1/*-
2 * Copyright (c) 1997, 1998, 1999
3 *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 *    must display the following acknowledgement:
15 *	This product includes software developed by Bill Paul.
16 * 4. Neither the name of the author nor the names of any co-contributors
17 *    may be used to endorse or promote products derived from this software
18 *    without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30 * THE POSSIBILITY OF SUCH DAMAGE.
31 */
32
33#include <sys/cdefs.h>
34__FBSDID("$FreeBSD: stable/11/sys/dev/sf/if_sf.c 347962 2019-05-18 20:43:13Z brooks $");
35
36/*
37 * Adaptec AIC-6915 "Starfire" PCI fast ethernet driver for FreeBSD.
38 * Programming manual is available from:
39 * http://download.adaptec.com/pdfs/user_guides/aic6915_pg.pdf.
40 *
41 * Written by Bill Paul <wpaul@ctr.columbia.edu>
42 * Department of Electical Engineering
43 * Columbia University, New York City
44 */
45/*
46 * The Adaptec AIC-6915 "Starfire" is a 64-bit 10/100 PCI ethernet
47 * controller designed with flexibility and reducing CPU load in mind.
48 * The Starfire offers high and low priority buffer queues, a
49 * producer/consumer index mechanism and several different buffer
50 * queue and completion queue descriptor types. Any one of a number
51 * of different driver designs can be used, depending on system and
52 * OS requirements. This driver makes use of type2 transmit frame
53 * descriptors to take full advantage of fragmented packets buffers
54 * and two RX buffer queues prioritized on size (one queue for small
55 * frames that will fit into a single mbuf, another with full size
56 * mbuf clusters for everything else). The producer/consumer indexes
57 * and completion queues are also used.
58 *
59 * One downside to the Starfire has to do with alignment: buffer
60 * queues must be aligned on 256-byte boundaries, and receive buffers
61 * must be aligned on longword boundaries. The receive buffer alignment
62 * causes problems on the strict alignment architecture, where the
63 * packet payload should be longword aligned. There is no simple way
64 * around this.
65 *
66 * For receive filtering, the Starfire offers 16 perfect filter slots
67 * and a 512-bit hash table.
68 *
69 * The Starfire has no internal transceiver, relying instead on an
70 * external MII-based transceiver. Accessing registers on external
71 * PHYs is done through a special register map rather than with the
72 * usual bitbang MDIO method.
73 *
74 * Acesssing the registers on the Starfire is a little tricky. The
75 * Starfire has a 512K internal register space. When programmed for
76 * PCI memory mapped mode, the entire register space can be accessed
77 * directly. However in I/O space mode, only 256 bytes are directly
78 * mapped into PCI I/O space. The other registers can be accessed
79 * indirectly using the SF_INDIRECTIO_ADDR and SF_INDIRECTIO_DATA
80 * registers inside the 256-byte I/O window.
81 */
82
83#ifdef HAVE_KERNEL_OPTION_HEADERS
84#include "opt_device_polling.h"
85#endif
86
87#include <sys/param.h>
88#include <sys/systm.h>
89#include <sys/bus.h>
90#include <sys/endian.h>
91#include <sys/kernel.h>
92#include <sys/malloc.h>
93#include <sys/mbuf.h>
94#include <sys/rman.h>
95#include <sys/module.h>
96#include <sys/socket.h>
97#include <sys/sockio.h>
98#include <sys/sysctl.h>
99
100#include <net/bpf.h>
101#include <net/if.h>
102#include <net/if_var.h>
103#include <net/if_arp.h>
104#include <net/ethernet.h>
105#include <net/if_dl.h>
106#include <net/if_media.h>
107#include <net/if_types.h>
108#include <net/if_vlan_var.h>
109
110#include <dev/mii/mii.h>
111#include <dev/mii/miivar.h>
112
113#include <dev/pci/pcireg.h>
114#include <dev/pci/pcivar.h>
115
116#include <machine/bus.h>
117
118#include <dev/sf/if_sfreg.h>
119#include <dev/sf/starfire_rx.h>
120#include <dev/sf/starfire_tx.h>
121
122/* "device miibus" required.  See GENERIC if you get errors here. */
123#include "miibus_if.h"
124
125MODULE_DEPEND(sf, pci, 1, 1, 1);
126MODULE_DEPEND(sf, ether, 1, 1, 1);
127MODULE_DEPEND(sf, miibus, 1, 1, 1);
128
129#undef	SF_GFP_DEBUG
130#define	SF_CSUM_FEATURES	(CSUM_TCP | CSUM_UDP)
131/* Define this to activate partial TCP/UDP checksum offload. */
132#undef	SF_PARTIAL_CSUM_SUPPORT
133
134static struct sf_type sf_devs[] = {
135	{ AD_VENDORID, AD_DEVICEID_STARFIRE, "Adaptec AIC-6915 10/100BaseTX",
136	    AD_SUBSYSID_62011_REV0, "Adaptec ANA-62011 (rev 0) 10/100BaseTX" },
137	{ AD_VENDORID, AD_DEVICEID_STARFIRE, "Adaptec AIC-6915 10/100BaseTX",
138	    AD_SUBSYSID_62011_REV1, "Adaptec ANA-62011 (rev 1) 10/100BaseTX" },
139	{ AD_VENDORID, AD_DEVICEID_STARFIRE, "Adaptec AIC-6915 10/100BaseTX",
140	    AD_SUBSYSID_62022, "Adaptec ANA-62022 10/100BaseTX" },
141	{ AD_VENDORID, AD_DEVICEID_STARFIRE, "Adaptec AIC-6915 10/100BaseTX",
142	    AD_SUBSYSID_62044_REV0, "Adaptec ANA-62044 (rev 0) 10/100BaseTX" },
143	{ AD_VENDORID, AD_DEVICEID_STARFIRE, "Adaptec AIC-6915 10/100BaseTX",
144	    AD_SUBSYSID_62044_REV1, "Adaptec ANA-62044 (rev 1) 10/100BaseTX" },
145	{ AD_VENDORID, AD_DEVICEID_STARFIRE, "Adaptec AIC-6915 10/100BaseTX",
146	    AD_SUBSYSID_62020, "Adaptec ANA-62020 10/100BaseFX" },
147	{ AD_VENDORID, AD_DEVICEID_STARFIRE, "Adaptec AIC-6915 10/100BaseTX",
148	    AD_SUBSYSID_69011, "Adaptec ANA-69011 10/100BaseTX" },
149};
150
151static int sf_probe(device_t);
152static int sf_attach(device_t);
153static int sf_detach(device_t);
154static int sf_shutdown(device_t);
155static int sf_suspend(device_t);
156static int sf_resume(device_t);
157static void sf_intr(void *);
158static void sf_tick(void *);
159static void sf_stats_update(struct sf_softc *);
160#ifndef __NO_STRICT_ALIGNMENT
161static __inline void sf_fixup_rx(struct mbuf *);
162#endif
163static int sf_rxeof(struct sf_softc *);
164static void sf_txeof(struct sf_softc *);
165static int sf_encap(struct sf_softc *, struct mbuf **);
166static void sf_start(struct ifnet *);
167static void sf_start_locked(struct ifnet *);
168static int sf_ioctl(struct ifnet *, u_long, caddr_t);
169static void sf_download_fw(struct sf_softc *);
170static void sf_init(void *);
171static void sf_init_locked(struct sf_softc *);
172static void sf_stop(struct sf_softc *);
173static void sf_watchdog(struct sf_softc *);
174static int sf_ifmedia_upd(struct ifnet *);
175static int sf_ifmedia_upd_locked(struct ifnet *);
176static void sf_ifmedia_sts(struct ifnet *, struct ifmediareq *);
177static void sf_reset(struct sf_softc *);
178static int sf_dma_alloc(struct sf_softc *);
179static void sf_dma_free(struct sf_softc *);
180static int sf_init_rx_ring(struct sf_softc *);
181static void sf_init_tx_ring(struct sf_softc *);
182static int sf_newbuf(struct sf_softc *, int);
183static void sf_rxfilter(struct sf_softc *);
184static int sf_setperf(struct sf_softc *, int, uint8_t *);
185static int sf_sethash(struct sf_softc *, caddr_t, int);
186#ifdef notdef
187static int sf_setvlan(struct sf_softc *, int, uint32_t);
188#endif
189
190static uint8_t sf_read_eeprom(struct sf_softc *, int);
191
192static int sf_miibus_readreg(device_t, int, int);
193static int sf_miibus_writereg(device_t, int, int, int);
194static void sf_miibus_statchg(device_t);
195#ifdef DEVICE_POLLING
196static int sf_poll(struct ifnet *ifp, enum poll_cmd cmd, int count);
197#endif
198
199static uint32_t csr_read_4(struct sf_softc *, int);
200static void csr_write_4(struct sf_softc *, int, uint32_t);
201static void sf_txthresh_adjust(struct sf_softc *);
202static int sf_sysctl_stats(SYSCTL_HANDLER_ARGS);
203static int sysctl_int_range(SYSCTL_HANDLER_ARGS, int, int);
204static int sysctl_hw_sf_int_mod(SYSCTL_HANDLER_ARGS);
205
206static device_method_t sf_methods[] = {
207	/* Device interface */
208	DEVMETHOD(device_probe,		sf_probe),
209	DEVMETHOD(device_attach,	sf_attach),
210	DEVMETHOD(device_detach,	sf_detach),
211	DEVMETHOD(device_shutdown,	sf_shutdown),
212	DEVMETHOD(device_suspend,	sf_suspend),
213	DEVMETHOD(device_resume,	sf_resume),
214
215	/* MII interface */
216	DEVMETHOD(miibus_readreg,	sf_miibus_readreg),
217	DEVMETHOD(miibus_writereg,	sf_miibus_writereg),
218	DEVMETHOD(miibus_statchg,	sf_miibus_statchg),
219
220	DEVMETHOD_END
221};
222
223static driver_t sf_driver = {
224	"sf",
225	sf_methods,
226	sizeof(struct sf_softc),
227};
228
229static devclass_t sf_devclass;
230
231DRIVER_MODULE(sf, pci, sf_driver, sf_devclass, 0, 0);
232DRIVER_MODULE(miibus, sf, miibus_driver, miibus_devclass, 0, 0);
233
234#define SF_SETBIT(sc, reg, x)	\
235	csr_write_4(sc, reg, csr_read_4(sc, reg) | (x))
236
237#define SF_CLRBIT(sc, reg, x)				\
238	csr_write_4(sc, reg, csr_read_4(sc, reg) & ~(x))
239
240static uint32_t
241csr_read_4(struct sf_softc *sc, int reg)
242{
243	uint32_t		val;
244
245	if (sc->sf_restype == SYS_RES_MEMORY)
246		val = CSR_READ_4(sc, (reg + SF_RMAP_INTREG_BASE));
247	else {
248		CSR_WRITE_4(sc, SF_INDIRECTIO_ADDR, reg + SF_RMAP_INTREG_BASE);
249		val = CSR_READ_4(sc, SF_INDIRECTIO_DATA);
250	}
251
252	return (val);
253}
254
255static uint8_t
256sf_read_eeprom(struct sf_softc *sc, int reg)
257{
258	uint8_t		val;
259
260	val = (csr_read_4(sc, SF_EEADDR_BASE +
261	    (reg & 0xFFFFFFFC)) >> (8 * (reg & 3))) & 0xFF;
262
263	return (val);
264}
265
266static void
267csr_write_4(struct sf_softc *sc, int reg, uint32_t val)
268{
269
270	if (sc->sf_restype == SYS_RES_MEMORY)
271		CSR_WRITE_4(sc, (reg + SF_RMAP_INTREG_BASE), val);
272	else {
273		CSR_WRITE_4(sc, SF_INDIRECTIO_ADDR, reg + SF_RMAP_INTREG_BASE);
274		CSR_WRITE_4(sc, SF_INDIRECTIO_DATA, val);
275	}
276}
277
278/*
279 * Copy the address 'mac' into the perfect RX filter entry at
280 * offset 'idx.' The perfect filter only has 16 entries so do
281 * some sanity tests.
282 */
283static int
284sf_setperf(struct sf_softc *sc, int idx, uint8_t *mac)
285{
286
287	if (idx < 0 || idx > SF_RXFILT_PERFECT_CNT)
288		return (EINVAL);
289
290	if (mac == NULL)
291		return (EINVAL);
292
293	csr_write_4(sc, SF_RXFILT_PERFECT_BASE +
294	    (idx * SF_RXFILT_PERFECT_SKIP) + 0, mac[5] | (mac[4] << 8));
295	csr_write_4(sc, SF_RXFILT_PERFECT_BASE +
296	    (idx * SF_RXFILT_PERFECT_SKIP) + 4, mac[3] | (mac[2] << 8));
297	csr_write_4(sc, SF_RXFILT_PERFECT_BASE +
298	    (idx * SF_RXFILT_PERFECT_SKIP) + 8, mac[1] | (mac[0] << 8));
299
300	return (0);
301}
302
303/*
304 * Set the bit in the 512-bit hash table that corresponds to the
305 * specified mac address 'mac.' If 'prio' is nonzero, update the
306 * priority hash table instead of the filter hash table.
307 */
308static int
309sf_sethash(struct sf_softc *sc, caddr_t	mac, int prio)
310{
311	uint32_t		h;
312
313	if (mac == NULL)
314		return (EINVAL);
315
316	h = ether_crc32_be(mac, ETHER_ADDR_LEN) >> 23;
317
318	if (prio) {
319		SF_SETBIT(sc, SF_RXFILT_HASH_BASE + SF_RXFILT_HASH_PRIOOFF +
320		    (SF_RXFILT_HASH_SKIP * (h >> 4)), (1 << (h & 0xF)));
321	} else {
322		SF_SETBIT(sc, SF_RXFILT_HASH_BASE + SF_RXFILT_HASH_ADDROFF +
323		    (SF_RXFILT_HASH_SKIP * (h >> 4)), (1 << (h & 0xF)));
324	}
325
326	return (0);
327}
328
329#ifdef notdef
330/*
331 * Set a VLAN tag in the receive filter.
332 */
333static int
334sf_setvlan(struct sf_softc *sc, int idx, uint32_t vlan)
335{
336
337	if (idx < 0 || idx >> SF_RXFILT_HASH_CNT)
338		return (EINVAL);
339
340	csr_write_4(sc, SF_RXFILT_HASH_BASE +
341	    (idx * SF_RXFILT_HASH_SKIP) + SF_RXFILT_HASH_VLANOFF, vlan);
342
343	return (0);
344}
345#endif
346
347static int
348sf_miibus_readreg(device_t dev, int phy, int reg)
349{
350	struct sf_softc		*sc;
351	int			i;
352	uint32_t		val = 0;
353
354	sc = device_get_softc(dev);
355
356	for (i = 0; i < SF_TIMEOUT; i++) {
357		val = csr_read_4(sc, SF_PHY_REG(phy, reg));
358		if ((val & SF_MII_DATAVALID) != 0)
359			break;
360	}
361
362	if (i == SF_TIMEOUT)
363		return (0);
364
365	val &= SF_MII_DATAPORT;
366	if (val == 0xffff)
367		return (0);
368
369	return (val);
370}
371
372static int
373sf_miibus_writereg(device_t dev, int phy, int reg, int val)
374{
375	struct sf_softc		*sc;
376	int			i;
377	int			busy;
378
379	sc = device_get_softc(dev);
380
381	csr_write_4(sc, SF_PHY_REG(phy, reg), val);
382
383	for (i = 0; i < SF_TIMEOUT; i++) {
384		busy = csr_read_4(sc, SF_PHY_REG(phy, reg));
385		if ((busy & SF_MII_BUSY) == 0)
386			break;
387	}
388
389	return (0);
390}
391
392static void
393sf_miibus_statchg(device_t dev)
394{
395	struct sf_softc		*sc;
396	struct mii_data		*mii;
397	struct ifnet		*ifp;
398	uint32_t		val;
399
400	sc = device_get_softc(dev);
401	mii = device_get_softc(sc->sf_miibus);
402	ifp = sc->sf_ifp;
403	if (mii == NULL || ifp == NULL ||
404	    (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
405		return;
406
407	sc->sf_link = 0;
408	if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
409	    (IFM_ACTIVE | IFM_AVALID)) {
410		switch (IFM_SUBTYPE(mii->mii_media_active)) {
411		case IFM_10_T:
412		case IFM_100_TX:
413		case IFM_100_FX:
414			sc->sf_link = 1;
415			break;
416		}
417	}
418	if (sc->sf_link == 0)
419		return;
420
421	val = csr_read_4(sc, SF_MACCFG_1);
422	val &= ~SF_MACCFG1_FULLDUPLEX;
423	val &= ~(SF_MACCFG1_RX_FLOWENB | SF_MACCFG1_TX_FLOWENB);
424	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
425		val |= SF_MACCFG1_FULLDUPLEX;
426		csr_write_4(sc, SF_BKTOBKIPG, SF_IPGT_FDX);
427#ifdef notyet
428		/* Configure flow-control bits. */
429		if ((IFM_OPTIONS(sc->sc_mii->mii_media_active) &
430		    IFM_ETH_RXPAUSE) != 0)
431			val |= SF_MACCFG1_RX_FLOWENB;
432		if ((IFM_OPTIONS(sc->sc_mii->mii_media_active) &
433		    IFM_ETH_TXPAUSE) != 0)
434			val |= SF_MACCFG1_TX_FLOWENB;
435#endif
436	} else
437		csr_write_4(sc, SF_BKTOBKIPG, SF_IPGT_HDX);
438
439	/* Make sure to reset MAC to take changes effect. */
440	csr_write_4(sc, SF_MACCFG_1, val | SF_MACCFG1_SOFTRESET);
441	DELAY(1000);
442	csr_write_4(sc, SF_MACCFG_1, val);
443
444	val = csr_read_4(sc, SF_TIMER_CTL);
445	if (IFM_SUBTYPE(mii->mii_media_active) == IFM_100_TX)
446		val |= SF_TIMER_TIMES_TEN;
447	else
448		val &= ~SF_TIMER_TIMES_TEN;
449	csr_write_4(sc, SF_TIMER_CTL, val);
450}
451
452static void
453sf_rxfilter(struct sf_softc *sc)
454{
455	struct ifnet		*ifp;
456	int			i;
457	struct ifmultiaddr	*ifma;
458	uint8_t			dummy[ETHER_ADDR_LEN] = { 0, 0, 0, 0, 0, 0 };
459	uint32_t		rxfilt;
460
461	ifp = sc->sf_ifp;
462
463	/* First zot all the existing filters. */
464	for (i = 1; i < SF_RXFILT_PERFECT_CNT; i++)
465		sf_setperf(sc, i, dummy);
466	for (i = SF_RXFILT_HASH_BASE; i < (SF_RXFILT_HASH_MAX + 1);
467	    i += sizeof(uint32_t))
468		csr_write_4(sc, i, 0);
469
470	rxfilt = csr_read_4(sc, SF_RXFILT);
471	rxfilt &= ~(SF_RXFILT_PROMISC | SF_RXFILT_ALLMULTI | SF_RXFILT_BROAD);
472	if ((ifp->if_flags & IFF_BROADCAST) != 0)
473		rxfilt |= SF_RXFILT_BROAD;
474	if ((ifp->if_flags & IFF_ALLMULTI) != 0 ||
475	    (ifp->if_flags & IFF_PROMISC) != 0) {
476		if ((ifp->if_flags & IFF_PROMISC) != 0)
477			rxfilt |= SF_RXFILT_PROMISC;
478		if ((ifp->if_flags & IFF_ALLMULTI) != 0)
479			rxfilt |= SF_RXFILT_ALLMULTI;
480		goto done;
481	}
482
483	/* Now program new ones. */
484	i = 1;
485	if_maddr_rlock(ifp);
486	TAILQ_FOREACH_REVERSE(ifma, &ifp->if_multiaddrs, ifmultihead,
487	    ifma_link) {
488		if (ifma->ifma_addr->sa_family != AF_LINK)
489			continue;
490		/*
491		 * Program the first 15 multicast groups
492		 * into the perfect filter. For all others,
493		 * use the hash table.
494		 */
495		if (i < SF_RXFILT_PERFECT_CNT) {
496			sf_setperf(sc, i,
497			    LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
498			i++;
499			continue;
500		}
501
502		sf_sethash(sc,
503		    LLADDR((struct sockaddr_dl *)ifma->ifma_addr), 0);
504	}
505	if_maddr_runlock(ifp);
506
507done:
508	csr_write_4(sc, SF_RXFILT, rxfilt);
509}
510
511/*
512 * Set media options.
513 */
514static int
515sf_ifmedia_upd(struct ifnet *ifp)
516{
517	struct sf_softc		*sc;
518	int			error;
519
520	sc = ifp->if_softc;
521	SF_LOCK(sc);
522	error = sf_ifmedia_upd_locked(ifp);
523	SF_UNLOCK(sc);
524	return (error);
525}
526
527static int
528sf_ifmedia_upd_locked(struct ifnet *ifp)
529{
530	struct sf_softc		*sc;
531	struct mii_data		*mii;
532	struct mii_softc        *miisc;
533
534	sc = ifp->if_softc;
535	mii = device_get_softc(sc->sf_miibus);
536	LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
537		PHY_RESET(miisc);
538	return (mii_mediachg(mii));
539}
540
541/*
542 * Report current media status.
543 */
544static void
545sf_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
546{
547	struct sf_softc		*sc;
548	struct mii_data		*mii;
549
550	sc = ifp->if_softc;
551	SF_LOCK(sc);
552	if ((ifp->if_flags & IFF_UP) == 0) {
553		SF_UNLOCK(sc);
554		return;
555	}
556
557	mii = device_get_softc(sc->sf_miibus);
558	mii_pollstat(mii);
559	ifmr->ifm_active = mii->mii_media_active;
560	ifmr->ifm_status = mii->mii_media_status;
561	SF_UNLOCK(sc);
562}
563
564static int
565sf_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
566{
567	struct sf_softc		*sc;
568	struct ifreq		*ifr;
569	struct mii_data		*mii;
570	int			error, mask;
571
572	sc = ifp->if_softc;
573	ifr = (struct ifreq *)data;
574	error = 0;
575
576	switch (command) {
577	case SIOCSIFFLAGS:
578		SF_LOCK(sc);
579		if (ifp->if_flags & IFF_UP) {
580			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
581				if ((ifp->if_flags ^ sc->sf_if_flags) &
582				    (IFF_PROMISC | IFF_ALLMULTI))
583					sf_rxfilter(sc);
584			} else {
585				if (sc->sf_detach == 0)
586					sf_init_locked(sc);
587			}
588		} else {
589			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
590				sf_stop(sc);
591		}
592		sc->sf_if_flags = ifp->if_flags;
593		SF_UNLOCK(sc);
594		break;
595	case SIOCADDMULTI:
596	case SIOCDELMULTI:
597		SF_LOCK(sc);
598		if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
599			sf_rxfilter(sc);
600		SF_UNLOCK(sc);
601		break;
602	case SIOCGIFMEDIA:
603	case SIOCSIFMEDIA:
604		mii = device_get_softc(sc->sf_miibus);
605		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
606		break;
607	case SIOCSIFCAP:
608		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
609#ifdef DEVICE_POLLING
610		if ((mask & IFCAP_POLLING) != 0) {
611			if ((ifr->ifr_reqcap & IFCAP_POLLING) != 0) {
612				error = ether_poll_register(sf_poll, ifp);
613				if (error != 0)
614					break;
615				SF_LOCK(sc);
616				/* Disable interrupts. */
617				csr_write_4(sc, SF_IMR, 0);
618				ifp->if_capenable |= IFCAP_POLLING;
619				SF_UNLOCK(sc);
620			} else {
621				error = ether_poll_deregister(ifp);
622				/* Enable interrupts. */
623				SF_LOCK(sc);
624				csr_write_4(sc, SF_IMR, SF_INTRS);
625				ifp->if_capenable &= ~IFCAP_POLLING;
626				SF_UNLOCK(sc);
627			}
628		}
629#endif /* DEVICE_POLLING */
630		if ((mask & IFCAP_TXCSUM) != 0) {
631			if ((IFCAP_TXCSUM & ifp->if_capabilities) != 0) {
632				SF_LOCK(sc);
633				ifp->if_capenable ^= IFCAP_TXCSUM;
634				if ((IFCAP_TXCSUM & ifp->if_capenable) != 0) {
635					ifp->if_hwassist |= SF_CSUM_FEATURES;
636					SF_SETBIT(sc, SF_GEN_ETH_CTL,
637					    SF_ETHCTL_TXGFP_ENB);
638				} else {
639					ifp->if_hwassist &= ~SF_CSUM_FEATURES;
640					SF_CLRBIT(sc, SF_GEN_ETH_CTL,
641					    SF_ETHCTL_TXGFP_ENB);
642				}
643				SF_UNLOCK(sc);
644			}
645		}
646		if ((mask & IFCAP_RXCSUM) != 0) {
647			if ((IFCAP_RXCSUM & ifp->if_capabilities) != 0) {
648				SF_LOCK(sc);
649				ifp->if_capenable ^= IFCAP_RXCSUM;
650				if ((IFCAP_RXCSUM & ifp->if_capenable) != 0)
651					SF_SETBIT(sc, SF_GEN_ETH_CTL,
652					    SF_ETHCTL_RXGFP_ENB);
653				else
654					SF_CLRBIT(sc, SF_GEN_ETH_CTL,
655					    SF_ETHCTL_RXGFP_ENB);
656				SF_UNLOCK(sc);
657			}
658		}
659		break;
660	default:
661		error = ether_ioctl(ifp, command, data);
662		break;
663	}
664
665	return (error);
666}
667
668static void
669sf_reset(struct sf_softc *sc)
670{
671	int		i;
672
673	csr_write_4(sc, SF_GEN_ETH_CTL, 0);
674	SF_SETBIT(sc, SF_MACCFG_1, SF_MACCFG1_SOFTRESET);
675	DELAY(1000);
676	SF_CLRBIT(sc, SF_MACCFG_1, SF_MACCFG1_SOFTRESET);
677
678	SF_SETBIT(sc, SF_PCI_DEVCFG, SF_PCIDEVCFG_RESET);
679
680	for (i = 0; i < SF_TIMEOUT; i++) {
681		DELAY(10);
682		if (!(csr_read_4(sc, SF_PCI_DEVCFG) & SF_PCIDEVCFG_RESET))
683			break;
684	}
685
686	if (i == SF_TIMEOUT)
687		device_printf(sc->sf_dev, "reset never completed!\n");
688
689	/* Wait a little while for the chip to get its brains in order. */
690	DELAY(1000);
691}
692
693/*
694 * Probe for an Adaptec AIC-6915 chip. Check the PCI vendor and device
695 * IDs against our list and return a device name if we find a match.
696 * We also check the subsystem ID so that we can identify exactly which
697 * NIC has been found, if possible.
698 */
699static int
700sf_probe(device_t dev)
701{
702	struct sf_type		*t;
703	uint16_t		vid;
704	uint16_t		did;
705	uint16_t		sdid;
706	int			i;
707
708	vid = pci_get_vendor(dev);
709	did = pci_get_device(dev);
710	sdid = pci_get_subdevice(dev);
711
712	t = sf_devs;
713	for (i = 0; i < nitems(sf_devs); i++, t++) {
714		if (vid == t->sf_vid && did == t->sf_did) {
715			if (sdid == t->sf_sdid) {
716				device_set_desc(dev, t->sf_sname);
717				return (BUS_PROBE_DEFAULT);
718			}
719		}
720	}
721
722	if (vid == AD_VENDORID && did == AD_DEVICEID_STARFIRE) {
723		/* unknown subdevice */
724		device_set_desc(dev, sf_devs[0].sf_name);
725		return (BUS_PROBE_DEFAULT);
726	}
727
728	return (ENXIO);
729}
730
731/*
732 * Attach the interface. Allocate softc structures, do ifmedia
733 * setup and ethernet/BPF attach.
734 */
735static int
736sf_attach(device_t dev)
737{
738	int			i;
739	struct sf_softc		*sc;
740	struct ifnet		*ifp;
741	uint32_t		reg;
742	int			rid, error = 0;
743	uint8_t			eaddr[ETHER_ADDR_LEN];
744
745	sc = device_get_softc(dev);
746	sc->sf_dev = dev;
747
748	mtx_init(&sc->sf_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
749	    MTX_DEF);
750	callout_init_mtx(&sc->sf_co, &sc->sf_mtx, 0);
751
752	/*
753	 * Map control/status registers.
754	 */
755	pci_enable_busmaster(dev);
756
757	/*
758	 * Prefer memory space register mapping over I/O space as the
759	 * hardware requires lots of register access to get various
760	 * producer/consumer index during Tx/Rx operation. However this
761	 * requires large memory space(512K) to map the entire register
762	 * space.
763	 */
764	sc->sf_rid = PCIR_BAR(0);
765	sc->sf_restype = SYS_RES_MEMORY;
766	sc->sf_res = bus_alloc_resource_any(dev, sc->sf_restype, &sc->sf_rid,
767	    RF_ACTIVE);
768	if (sc->sf_res == NULL) {
769		reg = pci_read_config(dev, PCIR_BAR(0), 4);
770		if ((reg & PCIM_BAR_MEM_64) == PCIM_BAR_MEM_64)
771			sc->sf_rid = PCIR_BAR(2);
772		else
773			sc->sf_rid = PCIR_BAR(1);
774		sc->sf_restype = SYS_RES_IOPORT;
775		sc->sf_res = bus_alloc_resource_any(dev, sc->sf_restype,
776		    &sc->sf_rid, RF_ACTIVE);
777		if (sc->sf_res == NULL) {
778			device_printf(dev, "couldn't allocate resources\n");
779			mtx_destroy(&sc->sf_mtx);
780			return (ENXIO);
781		}
782	}
783	if (bootverbose)
784		device_printf(dev, "using %s space register mapping\n",
785		    sc->sf_restype == SYS_RES_MEMORY ? "memory" : "I/O");
786
787	reg = pci_read_config(dev, PCIR_CACHELNSZ, 1);
788	if (reg == 0) {
789		/*
790		 * If cache line size is 0, MWI is not used at all, so set
791		 * reasonable default. AIC-6915 supports 0, 4, 8, 16, 32
792		 * and 64.
793		 */
794		reg = 16;
795		device_printf(dev, "setting PCI cache line size to %u\n", reg);
796		pci_write_config(dev, PCIR_CACHELNSZ, reg, 1);
797	} else {
798		if (bootverbose)
799			device_printf(dev, "PCI cache line size : %u\n", reg);
800	}
801	/* Enable MWI. */
802	reg = pci_read_config(dev, PCIR_COMMAND, 2);
803	reg |= PCIM_CMD_MWRICEN;
804	pci_write_config(dev, PCIR_COMMAND, reg, 2);
805
806	/* Allocate interrupt. */
807	rid = 0;
808	sc->sf_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
809	    RF_SHAREABLE | RF_ACTIVE);
810
811	if (sc->sf_irq == NULL) {
812		device_printf(dev, "couldn't map interrupt\n");
813		error = ENXIO;
814		goto fail;
815	}
816
817	SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
818	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
819	    OID_AUTO, "stats", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
820	    sf_sysctl_stats, "I", "Statistics");
821
822	SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
823		SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
824		OID_AUTO, "int_mod", CTLTYPE_INT | CTLFLAG_RW,
825		&sc->sf_int_mod, 0, sysctl_hw_sf_int_mod, "I",
826		"sf interrupt moderation");
827	/* Pull in device tunables. */
828	sc->sf_int_mod = SF_IM_DEFAULT;
829	error = resource_int_value(device_get_name(dev), device_get_unit(dev),
830	    "int_mod", &sc->sf_int_mod);
831	if (error == 0) {
832		if (sc->sf_int_mod < SF_IM_MIN ||
833		    sc->sf_int_mod > SF_IM_MAX) {
834			device_printf(dev, "int_mod value out of range; "
835			    "using default: %d\n", SF_IM_DEFAULT);
836			sc->sf_int_mod = SF_IM_DEFAULT;
837		}
838	}
839
840	/* Reset the adapter. */
841	sf_reset(sc);
842
843	/*
844	 * Get station address from the EEPROM.
845	 */
846	for (i = 0; i < ETHER_ADDR_LEN; i++)
847		eaddr[i] =
848		    sf_read_eeprom(sc, SF_EE_NODEADDR + ETHER_ADDR_LEN - i);
849
850	/* Allocate DMA resources. */
851	if (sf_dma_alloc(sc) != 0) {
852		error = ENOSPC;
853		goto fail;
854	}
855
856	sc->sf_txthresh = SF_MIN_TX_THRESHOLD;
857
858	ifp = sc->sf_ifp = if_alloc(IFT_ETHER);
859	if (ifp == NULL) {
860		device_printf(dev, "can not allocate ifnet structure\n");
861		error = ENOSPC;
862		goto fail;
863	}
864
865	/* Do MII setup. */
866	error = mii_attach(dev, &sc->sf_miibus, ifp, sf_ifmedia_upd,
867	    sf_ifmedia_sts, BMSR_DEFCAPMASK, MII_PHY_ANY, MII_OFFSET_ANY, 0);
868	if (error != 0) {
869		device_printf(dev, "attaching PHYs failed\n");
870		goto fail;
871	}
872
873	ifp->if_softc = sc;
874	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
875	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
876	ifp->if_ioctl = sf_ioctl;
877	ifp->if_start = sf_start;
878	ifp->if_init = sf_init;
879	IFQ_SET_MAXLEN(&ifp->if_snd, SF_TX_DLIST_CNT - 1);
880	ifp->if_snd.ifq_drv_maxlen = SF_TX_DLIST_CNT - 1;
881	IFQ_SET_READY(&ifp->if_snd);
882	/*
883	 * With the help of firmware, AIC-6915 supports
884	 * Tx/Rx TCP/UDP checksum offload.
885	 */
886	ifp->if_hwassist = SF_CSUM_FEATURES;
887	ifp->if_capabilities = IFCAP_HWCSUM;
888
889	/*
890	 * Call MI attach routine.
891	 */
892	ether_ifattach(ifp, eaddr);
893
894	/* VLAN capability setup. */
895	ifp->if_capabilities |= IFCAP_VLAN_MTU;
896	ifp->if_capenable = ifp->if_capabilities;
897#ifdef DEVICE_POLLING
898	ifp->if_capabilities |= IFCAP_POLLING;
899#endif
900	/*
901	 * Tell the upper layer(s) we support long frames.
902	 * Must appear after the call to ether_ifattach() because
903	 * ether_ifattach() sets ifi_hdrlen to the default value.
904	 */
905	ifp->if_hdrlen = sizeof(struct ether_vlan_header);
906
907	/* Hook interrupt last to avoid having to lock softc */
908	error = bus_setup_intr(dev, sc->sf_irq, INTR_TYPE_NET | INTR_MPSAFE,
909	    NULL, sf_intr, sc, &sc->sf_intrhand);
910
911	if (error) {
912		device_printf(dev, "couldn't set up irq\n");
913		ether_ifdetach(ifp);
914		goto fail;
915	}
916
917	gone_by_fcp101_dev(dev);
918
919fail:
920	if (error)
921		sf_detach(dev);
922
923	return (error);
924}
925
926/*
927 * Shutdown hardware and free up resources. This can be called any
928 * time after the mutex has been initialized. It is called in both
929 * the error case in attach and the normal detach case so it needs
930 * to be careful about only freeing resources that have actually been
931 * allocated.
932 */
933static int
934sf_detach(device_t dev)
935{
936	struct sf_softc		*sc;
937	struct ifnet		*ifp;
938
939	sc = device_get_softc(dev);
940	ifp = sc->sf_ifp;
941
942#ifdef DEVICE_POLLING
943	if (ifp != NULL && ifp->if_capenable & IFCAP_POLLING)
944		ether_poll_deregister(ifp);
945#endif
946
947	/* These should only be active if attach succeeded */
948	if (device_is_attached(dev)) {
949		SF_LOCK(sc);
950		sc->sf_detach = 1;
951		sf_stop(sc);
952		SF_UNLOCK(sc);
953		callout_drain(&sc->sf_co);
954		if (ifp != NULL)
955			ether_ifdetach(ifp);
956	}
957	if (sc->sf_miibus) {
958		device_delete_child(dev, sc->sf_miibus);
959		sc->sf_miibus = NULL;
960	}
961	bus_generic_detach(dev);
962
963	if (sc->sf_intrhand != NULL)
964		bus_teardown_intr(dev, sc->sf_irq, sc->sf_intrhand);
965	if (sc->sf_irq != NULL)
966		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sf_irq);
967	if (sc->sf_res != NULL)
968		bus_release_resource(dev, sc->sf_restype, sc->sf_rid,
969		    sc->sf_res);
970
971	sf_dma_free(sc);
972	if (ifp != NULL)
973		if_free(ifp);
974
975	mtx_destroy(&sc->sf_mtx);
976
977	return (0);
978}
979
980struct sf_dmamap_arg {
981	bus_addr_t		sf_busaddr;
982};
983
984static void
985sf_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
986{
987	struct sf_dmamap_arg	*ctx;
988
989	if (error != 0)
990		return;
991	ctx = arg;
992	ctx->sf_busaddr = segs[0].ds_addr;
993}
994
995static int
996sf_dma_alloc(struct sf_softc *sc)
997{
998	struct sf_dmamap_arg	ctx;
999	struct sf_txdesc	*txd;
1000	struct sf_rxdesc	*rxd;
1001	bus_addr_t		lowaddr;
1002	bus_addr_t		rx_ring_end, rx_cring_end;
1003	bus_addr_t		tx_ring_end, tx_cring_end;
1004	int			error, i;
1005
1006	lowaddr = BUS_SPACE_MAXADDR;
1007
1008again:
1009	/* Create parent DMA tag. */
1010	error = bus_dma_tag_create(
1011	    bus_get_dma_tag(sc->sf_dev),	/* parent */
1012	    1, 0,			/* alignment, boundary */
1013	    lowaddr,			/* lowaddr */
1014	    BUS_SPACE_MAXADDR,		/* highaddr */
1015	    NULL, NULL,			/* filter, filterarg */
1016	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
1017	    0,				/* nsegments */
1018	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
1019	    0,				/* flags */
1020	    NULL, NULL,			/* lockfunc, lockarg */
1021	    &sc->sf_cdata.sf_parent_tag);
1022	if (error != 0) {
1023		device_printf(sc->sf_dev, "failed to create parent DMA tag\n");
1024		goto fail;
1025	}
1026	/* Create tag for Tx ring. */
1027	error = bus_dma_tag_create(sc->sf_cdata.sf_parent_tag,/* parent */
1028	    SF_RING_ALIGN, 0, 		/* alignment, boundary */
1029	    BUS_SPACE_MAXADDR,		/* lowaddr */
1030	    BUS_SPACE_MAXADDR,		/* highaddr */
1031	    NULL, NULL,			/* filter, filterarg */
1032	    SF_TX_DLIST_SIZE,		/* maxsize */
1033	    1,				/* nsegments */
1034	    SF_TX_DLIST_SIZE,		/* maxsegsize */
1035	    0,				/* flags */
1036	    NULL, NULL,			/* lockfunc, lockarg */
1037	    &sc->sf_cdata.sf_tx_ring_tag);
1038	if (error != 0) {
1039		device_printf(sc->sf_dev, "failed to create Tx ring DMA tag\n");
1040		goto fail;
1041	}
1042
1043	/* Create tag for Tx completion ring. */
1044	error = bus_dma_tag_create(sc->sf_cdata.sf_parent_tag,/* parent */
1045	    SF_RING_ALIGN, 0, 		/* alignment, boundary */
1046	    BUS_SPACE_MAXADDR,		/* lowaddr */
1047	    BUS_SPACE_MAXADDR,		/* highaddr */
1048	    NULL, NULL,			/* filter, filterarg */
1049	    SF_TX_CLIST_SIZE,		/* maxsize */
1050	    1,				/* nsegments */
1051	    SF_TX_CLIST_SIZE,		/* maxsegsize */
1052	    0,				/* flags */
1053	    NULL, NULL,			/* lockfunc, lockarg */
1054	    &sc->sf_cdata.sf_tx_cring_tag);
1055	if (error != 0) {
1056		device_printf(sc->sf_dev,
1057		    "failed to create Tx completion ring DMA tag\n");
1058		goto fail;
1059	}
1060
1061	/* Create tag for Rx ring. */
1062	error = bus_dma_tag_create(sc->sf_cdata.sf_parent_tag,/* parent */
1063	    SF_RING_ALIGN, 0,		/* alignment, boundary */
1064	    BUS_SPACE_MAXADDR,		/* lowaddr */
1065	    BUS_SPACE_MAXADDR,		/* highaddr */
1066	    NULL, NULL,			/* filter, filterarg */
1067	    SF_RX_DLIST_SIZE,		/* maxsize */
1068	    1,				/* nsegments */
1069	    SF_RX_DLIST_SIZE,		/* maxsegsize */
1070	    0,				/* flags */
1071	    NULL, NULL,			/* lockfunc, lockarg */
1072	    &sc->sf_cdata.sf_rx_ring_tag);
1073	if (error != 0) {
1074		device_printf(sc->sf_dev,
1075		    "failed to create Rx ring DMA tag\n");
1076		goto fail;
1077	}
1078
1079	/* Create tag for Rx completion ring. */
1080	error = bus_dma_tag_create(sc->sf_cdata.sf_parent_tag,/* parent */
1081	    SF_RING_ALIGN, 0,		/* alignment, boundary */
1082	    BUS_SPACE_MAXADDR,		/* lowaddr */
1083	    BUS_SPACE_MAXADDR,		/* highaddr */
1084	    NULL, NULL,			/* filter, filterarg */
1085	    SF_RX_CLIST_SIZE,		/* maxsize */
1086	    1,				/* nsegments */
1087	    SF_RX_CLIST_SIZE,		/* maxsegsize */
1088	    0,				/* flags */
1089	    NULL, NULL,			/* lockfunc, lockarg */
1090	    &sc->sf_cdata.sf_rx_cring_tag);
1091	if (error != 0) {
1092		device_printf(sc->sf_dev,
1093		    "failed to create Rx completion ring DMA tag\n");
1094		goto fail;
1095	}
1096
1097	/* Create tag for Tx buffers. */
1098	error = bus_dma_tag_create(sc->sf_cdata.sf_parent_tag,/* parent */
1099	    1, 0,			/* alignment, boundary */
1100	    BUS_SPACE_MAXADDR,		/* lowaddr */
1101	    BUS_SPACE_MAXADDR,		/* highaddr */
1102	    NULL, NULL,			/* filter, filterarg */
1103	    MCLBYTES * SF_MAXTXSEGS,	/* maxsize */
1104	    SF_MAXTXSEGS,		/* nsegments */
1105	    MCLBYTES,			/* maxsegsize */
1106	    0,				/* flags */
1107	    NULL, NULL,			/* lockfunc, lockarg */
1108	    &sc->sf_cdata.sf_tx_tag);
1109	if (error != 0) {
1110		device_printf(sc->sf_dev, "failed to create Tx DMA tag\n");
1111		goto fail;
1112	}
1113
1114	/* Create tag for Rx buffers. */
1115	error = bus_dma_tag_create(sc->sf_cdata.sf_parent_tag,/* parent */
1116	    SF_RX_ALIGN, 0,		/* alignment, boundary */
1117	    BUS_SPACE_MAXADDR,		/* lowaddr */
1118	    BUS_SPACE_MAXADDR,		/* highaddr */
1119	    NULL, NULL,			/* filter, filterarg */
1120	    MCLBYTES,			/* maxsize */
1121	    1,				/* nsegments */
1122	    MCLBYTES,			/* maxsegsize */
1123	    0,				/* flags */
1124	    NULL, NULL,			/* lockfunc, lockarg */
1125	    &sc->sf_cdata.sf_rx_tag);
1126	if (error != 0) {
1127		device_printf(sc->sf_dev, "failed to create Rx DMA tag\n");
1128		goto fail;
1129	}
1130
1131	/* Allocate DMA'able memory and load the DMA map for Tx ring. */
1132	error = bus_dmamem_alloc(sc->sf_cdata.sf_tx_ring_tag,
1133	    (void **)&sc->sf_rdata.sf_tx_ring, BUS_DMA_WAITOK |
1134	    BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc->sf_cdata.sf_tx_ring_map);
1135	if (error != 0) {
1136		device_printf(sc->sf_dev,
1137		    "failed to allocate DMA'able memory for Tx ring\n");
1138		goto fail;
1139	}
1140
1141	ctx.sf_busaddr = 0;
1142	error = bus_dmamap_load(sc->sf_cdata.sf_tx_ring_tag,
1143	    sc->sf_cdata.sf_tx_ring_map, sc->sf_rdata.sf_tx_ring,
1144	    SF_TX_DLIST_SIZE, sf_dmamap_cb, &ctx, 0);
1145	if (error != 0 || ctx.sf_busaddr == 0) {
1146		device_printf(sc->sf_dev,
1147		    "failed to load DMA'able memory for Tx ring\n");
1148		goto fail;
1149	}
1150	sc->sf_rdata.sf_tx_ring_paddr = ctx.sf_busaddr;
1151
1152	/*
1153	 * Allocate DMA'able memory and load the DMA map for Tx completion ring.
1154	 */
1155	error = bus_dmamem_alloc(sc->sf_cdata.sf_tx_cring_tag,
1156	    (void **)&sc->sf_rdata.sf_tx_cring, BUS_DMA_WAITOK |
1157	    BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc->sf_cdata.sf_tx_cring_map);
1158	if (error != 0) {
1159		device_printf(sc->sf_dev,
1160		    "failed to allocate DMA'able memory for "
1161		    "Tx completion ring\n");
1162		goto fail;
1163	}
1164
1165	ctx.sf_busaddr = 0;
1166	error = bus_dmamap_load(sc->sf_cdata.sf_tx_cring_tag,
1167	    sc->sf_cdata.sf_tx_cring_map, sc->sf_rdata.sf_tx_cring,
1168	    SF_TX_CLIST_SIZE, sf_dmamap_cb, &ctx, 0);
1169	if (error != 0 || ctx.sf_busaddr == 0) {
1170		device_printf(sc->sf_dev,
1171		    "failed to load DMA'able memory for Tx completion ring\n");
1172		goto fail;
1173	}
1174	sc->sf_rdata.sf_tx_cring_paddr = ctx.sf_busaddr;
1175
1176	/* Allocate DMA'able memory and load the DMA map for Rx ring. */
1177	error = bus_dmamem_alloc(sc->sf_cdata.sf_rx_ring_tag,
1178	    (void **)&sc->sf_rdata.sf_rx_ring, BUS_DMA_WAITOK |
1179	    BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc->sf_cdata.sf_rx_ring_map);
1180	if (error != 0) {
1181		device_printf(sc->sf_dev,
1182		    "failed to allocate DMA'able memory for Rx ring\n");
1183		goto fail;
1184	}
1185
1186	ctx.sf_busaddr = 0;
1187	error = bus_dmamap_load(sc->sf_cdata.sf_rx_ring_tag,
1188	    sc->sf_cdata.sf_rx_ring_map, sc->sf_rdata.sf_rx_ring,
1189	    SF_RX_DLIST_SIZE, sf_dmamap_cb, &ctx, 0);
1190	if (error != 0 || ctx.sf_busaddr == 0) {
1191		device_printf(sc->sf_dev,
1192		    "failed to load DMA'able memory for Rx ring\n");
1193		goto fail;
1194	}
1195	sc->sf_rdata.sf_rx_ring_paddr = ctx.sf_busaddr;
1196
1197	/*
1198	 * Allocate DMA'able memory and load the DMA map for Rx completion ring.
1199	 */
1200	error = bus_dmamem_alloc(sc->sf_cdata.sf_rx_cring_tag,
1201	    (void **)&sc->sf_rdata.sf_rx_cring, BUS_DMA_WAITOK |
1202	    BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc->sf_cdata.sf_rx_cring_map);
1203	if (error != 0) {
1204		device_printf(sc->sf_dev,
1205		    "failed to allocate DMA'able memory for "
1206		    "Rx completion ring\n");
1207		goto fail;
1208	}
1209
1210	ctx.sf_busaddr = 0;
1211	error = bus_dmamap_load(sc->sf_cdata.sf_rx_cring_tag,
1212	    sc->sf_cdata.sf_rx_cring_map, sc->sf_rdata.sf_rx_cring,
1213	    SF_RX_CLIST_SIZE, sf_dmamap_cb, &ctx, 0);
1214	if (error != 0 || ctx.sf_busaddr == 0) {
1215		device_printf(sc->sf_dev,
1216		    "failed to load DMA'able memory for Rx completion ring\n");
1217		goto fail;
1218	}
1219	sc->sf_rdata.sf_rx_cring_paddr = ctx.sf_busaddr;
1220
1221	/*
1222	 * Tx desciptor ring and Tx completion ring should be addressed in
1223	 * the same 4GB space. The same rule applys to Rx ring and Rx
1224	 * completion ring. Unfortunately there is no way to specify this
1225	 * boundary restriction with bus_dma(9). So just try to allocate
1226	 * without the restriction and check the restriction was satisfied.
1227	 * If not, fall back to 32bit dma addressing mode which always
1228	 * guarantees the restriction.
1229	 */
1230	tx_ring_end = sc->sf_rdata.sf_tx_ring_paddr + SF_TX_DLIST_SIZE;
1231	tx_cring_end = sc->sf_rdata.sf_tx_cring_paddr + SF_TX_CLIST_SIZE;
1232	rx_ring_end = sc->sf_rdata.sf_rx_ring_paddr + SF_RX_DLIST_SIZE;
1233	rx_cring_end = sc->sf_rdata.sf_rx_cring_paddr + SF_RX_CLIST_SIZE;
1234	if ((SF_ADDR_HI(sc->sf_rdata.sf_tx_ring_paddr) !=
1235	    SF_ADDR_HI(tx_cring_end)) ||
1236	    (SF_ADDR_HI(sc->sf_rdata.sf_tx_cring_paddr) !=
1237	    SF_ADDR_HI(tx_ring_end)) ||
1238	    (SF_ADDR_HI(sc->sf_rdata.sf_rx_ring_paddr) !=
1239	    SF_ADDR_HI(rx_cring_end)) ||
1240	    (SF_ADDR_HI(sc->sf_rdata.sf_rx_cring_paddr) !=
1241	    SF_ADDR_HI(rx_ring_end))) {
1242		device_printf(sc->sf_dev,
1243		    "switching to 32bit DMA mode\n");
1244		sf_dma_free(sc);
1245		/* Limit DMA address space to 32bit and try again. */
1246		lowaddr = BUS_SPACE_MAXADDR_32BIT;
1247		goto again;
1248	}
1249
1250	/* Create DMA maps for Tx buffers. */
1251	for (i = 0; i < SF_TX_DLIST_CNT; i++) {
1252		txd = &sc->sf_cdata.sf_txdesc[i];
1253		txd->tx_m = NULL;
1254		txd->ndesc = 0;
1255		txd->tx_dmamap = NULL;
1256		error = bus_dmamap_create(sc->sf_cdata.sf_tx_tag, 0,
1257		    &txd->tx_dmamap);
1258		if (error != 0) {
1259			device_printf(sc->sf_dev,
1260			    "failed to create Tx dmamap\n");
1261			goto fail;
1262		}
1263	}
1264	/* Create DMA maps for Rx buffers. */
1265	if ((error = bus_dmamap_create(sc->sf_cdata.sf_rx_tag, 0,
1266	    &sc->sf_cdata.sf_rx_sparemap)) != 0) {
1267		device_printf(sc->sf_dev,
1268		    "failed to create spare Rx dmamap\n");
1269		goto fail;
1270	}
1271	for (i = 0; i < SF_RX_DLIST_CNT; i++) {
1272		rxd = &sc->sf_cdata.sf_rxdesc[i];
1273		rxd->rx_m = NULL;
1274		rxd->rx_dmamap = NULL;
1275		error = bus_dmamap_create(sc->sf_cdata.sf_rx_tag, 0,
1276		    &rxd->rx_dmamap);
1277		if (error != 0) {
1278			device_printf(sc->sf_dev,
1279			    "failed to create Rx dmamap\n");
1280			goto fail;
1281		}
1282	}
1283
1284fail:
1285	return (error);
1286}
1287
1288static void
1289sf_dma_free(struct sf_softc *sc)
1290{
1291	struct sf_txdesc	*txd;
1292	struct sf_rxdesc	*rxd;
1293	int			i;
1294
1295	/* Tx ring. */
1296	if (sc->sf_cdata.sf_tx_ring_tag) {
1297		if (sc->sf_rdata.sf_tx_ring_paddr)
1298			bus_dmamap_unload(sc->sf_cdata.sf_tx_ring_tag,
1299			    sc->sf_cdata.sf_tx_ring_map);
1300		if (sc->sf_rdata.sf_tx_ring)
1301			bus_dmamem_free(sc->sf_cdata.sf_tx_ring_tag,
1302			    sc->sf_rdata.sf_tx_ring,
1303			    sc->sf_cdata.sf_tx_ring_map);
1304		sc->sf_rdata.sf_tx_ring = NULL;
1305		sc->sf_rdata.sf_tx_ring_paddr = 0;
1306		bus_dma_tag_destroy(sc->sf_cdata.sf_tx_ring_tag);
1307		sc->sf_cdata.sf_tx_ring_tag = NULL;
1308	}
1309	/* Tx completion ring. */
1310	if (sc->sf_cdata.sf_tx_cring_tag) {
1311		if (sc->sf_rdata.sf_tx_cring_paddr)
1312			bus_dmamap_unload(sc->sf_cdata.sf_tx_cring_tag,
1313			    sc->sf_cdata.sf_tx_cring_map);
1314		if (sc->sf_rdata.sf_tx_cring)
1315			bus_dmamem_free(sc->sf_cdata.sf_tx_cring_tag,
1316			    sc->sf_rdata.sf_tx_cring,
1317			    sc->sf_cdata.sf_tx_cring_map);
1318		sc->sf_rdata.sf_tx_cring = NULL;
1319		sc->sf_rdata.sf_tx_cring_paddr = 0;
1320		bus_dma_tag_destroy(sc->sf_cdata.sf_tx_cring_tag);
1321		sc->sf_cdata.sf_tx_cring_tag = NULL;
1322	}
1323	/* Rx ring. */
1324	if (sc->sf_cdata.sf_rx_ring_tag) {
1325		if (sc->sf_rdata.sf_rx_ring_paddr)
1326			bus_dmamap_unload(sc->sf_cdata.sf_rx_ring_tag,
1327			    sc->sf_cdata.sf_rx_ring_map);
1328		if (sc->sf_rdata.sf_rx_ring)
1329			bus_dmamem_free(sc->sf_cdata.sf_rx_ring_tag,
1330			    sc->sf_rdata.sf_rx_ring,
1331			    sc->sf_cdata.sf_rx_ring_map);
1332		sc->sf_rdata.sf_rx_ring = NULL;
1333		sc->sf_rdata.sf_rx_ring_paddr = 0;
1334		bus_dma_tag_destroy(sc->sf_cdata.sf_rx_ring_tag);
1335		sc->sf_cdata.sf_rx_ring_tag = NULL;
1336	}
1337	/* Rx completion ring. */
1338	if (sc->sf_cdata.sf_rx_cring_tag) {
1339		if (sc->sf_rdata.sf_rx_cring_paddr)
1340			bus_dmamap_unload(sc->sf_cdata.sf_rx_cring_tag,
1341			    sc->sf_cdata.sf_rx_cring_map);
1342		if (sc->sf_rdata.sf_rx_cring)
1343			bus_dmamem_free(sc->sf_cdata.sf_rx_cring_tag,
1344			    sc->sf_rdata.sf_rx_cring,
1345			    sc->sf_cdata.sf_rx_cring_map);
1346		sc->sf_rdata.sf_rx_cring = NULL;
1347		sc->sf_rdata.sf_rx_cring_paddr = 0;
1348		bus_dma_tag_destroy(sc->sf_cdata.sf_rx_cring_tag);
1349		sc->sf_cdata.sf_rx_cring_tag = NULL;
1350	}
1351	/* Tx buffers. */
1352	if (sc->sf_cdata.sf_tx_tag) {
1353		for (i = 0; i < SF_TX_DLIST_CNT; i++) {
1354			txd = &sc->sf_cdata.sf_txdesc[i];
1355			if (txd->tx_dmamap) {
1356				bus_dmamap_destroy(sc->sf_cdata.sf_tx_tag,
1357				    txd->tx_dmamap);
1358				txd->tx_dmamap = NULL;
1359			}
1360		}
1361		bus_dma_tag_destroy(sc->sf_cdata.sf_tx_tag);
1362		sc->sf_cdata.sf_tx_tag = NULL;
1363	}
1364	/* Rx buffers. */
1365	if (sc->sf_cdata.sf_rx_tag) {
1366		for (i = 0; i < SF_RX_DLIST_CNT; i++) {
1367			rxd = &sc->sf_cdata.sf_rxdesc[i];
1368			if (rxd->rx_dmamap) {
1369				bus_dmamap_destroy(sc->sf_cdata.sf_rx_tag,
1370				    rxd->rx_dmamap);
1371				rxd->rx_dmamap = NULL;
1372			}
1373		}
1374		if (sc->sf_cdata.sf_rx_sparemap) {
1375			bus_dmamap_destroy(sc->sf_cdata.sf_rx_tag,
1376			    sc->sf_cdata.sf_rx_sparemap);
1377			sc->sf_cdata.sf_rx_sparemap = 0;
1378		}
1379		bus_dma_tag_destroy(sc->sf_cdata.sf_rx_tag);
1380		sc->sf_cdata.sf_rx_tag = NULL;
1381	}
1382
1383	if (sc->sf_cdata.sf_parent_tag) {
1384		bus_dma_tag_destroy(sc->sf_cdata.sf_parent_tag);
1385		sc->sf_cdata.sf_parent_tag = NULL;
1386	}
1387}
1388
1389static int
1390sf_init_rx_ring(struct sf_softc *sc)
1391{
1392	struct sf_ring_data	*rd;
1393	int			i;
1394
1395	sc->sf_cdata.sf_rxc_cons = 0;
1396
1397	rd = &sc->sf_rdata;
1398	bzero(rd->sf_rx_ring, SF_RX_DLIST_SIZE);
1399	bzero(rd->sf_rx_cring, SF_RX_CLIST_SIZE);
1400
1401	for (i = 0; i < SF_RX_DLIST_CNT; i++) {
1402		if (sf_newbuf(sc, i) != 0)
1403			return (ENOBUFS);
1404	}
1405
1406	bus_dmamap_sync(sc->sf_cdata.sf_rx_cring_tag,
1407	    sc->sf_cdata.sf_rx_cring_map,
1408	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1409	bus_dmamap_sync(sc->sf_cdata.sf_rx_ring_tag,
1410	    sc->sf_cdata.sf_rx_ring_map,
1411	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1412
1413	return (0);
1414}
1415
1416static void
1417sf_init_tx_ring(struct sf_softc *sc)
1418{
1419	struct sf_ring_data	*rd;
1420	int			i;
1421
1422	sc->sf_cdata.sf_tx_prod = 0;
1423	sc->sf_cdata.sf_tx_cnt = 0;
1424	sc->sf_cdata.sf_txc_cons = 0;
1425
1426	rd = &sc->sf_rdata;
1427	bzero(rd->sf_tx_ring, SF_TX_DLIST_SIZE);
1428	bzero(rd->sf_tx_cring, SF_TX_CLIST_SIZE);
1429	for (i = 0; i < SF_TX_DLIST_CNT; i++) {
1430		rd->sf_tx_ring[i].sf_tx_ctrl = htole32(SF_TX_DESC_ID);
1431		sc->sf_cdata.sf_txdesc[i].tx_m = NULL;
1432		sc->sf_cdata.sf_txdesc[i].ndesc = 0;
1433	}
1434	rd->sf_tx_ring[i].sf_tx_ctrl |= htole32(SF_TX_DESC_END);
1435
1436	bus_dmamap_sync(sc->sf_cdata.sf_tx_ring_tag,
1437	    sc->sf_cdata.sf_tx_ring_map,
1438	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1439	bus_dmamap_sync(sc->sf_cdata.sf_tx_cring_tag,
1440	    sc->sf_cdata.sf_tx_cring_map,
1441	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1442}
1443
1444/*
1445 * Initialize an RX descriptor and attach an MBUF cluster.
1446 */
1447static int
1448sf_newbuf(struct sf_softc *sc, int idx)
1449{
1450	struct sf_rx_rdesc	*desc;
1451	struct sf_rxdesc	*rxd;
1452	struct mbuf		*m;
1453	bus_dma_segment_t	segs[1];
1454	bus_dmamap_t		map;
1455	int			nsegs;
1456
1457	m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
1458	if (m == NULL)
1459		return (ENOBUFS);
1460	m->m_len = m->m_pkthdr.len = MCLBYTES;
1461	m_adj(m, sizeof(uint32_t));
1462
1463	if (bus_dmamap_load_mbuf_sg(sc->sf_cdata.sf_rx_tag,
1464	    sc->sf_cdata.sf_rx_sparemap, m, segs, &nsegs, 0) != 0) {
1465		m_freem(m);
1466		return (ENOBUFS);
1467	}
1468	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
1469
1470	rxd = &sc->sf_cdata.sf_rxdesc[idx];
1471	if (rxd->rx_m != NULL) {
1472		bus_dmamap_sync(sc->sf_cdata.sf_rx_tag, rxd->rx_dmamap,
1473		    BUS_DMASYNC_POSTREAD);
1474		bus_dmamap_unload(sc->sf_cdata.sf_rx_tag, rxd->rx_dmamap);
1475	}
1476	map = rxd->rx_dmamap;
1477	rxd->rx_dmamap = sc->sf_cdata.sf_rx_sparemap;
1478	sc->sf_cdata.sf_rx_sparemap = map;
1479	bus_dmamap_sync(sc->sf_cdata.sf_rx_tag, rxd->rx_dmamap,
1480	    BUS_DMASYNC_PREREAD);
1481	rxd->rx_m = m;
1482	desc = &sc->sf_rdata.sf_rx_ring[idx];
1483	desc->sf_addr = htole64(segs[0].ds_addr);
1484
1485	return (0);
1486}
1487
1488#ifndef __NO_STRICT_ALIGNMENT
1489static __inline void
1490sf_fixup_rx(struct mbuf *m)
1491{
1492        int			i;
1493        uint16_t		*src, *dst;
1494
1495	src = mtod(m, uint16_t *);
1496	dst = src - 1;
1497
1498	for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++)
1499		*dst++ = *src++;
1500
1501	m->m_data -= ETHER_ALIGN;
1502}
1503#endif
1504
1505/*
1506 * The starfire is programmed to use 'normal' mode for packet reception,
1507 * which means we use the consumer/producer model for both the buffer
1508 * descriptor queue and the completion descriptor queue. The only problem
1509 * with this is that it involves a lot of register accesses: we have to
1510 * read the RX completion consumer and producer indexes and the RX buffer
1511 * producer index, plus the RX completion consumer and RX buffer producer
1512 * indexes have to be updated. It would have been easier if Adaptec had
1513 * put each index in a separate register, especially given that the damn
1514 * NIC has a 512K register space.
1515 *
1516 * In spite of all the lovely features that Adaptec crammed into the 6915,
1517 * it is marred by one truly stupid design flaw, which is that receive
1518 * buffer addresses must be aligned on a longword boundary. This forces
1519 * the packet payload to be unaligned, which is suboptimal on the x86 and
1520 * completely unusable on the Alpha. Our only recourse is to copy received
1521 * packets into properly aligned buffers before handing them off.
1522 */
1523static int
1524sf_rxeof(struct sf_softc *sc)
1525{
1526	struct mbuf		*m;
1527	struct ifnet		*ifp;
1528	struct sf_rxdesc	*rxd;
1529	struct sf_rx_rcdesc	*cur_cmp;
1530	int			cons, eidx, prog, rx_npkts;
1531	uint32_t		status, status2;
1532
1533	SF_LOCK_ASSERT(sc);
1534
1535	ifp = sc->sf_ifp;
1536	rx_npkts = 0;
1537
1538	bus_dmamap_sync(sc->sf_cdata.sf_rx_ring_tag,
1539	    sc->sf_cdata.sf_rx_ring_map,
1540	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1541	bus_dmamap_sync(sc->sf_cdata.sf_rx_cring_tag,
1542	    sc->sf_cdata.sf_rx_cring_map,
1543	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1544
1545	/*
1546	 * To reduce register access, directly read Receive completion
1547	 * queue entry.
1548	 */
1549	eidx = 0;
1550	prog = 0;
1551	for (cons = sc->sf_cdata.sf_rxc_cons;
1552	    (ifp->if_drv_flags & IFF_DRV_RUNNING) != 0;
1553	    SF_INC(cons, SF_RX_CLIST_CNT)) {
1554		cur_cmp = &sc->sf_rdata.sf_rx_cring[cons];
1555		status = le32toh(cur_cmp->sf_rx_status1);
1556		if (status == 0)
1557			break;
1558#ifdef DEVICE_POLLING
1559		if ((ifp->if_capenable & IFCAP_POLLING) != 0) {
1560			if (sc->rxcycles <= 0)
1561				break;
1562			sc->rxcycles--;
1563		}
1564#endif
1565		prog++;
1566		eidx = (status & SF_RX_CMPDESC_EIDX) >> 16;
1567		rxd = &sc->sf_cdata.sf_rxdesc[eidx];
1568		m = rxd->rx_m;
1569
1570		/*
1571		 * Note, IFCOUNTER_IPACKETS and IFCOUNTER_IERRORS
1572		 * are handled in sf_stats_update().
1573		 */
1574		if ((status & SF_RXSTAT1_OK) == 0) {
1575			cur_cmp->sf_rx_status1 = 0;
1576			continue;
1577		}
1578
1579		if (sf_newbuf(sc, eidx) != 0) {
1580			if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
1581			cur_cmp->sf_rx_status1 = 0;
1582			continue;
1583		}
1584
1585		/* AIC-6915 supports TCP/UDP checksum offload. */
1586		if ((ifp->if_capenable & IFCAP_RXCSUM) != 0) {
1587			status2 = le32toh(cur_cmp->sf_rx_status2);
1588			/*
1589			 * Sometimes AIC-6915 generates an interrupt to
1590			 * warn RxGFP stall with bad checksum bit set
1591			 * in status word. I'm not sure what conditioan
1592			 * triggers it but recevied packet's checksum
1593			 * was correct even though AIC-6915 does not
1594			 * agree on this. This may be an indication of
1595			 * firmware bug. To fix the issue, do not rely
1596			 * on bad checksum bit in status word and let
1597			 * upper layer verify integrity of received
1598			 * frame.
1599			 * Another nice feature of AIC-6915 is hardware
1600			 * assistance of checksum calculation by
1601			 * providing partial checksum value for received
1602			 * frame. The partial checksum value can be used
1603			 * to accelerate checksum computation for
1604			 * fragmented TCP/UDP packets. Upper network
1605			 * stack already takes advantage of the partial
1606			 * checksum value in IP reassembly stage. But
1607			 * I'm not sure the correctness of the partial
1608			 * hardware checksum assistance as frequent
1609			 * RxGFP stalls are seen on non-fragmented
1610			 * frames. Due to the nature of the complexity
1611			 * of checksum computation code in firmware it's
1612			 * possible to see another bug in RxGFP so
1613			 * ignore checksum assistance for fragmented
1614			 * frames. This can be changed in future.
1615			 */
1616			if ((status2 & SF_RXSTAT2_FRAG) == 0) {
1617				if ((status2 & (SF_RXSTAT2_TCP |
1618				    SF_RXSTAT2_UDP)) != 0) {
1619					if ((status2 & SF_RXSTAT2_CSUM_OK)) {
1620						m->m_pkthdr.csum_flags =
1621						    CSUM_DATA_VALID |
1622						    CSUM_PSEUDO_HDR;
1623						m->m_pkthdr.csum_data = 0xffff;
1624					}
1625				}
1626			}
1627#ifdef SF_PARTIAL_CSUM_SUPPORT
1628			else if ((status2 & SF_RXSTAT2_FRAG) != 0) {
1629				if ((status2 & (SF_RXSTAT2_TCP |
1630				    SF_RXSTAT2_UDP)) != 0) {
1631					if ((status2 & SF_RXSTAT2_PCSUM_OK)) {
1632						m->m_pkthdr.csum_flags =
1633						    CSUM_DATA_VALID;
1634						m->m_pkthdr.csum_data =
1635						    (status &
1636						    SF_RX_CMPDESC_CSUM2);
1637					}
1638				}
1639			}
1640#endif
1641		}
1642
1643		m->m_pkthdr.len = m->m_len = status & SF_RX_CMPDESC_LEN;
1644#ifndef	__NO_STRICT_ALIGNMENT
1645		sf_fixup_rx(m);
1646#endif
1647		m->m_pkthdr.rcvif = ifp;
1648
1649		SF_UNLOCK(sc);
1650		(*ifp->if_input)(ifp, m);
1651		SF_LOCK(sc);
1652		rx_npkts++;
1653
1654		/* Clear completion status. */
1655		cur_cmp->sf_rx_status1 = 0;
1656	}
1657
1658	if (prog > 0) {
1659		sc->sf_cdata.sf_rxc_cons = cons;
1660		bus_dmamap_sync(sc->sf_cdata.sf_rx_ring_tag,
1661		    sc->sf_cdata.sf_rx_ring_map,
1662		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1663		bus_dmamap_sync(sc->sf_cdata.sf_rx_cring_tag,
1664		    sc->sf_cdata.sf_rx_cring_map,
1665		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1666
1667		/* Update Rx completion Q1 consumer index. */
1668		csr_write_4(sc, SF_CQ_CONSIDX,
1669		    (csr_read_4(sc, SF_CQ_CONSIDX) & ~SF_CQ_CONSIDX_RXQ1) |
1670		    (cons & SF_CQ_CONSIDX_RXQ1));
1671		/* Update Rx descriptor Q1 ptr. */
1672		csr_write_4(sc, SF_RXDQ_PTR_Q1,
1673		    (csr_read_4(sc, SF_RXDQ_PTR_Q1) & ~SF_RXDQ_PRODIDX) |
1674		    (eidx & SF_RXDQ_PRODIDX));
1675	}
1676	return (rx_npkts);
1677}
1678
1679/*
1680 * Read the transmit status from the completion queue and release
1681 * mbufs. Note that the buffer descriptor index in the completion
1682 * descriptor is an offset from the start of the transmit buffer
1683 * descriptor list in bytes. This is important because the manual
1684 * gives the impression that it should match the producer/consumer
1685 * index, which is the offset in 8 byte blocks.
1686 */
1687static void
1688sf_txeof(struct sf_softc *sc)
1689{
1690	struct sf_txdesc	*txd;
1691	struct sf_tx_rcdesc	*cur_cmp;
1692	struct ifnet		*ifp;
1693	uint32_t		status;
1694	int			cons, idx, prod;
1695
1696	SF_LOCK_ASSERT(sc);
1697
1698	ifp = sc->sf_ifp;
1699
1700	bus_dmamap_sync(sc->sf_cdata.sf_tx_cring_tag,
1701	    sc->sf_cdata.sf_tx_cring_map,
1702	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1703
1704	cons = sc->sf_cdata.sf_txc_cons;
1705	prod = (csr_read_4(sc, SF_CQ_PRODIDX) & SF_TXDQ_PRODIDX_HIPRIO) >> 16;
1706	if (prod == cons)
1707		return;
1708
1709	for (; cons != prod; SF_INC(cons, SF_TX_CLIST_CNT)) {
1710		cur_cmp = &sc->sf_rdata.sf_tx_cring[cons];
1711		status = le32toh(cur_cmp->sf_tx_status1);
1712		if (status == 0)
1713			break;
1714		switch (status & SF_TX_CMPDESC_TYPE) {
1715		case SF_TXCMPTYPE_TX:
1716			/* Tx complete entry. */
1717			break;
1718		case SF_TXCMPTYPE_DMA:
1719			/* DMA complete entry. */
1720			idx = status & SF_TX_CMPDESC_IDX;
1721			idx = idx / sizeof(struct sf_tx_rdesc);
1722			/*
1723			 * We don't need to check Tx status here.
1724			 * SF_ISR_TX_LOFIFO intr would handle this.
1725			 * Note, IFCOUNTER_OPACKETS, IFCOUNTER_COLLISIONS
1726			 * and IFCOUNTER_OERROR are handled in
1727			 * sf_stats_update().
1728			 */
1729			txd = &sc->sf_cdata.sf_txdesc[idx];
1730			if (txd->tx_m != NULL) {
1731				bus_dmamap_sync(sc->sf_cdata.sf_tx_tag,
1732				    txd->tx_dmamap,
1733				    BUS_DMASYNC_POSTWRITE);
1734				bus_dmamap_unload(sc->sf_cdata.sf_tx_tag,
1735				    txd->tx_dmamap);
1736				m_freem(txd->tx_m);
1737				txd->tx_m = NULL;
1738			}
1739			sc->sf_cdata.sf_tx_cnt -= txd->ndesc;
1740			KASSERT(sc->sf_cdata.sf_tx_cnt >= 0,
1741			    ("%s: Active Tx desc counter was garbled\n",
1742			    __func__));
1743			txd->ndesc = 0;
1744			ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1745			break;
1746		default:
1747			/* It should not happen. */
1748			device_printf(sc->sf_dev,
1749			    "unknown Tx completion type : 0x%08x : %d : %d\n",
1750			    status, cons, prod);
1751			break;
1752		}
1753		cur_cmp->sf_tx_status1 = 0;
1754	}
1755
1756	sc->sf_cdata.sf_txc_cons = cons;
1757	bus_dmamap_sync(sc->sf_cdata.sf_tx_cring_tag,
1758	    sc->sf_cdata.sf_tx_cring_map,
1759	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1760
1761	if (sc->sf_cdata.sf_tx_cnt == 0)
1762		sc->sf_watchdog_timer = 0;
1763
1764	/* Update Tx completion consumer index. */
1765	csr_write_4(sc, SF_CQ_CONSIDX,
1766	    (csr_read_4(sc, SF_CQ_CONSIDX) & 0xffff) |
1767	    ((cons << 16) & 0xffff0000));
1768}
1769
1770static void
1771sf_txthresh_adjust(struct sf_softc *sc)
1772{
1773	uint32_t		txfctl;
1774
1775	device_printf(sc->sf_dev, "Tx underrun -- ");
1776	if (sc->sf_txthresh < SF_MAX_TX_THRESHOLD) {
1777		txfctl = csr_read_4(sc, SF_TX_FRAMCTL);
1778		/* Increase Tx threshold 256 bytes. */
1779		sc->sf_txthresh += 16;
1780		if (sc->sf_txthresh > SF_MAX_TX_THRESHOLD)
1781			sc->sf_txthresh = SF_MAX_TX_THRESHOLD;
1782		txfctl &= ~SF_TXFRMCTL_TXTHRESH;
1783		txfctl |= sc->sf_txthresh;
1784		printf("increasing Tx threshold to %d bytes\n",
1785		    sc->sf_txthresh * SF_TX_THRESHOLD_UNIT);
1786		csr_write_4(sc, SF_TX_FRAMCTL, txfctl);
1787	} else
1788		printf("\n");
1789}
1790
1791#ifdef DEVICE_POLLING
1792static int
1793sf_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1794{
1795	struct sf_softc		*sc;
1796	uint32_t		status;
1797	int			rx_npkts;
1798
1799	sc = ifp->if_softc;
1800	rx_npkts = 0;
1801	SF_LOCK(sc);
1802
1803	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
1804		SF_UNLOCK(sc);
1805		return (rx_npkts);
1806	}
1807
1808	sc->rxcycles = count;
1809	rx_npkts = sf_rxeof(sc);
1810	sf_txeof(sc);
1811	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1812		sf_start_locked(ifp);
1813
1814	if (cmd == POLL_AND_CHECK_STATUS) {
1815		/* Reading the ISR register clears all interrrupts. */
1816		status = csr_read_4(sc, SF_ISR);
1817
1818		if ((status & SF_ISR_ABNORMALINTR) != 0) {
1819			if ((status & SF_ISR_STATSOFLOW) != 0)
1820				sf_stats_update(sc);
1821			else if ((status & SF_ISR_TX_LOFIFO) != 0)
1822				sf_txthresh_adjust(sc);
1823			else if ((status & SF_ISR_DMAERR) != 0) {
1824				device_printf(sc->sf_dev,
1825				    "DMA error, resetting\n");
1826				ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1827				sf_init_locked(sc);
1828				SF_UNLOCK(sc);
1829				return (rx_npkts);
1830			} else if ((status & SF_ISR_NO_TX_CSUM) != 0) {
1831				sc->sf_statistics.sf_tx_gfp_stall++;
1832#ifdef	SF_GFP_DEBUG
1833				device_printf(sc->sf_dev,
1834				    "TxGFP is not responding!\n");
1835#endif
1836			} else if ((status & SF_ISR_RXGFP_NORESP) != 0) {
1837				sc->sf_statistics.sf_rx_gfp_stall++;
1838#ifdef	SF_GFP_DEBUG
1839				device_printf(sc->sf_dev,
1840				    "RxGFP is not responding!\n");
1841#endif
1842			}
1843		}
1844	}
1845
1846	SF_UNLOCK(sc);
1847	return (rx_npkts);
1848}
1849#endif /* DEVICE_POLLING */
1850
1851static void
1852sf_intr(void *arg)
1853{
1854	struct sf_softc		*sc;
1855	struct ifnet		*ifp;
1856	uint32_t		status;
1857	int			cnt;
1858
1859	sc = (struct sf_softc *)arg;
1860	SF_LOCK(sc);
1861
1862	if (sc->sf_suspended != 0)
1863		goto done_locked;
1864
1865	/* Reading the ISR register clears all interrrupts. */
1866	status = csr_read_4(sc, SF_ISR);
1867	if (status == 0 || status == 0xffffffff ||
1868	    (status & SF_ISR_PCIINT_ASSERTED) == 0)
1869		goto done_locked;
1870
1871	ifp = sc->sf_ifp;
1872#ifdef DEVICE_POLLING
1873	if ((ifp->if_capenable & IFCAP_POLLING) != 0)
1874		goto done_locked;
1875#endif
1876
1877	/* Disable interrupts. */
1878	csr_write_4(sc, SF_IMR, 0x00000000);
1879
1880	for (cnt = 32; (status & SF_INTRS) != 0;) {
1881		if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
1882			break;
1883		if ((status & SF_ISR_RXDQ1_DMADONE) != 0)
1884			sf_rxeof(sc);
1885
1886		if ((status & (SF_ISR_TX_TXDONE | SF_ISR_TX_DMADONE |
1887		    SF_ISR_TX_QUEUEDONE)) != 0)
1888			sf_txeof(sc);
1889
1890		if ((status & SF_ISR_ABNORMALINTR) != 0) {
1891			if ((status & SF_ISR_STATSOFLOW) != 0)
1892				sf_stats_update(sc);
1893			else if ((status & SF_ISR_TX_LOFIFO) != 0)
1894				sf_txthresh_adjust(sc);
1895			else if ((status & SF_ISR_DMAERR) != 0) {
1896				device_printf(sc->sf_dev,
1897				    "DMA error, resetting\n");
1898				ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1899				sf_init_locked(sc);
1900				SF_UNLOCK(sc);
1901				return;
1902			} else if ((status & SF_ISR_NO_TX_CSUM) != 0) {
1903				sc->sf_statistics.sf_tx_gfp_stall++;
1904#ifdef	SF_GFP_DEBUG
1905				device_printf(sc->sf_dev,
1906				    "TxGFP is not responding!\n");
1907#endif
1908			}
1909			else if ((status & SF_ISR_RXGFP_NORESP) != 0) {
1910				sc->sf_statistics.sf_rx_gfp_stall++;
1911#ifdef	SF_GFP_DEBUG
1912				device_printf(sc->sf_dev,
1913				    "RxGFP is not responding!\n");
1914#endif
1915			}
1916		}
1917		if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1918			sf_start_locked(ifp);
1919		if (--cnt <= 0)
1920			break;
1921		/* Reading the ISR register clears all interrrupts. */
1922		status = csr_read_4(sc, SF_ISR);
1923	}
1924
1925	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
1926		/* Re-enable interrupts. */
1927		csr_write_4(sc, SF_IMR, SF_INTRS);
1928	}
1929
1930done_locked:
1931	SF_UNLOCK(sc);
1932}
1933
1934static void
1935sf_download_fw(struct sf_softc *sc)
1936{
1937	uint32_t gfpinst;
1938	int i, ndx;
1939	uint8_t *p;
1940
1941	/*
1942	 * A FP instruction is composed of 48bits so we have to
1943	 * write it with two parts.
1944	 */
1945	p = txfwdata;
1946	ndx = 0;
1947	for (i = 0; i < sizeof(txfwdata) / SF_GFP_INST_BYTES; i++) {
1948		gfpinst = p[2] << 24 | p[3] << 16 | p[4] << 8 | p[5];
1949		csr_write_4(sc, SF_TXGFP_MEM_BASE + ndx * 4, gfpinst);
1950		gfpinst = p[0] << 8 | p[1];
1951		csr_write_4(sc, SF_TXGFP_MEM_BASE + (ndx + 1) * 4, gfpinst);
1952		p += SF_GFP_INST_BYTES;
1953		ndx += 2;
1954	}
1955	if (bootverbose)
1956		device_printf(sc->sf_dev, "%d Tx instructions downloaded\n", i);
1957
1958	p = rxfwdata;
1959	ndx = 0;
1960	for (i = 0; i < sizeof(rxfwdata) / SF_GFP_INST_BYTES; i++) {
1961		gfpinst = p[2] << 24 | p[3] << 16 | p[4] << 8 | p[5];
1962		csr_write_4(sc, SF_RXGFP_MEM_BASE + (ndx * 4), gfpinst);
1963		gfpinst = p[0] << 8 | p[1];
1964		csr_write_4(sc, SF_RXGFP_MEM_BASE + (ndx + 1) * 4, gfpinst);
1965		p += SF_GFP_INST_BYTES;
1966		ndx += 2;
1967	}
1968	if (bootverbose)
1969		device_printf(sc->sf_dev, "%d Rx instructions downloaded\n", i);
1970}
1971
1972static void
1973sf_init(void *xsc)
1974{
1975	struct sf_softc		*sc;
1976
1977	sc = (struct sf_softc *)xsc;
1978	SF_LOCK(sc);
1979	sf_init_locked(sc);
1980	SF_UNLOCK(sc);
1981}
1982
1983static void
1984sf_init_locked(struct sf_softc *sc)
1985{
1986	struct ifnet		*ifp;
1987	uint8_t			eaddr[ETHER_ADDR_LEN];
1988	bus_addr_t		addr;
1989	int			i;
1990
1991	SF_LOCK_ASSERT(sc);
1992	ifp = sc->sf_ifp;
1993	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
1994		return;
1995
1996	sf_stop(sc);
1997	/* Reset the hardware to a known state. */
1998	sf_reset(sc);
1999
2000	/* Init all the receive filter registers */
2001	for (i = SF_RXFILT_PERFECT_BASE;
2002	    i < (SF_RXFILT_HASH_MAX + 1); i += sizeof(uint32_t))
2003		csr_write_4(sc, i, 0);
2004
2005	/* Empty stats counter registers. */
2006	for (i = SF_STATS_BASE; i < (SF_STATS_END + 1); i += sizeof(uint32_t))
2007		csr_write_4(sc, i, 0);
2008
2009	/* Init our MAC address. */
2010	bcopy(IF_LLADDR(sc->sf_ifp), eaddr, sizeof(eaddr));
2011	csr_write_4(sc, SF_PAR0,
2012	    eaddr[2] << 24 | eaddr[3] << 16 | eaddr[4] << 8 | eaddr[5]);
2013	csr_write_4(sc, SF_PAR1, eaddr[0] << 8 | eaddr[1]);
2014	sf_setperf(sc, 0, eaddr);
2015
2016	if (sf_init_rx_ring(sc) == ENOBUFS) {
2017		device_printf(sc->sf_dev,
2018		    "initialization failed: no memory for rx buffers\n");
2019		sf_stop(sc);
2020		return;
2021	}
2022
2023	sf_init_tx_ring(sc);
2024
2025	/*
2026	 * 16 perfect address filtering.
2027	 * Hash only multicast destination address, Accept matching
2028	 * frames regardless of VLAN ID.
2029	 */
2030	csr_write_4(sc, SF_RXFILT, SF_PERFMODE_NORMAL | SF_HASHMODE_ANYVLAN);
2031
2032	/*
2033	 * Set Rx filter.
2034	 */
2035	sf_rxfilter(sc);
2036
2037	/* Init the completion queue indexes. */
2038	csr_write_4(sc, SF_CQ_CONSIDX, 0);
2039	csr_write_4(sc, SF_CQ_PRODIDX, 0);
2040
2041	/* Init the RX completion queue. */
2042	addr = sc->sf_rdata.sf_rx_cring_paddr;
2043	csr_write_4(sc, SF_CQ_ADDR_HI, SF_ADDR_HI(addr));
2044	csr_write_4(sc, SF_RXCQ_CTL_1, SF_ADDR_LO(addr) & SF_RXCQ_ADDR);
2045	if (SF_ADDR_HI(addr) != 0)
2046		SF_SETBIT(sc, SF_RXCQ_CTL_1, SF_RXCQ_USE_64BIT);
2047	/* Set RX completion queue type 2. */
2048	SF_SETBIT(sc, SF_RXCQ_CTL_1, SF_RXCQTYPE_2);
2049	csr_write_4(sc, SF_RXCQ_CTL_2, 0);
2050
2051	/*
2052	 * Init RX DMA control.
2053	 * default RxHighPriority Threshold,
2054	 * default RxBurstSize, 128bytes.
2055	 */
2056	SF_SETBIT(sc, SF_RXDMA_CTL,
2057	    SF_RXDMA_REPORTBADPKTS |
2058	    (SF_RXDMA_HIGHPRIO_THRESH << 8) |
2059	    SF_RXDMA_BURST);
2060
2061	/* Init the RX buffer descriptor queue. */
2062	addr = sc->sf_rdata.sf_rx_ring_paddr;
2063	csr_write_4(sc, SF_RXDQ_ADDR_HI, SF_ADDR_HI(addr));
2064	csr_write_4(sc, SF_RXDQ_ADDR_Q1, SF_ADDR_LO(addr));
2065
2066	/* Set RX queue buffer length. */
2067	csr_write_4(sc, SF_RXDQ_CTL_1,
2068	    ((MCLBYTES  - sizeof(uint32_t)) << 16) |
2069	    SF_RXDQCTL_64BITBADDR | SF_RXDQCTL_VARIABLE);
2070
2071	if (SF_ADDR_HI(addr) != 0)
2072		SF_SETBIT(sc, SF_RXDQ_CTL_1, SF_RXDQCTL_64BITDADDR);
2073	csr_write_4(sc, SF_RXDQ_PTR_Q1, SF_RX_DLIST_CNT - 1);
2074	csr_write_4(sc, SF_RXDQ_CTL_2, 0);
2075
2076	/* Init the TX completion queue */
2077	addr = sc->sf_rdata.sf_tx_cring_paddr;
2078	csr_write_4(sc, SF_TXCQ_CTL, SF_ADDR_LO(addr) & SF_TXCQ_ADDR);
2079	if (SF_ADDR_HI(addr) != 0)
2080		SF_SETBIT(sc, SF_TXCQ_CTL, SF_TXCQ_USE_64BIT);
2081
2082	/* Init the TX buffer descriptor queue. */
2083	addr = sc->sf_rdata.sf_tx_ring_paddr;
2084	csr_write_4(sc, SF_TXDQ_ADDR_HI, SF_ADDR_HI(addr));
2085	csr_write_4(sc, SF_TXDQ_ADDR_HIPRIO, 0);
2086	csr_write_4(sc, SF_TXDQ_ADDR_LOPRIO, SF_ADDR_LO(addr));
2087	csr_write_4(sc, SF_TX_FRAMCTL,
2088	    SF_TXFRMCTL_CPLAFTERTX | sc->sf_txthresh);
2089	csr_write_4(sc, SF_TXDQ_CTL,
2090	    SF_TXDMA_HIPRIO_THRESH << 24 |
2091	    SF_TXSKIPLEN_0BYTES << 16 |
2092	    SF_TXDDMA_BURST << 8 |
2093	    SF_TXBUFDESC_TYPE2 | SF_TXMINSPACE_UNLIMIT);
2094	if (SF_ADDR_HI(addr) != 0)
2095		SF_SETBIT(sc, SF_TXDQ_CTL, SF_TXDQCTL_64BITADDR);
2096
2097	/* Set VLAN Type register. */
2098	csr_write_4(sc, SF_VLANTYPE, ETHERTYPE_VLAN);
2099
2100	/* Set TxPause Timer. */
2101	csr_write_4(sc, SF_TXPAUSETIMER, 0xffff);
2102
2103	/* Enable autopadding of short TX frames. */
2104	SF_SETBIT(sc, SF_MACCFG_1, SF_MACCFG1_AUTOPAD);
2105	SF_SETBIT(sc, SF_MACCFG_2, SF_MACCFG2_AUTOVLANPAD);
2106	/* Make sure to reset MAC to take changes effect. */
2107	SF_SETBIT(sc, SF_MACCFG_1, SF_MACCFG1_SOFTRESET);
2108	DELAY(1000);
2109	SF_CLRBIT(sc, SF_MACCFG_1, SF_MACCFG1_SOFTRESET);
2110
2111	/* Enable PCI bus master. */
2112	SF_SETBIT(sc, SF_PCI_DEVCFG, SF_PCIDEVCFG_PCIMEN);
2113
2114	/* Load StarFire firmware. */
2115	sf_download_fw(sc);
2116
2117	/* Intialize interrupt moderation. */
2118	csr_write_4(sc, SF_TIMER_CTL, SF_TIMER_IMASK_MODE | SF_TIMER_TIMES_TEN |
2119	    (sc->sf_int_mod & SF_TIMER_IMASK_INTERVAL));
2120
2121#ifdef DEVICE_POLLING
2122	/* Disable interrupts if we are polling. */
2123	if ((ifp->if_capenable & IFCAP_POLLING) != 0)
2124		csr_write_4(sc, SF_IMR, 0x00000000);
2125	else
2126#endif
2127	/* Enable interrupts. */
2128	csr_write_4(sc, SF_IMR, SF_INTRS);
2129	SF_SETBIT(sc, SF_PCI_DEVCFG, SF_PCIDEVCFG_INTR_ENB);
2130
2131	/* Enable the RX and TX engines. */
2132	csr_write_4(sc, SF_GEN_ETH_CTL,
2133	    SF_ETHCTL_RX_ENB | SF_ETHCTL_RXDMA_ENB |
2134	    SF_ETHCTL_TX_ENB | SF_ETHCTL_TXDMA_ENB);
2135
2136	if ((ifp->if_capenable & IFCAP_TXCSUM) != 0)
2137		SF_SETBIT(sc, SF_GEN_ETH_CTL, SF_ETHCTL_TXGFP_ENB);
2138	else
2139		SF_CLRBIT(sc, SF_GEN_ETH_CTL, SF_ETHCTL_TXGFP_ENB);
2140	if ((ifp->if_capenable & IFCAP_RXCSUM) != 0)
2141		SF_SETBIT(sc, SF_GEN_ETH_CTL, SF_ETHCTL_RXGFP_ENB);
2142	else
2143		SF_CLRBIT(sc, SF_GEN_ETH_CTL, SF_ETHCTL_RXGFP_ENB);
2144
2145	ifp->if_drv_flags |= IFF_DRV_RUNNING;
2146	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2147
2148	sc->sf_link = 0;
2149	sf_ifmedia_upd_locked(ifp);
2150
2151	callout_reset(&sc->sf_co, hz, sf_tick, sc);
2152}
2153
2154static int
2155sf_encap(struct sf_softc *sc, struct mbuf **m_head)
2156{
2157	struct sf_txdesc	*txd;
2158	struct sf_tx_rdesc	*desc;
2159	struct mbuf		*m;
2160	bus_dmamap_t		map;
2161	bus_dma_segment_t	txsegs[SF_MAXTXSEGS];
2162	int			error, i, nsegs, prod, si;
2163	int			avail, nskip;
2164
2165	SF_LOCK_ASSERT(sc);
2166
2167	m = *m_head;
2168	prod = sc->sf_cdata.sf_tx_prod;
2169	txd = &sc->sf_cdata.sf_txdesc[prod];
2170	map = txd->tx_dmamap;
2171	error = bus_dmamap_load_mbuf_sg(sc->sf_cdata.sf_tx_tag, map,
2172	    *m_head, txsegs, &nsegs, BUS_DMA_NOWAIT);
2173	if (error == EFBIG) {
2174		m = m_collapse(*m_head, M_NOWAIT, SF_MAXTXSEGS);
2175		if (m == NULL) {
2176			m_freem(*m_head);
2177			*m_head = NULL;
2178			return (ENOBUFS);
2179		}
2180		*m_head = m;
2181		error = bus_dmamap_load_mbuf_sg(sc->sf_cdata.sf_tx_tag,
2182		    map, *m_head, txsegs, &nsegs, BUS_DMA_NOWAIT);
2183		if (error != 0) {
2184			m_freem(*m_head);
2185			*m_head = NULL;
2186			return (error);
2187		}
2188	} else if (error != 0)
2189		return (error);
2190	if (nsegs == 0) {
2191		m_freem(*m_head);
2192		*m_head = NULL;
2193		return (EIO);
2194	}
2195
2196	/* Check number of available descriptors. */
2197	avail = (SF_TX_DLIST_CNT - 1) - sc->sf_cdata.sf_tx_cnt;
2198	if (avail < nsegs) {
2199		bus_dmamap_unload(sc->sf_cdata.sf_tx_tag, map);
2200		return (ENOBUFS);
2201	}
2202	nskip = 0;
2203	if (prod + nsegs >= SF_TX_DLIST_CNT) {
2204		nskip = SF_TX_DLIST_CNT - prod - 1;
2205		if (avail < nsegs + nskip) {
2206			bus_dmamap_unload(sc->sf_cdata.sf_tx_tag, map);
2207			return (ENOBUFS);
2208		}
2209	}
2210
2211	bus_dmamap_sync(sc->sf_cdata.sf_tx_tag, map, BUS_DMASYNC_PREWRITE);
2212
2213	si = prod;
2214	for (i = 0; i < nsegs; i++) {
2215		desc = &sc->sf_rdata.sf_tx_ring[prod];
2216		desc->sf_tx_ctrl = htole32(SF_TX_DESC_ID |
2217		    (txsegs[i].ds_len & SF_TX_DESC_FRAGLEN));
2218		desc->sf_tx_reserved = 0;
2219		desc->sf_addr = htole64(txsegs[i].ds_addr);
2220		if (i == 0 && prod + nsegs >= SF_TX_DLIST_CNT) {
2221			/* Queue wraps! */
2222			desc->sf_tx_ctrl |= htole32(SF_TX_DESC_END);
2223			prod = 0;
2224		} else
2225			SF_INC(prod, SF_TX_DLIST_CNT);
2226	}
2227	/* Update producer index. */
2228	sc->sf_cdata.sf_tx_prod = prod;
2229	sc->sf_cdata.sf_tx_cnt += nsegs + nskip;
2230
2231	desc = &sc->sf_rdata.sf_tx_ring[si];
2232	/* Check TDP/UDP checksum offload request. */
2233	if ((m->m_pkthdr.csum_flags & SF_CSUM_FEATURES) != 0)
2234		desc->sf_tx_ctrl |= htole32(SF_TX_DESC_CALTCP);
2235	desc->sf_tx_ctrl |=
2236	    htole32(SF_TX_DESC_CRCEN | SF_TX_DESC_INTR | (nsegs << 16));
2237
2238	txd->tx_dmamap = map;
2239	txd->tx_m = m;
2240	txd->ndesc = nsegs + nskip;
2241
2242	return (0);
2243}
2244
2245static void
2246sf_start(struct ifnet *ifp)
2247{
2248	struct sf_softc		*sc;
2249
2250	sc = ifp->if_softc;
2251	SF_LOCK(sc);
2252	sf_start_locked(ifp);
2253	SF_UNLOCK(sc);
2254}
2255
2256static void
2257sf_start_locked(struct ifnet *ifp)
2258{
2259	struct sf_softc		*sc;
2260	struct mbuf		*m_head;
2261	int			enq;
2262
2263	sc = ifp->if_softc;
2264	SF_LOCK_ASSERT(sc);
2265
2266	if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
2267	    IFF_DRV_RUNNING || sc->sf_link == 0)
2268		return;
2269
2270	/*
2271	 * Since we don't know when descriptor wrap occurrs in advance
2272	 * limit available number of active Tx descriptor counter to be
2273	 * higher than maximum number of DMA segments allowed in driver.
2274	 */
2275	for (enq = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd) &&
2276	    sc->sf_cdata.sf_tx_cnt < SF_TX_DLIST_CNT - SF_MAXTXSEGS; ) {
2277		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
2278		if (m_head == NULL)
2279			break;
2280		/*
2281		 * Pack the data into the transmit ring. If we
2282		 * don't have room, set the OACTIVE flag and wait
2283		 * for the NIC to drain the ring.
2284		 */
2285		if (sf_encap(sc, &m_head)) {
2286			if (m_head == NULL)
2287				break;
2288			IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
2289			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2290			break;
2291		}
2292
2293		enq++;
2294		/*
2295		 * If there's a BPF listener, bounce a copy of this frame
2296		 * to him.
2297		 */
2298		ETHER_BPF_MTAP(ifp, m_head);
2299	}
2300
2301	if (enq > 0) {
2302		bus_dmamap_sync(sc->sf_cdata.sf_tx_ring_tag,
2303		    sc->sf_cdata.sf_tx_ring_map,
2304		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2305		/* Kick transmit. */
2306		csr_write_4(sc, SF_TXDQ_PRODIDX,
2307		    sc->sf_cdata.sf_tx_prod * (sizeof(struct sf_tx_rdesc) / 8));
2308
2309		/* Set a timeout in case the chip goes out to lunch. */
2310		sc->sf_watchdog_timer = 5;
2311	}
2312}
2313
2314static void
2315sf_stop(struct sf_softc *sc)
2316{
2317	struct sf_txdesc	*txd;
2318	struct sf_rxdesc	*rxd;
2319	struct ifnet		*ifp;
2320	int			i;
2321
2322	SF_LOCK_ASSERT(sc);
2323
2324	ifp = sc->sf_ifp;
2325
2326	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
2327	sc->sf_link = 0;
2328	callout_stop(&sc->sf_co);
2329	sc->sf_watchdog_timer = 0;
2330
2331	/* Reading the ISR register clears all interrrupts. */
2332	csr_read_4(sc, SF_ISR);
2333	/* Disable further interrupts. */
2334	csr_write_4(sc, SF_IMR, 0);
2335
2336	/* Disable Tx/Rx egine. */
2337	csr_write_4(sc, SF_GEN_ETH_CTL, 0);
2338
2339	/* Give hardware chance to drain active DMA cycles. */
2340	DELAY(1000);
2341
2342	csr_write_4(sc, SF_CQ_CONSIDX, 0);
2343	csr_write_4(sc, SF_CQ_PRODIDX, 0);
2344	csr_write_4(sc, SF_RXDQ_ADDR_Q1, 0);
2345	csr_write_4(sc, SF_RXDQ_CTL_1, 0);
2346	csr_write_4(sc, SF_RXDQ_PTR_Q1, 0);
2347	csr_write_4(sc, SF_TXCQ_CTL, 0);
2348	csr_write_4(sc, SF_TXDQ_ADDR_HIPRIO, 0);
2349	csr_write_4(sc, SF_TXDQ_CTL, 0);
2350
2351	/*
2352	 * Free RX and TX mbufs still in the queues.
2353	 */
2354	for (i = 0; i < SF_RX_DLIST_CNT; i++) {
2355		rxd = &sc->sf_cdata.sf_rxdesc[i];
2356		if (rxd->rx_m != NULL) {
2357			bus_dmamap_sync(sc->sf_cdata.sf_rx_tag,
2358			    rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
2359			bus_dmamap_unload(sc->sf_cdata.sf_rx_tag,
2360			    rxd->rx_dmamap);
2361			m_freem(rxd->rx_m);
2362			rxd->rx_m = NULL;
2363		}
2364        }
2365	for (i = 0; i < SF_TX_DLIST_CNT; i++) {
2366		txd = &sc->sf_cdata.sf_txdesc[i];
2367		if (txd->tx_m != NULL) {
2368			bus_dmamap_sync(sc->sf_cdata.sf_tx_tag,
2369			    txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
2370			bus_dmamap_unload(sc->sf_cdata.sf_tx_tag,
2371			    txd->tx_dmamap);
2372			m_freem(txd->tx_m);
2373			txd->tx_m = NULL;
2374			txd->ndesc = 0;
2375		}
2376        }
2377}
2378
2379static void
2380sf_tick(void *xsc)
2381{
2382	struct sf_softc		*sc;
2383	struct mii_data		*mii;
2384
2385	sc = xsc;
2386	SF_LOCK_ASSERT(sc);
2387	mii = device_get_softc(sc->sf_miibus);
2388	mii_tick(mii);
2389	sf_stats_update(sc);
2390	sf_watchdog(sc);
2391	callout_reset(&sc->sf_co, hz, sf_tick, sc);
2392}
2393
2394/*
2395 * Note: it is important that this function not be interrupted. We
2396 * use a two-stage register access scheme: if we are interrupted in
2397 * between setting the indirect address register and reading from the
2398 * indirect data register, the contents of the address register could
2399 * be changed out from under us.
2400 */
2401static void
2402sf_stats_update(struct sf_softc *sc)
2403{
2404	struct ifnet		*ifp;
2405	struct sf_stats		now, *stats, *nstats;
2406	int			i;
2407
2408	SF_LOCK_ASSERT(sc);
2409
2410	ifp = sc->sf_ifp;
2411	stats = &now;
2412
2413	stats->sf_tx_frames =
2414	    csr_read_4(sc, SF_STATS_BASE + SF_STATS_TX_FRAMES);
2415	stats->sf_tx_single_colls =
2416	    csr_read_4(sc, SF_STATS_BASE + SF_STATS_TX_SINGLE_COL);
2417	stats->sf_tx_multi_colls =
2418	    csr_read_4(sc, SF_STATS_BASE + SF_STATS_TX_MULTI_COL);
2419	stats->sf_tx_crcerrs =
2420	    csr_read_4(sc, SF_STATS_BASE + SF_STATS_TX_CRC_ERRS);
2421	stats->sf_tx_bytes =
2422	    csr_read_4(sc, SF_STATS_BASE + SF_STATS_TX_BYTES);
2423	stats->sf_tx_deferred =
2424	    csr_read_4(sc, SF_STATS_BASE + SF_STATS_TX_DEFERRED);
2425	stats->sf_tx_late_colls =
2426	    csr_read_4(sc, SF_STATS_BASE + SF_STATS_TX_LATE_COL);
2427	stats->sf_tx_pause_frames =
2428	    csr_read_4(sc, SF_STATS_BASE + SF_STATS_TX_PAUSE);
2429	stats->sf_tx_control_frames =
2430	    csr_read_4(sc, SF_STATS_BASE + SF_STATS_TX_CTL_FRAME);
2431	stats->sf_tx_excess_colls =
2432	    csr_read_4(sc, SF_STATS_BASE + SF_STATS_TX_EXCESS_COL);
2433	stats->sf_tx_excess_defer =
2434	    csr_read_4(sc, SF_STATS_BASE + SF_STATS_TX_EXCESS_DEF);
2435	stats->sf_tx_mcast_frames =
2436	    csr_read_4(sc, SF_STATS_BASE + SF_STATS_TX_MULTI);
2437	stats->sf_tx_bcast_frames =
2438	    csr_read_4(sc, SF_STATS_BASE + SF_STATS_TX_BCAST);
2439	stats->sf_tx_frames_lost =
2440	    csr_read_4(sc, SF_STATS_BASE + SF_STATS_TX_FRAME_LOST);
2441	stats->sf_rx_frames =
2442	    csr_read_4(sc, SF_STATS_BASE + SF_STATS_RX_FRAMES);
2443	stats->sf_rx_crcerrs =
2444	    csr_read_4(sc, SF_STATS_BASE + SF_STATS_RX_CRC_ERRS);
2445	stats->sf_rx_alignerrs =
2446	    csr_read_4(sc, SF_STATS_BASE + SF_STATS_RX_ALIGN_ERRS);
2447	stats->sf_rx_bytes =
2448	    csr_read_4(sc, SF_STATS_BASE + SF_STATS_RX_BYTES);
2449	stats->sf_rx_pause_frames =
2450	    csr_read_4(sc, SF_STATS_BASE + SF_STATS_RX_PAUSE);
2451	stats->sf_rx_control_frames =
2452	    csr_read_4(sc, SF_STATS_BASE + SF_STATS_RX_CTL_FRAME);
2453	stats->sf_rx_unsup_control_frames =
2454	    csr_read_4(sc, SF_STATS_BASE + SF_STATS_RX_UNSUP_FRAME);
2455	stats->sf_rx_giants =
2456	    csr_read_4(sc, SF_STATS_BASE + SF_STATS_RX_GIANTS);
2457	stats->sf_rx_runts =
2458	    csr_read_4(sc, SF_STATS_BASE + SF_STATS_RX_RUNTS);
2459	stats->sf_rx_jabbererrs =
2460	    csr_read_4(sc, SF_STATS_BASE + SF_STATS_RX_JABBER);
2461	stats->sf_rx_fragments =
2462	    csr_read_4(sc, SF_STATS_BASE + SF_STATS_RX_FRAGMENTS);
2463	stats->sf_rx_pkts_64 =
2464	    csr_read_4(sc, SF_STATS_BASE + SF_STATS_RX_64);
2465	stats->sf_rx_pkts_65_127 =
2466	    csr_read_4(sc, SF_STATS_BASE + SF_STATS_RX_65_127);
2467	stats->sf_rx_pkts_128_255 =
2468	    csr_read_4(sc, SF_STATS_BASE + SF_STATS_RX_128_255);
2469	stats->sf_rx_pkts_256_511 =
2470	    csr_read_4(sc, SF_STATS_BASE + SF_STATS_RX_256_511);
2471	stats->sf_rx_pkts_512_1023 =
2472	    csr_read_4(sc, SF_STATS_BASE + SF_STATS_RX_512_1023);
2473	stats->sf_rx_pkts_1024_1518 =
2474	    csr_read_4(sc, SF_STATS_BASE + SF_STATS_RX_1024_1518);
2475	stats->sf_rx_frames_lost =
2476	    csr_read_4(sc, SF_STATS_BASE + SF_STATS_RX_FRAME_LOST);
2477	/* Lower 16bits are valid. */
2478	stats->sf_tx_underruns =
2479	    (csr_read_4(sc, SF_STATS_BASE + SF_STATS_TX_UNDERRUN) & 0xffff);
2480
2481	/* Empty stats counter registers. */
2482	for (i = SF_STATS_BASE; i < (SF_STATS_END + 1); i += sizeof(uint32_t))
2483		csr_write_4(sc, i, 0);
2484
2485	if_inc_counter(ifp, IFCOUNTER_OPACKETS, (u_long)stats->sf_tx_frames);
2486
2487	if_inc_counter(ifp, IFCOUNTER_COLLISIONS,
2488	    (u_long)stats->sf_tx_single_colls +
2489	    (u_long)stats->sf_tx_multi_colls);
2490
2491	if_inc_counter(ifp, IFCOUNTER_OERRORS,
2492	    (u_long)stats->sf_tx_excess_colls +
2493	    (u_long)stats->sf_tx_excess_defer +
2494	    (u_long)stats->sf_tx_frames_lost);
2495
2496	if_inc_counter(ifp, IFCOUNTER_IPACKETS, (u_long)stats->sf_rx_frames);
2497
2498	if_inc_counter(ifp, IFCOUNTER_IERRORS,
2499	    (u_long)stats->sf_rx_crcerrs +
2500	    (u_long)stats->sf_rx_alignerrs +
2501	    (u_long)stats->sf_rx_giants +
2502	    (u_long)stats->sf_rx_runts +
2503	    (u_long)stats->sf_rx_jabbererrs +
2504	    (u_long)stats->sf_rx_frames_lost);
2505
2506	nstats = &sc->sf_statistics;
2507
2508	nstats->sf_tx_frames += stats->sf_tx_frames;
2509	nstats->sf_tx_single_colls += stats->sf_tx_single_colls;
2510	nstats->sf_tx_multi_colls += stats->sf_tx_multi_colls;
2511	nstats->sf_tx_crcerrs += stats->sf_tx_crcerrs;
2512	nstats->sf_tx_bytes += stats->sf_tx_bytes;
2513	nstats->sf_tx_deferred += stats->sf_tx_deferred;
2514	nstats->sf_tx_late_colls += stats->sf_tx_late_colls;
2515	nstats->sf_tx_pause_frames += stats->sf_tx_pause_frames;
2516	nstats->sf_tx_control_frames += stats->sf_tx_control_frames;
2517	nstats->sf_tx_excess_colls += stats->sf_tx_excess_colls;
2518	nstats->sf_tx_excess_defer += stats->sf_tx_excess_defer;
2519	nstats->sf_tx_mcast_frames += stats->sf_tx_mcast_frames;
2520	nstats->sf_tx_bcast_frames += stats->sf_tx_bcast_frames;
2521	nstats->sf_tx_frames_lost += stats->sf_tx_frames_lost;
2522	nstats->sf_rx_frames += stats->sf_rx_frames;
2523	nstats->sf_rx_crcerrs += stats->sf_rx_crcerrs;
2524	nstats->sf_rx_alignerrs += stats->sf_rx_alignerrs;
2525	nstats->sf_rx_bytes += stats->sf_rx_bytes;
2526	nstats->sf_rx_pause_frames += stats->sf_rx_pause_frames;
2527	nstats->sf_rx_control_frames += stats->sf_rx_control_frames;
2528	nstats->sf_rx_unsup_control_frames += stats->sf_rx_unsup_control_frames;
2529	nstats->sf_rx_giants += stats->sf_rx_giants;
2530	nstats->sf_rx_runts += stats->sf_rx_runts;
2531	nstats->sf_rx_jabbererrs += stats->sf_rx_jabbererrs;
2532	nstats->sf_rx_fragments += stats->sf_rx_fragments;
2533	nstats->sf_rx_pkts_64 += stats->sf_rx_pkts_64;
2534	nstats->sf_rx_pkts_65_127 += stats->sf_rx_pkts_65_127;
2535	nstats->sf_rx_pkts_128_255 += stats->sf_rx_pkts_128_255;
2536	nstats->sf_rx_pkts_256_511 += stats->sf_rx_pkts_256_511;
2537	nstats->sf_rx_pkts_512_1023 += stats->sf_rx_pkts_512_1023;
2538	nstats->sf_rx_pkts_1024_1518 += stats->sf_rx_pkts_1024_1518;
2539	nstats->sf_rx_frames_lost += stats->sf_rx_frames_lost;
2540	nstats->sf_tx_underruns += stats->sf_tx_underruns;
2541}
2542
2543static void
2544sf_watchdog(struct sf_softc *sc)
2545{
2546	struct ifnet		*ifp;
2547
2548	SF_LOCK_ASSERT(sc);
2549
2550	if (sc->sf_watchdog_timer == 0 || --sc->sf_watchdog_timer)
2551		return;
2552
2553	ifp = sc->sf_ifp;
2554
2555	if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
2556	if (sc->sf_link == 0) {
2557		if (bootverbose)
2558			if_printf(sc->sf_ifp, "watchdog timeout "
2559			   "(missed link)\n");
2560	} else
2561		if_printf(ifp, "watchdog timeout, %d Tx descs are active\n",
2562		    sc->sf_cdata.sf_tx_cnt);
2563
2564	ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2565	sf_init_locked(sc);
2566
2567	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
2568		sf_start_locked(ifp);
2569}
2570
2571static int
2572sf_shutdown(device_t dev)
2573{
2574	struct sf_softc		*sc;
2575
2576	sc = device_get_softc(dev);
2577
2578	SF_LOCK(sc);
2579	sf_stop(sc);
2580	SF_UNLOCK(sc);
2581
2582	return (0);
2583}
2584
2585static int
2586sf_suspend(device_t dev)
2587{
2588	struct sf_softc		*sc;
2589
2590	sc = device_get_softc(dev);
2591
2592	SF_LOCK(sc);
2593	sf_stop(sc);
2594	sc->sf_suspended = 1;
2595	bus_generic_suspend(dev);
2596	SF_UNLOCK(sc);
2597
2598	return (0);
2599}
2600
2601static int
2602sf_resume(device_t dev)
2603{
2604	struct sf_softc		*sc;
2605	struct ifnet		*ifp;
2606
2607	sc = device_get_softc(dev);
2608
2609	SF_LOCK(sc);
2610	bus_generic_resume(dev);
2611	ifp = sc->sf_ifp;
2612	if ((ifp->if_flags & IFF_UP) != 0)
2613		sf_init_locked(sc);
2614
2615	sc->sf_suspended = 0;
2616	SF_UNLOCK(sc);
2617
2618	return (0);
2619}
2620
2621static int
2622sf_sysctl_stats(SYSCTL_HANDLER_ARGS)
2623{
2624	struct sf_softc		*sc;
2625	struct sf_stats		*stats;
2626	int			error;
2627	int			result;
2628
2629	result = -1;
2630	error = sysctl_handle_int(oidp, &result, 0, req);
2631
2632	if (error != 0 || req->newptr == NULL)
2633		return (error);
2634
2635	if (result != 1)
2636		return (error);
2637
2638	sc = (struct sf_softc *)arg1;
2639	stats = &sc->sf_statistics;
2640
2641	printf("%s statistics:\n", device_get_nameunit(sc->sf_dev));
2642	printf("Transmit good frames : %ju\n",
2643	    (uintmax_t)stats->sf_tx_frames);
2644	printf("Transmit good octets : %ju\n",
2645	    (uintmax_t)stats->sf_tx_bytes);
2646	printf("Transmit single collisions : %u\n",
2647	    stats->sf_tx_single_colls);
2648	printf("Transmit multiple collisions : %u\n",
2649	    stats->sf_tx_multi_colls);
2650	printf("Transmit late collisions : %u\n",
2651	    stats->sf_tx_late_colls);
2652	printf("Transmit abort due to excessive collisions : %u\n",
2653	    stats->sf_tx_excess_colls);
2654	printf("Transmit CRC errors : %u\n",
2655	    stats->sf_tx_crcerrs);
2656	printf("Transmit deferrals : %u\n",
2657	    stats->sf_tx_deferred);
2658	printf("Transmit abort due to excessive deferrals : %u\n",
2659	    stats->sf_tx_excess_defer);
2660	printf("Transmit pause control frames : %u\n",
2661	    stats->sf_tx_pause_frames);
2662	printf("Transmit control frames : %u\n",
2663	    stats->sf_tx_control_frames);
2664	printf("Transmit good multicast frames : %u\n",
2665	    stats->sf_tx_mcast_frames);
2666	printf("Transmit good broadcast frames : %u\n",
2667	    stats->sf_tx_bcast_frames);
2668	printf("Transmit frames lost due to internal transmit errors : %u\n",
2669	    stats->sf_tx_frames_lost);
2670	printf("Transmit FIFO underflows : %u\n",
2671	    stats->sf_tx_underruns);
2672	printf("Transmit GFP stalls : %u\n", stats->sf_tx_gfp_stall);
2673	printf("Receive good frames : %ju\n",
2674	    (uint64_t)stats->sf_rx_frames);
2675	printf("Receive good octets : %ju\n",
2676	    (uint64_t)stats->sf_rx_bytes);
2677	printf("Receive CRC errors : %u\n",
2678	    stats->sf_rx_crcerrs);
2679	printf("Receive alignment errors : %u\n",
2680	    stats->sf_rx_alignerrs);
2681	printf("Receive pause frames : %u\n",
2682	    stats->sf_rx_pause_frames);
2683	printf("Receive control frames : %u\n",
2684	    stats->sf_rx_control_frames);
2685	printf("Receive control frames with unsupported opcode : %u\n",
2686	    stats->sf_rx_unsup_control_frames);
2687	printf("Receive frames too long : %u\n",
2688	    stats->sf_rx_giants);
2689	printf("Receive frames too short : %u\n",
2690	    stats->sf_rx_runts);
2691	printf("Receive frames jabber errors : %u\n",
2692	    stats->sf_rx_jabbererrs);
2693	printf("Receive frames fragments : %u\n",
2694	    stats->sf_rx_fragments);
2695	printf("Receive packets 64 bytes : %ju\n",
2696	    (uint64_t)stats->sf_rx_pkts_64);
2697	printf("Receive packets 65 to 127 bytes : %ju\n",
2698	    (uint64_t)stats->sf_rx_pkts_65_127);
2699	printf("Receive packets 128 to 255 bytes : %ju\n",
2700	    (uint64_t)stats->sf_rx_pkts_128_255);
2701	printf("Receive packets 256 to 511 bytes : %ju\n",
2702	    (uint64_t)stats->sf_rx_pkts_256_511);
2703	printf("Receive packets 512 to 1023 bytes : %ju\n",
2704	    (uint64_t)stats->sf_rx_pkts_512_1023);
2705	printf("Receive packets 1024 to 1518 bytes : %ju\n",
2706	    (uint64_t)stats->sf_rx_pkts_1024_1518);
2707	printf("Receive frames lost due to internal receive errors : %u\n",
2708	    stats->sf_rx_frames_lost);
2709	printf("Receive GFP stalls : %u\n", stats->sf_rx_gfp_stall);
2710
2711	return (error);
2712}
2713
2714static int
2715sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
2716{
2717	int error, value;
2718
2719	if (!arg1)
2720		return (EINVAL);
2721	value = *(int *)arg1;
2722	error = sysctl_handle_int(oidp, &value, 0, req);
2723	if (error || !req->newptr)
2724		return (error);
2725	if (value < low || value > high)
2726		return (EINVAL);
2727	*(int *)arg1 = value;
2728
2729	return (0);
2730}
2731
2732static int
2733sysctl_hw_sf_int_mod(SYSCTL_HANDLER_ARGS)
2734{
2735
2736	return (sysctl_int_range(oidp, arg1, arg2, req, SF_IM_MIN, SF_IM_MAX));
2737}
2738