txd->tx_dmamap, *m_head, txsegs, &nsegs, 0);
1476		if (error != 0) {
1477			m_freem(*m_head);
1478			*m_head = NULL;
1479			return (error);
1480		}
1481	} else if (error != 0)
1482		return (error);
1483
1484	KASSERT(nsegs != 0, ("zero segment returned"));
1485	/* Check descriptor overrun. */
1486	if (sc->sge_cdata.sge_tx_cnt + nsegs >= SGE_TX_RING_CNT) {
1487		bus_dmamap_unload(sc->sge_cdata.sge_txmbuf_tag, txd->tx_dmamap);
1488		return (ENOBUFS);
1489	}
1490	bus_dmamap_sync(sc->sge_cdata.sge_txmbuf_tag, txd->tx_dmamap,
1491	    BUS_DMASYNC_PREWRITE);
1492
1493	m = *m_head;
1494	cflags = 0;
1495	mss = 0;
1496	if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
1497		cflags |= TDC_LS;
1498		mss = (uint32_t)m->m_pkthdr.tso_segsz;
1499		mss <<= 16;
1500	} else {
1501		if (m->m_pkthdr.csum_flags & CSUM_IP)
1502			cflags |= TDC_IP_CSUM;
1503		if (m->m_pkthdr.csum_flags & CSUM_TCP)
1504			cflags |= TDC_TCP_CSUM;
1505		if (m->m_pkthdr.csum_flags & CSUM_UDP)
1506			cflags |= TDC_UDP_CSUM;
1507	}
1508	for (i = 0; i < nsegs; i++) {
1509		desc = &sc->sge_ldata.sge_tx_ring[prod];
1510		if (i == 0) {
1511			desc->sge_sts_size = htole32(m->m_pkthdr.len | mss);
1512			desc->sge_cmdsts = 0;
1513		} else {
1514			desc->sge_sts_size = 0;
1515			desc->sge_cmdsts = htole32(TDC_OWN);
1516		}
1517		desc->sge_ptr = htole32(SGE_ADDR_LO(txsegs[i].ds_addr));
1518		desc->sge_flags = htole32(txsegs[i].ds_len);
1519		if (prod == SGE_TX_RING_CNT - 1)
1520			desc->sge_flags |= htole32(RING_END);
1521		sc->sge_cdata.sge_tx_cnt++;
1522		SGE_INC(prod, SGE_TX_RING_CNT);
1523	}
1524	/* Update producer index. */
1525	sc->sge_cdata.sge_tx_prod = prod;
1526
1527	desc = &sc->sge_ldata.sge_tx_ring[si];
1528	/* Configure VLAN. */
1529	if((m->m_flags & M_VLANTAG) != 0) {
1530		cflags |= m->m_pkthdr.ether_vtag;
1531		desc->sge_sts_size |= htole32(TDS_INS_VLAN);
1532	}
1533	desc->sge_cmdsts |= htole32(TDC_DEF | TDC_CRC | TDC_PAD | cflags);
1534#if 1
1535	if ((sc->sge_flags & SGE_FLAG_SPEED_1000) != 0)
1536		desc->sge_cmdsts |= htole32(TDC_BST);
1537#else
1538	if ((sc->sge_flags & SGE_FLAG_FDX) == 0) {
1539		desc->sge_cmdsts |= htole32(TDC_COL | TDC_CRS | TDC_BKF);
1540		if ((sc->sge_flags & SGE_FLAG_SPEED_1000) != 0)
1541			desc->sge_cmdsts |= htole32(TDC_EXT | TDC_BST);
1542	}
1543#endif
1544	/* Request interrupt and give ownership to controller. */
1545	desc->sge_cmdsts |= htole32(TDC_OWN | TDC_INTR);
1546	txd->tx_m = m;
1547	txd->tx_ndesc = nsegs;
1548	return (0);
1549}
1550
1551static void
1552sge_start(struct ifnet *ifp)
1553{
1554	struct sge_softc *sc;
1555
1556	sc = ifp->if_softc;
1557	SGE_LOCK(sc);
1558	sge_start_locked(ifp);
1559	SGE_UNLOCK(sc);
1560}
1561
1562static void
1563sge_start_locked(struct ifnet *ifp)
1564{
1565	struct sge_softc *sc;
1566	struct mbuf *m_head;
1567	int queued = 0;
1568
1569	sc = ifp->if_softc;
1570	SGE_LOCK_ASSERT(sc);
1571
1572	if ((sc->sge_flags & SGE_FLAG_LINK) == 0 ||
1573	    (ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
1574	    IFF_DRV_RUNNING)
1575		return;
1576
1577	for (queued = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd); ) {
1578		if (sc->sge_cdata.sge_tx_cnt > (SGE_TX_RING_CNT -
1579		    SGE_MAXTXSEGS)) {
1580			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1581			break;
1582		}
1583		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
1584		if (m_head == NULL)
1585			break;
1586		if (sge_encap(sc, &m_head)) {
1587			if (m_head == NULL)
1588				break;
1589			IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
1590			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1591			break;
1592		}
1593		queued++;
1594		/*
1595		 * If there's a BPF listener, bounce a copy of this frame
1596		 * to him.
1597		 */
1598		BPF_MTAP(ifp, m_head);
1599	}
1600
1601	if (queued > 0) {
1602		bus_dmamap_sync(sc->sge_cdata.sge_tx_tag,
1603		    sc->sge_cdata.sge_tx_dmamap,
1604		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1605		CSR_WRITE_4(sc, TX_CTL, 0x1a00 | TX_CTL_ENB | TX_CTL_POLL);
1606		sc->sge_timer = 5;
1607	}
1608}
1609
1610static void
1611sge_init(void *arg)
1612{
1613	struct sge_softc *sc;
1614
1615	sc = arg;
1616	SGE_LOCK(sc);
1617	sge_init_locked(sc);
1618	SGE_UNLOCK(sc);
1619}
1620
1621static void
1622sge_init_locked(struct sge_softc *sc)
1623{
1624	struct ifnet *ifp;
1625	struct mii_data *mii;
1626	uint16_t rxfilt;
1627	int i;
1628
1629	SGE_LOCK_ASSERT(sc);
1630	ifp = sc->sge_ifp;
1631	mii = device_get_softc(sc->sge_miibus);
1632	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
1633		return;
1634	/*
1635	 * Cancel pending I/O and free all RX/TX buffers.
1636	 */
1637	sge_stop(sc);
1638	sge_reset(sc);
1639
1640	/* Init circular RX list. */
1641	if (sge_list_rx_init(sc) == ENOBUFS) {
1642		device_printf(sc->sge_dev, "no memory for Rx buffers\n");
1643		sge_stop(sc);
1644		return;
1645	}
1646	/* Init TX descriptors. */
1647	sge_list_tx_init(sc);
1648	/*
1649	 * Load the address of the RX and TX lists.
1650	 */
1651	CSR_WRITE_4(sc, TX_DESC, SGE_ADDR_LO(sc->sge_ldata.sge_tx_paddr));
1652	CSR_WRITE_4(sc, RX_DESC, SGE_ADDR_LO(sc->sge_ldata.sge_rx_paddr));
1653
1654	CSR_WRITE_4(sc, TxMacControl, 0x60);
1655	CSR_WRITE_4(sc, RxWakeOnLan, 0);
1656	CSR_WRITE_4(sc, RxWakeOnLanData, 0);
1657	/* Allow receiving VLAN frames. */
1658	CSR_WRITE_2(sc, RxMPSControl, ETHER_MAX_LEN + ETHER_VLAN_ENCAP_LEN +
1659	    SGE_RX_PAD_BYTES);
1660
1661	for (i = 0; i < ETHER_ADDR_LEN; i++)
1662		CSR_WRITE_1(sc, RxMacAddr + i, IF_LLADDR(ifp)[i]);
1663	/* Configure RX MAC. */
1664	rxfilt = RXMAC_STRIP_FCS | RXMAC_PAD_ENB | RXMAC_CSUM_ENB;
1665	CSR_WRITE_2(sc, RxMacControl, rxfilt);
1666	sge_rxfilter(sc);
1667	sge_setvlan(sc);
1668
1669	/* Initialize default speed/duplex information. */
1670	if ((sc->sge_flags & SGE_FLAG_FASTETHER) == 0)
1671		sc->sge_flags |= SGE_FLAG_SPEED_1000;
1672	sc->sge_flags |= SGE_FLAG_FDX;
1673	if ((sc->sge_flags & SGE_FLAG_RGMII) != 0)
1674		CSR_WRITE_4(sc, StationControl, 0x04008001);
1675	else
1676		CSR_WRITE_4(sc, StationControl, 0x04000001);
1677	/*
1678	 * XXX Try to mitigate interrupts.
1679	 */
1680	CSR_WRITE_4(sc, IntrControl, 0x08880000);
1681#ifdef notyet
1682	if (sc->sge_intrcontrol != 0)
1683		CSR_WRITE_4(sc, IntrControl, sc->sge_intrcontrol);
1684	if (sc->sge_intrtimer != 0)
1685		CSR_WRITE_4(sc, IntrTimer, sc->sge_intrtimer);
1686#endif
1687
1688	/*
1689	 * Clear and enable interrupts.
1690	 */
1691	CSR_WRITE_4(sc, IntrStatus, 0xFFFFFFFF);
1692	CSR_WRITE_4(sc, IntrMask, SGE_INTRS);
1693
1694	/* Enable receiver and transmitter. */
1695	CSR_WRITE_4(sc, TX_CTL, 0x1a00 | TX_CTL_ENB);
1696	CSR_WRITE_4(sc, RX_CTL, 0x1a00 | 0x000c | RX_CTL_POLL | RX_CTL_ENB);
1697
1698	ifp->if_drv_flags |= IFF_DRV_RUNNING;
1699	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1700
1701	sc->sge_flags &= ~SGE_FLAG_LINK;
1702	mii_mediachg(mii);
1703	callout_reset(&sc->sge_stat_ch, hz, sge_tick, sc);
1704}
1705
1706/*
1707 * Set media options.
1708 */
1709static int
1710sge_ifmedia_upd(struct ifnet *ifp)
1711{
1712	struct sge_softc *sc;
1713	struct mii_data *mii;
1714		struct mii_softc *miisc;
1715	int error;
1716
1717	sc = ifp->if_softc;
1718	SGE_LOCK(sc);
1719	mii = device_get_softc(sc->sge_miibus);
1720	LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
1721		PHY_RESET(miisc);
1722	error = mii_mediachg(mii);
1723	SGE_UNLOCK(sc);
1724
1725	return (error);
1726}
1727
1728/*
1729 * Report current media status.
1730 */
1731static void
1732sge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1733{
1734	struct sge_softc *sc;
1735	struct mii_data *mii;
1736
1737	sc = ifp->if_softc;
1738	SGE_LOCK(sc);
1739	mii = device_get_softc(sc->sge_miibus);
1740	if ((ifp->if_flags & IFF_UP) == 0) {
1741		SGE_UNLOCK(sc);
1742		return;
1743	}
1744	mii_pollstat(mii);
1745	ifmr->ifm_active = mii->mii_media_active;
1746	ifmr->ifm_status = mii->mii_media_status;
1747	SGE_UNLOCK(sc);
1748}
1749
1750static int
1751sge_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
1752{
1753	struct sge_softc *sc;
1754	struct ifreq *ifr;
1755	struct mii_data *mii;
1756	int error = 0, mask, reinit;
1757
1758	sc = ifp->if_softc;
1759	ifr = (struct ifreq *)data;
1760
1761	switch(command) {
1762	case SIOCSIFFLAGS:
1763		SGE_LOCK(sc);
1764		if ((ifp->if_flags & IFF_UP) != 0) {
1765			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0 &&
1766			    ((ifp->if_flags ^ sc->sge_if_flags) &
1767			    (IFF_PROMISC | IFF_ALLMULTI)) != 0)
1768				sge_rxfilter(sc);
1769			else
1770				sge_init_locked(sc);
1771		} else if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
1772			sge_stop(sc);
1773		sc->sge_if_flags = ifp->if_flags;
1774		SGE_UNLOCK(sc);
1775		break;
1776	case SIOCSIFCAP:
1777		SGE_LOCK(sc);
1778		reinit = 0;
1779		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
1780		if ((mask & IFCAP_TXCSUM) != 0 &&
1781		    (ifp->if_capabilities & IFCAP_TXCSUM) != 0) {
1782			ifp->if_capenable ^= IFCAP_TXCSUM;
1783			if ((ifp->if_capenable & IFCAP_TXCSUM) != 0)
1784				ifp->if_hwassist |= SGE_CSUM_FEATURES;
1785			else
1786				ifp->if_hwassist &= ~SGE_CSUM_FEATURES;
1787		}
1788		if ((mask & IFCAP_RXCSUM) != 0 &&
1789		    (ifp->if_capabilities & IFCAP_RXCSUM) != 0)
1790			ifp->if_capenable ^= IFCAP_RXCSUM;
1791		if ((mask & IFCAP_VLAN_HWCSUM) != 0 &&
1792		    (ifp->if_capabilities & IFCAP_VLAN_HWCSUM) != 0)
1793			ifp->if_capenable ^= IFCAP_VLAN_HWCSUM;
1794		if ((mask & IFCAP_TSO4) != 0 &&
1795		    (ifp->if_capabilities & IFCAP_TSO4) != 0) {
1796			ifp->if_capenable ^= IFCAP_TSO4;
1797			if ((ifp->if_capenable & IFCAP_TSO4) != 0)
1798				ifp->if_hwassist |= CSUM_TSO;
1799			else
1800				ifp->if_hwassist &= ~CSUM_TSO;
1801		}
1802		if ((mask & IFCAP_VLAN_HWTSO) != 0 &&
1803		    (ifp->if_capabilities & IFCAP_VLAN_HWTSO) != 0)
1804			ifp->if_capenable ^= IFCAP_VLAN_HWTSO;
1805		if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
1806		    (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING) != 0) {
1807			/*
1808			 * Due to unknown reason, toggling VLAN hardware
1809			 * tagging require interface reinitialization.
1810			 */
1811			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
1812			if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) == 0)
1813				ifp->if_capenable &=
1814				    ~(IFCAP_VLAN_HWTSO | IFCAP_VLAN_HWCSUM);
1815			reinit = 1;
1816		}
1817		if (reinit > 0 && (ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
1818			ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1819			sge_init_locked(sc);
1820		}
1821		SGE_UNLOCK(sc);
1822		VLAN_CAPABILITIES(ifp);
1823		break;
1824	case SIOCADDMULTI:
1825	case SIOCDELMULTI:
1826		SGE_LOCK(sc);
1827		if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
1828			sge_rxfilter(sc);
1829		SGE_UNLOCK(sc);
1830		break;
1831	case SIOCGIFMEDIA:
1832	case SIOCSIFMEDIA:
1833		mii = device_get_softc(sc->sge_miibus);
1834		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
1835		break;
1836	default:
1837		error = ether_ioctl(ifp, command, data);
1838		break;
1839	}
1840
1841	return (error);
1842}
1843
1844static void
1845sge_watchdog(struct sge_softc *sc)
1846{
1847	struct ifnet *ifp;
1848
1849	SGE_LOCK_ASSERT(sc);
1850	if (sc->sge_timer == 0 || --sc->sge_timer > 0)
1851		return;
1852
1853	ifp = sc->sge_ifp;
1854	if ((sc->sge_flags & SGE_FLAG_LINK) == 0) {
1855		if (1 || bootverbose)
1856			device_printf(sc->sge_dev,
1857			    "watchdog timeout (lost link)\n");
1858		if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1859		ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1860		sge_init_locked(sc);
1861		return;
1862	}
1863	device_printf(sc->sge_dev, "watchdog timeout\n");
1864	if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1865
1866	ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1867	sge_init_locked(sc);
1868	if (!IFQ_DRV_IS_EMPTY(&sc->sge_ifp->if_snd))
1869		sge_start_locked(ifp);
1870}
1871
1872/*
1873 * Stop the adapter and free any mbufs allocated to the
1874 * RX and TX lists.
1875 */
1876static void
1877sge_stop(struct sge_softc *sc)
1878{
1879	struct ifnet *ifp;
1880
1881	ifp = sc->sge_ifp;
1882
1883	SGE_LOCK_ASSERT(sc);
1884
1885	sc->sge_timer = 0;
1886	callout_stop(&sc->sge_stat_ch);
1887	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
1888
1889	CSR_WRITE_4(sc, IntrMask, 0);
1890	CSR_READ_4(sc, IntrMask);
1891	CSR_WRITE_4(sc, IntrStatus, 0xffffffff);
1892	/* Stop TX/RX MAC. */
1893	CSR_WRITE_4(sc, TX_CTL, 0x1a00);
1894	CSR_WRITE_4(sc, RX_CTL, 0x1a00);
1895	/* XXX Can we assume active DMA cycles gone? */
1896	DELAY(2000);
1897	CSR_WRITE_4(sc, IntrMask, 0);
1898	CSR_WRITE_4(sc, IntrStatus, 0xffffffff);
1899
1900	sc->sge_flags &= ~SGE_FLAG_LINK;
1901	sge_list_rx_free(sc);
1902	sge_list_tx_free(sc);
1903}
1904