if_sf.c revision 81714
1/*
2 * Copyright (c) 1997, 1998, 1999
3 *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 *    must display the following acknowledgement:
15 *	This product includes software developed by Bill Paul.
16 * 4. Neither the name of the author nor the names of any co-contributors
17 *    may be used to endorse or promote products derived from this software
18 *    without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30 * THE POSSIBILITY OF SUCH DAMAGE.
31 *
32 * $FreeBSD: head/sys/dev/sf/if_sf.c 81714 2001-08-15 17:46:57Z wpaul $
33 */
34
35/*
36 * Adaptec AIC-6915 "Starfire" PCI fast ethernet driver for FreeBSD.
37 * Programming manual is available from:
38 * ftp.adaptec.com:/pub/BBS/userguides/aic6915_pg.pdf.
39 *
40 * Written by Bill Paul <wpaul@ctr.columbia.edu>
41 * Department of Electical Engineering
42 * Columbia University, New York City
43 */
44
45/*
46 * The Adaptec AIC-6915 "Starfire" is a 64-bit 10/100 PCI ethernet
47 * controller designed with flexibility and reducing CPU load in mind.
48 * The Starfire offers high and low priority buffer queues, a
49 * producer/consumer index mechanism and several different buffer
50 * queue and completion queue descriptor types. Any one of a number
51 * of different driver designs can be used, depending on system and
52 * OS requirements. This driver makes use of type0 transmit frame
53 * descriptors (since BSD fragments packets across an mbuf chain)
54 * and two RX buffer queues prioritized on size (one queue for small
55 * frames that will fit into a single mbuf, another with full size
56 * mbuf clusters for everything else). The producer/consumer indexes
57 * and completion queues are also used.
58 *
59 * One downside to the Starfire has to do with alignment: buffer
60 * queues must be aligned on 256-byte boundaries, and receive buffers
61 * must be aligned on longword boundaries. The receive buffer alignment
62 * causes problems on the Alpha platform, where the packet payload
63 * should be longword aligned. There is no simple way around this.
64 *
65 * For receive filtering, the Starfire offers 16 perfect filter slots
66 * and a 512-bit hash table.
67 *
68 * The Starfire has no internal transceiver, relying instead on an
69 * external MII-based transceiver. Accessing registers on external
70 * PHYs is done through a special register map rather than with the
71 * usual bitbang MDIO method.
72 *
73 * Acesssing the registers on the Starfire is a little tricky. The
74 * Starfire has a 512K internal register space. When programmed for
75 * PCI memory mapped mode, the entire register space can be accessed
76 * directly. However in I/O space mode, only 256 bytes are directly
77 * mapped into PCI I/O space. The other registers can be accessed
78 * indirectly using the SF_INDIRECTIO_ADDR and SF_INDIRECTIO_DATA
79 * registers inside the 256-byte I/O window.
80 */
81
82#include <sys/param.h>
83#include <sys/systm.h>
84#include <sys/sockio.h>
85#include <sys/mbuf.h>
86#include <sys/malloc.h>
87#include <sys/kernel.h>
88#include <sys/socket.h>
89
90#include <net/if.h>
91#include <net/if_arp.h>
92#include <net/ethernet.h>
93#include <net/if_dl.h>
94#include <net/if_media.h>
95
96#include <net/bpf.h>
97
98#include <vm/vm.h>              /* for vtophys */
99#include <vm/pmap.h>            /* for vtophys */
100#include <machine/bus_pio.h>
101#include <machine/bus_memio.h>
102#include <machine/bus.h>
103#include <machine/resource.h>
104#include <sys/bus.h>
105#include <sys/rman.h>
106
107#include <dev/mii/mii.h>
108#include <dev/mii/miivar.h>
109
110/* "controller miibus0" required.  See GENERIC if you get errors here. */
111#include "miibus_if.h"
112
113#include <pci/pcireg.h>
114#include <pci/pcivar.h>
115
116#define SF_USEIOSPACE
117
118#include <pci/if_sfreg.h>
119
120MODULE_DEPEND(sf, miibus, 1, 1, 1);
121
122#ifndef lint
123static const char rcsid[] =
124  "$FreeBSD: head/sys/dev/sf/if_sf.c 81714 2001-08-15 17:46:57Z wpaul $";
125#endif
126
127static struct sf_type sf_devs[] = {
128	{ AD_VENDORID, AD_DEVICEID_STARFIRE,
129		"Adaptec AIC-6915 10/100BaseTX" },
130	{ 0, 0, NULL }
131};
132
133static int sf_probe		__P((device_t));
134static int sf_attach		__P((device_t));
135static int sf_detach		__P((device_t));
136static void sf_intr		__P((void *));
137static void sf_stats_update	__P((void *));
138static void sf_rxeof		__P((struct sf_softc *));
139static void sf_txeof		__P((struct sf_softc *));
140static int sf_encap		__P((struct sf_softc *,
141					struct sf_tx_bufdesc_type0 *,
142					struct mbuf *));
143static void sf_start		__P((struct ifnet *));
144static int sf_ioctl		__P((struct ifnet *, u_long, caddr_t));
145static void sf_init		__P((void *));
146static void sf_stop		__P((struct sf_softc *));
147static void sf_watchdog		__P((struct ifnet *));
148static void sf_shutdown		__P((device_t));
149static int sf_ifmedia_upd	__P((struct ifnet *));
150static void sf_ifmedia_sts	__P((struct ifnet *, struct ifmediareq *));
151static void sf_reset		__P((struct sf_softc *));
152static int sf_init_rx_ring	__P((struct sf_softc *));
153static void sf_init_tx_ring	__P((struct sf_softc *));
154static int sf_newbuf		__P((struct sf_softc *,
155					struct sf_rx_bufdesc_type0 *,
156					struct mbuf *));
157static void sf_setmulti		__P((struct sf_softc *));
158static int sf_setperf		__P((struct sf_softc *, int, caddr_t));
159static int sf_sethash		__P((struct sf_softc *, caddr_t, int));
160#ifdef notdef
161static int sf_setvlan		__P((struct sf_softc *, int, u_int32_t));
162#endif
163
164static u_int8_t sf_read_eeprom	__P((struct sf_softc *, int));
165static u_int32_t sf_calchash	__P((caddr_t));
166
167static int sf_miibus_readreg	__P((device_t, int, int));
168static int sf_miibus_writereg	__P((device_t, int, int, int));
169static void sf_miibus_statchg	__P((device_t));
170
171static u_int32_t csr_read_4	__P((struct sf_softc *, int));
172static void csr_write_4		__P((struct sf_softc *, int, u_int32_t));
173
174#ifdef SF_USEIOSPACE
175#define SF_RES			SYS_RES_IOPORT
176#define SF_RID			SF_PCI_LOIO
177#else
178#define SF_RES			SYS_RES_MEMORY
179#define SF_RID			SF_PCI_LOMEM
180#endif
181
182static device_method_t sf_methods[] = {
183	/* Device interface */
184	DEVMETHOD(device_probe,		sf_probe),
185	DEVMETHOD(device_attach,	sf_attach),
186	DEVMETHOD(device_detach,	sf_detach),
187	DEVMETHOD(device_shutdown,	sf_shutdown),
188
189	/* bus interface */
190	DEVMETHOD(bus_print_child,	bus_generic_print_child),
191	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
192
193	/* MII interface */
194	DEVMETHOD(miibus_readreg,	sf_miibus_readreg),
195	DEVMETHOD(miibus_writereg,	sf_miibus_writereg),
196	DEVMETHOD(miibus_statchg,	sf_miibus_statchg),
197
198	{ 0, 0 }
199};
200
201static driver_t sf_driver = {
202	"sf",
203	sf_methods,
204	sizeof(struct sf_softc),
205};
206
207static devclass_t sf_devclass;
208
209DRIVER_MODULE(if_sf, pci, sf_driver, sf_devclass, 0, 0);
210DRIVER_MODULE(miibus, sf, miibus_driver, miibus_devclass, 0, 0);
211
212#define SF_SETBIT(sc, reg, x)	\
213	csr_write_4(sc, reg, csr_read_4(sc, reg) | x)
214
215#define SF_CLRBIT(sc, reg, x)				\
216	csr_write_4(sc, reg, csr_read_4(sc, reg) & ~x)
217
218static u_int32_t csr_read_4(sc, reg)
219	struct sf_softc		*sc;
220	int			reg;
221{
222	u_int32_t		val;
223
224#ifdef SF_USEIOSPACE
225	CSR_WRITE_4(sc, SF_INDIRECTIO_ADDR, reg + SF_RMAP_INTREG_BASE);
226	val = CSR_READ_4(sc, SF_INDIRECTIO_DATA);
227#else
228	val = CSR_READ_4(sc, (reg + SF_RMAP_INTREG_BASE));
229#endif
230
231	return(val);
232}
233
234static u_int8_t sf_read_eeprom(sc, reg)
235	struct sf_softc		*sc;
236	int			reg;
237{
238	u_int8_t		val;
239
240	val = (csr_read_4(sc, SF_EEADDR_BASE +
241	    (reg & 0xFFFFFFFC)) >> (8 * (reg & 3))) & 0xFF;
242
243	return(val);
244}
245
246static void csr_write_4(sc, reg, val)
247	struct sf_softc		*sc;
248	int			reg;
249	u_int32_t		val;
250{
251#ifdef SF_USEIOSPACE
252	CSR_WRITE_4(sc, SF_INDIRECTIO_ADDR, reg + SF_RMAP_INTREG_BASE);
253	CSR_WRITE_4(sc, SF_INDIRECTIO_DATA, val);
254#else
255	CSR_WRITE_4(sc, (reg + SF_RMAP_INTREG_BASE), val);
256#endif
257	return;
258}
259
260static u_int32_t sf_calchash(addr)
261	caddr_t			addr;
262{
263	u_int32_t		crc, carry;
264	int			i, j;
265	u_int8_t		c;
266
267	/* Compute CRC for the address value. */
268	crc = 0xFFFFFFFF; /* initial value */
269
270	for (i = 0; i < 6; i++) {
271		c = *(addr + i);
272		for (j = 0; j < 8; j++) {
273			carry = ((crc & 0x80000000) ? 1 : 0) ^ (c & 0x01);
274			crc <<= 1;
275			c >>= 1;
276			if (carry)
277				crc = (crc ^ 0x04c11db6) | carry;
278		}
279	}
280
281	/* return the filter bit position */
282	return(crc >> 23 & 0x1FF);
283}
284
285/*
286 * Copy the address 'mac' into the perfect RX filter entry at
287 * offset 'idx.' The perfect filter only has 16 entries so do
288 * some sanity tests.
289 */
290static int sf_setperf(sc, idx, mac)
291	struct sf_softc		*sc;
292	int			idx;
293	caddr_t			mac;
294{
295	u_int16_t		*p;
296
297	if (idx < 0 || idx > SF_RXFILT_PERFECT_CNT)
298		return(EINVAL);
299
300	if (mac == NULL)
301		return(EINVAL);
302
303	p = (u_int16_t *)mac;
304
305	csr_write_4(sc, SF_RXFILT_PERFECT_BASE +
306	    (idx * SF_RXFILT_PERFECT_SKIP), htons(p[2]));
307	csr_write_4(sc, SF_RXFILT_PERFECT_BASE +
308	    (idx * SF_RXFILT_PERFECT_SKIP) + 4, htons(p[1]));
309	csr_write_4(sc, SF_RXFILT_PERFECT_BASE +
310	    (idx * SF_RXFILT_PERFECT_SKIP) + 8, htons(p[0]));
311
312	return(0);
313}
314
315/*
316 * Set the bit in the 512-bit hash table that corresponds to the
317 * specified mac address 'mac.' If 'prio' is nonzero, update the
318 * priority hash table instead of the filter hash table.
319 */
320static int sf_sethash(sc, mac, prio)
321	struct sf_softc		*sc;
322	caddr_t			mac;
323	int			prio;
324{
325	u_int32_t		h = 0;
326
327	if (mac == NULL)
328		return(EINVAL);
329
330	h = sf_calchash(mac);
331
332	if (prio) {
333		SF_SETBIT(sc, SF_RXFILT_HASH_BASE + SF_RXFILT_HASH_PRIOOFF +
334		    (SF_RXFILT_HASH_SKIP * (h >> 4)), (1 << (h & 0xF)));
335	} else {
336		SF_SETBIT(sc, SF_RXFILT_HASH_BASE + SF_RXFILT_HASH_ADDROFF +
337		    (SF_RXFILT_HASH_SKIP * (h >> 4)), (1 << (h & 0xF)));
338	}
339
340	return(0);
341}
342
343#ifdef notdef
344/*
345 * Set a VLAN tag in the receive filter.
346 */
347static int sf_setvlan(sc, idx, vlan)
348	struct sf_softc		*sc;
349	int			idx;
350	u_int32_t		vlan;
351{
352	if (idx < 0 || idx >> SF_RXFILT_HASH_CNT)
353		return(EINVAL);
354
355	csr_write_4(sc, SF_RXFILT_HASH_BASE +
356	    (idx * SF_RXFILT_HASH_SKIP) + SF_RXFILT_HASH_VLANOFF, vlan);
357
358	return(0);
359}
360#endif
361
362static int sf_miibus_readreg(dev, phy, reg)
363	device_t		dev;
364	int			phy, reg;
365{
366	struct sf_softc		*sc;
367	int			i;
368	u_int32_t		val = 0;
369
370	sc = device_get_softc(dev);
371
372	for (i = 0; i < SF_TIMEOUT; i++) {
373		val = csr_read_4(sc, SF_PHY_REG(phy, reg));
374		if (val & SF_MII_DATAVALID)
375			break;
376	}
377
378	if (i == SF_TIMEOUT)
379		return(0);
380
381	if ((val & 0x0000FFFF) == 0xFFFF)
382		return(0);
383
384	return(val & 0x0000FFFF);
385}
386
387static int sf_miibus_writereg(dev, phy, reg, val)
388	device_t		dev;
389	int			phy, reg, val;
390{
391	struct sf_softc		*sc;
392	int			i;
393	int			busy;
394
395	sc = device_get_softc(dev);
396
397	csr_write_4(sc, SF_PHY_REG(phy, reg), val);
398
399	for (i = 0; i < SF_TIMEOUT; i++) {
400		busy = csr_read_4(sc, SF_PHY_REG(phy, reg));
401		if (!(busy & SF_MII_BUSY))
402			break;
403	}
404
405	return(0);
406}
407
408static void sf_miibus_statchg(dev)
409	device_t		dev;
410{
411	struct sf_softc		*sc;
412	struct mii_data		*mii;
413
414	sc = device_get_softc(dev);
415	mii = device_get_softc(sc->sf_miibus);
416
417	if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
418		SF_SETBIT(sc, SF_MACCFG_1, SF_MACCFG1_FULLDUPLEX);
419		csr_write_4(sc, SF_BKTOBKIPG, SF_IPGT_FDX);
420	} else {
421		SF_CLRBIT(sc, SF_MACCFG_1, SF_MACCFG1_FULLDUPLEX);
422		csr_write_4(sc, SF_BKTOBKIPG, SF_IPGT_HDX);
423	}
424
425	return;
426}
427
428static void sf_setmulti(sc)
429	struct sf_softc		*sc;
430{
431	struct ifnet		*ifp;
432	int			i;
433	struct ifmultiaddr	*ifma;
434	u_int8_t		dummy[] = { 0, 0, 0, 0, 0, 0 };
435
436	ifp = &sc->arpcom.ac_if;
437
438	/* First zot all the existing filters. */
439	for (i = 1; i < SF_RXFILT_PERFECT_CNT; i++)
440		sf_setperf(sc, i, (char *)&dummy);
441	for (i = SF_RXFILT_HASH_BASE;
442	    i < (SF_RXFILT_HASH_MAX + 1); i += 4)
443		csr_write_4(sc, i, 0);
444	SF_CLRBIT(sc, SF_RXFILT, SF_RXFILT_ALLMULTI);
445
446	/* Now program new ones. */
447	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
448		SF_SETBIT(sc, SF_RXFILT, SF_RXFILT_ALLMULTI);
449	} else {
450		i = 1;
451		TAILQ_FOREACH_REVERSE(ifma, &ifp->if_multiaddrs, ifmultihead, ifma_link) {
452			if (ifma->ifma_addr->sa_family != AF_LINK)
453				continue;
454			/*
455			 * Program the first 15 multicast groups
456			 * into the perfect filter. For all others,
457			 * use the hash table.
458			 */
459			if (i < SF_RXFILT_PERFECT_CNT) {
460				sf_setperf(sc, i,
461			LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
462				i++;
463				continue;
464			}
465
466			sf_sethash(sc,
467			    LLADDR((struct sockaddr_dl *)ifma->ifma_addr), 0);
468		}
469	}
470
471	return;
472}
473
474/*
475 * Set media options.
476 */
477static int sf_ifmedia_upd(ifp)
478	struct ifnet		*ifp;
479{
480	struct sf_softc		*sc;
481	struct mii_data		*mii;
482
483	sc = ifp->if_softc;
484	mii = device_get_softc(sc->sf_miibus);
485	sc->sf_link = 0;
486	if (mii->mii_instance) {
487		struct mii_softc        *miisc;
488		LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
489			mii_phy_reset(miisc);
490	}
491	mii_mediachg(mii);
492
493	return(0);
494}
495
496/*
497 * Report current media status.
498 */
499static void sf_ifmedia_sts(ifp, ifmr)
500	struct ifnet		*ifp;
501	struct ifmediareq	*ifmr;
502{
503	struct sf_softc		*sc;
504	struct mii_data		*mii;
505
506	sc = ifp->if_softc;
507	mii = device_get_softc(sc->sf_miibus);
508
509	mii_pollstat(mii);
510	ifmr->ifm_active = mii->mii_media_active;
511	ifmr->ifm_status = mii->mii_media_status;
512
513	return;
514}
515
516static int sf_ioctl(ifp, command, data)
517	struct ifnet		*ifp;
518	u_long			command;
519	caddr_t			data;
520{
521	struct sf_softc		*sc = ifp->if_softc;
522	struct ifreq		*ifr = (struct ifreq *) data;
523	struct mii_data		*mii;
524	int			error = 0;
525
526	SF_LOCK(sc);
527
528	switch(command) {
529	case SIOCSIFADDR:
530	case SIOCGIFADDR:
531	case SIOCSIFMTU:
532		error = ether_ioctl(ifp, command, data);
533		break;
534	case SIOCSIFFLAGS:
535		if (ifp->if_flags & IFF_UP) {
536			if (ifp->if_flags & IFF_RUNNING &&
537			    ifp->if_flags & IFF_PROMISC &&
538			    !(sc->sf_if_flags & IFF_PROMISC)) {
539				SF_SETBIT(sc, SF_RXFILT, SF_RXFILT_PROMISC);
540			} else if (ifp->if_flags & IFF_RUNNING &&
541			    !(ifp->if_flags & IFF_PROMISC) &&
542			    sc->sf_if_flags & IFF_PROMISC) {
543				SF_CLRBIT(sc, SF_RXFILT, SF_RXFILT_PROMISC);
544			} else if (!(ifp->if_flags & IFF_RUNNING))
545				sf_init(sc);
546		} else {
547			if (ifp->if_flags & IFF_RUNNING)
548				sf_stop(sc);
549		}
550		sc->sf_if_flags = ifp->if_flags;
551		error = 0;
552		break;
553	case SIOCADDMULTI:
554	case SIOCDELMULTI:
555		sf_setmulti(sc);
556		error = 0;
557		break;
558	case SIOCGIFMEDIA:
559	case SIOCSIFMEDIA:
560		mii = device_get_softc(sc->sf_miibus);
561		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
562		break;
563	default:
564		error = EINVAL;
565		break;
566	}
567
568	SF_UNLOCK(sc);
569
570	return(error);
571}
572
573static void sf_reset(sc)
574	struct sf_softc		*sc;
575{
576	register int		i;
577
578	csr_write_4(sc, SF_GEN_ETH_CTL, 0);
579	SF_SETBIT(sc, SF_MACCFG_1, SF_MACCFG1_SOFTRESET);
580	DELAY(1000);
581	SF_CLRBIT(sc, SF_MACCFG_1, SF_MACCFG1_SOFTRESET);
582
583	SF_SETBIT(sc, SF_PCI_DEVCFG, SF_PCIDEVCFG_RESET);
584
585	for (i = 0; i < SF_TIMEOUT; i++) {
586		DELAY(10);
587		if (!(csr_read_4(sc, SF_PCI_DEVCFG) & SF_PCIDEVCFG_RESET))
588			break;
589	}
590
591	if (i == SF_TIMEOUT)
592		printf("sf%d: reset never completed!\n", sc->sf_unit);
593
594	/* Wait a little while for the chip to get its brains in order. */
595	DELAY(1000);
596	return;
597}
598
599/*
600 * Probe for an Adaptec AIC-6915 chip. Check the PCI vendor and device
601 * IDs against our list and return a device name if we find a match.
602 * We also check the subsystem ID so that we can identify exactly which
603 * NIC has been found, if possible.
604 */
605static int sf_probe(dev)
606	device_t		dev;
607{
608	struct sf_type		*t;
609
610	t = sf_devs;
611
612	while(t->sf_name != NULL) {
613		if ((pci_get_vendor(dev) == t->sf_vid) &&
614		    (pci_get_device(dev) == t->sf_did)) {
615			switch((pci_read_config(dev,
616			    SF_PCI_SUBVEN_ID, 4) >> 16) & 0xFFFF) {
617			case AD_SUBSYSID_62011_REV0:
618			case AD_SUBSYSID_62011_REV1:
619				device_set_desc(dev,
620				    "Adaptec ANA-62011 10/100BaseTX");
621				return(0);
622				break;
623			case AD_SUBSYSID_62022:
624				device_set_desc(dev,
625				    "Adaptec ANA-62022 10/100BaseTX");
626				return(0);
627				break;
628			case AD_SUBSYSID_62044_REV0:
629			case AD_SUBSYSID_62044_REV1:
630				device_set_desc(dev,
631				    "Adaptec ANA-62044 10/100BaseTX");
632				return(0);
633				break;
634			case AD_SUBSYSID_62020:
635				device_set_desc(dev,
636				    "Adaptec ANA-62020 10/100BaseFX");
637				return(0);
638				break;
639			case AD_SUBSYSID_69011:
640				device_set_desc(dev,
641				    "Adaptec ANA-69011 10/100BaseTX");
642				return(0);
643				break;
644			default:
645				device_set_desc(dev, t->sf_name);
646				return(0);
647				break;
648			}
649		}
650		t++;
651	}
652
653	return(ENXIO);
654}
655
656/*
657 * Attach the interface. Allocate softc structures, do ifmedia
658 * setup and ethernet/BPF attach.
659 */
660static int sf_attach(dev)
661	device_t		dev;
662{
663	int			i;
664	u_int32_t		command;
665	struct sf_softc		*sc;
666	struct ifnet		*ifp;
667	int			unit, rid, error = 0;
668
669	sc = device_get_softc(dev);
670	unit = device_get_unit(dev);
671	bzero(sc, sizeof(struct sf_softc));
672
673	mtx_init(&sc->sf_mtx, device_get_nameunit(dev), MTX_DEF | MTX_RECURSE);
674	SF_LOCK(sc);
675	/*
676	 * Handle power management nonsense.
677	 */
678	if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
679		u_int32_t		iobase, membase, irq;
680
681		/* Save important PCI config data. */
682		iobase = pci_read_config(dev, SF_PCI_LOIO, 4);
683		membase = pci_read_config(dev, SF_PCI_LOMEM, 4);
684		irq = pci_read_config(dev, SF_PCI_INTLINE, 4);
685
686		/* Reset the power state. */
687		printf("sf%d: chip is in D%d power mode "
688		    "-- setting to D0\n", unit,
689		    pci_get_powerstate(dev));
690		pci_set_powerstate(dev, PCI_POWERSTATE_D0);
691
692		/* Restore PCI config data. */
693		pci_write_config(dev, SF_PCI_LOIO, iobase, 4);
694		pci_write_config(dev, SF_PCI_LOMEM, membase, 4);
695		pci_write_config(dev, SF_PCI_INTLINE, irq, 4);
696	}
697
698	/*
699	 * Map control/status registers.
700	 */
701	pci_enable_busmaster(dev);
702	pci_enable_io(dev, SYS_RES_IOPORT);
703	pci_enable_io(dev, SYS_RES_MEMORY);
704	command = pci_read_config(dev, PCIR_COMMAND, 4);
705
706#ifdef SF_USEIOSPACE
707	if (!(command & PCIM_CMD_PORTEN)) {
708		printf("sf%d: failed to enable I/O ports!\n", unit);
709		error = ENXIO;
710		goto fail;
711	}
712#else
713	if (!(command & PCIM_CMD_MEMEN)) {
714		printf("sf%d: failed to enable memory mapping!\n", unit);
715		error = ENXIO;
716		goto fail;
717	}
718#endif
719
720	rid = SF_RID;
721	sc->sf_res = bus_alloc_resource(dev, SF_RES, &rid,
722	    0, ~0, 1, RF_ACTIVE);
723
724	if (sc->sf_res == NULL) {
725		printf ("sf%d: couldn't map ports\n", unit);
726		error = ENXIO;
727		goto fail;
728	}
729
730	sc->sf_btag = rman_get_bustag(sc->sf_res);
731	sc->sf_bhandle = rman_get_bushandle(sc->sf_res);
732
733	/* Allocate interrupt */
734	rid = 0;
735	sc->sf_irq = bus_alloc_resource(dev, SYS_RES_IRQ, &rid, 0, ~0, 1,
736	    RF_SHAREABLE | RF_ACTIVE);
737
738	if (sc->sf_irq == NULL) {
739		printf("sf%d: couldn't map interrupt\n", unit);
740		bus_release_resource(dev, SF_RES, SF_RID, sc->sf_res);
741		error = ENXIO;
742		goto fail;
743	}
744
745	error = bus_setup_intr(dev, sc->sf_irq, INTR_TYPE_NET,
746	    sf_intr, sc, &sc->sf_intrhand);
747
748	if (error) {
749		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sf_res);
750		bus_release_resource(dev, SF_RES, SF_RID, sc->sf_res);
751		printf("sf%d: couldn't set up irq\n", unit);
752		goto fail;
753	}
754
755	callout_handle_init(&sc->sf_stat_ch);
756	/* Reset the adapter. */
757	sf_reset(sc);
758
759	/*
760	 * Get station address from the EEPROM.
761	 */
762	for (i = 0; i < ETHER_ADDR_LEN; i++)
763		sc->arpcom.ac_enaddr[i] =
764		    sf_read_eeprom(sc, SF_EE_NODEADDR + ETHER_ADDR_LEN - i);
765
766	/*
767	 * An Adaptec chip was detected. Inform the world.
768	 */
769	printf("sf%d: Ethernet address: %6D\n", unit,
770	    sc->arpcom.ac_enaddr, ":");
771
772	sc->sf_unit = unit;
773
774	/* Allocate the descriptor queues. */
775	sc->sf_ldata = contigmalloc(sizeof(struct sf_list_data), M_DEVBUF,
776	    M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0);
777
778	if (sc->sf_ldata == NULL) {
779		printf("sf%d: no memory for list buffers!\n", unit);
780		bus_teardown_intr(dev, sc->sf_irq, sc->sf_intrhand);
781		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sf_irq);
782		bus_release_resource(dev, SF_RES, SF_RID, sc->sf_res);
783		error = ENXIO;
784		goto fail;
785	}
786
787	bzero(sc->sf_ldata, sizeof(struct sf_list_data));
788
789	/* Do MII setup. */
790	if (mii_phy_probe(dev, &sc->sf_miibus,
791	    sf_ifmedia_upd, sf_ifmedia_sts)) {
792		printf("sf%d: MII without any phy!\n", sc->sf_unit);
793		contigfree(sc->sf_ldata,sizeof(struct sf_list_data),M_DEVBUF);
794		bus_teardown_intr(dev, sc->sf_irq, sc->sf_intrhand);
795		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sf_irq);
796		bus_release_resource(dev, SF_RES, SF_RID, sc->sf_res);
797		error = ENXIO;
798		goto fail;
799	}
800
801	ifp = &sc->arpcom.ac_if;
802	ifp->if_softc = sc;
803	ifp->if_unit = unit;
804	ifp->if_name = "sf";
805	ifp->if_mtu = ETHERMTU;
806	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
807	ifp->if_ioctl = sf_ioctl;
808	ifp->if_output = ether_output;
809	ifp->if_start = sf_start;
810	ifp->if_watchdog = sf_watchdog;
811	ifp->if_init = sf_init;
812	ifp->if_baudrate = 10000000;
813	ifp->if_snd.ifq_maxlen = SF_TX_DLIST_CNT - 1;
814
815	/*
816	 * Call MI attach routine.
817	 */
818	ether_ifattach(ifp, ETHER_BPF_SUPPORTED);
819	SF_UNLOCK(sc);
820	return(0);
821
822fail:
823	SF_UNLOCK(sc);
824	mtx_destroy(&sc->sf_mtx);
825	return(error);
826}
827
828static int sf_detach(dev)
829	device_t		dev;
830{
831	struct sf_softc		*sc;
832	struct ifnet		*ifp;
833
834	sc = device_get_softc(dev);
835	SF_LOCK(sc);
836	ifp = &sc->arpcom.ac_if;
837
838	ether_ifdetach(ifp, ETHER_BPF_SUPPORTED);
839	sf_stop(sc);
840
841	bus_generic_detach(dev);
842	device_delete_child(dev, sc->sf_miibus);
843
844	bus_teardown_intr(dev, sc->sf_irq, sc->sf_intrhand);
845	bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sf_irq);
846	bus_release_resource(dev, SF_RES, SF_RID, sc->sf_res);
847
848	contigfree(sc->sf_ldata, sizeof(struct sf_list_data), M_DEVBUF);
849
850	SF_UNLOCK(sc);
851	mtx_destroy(&sc->sf_mtx);
852
853	return(0);
854}
855
856static int sf_init_rx_ring(sc)
857	struct sf_softc		*sc;
858{
859	struct sf_list_data	*ld;
860	int			i;
861
862	ld = sc->sf_ldata;
863
864	bzero((char *)ld->sf_rx_dlist_big,
865	    sizeof(struct sf_rx_bufdesc_type0) * SF_RX_DLIST_CNT);
866	bzero((char *)ld->sf_rx_clist,
867	    sizeof(struct sf_rx_cmpdesc_type3) * SF_RX_CLIST_CNT);
868
869	for (i = 0; i < SF_RX_DLIST_CNT; i++) {
870		if (sf_newbuf(sc, &ld->sf_rx_dlist_big[i], NULL) == ENOBUFS)
871			return(ENOBUFS);
872	}
873
874	return(0);
875}
876
877static void sf_init_tx_ring(sc)
878	struct sf_softc		*sc;
879{
880	struct sf_list_data	*ld;
881	int			i;
882
883	ld = sc->sf_ldata;
884
885	bzero((char *)ld->sf_tx_dlist,
886	    sizeof(struct sf_tx_bufdesc_type0) * SF_TX_DLIST_CNT);
887	bzero((char *)ld->sf_tx_clist,
888	    sizeof(struct sf_tx_cmpdesc_type0) * SF_TX_CLIST_CNT);
889
890	for (i = 0; i < SF_TX_DLIST_CNT; i++)
891		ld->sf_tx_dlist[i].sf_id = SF_TX_BUFDESC_ID;
892	for (i = 0; i < SF_TX_CLIST_CNT; i++)
893		ld->sf_tx_clist[i].sf_type = SF_TXCMPTYPE_TX;
894
895	ld->sf_tx_dlist[SF_TX_DLIST_CNT - 1].sf_end = 1;
896	sc->sf_tx_cnt = 0;
897
898	return;
899}
900
901static int sf_newbuf(sc, c, m)
902	struct sf_softc		*sc;
903	struct sf_rx_bufdesc_type0	*c;
904	struct mbuf		*m;
905{
906	struct mbuf		*m_new = NULL;
907
908	if (m == NULL) {
909		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
910		if (m_new == NULL) {
911			printf("sf%d: no memory for rx list -- "
912			    "packet dropped!\n", sc->sf_unit);
913			return(ENOBUFS);
914		}
915
916		MCLGET(m_new, M_DONTWAIT);
917		if (!(m_new->m_flags & M_EXT)) {
918			printf("sf%d: no memory for rx list -- "
919			    "packet dropped!\n", sc->sf_unit);
920			m_freem(m_new);
921			return(ENOBUFS);
922		}
923		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
924	} else {
925		m_new = m;
926		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
927		m_new->m_data = m_new->m_ext.ext_buf;
928	}
929
930	m_adj(m_new, sizeof(u_int64_t));
931
932	c->sf_mbuf = m_new;
933	c->sf_addrlo = SF_RX_HOSTADDR(vtophys(mtod(m_new, caddr_t)));
934	c->sf_valid = 1;
935
936	return(0);
937}
938
939/*
940 * The starfire is programmed to use 'normal' mode for packet reception,
941 * which means we use the consumer/producer model for both the buffer
942 * descriptor queue and the completion descriptor queue. The only problem
943 * with this is that it involves a lot of register accesses: we have to
944 * read the RX completion consumer and producer indexes and the RX buffer
945 * producer index, plus the RX completion consumer and RX buffer producer
946 * indexes have to be updated. It would have been easier if Adaptec had
947 * put each index in a separate register, especially given that the damn
948 * NIC has a 512K register space.
949 *
950 * In spite of all the lovely features that Adaptec crammed into the 6915,
951 * it is marred by one truly stupid design flaw, which is that receive
952 * buffer addresses must be aligned on a longword boundary. This forces
953 * the packet payload to be unaligned, which is suboptimal on the x86 and
954 * completely unuseable on the Alpha. Our only recourse is to copy received
955 * packets into properly aligned buffers before handing them off.
956 */
957
958static void sf_rxeof(sc)
959	struct sf_softc		*sc;
960{
961	struct ether_header	*eh;
962	struct mbuf		*m;
963	struct ifnet		*ifp;
964	struct sf_rx_bufdesc_type0	*desc;
965	struct sf_rx_cmpdesc_type3	*cur_rx;
966	u_int32_t		rxcons, rxprod;
967	int			cmpprodidx, cmpconsidx, bufprodidx;
968
969	ifp = &sc->arpcom.ac_if;
970
971	rxcons = csr_read_4(sc, SF_CQ_CONSIDX);
972	rxprod = csr_read_4(sc, SF_RXDQ_PTR_Q1);
973	cmpprodidx = SF_IDX_LO(csr_read_4(sc, SF_CQ_PRODIDX));
974	cmpconsidx = SF_IDX_LO(rxcons);
975	bufprodidx = SF_IDX_LO(rxprod);
976
977	while (cmpconsidx != cmpprodidx) {
978		struct mbuf		*m0;
979
980		cur_rx = &sc->sf_ldata->sf_rx_clist[cmpconsidx];
981		desc = &sc->sf_ldata->sf_rx_dlist_big[cur_rx->sf_endidx];
982		m = desc->sf_mbuf;
983		SF_INC(cmpconsidx, SF_RX_CLIST_CNT);
984		SF_INC(bufprodidx, SF_RX_DLIST_CNT);
985
986		if (!(cur_rx->sf_status1 & SF_RXSTAT1_OK)) {
987			ifp->if_ierrors++;
988			sf_newbuf(sc, desc, m);
989			continue;
990		}
991
992		m0 = m_devget(mtod(m, char *), cur_rx->sf_len, ETHER_ALIGN,
993		    ifp, NULL);
994		sf_newbuf(sc, desc, m);
995		if (m0 == NULL) {
996			ifp->if_ierrors++;
997			continue;
998		}
999		m = m0;
1000
1001		eh = mtod(m, struct ether_header *);
1002		ifp->if_ipackets++;
1003
1004		/* Remove header from mbuf and pass it on. */
1005		m_adj(m, sizeof(struct ether_header));
1006		ether_input(ifp, eh, m);
1007	}
1008
1009	csr_write_4(sc, SF_CQ_CONSIDX,
1010	    (rxcons & ~SF_CQ_CONSIDX_RXQ1) | cmpconsidx);
1011	csr_write_4(sc, SF_RXDQ_PTR_Q1,
1012	    (rxprod & ~SF_RXDQ_PRODIDX) | bufprodidx);
1013
1014	return;
1015}
1016
1017/*
1018 * Read the transmit status from the completion queue and release
1019 * mbufs. Note that the buffer descriptor index in the completion
1020 * descriptor is an offset from the start of the transmit buffer
1021 * descriptor list in bytes. This is important because the manual
1022 * gives the impression that it should match the producer/consumer
1023 * index, which is the offset in 8 byte blocks.
1024 */
1025static void sf_txeof(sc)
1026	struct sf_softc		*sc;
1027{
1028	int			txcons, cmpprodidx, cmpconsidx;
1029	struct sf_tx_cmpdesc_type1 *cur_cmp;
1030	struct sf_tx_bufdesc_type0 *cur_tx;
1031	struct ifnet		*ifp;
1032
1033	ifp = &sc->arpcom.ac_if;
1034
1035	txcons = csr_read_4(sc, SF_CQ_CONSIDX);
1036	cmpprodidx = SF_IDX_HI(csr_read_4(sc, SF_CQ_PRODIDX));
1037	cmpconsidx = SF_IDX_HI(txcons);
1038
1039	while (cmpconsidx != cmpprodidx) {
1040		cur_cmp = &sc->sf_ldata->sf_tx_clist[cmpconsidx];
1041		cur_tx = &sc->sf_ldata->sf_tx_dlist[cur_cmp->sf_index >> 7];
1042		SF_INC(cmpconsidx, SF_TX_CLIST_CNT);
1043
1044		if (cur_cmp->sf_txstat & SF_TXSTAT_TX_OK)
1045			ifp->if_opackets++;
1046		else
1047			ifp->if_oerrors++;
1048
1049		sc->sf_tx_cnt--;
1050		if (cur_tx->sf_mbuf != NULL) {
1051			m_freem(cur_tx->sf_mbuf);
1052			cur_tx->sf_mbuf = NULL;
1053		}
1054	}
1055
1056	ifp->if_timer = 0;
1057	ifp->if_flags &= ~IFF_OACTIVE;
1058
1059	csr_write_4(sc, SF_CQ_CONSIDX,
1060	    (txcons & ~SF_CQ_CONSIDX_TXQ) |
1061	    ((cmpconsidx << 16) & 0xFFFF0000));
1062
1063	return;
1064}
1065
1066static void sf_intr(arg)
1067	void			*arg;
1068{
1069	struct sf_softc		*sc;
1070	struct ifnet		*ifp;
1071	u_int32_t		status;
1072
1073	sc = arg;
1074	SF_LOCK(sc);
1075
1076	ifp = &sc->arpcom.ac_if;
1077
1078	if (!(csr_read_4(sc, SF_ISR_SHADOW) & SF_ISR_PCIINT_ASSERTED)) {
1079		SF_UNLOCK(sc);
1080		return;
1081	}
1082
1083	/* Disable interrupts. */
1084	csr_write_4(sc, SF_IMR, 0x00000000);
1085
1086	for (;;) {
1087		status = csr_read_4(sc, SF_ISR);
1088		if (status)
1089			csr_write_4(sc, SF_ISR, status);
1090
1091		if (!(status & SF_INTRS))
1092			break;
1093
1094		if (status & SF_ISR_RXDQ1_DMADONE)
1095			sf_rxeof(sc);
1096
1097		if (status & SF_ISR_TX_TXDONE ||
1098		    status & SF_ISR_TX_DMADONE ||
1099		    status & SF_ISR_TX_QUEUEDONE ||
1100		    status & SF_ISR_TX_LOFIFO)
1101			sf_txeof(sc);
1102
1103		if (status & SF_ISR_ABNORMALINTR) {
1104			if (status & SF_ISR_STATSOFLOW) {
1105				untimeout(sf_stats_update, sc,
1106				    sc->sf_stat_ch);
1107				sf_stats_update(sc);
1108			} else
1109				sf_init(sc);
1110		}
1111	}
1112
1113	/* Re-enable interrupts. */
1114	csr_write_4(sc, SF_IMR, SF_INTRS);
1115
1116	if (ifp->if_snd.ifq_head != NULL)
1117		sf_start(ifp);
1118
1119	SF_UNLOCK(sc);
1120	return;
1121}
1122
1123static void sf_init(xsc)
1124	void			*xsc;
1125{
1126	struct sf_softc		*sc;
1127	struct ifnet		*ifp;
1128	struct mii_data		*mii;
1129	int			i;
1130
1131	sc = xsc;
1132	SF_LOCK(sc);
1133	ifp = &sc->arpcom.ac_if;
1134	mii = device_get_softc(sc->sf_miibus);
1135
1136	sf_stop(sc);
1137	sf_reset(sc);
1138
1139	/* Init all the receive filter registers */
1140	for (i = SF_RXFILT_PERFECT_BASE;
1141	    i < (SF_RXFILT_HASH_MAX + 1); i += 4)
1142		csr_write_4(sc, i, 0);
1143
1144	/* Empty stats counter registers. */
1145	for (i = 0; i < sizeof(struct sf_stats)/sizeof(u_int32_t); i++)
1146		csr_write_4(sc, SF_STATS_BASE +
1147		    (i + sizeof(u_int32_t)), 0);
1148
1149	/* Init our MAC address */
1150	csr_write_4(sc, SF_PAR0, *(u_int32_t *)(&sc->arpcom.ac_enaddr[0]));
1151	csr_write_4(sc, SF_PAR1, *(u_int32_t *)(&sc->arpcom.ac_enaddr[4]));
1152	sf_setperf(sc, 0, (caddr_t)&sc->arpcom.ac_enaddr);
1153
1154	if (sf_init_rx_ring(sc) == ENOBUFS) {
1155		printf("sf%d: initialization failed: no "
1156		    "memory for rx buffers\n", sc->sf_unit);
1157		SF_UNLOCK(sc);
1158		return;
1159	}
1160
1161	sf_init_tx_ring(sc);
1162
1163	csr_write_4(sc, SF_RXFILT, SF_PERFMODE_NORMAL|SF_HASHMODE_WITHVLAN);
1164
1165	/* If we want promiscuous mode, set the allframes bit. */
1166	if (ifp->if_flags & IFF_PROMISC) {
1167		SF_SETBIT(sc, SF_RXFILT, SF_RXFILT_PROMISC);
1168	} else {
1169		SF_CLRBIT(sc, SF_RXFILT, SF_RXFILT_PROMISC);
1170	}
1171
1172	if (ifp->if_flags & IFF_BROADCAST) {
1173		SF_SETBIT(sc, SF_RXFILT, SF_RXFILT_BROAD);
1174	} else {
1175		SF_CLRBIT(sc, SF_RXFILT, SF_RXFILT_BROAD);
1176	}
1177
1178	/*
1179	 * Load the multicast filter.
1180	 */
1181	sf_setmulti(sc);
1182
1183	/* Init the completion queue indexes */
1184	csr_write_4(sc, SF_CQ_CONSIDX, 0);
1185	csr_write_4(sc, SF_CQ_PRODIDX, 0);
1186
1187	/* Init the RX completion queue */
1188	csr_write_4(sc, SF_RXCQ_CTL_1,
1189	    vtophys(sc->sf_ldata->sf_rx_clist) & SF_RXCQ_ADDR);
1190	SF_SETBIT(sc, SF_RXCQ_CTL_1, SF_RXCQTYPE_3);
1191
1192	/* Init RX DMA control. */
1193	SF_SETBIT(sc, SF_RXDMA_CTL, SF_RXDMA_REPORTBADPKTS);
1194
1195	/* Init the RX buffer descriptor queue. */
1196	csr_write_4(sc, SF_RXDQ_ADDR_Q1,
1197	    vtophys(sc->sf_ldata->sf_rx_dlist_big));
1198	csr_write_4(sc, SF_RXDQ_CTL_1, (MCLBYTES << 16) | SF_DESCSPACE_16BYTES);
1199	csr_write_4(sc, SF_RXDQ_PTR_Q1, SF_RX_DLIST_CNT - 1);
1200
1201	/* Init the TX completion queue */
1202	csr_write_4(sc, SF_TXCQ_CTL,
1203	    vtophys(sc->sf_ldata->sf_tx_clist) & SF_RXCQ_ADDR);
1204
1205	/* Init the TX buffer descriptor queue. */
1206	csr_write_4(sc, SF_TXDQ_ADDR_HIPRIO,
1207		vtophys(sc->sf_ldata->sf_tx_dlist));
1208	SF_SETBIT(sc, SF_TX_FRAMCTL, SF_TXFRMCTL_CPLAFTERTX);
1209	csr_write_4(sc, SF_TXDQ_CTL,
1210	    SF_TXBUFDESC_TYPE0|SF_TXMINSPACE_128BYTES|SF_TXSKIPLEN_8BYTES);
1211	SF_SETBIT(sc, SF_TXDQ_CTL, SF_TXDQCTL_NODMACMP);
1212
1213	/* Enable autopadding of short TX frames. */
1214	SF_SETBIT(sc, SF_MACCFG_1, SF_MACCFG1_AUTOPAD);
1215
1216	/* Enable interrupts. */
1217	csr_write_4(sc, SF_IMR, SF_INTRS);
1218	SF_SETBIT(sc, SF_PCI_DEVCFG, SF_PCIDEVCFG_INTR_ENB);
1219
1220	/* Enable the RX and TX engines. */
1221	SF_SETBIT(sc, SF_GEN_ETH_CTL, SF_ETHCTL_RX_ENB|SF_ETHCTL_RXDMA_ENB);
1222	SF_SETBIT(sc, SF_GEN_ETH_CTL, SF_ETHCTL_TX_ENB|SF_ETHCTL_TXDMA_ENB);
1223
1224	/*mii_mediachg(mii);*/
1225	sf_ifmedia_upd(ifp);
1226
1227	ifp->if_flags |= IFF_RUNNING;
1228	ifp->if_flags &= ~IFF_OACTIVE;
1229
1230	sc->sf_stat_ch = timeout(sf_stats_update, sc, hz);
1231
1232	SF_UNLOCK(sc);
1233
1234	return;
1235}
1236
1237static int sf_encap(sc, c, m_head)
1238	struct sf_softc		*sc;
1239	struct sf_tx_bufdesc_type0 *c;
1240	struct mbuf		*m_head;
1241{
1242	int			frag = 0;
1243	struct sf_frag		*f = NULL;
1244	struct mbuf		*m;
1245
1246	m = m_head;
1247
1248	for (m = m_head, frag = 0; m != NULL; m = m->m_next) {
1249		if (m->m_len != 0) {
1250			if (frag == SF_MAXFRAGS)
1251				break;
1252			f = &c->sf_frags[frag];
1253			if (frag == 0)
1254				f->sf_pktlen = m_head->m_pkthdr.len;
1255			f->sf_fraglen = m->m_len;
1256			f->sf_addr = vtophys(mtod(m, vm_offset_t));
1257			frag++;
1258		}
1259	}
1260
1261	if (m != NULL) {
1262		struct mbuf		*m_new = NULL;
1263
1264		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1265		if (m_new == NULL) {
1266			printf("sf%d: no memory for tx list", sc->sf_unit);
1267			return(1);
1268		}
1269
1270		if (m_head->m_pkthdr.len > MHLEN) {
1271			MCLGET(m_new, M_DONTWAIT);
1272			if (!(m_new->m_flags & M_EXT)) {
1273				m_freem(m_new);
1274				printf("sf%d: no memory for tx list",
1275				    sc->sf_unit);
1276				return(1);
1277			}
1278		}
1279		m_copydata(m_head, 0, m_head->m_pkthdr.len,
1280		    mtod(m_new, caddr_t));
1281		m_new->m_pkthdr.len = m_new->m_len = m_head->m_pkthdr.len;
1282		m_freem(m_head);
1283		m_head = m_new;
1284		f = &c->sf_frags[0];
1285		f->sf_fraglen = f->sf_pktlen = m_head->m_pkthdr.len;
1286		f->sf_addr = vtophys(mtod(m_head, caddr_t));
1287		frag = 1;
1288	}
1289
1290	c->sf_mbuf = m_head;
1291	c->sf_id = SF_TX_BUFDESC_ID;
1292	c->sf_fragcnt = frag;
1293	c->sf_intr = 1;
1294	c->sf_caltcp = 0;
1295	c->sf_crcen = 1;
1296
1297	return(0);
1298}
1299
1300static void sf_start(ifp)
1301	struct ifnet		*ifp;
1302{
1303	struct sf_softc		*sc;
1304	struct sf_tx_bufdesc_type0 *cur_tx = NULL;
1305	struct mbuf		*m_head = NULL;
1306	int			i, txprod;
1307
1308	sc = ifp->if_softc;
1309	SF_LOCK(sc);
1310
1311	if (!sc->sf_link && ifp->if_snd.ifq_len < 10) {
1312		SF_UNLOCK(sc);
1313		return;
1314	}
1315
1316	if (ifp->if_flags & IFF_OACTIVE) {
1317		SF_UNLOCK(sc);
1318		return;
1319	}
1320
1321	txprod = csr_read_4(sc, SF_TXDQ_PRODIDX);
1322	i = SF_IDX_HI(txprod) >> 4;
1323
1324	while(sc->sf_ldata->sf_tx_dlist[i].sf_mbuf == NULL) {
1325		if (sc->sf_tx_cnt == (SF_TX_DLIST_CNT - 2)) {
1326			ifp->if_flags |= IFF_OACTIVE;
1327			cur_tx = NULL;
1328			break;
1329		}
1330		IF_DEQUEUE(&ifp->if_snd, m_head);
1331		if (m_head == NULL)
1332			break;
1333
1334		cur_tx = &sc->sf_ldata->sf_tx_dlist[i];
1335		if (sf_encap(sc, cur_tx, m_head)) {
1336			IF_PREPEND(&ifp->if_snd, m_head);
1337			ifp->if_flags |= IFF_OACTIVE;
1338			cur_tx = NULL;
1339			break;
1340		}
1341
1342		/*
1343		 * If there's a BPF listener, bounce a copy of this frame
1344		 * to him.
1345		 */
1346		if (ifp->if_bpf)
1347			bpf_mtap(ifp, m_head);
1348
1349		SF_INC(i, SF_TX_DLIST_CNT);
1350		sc->sf_tx_cnt++;
1351	}
1352
1353	if (cur_tx == NULL) {
1354		SF_UNLOCK(sc);
1355		return;
1356	}
1357
1358	/* Transmit */
1359	csr_write_4(sc, SF_TXDQ_PRODIDX,
1360	    (txprod & ~SF_TXDQ_PRODIDX_HIPRIO) |
1361	    ((i << 20) & 0xFFFF0000));
1362
1363	ifp->if_timer = 5;
1364
1365	SF_UNLOCK(sc);
1366
1367	return;
1368}
1369
1370static void sf_stop(sc)
1371	struct sf_softc		*sc;
1372{
1373	int			i;
1374	struct ifnet		*ifp;
1375
1376	SF_LOCK(sc);
1377
1378	ifp = &sc->arpcom.ac_if;
1379
1380	untimeout(sf_stats_update, sc, sc->sf_stat_ch);
1381
1382	csr_write_4(sc, SF_GEN_ETH_CTL, 0);
1383	csr_write_4(sc, SF_CQ_CONSIDX, 0);
1384	csr_write_4(sc, SF_CQ_PRODIDX, 0);
1385	csr_write_4(sc, SF_RXDQ_ADDR_Q1, 0);
1386	csr_write_4(sc, SF_RXDQ_CTL_1, 0);
1387	csr_write_4(sc, SF_RXDQ_PTR_Q1, 0);
1388	csr_write_4(sc, SF_TXCQ_CTL, 0);
1389	csr_write_4(sc, SF_TXDQ_ADDR_HIPRIO, 0);
1390	csr_write_4(sc, SF_TXDQ_CTL, 0);
1391	sf_reset(sc);
1392
1393	sc->sf_link = 0;
1394
1395	for (i = 0; i < SF_RX_DLIST_CNT; i++) {
1396		if (sc->sf_ldata->sf_rx_dlist_big[i].sf_mbuf != NULL) {
1397			m_freem(sc->sf_ldata->sf_rx_dlist_big[i].sf_mbuf);
1398			sc->sf_ldata->sf_rx_dlist_big[i].sf_mbuf = NULL;
1399		}
1400	}
1401
1402	for (i = 0; i < SF_TX_DLIST_CNT; i++) {
1403		if (sc->sf_ldata->sf_tx_dlist[i].sf_mbuf != NULL) {
1404			m_freem(sc->sf_ldata->sf_tx_dlist[i].sf_mbuf);
1405			sc->sf_ldata->sf_tx_dlist[i].sf_mbuf = NULL;
1406		}
1407	}
1408
1409	ifp->if_flags &= ~(IFF_RUNNING|IFF_OACTIVE);
1410	SF_UNLOCK(sc);
1411
1412	return;
1413}
1414
1415/*
1416 * Note: it is important that this function not be interrupted. We
1417 * use a two-stage register access scheme: if we are interrupted in
1418 * between setting the indirect address register and reading from the
1419 * indirect data register, the contents of the address register could
1420 * be changed out from under us.
1421 */
1422static void sf_stats_update(xsc)
1423	void			*xsc;
1424{
1425	struct sf_softc		*sc;
1426	struct ifnet		*ifp;
1427	struct mii_data		*mii;
1428	struct sf_stats		stats;
1429	u_int32_t		*ptr;
1430	int			i;
1431
1432	sc = xsc;
1433	SF_LOCK(sc);
1434	ifp = &sc->arpcom.ac_if;
1435	mii = device_get_softc(sc->sf_miibus);
1436
1437	ptr = (u_int32_t *)&stats;
1438	for (i = 0; i < sizeof(stats)/sizeof(u_int32_t); i++)
1439		ptr[i] = csr_read_4(sc, SF_STATS_BASE +
1440		    (i + sizeof(u_int32_t)));
1441
1442	for (i = 0; i < sizeof(stats)/sizeof(u_int32_t); i++)
1443		csr_write_4(sc, SF_STATS_BASE +
1444		    (i + sizeof(u_int32_t)), 0);
1445
1446	ifp->if_collisions += stats.sf_tx_single_colls +
1447	    stats.sf_tx_multi_colls + stats.sf_tx_excess_colls;
1448
1449	mii_tick(mii);
1450	if (!sc->sf_link) {
1451		mii_pollstat(mii);
1452		if (mii->mii_media_status & IFM_ACTIVE &&
1453		    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
1454			sc->sf_link++;
1455			if (ifp->if_snd.ifq_head != NULL)
1456				sf_start(ifp);
1457	}
1458
1459	sc->sf_stat_ch = timeout(sf_stats_update, sc, hz);
1460
1461	SF_UNLOCK(sc);
1462
1463	return;
1464}
1465
1466static void sf_watchdog(ifp)
1467	struct ifnet		*ifp;
1468{
1469	struct sf_softc		*sc;
1470
1471	sc = ifp->if_softc;
1472
1473	SF_LOCK(sc);
1474
1475	ifp->if_oerrors++;
1476	printf("sf%d: watchdog timeout\n", sc->sf_unit);
1477
1478	sf_stop(sc);
1479	sf_reset(sc);
1480	sf_init(sc);
1481
1482	if (ifp->if_snd.ifq_head != NULL)
1483		sf_start(ifp);
1484
1485	SF_UNLOCK(sc);
1486
1487	return;
1488}
1489
1490static void sf_shutdown(dev)
1491	device_t		dev;
1492{
1493	struct sf_softc		*sc;
1494
1495	sc = device_get_softc(dev);
1496
1497	sf_stop(sc);
1498
1499	return;
1500}
1501