if_sf.c revision 92739
1/*
2 * Copyright (c) 1997, 1998, 1999
3 *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 *    must display the following acknowledgement:
15 *	This product includes software developed by Bill Paul.
16 * 4. Neither the name of the author nor the names of any co-contributors
17 *    may be used to endorse or promote products derived from this software
18 *    without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30 * THE POSSIBILITY OF SUCH DAMAGE.
31 *
32 * $FreeBSD: head/sys/dev/sf/if_sf.c 92739 2002-03-20 02:08:01Z alfred $
33 */
34
35/*
36 * Adaptec AIC-6915 "Starfire" PCI fast ethernet driver for FreeBSD.
37 * Programming manual is available from:
38 * ftp.adaptec.com:/pub/BBS/userguides/aic6915_pg.pdf.
39 *
40 * Written by Bill Paul <wpaul@ctr.columbia.edu>
41 * Department of Electical Engineering
42 * Columbia University, New York City
43 */
44
45/*
46 * The Adaptec AIC-6915 "Starfire" is a 64-bit 10/100 PCI ethernet
47 * controller designed with flexibility and reducing CPU load in mind.
48 * The Starfire offers high and low priority buffer queues, a
49 * producer/consumer index mechanism and several different buffer
50 * queue and completion queue descriptor types. Any one of a number
51 * of different driver designs can be used, depending on system and
52 * OS requirements. This driver makes use of type0 transmit frame
53 * descriptors (since BSD fragments packets across an mbuf chain)
54 * and two RX buffer queues prioritized on size (one queue for small
55 * frames that will fit into a single mbuf, another with full size
56 * mbuf clusters for everything else). The producer/consumer indexes
57 * and completion queues are also used.
58 *
59 * One downside to the Starfire has to do with alignment: buffer
60 * queues must be aligned on 256-byte boundaries, and receive buffers
61 * must be aligned on longword boundaries. The receive buffer alignment
62 * causes problems on the Alpha platform, where the packet payload
63 * should be longword aligned. There is no simple way around this.
64 *
65 * For receive filtering, the Starfire offers 16 perfect filter slots
66 * and a 512-bit hash table.
67 *
68 * The Starfire has no internal transceiver, relying instead on an
69 * external MII-based transceiver. Accessing registers on external
70 * PHYs is done through a special register map rather than with the
71 * usual bitbang MDIO method.
72 *
73 * Acesssing the registers on the Starfire is a little tricky. The
74 * Starfire has a 512K internal register space. When programmed for
75 * PCI memory mapped mode, the entire register space can be accessed
76 * directly. However in I/O space mode, only 256 bytes are directly
77 * mapped into PCI I/O space. The other registers can be accessed
78 * indirectly using the SF_INDIRECTIO_ADDR and SF_INDIRECTIO_DATA
79 * registers inside the 256-byte I/O window.
80 */
81
82#include <sys/param.h>
83#include <sys/systm.h>
84#include <sys/sockio.h>
85#include <sys/mbuf.h>
86#include <sys/malloc.h>
87#include <sys/kernel.h>
88#include <sys/socket.h>
89
90#include <net/if.h>
91#include <net/if_arp.h>
92#include <net/ethernet.h>
93#include <net/if_dl.h>
94#include <net/if_media.h>
95
96#include <net/bpf.h>
97
98#include <vm/vm.h>              /* for vtophys */
99#include <vm/pmap.h>            /* for vtophys */
100#include <machine/bus_pio.h>
101#include <machine/bus_memio.h>
102#include <machine/bus.h>
103#include <machine/resource.h>
104#include <sys/bus.h>
105#include <sys/rman.h>
106
107#include <dev/mii/mii.h>
108#include <dev/mii/miivar.h>
109
110/* "controller miibus0" required.  See GENERIC if you get errors here. */
111#include "miibus_if.h"
112
113#include <pci/pcireg.h>
114#include <pci/pcivar.h>
115
116#define SF_USEIOSPACE
117
118#include <pci/if_sfreg.h>
119
120MODULE_DEPEND(sf, miibus, 1, 1, 1);
121
122#ifndef lint
123static const char rcsid[] =
124  "$FreeBSD: head/sys/dev/sf/if_sf.c 92739 2002-03-20 02:08:01Z alfred $";
125#endif
126
127static struct sf_type sf_devs[] = {
128	{ AD_VENDORID, AD_DEVICEID_STARFIRE,
129		"Adaptec AIC-6915 10/100BaseTX" },
130	{ 0, 0, NULL }
131};
132
133static int sf_probe		(device_t);
134static int sf_attach		(device_t);
135static int sf_detach		(device_t);
136static void sf_intr		(void *);
137static void sf_stats_update	(void *);
138static void sf_rxeof		(struct sf_softc *);
139static void sf_txeof		(struct sf_softc *);
140static int sf_encap		(struct sf_softc *,
141					struct sf_tx_bufdesc_type0 *,
142					struct mbuf *);
143static void sf_start		(struct ifnet *);
144static int sf_ioctl		(struct ifnet *, u_long, caddr_t);
145static void sf_init		(void *);
146static void sf_stop		(struct sf_softc *);
147static void sf_watchdog		(struct ifnet *);
148static void sf_shutdown		(device_t);
149static int sf_ifmedia_upd	(struct ifnet *);
150static void sf_ifmedia_sts	(struct ifnet *, struct ifmediareq *);
151static void sf_reset		(struct sf_softc *);
152static int sf_init_rx_ring	(struct sf_softc *);
153static void sf_init_tx_ring	(struct sf_softc *);
154static int sf_newbuf		(struct sf_softc *,
155					struct sf_rx_bufdesc_type0 *,
156					struct mbuf *);
157static void sf_setmulti		(struct sf_softc *);
158static int sf_setperf		(struct sf_softc *, int, caddr_t);
159static int sf_sethash		(struct sf_softc *, caddr_t, int);
160#ifdef notdef
161static int sf_setvlan		(struct sf_softc *, int, u_int32_t);
162#endif
163
164static u_int8_t sf_read_eeprom	(struct sf_softc *, int);
165static u_int32_t sf_calchash	(caddr_t);
166
167static int sf_miibus_readreg	(device_t, int, int);
168static int sf_miibus_writereg	(device_t, int, int, int);
169static void sf_miibus_statchg	(device_t);
170
171static u_int32_t csr_read_4	(struct sf_softc *, int);
172static void csr_write_4		(struct sf_softc *, int, u_int32_t);
173static void sf_txthresh_adjust	(struct sf_softc *);
174
175#ifdef SF_USEIOSPACE
176#define SF_RES			SYS_RES_IOPORT
177#define SF_RID			SF_PCI_LOIO
178#else
179#define SF_RES			SYS_RES_MEMORY
180#define SF_RID			SF_PCI_LOMEM
181#endif
182
183static device_method_t sf_methods[] = {
184	/* Device interface */
185	DEVMETHOD(device_probe,		sf_probe),
186	DEVMETHOD(device_attach,	sf_attach),
187	DEVMETHOD(device_detach,	sf_detach),
188	DEVMETHOD(device_shutdown,	sf_shutdown),
189
190	/* bus interface */
191	DEVMETHOD(bus_print_child,	bus_generic_print_child),
192	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
193
194	/* MII interface */
195	DEVMETHOD(miibus_readreg,	sf_miibus_readreg),
196	DEVMETHOD(miibus_writereg,	sf_miibus_writereg),
197	DEVMETHOD(miibus_statchg,	sf_miibus_statchg),
198
199	{ 0, 0 }
200};
201
202static driver_t sf_driver = {
203	"sf",
204	sf_methods,
205	sizeof(struct sf_softc),
206};
207
208static devclass_t sf_devclass;
209
210DRIVER_MODULE(if_sf, pci, sf_driver, sf_devclass, 0, 0);
211DRIVER_MODULE(miibus, sf, miibus_driver, miibus_devclass, 0, 0);
212
213#define SF_SETBIT(sc, reg, x)	\
214	csr_write_4(sc, reg, csr_read_4(sc, reg) | x)
215
216#define SF_CLRBIT(sc, reg, x)				\
217	csr_write_4(sc, reg, csr_read_4(sc, reg) & ~x)
218
219static u_int32_t csr_read_4(sc, reg)
220	struct sf_softc		*sc;
221	int			reg;
222{
223	u_int32_t		val;
224
225#ifdef SF_USEIOSPACE
226	CSR_WRITE_4(sc, SF_INDIRECTIO_ADDR, reg + SF_RMAP_INTREG_BASE);
227	val = CSR_READ_4(sc, SF_INDIRECTIO_DATA);
228#else
229	val = CSR_READ_4(sc, (reg + SF_RMAP_INTREG_BASE));
230#endif
231
232	return(val);
233}
234
235static u_int8_t sf_read_eeprom(sc, reg)
236	struct sf_softc		*sc;
237	int			reg;
238{
239	u_int8_t		val;
240
241	val = (csr_read_4(sc, SF_EEADDR_BASE +
242	    (reg & 0xFFFFFFFC)) >> (8 * (reg & 3))) & 0xFF;
243
244	return(val);
245}
246
247static void csr_write_4(sc, reg, val)
248	struct sf_softc		*sc;
249	int			reg;
250	u_int32_t		val;
251{
252#ifdef SF_USEIOSPACE
253	CSR_WRITE_4(sc, SF_INDIRECTIO_ADDR, reg + SF_RMAP_INTREG_BASE);
254	CSR_WRITE_4(sc, SF_INDIRECTIO_DATA, val);
255#else
256	CSR_WRITE_4(sc, (reg + SF_RMAP_INTREG_BASE), val);
257#endif
258	return;
259}
260
261static u_int32_t sf_calchash(addr)
262	caddr_t			addr;
263{
264	u_int32_t		crc, carry;
265	int			i, j;
266	u_int8_t		c;
267
268	/* Compute CRC for the address value. */
269	crc = 0xFFFFFFFF; /* initial value */
270
271	for (i = 0; i < 6; i++) {
272		c = *(addr + i);
273		for (j = 0; j < 8; j++) {
274			carry = ((crc & 0x80000000) ? 1 : 0) ^ (c & 0x01);
275			crc <<= 1;
276			c >>= 1;
277			if (carry)
278				crc = (crc ^ 0x04c11db6) | carry;
279		}
280	}
281
282	/* return the filter bit position */
283	return(crc >> 23 & 0x1FF);
284}
285
286/*
287 * Copy the address 'mac' into the perfect RX filter entry at
288 * offset 'idx.' The perfect filter only has 16 entries so do
289 * some sanity tests.
290 */
291static int sf_setperf(sc, idx, mac)
292	struct sf_softc		*sc;
293	int			idx;
294	caddr_t			mac;
295{
296	u_int16_t		*p;
297
298	if (idx < 0 || idx > SF_RXFILT_PERFECT_CNT)
299		return(EINVAL);
300
301	if (mac == NULL)
302		return(EINVAL);
303
304	p = (u_int16_t *)mac;
305
306	csr_write_4(sc, SF_RXFILT_PERFECT_BASE +
307	    (idx * SF_RXFILT_PERFECT_SKIP), htons(p[2]));
308	csr_write_4(sc, SF_RXFILT_PERFECT_BASE +
309	    (idx * SF_RXFILT_PERFECT_SKIP) + 4, htons(p[1]));
310	csr_write_4(sc, SF_RXFILT_PERFECT_BASE +
311	    (idx * SF_RXFILT_PERFECT_SKIP) + 8, htons(p[0]));
312
313	return(0);
314}
315
316/*
317 * Set the bit in the 512-bit hash table that corresponds to the
318 * specified mac address 'mac.' If 'prio' is nonzero, update the
319 * priority hash table instead of the filter hash table.
320 */
321static int sf_sethash(sc, mac, prio)
322	struct sf_softc		*sc;
323	caddr_t			mac;
324	int			prio;
325{
326	u_int32_t		h = 0;
327
328	if (mac == NULL)
329		return(EINVAL);
330
331	h = sf_calchash(mac);
332
333	if (prio) {
334		SF_SETBIT(sc, SF_RXFILT_HASH_BASE + SF_RXFILT_HASH_PRIOOFF +
335		    (SF_RXFILT_HASH_SKIP * (h >> 4)), (1 << (h & 0xF)));
336	} else {
337		SF_SETBIT(sc, SF_RXFILT_HASH_BASE + SF_RXFILT_HASH_ADDROFF +
338		    (SF_RXFILT_HASH_SKIP * (h >> 4)), (1 << (h & 0xF)));
339	}
340
341	return(0);
342}
343
344#ifdef notdef
345/*
346 * Set a VLAN tag in the receive filter.
347 */
348static int sf_setvlan(sc, idx, vlan)
349	struct sf_softc		*sc;
350	int			idx;
351	u_int32_t		vlan;
352{
353	if (idx < 0 || idx >> SF_RXFILT_HASH_CNT)
354		return(EINVAL);
355
356	csr_write_4(sc, SF_RXFILT_HASH_BASE +
357	    (idx * SF_RXFILT_HASH_SKIP) + SF_RXFILT_HASH_VLANOFF, vlan);
358
359	return(0);
360}
361#endif
362
363static int sf_miibus_readreg(dev, phy, reg)
364	device_t		dev;
365	int			phy, reg;
366{
367	struct sf_softc		*sc;
368	int			i;
369	u_int32_t		val = 0;
370
371	sc = device_get_softc(dev);
372
373	for (i = 0; i < SF_TIMEOUT; i++) {
374		val = csr_read_4(sc, SF_PHY_REG(phy, reg));
375		if (val & SF_MII_DATAVALID)
376			break;
377	}
378
379	if (i == SF_TIMEOUT)
380		return(0);
381
382	if ((val & 0x0000FFFF) == 0xFFFF)
383		return(0);
384
385	return(val & 0x0000FFFF);
386}
387
388static int sf_miibus_writereg(dev, phy, reg, val)
389	device_t		dev;
390	int			phy, reg, val;
391{
392	struct sf_softc		*sc;
393	int			i;
394	int			busy;
395
396	sc = device_get_softc(dev);
397
398	csr_write_4(sc, SF_PHY_REG(phy, reg), val);
399
400	for (i = 0; i < SF_TIMEOUT; i++) {
401		busy = csr_read_4(sc, SF_PHY_REG(phy, reg));
402		if (!(busy & SF_MII_BUSY))
403			break;
404	}
405
406	return(0);
407}
408
409static void sf_miibus_statchg(dev)
410	device_t		dev;
411{
412	struct sf_softc		*sc;
413	struct mii_data		*mii;
414
415	sc = device_get_softc(dev);
416	mii = device_get_softc(sc->sf_miibus);
417
418	if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
419		SF_SETBIT(sc, SF_MACCFG_1, SF_MACCFG1_FULLDUPLEX);
420		csr_write_4(sc, SF_BKTOBKIPG, SF_IPGT_FDX);
421	} else {
422		SF_CLRBIT(sc, SF_MACCFG_1, SF_MACCFG1_FULLDUPLEX);
423		csr_write_4(sc, SF_BKTOBKIPG, SF_IPGT_HDX);
424	}
425
426	return;
427}
428
429static void sf_setmulti(sc)
430	struct sf_softc		*sc;
431{
432	struct ifnet		*ifp;
433	int			i;
434	struct ifmultiaddr	*ifma;
435	u_int8_t		dummy[] = { 0, 0, 0, 0, 0, 0 };
436
437	ifp = &sc->arpcom.ac_if;
438
439	/* First zot all the existing filters. */
440	for (i = 1; i < SF_RXFILT_PERFECT_CNT; i++)
441		sf_setperf(sc, i, (char *)&dummy);
442	for (i = SF_RXFILT_HASH_BASE;
443	    i < (SF_RXFILT_HASH_MAX + 1); i += 4)
444		csr_write_4(sc, i, 0);
445	SF_CLRBIT(sc, SF_RXFILT, SF_RXFILT_ALLMULTI);
446
447	/* Now program new ones. */
448	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
449		SF_SETBIT(sc, SF_RXFILT, SF_RXFILT_ALLMULTI);
450	} else {
451		i = 1;
452		TAILQ_FOREACH_REVERSE(ifma, &ifp->if_multiaddrs, ifmultihead, ifma_link) {
453			if (ifma->ifma_addr->sa_family != AF_LINK)
454				continue;
455			/*
456			 * Program the first 15 multicast groups
457			 * into the perfect filter. For all others,
458			 * use the hash table.
459			 */
460			if (i < SF_RXFILT_PERFECT_CNT) {
461				sf_setperf(sc, i,
462			LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
463				i++;
464				continue;
465			}
466
467			sf_sethash(sc,
468			    LLADDR((struct sockaddr_dl *)ifma->ifma_addr), 0);
469		}
470	}
471
472	return;
473}
474
475/*
476 * Set media options.
477 */
478static int sf_ifmedia_upd(ifp)
479	struct ifnet		*ifp;
480{
481	struct sf_softc		*sc;
482	struct mii_data		*mii;
483
484	sc = ifp->if_softc;
485	mii = device_get_softc(sc->sf_miibus);
486	sc->sf_link = 0;
487	if (mii->mii_instance) {
488		struct mii_softc        *miisc;
489		LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
490			mii_phy_reset(miisc);
491	}
492	mii_mediachg(mii);
493
494	return(0);
495}
496
497/*
498 * Report current media status.
499 */
500static void sf_ifmedia_sts(ifp, ifmr)
501	struct ifnet		*ifp;
502	struct ifmediareq	*ifmr;
503{
504	struct sf_softc		*sc;
505	struct mii_data		*mii;
506
507	sc = ifp->if_softc;
508	mii = device_get_softc(sc->sf_miibus);
509
510	mii_pollstat(mii);
511	ifmr->ifm_active = mii->mii_media_active;
512	ifmr->ifm_status = mii->mii_media_status;
513
514	return;
515}
516
517static int sf_ioctl(ifp, command, data)
518	struct ifnet		*ifp;
519	u_long			command;
520	caddr_t			data;
521{
522	struct sf_softc		*sc = ifp->if_softc;
523	struct ifreq		*ifr = (struct ifreq *) data;
524	struct mii_data		*mii;
525	int			error = 0;
526
527	SF_LOCK(sc);
528
529	switch(command) {
530	case SIOCSIFADDR:
531	case SIOCGIFADDR:
532	case SIOCSIFMTU:
533		error = ether_ioctl(ifp, command, data);
534		break;
535	case SIOCSIFFLAGS:
536		if (ifp->if_flags & IFF_UP) {
537			if (ifp->if_flags & IFF_RUNNING &&
538			    ifp->if_flags & IFF_PROMISC &&
539			    !(sc->sf_if_flags & IFF_PROMISC)) {
540				SF_SETBIT(sc, SF_RXFILT, SF_RXFILT_PROMISC);
541			} else if (ifp->if_flags & IFF_RUNNING &&
542			    !(ifp->if_flags & IFF_PROMISC) &&
543			    sc->sf_if_flags & IFF_PROMISC) {
544				SF_CLRBIT(sc, SF_RXFILT, SF_RXFILT_PROMISC);
545			} else if (!(ifp->if_flags & IFF_RUNNING))
546				sf_init(sc);
547		} else {
548			if (ifp->if_flags & IFF_RUNNING)
549				sf_stop(sc);
550		}
551		sc->sf_if_flags = ifp->if_flags;
552		error = 0;
553		break;
554	case SIOCADDMULTI:
555	case SIOCDELMULTI:
556		sf_setmulti(sc);
557		error = 0;
558		break;
559	case SIOCGIFMEDIA:
560	case SIOCSIFMEDIA:
561		mii = device_get_softc(sc->sf_miibus);
562		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
563		break;
564	default:
565		error = EINVAL;
566		break;
567	}
568
569	SF_UNLOCK(sc);
570
571	return(error);
572}
573
574static void sf_reset(sc)
575	struct sf_softc		*sc;
576{
577	register int		i;
578
579	csr_write_4(sc, SF_GEN_ETH_CTL, 0);
580	SF_SETBIT(sc, SF_MACCFG_1, SF_MACCFG1_SOFTRESET);
581	DELAY(1000);
582	SF_CLRBIT(sc, SF_MACCFG_1, SF_MACCFG1_SOFTRESET);
583
584	SF_SETBIT(sc, SF_PCI_DEVCFG, SF_PCIDEVCFG_RESET);
585
586	for (i = 0; i < SF_TIMEOUT; i++) {
587		DELAY(10);
588		if (!(csr_read_4(sc, SF_PCI_DEVCFG) & SF_PCIDEVCFG_RESET))
589			break;
590	}
591
592	if (i == SF_TIMEOUT)
593		printf("sf%d: reset never completed!\n", sc->sf_unit);
594
595	/* Wait a little while for the chip to get its brains in order. */
596	DELAY(1000);
597	return;
598}
599
600/*
601 * Probe for an Adaptec AIC-6915 chip. Check the PCI vendor and device
602 * IDs against our list and return a device name if we find a match.
603 * We also check the subsystem ID so that we can identify exactly which
604 * NIC has been found, if possible.
605 */
606static int sf_probe(dev)
607	device_t		dev;
608{
609	struct sf_type		*t;
610
611	t = sf_devs;
612
613	while(t->sf_name != NULL) {
614		if ((pci_get_vendor(dev) == t->sf_vid) &&
615		    (pci_get_device(dev) == t->sf_did)) {
616			switch((pci_read_config(dev,
617			    SF_PCI_SUBVEN_ID, 4) >> 16) & 0xFFFF) {
618			case AD_SUBSYSID_62011_REV0:
619			case AD_SUBSYSID_62011_REV1:
620				device_set_desc(dev,
621				    "Adaptec ANA-62011 10/100BaseTX");
622				return(0);
623				break;
624			case AD_SUBSYSID_62022:
625				device_set_desc(dev,
626				    "Adaptec ANA-62022 10/100BaseTX");
627				return(0);
628				break;
629			case AD_SUBSYSID_62044_REV0:
630			case AD_SUBSYSID_62044_REV1:
631				device_set_desc(dev,
632				    "Adaptec ANA-62044 10/100BaseTX");
633				return(0);
634				break;
635			case AD_SUBSYSID_62020:
636				device_set_desc(dev,
637				    "Adaptec ANA-62020 10/100BaseFX");
638				return(0);
639				break;
640			case AD_SUBSYSID_69011:
641				device_set_desc(dev,
642				    "Adaptec ANA-69011 10/100BaseTX");
643				return(0);
644				break;
645			default:
646				device_set_desc(dev, t->sf_name);
647				return(0);
648				break;
649			}
650		}
651		t++;
652	}
653
654	return(ENXIO);
655}
656
657/*
658 * Attach the interface. Allocate softc structures, do ifmedia
659 * setup and ethernet/BPF attach.
660 */
661static int sf_attach(dev)
662	device_t		dev;
663{
664	int			i;
665	u_int32_t		command;
666	struct sf_softc		*sc;
667	struct ifnet		*ifp;
668	int			unit, rid, error = 0;
669
670	sc = device_get_softc(dev);
671	unit = device_get_unit(dev);
672	bzero(sc, sizeof(struct sf_softc));
673
674	mtx_init(&sc->sf_mtx, device_get_nameunit(dev), MTX_DEF | MTX_RECURSE);
675	SF_LOCK(sc);
676	/*
677	 * Handle power management nonsense.
678	 */
679	if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
680		u_int32_t		iobase, membase, irq;
681
682		/* Save important PCI config data. */
683		iobase = pci_read_config(dev, SF_PCI_LOIO, 4);
684		membase = pci_read_config(dev, SF_PCI_LOMEM, 4);
685		irq = pci_read_config(dev, SF_PCI_INTLINE, 4);
686
687		/* Reset the power state. */
688		printf("sf%d: chip is in D%d power mode "
689		    "-- setting to D0\n", unit,
690		    pci_get_powerstate(dev));
691		pci_set_powerstate(dev, PCI_POWERSTATE_D0);
692
693		/* Restore PCI config data. */
694		pci_write_config(dev, SF_PCI_LOIO, iobase, 4);
695		pci_write_config(dev, SF_PCI_LOMEM, membase, 4);
696		pci_write_config(dev, SF_PCI_INTLINE, irq, 4);
697	}
698
699	/*
700	 * Map control/status registers.
701	 */
702	pci_enable_busmaster(dev);
703	pci_enable_io(dev, SYS_RES_IOPORT);
704	pci_enable_io(dev, SYS_RES_MEMORY);
705	command = pci_read_config(dev, PCIR_COMMAND, 4);
706
707#ifdef SF_USEIOSPACE
708	if (!(command & PCIM_CMD_PORTEN)) {
709		printf("sf%d: failed to enable I/O ports!\n", unit);
710		error = ENXIO;
711		goto fail;
712	}
713#else
714	if (!(command & PCIM_CMD_MEMEN)) {
715		printf("sf%d: failed to enable memory mapping!\n", unit);
716		error = ENXIO;
717		goto fail;
718	}
719#endif
720
721	rid = SF_RID;
722	sc->sf_res = bus_alloc_resource(dev, SF_RES, &rid,
723	    0, ~0, 1, RF_ACTIVE);
724
725	if (sc->sf_res == NULL) {
726		printf ("sf%d: couldn't map ports\n", unit);
727		error = ENXIO;
728		goto fail;
729	}
730
731	sc->sf_btag = rman_get_bustag(sc->sf_res);
732	sc->sf_bhandle = rman_get_bushandle(sc->sf_res);
733
734	/* Allocate interrupt */
735	rid = 0;
736	sc->sf_irq = bus_alloc_resource(dev, SYS_RES_IRQ, &rid, 0, ~0, 1,
737	    RF_SHAREABLE | RF_ACTIVE);
738
739	if (sc->sf_irq == NULL) {
740		printf("sf%d: couldn't map interrupt\n", unit);
741		bus_release_resource(dev, SF_RES, SF_RID, sc->sf_res);
742		error = ENXIO;
743		goto fail;
744	}
745
746	error = bus_setup_intr(dev, sc->sf_irq, INTR_TYPE_NET,
747	    sf_intr, sc, &sc->sf_intrhand);
748
749	if (error) {
750		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sf_res);
751		bus_release_resource(dev, SF_RES, SF_RID, sc->sf_res);
752		printf("sf%d: couldn't set up irq\n", unit);
753		goto fail;
754	}
755
756	callout_handle_init(&sc->sf_stat_ch);
757	/* Reset the adapter. */
758	sf_reset(sc);
759
760	/*
761	 * Get station address from the EEPROM.
762	 */
763	for (i = 0; i < ETHER_ADDR_LEN; i++)
764		sc->arpcom.ac_enaddr[i] =
765		    sf_read_eeprom(sc, SF_EE_NODEADDR + ETHER_ADDR_LEN - i);
766
767	/*
768	 * An Adaptec chip was detected. Inform the world.
769	 */
770	printf("sf%d: Ethernet address: %6D\n", unit,
771	    sc->arpcom.ac_enaddr, ":");
772
773	sc->sf_unit = unit;
774
775	/* Allocate the descriptor queues. */
776	sc->sf_ldata = contigmalloc(sizeof(struct sf_list_data), M_DEVBUF,
777	    M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0);
778
779	if (sc->sf_ldata == NULL) {
780		printf("sf%d: no memory for list buffers!\n", unit);
781		bus_teardown_intr(dev, sc->sf_irq, sc->sf_intrhand);
782		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sf_irq);
783		bus_release_resource(dev, SF_RES, SF_RID, sc->sf_res);
784		error = ENXIO;
785		goto fail;
786	}
787
788	bzero(sc->sf_ldata, sizeof(struct sf_list_data));
789
790	/* Do MII setup. */
791	if (mii_phy_probe(dev, &sc->sf_miibus,
792	    sf_ifmedia_upd, sf_ifmedia_sts)) {
793		printf("sf%d: MII without any phy!\n", sc->sf_unit);
794		contigfree(sc->sf_ldata,sizeof(struct sf_list_data),M_DEVBUF);
795		bus_teardown_intr(dev, sc->sf_irq, sc->sf_intrhand);
796		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sf_irq);
797		bus_release_resource(dev, SF_RES, SF_RID, sc->sf_res);
798		error = ENXIO;
799		goto fail;
800	}
801
802	ifp = &sc->arpcom.ac_if;
803	ifp->if_softc = sc;
804	ifp->if_unit = unit;
805	ifp->if_name = "sf";
806	ifp->if_mtu = ETHERMTU;
807	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
808	ifp->if_ioctl = sf_ioctl;
809	ifp->if_output = ether_output;
810	ifp->if_start = sf_start;
811	ifp->if_watchdog = sf_watchdog;
812	ifp->if_init = sf_init;
813	ifp->if_baudrate = 10000000;
814	ifp->if_snd.ifq_maxlen = SF_TX_DLIST_CNT - 1;
815
816	/*
817	 * Call MI attach routine.
818	 */
819	ether_ifattach(ifp, ETHER_BPF_SUPPORTED);
820	SF_UNLOCK(sc);
821	return(0);
822
823fail:
824	SF_UNLOCK(sc);
825	mtx_destroy(&sc->sf_mtx);
826	return(error);
827}
828
829static int sf_detach(dev)
830	device_t		dev;
831{
832	struct sf_softc		*sc;
833	struct ifnet		*ifp;
834
835	sc = device_get_softc(dev);
836	SF_LOCK(sc);
837	ifp = &sc->arpcom.ac_if;
838
839	ether_ifdetach(ifp, ETHER_BPF_SUPPORTED);
840	sf_stop(sc);
841
842	bus_generic_detach(dev);
843	device_delete_child(dev, sc->sf_miibus);
844
845	bus_teardown_intr(dev, sc->sf_irq, sc->sf_intrhand);
846	bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sf_irq);
847	bus_release_resource(dev, SF_RES, SF_RID, sc->sf_res);
848
849	contigfree(sc->sf_ldata, sizeof(struct sf_list_data), M_DEVBUF);
850
851	SF_UNLOCK(sc);
852	mtx_destroy(&sc->sf_mtx);
853
854	return(0);
855}
856
857static int sf_init_rx_ring(sc)
858	struct sf_softc		*sc;
859{
860	struct sf_list_data	*ld;
861	int			i;
862
863	ld = sc->sf_ldata;
864
865	bzero((char *)ld->sf_rx_dlist_big,
866	    sizeof(struct sf_rx_bufdesc_type0) * SF_RX_DLIST_CNT);
867	bzero((char *)ld->sf_rx_clist,
868	    sizeof(struct sf_rx_cmpdesc_type3) * SF_RX_CLIST_CNT);
869
870	for (i = 0; i < SF_RX_DLIST_CNT; i++) {
871		if (sf_newbuf(sc, &ld->sf_rx_dlist_big[i], NULL) == ENOBUFS)
872			return(ENOBUFS);
873	}
874
875	return(0);
876}
877
878static void sf_init_tx_ring(sc)
879	struct sf_softc		*sc;
880{
881	struct sf_list_data	*ld;
882	int			i;
883
884	ld = sc->sf_ldata;
885
886	bzero((char *)ld->sf_tx_dlist,
887	    sizeof(struct sf_tx_bufdesc_type0) * SF_TX_DLIST_CNT);
888	bzero((char *)ld->sf_tx_clist,
889	    sizeof(struct sf_tx_cmpdesc_type0) * SF_TX_CLIST_CNT);
890
891	for (i = 0; i < SF_TX_DLIST_CNT; i++)
892		ld->sf_tx_dlist[i].sf_id = SF_TX_BUFDESC_ID;
893	for (i = 0; i < SF_TX_CLIST_CNT; i++)
894		ld->sf_tx_clist[i].sf_type = SF_TXCMPTYPE_TX;
895
896	ld->sf_tx_dlist[SF_TX_DLIST_CNT - 1].sf_end = 1;
897	sc->sf_tx_cnt = 0;
898
899	return;
900}
901
902static int sf_newbuf(sc, c, m)
903	struct sf_softc		*sc;
904	struct sf_rx_bufdesc_type0	*c;
905	struct mbuf		*m;
906{
907	struct mbuf		*m_new = NULL;
908
909	if (m == NULL) {
910		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
911		if (m_new == NULL)
912			return(ENOBUFS);
913
914		MCLGET(m_new, M_DONTWAIT);
915		if (!(m_new->m_flags & M_EXT)) {
916			m_freem(m_new);
917			return(ENOBUFS);
918		}
919		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
920	} else {
921		m_new = m;
922		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
923		m_new->m_data = m_new->m_ext.ext_buf;
924	}
925
926	m_adj(m_new, sizeof(u_int64_t));
927
928	c->sf_mbuf = m_new;
929	c->sf_addrlo = SF_RX_HOSTADDR(vtophys(mtod(m_new, caddr_t)));
930	c->sf_valid = 1;
931
932	return(0);
933}
934
935/*
936 * The starfire is programmed to use 'normal' mode for packet reception,
937 * which means we use the consumer/producer model for both the buffer
938 * descriptor queue and the completion descriptor queue. The only problem
939 * with this is that it involves a lot of register accesses: we have to
940 * read the RX completion consumer and producer indexes and the RX buffer
941 * producer index, plus the RX completion consumer and RX buffer producer
942 * indexes have to be updated. It would have been easier if Adaptec had
943 * put each index in a separate register, especially given that the damn
944 * NIC has a 512K register space.
945 *
946 * In spite of all the lovely features that Adaptec crammed into the 6915,
947 * it is marred by one truly stupid design flaw, which is that receive
948 * buffer addresses must be aligned on a longword boundary. This forces
949 * the packet payload to be unaligned, which is suboptimal on the x86 and
950 * completely unuseable on the Alpha. Our only recourse is to copy received
951 * packets into properly aligned buffers before handing them off.
952 */
953
954static void sf_rxeof(sc)
955	struct sf_softc		*sc;
956{
957	struct ether_header	*eh;
958	struct mbuf		*m;
959	struct ifnet		*ifp;
960	struct sf_rx_bufdesc_type0	*desc;
961	struct sf_rx_cmpdesc_type3	*cur_rx;
962	u_int32_t		rxcons, rxprod;
963	int			cmpprodidx, cmpconsidx, bufprodidx;
964
965	ifp = &sc->arpcom.ac_if;
966
967	rxcons = csr_read_4(sc, SF_CQ_CONSIDX);
968	rxprod = csr_read_4(sc, SF_RXDQ_PTR_Q1);
969	cmpprodidx = SF_IDX_LO(csr_read_4(sc, SF_CQ_PRODIDX));
970	cmpconsidx = SF_IDX_LO(rxcons);
971	bufprodidx = SF_IDX_LO(rxprod);
972
973	while (cmpconsidx != cmpprodidx) {
974		struct mbuf		*m0;
975
976		cur_rx = &sc->sf_ldata->sf_rx_clist[cmpconsidx];
977		desc = &sc->sf_ldata->sf_rx_dlist_big[cur_rx->sf_endidx];
978		m = desc->sf_mbuf;
979		SF_INC(cmpconsidx, SF_RX_CLIST_CNT);
980		SF_INC(bufprodidx, SF_RX_DLIST_CNT);
981
982		if (!(cur_rx->sf_status1 & SF_RXSTAT1_OK)) {
983			ifp->if_ierrors++;
984			sf_newbuf(sc, desc, m);
985			continue;
986		}
987
988		m0 = m_devget(mtod(m, char *), cur_rx->sf_len, ETHER_ALIGN,
989		    ifp, NULL);
990		sf_newbuf(sc, desc, m);
991		if (m0 == NULL) {
992			ifp->if_ierrors++;
993			continue;
994		}
995		m = m0;
996
997		eh = mtod(m, struct ether_header *);
998		ifp->if_ipackets++;
999
1000		/* Remove header from mbuf and pass it on. */
1001		m_adj(m, sizeof(struct ether_header));
1002		ether_input(ifp, eh, m);
1003	}
1004
1005	csr_write_4(sc, SF_CQ_CONSIDX,
1006	    (rxcons & ~SF_CQ_CONSIDX_RXQ1) | cmpconsidx);
1007	csr_write_4(sc, SF_RXDQ_PTR_Q1,
1008	    (rxprod & ~SF_RXDQ_PRODIDX) | bufprodidx);
1009
1010	return;
1011}
1012
1013/*
1014 * Read the transmit status from the completion queue and release
1015 * mbufs. Note that the buffer descriptor index in the completion
1016 * descriptor is an offset from the start of the transmit buffer
1017 * descriptor list in bytes. This is important because the manual
1018 * gives the impression that it should match the producer/consumer
1019 * index, which is the offset in 8 byte blocks.
1020 */
1021static void sf_txeof(sc)
1022	struct sf_softc		*sc;
1023{
1024	int			txcons, cmpprodidx, cmpconsidx;
1025	struct sf_tx_cmpdesc_type1 *cur_cmp;
1026	struct sf_tx_bufdesc_type0 *cur_tx;
1027	struct ifnet		*ifp;
1028
1029	ifp = &sc->arpcom.ac_if;
1030
1031	txcons = csr_read_4(sc, SF_CQ_CONSIDX);
1032	cmpprodidx = SF_IDX_HI(csr_read_4(sc, SF_CQ_PRODIDX));
1033	cmpconsidx = SF_IDX_HI(txcons);
1034
1035	while (cmpconsidx != cmpprodidx) {
1036		cur_cmp = &sc->sf_ldata->sf_tx_clist[cmpconsidx];
1037		cur_tx = &sc->sf_ldata->sf_tx_dlist[cur_cmp->sf_index >> 7];
1038
1039		if (cur_cmp->sf_txstat & SF_TXSTAT_TX_OK)
1040			ifp->if_opackets++;
1041		else {
1042			if (cur_cmp->sf_txstat & SF_TXSTAT_TX_UNDERRUN)
1043				sf_txthresh_adjust(sc);
1044			ifp->if_oerrors++;
1045		}
1046
1047		sc->sf_tx_cnt--;
1048		if (cur_tx->sf_mbuf != NULL) {
1049			m_freem(cur_tx->sf_mbuf);
1050			cur_tx->sf_mbuf = NULL;
1051		} else
1052			break;
1053		SF_INC(cmpconsidx, SF_TX_CLIST_CNT);
1054	}
1055
1056	ifp->if_timer = 0;
1057	ifp->if_flags &= ~IFF_OACTIVE;
1058
1059	csr_write_4(sc, SF_CQ_CONSIDX,
1060	    (txcons & ~SF_CQ_CONSIDX_TXQ) |
1061	    ((cmpconsidx << 16) & 0xFFFF0000));
1062
1063	return;
1064}
1065
1066static void sf_txthresh_adjust(sc)
1067	struct sf_softc		*sc;
1068{
1069	u_int32_t		txfctl;
1070	u_int8_t		txthresh;
1071
1072	txfctl = csr_read_4(sc, SF_TX_FRAMCTL);
1073	txthresh = txfctl & SF_TXFRMCTL_TXTHRESH;
1074	if (txthresh < 0xFF) {
1075		txthresh++;
1076		txfctl &= ~SF_TXFRMCTL_TXTHRESH;
1077		txfctl |= txthresh;
1078#ifdef DIAGNOSTIC
1079		printf("sf%d: tx underrun, increasing "
1080		    "tx threshold to %d bytes\n",
1081		    sc->sf_unit, txthresh * 4);
1082#endif
1083		csr_write_4(sc, SF_TX_FRAMCTL, txfctl);
1084	}
1085
1086	return;
1087}
1088
1089static void sf_intr(arg)
1090	void			*arg;
1091{
1092	struct sf_softc		*sc;
1093	struct ifnet		*ifp;
1094	u_int32_t		status;
1095
1096	sc = arg;
1097	SF_LOCK(sc);
1098
1099	ifp = &sc->arpcom.ac_if;
1100
1101	if (!(csr_read_4(sc, SF_ISR_SHADOW) & SF_ISR_PCIINT_ASSERTED)) {
1102		SF_UNLOCK(sc);
1103		return;
1104	}
1105
1106	/* Disable interrupts. */
1107	csr_write_4(sc, SF_IMR, 0x00000000);
1108
1109	for (;;) {
1110		status = csr_read_4(sc, SF_ISR);
1111		if (status)
1112			csr_write_4(sc, SF_ISR, status);
1113
1114		if (!(status & SF_INTRS))
1115			break;
1116
1117		if (status & SF_ISR_RXDQ1_DMADONE)
1118			sf_rxeof(sc);
1119
1120		if (status & SF_ISR_TX_TXDONE ||
1121		    status & SF_ISR_TX_DMADONE ||
1122		    status & SF_ISR_TX_QUEUEDONE)
1123			sf_txeof(sc);
1124
1125		if (status & SF_ISR_TX_LOFIFO)
1126			sf_txthresh_adjust(sc);
1127
1128		if (status & SF_ISR_ABNORMALINTR) {
1129			if (status & SF_ISR_STATSOFLOW) {
1130				untimeout(sf_stats_update, sc,
1131				    sc->sf_stat_ch);
1132				sf_stats_update(sc);
1133			} else
1134				sf_init(sc);
1135		}
1136	}
1137
1138	/* Re-enable interrupts. */
1139	csr_write_4(sc, SF_IMR, SF_INTRS);
1140
1141	if (ifp->if_snd.ifq_head != NULL)
1142		sf_start(ifp);
1143
1144	SF_UNLOCK(sc);
1145	return;
1146}
1147
1148static void sf_init(xsc)
1149	void			*xsc;
1150{
1151	struct sf_softc		*sc;
1152	struct ifnet		*ifp;
1153	struct mii_data		*mii;
1154	int			i;
1155
1156	sc = xsc;
1157	SF_LOCK(sc);
1158	ifp = &sc->arpcom.ac_if;
1159	mii = device_get_softc(sc->sf_miibus);
1160
1161	sf_stop(sc);
1162	sf_reset(sc);
1163
1164	/* Init all the receive filter registers */
1165	for (i = SF_RXFILT_PERFECT_BASE;
1166	    i < (SF_RXFILT_HASH_MAX + 1); i += 4)
1167		csr_write_4(sc, i, 0);
1168
1169	/* Empty stats counter registers. */
1170	for (i = 0; i < sizeof(struct sf_stats)/sizeof(u_int32_t); i++)
1171		csr_write_4(sc, SF_STATS_BASE +
1172		    (i + sizeof(u_int32_t)), 0);
1173
1174	/* Init our MAC address */
1175	csr_write_4(sc, SF_PAR0, *(u_int32_t *)(&sc->arpcom.ac_enaddr[0]));
1176	csr_write_4(sc, SF_PAR1, *(u_int32_t *)(&sc->arpcom.ac_enaddr[4]));
1177	sf_setperf(sc, 0, (caddr_t)&sc->arpcom.ac_enaddr);
1178
1179	if (sf_init_rx_ring(sc) == ENOBUFS) {
1180		printf("sf%d: initialization failed: no "
1181		    "memory for rx buffers\n", sc->sf_unit);
1182		SF_UNLOCK(sc);
1183		return;
1184	}
1185
1186	sf_init_tx_ring(sc);
1187
1188	csr_write_4(sc, SF_RXFILT, SF_PERFMODE_NORMAL|SF_HASHMODE_WITHVLAN);
1189
1190	/* If we want promiscuous mode, set the allframes bit. */
1191	if (ifp->if_flags & IFF_PROMISC) {
1192		SF_SETBIT(sc, SF_RXFILT, SF_RXFILT_PROMISC);
1193	} else {
1194		SF_CLRBIT(sc, SF_RXFILT, SF_RXFILT_PROMISC);
1195	}
1196
1197	if (ifp->if_flags & IFF_BROADCAST) {
1198		SF_SETBIT(sc, SF_RXFILT, SF_RXFILT_BROAD);
1199	} else {
1200		SF_CLRBIT(sc, SF_RXFILT, SF_RXFILT_BROAD);
1201	}
1202
1203	/*
1204	 * Load the multicast filter.
1205	 */
1206	sf_setmulti(sc);
1207
1208	/* Init the completion queue indexes */
1209	csr_write_4(sc, SF_CQ_CONSIDX, 0);
1210	csr_write_4(sc, SF_CQ_PRODIDX, 0);
1211
1212	/* Init the RX completion queue */
1213	csr_write_4(sc, SF_RXCQ_CTL_1,
1214	    vtophys(sc->sf_ldata->sf_rx_clist) & SF_RXCQ_ADDR);
1215	SF_SETBIT(sc, SF_RXCQ_CTL_1, SF_RXCQTYPE_3);
1216
1217	/* Init RX DMA control. */
1218	SF_SETBIT(sc, SF_RXDMA_CTL, SF_RXDMA_REPORTBADPKTS);
1219
1220	/* Init the RX buffer descriptor queue. */
1221	csr_write_4(sc, SF_RXDQ_ADDR_Q1,
1222	    vtophys(sc->sf_ldata->sf_rx_dlist_big));
1223	csr_write_4(sc, SF_RXDQ_CTL_1, (MCLBYTES << 16) | SF_DESCSPACE_16BYTES);
1224	csr_write_4(sc, SF_RXDQ_PTR_Q1, SF_RX_DLIST_CNT - 1);
1225
1226	/* Init the TX completion queue */
1227	csr_write_4(sc, SF_TXCQ_CTL,
1228	    vtophys(sc->sf_ldata->sf_tx_clist) & SF_RXCQ_ADDR);
1229
1230	/* Init the TX buffer descriptor queue. */
1231	csr_write_4(sc, SF_TXDQ_ADDR_HIPRIO,
1232		vtophys(sc->sf_ldata->sf_tx_dlist));
1233	SF_SETBIT(sc, SF_TX_FRAMCTL, SF_TXFRMCTL_CPLAFTERTX);
1234	csr_write_4(sc, SF_TXDQ_CTL,
1235	    SF_TXBUFDESC_TYPE0|SF_TXMINSPACE_128BYTES|SF_TXSKIPLEN_8BYTES);
1236	SF_SETBIT(sc, SF_TXDQ_CTL, SF_TXDQCTL_NODMACMP);
1237
1238	/* Enable autopadding of short TX frames. */
1239	SF_SETBIT(sc, SF_MACCFG_1, SF_MACCFG1_AUTOPAD);
1240
1241	/* Enable interrupts. */
1242	csr_write_4(sc, SF_IMR, SF_INTRS);
1243	SF_SETBIT(sc, SF_PCI_DEVCFG, SF_PCIDEVCFG_INTR_ENB);
1244
1245	/* Enable the RX and TX engines. */
1246	SF_SETBIT(sc, SF_GEN_ETH_CTL, SF_ETHCTL_RX_ENB|SF_ETHCTL_RXDMA_ENB);
1247	SF_SETBIT(sc, SF_GEN_ETH_CTL, SF_ETHCTL_TX_ENB|SF_ETHCTL_TXDMA_ENB);
1248
1249	/*mii_mediachg(mii);*/
1250	sf_ifmedia_upd(ifp);
1251
1252	ifp->if_flags |= IFF_RUNNING;
1253	ifp->if_flags &= ~IFF_OACTIVE;
1254
1255	sc->sf_stat_ch = timeout(sf_stats_update, sc, hz);
1256
1257	SF_UNLOCK(sc);
1258
1259	return;
1260}
1261
1262static int sf_encap(sc, c, m_head)
1263	struct sf_softc		*sc;
1264	struct sf_tx_bufdesc_type0 *c;
1265	struct mbuf		*m_head;
1266{
1267	int			frag = 0;
1268	struct sf_frag		*f = NULL;
1269	struct mbuf		*m;
1270
1271	m = m_head;
1272
1273	for (m = m_head, frag = 0; m != NULL; m = m->m_next) {
1274		if (m->m_len != 0) {
1275			if (frag == SF_MAXFRAGS)
1276				break;
1277			f = &c->sf_frags[frag];
1278			if (frag == 0)
1279				f->sf_pktlen = m_head->m_pkthdr.len;
1280			f->sf_fraglen = m->m_len;
1281			f->sf_addr = vtophys(mtod(m, vm_offset_t));
1282			frag++;
1283		}
1284	}
1285
1286	if (m != NULL) {
1287		struct mbuf		*m_new = NULL;
1288
1289		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1290		if (m_new == NULL) {
1291			printf("sf%d: no memory for tx list", sc->sf_unit);
1292			return(1);
1293		}
1294
1295		if (m_head->m_pkthdr.len > MHLEN) {
1296			MCLGET(m_new, M_DONTWAIT);
1297			if (!(m_new->m_flags & M_EXT)) {
1298				m_freem(m_new);
1299				printf("sf%d: no memory for tx list",
1300				    sc->sf_unit);
1301				return(1);
1302			}
1303		}
1304		m_copydata(m_head, 0, m_head->m_pkthdr.len,
1305		    mtod(m_new, caddr_t));
1306		m_new->m_pkthdr.len = m_new->m_len = m_head->m_pkthdr.len;
1307		m_freem(m_head);
1308		m_head = m_new;
1309		f = &c->sf_frags[0];
1310		f->sf_fraglen = f->sf_pktlen = m_head->m_pkthdr.len;
1311		f->sf_addr = vtophys(mtod(m_head, caddr_t));
1312		frag = 1;
1313	}
1314
1315	c->sf_mbuf = m_head;
1316	c->sf_id = SF_TX_BUFDESC_ID;
1317	c->sf_fragcnt = frag;
1318	c->sf_intr = 1;
1319	c->sf_caltcp = 0;
1320	c->sf_crcen = 1;
1321
1322	return(0);
1323}
1324
1325static void sf_start(ifp)
1326	struct ifnet		*ifp;
1327{
1328	struct sf_softc		*sc;
1329	struct sf_tx_bufdesc_type0 *cur_tx = NULL;
1330	struct mbuf		*m_head = NULL;
1331	int			i, txprod;
1332
1333	sc = ifp->if_softc;
1334	SF_LOCK(sc);
1335
1336	if (!sc->sf_link && ifp->if_snd.ifq_len < 10) {
1337		SF_UNLOCK(sc);
1338		return;
1339	}
1340
1341	if (ifp->if_flags & IFF_OACTIVE) {
1342		SF_UNLOCK(sc);
1343		return;
1344	}
1345
1346	txprod = csr_read_4(sc, SF_TXDQ_PRODIDX);
1347	i = SF_IDX_HI(txprod) >> 4;
1348
1349	if (sc->sf_ldata->sf_tx_dlist[i].sf_mbuf != NULL) {
1350		printf("sf%d: TX ring full, resetting\n", sc->sf_unit);
1351		sf_init(sc);
1352		txprod = csr_read_4(sc, SF_TXDQ_PRODIDX);
1353		i = SF_IDX_HI(txprod) >> 4;
1354	}
1355
1356	while(sc->sf_ldata->sf_tx_dlist[i].sf_mbuf == NULL) {
1357		if (sc->sf_tx_cnt >= (SF_TX_DLIST_CNT - 5)) {
1358			ifp->if_flags |= IFF_OACTIVE;
1359			cur_tx = NULL;
1360			break;
1361		}
1362		IF_DEQUEUE(&ifp->if_snd, m_head);
1363		if (m_head == NULL)
1364			break;
1365
1366		cur_tx = &sc->sf_ldata->sf_tx_dlist[i];
1367		if (sf_encap(sc, cur_tx, m_head)) {
1368			IF_PREPEND(&ifp->if_snd, m_head);
1369			ifp->if_flags |= IFF_OACTIVE;
1370			cur_tx = NULL;
1371			break;
1372		}
1373
1374		/*
1375		 * If there's a BPF listener, bounce a copy of this frame
1376		 * to him.
1377		 */
1378		if (ifp->if_bpf)
1379			bpf_mtap(ifp, m_head);
1380
1381		SF_INC(i, SF_TX_DLIST_CNT);
1382		sc->sf_tx_cnt++;
1383		/*
1384		 * Don't get the TX DMA queue get too full.
1385		 */
1386		if (sc->sf_tx_cnt > 64)
1387			break;
1388	}
1389
1390	if (cur_tx == NULL) {
1391		SF_UNLOCK(sc);
1392		return;
1393	}
1394
1395	/* Transmit */
1396	csr_write_4(sc, SF_TXDQ_PRODIDX,
1397	    (txprod & ~SF_TXDQ_PRODIDX_HIPRIO) |
1398	    ((i << 20) & 0xFFFF0000));
1399
1400	ifp->if_timer = 5;
1401
1402	SF_UNLOCK(sc);
1403
1404	return;
1405}
1406
1407static void sf_stop(sc)
1408	struct sf_softc		*sc;
1409{
1410	int			i;
1411	struct ifnet		*ifp;
1412
1413	SF_LOCK(sc);
1414
1415	ifp = &sc->arpcom.ac_if;
1416
1417	untimeout(sf_stats_update, sc, sc->sf_stat_ch);
1418
1419	csr_write_4(sc, SF_GEN_ETH_CTL, 0);
1420	csr_write_4(sc, SF_CQ_CONSIDX, 0);
1421	csr_write_4(sc, SF_CQ_PRODIDX, 0);
1422	csr_write_4(sc, SF_RXDQ_ADDR_Q1, 0);
1423	csr_write_4(sc, SF_RXDQ_CTL_1, 0);
1424	csr_write_4(sc, SF_RXDQ_PTR_Q1, 0);
1425	csr_write_4(sc, SF_TXCQ_CTL, 0);
1426	csr_write_4(sc, SF_TXDQ_ADDR_HIPRIO, 0);
1427	csr_write_4(sc, SF_TXDQ_CTL, 0);
1428	sf_reset(sc);
1429
1430	sc->sf_link = 0;
1431
1432	for (i = 0; i < SF_RX_DLIST_CNT; i++) {
1433		if (sc->sf_ldata->sf_rx_dlist_big[i].sf_mbuf != NULL) {
1434			m_freem(sc->sf_ldata->sf_rx_dlist_big[i].sf_mbuf);
1435			sc->sf_ldata->sf_rx_dlist_big[i].sf_mbuf = NULL;
1436		}
1437	}
1438
1439	for (i = 0; i < SF_TX_DLIST_CNT; i++) {
1440		if (sc->sf_ldata->sf_tx_dlist[i].sf_mbuf != NULL) {
1441			m_freem(sc->sf_ldata->sf_tx_dlist[i].sf_mbuf);
1442			sc->sf_ldata->sf_tx_dlist[i].sf_mbuf = NULL;
1443		}
1444	}
1445
1446	ifp->if_flags &= ~(IFF_RUNNING|IFF_OACTIVE);
1447	SF_UNLOCK(sc);
1448
1449	return;
1450}
1451
1452/*
1453 * Note: it is important that this function not be interrupted. We
1454 * use a two-stage register access scheme: if we are interrupted in
1455 * between setting the indirect address register and reading from the
1456 * indirect data register, the contents of the address register could
1457 * be changed out from under us.
1458 */
1459static void sf_stats_update(xsc)
1460	void			*xsc;
1461{
1462	struct sf_softc		*sc;
1463	struct ifnet		*ifp;
1464	struct mii_data		*mii;
1465	struct sf_stats		stats;
1466	u_int32_t		*ptr;
1467	int			i;
1468
1469	sc = xsc;
1470	SF_LOCK(sc);
1471	ifp = &sc->arpcom.ac_if;
1472	mii = device_get_softc(sc->sf_miibus);
1473
1474	ptr = (u_int32_t *)&stats;
1475	for (i = 0; i < sizeof(stats)/sizeof(u_int32_t); i++)
1476		ptr[i] = csr_read_4(sc, SF_STATS_BASE +
1477		    (i + sizeof(u_int32_t)));
1478
1479	for (i = 0; i < sizeof(stats)/sizeof(u_int32_t); i++)
1480		csr_write_4(sc, SF_STATS_BASE +
1481		    (i + sizeof(u_int32_t)), 0);
1482
1483	ifp->if_collisions += stats.sf_tx_single_colls +
1484	    stats.sf_tx_multi_colls + stats.sf_tx_excess_colls;
1485
1486	mii_tick(mii);
1487
1488	if (!sc->sf_link && mii->mii_media_status & IFM_ACTIVE &&
1489	    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
1490		sc->sf_link++;
1491		if (ifp->if_snd.ifq_head != NULL)
1492			sf_start(ifp);
1493	}
1494
1495	sc->sf_stat_ch = timeout(sf_stats_update, sc, hz);
1496
1497	SF_UNLOCK(sc);
1498
1499	return;
1500}
1501
1502static void sf_watchdog(ifp)
1503	struct ifnet		*ifp;
1504{
1505	struct sf_softc		*sc;
1506
1507	sc = ifp->if_softc;
1508
1509	SF_LOCK(sc);
1510
1511	ifp->if_oerrors++;
1512	printf("sf%d: watchdog timeout\n", sc->sf_unit);
1513
1514	sf_stop(sc);
1515	sf_reset(sc);
1516	sf_init(sc);
1517
1518	if (ifp->if_snd.ifq_head != NULL)
1519		sf_start(ifp);
1520
1521	SF_UNLOCK(sc);
1522
1523	return;
1524}
1525
1526static void sf_shutdown(dev)
1527	device_t		dev;
1528{
1529	struct sf_softc		*sc;
1530
1531	sc = device_get_softc(dev);
1532
1533	sf_stop(sc);
1534
1535	return;
1536}
1537