if_sf.c revision 72012
1/*
2 * Copyright (c) 1997, 1998, 1999
3 *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 *    must display the following acknowledgement:
15 *	This product includes software developed by Bill Paul.
16 * 4. Neither the name of the author nor the names of any co-contributors
17 *    may be used to endorse or promote products derived from this software
18 *    without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30 * THE POSSIBILITY OF SUCH DAMAGE.
31 *
32 * $FreeBSD: head/sys/dev/sf/if_sf.c 72012 2001-02-04 16:08:18Z phk $
33 */
34
35/*
36 * Adaptec AIC-6915 "Starfire" PCI fast ethernet driver for FreeBSD.
37 * Programming manual is available from:
38 * ftp.adaptec.com:/pub/BBS/userguides/aic6915_pg.pdf.
39 *
40 * Written by Bill Paul <wpaul@ctr.columbia.edu>
41 * Department of Electical Engineering
42 * Columbia University, New York City
43 */
44
45/*
46 * The Adaptec AIC-6915 "Starfire" is a 64-bit 10/100 PCI ethernet
47 * controller designed with flexibility and reducing CPU load in mind.
48 * The Starfire offers high and low priority buffer queues, a
49 * producer/consumer index mechanism and several different buffer
50 * queue and completion queue descriptor types. Any one of a number
51 * of different driver designs can be used, depending on system and
52 * OS requirements. This driver makes use of type0 transmit frame
53 * descriptors (since BSD fragments packets across an mbuf chain)
54 * and two RX buffer queues prioritized on size (one queue for small
55 * frames that will fit into a single mbuf, another with full size
56 * mbuf clusters for everything else). The producer/consumer indexes
57 * and completion queues are also used.
58 *
59 * One downside to the Starfire has to do with alignment: buffer
60 * queues must be aligned on 256-byte boundaries, and receive buffers
61 * must be aligned on longword boundaries. The receive buffer alignment
62 * causes problems on the Alpha platform, where the packet payload
63 * should be longword aligned. There is no simple way around this.
64 *
65 * For receive filtering, the Starfire offers 16 perfect filter slots
66 * and a 512-bit hash table.
67 *
68 * The Starfire has no internal transceiver, relying instead on an
69 * external MII-based transceiver. Accessing registers on external
70 * PHYs is done through a special register map rather than with the
71 * usual bitbang MDIO method.
72 *
73 * Acesssing the registers on the Starfire is a little tricky. The
74 * Starfire has a 512K internal register space. When programmed for
75 * PCI memory mapped mode, the entire register space can be accessed
76 * directly. However in I/O space mode, only 256 bytes are directly
77 * mapped into PCI I/O space. The other registers can be accessed
78 * indirectly using the SF_INDIRECTIO_ADDR and SF_INDIRECTIO_DATA
79 * registers inside the 256-byte I/O window.
80 */
81
82#include <sys/param.h>
83#include <sys/systm.h>
84#include <sys/sockio.h>
85#include <sys/mbuf.h>
86#include <sys/malloc.h>
87#include <sys/kernel.h>
88#include <sys/socket.h>
89
90#include <net/if.h>
91#include <net/if_arp.h>
92#include <net/ethernet.h>
93#include <net/if_dl.h>
94#include <net/if_media.h>
95
96#include <net/bpf.h>
97
98#include <vm/vm.h>              /* for vtophys */
99#include <vm/pmap.h>            /* for vtophys */
100#include <machine/bus_pio.h>
101#include <machine/bus_memio.h>
102#include <machine/bus.h>
103#include <machine/resource.h>
104#include <sys/bus.h>
105#include <sys/rman.h>
106
107#include <dev/mii/mii.h>
108#include <dev/mii/miivar.h>
109
110/* "controller miibus0" required.  See GENERIC if you get errors here. */
111#include "miibus_if.h"
112
113#include <pci/pcireg.h>
114#include <pci/pcivar.h>
115
116#define SF_USEIOSPACE
117
118#include <pci/if_sfreg.h>
119
120MODULE_DEPEND(sf, miibus, 1, 1, 1);
121
122#ifndef lint
123static const char rcsid[] =
124  "$FreeBSD: head/sys/dev/sf/if_sf.c 72012 2001-02-04 16:08:18Z phk $";
125#endif
126
127static struct sf_type sf_devs[] = {
128	{ AD_VENDORID, AD_DEVICEID_STARFIRE,
129		"Adaptec AIC-6915 10/100BaseTX" },
130	{ 0, 0, NULL }
131};
132
133static int sf_probe		__P((device_t));
134static int sf_attach		__P((device_t));
135static int sf_detach		__P((device_t));
136static void sf_intr		__P((void *));
137static void sf_stats_update	__P((void *));
138static void sf_rxeof		__P((struct sf_softc *));
139static void sf_txeof		__P((struct sf_softc *));
140static int sf_encap		__P((struct sf_softc *,
141					struct sf_tx_bufdesc_type0 *,
142					struct mbuf *));
143static void sf_start		__P((struct ifnet *));
144static int sf_ioctl		__P((struct ifnet *, u_long, caddr_t));
145static void sf_init		__P((void *));
146static void sf_stop		__P((struct sf_softc *));
147static void sf_watchdog		__P((struct ifnet *));
148static void sf_shutdown		__P((device_t));
149static int sf_ifmedia_upd	__P((struct ifnet *));
150static void sf_ifmedia_sts	__P((struct ifnet *, struct ifmediareq *));
151static void sf_reset		__P((struct sf_softc *));
152static int sf_init_rx_ring	__P((struct sf_softc *));
153static void sf_init_tx_ring	__P((struct sf_softc *));
154static int sf_newbuf		__P((struct sf_softc *,
155					struct sf_rx_bufdesc_type0 *,
156					struct mbuf *));
157static void sf_setmulti		__P((struct sf_softc *));
158static int sf_setperf		__P((struct sf_softc *, int, caddr_t));
159static int sf_sethash		__P((struct sf_softc *, caddr_t, int));
160#ifdef notdef
161static int sf_setvlan		__P((struct sf_softc *, int, u_int32_t));
162#endif
163
164static u_int8_t sf_read_eeprom	__P((struct sf_softc *, int));
165static u_int32_t sf_calchash	__P((caddr_t));
166
167static int sf_miibus_readreg	__P((device_t, int, int));
168static int sf_miibus_writereg	__P((device_t, int, int, int));
169static void sf_miibus_statchg	__P((device_t));
170
171static u_int32_t csr_read_4	__P((struct sf_softc *, int));
172static void csr_write_4		__P((struct sf_softc *, int, u_int32_t));
173
174#ifdef SF_USEIOSPACE
175#define SF_RES			SYS_RES_IOPORT
176#define SF_RID			SF_PCI_LOIO
177#else
178#define SF_RES			SYS_RES_MEMORY
179#define SF_RID			SF_PCI_LOMEM
180#endif
181
182static device_method_t sf_methods[] = {
183	/* Device interface */
184	DEVMETHOD(device_probe,		sf_probe),
185	DEVMETHOD(device_attach,	sf_attach),
186	DEVMETHOD(device_detach,	sf_detach),
187	DEVMETHOD(device_shutdown,	sf_shutdown),
188
189	/* bus interface */
190	DEVMETHOD(bus_print_child,	bus_generic_print_child),
191	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
192
193	/* MII interface */
194	DEVMETHOD(miibus_readreg,	sf_miibus_readreg),
195	DEVMETHOD(miibus_writereg,	sf_miibus_writereg),
196	DEVMETHOD(miibus_statchg,	sf_miibus_statchg),
197
198	{ 0, 0 }
199};
200
201static driver_t sf_driver = {
202	"sf",
203	sf_methods,
204	sizeof(struct sf_softc),
205};
206
207static devclass_t sf_devclass;
208
209DRIVER_MODULE(if_sf, pci, sf_driver, sf_devclass, 0, 0);
210DRIVER_MODULE(miibus, sf, miibus_driver, miibus_devclass, 0, 0);
211
212#define SF_SETBIT(sc, reg, x)	\
213	csr_write_4(sc, reg, csr_read_4(sc, reg) | x)
214
215#define SF_CLRBIT(sc, reg, x)				\
216	csr_write_4(sc, reg, csr_read_4(sc, reg) & ~x)
217
218static u_int32_t csr_read_4(sc, reg)
219	struct sf_softc		*sc;
220	int			reg;
221{
222	u_int32_t		val;
223
224#ifdef SF_USEIOSPACE
225	CSR_WRITE_4(sc, SF_INDIRECTIO_ADDR, reg + SF_RMAP_INTREG_BASE);
226	val = CSR_READ_4(sc, SF_INDIRECTIO_DATA);
227#else
228	val = CSR_READ_4(sc, (reg + SF_RMAP_INTREG_BASE));
229#endif
230
231	return(val);
232}
233
234static u_int8_t sf_read_eeprom(sc, reg)
235	struct sf_softc		*sc;
236	int			reg;
237{
238	u_int8_t		val;
239
240	val = (csr_read_4(sc, SF_EEADDR_BASE +
241	    (reg & 0xFFFFFFFC)) >> (8 * (reg & 3))) & 0xFF;
242
243	return(val);
244}
245
246static void csr_write_4(sc, reg, val)
247	struct sf_softc		*sc;
248	int			reg;
249	u_int32_t		val;
250{
251#ifdef SF_USEIOSPACE
252	CSR_WRITE_4(sc, SF_INDIRECTIO_ADDR, reg + SF_RMAP_INTREG_BASE);
253	CSR_WRITE_4(sc, SF_INDIRECTIO_DATA, val);
254#else
255	CSR_WRITE_4(sc, (reg + SF_RMAP_INTREG_BASE), val);
256#endif
257	return;
258}
259
260static u_int32_t sf_calchash(addr)
261	caddr_t			addr;
262{
263	u_int32_t		crc, carry;
264	int			i, j;
265	u_int8_t		c;
266
267	/* Compute CRC for the address value. */
268	crc = 0xFFFFFFFF; /* initial value */
269
270	for (i = 0; i < 6; i++) {
271		c = *(addr + i);
272		for (j = 0; j < 8; j++) {
273			carry = ((crc & 0x80000000) ? 1 : 0) ^ (c & 0x01);
274			crc <<= 1;
275			c >>= 1;
276			if (carry)
277				crc = (crc ^ 0x04c11db6) | carry;
278		}
279	}
280
281	/* return the filter bit position */
282	return(crc >> 23 & 0x1FF);
283}
284
285/*
286 * Copy the address 'mac' into the perfect RX filter entry at
287 * offset 'idx.' The perfect filter only has 16 entries so do
288 * some sanity tests.
289 */
290static int sf_setperf(sc, idx, mac)
291	struct sf_softc		*sc;
292	int			idx;
293	caddr_t			mac;
294{
295	u_int16_t		*p;
296
297	if (idx < 0 || idx > SF_RXFILT_PERFECT_CNT)
298		return(EINVAL);
299
300	if (mac == NULL)
301		return(EINVAL);
302
303	p = (u_int16_t *)mac;
304
305	csr_write_4(sc, SF_RXFILT_PERFECT_BASE +
306	    (idx * SF_RXFILT_PERFECT_SKIP), htons(p[2]));
307	csr_write_4(sc, SF_RXFILT_PERFECT_BASE +
308	    (idx * SF_RXFILT_PERFECT_SKIP) + 4, htons(p[1]));
309	csr_write_4(sc, SF_RXFILT_PERFECT_BASE +
310	    (idx * SF_RXFILT_PERFECT_SKIP) + 8, htons(p[0]));
311
312	return(0);
313}
314
315/*
316 * Set the bit in the 512-bit hash table that corresponds to the
317 * specified mac address 'mac.' If 'prio' is nonzero, update the
318 * priority hash table instead of the filter hash table.
319 */
320static int sf_sethash(sc, mac, prio)
321	struct sf_softc		*sc;
322	caddr_t			mac;
323	int			prio;
324{
325	u_int32_t		h = 0;
326
327	if (mac == NULL)
328		return(EINVAL);
329
330	h = sf_calchash(mac);
331
332	if (prio) {
333		SF_SETBIT(sc, SF_RXFILT_HASH_BASE + SF_RXFILT_HASH_PRIOOFF +
334		    (SF_RXFILT_HASH_SKIP * (h >> 4)), (1 << (h & 0xF)));
335	} else {
336		SF_SETBIT(sc, SF_RXFILT_HASH_BASE + SF_RXFILT_HASH_ADDROFF +
337		    (SF_RXFILT_HASH_SKIP * (h >> 4)), (1 << (h & 0xF)));
338	}
339
340	return(0);
341}
342
343#ifdef notdef
344/*
345 * Set a VLAN tag in the receive filter.
346 */
347static int sf_setvlan(sc, idx, vlan)
348	struct sf_softc		*sc;
349	int			idx;
350	u_int32_t		vlan;
351{
352	if (idx < 0 || idx >> SF_RXFILT_HASH_CNT)
353		return(EINVAL);
354
355	csr_write_4(sc, SF_RXFILT_HASH_BASE +
356	    (idx * SF_RXFILT_HASH_SKIP) + SF_RXFILT_HASH_VLANOFF, vlan);
357
358	return(0);
359}
360#endif
361
362static int sf_miibus_readreg(dev, phy, reg)
363	device_t		dev;
364	int			phy, reg;
365{
366	struct sf_softc		*sc;
367	int			i;
368	u_int32_t		val = 0;
369
370	sc = device_get_softc(dev);
371
372	for (i = 0; i < SF_TIMEOUT; i++) {
373		val = csr_read_4(sc, SF_PHY_REG(phy, reg));
374		if (val & SF_MII_DATAVALID)
375			break;
376	}
377
378	if (i == SF_TIMEOUT)
379		return(0);
380
381	if ((val & 0x0000FFFF) == 0xFFFF)
382		return(0);
383
384	return(val & 0x0000FFFF);
385}
386
387static int sf_miibus_writereg(dev, phy, reg, val)
388	device_t		dev;
389	int			phy, reg, val;
390{
391	struct sf_softc		*sc;
392	int			i;
393	int			busy;
394
395	sc = device_get_softc(dev);
396
397	csr_write_4(sc, SF_PHY_REG(phy, reg), val);
398
399	for (i = 0; i < SF_TIMEOUT; i++) {
400		busy = csr_read_4(sc, SF_PHY_REG(phy, reg));
401		if (!(busy & SF_MII_BUSY))
402			break;
403	}
404
405	return(0);
406}
407
408static void sf_miibus_statchg(dev)
409	device_t		dev;
410{
411	struct sf_softc		*sc;
412	struct mii_data		*mii;
413
414	sc = device_get_softc(dev);
415	mii = device_get_softc(sc->sf_miibus);
416
417	if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
418		SF_SETBIT(sc, SF_MACCFG_1, SF_MACCFG1_FULLDUPLEX);
419		csr_write_4(sc, SF_BKTOBKIPG, SF_IPGT_FDX);
420	} else {
421		SF_CLRBIT(sc, SF_MACCFG_1, SF_MACCFG1_FULLDUPLEX);
422		csr_write_4(sc, SF_BKTOBKIPG, SF_IPGT_HDX);
423	}
424
425	return;
426}
427
428static void sf_setmulti(sc)
429	struct sf_softc		*sc;
430{
431	struct ifnet		*ifp;
432	int			i;
433	struct ifmultiaddr	*ifma;
434	u_int8_t		dummy[] = { 0, 0, 0, 0, 0, 0 };
435
436	ifp = &sc->arpcom.ac_if;
437
438	/* First zot all the existing filters. */
439	for (i = 1; i < SF_RXFILT_PERFECT_CNT; i++)
440		sf_setperf(sc, i, (char *)&dummy);
441	for (i = SF_RXFILT_HASH_BASE;
442	    i < (SF_RXFILT_HASH_MAX + 1); i += 4)
443		csr_write_4(sc, i, 0);
444	SF_CLRBIT(sc, SF_RXFILT, SF_RXFILT_ALLMULTI);
445
446	/* Now program new ones. */
447	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
448		SF_SETBIT(sc, SF_RXFILT, SF_RXFILT_ALLMULTI);
449	} else {
450		i = 1;
451		/* First find the tail of the list. */
452		LIST_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
453			if (LIST_NEXT(ifma, ifma_link) == NULL)
454				break;
455		}
456		/* Now traverse the list backwards. */
457		for (; ifma != NULL && ifma != (void *)&ifp->if_multiaddrs;
458			ifma = (struct ifmultiaddr *)ifma->ifma_link.le_prev) {
459			if (ifma->ifma_addr->sa_family != AF_LINK)
460				continue;
461			/*
462			 * Program the first 15 multicast groups
463			 * into the perfect filter. For all others,
464			 * use the hash table.
465			 */
466			if (i < SF_RXFILT_PERFECT_CNT) {
467				sf_setperf(sc, i,
468			LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
469				i++;
470				continue;
471			}
472
473			sf_sethash(sc,
474			    LLADDR((struct sockaddr_dl *)ifma->ifma_addr), 0);
475		}
476	}
477
478	return;
479}
480
481/*
482 * Set media options.
483 */
484static int sf_ifmedia_upd(ifp)
485	struct ifnet		*ifp;
486{
487	struct sf_softc		*sc;
488	struct mii_data		*mii;
489
490	sc = ifp->if_softc;
491	mii = device_get_softc(sc->sf_miibus);
492	sc->sf_link = 0;
493	if (mii->mii_instance) {
494		struct mii_softc        *miisc;
495		LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
496			mii_phy_reset(miisc);
497	}
498	mii_mediachg(mii);
499
500	return(0);
501}
502
503/*
504 * Report current media status.
505 */
506static void sf_ifmedia_sts(ifp, ifmr)
507	struct ifnet		*ifp;
508	struct ifmediareq	*ifmr;
509{
510	struct sf_softc		*sc;
511	struct mii_data		*mii;
512
513	sc = ifp->if_softc;
514	mii = device_get_softc(sc->sf_miibus);
515
516	mii_pollstat(mii);
517	ifmr->ifm_active = mii->mii_media_active;
518	ifmr->ifm_status = mii->mii_media_status;
519
520	return;
521}
522
523static int sf_ioctl(ifp, command, data)
524	struct ifnet		*ifp;
525	u_long			command;
526	caddr_t			data;
527{
528	struct sf_softc		*sc = ifp->if_softc;
529	struct ifreq		*ifr = (struct ifreq *) data;
530	struct mii_data		*mii;
531	int			error = 0;
532
533	SF_LOCK(sc);
534
535	switch(command) {
536	case SIOCSIFADDR:
537	case SIOCGIFADDR:
538	case SIOCSIFMTU:
539		error = ether_ioctl(ifp, command, data);
540		break;
541	case SIOCSIFFLAGS:
542		if (ifp->if_flags & IFF_UP) {
543			if (ifp->if_flags & IFF_RUNNING &&
544			    ifp->if_flags & IFF_PROMISC &&
545			    !(sc->sf_if_flags & IFF_PROMISC)) {
546				SF_SETBIT(sc, SF_RXFILT, SF_RXFILT_PROMISC);
547			} else if (ifp->if_flags & IFF_RUNNING &&
548			    !(ifp->if_flags & IFF_PROMISC) &&
549			    sc->sf_if_flags & IFF_PROMISC) {
550				SF_CLRBIT(sc, SF_RXFILT, SF_RXFILT_PROMISC);
551			} else if (!(ifp->if_flags & IFF_RUNNING))
552				sf_init(sc);
553		} else {
554			if (ifp->if_flags & IFF_RUNNING)
555				sf_stop(sc);
556		}
557		sc->sf_if_flags = ifp->if_flags;
558		error = 0;
559		break;
560	case SIOCADDMULTI:
561	case SIOCDELMULTI:
562		sf_setmulti(sc);
563		error = 0;
564		break;
565	case SIOCGIFMEDIA:
566	case SIOCSIFMEDIA:
567		mii = device_get_softc(sc->sf_miibus);
568		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
569		break;
570	default:
571		error = EINVAL;
572		break;
573	}
574
575	SF_UNLOCK(sc);
576
577	return(error);
578}
579
580static void sf_reset(sc)
581	struct sf_softc		*sc;
582{
583	register int		i;
584
585	csr_write_4(sc, SF_GEN_ETH_CTL, 0);
586	SF_SETBIT(sc, SF_MACCFG_1, SF_MACCFG1_SOFTRESET);
587	DELAY(1000);
588	SF_CLRBIT(sc, SF_MACCFG_1, SF_MACCFG1_SOFTRESET);
589
590	SF_SETBIT(sc, SF_PCI_DEVCFG, SF_PCIDEVCFG_RESET);
591
592	for (i = 0; i < SF_TIMEOUT; i++) {
593		DELAY(10);
594		if (!(csr_read_4(sc, SF_PCI_DEVCFG) & SF_PCIDEVCFG_RESET))
595			break;
596	}
597
598	if (i == SF_TIMEOUT)
599		printf("sf%d: reset never completed!\n", sc->sf_unit);
600
601	/* Wait a little while for the chip to get its brains in order. */
602	DELAY(1000);
603	return;
604}
605
606/*
607 * Probe for an Adaptec AIC-6915 chip. Check the PCI vendor and device
608 * IDs against our list and return a device name if we find a match.
609 * We also check the subsystem ID so that we can identify exactly which
610 * NIC has been found, if possible.
611 */
612static int sf_probe(dev)
613	device_t		dev;
614{
615	struct sf_type		*t;
616
617	t = sf_devs;
618
619	while(t->sf_name != NULL) {
620		if ((pci_get_vendor(dev) == t->sf_vid) &&
621		    (pci_get_device(dev) == t->sf_did)) {
622			switch((pci_read_config(dev,
623			    SF_PCI_SUBVEN_ID, 4) >> 16) & 0xFFFF) {
624			case AD_SUBSYSID_62011_REV0:
625			case AD_SUBSYSID_62011_REV1:
626				device_set_desc(dev,
627				    "Adaptec ANA-62011 10/100BaseTX");
628				return(0);
629				break;
630			case AD_SUBSYSID_62022:
631				device_set_desc(dev,
632				    "Adaptec ANA-62022 10/100BaseTX");
633				return(0);
634				break;
635			case AD_SUBSYSID_62044_REV0:
636			case AD_SUBSYSID_62044_REV1:
637				device_set_desc(dev,
638				    "Adaptec ANA-62044 10/100BaseTX");
639				return(0);
640				break;
641			case AD_SUBSYSID_62020:
642				device_set_desc(dev,
643				    "Adaptec ANA-62020 10/100BaseFX");
644				return(0);
645				break;
646			case AD_SUBSYSID_69011:
647				device_set_desc(dev,
648				    "Adaptec ANA-69011 10/100BaseTX");
649				return(0);
650				break;
651			default:
652				device_set_desc(dev, t->sf_name);
653				return(0);
654				break;
655			}
656		}
657		t++;
658	}
659
660	return(ENXIO);
661}
662
663/*
664 * Attach the interface. Allocate softc structures, do ifmedia
665 * setup and ethernet/BPF attach.
666 */
667static int sf_attach(dev)
668	device_t		dev;
669{
670	int			i;
671	u_int32_t		command;
672	struct sf_softc		*sc;
673	struct ifnet		*ifp;
674	int			unit, rid, error = 0;
675
676	sc = device_get_softc(dev);
677	unit = device_get_unit(dev);
678	bzero(sc, sizeof(struct sf_softc));
679
680	mtx_init(&sc->sf_mtx, device_get_nameunit(dev), MTX_DEF | MTX_RECURSE);
681	SF_LOCK(sc);
682	/*
683	 * Handle power management nonsense.
684	 */
685	command = pci_read_config(dev, SF_PCI_CAPID, 4) & 0x000000FF;
686	if (command == 0x01) {
687
688		command = pci_read_config(dev, SF_PCI_PWRMGMTCTRL, 4);
689		if (command & SF_PSTATE_MASK) {
690			u_int32_t		iobase, membase, irq;
691
692			/* Save important PCI config data. */
693			iobase = pci_read_config(dev, SF_PCI_LOIO, 4);
694			membase = pci_read_config(dev, SF_PCI_LOMEM, 4);
695			irq = pci_read_config(dev, SF_PCI_INTLINE, 4);
696
697			/* Reset the power state. */
698			printf("sf%d: chip is in D%d power mode "
699			"-- setting to D0\n", unit, command & SF_PSTATE_MASK);
700			command &= 0xFFFFFFFC;
701			pci_write_config(dev, SF_PCI_PWRMGMTCTRL, command, 4);
702
703			/* Restore PCI config data. */
704			pci_write_config(dev, SF_PCI_LOIO, iobase, 4);
705			pci_write_config(dev, SF_PCI_LOMEM, membase, 4);
706			pci_write_config(dev, SF_PCI_INTLINE, irq, 4);
707		}
708	}
709
710	/*
711	 * Map control/status registers.
712	 */
713	command = pci_read_config(dev, PCIR_COMMAND, 4);
714	command |= (PCIM_CMD_PORTEN|PCIM_CMD_MEMEN|PCIM_CMD_BUSMASTEREN);
715	pci_write_config(dev, PCIR_COMMAND, command, 4);
716	command = pci_read_config(dev, PCIR_COMMAND, 4);
717
718#ifdef SF_USEIOSPACE
719	if (!(command & PCIM_CMD_PORTEN)) {
720		printf("sf%d: failed to enable I/O ports!\n", unit);
721		error = ENXIO;
722		goto fail;
723	}
724#else
725	if (!(command & PCIM_CMD_MEMEN)) {
726		printf("sf%d: failed to enable memory mapping!\n", unit);
727		error = ENXIO;
728		goto fail;
729	}
730#endif
731
732	rid = SF_RID;
733	sc->sf_res = bus_alloc_resource(dev, SF_RES, &rid,
734	    0, ~0, 1, RF_ACTIVE);
735
736	if (sc->sf_res == NULL) {
737		printf ("sf%d: couldn't map ports\n", unit);
738		error = ENXIO;
739		goto fail;
740	}
741
742	sc->sf_btag = rman_get_bustag(sc->sf_res);
743	sc->sf_bhandle = rman_get_bushandle(sc->sf_res);
744
745	/* Allocate interrupt */
746	rid = 0;
747	sc->sf_irq = bus_alloc_resource(dev, SYS_RES_IRQ, &rid, 0, ~0, 1,
748	    RF_SHAREABLE | RF_ACTIVE);
749
750	if (sc->sf_irq == NULL) {
751		printf("sf%d: couldn't map interrupt\n", unit);
752		bus_release_resource(dev, SF_RES, SF_RID, sc->sf_res);
753		error = ENXIO;
754		goto fail;
755	}
756
757	error = bus_setup_intr(dev, sc->sf_irq, INTR_TYPE_NET,
758	    sf_intr, sc, &sc->sf_intrhand);
759
760	if (error) {
761		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sf_res);
762		bus_release_resource(dev, SF_RES, SF_RID, sc->sf_res);
763		printf("sf%d: couldn't set up irq\n", unit);
764		goto fail;
765	}
766
767	callout_handle_init(&sc->sf_stat_ch);
768	/* Reset the adapter. */
769	sf_reset(sc);
770
771	/*
772	 * Get station address from the EEPROM.
773	 */
774	for (i = 0; i < ETHER_ADDR_LEN; i++)
775		sc->arpcom.ac_enaddr[i] =
776		    sf_read_eeprom(sc, SF_EE_NODEADDR + ETHER_ADDR_LEN - i);
777
778	/*
779	 * An Adaptec chip was detected. Inform the world.
780	 */
781	printf("sf%d: Ethernet address: %6D\n", unit,
782	    sc->arpcom.ac_enaddr, ":");
783
784	sc->sf_unit = unit;
785
786	/* Allocate the descriptor queues. */
787	sc->sf_ldata = contigmalloc(sizeof(struct sf_list_data), M_DEVBUF,
788	    M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0);
789
790	if (sc->sf_ldata == NULL) {
791		printf("sf%d: no memory for list buffers!\n", unit);
792		bus_teardown_intr(dev, sc->sf_irq, sc->sf_intrhand);
793		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sf_irq);
794		bus_release_resource(dev, SF_RES, SF_RID, sc->sf_res);
795		error = ENXIO;
796		goto fail;
797	}
798
799	bzero(sc->sf_ldata, sizeof(struct sf_list_data));
800
801	/* Do MII setup. */
802	if (mii_phy_probe(dev, &sc->sf_miibus,
803	    sf_ifmedia_upd, sf_ifmedia_sts)) {
804		printf("sf%d: MII without any phy!\n", sc->sf_unit);
805		contigfree(sc->sf_ldata,sizeof(struct sf_list_data),M_DEVBUF);
806		bus_teardown_intr(dev, sc->sf_irq, sc->sf_intrhand);
807		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sf_irq);
808		bus_release_resource(dev, SF_RES, SF_RID, sc->sf_res);
809		error = ENXIO;
810		goto fail;
811	}
812
813	ifp = &sc->arpcom.ac_if;
814	ifp->if_softc = sc;
815	ifp->if_unit = unit;
816	ifp->if_name = "sf";
817	ifp->if_mtu = ETHERMTU;
818	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
819	ifp->if_ioctl = sf_ioctl;
820	ifp->if_output = ether_output;
821	ifp->if_start = sf_start;
822	ifp->if_watchdog = sf_watchdog;
823	ifp->if_init = sf_init;
824	ifp->if_baudrate = 10000000;
825	ifp->if_snd.ifq_maxlen = SF_TX_DLIST_CNT - 1;
826
827	/*
828	 * Call MI attach routine.
829	 */
830	ether_ifattach(ifp, ETHER_BPF_SUPPORTED);
831	SF_UNLOCK(sc);
832	return(0);
833
834fail:
835	SF_UNLOCK(sc);
836	mtx_destroy(&sc->sf_mtx);
837	return(error);
838}
839
840static int sf_detach(dev)
841	device_t		dev;
842{
843	struct sf_softc		*sc;
844	struct ifnet		*ifp;
845
846	sc = device_get_softc(dev);
847	SF_LOCK(sc);
848	ifp = &sc->arpcom.ac_if;
849
850	ether_ifdetach(ifp, ETHER_BPF_SUPPORTED);
851	sf_stop(sc);
852
853	bus_generic_detach(dev);
854	device_delete_child(dev, sc->sf_miibus);
855
856	bus_teardown_intr(dev, sc->sf_irq, sc->sf_intrhand);
857	bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sf_irq);
858	bus_release_resource(dev, SF_RES, SF_RID, sc->sf_res);
859
860	contigfree(sc->sf_ldata, sizeof(struct sf_list_data), M_DEVBUF);
861
862	SF_UNLOCK(sc);
863	mtx_destroy(&sc->sf_mtx);
864
865	return(0);
866}
867
868static int sf_init_rx_ring(sc)
869	struct sf_softc		*sc;
870{
871	struct sf_list_data	*ld;
872	int			i;
873
874	ld = sc->sf_ldata;
875
876	bzero((char *)ld->sf_rx_dlist_big,
877	    sizeof(struct sf_rx_bufdesc_type0) * SF_RX_DLIST_CNT);
878	bzero((char *)ld->sf_rx_clist,
879	    sizeof(struct sf_rx_cmpdesc_type3) * SF_RX_CLIST_CNT);
880
881	for (i = 0; i < SF_RX_DLIST_CNT; i++) {
882		if (sf_newbuf(sc, &ld->sf_rx_dlist_big[i], NULL) == ENOBUFS)
883			return(ENOBUFS);
884	}
885
886	return(0);
887}
888
889static void sf_init_tx_ring(sc)
890	struct sf_softc		*sc;
891{
892	struct sf_list_data	*ld;
893	int			i;
894
895	ld = sc->sf_ldata;
896
897	bzero((char *)ld->sf_tx_dlist,
898	    sizeof(struct sf_tx_bufdesc_type0) * SF_TX_DLIST_CNT);
899	bzero((char *)ld->sf_tx_clist,
900	    sizeof(struct sf_tx_cmpdesc_type0) * SF_TX_CLIST_CNT);
901
902	for (i = 0; i < SF_TX_DLIST_CNT; i++)
903		ld->sf_tx_dlist[i].sf_id = SF_TX_BUFDESC_ID;
904	for (i = 0; i < SF_TX_CLIST_CNT; i++)
905		ld->sf_tx_clist[i].sf_type = SF_TXCMPTYPE_TX;
906
907	ld->sf_tx_dlist[SF_TX_DLIST_CNT - 1].sf_end = 1;
908	sc->sf_tx_cnt = 0;
909
910	return;
911}
912
913static int sf_newbuf(sc, c, m)
914	struct sf_softc		*sc;
915	struct sf_rx_bufdesc_type0	*c;
916	struct mbuf		*m;
917{
918	struct mbuf		*m_new = NULL;
919
920	if (m == NULL) {
921		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
922		if (m_new == NULL) {
923			printf("sf%d: no memory for rx list -- "
924			    "packet dropped!\n", sc->sf_unit);
925			return(ENOBUFS);
926		}
927
928		MCLGET(m_new, M_DONTWAIT);
929		if (!(m_new->m_flags & M_EXT)) {
930			printf("sf%d: no memory for rx list -- "
931			    "packet dropped!\n", sc->sf_unit);
932			m_freem(m_new);
933			return(ENOBUFS);
934		}
935		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
936	} else {
937		m_new = m;
938		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
939		m_new->m_data = m_new->m_ext.ext_buf;
940	}
941
942	m_adj(m_new, sizeof(u_int64_t));
943
944	c->sf_mbuf = m_new;
945	c->sf_addrlo = SF_RX_HOSTADDR(vtophys(mtod(m_new, caddr_t)));
946	c->sf_valid = 1;
947
948	return(0);
949}
950
951/*
952 * The starfire is programmed to use 'normal' mode for packet reception,
953 * which means we use the consumer/producer model for both the buffer
954 * descriptor queue and the completion descriptor queue. The only problem
955 * with this is that it involves a lot of register accesses: we have to
956 * read the RX completion consumer and producer indexes and the RX buffer
957 * producer index, plus the RX completion consumer and RX buffer producer
958 * indexes have to be updated. It would have been easier if Adaptec had
959 * put each index in a separate register, especially given that the damn
960 * NIC has a 512K register space.
961 *
962 * In spite of all the lovely features that Adaptec crammed into the 6915,
963 * it is marred by one truly stupid design flaw, which is that receive
964 * buffer addresses must be aligned on a longword boundary. This forces
965 * the packet payload to be unaligned, which is suboptimal on the x86 and
966 * completely unuseable on the Alpha. Our only recourse is to copy received
967 * packets into properly aligned buffers before handing them off.
968 */
969
970static void sf_rxeof(sc)
971	struct sf_softc		*sc;
972{
973	struct ether_header	*eh;
974	struct mbuf		*m;
975	struct ifnet		*ifp;
976	struct sf_rx_bufdesc_type0	*desc;
977	struct sf_rx_cmpdesc_type3	*cur_rx;
978	u_int32_t		rxcons, rxprod;
979	int			cmpprodidx, cmpconsidx, bufprodidx;
980
981	ifp = &sc->arpcom.ac_if;
982
983	rxcons = csr_read_4(sc, SF_CQ_CONSIDX);
984	rxprod = csr_read_4(sc, SF_RXDQ_PTR_Q1);
985	cmpprodidx = SF_IDX_LO(csr_read_4(sc, SF_CQ_PRODIDX));
986	cmpconsidx = SF_IDX_LO(rxcons);
987	bufprodidx = SF_IDX_LO(rxprod);
988
989	while (cmpconsidx != cmpprodidx) {
990		struct mbuf		*m0;
991
992		cur_rx = &sc->sf_ldata->sf_rx_clist[cmpconsidx];
993		desc = &sc->sf_ldata->sf_rx_dlist_big[cur_rx->sf_endidx];
994		m = desc->sf_mbuf;
995		SF_INC(cmpconsidx, SF_RX_CLIST_CNT);
996		SF_INC(bufprodidx, SF_RX_DLIST_CNT);
997
998		if (!(cur_rx->sf_status1 & SF_RXSTAT1_OK)) {
999			ifp->if_ierrors++;
1000			sf_newbuf(sc, desc, m);
1001			continue;
1002		}
1003
1004		m0 = m_devget(mtod(m, char *) - ETHER_ALIGN,
1005		    cur_rx->sf_len + ETHER_ALIGN, 0, ifp, NULL);
1006		sf_newbuf(sc, desc, m);
1007		if (m0 == NULL) {
1008			ifp->if_ierrors++;
1009			continue;
1010		}
1011		m_adj(m0, ETHER_ALIGN);
1012		m = m0;
1013
1014		eh = mtod(m, struct ether_header *);
1015		ifp->if_ipackets++;
1016
1017		/* Remove header from mbuf and pass it on. */
1018		m_adj(m, sizeof(struct ether_header));
1019		ether_input(ifp, eh, m);
1020	}
1021
1022	csr_write_4(sc, SF_CQ_CONSIDX,
1023	    (rxcons & ~SF_CQ_CONSIDX_RXQ1) | cmpconsidx);
1024	csr_write_4(sc, SF_RXDQ_PTR_Q1,
1025	    (rxprod & ~SF_RXDQ_PRODIDX) | bufprodidx);
1026
1027	return;
1028}
1029
1030/*
1031 * Read the transmit status from the completion queue and release
1032 * mbufs. Note that the buffer descriptor index in the completion
1033 * descriptor is an offset from the start of the transmit buffer
1034 * descriptor list in bytes. This is important because the manual
1035 * gives the impression that it should match the producer/consumer
1036 * index, which is the offset in 8 byte blocks.
1037 */
1038static void sf_txeof(sc)
1039	struct sf_softc		*sc;
1040{
1041	int			txcons, cmpprodidx, cmpconsidx;
1042	struct sf_tx_cmpdesc_type1 *cur_cmp;
1043	struct sf_tx_bufdesc_type0 *cur_tx;
1044	struct ifnet		*ifp;
1045
1046	ifp = &sc->arpcom.ac_if;
1047
1048	txcons = csr_read_4(sc, SF_CQ_CONSIDX);
1049	cmpprodidx = SF_IDX_HI(csr_read_4(sc, SF_CQ_PRODIDX));
1050	cmpconsidx = SF_IDX_HI(txcons);
1051
1052	while (cmpconsidx != cmpprodidx) {
1053		cur_cmp = &sc->sf_ldata->sf_tx_clist[cmpconsidx];
1054		cur_tx = &sc->sf_ldata->sf_tx_dlist[cur_cmp->sf_index >> 7];
1055		SF_INC(cmpconsidx, SF_TX_CLIST_CNT);
1056
1057		if (cur_cmp->sf_txstat & SF_TXSTAT_TX_OK)
1058			ifp->if_opackets++;
1059		else
1060			ifp->if_oerrors++;
1061
1062		sc->sf_tx_cnt--;
1063		if (cur_tx->sf_mbuf != NULL) {
1064			m_freem(cur_tx->sf_mbuf);
1065			cur_tx->sf_mbuf = NULL;
1066		}
1067	}
1068
1069	ifp->if_timer = 0;
1070	ifp->if_flags &= ~IFF_OACTIVE;
1071
1072	csr_write_4(sc, SF_CQ_CONSIDX,
1073	    (txcons & ~SF_CQ_CONSIDX_TXQ) |
1074	    ((cmpconsidx << 16) & 0xFFFF0000));
1075
1076	return;
1077}
1078
1079static void sf_intr(arg)
1080	void			*arg;
1081{
1082	struct sf_softc		*sc;
1083	struct ifnet		*ifp;
1084	u_int32_t		status;
1085
1086	sc = arg;
1087	SF_LOCK(sc);
1088
1089	ifp = &sc->arpcom.ac_if;
1090
1091	if (!(csr_read_4(sc, SF_ISR_SHADOW) & SF_ISR_PCIINT_ASSERTED)) {
1092		SF_UNLOCK(sc);
1093		return;
1094	}
1095
1096	/* Disable interrupts. */
1097	csr_write_4(sc, SF_IMR, 0x00000000);
1098
1099	for (;;) {
1100		status = csr_read_4(sc, SF_ISR);
1101		if (status)
1102			csr_write_4(sc, SF_ISR, status);
1103
1104		if (!(status & SF_INTRS))
1105			break;
1106
1107		if (status & SF_ISR_RXDQ1_DMADONE)
1108			sf_rxeof(sc);
1109
1110		if (status & SF_ISR_TX_TXDONE)
1111			sf_txeof(sc);
1112
1113		if (status & SF_ISR_ABNORMALINTR) {
1114			if (status & SF_ISR_STATSOFLOW) {
1115				untimeout(sf_stats_update, sc,
1116				    sc->sf_stat_ch);
1117				sf_stats_update(sc);
1118			} else
1119				sf_init(sc);
1120		}
1121	}
1122
1123	/* Re-enable interrupts. */
1124	csr_write_4(sc, SF_IMR, SF_INTRS);
1125
1126	if (ifp->if_snd.ifq_head != NULL)
1127		sf_start(ifp);
1128
1129	SF_UNLOCK(sc);
1130	return;
1131}
1132
1133static void sf_init(xsc)
1134	void			*xsc;
1135{
1136	struct sf_softc		*sc;
1137	struct ifnet		*ifp;
1138	struct mii_data		*mii;
1139	int			i;
1140
1141	sc = xsc;
1142	SF_LOCK(sc);
1143	ifp = &sc->arpcom.ac_if;
1144	mii = device_get_softc(sc->sf_miibus);
1145
1146	sf_stop(sc);
1147	sf_reset(sc);
1148
1149	/* Init all the receive filter registers */
1150	for (i = SF_RXFILT_PERFECT_BASE;
1151	    i < (SF_RXFILT_HASH_MAX + 1); i += 4)
1152		csr_write_4(sc, i, 0);
1153
1154	/* Empty stats counter registers. */
1155	for (i = 0; i < sizeof(struct sf_stats)/sizeof(u_int32_t); i++)
1156		csr_write_4(sc, SF_STATS_BASE +
1157		    (i + sizeof(u_int32_t)), 0);
1158
1159	/* Init our MAC address */
1160	csr_write_4(sc, SF_PAR0, *(u_int32_t *)(&sc->arpcom.ac_enaddr[0]));
1161	csr_write_4(sc, SF_PAR1, *(u_int32_t *)(&sc->arpcom.ac_enaddr[4]));
1162	sf_setperf(sc, 0, (caddr_t)&sc->arpcom.ac_enaddr);
1163
1164	if (sf_init_rx_ring(sc) == ENOBUFS) {
1165		printf("sf%d: initialization failed: no "
1166		    "memory for rx buffers\n", sc->sf_unit);
1167		SF_UNLOCK(sc);
1168		return;
1169	}
1170
1171	sf_init_tx_ring(sc);
1172
1173	csr_write_4(sc, SF_RXFILT, SF_PERFMODE_NORMAL|SF_HASHMODE_WITHVLAN);
1174
1175	/* If we want promiscuous mode, set the allframes bit. */
1176	if (ifp->if_flags & IFF_PROMISC) {
1177		SF_SETBIT(sc, SF_RXFILT, SF_RXFILT_PROMISC);
1178	} else {
1179		SF_CLRBIT(sc, SF_RXFILT, SF_RXFILT_PROMISC);
1180	}
1181
1182	if (ifp->if_flags & IFF_BROADCAST) {
1183		SF_SETBIT(sc, SF_RXFILT, SF_RXFILT_BROAD);
1184	} else {
1185		SF_CLRBIT(sc, SF_RXFILT, SF_RXFILT_BROAD);
1186	}
1187
1188	/*
1189	 * Load the multicast filter.
1190	 */
1191	sf_setmulti(sc);
1192
1193	/* Init the completion queue indexes */
1194	csr_write_4(sc, SF_CQ_CONSIDX, 0);
1195	csr_write_4(sc, SF_CQ_PRODIDX, 0);
1196
1197	/* Init the RX completion queue */
1198	csr_write_4(sc, SF_RXCQ_CTL_1,
1199	    vtophys(sc->sf_ldata->sf_rx_clist) & SF_RXCQ_ADDR);
1200	SF_SETBIT(sc, SF_RXCQ_CTL_1, SF_RXCQTYPE_3);
1201
1202	/* Init RX DMA control. */
1203	SF_SETBIT(sc, SF_RXDMA_CTL, SF_RXDMA_REPORTBADPKTS);
1204
1205	/* Init the RX buffer descriptor queue. */
1206	csr_write_4(sc, SF_RXDQ_ADDR_Q1,
1207	    vtophys(sc->sf_ldata->sf_rx_dlist_big));
1208	csr_write_4(sc, SF_RXDQ_CTL_1, (MCLBYTES << 16) | SF_DESCSPACE_16BYTES);
1209	csr_write_4(sc, SF_RXDQ_PTR_Q1, SF_RX_DLIST_CNT - 1);
1210
1211	/* Init the TX completion queue */
1212	csr_write_4(sc, SF_TXCQ_CTL,
1213	    vtophys(sc->sf_ldata->sf_tx_clist) & SF_RXCQ_ADDR);
1214
1215	/* Init the TX buffer descriptor queue. */
1216	csr_write_4(sc, SF_TXDQ_ADDR_HIPRIO,
1217		vtophys(sc->sf_ldata->sf_tx_dlist));
1218	SF_SETBIT(sc, SF_TX_FRAMCTL, SF_TXFRMCTL_CPLAFTERTX);
1219	csr_write_4(sc, SF_TXDQ_CTL,
1220	    SF_TXBUFDESC_TYPE0|SF_TXMINSPACE_128BYTES|SF_TXSKIPLEN_8BYTES);
1221	SF_SETBIT(sc, SF_TXDQ_CTL, SF_TXDQCTL_NODMACMP);
1222
1223	/* Enable autopadding of short TX frames. */
1224	SF_SETBIT(sc, SF_MACCFG_1, SF_MACCFG1_AUTOPAD);
1225
1226	/* Enable interrupts. */
1227	csr_write_4(sc, SF_IMR, SF_INTRS);
1228	SF_SETBIT(sc, SF_PCI_DEVCFG, SF_PCIDEVCFG_INTR_ENB);
1229
1230	/* Enable the RX and TX engines. */
1231	SF_SETBIT(sc, SF_GEN_ETH_CTL, SF_ETHCTL_RX_ENB|SF_ETHCTL_RXDMA_ENB);
1232	SF_SETBIT(sc, SF_GEN_ETH_CTL, SF_ETHCTL_TX_ENB|SF_ETHCTL_TXDMA_ENB);
1233
1234	/*mii_mediachg(mii);*/
1235	sf_ifmedia_upd(ifp);
1236
1237	ifp->if_flags |= IFF_RUNNING;
1238	ifp->if_flags &= ~IFF_OACTIVE;
1239
1240	sc->sf_stat_ch = timeout(sf_stats_update, sc, hz);
1241
1242	SF_UNLOCK(sc);
1243
1244	return;
1245}
1246
1247static int sf_encap(sc, c, m_head)
1248	struct sf_softc		*sc;
1249	struct sf_tx_bufdesc_type0 *c;
1250	struct mbuf		*m_head;
1251{
1252	int			frag = 0;
1253	struct sf_frag		*f = NULL;
1254	struct mbuf		*m;
1255
1256	m = m_head;
1257
1258	for (m = m_head, frag = 0; m != NULL; m = m->m_next) {
1259		if (m->m_len != 0) {
1260			if (frag == SF_MAXFRAGS)
1261				break;
1262			f = &c->sf_frags[frag];
1263			if (frag == 0)
1264				f->sf_pktlen = m_head->m_pkthdr.len;
1265			f->sf_fraglen = m->m_len;
1266			f->sf_addr = vtophys(mtod(m, vm_offset_t));
1267			frag++;
1268		}
1269	}
1270
1271	if (m != NULL) {
1272		struct mbuf		*m_new = NULL;
1273
1274		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1275		if (m_new == NULL) {
1276			printf("sf%d: no memory for tx list", sc->sf_unit);
1277			return(1);
1278		}
1279
1280		if (m_head->m_pkthdr.len > MHLEN) {
1281			MCLGET(m_new, M_DONTWAIT);
1282			if (!(m_new->m_flags & M_EXT)) {
1283				m_freem(m_new);
1284				printf("sf%d: no memory for tx list",
1285				    sc->sf_unit);
1286				return(1);
1287			}
1288		}
1289		m_copydata(m_head, 0, m_head->m_pkthdr.len,
1290		    mtod(m_new, caddr_t));
1291		m_new->m_pkthdr.len = m_new->m_len = m_head->m_pkthdr.len;
1292		m_freem(m_head);
1293		m_head = m_new;
1294		f = &c->sf_frags[0];
1295		f->sf_fraglen = f->sf_pktlen = m_head->m_pkthdr.len;
1296		f->sf_addr = vtophys(mtod(m_head, caddr_t));
1297		frag = 1;
1298	}
1299
1300	c->sf_mbuf = m_head;
1301	c->sf_id = SF_TX_BUFDESC_ID;
1302	c->sf_fragcnt = frag;
1303	c->sf_intr = 1;
1304	c->sf_caltcp = 0;
1305	c->sf_crcen = 1;
1306
1307	return(0);
1308}
1309
1310static void sf_start(ifp)
1311	struct ifnet		*ifp;
1312{
1313	struct sf_softc		*sc;
1314	struct sf_tx_bufdesc_type0 *cur_tx = NULL;
1315	struct mbuf		*m_head = NULL;
1316	int			i, txprod;
1317
1318	sc = ifp->if_softc;
1319	SF_LOCK(sc);
1320
1321	if (!sc->sf_link) {
1322		SF_UNLOCK(sc);
1323		return;
1324	}
1325
1326	if (ifp->if_flags & IFF_OACTIVE) {
1327		SF_UNLOCK(sc);
1328		return;
1329	}
1330
1331	txprod = csr_read_4(sc, SF_TXDQ_PRODIDX);
1332	i = SF_IDX_HI(txprod) >> 4;
1333
1334	while(sc->sf_ldata->sf_tx_dlist[i].sf_mbuf == NULL) {
1335		if (sc->sf_tx_cnt == (SF_TX_DLIST_CNT - 2)) {
1336			ifp->if_flags |= IFF_OACTIVE;
1337			cur_tx = NULL;
1338			break;
1339		}
1340		IF_DEQUEUE(&ifp->if_snd, m_head);
1341		if (m_head == NULL)
1342			break;
1343
1344		cur_tx = &sc->sf_ldata->sf_tx_dlist[i];
1345		if (sf_encap(sc, cur_tx, m_head)) {
1346			IF_PREPEND(&ifp->if_snd, m_head);
1347			ifp->if_flags |= IFF_OACTIVE;
1348			cur_tx = NULL;
1349			break;
1350		}
1351
1352		/*
1353		 * If there's a BPF listener, bounce a copy of this frame
1354		 * to him.
1355		 */
1356		if (ifp->if_bpf)
1357			bpf_mtap(ifp, m_head);
1358
1359		SF_INC(i, SF_TX_DLIST_CNT);
1360		sc->sf_tx_cnt++;
1361	}
1362
1363	if (cur_tx == NULL) {
1364		SF_UNLOCK(sc);
1365		return;
1366	}
1367
1368	/* Transmit */
1369	csr_write_4(sc, SF_TXDQ_PRODIDX,
1370	    (txprod & ~SF_TXDQ_PRODIDX_HIPRIO) |
1371	    ((i << 20) & 0xFFFF0000));
1372
1373	ifp->if_timer = 5;
1374
1375	SF_UNLOCK(sc);
1376
1377	return;
1378}
1379
1380static void sf_stop(sc)
1381	struct sf_softc		*sc;
1382{
1383	int			i;
1384	struct ifnet		*ifp;
1385
1386	SF_LOCK(sc);
1387
1388	ifp = &sc->arpcom.ac_if;
1389
1390	untimeout(sf_stats_update, sc, sc->sf_stat_ch);
1391
1392	csr_write_4(sc, SF_GEN_ETH_CTL, 0);
1393	csr_write_4(sc, SF_CQ_CONSIDX, 0);
1394	csr_write_4(sc, SF_CQ_PRODIDX, 0);
1395	csr_write_4(sc, SF_RXDQ_ADDR_Q1, 0);
1396	csr_write_4(sc, SF_RXDQ_CTL_1, 0);
1397	csr_write_4(sc, SF_RXDQ_PTR_Q1, 0);
1398	csr_write_4(sc, SF_TXCQ_CTL, 0);
1399	csr_write_4(sc, SF_TXDQ_ADDR_HIPRIO, 0);
1400	csr_write_4(sc, SF_TXDQ_CTL, 0);
1401	sf_reset(sc);
1402
1403	sc->sf_link = 0;
1404
1405	for (i = 0; i < SF_RX_DLIST_CNT; i++) {
1406		if (sc->sf_ldata->sf_rx_dlist_big[i].sf_mbuf != NULL) {
1407			m_freem(sc->sf_ldata->sf_rx_dlist_big[i].sf_mbuf);
1408			sc->sf_ldata->sf_rx_dlist_big[i].sf_mbuf = NULL;
1409		}
1410	}
1411
1412	for (i = 0; i < SF_TX_DLIST_CNT; i++) {
1413		if (sc->sf_ldata->sf_tx_dlist[i].sf_mbuf != NULL) {
1414			m_freem(sc->sf_ldata->sf_tx_dlist[i].sf_mbuf);
1415			sc->sf_ldata->sf_tx_dlist[i].sf_mbuf = NULL;
1416		}
1417	}
1418
1419	ifp->if_flags &= ~(IFF_RUNNING|IFF_OACTIVE);
1420	SF_UNLOCK(sc);
1421
1422	return;
1423}
1424
1425/*
1426 * Note: it is important that this function not be interrupted. We
1427 * use a two-stage register access scheme: if we are interrupted in
1428 * between setting the indirect address register and reading from the
1429 * indirect data register, the contents of the address register could
1430 * be changed out from under us.
1431 */
1432static void sf_stats_update(xsc)
1433	void			*xsc;
1434{
1435	struct sf_softc		*sc;
1436	struct ifnet		*ifp;
1437	struct mii_data		*mii;
1438	struct sf_stats		stats;
1439	u_int32_t		*ptr;
1440	int			i;
1441
1442	sc = xsc;
1443	SF_LOCK(sc);
1444	ifp = &sc->arpcom.ac_if;
1445	mii = device_get_softc(sc->sf_miibus);
1446
1447	ptr = (u_int32_t *)&stats;
1448	for (i = 0; i < sizeof(stats)/sizeof(u_int32_t); i++)
1449		ptr[i] = csr_read_4(sc, SF_STATS_BASE +
1450		    (i + sizeof(u_int32_t)));
1451
1452	for (i = 0; i < sizeof(stats)/sizeof(u_int32_t); i++)
1453		csr_write_4(sc, SF_STATS_BASE +
1454		    (i + sizeof(u_int32_t)), 0);
1455
1456	ifp->if_collisions += stats.sf_tx_single_colls +
1457	    stats.sf_tx_multi_colls + stats.sf_tx_excess_colls;
1458
1459	mii_tick(mii);
1460	if (!sc->sf_link) {
1461		mii_pollstat(mii);
1462		if (mii->mii_media_status & IFM_ACTIVE &&
1463		    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
1464			sc->sf_link++;
1465			if (ifp->if_snd.ifq_head != NULL)
1466				sf_start(ifp);
1467	}
1468
1469	sc->sf_stat_ch = timeout(sf_stats_update, sc, hz);
1470
1471	SF_UNLOCK(sc);
1472
1473	return;
1474}
1475
1476static void sf_watchdog(ifp)
1477	struct ifnet		*ifp;
1478{
1479	struct sf_softc		*sc;
1480
1481	sc = ifp->if_softc;
1482
1483	SF_LOCK(sc);
1484
1485	ifp->if_oerrors++;
1486	printf("sf%d: watchdog timeout\n", sc->sf_unit);
1487
1488	sf_stop(sc);
1489	sf_reset(sc);
1490	sf_init(sc);
1491
1492	if (ifp->if_snd.ifq_head != NULL)
1493		sf_start(ifp);
1494
1495	SF_UNLOCK(sc);
1496
1497	return;
1498}
1499
1500static void sf_shutdown(dev)
1501	device_t		dev;
1502{
1503	struct sf_softc		*sc;
1504
1505	sc = device_get_softc(dev);
1506
1507	sf_stop(sc);
1508
1509	return;
1510}
1511