if_sf.c revision 72084
1/*
2 * Copyright (c) 1997, 1998, 1999
3 *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 *    must display the following acknowledgement:
15 *	This product includes software developed by Bill Paul.
16 * 4. Neither the name of the author nor the names of any co-contributors
17 *    may be used to endorse or promote products derived from this software
18 *    without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30 * THE POSSIBILITY OF SUCH DAMAGE.
31 *
32 * $FreeBSD: head/sys/dev/sf/if_sf.c 72084 2001-02-06 10:12:15Z phk $
33 */
34
35/*
36 * Adaptec AIC-6915 "Starfire" PCI fast ethernet driver for FreeBSD.
37 * Programming manual is available from:
38 * ftp.adaptec.com:/pub/BBS/userguides/aic6915_pg.pdf.
39 *
40 * Written by Bill Paul <wpaul@ctr.columbia.edu>
41 * Department of Electical Engineering
42 * Columbia University, New York City
43 */
44
45/*
46 * The Adaptec AIC-6915 "Starfire" is a 64-bit 10/100 PCI ethernet
47 * controller designed with flexibility and reducing CPU load in mind.
48 * The Starfire offers high and low priority buffer queues, a
49 * producer/consumer index mechanism and several different buffer
50 * queue and completion queue descriptor types. Any one of a number
51 * of different driver designs can be used, depending on system and
52 * OS requirements. This driver makes use of type0 transmit frame
53 * descriptors (since BSD fragments packets across an mbuf chain)
54 * and two RX buffer queues prioritized on size (one queue for small
55 * frames that will fit into a single mbuf, another with full size
56 * mbuf clusters for everything else). The producer/consumer indexes
57 * and completion queues are also used.
58 *
59 * One downside to the Starfire has to do with alignment: buffer
60 * queues must be aligned on 256-byte boundaries, and receive buffers
61 * must be aligned on longword boundaries. The receive buffer alignment
62 * causes problems on the Alpha platform, where the packet payload
63 * should be longword aligned. There is no simple way around this.
64 *
65 * For receive filtering, the Starfire offers 16 perfect filter slots
66 * and a 512-bit hash table.
67 *
68 * The Starfire has no internal transceiver, relying instead on an
69 * external MII-based transceiver. Accessing registers on external
70 * PHYs is done through a special register map rather than with the
71 * usual bitbang MDIO method.
72 *
73 * Acesssing the registers on the Starfire is a little tricky. The
74 * Starfire has a 512K internal register space. When programmed for
75 * PCI memory mapped mode, the entire register space can be accessed
76 * directly. However in I/O space mode, only 256 bytes are directly
77 * mapped into PCI I/O space. The other registers can be accessed
78 * indirectly using the SF_INDIRECTIO_ADDR and SF_INDIRECTIO_DATA
79 * registers inside the 256-byte I/O window.
80 */
81
82#include <sys/param.h>
83#include <sys/systm.h>
84#include <sys/sockio.h>
85#include <sys/mbuf.h>
86#include <sys/malloc.h>
87#include <sys/kernel.h>
88#include <sys/socket.h>
89
90#include <net/if.h>
91#include <net/if_arp.h>
92#include <net/ethernet.h>
93#include <net/if_dl.h>
94#include <net/if_media.h>
95
96#include <net/bpf.h>
97
98#include <vm/vm.h>              /* for vtophys */
99#include <vm/pmap.h>            /* for vtophys */
100#include <machine/bus_pio.h>
101#include <machine/bus_memio.h>
102#include <machine/bus.h>
103#include <machine/resource.h>
104#include <sys/bus.h>
105#include <sys/rman.h>
106
107#include <dev/mii/mii.h>
108#include <dev/mii/miivar.h>
109
110/* "controller miibus0" required.  See GENERIC if you get errors here. */
111#include "miibus_if.h"
112
113#include <pci/pcireg.h>
114#include <pci/pcivar.h>
115
116#define SF_USEIOSPACE
117
118#include <pci/if_sfreg.h>
119
120MODULE_DEPEND(sf, miibus, 1, 1, 1);
121
122#ifndef lint
123static const char rcsid[] =
124  "$FreeBSD: head/sys/dev/sf/if_sf.c 72084 2001-02-06 10:12:15Z phk $";
125#endif
126
127static struct sf_type sf_devs[] = {
128	{ AD_VENDORID, AD_DEVICEID_STARFIRE,
129		"Adaptec AIC-6915 10/100BaseTX" },
130	{ 0, 0, NULL }
131};
132
133static int sf_probe		__P((device_t));
134static int sf_attach		__P((device_t));
135static int sf_detach		__P((device_t));
136static void sf_intr		__P((void *));
137static void sf_stats_update	__P((void *));
138static void sf_rxeof		__P((struct sf_softc *));
139static void sf_txeof		__P((struct sf_softc *));
140static int sf_encap		__P((struct sf_softc *,
141					struct sf_tx_bufdesc_type0 *,
142					struct mbuf *));
143static void sf_start		__P((struct ifnet *));
144static int sf_ioctl		__P((struct ifnet *, u_long, caddr_t));
145static void sf_init		__P((void *));
146static void sf_stop		__P((struct sf_softc *));
147static void sf_watchdog		__P((struct ifnet *));
148static void sf_shutdown		__P((device_t));
149static int sf_ifmedia_upd	__P((struct ifnet *));
150static void sf_ifmedia_sts	__P((struct ifnet *, struct ifmediareq *));
151static void sf_reset		__P((struct sf_softc *));
152static int sf_init_rx_ring	__P((struct sf_softc *));
153static void sf_init_tx_ring	__P((struct sf_softc *));
154static int sf_newbuf		__P((struct sf_softc *,
155					struct sf_rx_bufdesc_type0 *,
156					struct mbuf *));
157static void sf_setmulti		__P((struct sf_softc *));
158static int sf_setperf		__P((struct sf_softc *, int, caddr_t));
159static int sf_sethash		__P((struct sf_softc *, caddr_t, int));
160#ifdef notdef
161static int sf_setvlan		__P((struct sf_softc *, int, u_int32_t));
162#endif
163
164static u_int8_t sf_read_eeprom	__P((struct sf_softc *, int));
165static u_int32_t sf_calchash	__P((caddr_t));
166
167static int sf_miibus_readreg	__P((device_t, int, int));
168static int sf_miibus_writereg	__P((device_t, int, int, int));
169static void sf_miibus_statchg	__P((device_t));
170
171static u_int32_t csr_read_4	__P((struct sf_softc *, int));
172static void csr_write_4		__P((struct sf_softc *, int, u_int32_t));
173
174#ifdef SF_USEIOSPACE
175#define SF_RES			SYS_RES_IOPORT
176#define SF_RID			SF_PCI_LOIO
177#else
178#define SF_RES			SYS_RES_MEMORY
179#define SF_RID			SF_PCI_LOMEM
180#endif
181
182static device_method_t sf_methods[] = {
183	/* Device interface */
184	DEVMETHOD(device_probe,		sf_probe),
185	DEVMETHOD(device_attach,	sf_attach),
186	DEVMETHOD(device_detach,	sf_detach),
187	DEVMETHOD(device_shutdown,	sf_shutdown),
188
189	/* bus interface */
190	DEVMETHOD(bus_print_child,	bus_generic_print_child),
191	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
192
193	/* MII interface */
194	DEVMETHOD(miibus_readreg,	sf_miibus_readreg),
195	DEVMETHOD(miibus_writereg,	sf_miibus_writereg),
196	DEVMETHOD(miibus_statchg,	sf_miibus_statchg),
197
198	{ 0, 0 }
199};
200
201static driver_t sf_driver = {
202	"sf",
203	sf_methods,
204	sizeof(struct sf_softc),
205};
206
207static devclass_t sf_devclass;
208
209DRIVER_MODULE(if_sf, pci, sf_driver, sf_devclass, 0, 0);
210DRIVER_MODULE(miibus, sf, miibus_driver, miibus_devclass, 0, 0);
211
212#define SF_SETBIT(sc, reg, x)	\
213	csr_write_4(sc, reg, csr_read_4(sc, reg) | x)
214
215#define SF_CLRBIT(sc, reg, x)				\
216	csr_write_4(sc, reg, csr_read_4(sc, reg) & ~x)
217
218static u_int32_t csr_read_4(sc, reg)
219	struct sf_softc		*sc;
220	int			reg;
221{
222	u_int32_t		val;
223
224#ifdef SF_USEIOSPACE
225	CSR_WRITE_4(sc, SF_INDIRECTIO_ADDR, reg + SF_RMAP_INTREG_BASE);
226	val = CSR_READ_4(sc, SF_INDIRECTIO_DATA);
227#else
228	val = CSR_READ_4(sc, (reg + SF_RMAP_INTREG_BASE));
229#endif
230
231	return(val);
232}
233
234static u_int8_t sf_read_eeprom(sc, reg)
235	struct sf_softc		*sc;
236	int			reg;
237{
238	u_int8_t		val;
239
240	val = (csr_read_4(sc, SF_EEADDR_BASE +
241	    (reg & 0xFFFFFFFC)) >> (8 * (reg & 3))) & 0xFF;
242
243	return(val);
244}
245
246static void csr_write_4(sc, reg, val)
247	struct sf_softc		*sc;
248	int			reg;
249	u_int32_t		val;
250{
251#ifdef SF_USEIOSPACE
252	CSR_WRITE_4(sc, SF_INDIRECTIO_ADDR, reg + SF_RMAP_INTREG_BASE);
253	CSR_WRITE_4(sc, SF_INDIRECTIO_DATA, val);
254#else
255	CSR_WRITE_4(sc, (reg + SF_RMAP_INTREG_BASE), val);
256#endif
257	return;
258}
259
260static u_int32_t sf_calchash(addr)
261	caddr_t			addr;
262{
263	u_int32_t		crc, carry;
264	int			i, j;
265	u_int8_t		c;
266
267	/* Compute CRC for the address value. */
268	crc = 0xFFFFFFFF; /* initial value */
269
270	for (i = 0; i < 6; i++) {
271		c = *(addr + i);
272		for (j = 0; j < 8; j++) {
273			carry = ((crc & 0x80000000) ? 1 : 0) ^ (c & 0x01);
274			crc <<= 1;
275			c >>= 1;
276			if (carry)
277				crc = (crc ^ 0x04c11db6) | carry;
278		}
279	}
280
281	/* return the filter bit position */
282	return(crc >> 23 & 0x1FF);
283}
284
285/*
286 * Copy the address 'mac' into the perfect RX filter entry at
287 * offset 'idx.' The perfect filter only has 16 entries so do
288 * some sanity tests.
289 */
290static int sf_setperf(sc, idx, mac)
291	struct sf_softc		*sc;
292	int			idx;
293	caddr_t			mac;
294{
295	u_int16_t		*p;
296
297	if (idx < 0 || idx > SF_RXFILT_PERFECT_CNT)
298		return(EINVAL);
299
300	if (mac == NULL)
301		return(EINVAL);
302
303	p = (u_int16_t *)mac;
304
305	csr_write_4(sc, SF_RXFILT_PERFECT_BASE +
306	    (idx * SF_RXFILT_PERFECT_SKIP), htons(p[2]));
307	csr_write_4(sc, SF_RXFILT_PERFECT_BASE +
308	    (idx * SF_RXFILT_PERFECT_SKIP) + 4, htons(p[1]));
309	csr_write_4(sc, SF_RXFILT_PERFECT_BASE +
310	    (idx * SF_RXFILT_PERFECT_SKIP) + 8, htons(p[0]));
311
312	return(0);
313}
314
315/*
316 * Set the bit in the 512-bit hash table that corresponds to the
317 * specified mac address 'mac.' If 'prio' is nonzero, update the
318 * priority hash table instead of the filter hash table.
319 */
320static int sf_sethash(sc, mac, prio)
321	struct sf_softc		*sc;
322	caddr_t			mac;
323	int			prio;
324{
325	u_int32_t		h = 0;
326
327	if (mac == NULL)
328		return(EINVAL);
329
330	h = sf_calchash(mac);
331
332	if (prio) {
333		SF_SETBIT(sc, SF_RXFILT_HASH_BASE + SF_RXFILT_HASH_PRIOOFF +
334		    (SF_RXFILT_HASH_SKIP * (h >> 4)), (1 << (h & 0xF)));
335	} else {
336		SF_SETBIT(sc, SF_RXFILT_HASH_BASE + SF_RXFILT_HASH_ADDROFF +
337		    (SF_RXFILT_HASH_SKIP * (h >> 4)), (1 << (h & 0xF)));
338	}
339
340	return(0);
341}
342
343#ifdef notdef
344/*
345 * Set a VLAN tag in the receive filter.
346 */
347static int sf_setvlan(sc, idx, vlan)
348	struct sf_softc		*sc;
349	int			idx;
350	u_int32_t		vlan;
351{
352	if (idx < 0 || idx >> SF_RXFILT_HASH_CNT)
353		return(EINVAL);
354
355	csr_write_4(sc, SF_RXFILT_HASH_BASE +
356	    (idx * SF_RXFILT_HASH_SKIP) + SF_RXFILT_HASH_VLANOFF, vlan);
357
358	return(0);
359}
360#endif
361
362static int sf_miibus_readreg(dev, phy, reg)
363	device_t		dev;
364	int			phy, reg;
365{
366	struct sf_softc		*sc;
367	int			i;
368	u_int32_t		val = 0;
369
370	sc = device_get_softc(dev);
371
372	for (i = 0; i < SF_TIMEOUT; i++) {
373		val = csr_read_4(sc, SF_PHY_REG(phy, reg));
374		if (val & SF_MII_DATAVALID)
375			break;
376	}
377
378	if (i == SF_TIMEOUT)
379		return(0);
380
381	if ((val & 0x0000FFFF) == 0xFFFF)
382		return(0);
383
384	return(val & 0x0000FFFF);
385}
386
387static int sf_miibus_writereg(dev, phy, reg, val)
388	device_t		dev;
389	int			phy, reg, val;
390{
391	struct sf_softc		*sc;
392	int			i;
393	int			busy;
394
395	sc = device_get_softc(dev);
396
397	csr_write_4(sc, SF_PHY_REG(phy, reg), val);
398
399	for (i = 0; i < SF_TIMEOUT; i++) {
400		busy = csr_read_4(sc, SF_PHY_REG(phy, reg));
401		if (!(busy & SF_MII_BUSY))
402			break;
403	}
404
405	return(0);
406}
407
408static void sf_miibus_statchg(dev)
409	device_t		dev;
410{
411	struct sf_softc		*sc;
412	struct mii_data		*mii;
413
414	sc = device_get_softc(dev);
415	mii = device_get_softc(sc->sf_miibus);
416
417	if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
418		SF_SETBIT(sc, SF_MACCFG_1, SF_MACCFG1_FULLDUPLEX);
419		csr_write_4(sc, SF_BKTOBKIPG, SF_IPGT_FDX);
420	} else {
421		SF_CLRBIT(sc, SF_MACCFG_1, SF_MACCFG1_FULLDUPLEX);
422		csr_write_4(sc, SF_BKTOBKIPG, SF_IPGT_HDX);
423	}
424
425	return;
426}
427
428static void sf_setmulti(sc)
429	struct sf_softc		*sc;
430{
431	struct ifnet		*ifp;
432	int			i;
433	struct ifmultiaddr	*ifma;
434	u_int8_t		dummy[] = { 0, 0, 0, 0, 0, 0 };
435
436	ifp = &sc->arpcom.ac_if;
437
438	/* First zot all the existing filters. */
439	for (i = 1; i < SF_RXFILT_PERFECT_CNT; i++)
440		sf_setperf(sc, i, (char *)&dummy);
441	for (i = SF_RXFILT_HASH_BASE;
442	    i < (SF_RXFILT_HASH_MAX + 1); i += 4)
443		csr_write_4(sc, i, 0);
444	SF_CLRBIT(sc, SF_RXFILT, SF_RXFILT_ALLMULTI);
445
446	/* Now program new ones. */
447	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
448		SF_SETBIT(sc, SF_RXFILT, SF_RXFILT_ALLMULTI);
449	} else {
450		i = 1;
451		TAILQ_FOREACH_REVERSE(ifma, &ifp->if_multiaddrs, ifmultihead, ifma_link) {
452			if (ifma->ifma_addr->sa_family != AF_LINK)
453				continue;
454			/*
455			 * Program the first 15 multicast groups
456			 * into the perfect filter. For all others,
457			 * use the hash table.
458			 */
459			if (i < SF_RXFILT_PERFECT_CNT) {
460				sf_setperf(sc, i,
461			LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
462				i++;
463				continue;
464			}
465
466			sf_sethash(sc,
467			    LLADDR((struct sockaddr_dl *)ifma->ifma_addr), 0);
468		}
469	}
470
471	return;
472}
473
474/*
475 * Set media options.
476 */
477static int sf_ifmedia_upd(ifp)
478	struct ifnet		*ifp;
479{
480	struct sf_softc		*sc;
481	struct mii_data		*mii;
482
483	sc = ifp->if_softc;
484	mii = device_get_softc(sc->sf_miibus);
485	sc->sf_link = 0;
486	if (mii->mii_instance) {
487		struct mii_softc        *miisc;
488		LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
489			mii_phy_reset(miisc);
490	}
491	mii_mediachg(mii);
492
493	return(0);
494}
495
496/*
497 * Report current media status.
498 */
499static void sf_ifmedia_sts(ifp, ifmr)
500	struct ifnet		*ifp;
501	struct ifmediareq	*ifmr;
502{
503	struct sf_softc		*sc;
504	struct mii_data		*mii;
505
506	sc = ifp->if_softc;
507	mii = device_get_softc(sc->sf_miibus);
508
509	mii_pollstat(mii);
510	ifmr->ifm_active = mii->mii_media_active;
511	ifmr->ifm_status = mii->mii_media_status;
512
513	return;
514}
515
516static int sf_ioctl(ifp, command, data)
517	struct ifnet		*ifp;
518	u_long			command;
519	caddr_t			data;
520{
521	struct sf_softc		*sc = ifp->if_softc;
522	struct ifreq		*ifr = (struct ifreq *) data;
523	struct mii_data		*mii;
524	int			error = 0;
525
526	SF_LOCK(sc);
527
528	switch(command) {
529	case SIOCSIFADDR:
530	case SIOCGIFADDR:
531	case SIOCSIFMTU:
532		error = ether_ioctl(ifp, command, data);
533		break;
534	case SIOCSIFFLAGS:
535		if (ifp->if_flags & IFF_UP) {
536			if (ifp->if_flags & IFF_RUNNING &&
537			    ifp->if_flags & IFF_PROMISC &&
538			    !(sc->sf_if_flags & IFF_PROMISC)) {
539				SF_SETBIT(sc, SF_RXFILT, SF_RXFILT_PROMISC);
540			} else if (ifp->if_flags & IFF_RUNNING &&
541			    !(ifp->if_flags & IFF_PROMISC) &&
542			    sc->sf_if_flags & IFF_PROMISC) {
543				SF_CLRBIT(sc, SF_RXFILT, SF_RXFILT_PROMISC);
544			} else if (!(ifp->if_flags & IFF_RUNNING))
545				sf_init(sc);
546		} else {
547			if (ifp->if_flags & IFF_RUNNING)
548				sf_stop(sc);
549		}
550		sc->sf_if_flags = ifp->if_flags;
551		error = 0;
552		break;
553	case SIOCADDMULTI:
554	case SIOCDELMULTI:
555		sf_setmulti(sc);
556		error = 0;
557		break;
558	case SIOCGIFMEDIA:
559	case SIOCSIFMEDIA:
560		mii = device_get_softc(sc->sf_miibus);
561		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
562		break;
563	default:
564		error = EINVAL;
565		break;
566	}
567
568	SF_UNLOCK(sc);
569
570	return(error);
571}
572
573static void sf_reset(sc)
574	struct sf_softc		*sc;
575{
576	register int		i;
577
578	csr_write_4(sc, SF_GEN_ETH_CTL, 0);
579	SF_SETBIT(sc, SF_MACCFG_1, SF_MACCFG1_SOFTRESET);
580	DELAY(1000);
581	SF_CLRBIT(sc, SF_MACCFG_1, SF_MACCFG1_SOFTRESET);
582
583	SF_SETBIT(sc, SF_PCI_DEVCFG, SF_PCIDEVCFG_RESET);
584
585	for (i = 0; i < SF_TIMEOUT; i++) {
586		DELAY(10);
587		if (!(csr_read_4(sc, SF_PCI_DEVCFG) & SF_PCIDEVCFG_RESET))
588			break;
589	}
590
591	if (i == SF_TIMEOUT)
592		printf("sf%d: reset never completed!\n", sc->sf_unit);
593
594	/* Wait a little while for the chip to get its brains in order. */
595	DELAY(1000);
596	return;
597}
598
599/*
600 * Probe for an Adaptec AIC-6915 chip. Check the PCI vendor and device
601 * IDs against our list and return a device name if we find a match.
602 * We also check the subsystem ID so that we can identify exactly which
603 * NIC has been found, if possible.
604 */
605static int sf_probe(dev)
606	device_t		dev;
607{
608	struct sf_type		*t;
609
610	t = sf_devs;
611
612	while(t->sf_name != NULL) {
613		if ((pci_get_vendor(dev) == t->sf_vid) &&
614		    (pci_get_device(dev) == t->sf_did)) {
615			switch((pci_read_config(dev,
616			    SF_PCI_SUBVEN_ID, 4) >> 16) & 0xFFFF) {
617			case AD_SUBSYSID_62011_REV0:
618			case AD_SUBSYSID_62011_REV1:
619				device_set_desc(dev,
620				    "Adaptec ANA-62011 10/100BaseTX");
621				return(0);
622				break;
623			case AD_SUBSYSID_62022:
624				device_set_desc(dev,
625				    "Adaptec ANA-62022 10/100BaseTX");
626				return(0);
627				break;
628			case AD_SUBSYSID_62044_REV0:
629			case AD_SUBSYSID_62044_REV1:
630				device_set_desc(dev,
631				    "Adaptec ANA-62044 10/100BaseTX");
632				return(0);
633				break;
634			case AD_SUBSYSID_62020:
635				device_set_desc(dev,
636				    "Adaptec ANA-62020 10/100BaseFX");
637				return(0);
638				break;
639			case AD_SUBSYSID_69011:
640				device_set_desc(dev,
641				    "Adaptec ANA-69011 10/100BaseTX");
642				return(0);
643				break;
644			default:
645				device_set_desc(dev, t->sf_name);
646				return(0);
647				break;
648			}
649		}
650		t++;
651	}
652
653	return(ENXIO);
654}
655
656/*
657 * Attach the interface. Allocate softc structures, do ifmedia
658 * setup and ethernet/BPF attach.
659 */
660static int sf_attach(dev)
661	device_t		dev;
662{
663	int			i;
664	u_int32_t		command;
665	struct sf_softc		*sc;
666	struct ifnet		*ifp;
667	int			unit, rid, error = 0;
668
669	sc = device_get_softc(dev);
670	unit = device_get_unit(dev);
671	bzero(sc, sizeof(struct sf_softc));
672
673	mtx_init(&sc->sf_mtx, device_get_nameunit(dev), MTX_DEF | MTX_RECURSE);
674	SF_LOCK(sc);
675	/*
676	 * Handle power management nonsense.
677	 */
678	command = pci_read_config(dev, SF_PCI_CAPID, 4) & 0x000000FF;
679	if (command == 0x01) {
680
681		command = pci_read_config(dev, SF_PCI_PWRMGMTCTRL, 4);
682		if (command & SF_PSTATE_MASK) {
683			u_int32_t		iobase, membase, irq;
684
685			/* Save important PCI config data. */
686			iobase = pci_read_config(dev, SF_PCI_LOIO, 4);
687			membase = pci_read_config(dev, SF_PCI_LOMEM, 4);
688			irq = pci_read_config(dev, SF_PCI_INTLINE, 4);
689
690			/* Reset the power state. */
691			printf("sf%d: chip is in D%d power mode "
692			"-- setting to D0\n", unit, command & SF_PSTATE_MASK);
693			command &= 0xFFFFFFFC;
694			pci_write_config(dev, SF_PCI_PWRMGMTCTRL, command, 4);
695
696			/* Restore PCI config data. */
697			pci_write_config(dev, SF_PCI_LOIO, iobase, 4);
698			pci_write_config(dev, SF_PCI_LOMEM, membase, 4);
699			pci_write_config(dev, SF_PCI_INTLINE, irq, 4);
700		}
701	}
702
703	/*
704	 * Map control/status registers.
705	 */
706	command = pci_read_config(dev, PCIR_COMMAND, 4);
707	command |= (PCIM_CMD_PORTEN|PCIM_CMD_MEMEN|PCIM_CMD_BUSMASTEREN);
708	pci_write_config(dev, PCIR_COMMAND, command, 4);
709	command = pci_read_config(dev, PCIR_COMMAND, 4);
710
711#ifdef SF_USEIOSPACE
712	if (!(command & PCIM_CMD_PORTEN)) {
713		printf("sf%d: failed to enable I/O ports!\n", unit);
714		error = ENXIO;
715		goto fail;
716	}
717#else
718	if (!(command & PCIM_CMD_MEMEN)) {
719		printf("sf%d: failed to enable memory mapping!\n", unit);
720		error = ENXIO;
721		goto fail;
722	}
723#endif
724
725	rid = SF_RID;
726	sc->sf_res = bus_alloc_resource(dev, SF_RES, &rid,
727	    0, ~0, 1, RF_ACTIVE);
728
729	if (sc->sf_res == NULL) {
730		printf ("sf%d: couldn't map ports\n", unit);
731		error = ENXIO;
732		goto fail;
733	}
734
735	sc->sf_btag = rman_get_bustag(sc->sf_res);
736	sc->sf_bhandle = rman_get_bushandle(sc->sf_res);
737
738	/* Allocate interrupt */
739	rid = 0;
740	sc->sf_irq = bus_alloc_resource(dev, SYS_RES_IRQ, &rid, 0, ~0, 1,
741	    RF_SHAREABLE | RF_ACTIVE);
742
743	if (sc->sf_irq == NULL) {
744		printf("sf%d: couldn't map interrupt\n", unit);
745		bus_release_resource(dev, SF_RES, SF_RID, sc->sf_res);
746		error = ENXIO;
747		goto fail;
748	}
749
750	error = bus_setup_intr(dev, sc->sf_irq, INTR_TYPE_NET,
751	    sf_intr, sc, &sc->sf_intrhand);
752
753	if (error) {
754		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sf_res);
755		bus_release_resource(dev, SF_RES, SF_RID, sc->sf_res);
756		printf("sf%d: couldn't set up irq\n", unit);
757		goto fail;
758	}
759
760	callout_handle_init(&sc->sf_stat_ch);
761	/* Reset the adapter. */
762	sf_reset(sc);
763
764	/*
765	 * Get station address from the EEPROM.
766	 */
767	for (i = 0; i < ETHER_ADDR_LEN; i++)
768		sc->arpcom.ac_enaddr[i] =
769		    sf_read_eeprom(sc, SF_EE_NODEADDR + ETHER_ADDR_LEN - i);
770
771	/*
772	 * An Adaptec chip was detected. Inform the world.
773	 */
774	printf("sf%d: Ethernet address: %6D\n", unit,
775	    sc->arpcom.ac_enaddr, ":");
776
777	sc->sf_unit = unit;
778
779	/* Allocate the descriptor queues. */
780	sc->sf_ldata = contigmalloc(sizeof(struct sf_list_data), M_DEVBUF,
781	    M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0);
782
783	if (sc->sf_ldata == NULL) {
784		printf("sf%d: no memory for list buffers!\n", unit);
785		bus_teardown_intr(dev, sc->sf_irq, sc->sf_intrhand);
786		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sf_irq);
787		bus_release_resource(dev, SF_RES, SF_RID, sc->sf_res);
788		error = ENXIO;
789		goto fail;
790	}
791
792	bzero(sc->sf_ldata, sizeof(struct sf_list_data));
793
794	/* Do MII setup. */
795	if (mii_phy_probe(dev, &sc->sf_miibus,
796	    sf_ifmedia_upd, sf_ifmedia_sts)) {
797		printf("sf%d: MII without any phy!\n", sc->sf_unit);
798		contigfree(sc->sf_ldata,sizeof(struct sf_list_data),M_DEVBUF);
799		bus_teardown_intr(dev, sc->sf_irq, sc->sf_intrhand);
800		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sf_irq);
801		bus_release_resource(dev, SF_RES, SF_RID, sc->sf_res);
802		error = ENXIO;
803		goto fail;
804	}
805
806	ifp = &sc->arpcom.ac_if;
807	ifp->if_softc = sc;
808	ifp->if_unit = unit;
809	ifp->if_name = "sf";
810	ifp->if_mtu = ETHERMTU;
811	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
812	ifp->if_ioctl = sf_ioctl;
813	ifp->if_output = ether_output;
814	ifp->if_start = sf_start;
815	ifp->if_watchdog = sf_watchdog;
816	ifp->if_init = sf_init;
817	ifp->if_baudrate = 10000000;
818	ifp->if_snd.ifq_maxlen = SF_TX_DLIST_CNT - 1;
819
820	/*
821	 * Call MI attach routine.
822	 */
823	ether_ifattach(ifp, ETHER_BPF_SUPPORTED);
824	SF_UNLOCK(sc);
825	return(0);
826
827fail:
828	SF_UNLOCK(sc);
829	mtx_destroy(&sc->sf_mtx);
830	return(error);
831}
832
833static int sf_detach(dev)
834	device_t		dev;
835{
836	struct sf_softc		*sc;
837	struct ifnet		*ifp;
838
839	sc = device_get_softc(dev);
840	SF_LOCK(sc);
841	ifp = &sc->arpcom.ac_if;
842
843	ether_ifdetach(ifp, ETHER_BPF_SUPPORTED);
844	sf_stop(sc);
845
846	bus_generic_detach(dev);
847	device_delete_child(dev, sc->sf_miibus);
848
849	bus_teardown_intr(dev, sc->sf_irq, sc->sf_intrhand);
850	bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sf_irq);
851	bus_release_resource(dev, SF_RES, SF_RID, sc->sf_res);
852
853	contigfree(sc->sf_ldata, sizeof(struct sf_list_data), M_DEVBUF);
854
855	SF_UNLOCK(sc);
856	mtx_destroy(&sc->sf_mtx);
857
858	return(0);
859}
860
861static int sf_init_rx_ring(sc)
862	struct sf_softc		*sc;
863{
864	struct sf_list_data	*ld;
865	int			i;
866
867	ld = sc->sf_ldata;
868
869	bzero((char *)ld->sf_rx_dlist_big,
870	    sizeof(struct sf_rx_bufdesc_type0) * SF_RX_DLIST_CNT);
871	bzero((char *)ld->sf_rx_clist,
872	    sizeof(struct sf_rx_cmpdesc_type3) * SF_RX_CLIST_CNT);
873
874	for (i = 0; i < SF_RX_DLIST_CNT; i++) {
875		if (sf_newbuf(sc, &ld->sf_rx_dlist_big[i], NULL) == ENOBUFS)
876			return(ENOBUFS);
877	}
878
879	return(0);
880}
881
882static void sf_init_tx_ring(sc)
883	struct sf_softc		*sc;
884{
885	struct sf_list_data	*ld;
886	int			i;
887
888	ld = sc->sf_ldata;
889
890	bzero((char *)ld->sf_tx_dlist,
891	    sizeof(struct sf_tx_bufdesc_type0) * SF_TX_DLIST_CNT);
892	bzero((char *)ld->sf_tx_clist,
893	    sizeof(struct sf_tx_cmpdesc_type0) * SF_TX_CLIST_CNT);
894
895	for (i = 0; i < SF_TX_DLIST_CNT; i++)
896		ld->sf_tx_dlist[i].sf_id = SF_TX_BUFDESC_ID;
897	for (i = 0; i < SF_TX_CLIST_CNT; i++)
898		ld->sf_tx_clist[i].sf_type = SF_TXCMPTYPE_TX;
899
900	ld->sf_tx_dlist[SF_TX_DLIST_CNT - 1].sf_end = 1;
901	sc->sf_tx_cnt = 0;
902
903	return;
904}
905
906static int sf_newbuf(sc, c, m)
907	struct sf_softc		*sc;
908	struct sf_rx_bufdesc_type0	*c;
909	struct mbuf		*m;
910{
911	struct mbuf		*m_new = NULL;
912
913	if (m == NULL) {
914		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
915		if (m_new == NULL) {
916			printf("sf%d: no memory for rx list -- "
917			    "packet dropped!\n", sc->sf_unit);
918			return(ENOBUFS);
919		}
920
921		MCLGET(m_new, M_DONTWAIT);
922		if (!(m_new->m_flags & M_EXT)) {
923			printf("sf%d: no memory for rx list -- "
924			    "packet dropped!\n", sc->sf_unit);
925			m_freem(m_new);
926			return(ENOBUFS);
927		}
928		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
929	} else {
930		m_new = m;
931		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
932		m_new->m_data = m_new->m_ext.ext_buf;
933	}
934
935	m_adj(m_new, sizeof(u_int64_t));
936
937	c->sf_mbuf = m_new;
938	c->sf_addrlo = SF_RX_HOSTADDR(vtophys(mtod(m_new, caddr_t)));
939	c->sf_valid = 1;
940
941	return(0);
942}
943
944/*
945 * The starfire is programmed to use 'normal' mode for packet reception,
946 * which means we use the consumer/producer model for both the buffer
947 * descriptor queue and the completion descriptor queue. The only problem
948 * with this is that it involves a lot of register accesses: we have to
949 * read the RX completion consumer and producer indexes and the RX buffer
950 * producer index, plus the RX completion consumer and RX buffer producer
951 * indexes have to be updated. It would have been easier if Adaptec had
952 * put each index in a separate register, especially given that the damn
953 * NIC has a 512K register space.
954 *
955 * In spite of all the lovely features that Adaptec crammed into the 6915,
956 * it is marred by one truly stupid design flaw, which is that receive
957 * buffer addresses must be aligned on a longword boundary. This forces
958 * the packet payload to be unaligned, which is suboptimal on the x86 and
959 * completely unuseable on the Alpha. Our only recourse is to copy received
960 * packets into properly aligned buffers before handing them off.
961 */
962
963static void sf_rxeof(sc)
964	struct sf_softc		*sc;
965{
966	struct ether_header	*eh;
967	struct mbuf		*m;
968	struct ifnet		*ifp;
969	struct sf_rx_bufdesc_type0	*desc;
970	struct sf_rx_cmpdesc_type3	*cur_rx;
971	u_int32_t		rxcons, rxprod;
972	int			cmpprodidx, cmpconsidx, bufprodidx;
973
974	ifp = &sc->arpcom.ac_if;
975
976	rxcons = csr_read_4(sc, SF_CQ_CONSIDX);
977	rxprod = csr_read_4(sc, SF_RXDQ_PTR_Q1);
978	cmpprodidx = SF_IDX_LO(csr_read_4(sc, SF_CQ_PRODIDX));
979	cmpconsidx = SF_IDX_LO(rxcons);
980	bufprodidx = SF_IDX_LO(rxprod);
981
982	while (cmpconsidx != cmpprodidx) {
983		struct mbuf		*m0;
984
985		cur_rx = &sc->sf_ldata->sf_rx_clist[cmpconsidx];
986		desc = &sc->sf_ldata->sf_rx_dlist_big[cur_rx->sf_endidx];
987		m = desc->sf_mbuf;
988		SF_INC(cmpconsidx, SF_RX_CLIST_CNT);
989		SF_INC(bufprodidx, SF_RX_DLIST_CNT);
990
991		if (!(cur_rx->sf_status1 & SF_RXSTAT1_OK)) {
992			ifp->if_ierrors++;
993			sf_newbuf(sc, desc, m);
994			continue;
995		}
996
997		m0 = m_devget(mtod(m, char *) - ETHER_ALIGN,
998		    cur_rx->sf_len + ETHER_ALIGN, 0, ifp, NULL);
999		sf_newbuf(sc, desc, m);
1000		if (m0 == NULL) {
1001			ifp->if_ierrors++;
1002			continue;
1003		}
1004		m_adj(m0, ETHER_ALIGN);
1005		m = m0;
1006
1007		eh = mtod(m, struct ether_header *);
1008		ifp->if_ipackets++;
1009
1010		/* Remove header from mbuf and pass it on. */
1011		m_adj(m, sizeof(struct ether_header));
1012		ether_input(ifp, eh, m);
1013	}
1014
1015	csr_write_4(sc, SF_CQ_CONSIDX,
1016	    (rxcons & ~SF_CQ_CONSIDX_RXQ1) | cmpconsidx);
1017	csr_write_4(sc, SF_RXDQ_PTR_Q1,
1018	    (rxprod & ~SF_RXDQ_PRODIDX) | bufprodidx);
1019
1020	return;
1021}
1022
1023/*
1024 * Read the transmit status from the completion queue and release
1025 * mbufs. Note that the buffer descriptor index in the completion
1026 * descriptor is an offset from the start of the transmit buffer
1027 * descriptor list in bytes. This is important because the manual
1028 * gives the impression that it should match the producer/consumer
1029 * index, which is the offset in 8 byte blocks.
1030 */
1031static void sf_txeof(sc)
1032	struct sf_softc		*sc;
1033{
1034	int			txcons, cmpprodidx, cmpconsidx;
1035	struct sf_tx_cmpdesc_type1 *cur_cmp;
1036	struct sf_tx_bufdesc_type0 *cur_tx;
1037	struct ifnet		*ifp;
1038
1039	ifp = &sc->arpcom.ac_if;
1040
1041	txcons = csr_read_4(sc, SF_CQ_CONSIDX);
1042	cmpprodidx = SF_IDX_HI(csr_read_4(sc, SF_CQ_PRODIDX));
1043	cmpconsidx = SF_IDX_HI(txcons);
1044
1045	while (cmpconsidx != cmpprodidx) {
1046		cur_cmp = &sc->sf_ldata->sf_tx_clist[cmpconsidx];
1047		cur_tx = &sc->sf_ldata->sf_tx_dlist[cur_cmp->sf_index >> 7];
1048		SF_INC(cmpconsidx, SF_TX_CLIST_CNT);
1049
1050		if (cur_cmp->sf_txstat & SF_TXSTAT_TX_OK)
1051			ifp->if_opackets++;
1052		else
1053			ifp->if_oerrors++;
1054
1055		sc->sf_tx_cnt--;
1056		if (cur_tx->sf_mbuf != NULL) {
1057			m_freem(cur_tx->sf_mbuf);
1058			cur_tx->sf_mbuf = NULL;
1059		}
1060	}
1061
1062	ifp->if_timer = 0;
1063	ifp->if_flags &= ~IFF_OACTIVE;
1064
1065	csr_write_4(sc, SF_CQ_CONSIDX,
1066	    (txcons & ~SF_CQ_CONSIDX_TXQ) |
1067	    ((cmpconsidx << 16) & 0xFFFF0000));
1068
1069	return;
1070}
1071
1072static void sf_intr(arg)
1073	void			*arg;
1074{
1075	struct sf_softc		*sc;
1076	struct ifnet		*ifp;
1077	u_int32_t		status;
1078
1079	sc = arg;
1080	SF_LOCK(sc);
1081
1082	ifp = &sc->arpcom.ac_if;
1083
1084	if (!(csr_read_4(sc, SF_ISR_SHADOW) & SF_ISR_PCIINT_ASSERTED)) {
1085		SF_UNLOCK(sc);
1086		return;
1087	}
1088
1089	/* Disable interrupts. */
1090	csr_write_4(sc, SF_IMR, 0x00000000);
1091
1092	for (;;) {
1093		status = csr_read_4(sc, SF_ISR);
1094		if (status)
1095			csr_write_4(sc, SF_ISR, status);
1096
1097		if (!(status & SF_INTRS))
1098			break;
1099
1100		if (status & SF_ISR_RXDQ1_DMADONE)
1101			sf_rxeof(sc);
1102
1103		if (status & SF_ISR_TX_TXDONE)
1104			sf_txeof(sc);
1105
1106		if (status & SF_ISR_ABNORMALINTR) {
1107			if (status & SF_ISR_STATSOFLOW) {
1108				untimeout(sf_stats_update, sc,
1109				    sc->sf_stat_ch);
1110				sf_stats_update(sc);
1111			} else
1112				sf_init(sc);
1113		}
1114	}
1115
1116	/* Re-enable interrupts. */
1117	csr_write_4(sc, SF_IMR, SF_INTRS);
1118
1119	if (ifp->if_snd.ifq_head != NULL)
1120		sf_start(ifp);
1121
1122	SF_UNLOCK(sc);
1123	return;
1124}
1125
1126static void sf_init(xsc)
1127	void			*xsc;
1128{
1129	struct sf_softc		*sc;
1130	struct ifnet		*ifp;
1131	struct mii_data		*mii;
1132	int			i;
1133
1134	sc = xsc;
1135	SF_LOCK(sc);
1136	ifp = &sc->arpcom.ac_if;
1137	mii = device_get_softc(sc->sf_miibus);
1138
1139	sf_stop(sc);
1140	sf_reset(sc);
1141
1142	/* Init all the receive filter registers */
1143	for (i = SF_RXFILT_PERFECT_BASE;
1144	    i < (SF_RXFILT_HASH_MAX + 1); i += 4)
1145		csr_write_4(sc, i, 0);
1146
1147	/* Empty stats counter registers. */
1148	for (i = 0; i < sizeof(struct sf_stats)/sizeof(u_int32_t); i++)
1149		csr_write_4(sc, SF_STATS_BASE +
1150		    (i + sizeof(u_int32_t)), 0);
1151
1152	/* Init our MAC address */
1153	csr_write_4(sc, SF_PAR0, *(u_int32_t *)(&sc->arpcom.ac_enaddr[0]));
1154	csr_write_4(sc, SF_PAR1, *(u_int32_t *)(&sc->arpcom.ac_enaddr[4]));
1155	sf_setperf(sc, 0, (caddr_t)&sc->arpcom.ac_enaddr);
1156
1157	if (sf_init_rx_ring(sc) == ENOBUFS) {
1158		printf("sf%d: initialization failed: no "
1159		    "memory for rx buffers\n", sc->sf_unit);
1160		SF_UNLOCK(sc);
1161		return;
1162	}
1163
1164	sf_init_tx_ring(sc);
1165
1166	csr_write_4(sc, SF_RXFILT, SF_PERFMODE_NORMAL|SF_HASHMODE_WITHVLAN);
1167
1168	/* If we want promiscuous mode, set the allframes bit. */
1169	if (ifp->if_flags & IFF_PROMISC) {
1170		SF_SETBIT(sc, SF_RXFILT, SF_RXFILT_PROMISC);
1171	} else {
1172		SF_CLRBIT(sc, SF_RXFILT, SF_RXFILT_PROMISC);
1173	}
1174
1175	if (ifp->if_flags & IFF_BROADCAST) {
1176		SF_SETBIT(sc, SF_RXFILT, SF_RXFILT_BROAD);
1177	} else {
1178		SF_CLRBIT(sc, SF_RXFILT, SF_RXFILT_BROAD);
1179	}
1180
1181	/*
1182	 * Load the multicast filter.
1183	 */
1184	sf_setmulti(sc);
1185
1186	/* Init the completion queue indexes */
1187	csr_write_4(sc, SF_CQ_CONSIDX, 0);
1188	csr_write_4(sc, SF_CQ_PRODIDX, 0);
1189
1190	/* Init the RX completion queue */
1191	csr_write_4(sc, SF_RXCQ_CTL_1,
1192	    vtophys(sc->sf_ldata->sf_rx_clist) & SF_RXCQ_ADDR);
1193	SF_SETBIT(sc, SF_RXCQ_CTL_1, SF_RXCQTYPE_3);
1194
1195	/* Init RX DMA control. */
1196	SF_SETBIT(sc, SF_RXDMA_CTL, SF_RXDMA_REPORTBADPKTS);
1197
1198	/* Init the RX buffer descriptor queue. */
1199	csr_write_4(sc, SF_RXDQ_ADDR_Q1,
1200	    vtophys(sc->sf_ldata->sf_rx_dlist_big));
1201	csr_write_4(sc, SF_RXDQ_CTL_1, (MCLBYTES << 16) | SF_DESCSPACE_16BYTES);
1202	csr_write_4(sc, SF_RXDQ_PTR_Q1, SF_RX_DLIST_CNT - 1);
1203
1204	/* Init the TX completion queue */
1205	csr_write_4(sc, SF_TXCQ_CTL,
1206	    vtophys(sc->sf_ldata->sf_tx_clist) & SF_RXCQ_ADDR);
1207
1208	/* Init the TX buffer descriptor queue. */
1209	csr_write_4(sc, SF_TXDQ_ADDR_HIPRIO,
1210		vtophys(sc->sf_ldata->sf_tx_dlist));
1211	SF_SETBIT(sc, SF_TX_FRAMCTL, SF_TXFRMCTL_CPLAFTERTX);
1212	csr_write_4(sc, SF_TXDQ_CTL,
1213	    SF_TXBUFDESC_TYPE0|SF_TXMINSPACE_128BYTES|SF_TXSKIPLEN_8BYTES);
1214	SF_SETBIT(sc, SF_TXDQ_CTL, SF_TXDQCTL_NODMACMP);
1215
1216	/* Enable autopadding of short TX frames. */
1217	SF_SETBIT(sc, SF_MACCFG_1, SF_MACCFG1_AUTOPAD);
1218
1219	/* Enable interrupts. */
1220	csr_write_4(sc, SF_IMR, SF_INTRS);
1221	SF_SETBIT(sc, SF_PCI_DEVCFG, SF_PCIDEVCFG_INTR_ENB);
1222
1223	/* Enable the RX and TX engines. */
1224	SF_SETBIT(sc, SF_GEN_ETH_CTL, SF_ETHCTL_RX_ENB|SF_ETHCTL_RXDMA_ENB);
1225	SF_SETBIT(sc, SF_GEN_ETH_CTL, SF_ETHCTL_TX_ENB|SF_ETHCTL_TXDMA_ENB);
1226
1227	/*mii_mediachg(mii);*/
1228	sf_ifmedia_upd(ifp);
1229
1230	ifp->if_flags |= IFF_RUNNING;
1231	ifp->if_flags &= ~IFF_OACTIVE;
1232
1233	sc->sf_stat_ch = timeout(sf_stats_update, sc, hz);
1234
1235	SF_UNLOCK(sc);
1236
1237	return;
1238}
1239
1240static int sf_encap(sc, c, m_head)
1241	struct sf_softc		*sc;
1242	struct sf_tx_bufdesc_type0 *c;
1243	struct mbuf		*m_head;
1244{
1245	int			frag = 0;
1246	struct sf_frag		*f = NULL;
1247	struct mbuf		*m;
1248
1249	m = m_head;
1250
1251	for (m = m_head, frag = 0; m != NULL; m = m->m_next) {
1252		if (m->m_len != 0) {
1253			if (frag == SF_MAXFRAGS)
1254				break;
1255			f = &c->sf_frags[frag];
1256			if (frag == 0)
1257				f->sf_pktlen = m_head->m_pkthdr.len;
1258			f->sf_fraglen = m->m_len;
1259			f->sf_addr = vtophys(mtod(m, vm_offset_t));
1260			frag++;
1261		}
1262	}
1263
1264	if (m != NULL) {
1265		struct mbuf		*m_new = NULL;
1266
1267		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1268		if (m_new == NULL) {
1269			printf("sf%d: no memory for tx list", sc->sf_unit);
1270			return(1);
1271		}
1272
1273		if (m_head->m_pkthdr.len > MHLEN) {
1274			MCLGET(m_new, M_DONTWAIT);
1275			if (!(m_new->m_flags & M_EXT)) {
1276				m_freem(m_new);
1277				printf("sf%d: no memory for tx list",
1278				    sc->sf_unit);
1279				return(1);
1280			}
1281		}
1282		m_copydata(m_head, 0, m_head->m_pkthdr.len,
1283		    mtod(m_new, caddr_t));
1284		m_new->m_pkthdr.len = m_new->m_len = m_head->m_pkthdr.len;
1285		m_freem(m_head);
1286		m_head = m_new;
1287		f = &c->sf_frags[0];
1288		f->sf_fraglen = f->sf_pktlen = m_head->m_pkthdr.len;
1289		f->sf_addr = vtophys(mtod(m_head, caddr_t));
1290		frag = 1;
1291	}
1292
1293	c->sf_mbuf = m_head;
1294	c->sf_id = SF_TX_BUFDESC_ID;
1295	c->sf_fragcnt = frag;
1296	c->sf_intr = 1;
1297	c->sf_caltcp = 0;
1298	c->sf_crcen = 1;
1299
1300	return(0);
1301}
1302
1303static void sf_start(ifp)
1304	struct ifnet		*ifp;
1305{
1306	struct sf_softc		*sc;
1307	struct sf_tx_bufdesc_type0 *cur_tx = NULL;
1308	struct mbuf		*m_head = NULL;
1309	int			i, txprod;
1310
1311	sc = ifp->if_softc;
1312	SF_LOCK(sc);
1313
1314	if (!sc->sf_link) {
1315		SF_UNLOCK(sc);
1316		return;
1317	}
1318
1319	if (ifp->if_flags & IFF_OACTIVE) {
1320		SF_UNLOCK(sc);
1321		return;
1322	}
1323
1324	txprod = csr_read_4(sc, SF_TXDQ_PRODIDX);
1325	i = SF_IDX_HI(txprod) >> 4;
1326
1327	while(sc->sf_ldata->sf_tx_dlist[i].sf_mbuf == NULL) {
1328		if (sc->sf_tx_cnt == (SF_TX_DLIST_CNT - 2)) {
1329			ifp->if_flags |= IFF_OACTIVE;
1330			cur_tx = NULL;
1331			break;
1332		}
1333		IF_DEQUEUE(&ifp->if_snd, m_head);
1334		if (m_head == NULL)
1335			break;
1336
1337		cur_tx = &sc->sf_ldata->sf_tx_dlist[i];
1338		if (sf_encap(sc, cur_tx, m_head)) {
1339			IF_PREPEND(&ifp->if_snd, m_head);
1340			ifp->if_flags |= IFF_OACTIVE;
1341			cur_tx = NULL;
1342			break;
1343		}
1344
1345		/*
1346		 * If there's a BPF listener, bounce a copy of this frame
1347		 * to him.
1348		 */
1349		if (ifp->if_bpf)
1350			bpf_mtap(ifp, m_head);
1351
1352		SF_INC(i, SF_TX_DLIST_CNT);
1353		sc->sf_tx_cnt++;
1354	}
1355
1356	if (cur_tx == NULL) {
1357		SF_UNLOCK(sc);
1358		return;
1359	}
1360
1361	/* Transmit */
1362	csr_write_4(sc, SF_TXDQ_PRODIDX,
1363	    (txprod & ~SF_TXDQ_PRODIDX_HIPRIO) |
1364	    ((i << 20) & 0xFFFF0000));
1365
1366	ifp->if_timer = 5;
1367
1368	SF_UNLOCK(sc);
1369
1370	return;
1371}
1372
1373static void sf_stop(sc)
1374	struct sf_softc		*sc;
1375{
1376	int			i;
1377	struct ifnet		*ifp;
1378
1379	SF_LOCK(sc);
1380
1381	ifp = &sc->arpcom.ac_if;
1382
1383	untimeout(sf_stats_update, sc, sc->sf_stat_ch);
1384
1385	csr_write_4(sc, SF_GEN_ETH_CTL, 0);
1386	csr_write_4(sc, SF_CQ_CONSIDX, 0);
1387	csr_write_4(sc, SF_CQ_PRODIDX, 0);
1388	csr_write_4(sc, SF_RXDQ_ADDR_Q1, 0);
1389	csr_write_4(sc, SF_RXDQ_CTL_1, 0);
1390	csr_write_4(sc, SF_RXDQ_PTR_Q1, 0);
1391	csr_write_4(sc, SF_TXCQ_CTL, 0);
1392	csr_write_4(sc, SF_TXDQ_ADDR_HIPRIO, 0);
1393	csr_write_4(sc, SF_TXDQ_CTL, 0);
1394	sf_reset(sc);
1395
1396	sc->sf_link = 0;
1397
1398	for (i = 0; i < SF_RX_DLIST_CNT; i++) {
1399		if (sc->sf_ldata->sf_rx_dlist_big[i].sf_mbuf != NULL) {
1400			m_freem(sc->sf_ldata->sf_rx_dlist_big[i].sf_mbuf);
1401			sc->sf_ldata->sf_rx_dlist_big[i].sf_mbuf = NULL;
1402		}
1403	}
1404
1405	for (i = 0; i < SF_TX_DLIST_CNT; i++) {
1406		if (sc->sf_ldata->sf_tx_dlist[i].sf_mbuf != NULL) {
1407			m_freem(sc->sf_ldata->sf_tx_dlist[i].sf_mbuf);
1408			sc->sf_ldata->sf_tx_dlist[i].sf_mbuf = NULL;
1409		}
1410	}
1411
1412	ifp->if_flags &= ~(IFF_RUNNING|IFF_OACTIVE);
1413	SF_UNLOCK(sc);
1414
1415	return;
1416}
1417
1418/*
1419 * Note: it is important that this function not be interrupted. We
1420 * use a two-stage register access scheme: if we are interrupted in
1421 * between setting the indirect address register and reading from the
1422 * indirect data register, the contents of the address register could
1423 * be changed out from under us.
1424 */
1425static void sf_stats_update(xsc)
1426	void			*xsc;
1427{
1428	struct sf_softc		*sc;
1429	struct ifnet		*ifp;
1430	struct mii_data		*mii;
1431	struct sf_stats		stats;
1432	u_int32_t		*ptr;
1433	int			i;
1434
1435	sc = xsc;
1436	SF_LOCK(sc);
1437	ifp = &sc->arpcom.ac_if;
1438	mii = device_get_softc(sc->sf_miibus);
1439
1440	ptr = (u_int32_t *)&stats;
1441	for (i = 0; i < sizeof(stats)/sizeof(u_int32_t); i++)
1442		ptr[i] = csr_read_4(sc, SF_STATS_BASE +
1443		    (i + sizeof(u_int32_t)));
1444
1445	for (i = 0; i < sizeof(stats)/sizeof(u_int32_t); i++)
1446		csr_write_4(sc, SF_STATS_BASE +
1447		    (i + sizeof(u_int32_t)), 0);
1448
1449	ifp->if_collisions += stats.sf_tx_single_colls +
1450	    stats.sf_tx_multi_colls + stats.sf_tx_excess_colls;
1451
1452	mii_tick(mii);
1453	if (!sc->sf_link) {
1454		mii_pollstat(mii);
1455		if (mii->mii_media_status & IFM_ACTIVE &&
1456		    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
1457			sc->sf_link++;
1458			if (ifp->if_snd.ifq_head != NULL)
1459				sf_start(ifp);
1460	}
1461
1462	sc->sf_stat_ch = timeout(sf_stats_update, sc, hz);
1463
1464	SF_UNLOCK(sc);
1465
1466	return;
1467}
1468
1469static void sf_watchdog(ifp)
1470	struct ifnet		*ifp;
1471{
1472	struct sf_softc		*sc;
1473
1474	sc = ifp->if_softc;
1475
1476	SF_LOCK(sc);
1477
1478	ifp->if_oerrors++;
1479	printf("sf%d: watchdog timeout\n", sc->sf_unit);
1480
1481	sf_stop(sc);
1482	sf_reset(sc);
1483	sf_init(sc);
1484
1485	if (ifp->if_snd.ifq_head != NULL)
1486		sf_start(ifp);
1487
1488	SF_UNLOCK(sc);
1489
1490	return;
1491}
1492
1493static void sf_shutdown(dev)
1494	device_t		dev;
1495{
1496	struct sf_softc		*sc;
1497
1498	sc = device_get_softc(dev);
1499
1500	sf_stop(sc);
1501
1502	return;
1503}
1504