if_sf.c revision 67087
1/*
2 * Copyright (c) 1997, 1998, 1999
3 *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 *    must display the following acknowledgement:
15 *	This product includes software developed by Bill Paul.
16 * 4. Neither the name of the author nor the names of any co-contributors
17 *    may be used to endorse or promote products derived from this software
18 *    without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30 * THE POSSIBILITY OF SUCH DAMAGE.
31 *
32 * $FreeBSD: head/sys/dev/sf/if_sf.c 67087 2000-10-13 17:54:19Z wpaul $
33 */
34
35/*
36 * Adaptec AIC-6915 "Starfire" PCI fast ethernet driver for FreeBSD.
37 * Programming manual is available from:
38 * ftp.adaptec.com:/pub/BBS/userguides/aic6915_pg.pdf.
39 *
40 * Written by Bill Paul <wpaul@ctr.columbia.edu>
41 * Department of Electical Engineering
42 * Columbia University, New York City
43 */
44
45/*
46 * The Adaptec AIC-6915 "Starfire" is a 64-bit 10/100 PCI ethernet
47 * controller designed with flexibility and reducing CPU load in mind.
48 * The Starfire offers high and low priority buffer queues, a
49 * producer/consumer index mechanism and several different buffer
50 * queue and completion queue descriptor types. Any one of a number
51 * of different driver designs can be used, depending on system and
52 * OS requirements. This driver makes use of type0 transmit frame
53 * descriptors (since BSD fragments packets across an mbuf chain)
54 * and two RX buffer queues prioritized on size (one queue for small
55 * frames that will fit into a single mbuf, another with full size
56 * mbuf clusters for everything else). The producer/consumer indexes
57 * and completion queues are also used.
58 *
59 * One downside to the Starfire has to do with alignment: buffer
60 * queues must be aligned on 256-byte boundaries, and receive buffers
61 * must be aligned on longword boundaries. The receive buffer alignment
62 * causes problems on the Alpha platform, where the packet payload
63 * should be longword aligned. There is no simple way around this.
64 *
65 * For receive filtering, the Starfire offers 16 perfect filter slots
66 * and a 512-bit hash table.
67 *
68 * The Starfire has no internal transceiver, relying instead on an
69 * external MII-based transceiver. Accessing registers on external
70 * PHYs is done through a special register map rather than with the
71 * usual bitbang MDIO method.
72 *
73 * Acesssing the registers on the Starfire is a little tricky. The
74 * Starfire has a 512K internal register space. When programmed for
75 * PCI memory mapped mode, the entire register space can be accessed
76 * directly. However in I/O space mode, only 256 bytes are directly
77 * mapped into PCI I/O space. The other registers can be accessed
78 * indirectly using the SF_INDIRECTIO_ADDR and SF_INDIRECTIO_DATA
79 * registers inside the 256-byte I/O window.
80 */
81
82#include <sys/param.h>
83#include <sys/systm.h>
84#include <sys/sockio.h>
85#include <sys/mbuf.h>
86#include <sys/malloc.h>
87#include <sys/kernel.h>
88#include <sys/socket.h>
89
90#include <net/if.h>
91#include <net/if_arp.h>
92#include <net/ethernet.h>
93#include <net/if_dl.h>
94#include <net/if_media.h>
95
96#include <net/bpf.h>
97
98#include <vm/vm.h>              /* for vtophys */
99#include <vm/pmap.h>            /* for vtophys */
100#include <machine/clock.h>      /* for DELAY */
101#include <machine/bus_pio.h>
102#include <machine/bus_memio.h>
103#include <machine/bus.h>
104#include <machine/resource.h>
105#include <sys/bus.h>
106#include <sys/rman.h>
107
108#include <dev/mii/mii.h>
109#include <dev/mii/miivar.h>
110
111/* "controller miibus0" required.  See GENERIC if you get errors here. */
112#include "miibus_if.h"
113
114#include <pci/pcireg.h>
115#include <pci/pcivar.h>
116
117#define SF_USEIOSPACE
118
119#include <pci/if_sfreg.h>
120
121MODULE_DEPEND(sf, miibus, 1, 1, 1);
122
123#ifndef lint
124static const char rcsid[] =
125  "$FreeBSD: head/sys/dev/sf/if_sf.c 67087 2000-10-13 17:54:19Z wpaul $";
126#endif
127
128static struct sf_type sf_devs[] = {
129	{ AD_VENDORID, AD_DEVICEID_STARFIRE,
130		"Adaptec AIC-6915 10/100BaseTX" },
131	{ 0, 0, NULL }
132};
133
134static int sf_probe		__P((device_t));
135static int sf_attach		__P((device_t));
136static int sf_detach		__P((device_t));
137static void sf_intr		__P((void *));
138static void sf_stats_update	__P((void *));
139static void sf_rxeof		__P((struct sf_softc *));
140static void sf_txeof		__P((struct sf_softc *));
141static int sf_encap		__P((struct sf_softc *,
142					struct sf_tx_bufdesc_type0 *,
143					struct mbuf *));
144static void sf_start		__P((struct ifnet *));
145static int sf_ioctl		__P((struct ifnet *, u_long, caddr_t));
146static void sf_init		__P((void *));
147static void sf_stop		__P((struct sf_softc *));
148static void sf_watchdog		__P((struct ifnet *));
149static void sf_shutdown		__P((device_t));
150static int sf_ifmedia_upd	__P((struct ifnet *));
151static void sf_ifmedia_sts	__P((struct ifnet *, struct ifmediareq *));
152static void sf_reset		__P((struct sf_softc *));
153static int sf_init_rx_ring	__P((struct sf_softc *));
154static void sf_init_tx_ring	__P((struct sf_softc *));
155static int sf_newbuf		__P((struct sf_softc *,
156					struct sf_rx_bufdesc_type0 *,
157					struct mbuf *));
158static void sf_setmulti		__P((struct sf_softc *));
159static int sf_setperf		__P((struct sf_softc *, int, caddr_t));
160static int sf_sethash		__P((struct sf_softc *, caddr_t, int));
161#ifdef notdef
162static int sf_setvlan		__P((struct sf_softc *, int, u_int32_t));
163#endif
164
165static u_int8_t sf_read_eeprom	__P((struct sf_softc *, int));
166static u_int32_t sf_calchash	__P((caddr_t));
167
168static int sf_miibus_readreg	__P((device_t, int, int));
169static int sf_miibus_writereg	__P((device_t, int, int, int));
170static void sf_miibus_statchg	__P((device_t));
171
172static u_int32_t csr_read_4	__P((struct sf_softc *, int));
173static void csr_write_4		__P((struct sf_softc *, int, u_int32_t));
174
175#ifdef SF_USEIOSPACE
176#define SF_RES			SYS_RES_IOPORT
177#define SF_RID			SF_PCI_LOIO
178#else
179#define SF_RES			SYS_RES_MEMORY
180#define SF_RID			SF_PCI_LOMEM
181#endif
182
183static device_method_t sf_methods[] = {
184	/* Device interface */
185	DEVMETHOD(device_probe,		sf_probe),
186	DEVMETHOD(device_attach,	sf_attach),
187	DEVMETHOD(device_detach,	sf_detach),
188	DEVMETHOD(device_shutdown,	sf_shutdown),
189
190	/* bus interface */
191	DEVMETHOD(bus_print_child,	bus_generic_print_child),
192	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
193
194	/* MII interface */
195	DEVMETHOD(miibus_readreg,	sf_miibus_readreg),
196	DEVMETHOD(miibus_writereg,	sf_miibus_writereg),
197	DEVMETHOD(miibus_statchg,	sf_miibus_statchg),
198
199	{ 0, 0 }
200};
201
202static driver_t sf_driver = {
203	"sf",
204	sf_methods,
205	sizeof(struct sf_softc),
206};
207
208static devclass_t sf_devclass;
209
210DRIVER_MODULE(if_sf, pci, sf_driver, sf_devclass, 0, 0);
211DRIVER_MODULE(miibus, sf, miibus_driver, miibus_devclass, 0, 0);
212
213#define SF_SETBIT(sc, reg, x)	\
214	csr_write_4(sc, reg, csr_read_4(sc, reg) | x)
215
216#define SF_CLRBIT(sc, reg, x)				\
217	csr_write_4(sc, reg, csr_read_4(sc, reg) & ~x)
218
219static u_int32_t csr_read_4(sc, reg)
220	struct sf_softc		*sc;
221	int			reg;
222{
223	u_int32_t		val;
224
225#ifdef SF_USEIOSPACE
226	CSR_WRITE_4(sc, SF_INDIRECTIO_ADDR, reg + SF_RMAP_INTREG_BASE);
227	val = CSR_READ_4(sc, SF_INDIRECTIO_DATA);
228#else
229	val = CSR_READ_4(sc, (reg + SF_RMAP_INTREG_BASE));
230#endif
231
232	return(val);
233}
234
235static u_int8_t sf_read_eeprom(sc, reg)
236	struct sf_softc		*sc;
237	int			reg;
238{
239	u_int8_t		val;
240
241	val = (csr_read_4(sc, SF_EEADDR_BASE +
242	    (reg & 0xFFFFFFFC)) >> (8 * (reg & 3))) & 0xFF;
243
244	return(val);
245}
246
247static void csr_write_4(sc, reg, val)
248	struct sf_softc		*sc;
249	int			reg;
250	u_int32_t		val;
251{
252#ifdef SF_USEIOSPACE
253	CSR_WRITE_4(sc, SF_INDIRECTIO_ADDR, reg + SF_RMAP_INTREG_BASE);
254	CSR_WRITE_4(sc, SF_INDIRECTIO_DATA, val);
255#else
256	CSR_WRITE_4(sc, (reg + SF_RMAP_INTREG_BASE), val);
257#endif
258	return;
259}
260
261static u_int32_t sf_calchash(addr)
262	caddr_t			addr;
263{
264	u_int32_t		crc, carry;
265	int			i, j;
266	u_int8_t		c;
267
268	/* Compute CRC for the address value. */
269	crc = 0xFFFFFFFF; /* initial value */
270
271	for (i = 0; i < 6; i++) {
272		c = *(addr + i);
273		for (j = 0; j < 8; j++) {
274			carry = ((crc & 0x80000000) ? 1 : 0) ^ (c & 0x01);
275			crc <<= 1;
276			c >>= 1;
277			if (carry)
278				crc = (crc ^ 0x04c11db6) | carry;
279		}
280	}
281
282	/* return the filter bit position */
283	return(crc >> 23 & 0x1FF);
284}
285
286/*
287 * Copy the address 'mac' into the perfect RX filter entry at
288 * offset 'idx.' The perfect filter only has 16 entries so do
289 * some sanity tests.
290 */
291static int sf_setperf(sc, idx, mac)
292	struct sf_softc		*sc;
293	int			idx;
294	caddr_t			mac;
295{
296	u_int16_t		*p;
297
298	if (idx < 0 || idx > SF_RXFILT_PERFECT_CNT)
299		return(EINVAL);
300
301	if (mac == NULL)
302		return(EINVAL);
303
304	p = (u_int16_t *)mac;
305
306	csr_write_4(sc, SF_RXFILT_PERFECT_BASE +
307	    (idx * SF_RXFILT_PERFECT_SKIP), htons(p[2]));
308	csr_write_4(sc, SF_RXFILT_PERFECT_BASE +
309	    (idx * SF_RXFILT_PERFECT_SKIP) + 4, htons(p[1]));
310	csr_write_4(sc, SF_RXFILT_PERFECT_BASE +
311	    (idx * SF_RXFILT_PERFECT_SKIP) + 8, htons(p[0]));
312
313	return(0);
314}
315
316/*
317 * Set the bit in the 512-bit hash table that corresponds to the
318 * specified mac address 'mac.' If 'prio' is nonzero, update the
319 * priority hash table instead of the filter hash table.
320 */
321static int sf_sethash(sc, mac, prio)
322	struct sf_softc		*sc;
323	caddr_t			mac;
324	int			prio;
325{
326	u_int32_t		h = 0;
327
328	if (mac == NULL)
329		return(EINVAL);
330
331	h = sf_calchash(mac);
332
333	if (prio) {
334		SF_SETBIT(sc, SF_RXFILT_HASH_BASE + SF_RXFILT_HASH_PRIOOFF +
335		    (SF_RXFILT_HASH_SKIP * (h >> 4)), (1 << (h & 0xF)));
336	} else {
337		SF_SETBIT(sc, SF_RXFILT_HASH_BASE + SF_RXFILT_HASH_ADDROFF +
338		    (SF_RXFILT_HASH_SKIP * (h >> 4)), (1 << (h & 0xF)));
339	}
340
341	return(0);
342}
343
344#ifdef notdef
345/*
346 * Set a VLAN tag in the receive filter.
347 */
348static int sf_setvlan(sc, idx, vlan)
349	struct sf_softc		*sc;
350	int			idx;
351	u_int32_t		vlan;
352{
353	if (idx < 0 || idx >> SF_RXFILT_HASH_CNT)
354		return(EINVAL);
355
356	csr_write_4(sc, SF_RXFILT_HASH_BASE +
357	    (idx * SF_RXFILT_HASH_SKIP) + SF_RXFILT_HASH_VLANOFF, vlan);
358
359	return(0);
360}
361#endif
362
363static int sf_miibus_readreg(dev, phy, reg)
364	device_t		dev;
365	int			phy, reg;
366{
367	struct sf_softc		*sc;
368	int			i;
369	u_int32_t		val = 0;
370
371	sc = device_get_softc(dev);
372
373	for (i = 0; i < SF_TIMEOUT; i++) {
374		val = csr_read_4(sc, SF_PHY_REG(phy, reg));
375		if (val & SF_MII_DATAVALID)
376			break;
377	}
378
379	if (i == SF_TIMEOUT)
380		return(0);
381
382	if ((val & 0x0000FFFF) == 0xFFFF)
383		return(0);
384
385	return(val & 0x0000FFFF);
386}
387
388static int sf_miibus_writereg(dev, phy, reg, val)
389	device_t		dev;
390	int			phy, reg, val;
391{
392	struct sf_softc		*sc;
393	int			i;
394	int			busy;
395
396	sc = device_get_softc(dev);
397
398	csr_write_4(sc, SF_PHY_REG(phy, reg), val);
399
400	for (i = 0; i < SF_TIMEOUT; i++) {
401		busy = csr_read_4(sc, SF_PHY_REG(phy, reg));
402		if (!(busy & SF_MII_BUSY))
403			break;
404	}
405
406	return(0);
407}
408
409static void sf_miibus_statchg(dev)
410	device_t		dev;
411{
412	struct sf_softc		*sc;
413	struct mii_data		*mii;
414
415	sc = device_get_softc(dev);
416	mii = device_get_softc(sc->sf_miibus);
417
418	if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
419		SF_SETBIT(sc, SF_MACCFG_1, SF_MACCFG1_FULLDUPLEX);
420		csr_write_4(sc, SF_BKTOBKIPG, SF_IPGT_FDX);
421	} else {
422		SF_CLRBIT(sc, SF_MACCFG_1, SF_MACCFG1_FULLDUPLEX);
423		csr_write_4(sc, SF_BKTOBKIPG, SF_IPGT_HDX);
424	}
425
426	return;
427}
428
429static void sf_setmulti(sc)
430	struct sf_softc		*sc;
431{
432	struct ifnet		*ifp;
433	int			i;
434	struct ifmultiaddr	*ifma;
435	u_int8_t		dummy[] = { 0, 0, 0, 0, 0, 0 };
436
437	ifp = &sc->arpcom.ac_if;
438
439	/* First zot all the existing filters. */
440	for (i = 1; i < SF_RXFILT_PERFECT_CNT; i++)
441		sf_setperf(sc, i, (char *)&dummy);
442	for (i = SF_RXFILT_HASH_BASE;
443	    i < (SF_RXFILT_HASH_MAX + 1); i += 4)
444		csr_write_4(sc, i, 0);
445	SF_CLRBIT(sc, SF_RXFILT, SF_RXFILT_ALLMULTI);
446
447	/* Now program new ones. */
448	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
449		SF_SETBIT(sc, SF_RXFILT, SF_RXFILT_ALLMULTI);
450	} else {
451		i = 1;
452		/* First find the tail of the list. */
453		for (ifma = ifp->if_multiaddrs.lh_first; ifma != NULL;
454					ifma = ifma->ifma_link.le_next) {
455			if (ifma->ifma_link.le_next == NULL)
456				break;
457		}
458		/* Now traverse the list backwards. */
459		for (; ifma != NULL && ifma != (void *)&ifp->if_multiaddrs;
460			ifma = (struct ifmultiaddr *)ifma->ifma_link.le_prev) {
461			if (ifma->ifma_addr->sa_family != AF_LINK)
462				continue;
463			/*
464			 * Program the first 15 multicast groups
465			 * into the perfect filter. For all others,
466			 * use the hash table.
467			 */
468			if (i < SF_RXFILT_PERFECT_CNT) {
469				sf_setperf(sc, i,
470			LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
471				i++;
472				continue;
473			}
474
475			sf_sethash(sc,
476			    LLADDR((struct sockaddr_dl *)ifma->ifma_addr), 0);
477		}
478	}
479
480	return;
481}
482
483/*
484 * Set media options.
485 */
486static int sf_ifmedia_upd(ifp)
487	struct ifnet		*ifp;
488{
489	struct sf_softc		*sc;
490	struct mii_data		*mii;
491
492	sc = ifp->if_softc;
493	mii = device_get_softc(sc->sf_miibus);
494	sc->sf_link = 0;
495	if (mii->mii_instance) {
496		struct mii_softc        *miisc;
497		for (miisc = LIST_FIRST(&mii->mii_phys); miisc != NULL;
498		    miisc = LIST_NEXT(miisc, mii_list))
499			mii_phy_reset(miisc);
500	}
501	mii_mediachg(mii);
502
503	return(0);
504}
505
506/*
507 * Report current media status.
508 */
509static void sf_ifmedia_sts(ifp, ifmr)
510	struct ifnet		*ifp;
511	struct ifmediareq	*ifmr;
512{
513	struct sf_softc		*sc;
514	struct mii_data		*mii;
515
516	sc = ifp->if_softc;
517	mii = device_get_softc(sc->sf_miibus);
518
519	mii_pollstat(mii);
520	ifmr->ifm_active = mii->mii_media_active;
521	ifmr->ifm_status = mii->mii_media_status;
522
523	return;
524}
525
526static int sf_ioctl(ifp, command, data)
527	struct ifnet		*ifp;
528	u_long			command;
529	caddr_t			data;
530{
531	struct sf_softc		*sc = ifp->if_softc;
532	struct ifreq		*ifr = (struct ifreq *) data;
533	struct mii_data		*mii;
534	int			error = 0;
535
536	SF_LOCK(sc);
537
538	switch(command) {
539	case SIOCSIFADDR:
540	case SIOCGIFADDR:
541	case SIOCSIFMTU:
542		error = ether_ioctl(ifp, command, data);
543		break;
544	case SIOCSIFFLAGS:
545		if (ifp->if_flags & IFF_UP) {
546			if (ifp->if_flags & IFF_RUNNING &&
547			    ifp->if_flags & IFF_PROMISC &&
548			    !(sc->sf_if_flags & IFF_PROMISC)) {
549				SF_SETBIT(sc, SF_RXFILT, SF_RXFILT_PROMISC);
550			} else if (ifp->if_flags & IFF_RUNNING &&
551			    !(ifp->if_flags & IFF_PROMISC) &&
552			    sc->sf_if_flags & IFF_PROMISC) {
553				SF_CLRBIT(sc, SF_RXFILT, SF_RXFILT_PROMISC);
554			} else if (!(ifp->if_flags & IFF_RUNNING))
555				sf_init(sc);
556		} else {
557			if (ifp->if_flags & IFF_RUNNING)
558				sf_stop(sc);
559		}
560		sc->sf_if_flags = ifp->if_flags;
561		error = 0;
562		break;
563	case SIOCADDMULTI:
564	case SIOCDELMULTI:
565		sf_setmulti(sc);
566		error = 0;
567		break;
568	case SIOCGIFMEDIA:
569	case SIOCSIFMEDIA:
570		mii = device_get_softc(sc->sf_miibus);
571		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
572		break;
573	default:
574		error = EINVAL;
575		break;
576	}
577
578	SF_UNLOCK(sc);
579
580	return(error);
581}
582
583static void sf_reset(sc)
584	struct sf_softc		*sc;
585{
586	register int		i;
587
588	csr_write_4(sc, SF_GEN_ETH_CTL, 0);
589	SF_SETBIT(sc, SF_MACCFG_1, SF_MACCFG1_SOFTRESET);
590	DELAY(1000);
591	SF_CLRBIT(sc, SF_MACCFG_1, SF_MACCFG1_SOFTRESET);
592
593	SF_SETBIT(sc, SF_PCI_DEVCFG, SF_PCIDEVCFG_RESET);
594
595	for (i = 0; i < SF_TIMEOUT; i++) {
596		DELAY(10);
597		if (!(csr_read_4(sc, SF_PCI_DEVCFG) & SF_PCIDEVCFG_RESET))
598			break;
599	}
600
601	if (i == SF_TIMEOUT)
602		printf("sf%d: reset never completed!\n", sc->sf_unit);
603
604	/* Wait a little while for the chip to get its brains in order. */
605	DELAY(1000);
606	return;
607}
608
609/*
610 * Probe for an Adaptec AIC-6915 chip. Check the PCI vendor and device
611 * IDs against our list and return a device name if we find a match.
612 * We also check the subsystem ID so that we can identify exactly which
613 * NIC has been found, if possible.
614 */
615static int sf_probe(dev)
616	device_t		dev;
617{
618	struct sf_type		*t;
619
620	t = sf_devs;
621
622	while(t->sf_name != NULL) {
623		if ((pci_get_vendor(dev) == t->sf_vid) &&
624		    (pci_get_device(dev) == t->sf_did)) {
625			switch((pci_read_config(dev,
626			    SF_PCI_SUBVEN_ID, 4) >> 16) & 0xFFFF) {
627			case AD_SUBSYSID_62011_REV0:
628			case AD_SUBSYSID_62011_REV1:
629				device_set_desc(dev,
630				    "Adaptec ANA-62011 10/100BaseTX");
631				return(0);
632				break;
633			case AD_SUBSYSID_62022:
634				device_set_desc(dev,
635				    "Adaptec ANA-62022 10/100BaseTX");
636				return(0);
637				break;
638			case AD_SUBSYSID_62044_REV0:
639			case AD_SUBSYSID_62044_REV1:
640				device_set_desc(dev,
641				    "Adaptec ANA-62044 10/100BaseTX");
642				return(0);
643				break;
644			case AD_SUBSYSID_62020:
645				device_set_desc(dev,
646				    "Adaptec ANA-62020 10/100BaseFX");
647				return(0);
648				break;
649			case AD_SUBSYSID_69011:
650				device_set_desc(dev,
651				    "Adaptec ANA-69011 10/100BaseTX");
652				return(0);
653				break;
654			default:
655				device_set_desc(dev, t->sf_name);
656				return(0);
657				break;
658			}
659		}
660		t++;
661	}
662
663	return(ENXIO);
664}
665
666/*
667 * Attach the interface. Allocate softc structures, do ifmedia
668 * setup and ethernet/BPF attach.
669 */
670static int sf_attach(dev)
671	device_t		dev;
672{
673	int			i;
674	u_int32_t		command;
675	struct sf_softc		*sc;
676	struct ifnet		*ifp;
677	int			unit, rid, error = 0;
678
679	sc = device_get_softc(dev);
680	unit = device_get_unit(dev);
681	bzero(sc, sizeof(struct sf_softc));
682
683	/*
684	 * Handle power management nonsense.
685	 */
686	command = pci_read_config(dev, SF_PCI_CAPID, 4) & 0x000000FF;
687	if (command == 0x01) {
688
689		command = pci_read_config(dev, SF_PCI_PWRMGMTCTRL, 4);
690		if (command & SF_PSTATE_MASK) {
691			u_int32_t		iobase, membase, irq;
692
693			/* Save important PCI config data. */
694			iobase = pci_read_config(dev, SF_PCI_LOIO, 4);
695			membase = pci_read_config(dev, SF_PCI_LOMEM, 4);
696			irq = pci_read_config(dev, SF_PCI_INTLINE, 4);
697
698			/* Reset the power state. */
699			printf("sf%d: chip is in D%d power mode "
700			"-- setting to D0\n", unit, command & SF_PSTATE_MASK);
701			command &= 0xFFFFFFFC;
702			pci_write_config(dev, SF_PCI_PWRMGMTCTRL, command, 4);
703
704			/* Restore PCI config data. */
705			pci_write_config(dev, SF_PCI_LOIO, iobase, 4);
706			pci_write_config(dev, SF_PCI_LOMEM, membase, 4);
707			pci_write_config(dev, SF_PCI_INTLINE, irq, 4);
708		}
709	}
710
711	/*
712	 * Map control/status registers.
713	 */
714	command = pci_read_config(dev, PCIR_COMMAND, 4);
715	command |= (PCIM_CMD_PORTEN|PCIM_CMD_MEMEN|PCIM_CMD_BUSMASTEREN);
716	pci_write_config(dev, PCIR_COMMAND, command, 4);
717	command = pci_read_config(dev, PCIR_COMMAND, 4);
718
719#ifdef SF_USEIOSPACE
720	if (!(command & PCIM_CMD_PORTEN)) {
721		printf("sf%d: failed to enable I/O ports!\n", unit);
722		error = ENXIO;
723		goto fail;
724	}
725#else
726	if (!(command & PCIM_CMD_MEMEN)) {
727		printf("sf%d: failed to enable memory mapping!\n", unit);
728		error = ENXIO;
729		goto fail;
730	}
731#endif
732
733	rid = SF_RID;
734	sc->sf_res = bus_alloc_resource(dev, SF_RES, &rid,
735	    0, ~0, 1, RF_ACTIVE);
736
737	if (sc->sf_res == NULL) {
738		printf ("sf%d: couldn't map ports\n", unit);
739		error = ENXIO;
740		goto fail;
741	}
742
743	sc->sf_btag = rman_get_bustag(sc->sf_res);
744	sc->sf_bhandle = rman_get_bushandle(sc->sf_res);
745
746	/* Allocate interrupt */
747	rid = 0;
748	sc->sf_irq = bus_alloc_resource(dev, SYS_RES_IRQ, &rid, 0, ~0, 1,
749	    RF_SHAREABLE | RF_ACTIVE);
750
751	if (sc->sf_irq == NULL) {
752		printf("sf%d: couldn't map interrupt\n", unit);
753		bus_release_resource(dev, SF_RES, SF_RID, sc->sf_res);
754		error = ENXIO;
755		goto fail;
756	}
757
758	error = bus_setup_intr(dev, sc->sf_irq, INTR_TYPE_NET,
759	    sf_intr, sc, &sc->sf_intrhand);
760
761	if (error) {
762		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sf_res);
763		bus_release_resource(dev, SF_RES, SF_RID, sc->sf_res);
764		printf("sf%d: couldn't set up irq\n", unit);
765		goto fail;
766	}
767
768	callout_handle_init(&sc->sf_stat_ch);
769	mtx_init(&sc->sf_mtx, "sf", MTX_DEF);
770	SF_LOCK(sc);
771	/* Reset the adapter. */
772	sf_reset(sc);
773
774	/*
775	 * Get station address from the EEPROM.
776	 */
777	for (i = 0; i < ETHER_ADDR_LEN; i++)
778		sc->arpcom.ac_enaddr[i] =
779		    sf_read_eeprom(sc, SF_EE_NODEADDR + ETHER_ADDR_LEN - i);
780
781	/*
782	 * An Adaptec chip was detected. Inform the world.
783	 */
784	printf("sf%d: Ethernet address: %6D\n", unit,
785	    sc->arpcom.ac_enaddr, ":");
786
787	sc->sf_unit = unit;
788
789	/* Allocate the descriptor queues. */
790	sc->sf_ldata = contigmalloc(sizeof(struct sf_list_data), M_DEVBUF,
791	    M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0);
792
793	if (sc->sf_ldata == NULL) {
794		printf("sf%d: no memory for list buffers!\n", unit);
795		bus_teardown_intr(dev, sc->sf_irq, sc->sf_intrhand);
796		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sf_irq);
797		bus_release_resource(dev, SF_RES, SF_RID, sc->sf_res);
798		error = ENXIO;
799		goto fail;
800	}
801
802	bzero(sc->sf_ldata, sizeof(struct sf_list_data));
803
804	/* Do MII setup. */
805	if (mii_phy_probe(dev, &sc->sf_miibus,
806	    sf_ifmedia_upd, sf_ifmedia_sts)) {
807		printf("sf%d: MII without any phy!\n", sc->sf_unit);
808		contigfree(sc->sf_ldata,sizeof(struct sf_list_data),M_DEVBUF);
809		bus_teardown_intr(dev, sc->sf_irq, sc->sf_intrhand);
810		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sf_irq);
811		bus_release_resource(dev, SF_RES, SF_RID, sc->sf_res);
812		error = ENXIO;
813		goto fail;
814	}
815
816	ifp = &sc->arpcom.ac_if;
817	ifp->if_softc = sc;
818	ifp->if_unit = unit;
819	ifp->if_name = "sf";
820	ifp->if_mtu = ETHERMTU;
821	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
822	ifp->if_ioctl = sf_ioctl;
823	ifp->if_output = ether_output;
824	ifp->if_start = sf_start;
825	ifp->if_watchdog = sf_watchdog;
826	ifp->if_init = sf_init;
827	ifp->if_baudrate = 10000000;
828	ifp->if_snd.ifq_maxlen = SF_TX_DLIST_CNT - 1;
829
830	/*
831	 * Call MI attach routine.
832	 */
833	ether_ifattach(ifp, ETHER_BPF_SUPPORTED);
834	SF_UNLOCK(sc);
835	return(0);
836
837fail:
838	SF_UNLOCK(sc);
839	mtx_destroy(&sc->sf_mtx);
840	return(error);
841}
842
843static int sf_detach(dev)
844	device_t		dev;
845{
846	struct sf_softc		*sc;
847	struct ifnet		*ifp;
848
849	sc = device_get_softc(dev);
850	SF_LOCK(sc);
851	ifp = &sc->arpcom.ac_if;
852
853	ether_ifdetach(ifp, ETHER_BPF_SUPPORTED);
854	sf_stop(sc);
855
856	bus_generic_detach(dev);
857	device_delete_child(dev, sc->sf_miibus);
858
859	bus_teardown_intr(dev, sc->sf_irq, sc->sf_intrhand);
860	bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sf_irq);
861	bus_release_resource(dev, SF_RES, SF_RID, sc->sf_res);
862
863	contigfree(sc->sf_ldata, sizeof(struct sf_list_data), M_DEVBUF);
864
865	SF_UNLOCK(sc);
866	mtx_destroy(&sc->sf_mtx);
867
868	return(0);
869}
870
871static int sf_init_rx_ring(sc)
872	struct sf_softc		*sc;
873{
874	struct sf_list_data	*ld;
875	int			i;
876
877	ld = sc->sf_ldata;
878
879	bzero((char *)ld->sf_rx_dlist_big,
880	    sizeof(struct sf_rx_bufdesc_type0) * SF_RX_DLIST_CNT);
881	bzero((char *)ld->sf_rx_clist,
882	    sizeof(struct sf_rx_cmpdesc_type3) * SF_RX_CLIST_CNT);
883
884	for (i = 0; i < SF_RX_DLIST_CNT; i++) {
885		if (sf_newbuf(sc, &ld->sf_rx_dlist_big[i], NULL) == ENOBUFS)
886			return(ENOBUFS);
887	}
888
889	return(0);
890}
891
892static void sf_init_tx_ring(sc)
893	struct sf_softc		*sc;
894{
895	struct sf_list_data	*ld;
896	int			i;
897
898	ld = sc->sf_ldata;
899
900	bzero((char *)ld->sf_tx_dlist,
901	    sizeof(struct sf_tx_bufdesc_type0) * SF_TX_DLIST_CNT);
902	bzero((char *)ld->sf_tx_clist,
903	    sizeof(struct sf_tx_cmpdesc_type0) * SF_TX_CLIST_CNT);
904
905	for (i = 0; i < SF_TX_DLIST_CNT; i++)
906		ld->sf_tx_dlist[i].sf_id = SF_TX_BUFDESC_ID;
907	for (i = 0; i < SF_TX_CLIST_CNT; i++)
908		ld->sf_tx_clist[i].sf_type = SF_TXCMPTYPE_TX;
909
910	ld->sf_tx_dlist[SF_TX_DLIST_CNT - 1].sf_end = 1;
911	sc->sf_tx_cnt = 0;
912
913	return;
914}
915
916static int sf_newbuf(sc, c, m)
917	struct sf_softc		*sc;
918	struct sf_rx_bufdesc_type0	*c;
919	struct mbuf		*m;
920{
921	struct mbuf		*m_new = NULL;
922
923	if (m == NULL) {
924		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
925		if (m_new == NULL) {
926			printf("sf%d: no memory for rx list -- "
927			    "packet dropped!\n", sc->sf_unit);
928			return(ENOBUFS);
929		}
930
931		MCLGET(m_new, M_DONTWAIT);
932		if (!(m_new->m_flags & M_EXT)) {
933			printf("sf%d: no memory for rx list -- "
934			    "packet dropped!\n", sc->sf_unit);
935			m_freem(m_new);
936			return(ENOBUFS);
937		}
938		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
939	} else {
940		m_new = m;
941		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
942		m_new->m_data = m_new->m_ext.ext_buf;
943	}
944
945	m_adj(m_new, sizeof(u_int64_t));
946
947	c->sf_mbuf = m_new;
948	c->sf_addrlo = SF_RX_HOSTADDR(vtophys(mtod(m_new, caddr_t)));
949	c->sf_valid = 1;
950
951	return(0);
952}
953
954/*
955 * The starfire is programmed to use 'normal' mode for packet reception,
956 * which means we use the consumer/producer model for both the buffer
957 * descriptor queue and the completion descriptor queue. The only problem
958 * with this is that it involves a lot of register accesses: we have to
959 * read the RX completion consumer and producer indexes and the RX buffer
960 * producer index, plus the RX completion consumer and RX buffer producer
961 * indexes have to be updated. It would have been easier if Adaptec had
962 * put each index in a separate register, especially given that the damn
963 * NIC has a 512K register space.
964 *
965 * In spite of all the lovely features that Adaptec crammed into the 6915,
966 * it is marred by one truly stupid design flaw, which is that receive
967 * buffer addresses must be aligned on a longword boundary. This forces
968 * the packet payload to be unaligned, which is suboptimal on the x86 and
969 * completely unuseable on the Alpha. Our only recourse is to copy received
970 * packets into properly aligned buffers before handing them off.
971 */
972
973static void sf_rxeof(sc)
974	struct sf_softc		*sc;
975{
976	struct ether_header	*eh;
977	struct mbuf		*m;
978	struct ifnet		*ifp;
979	struct sf_rx_bufdesc_type0	*desc;
980	struct sf_rx_cmpdesc_type3	*cur_rx;
981	u_int32_t		rxcons, rxprod;
982	int			cmpprodidx, cmpconsidx, bufprodidx;
983
984	ifp = &sc->arpcom.ac_if;
985
986	rxcons = csr_read_4(sc, SF_CQ_CONSIDX);
987	rxprod = csr_read_4(sc, SF_RXDQ_PTR_Q1);
988	cmpprodidx = SF_IDX_LO(csr_read_4(sc, SF_CQ_PRODIDX));
989	cmpconsidx = SF_IDX_LO(rxcons);
990	bufprodidx = SF_IDX_LO(rxprod);
991
992	while (cmpconsidx != cmpprodidx) {
993		struct mbuf		*m0;
994
995		cur_rx = &sc->sf_ldata->sf_rx_clist[cmpconsidx];
996		desc = &sc->sf_ldata->sf_rx_dlist_big[cur_rx->sf_endidx];
997		m = desc->sf_mbuf;
998		SF_INC(cmpconsidx, SF_RX_CLIST_CNT);
999		SF_INC(bufprodidx, SF_RX_DLIST_CNT);
1000
1001		if (!(cur_rx->sf_status1 & SF_RXSTAT1_OK)) {
1002			ifp->if_ierrors++;
1003			sf_newbuf(sc, desc, m);
1004			continue;
1005		}
1006
1007		m0 = m_devget(mtod(m, char *) - ETHER_ALIGN,
1008		    cur_rx->sf_len + ETHER_ALIGN, 0, ifp, NULL);
1009		sf_newbuf(sc, desc, m);
1010		if (m0 == NULL) {
1011			ifp->if_ierrors++;
1012			continue;
1013		}
1014		m_adj(m0, ETHER_ALIGN);
1015		m = m0;
1016
1017		eh = mtod(m, struct ether_header *);
1018		ifp->if_ipackets++;
1019
1020		/* Remove header from mbuf and pass it on. */
1021		m_adj(m, sizeof(struct ether_header));
1022		ether_input(ifp, eh, m);
1023	}
1024
1025	csr_write_4(sc, SF_CQ_CONSIDX,
1026	    (rxcons & ~SF_CQ_CONSIDX_RXQ1) | cmpconsidx);
1027	csr_write_4(sc, SF_RXDQ_PTR_Q1,
1028	    (rxprod & ~SF_RXDQ_PRODIDX) | bufprodidx);
1029
1030	return;
1031}
1032
1033/*
1034 * Read the transmit status from the completion queue and release
1035 * mbufs. Note that the buffer descriptor index in the completion
1036 * descriptor is an offset from the start of the transmit buffer
1037 * descriptor list in bytes. This is important because the manual
1038 * gives the impression that it should match the producer/consumer
1039 * index, which is the offset in 8 byte blocks.
1040 */
1041static void sf_txeof(sc)
1042	struct sf_softc		*sc;
1043{
1044	int			txcons, cmpprodidx, cmpconsidx;
1045	struct sf_tx_cmpdesc_type1 *cur_cmp;
1046	struct sf_tx_bufdesc_type0 *cur_tx;
1047	struct ifnet		*ifp;
1048
1049	ifp = &sc->arpcom.ac_if;
1050
1051	txcons = csr_read_4(sc, SF_CQ_CONSIDX);
1052	cmpprodidx = SF_IDX_HI(csr_read_4(sc, SF_CQ_PRODIDX));
1053	cmpconsidx = SF_IDX_HI(txcons);
1054
1055	while (cmpconsidx != cmpprodidx) {
1056		cur_cmp = &sc->sf_ldata->sf_tx_clist[cmpconsidx];
1057		cur_tx = &sc->sf_ldata->sf_tx_dlist[cur_cmp->sf_index >> 7];
1058		SF_INC(cmpconsidx, SF_TX_CLIST_CNT);
1059
1060		if (cur_cmp->sf_txstat & SF_TXSTAT_TX_OK)
1061			ifp->if_opackets++;
1062		else
1063			ifp->if_oerrors++;
1064
1065		sc->sf_tx_cnt--;
1066		if (cur_tx->sf_mbuf != NULL) {
1067			m_freem(cur_tx->sf_mbuf);
1068			cur_tx->sf_mbuf = NULL;
1069		}
1070	}
1071
1072	ifp->if_timer = 0;
1073	ifp->if_flags &= ~IFF_OACTIVE;
1074
1075	csr_write_4(sc, SF_CQ_CONSIDX,
1076	    (txcons & ~SF_CQ_CONSIDX_TXQ) |
1077	    ((cmpconsidx << 16) & 0xFFFF0000));
1078
1079	return;
1080}
1081
1082static void sf_intr(arg)
1083	void			*arg;
1084{
1085	struct sf_softc		*sc;
1086	struct ifnet		*ifp;
1087	u_int32_t		status;
1088
1089	sc = arg;
1090	SF_LOCK(sc);
1091
1092	ifp = &sc->arpcom.ac_if;
1093
1094	if (!(csr_read_4(sc, SF_ISR_SHADOW) & SF_ISR_PCIINT_ASSERTED)) {
1095		SF_UNLOCK(sc);
1096		return;
1097	}
1098
1099	/* Disable interrupts. */
1100	csr_write_4(sc, SF_IMR, 0x00000000);
1101
1102	for (;;) {
1103		status = csr_read_4(sc, SF_ISR);
1104		if (status)
1105			csr_write_4(sc, SF_ISR, status);
1106
1107		if (!(status & SF_INTRS))
1108			break;
1109
1110		if (status & SF_ISR_RXDQ1_DMADONE)
1111			sf_rxeof(sc);
1112
1113		if (status & SF_ISR_TX_TXDONE)
1114			sf_txeof(sc);
1115
1116		if (status & SF_ISR_ABNORMALINTR) {
1117			if (status & SF_ISR_STATSOFLOW) {
1118				untimeout(sf_stats_update, sc,
1119				    sc->sf_stat_ch);
1120				sf_stats_update(sc);
1121			} else
1122				sf_init(sc);
1123		}
1124	}
1125
1126	/* Re-enable interrupts. */
1127	csr_write_4(sc, SF_IMR, SF_INTRS);
1128
1129	if (ifp->if_snd.ifq_head != NULL)
1130		sf_start(ifp);
1131
1132	SF_UNLOCK(sc);
1133	return;
1134}
1135
1136static void sf_init(xsc)
1137	void			*xsc;
1138{
1139	struct sf_softc		*sc;
1140	struct ifnet		*ifp;
1141	struct mii_data		*mii;
1142	int			i;
1143
1144	sc = xsc;
1145	SF_LOCK(sc);
1146	ifp = &sc->arpcom.ac_if;
1147	mii = device_get_softc(sc->sf_miibus);
1148
1149	sf_stop(sc);
1150	sf_reset(sc);
1151
1152	/* Init all the receive filter registers */
1153	for (i = SF_RXFILT_PERFECT_BASE;
1154	    i < (SF_RXFILT_HASH_MAX + 1); i += 4)
1155		csr_write_4(sc, i, 0);
1156
1157	/* Empty stats counter registers. */
1158	for (i = 0; i < sizeof(struct sf_stats)/sizeof(u_int32_t); i++)
1159		csr_write_4(sc, SF_STATS_BASE +
1160		    (i + sizeof(u_int32_t)), 0);
1161
1162	/* Init our MAC address */
1163	csr_write_4(sc, SF_PAR0, *(u_int32_t *)(&sc->arpcom.ac_enaddr[0]));
1164	csr_write_4(sc, SF_PAR1, *(u_int32_t *)(&sc->arpcom.ac_enaddr[4]));
1165	sf_setperf(sc, 0, (caddr_t)&sc->arpcom.ac_enaddr);
1166
1167	if (sf_init_rx_ring(sc) == ENOBUFS) {
1168		printf("sf%d: initialization failed: no "
1169		    "memory for rx buffers\n", sc->sf_unit);
1170		SF_UNLOCK(sc);
1171		return;
1172	}
1173
1174	sf_init_tx_ring(sc);
1175
1176	csr_write_4(sc, SF_RXFILT, SF_PERFMODE_NORMAL|SF_HASHMODE_WITHVLAN);
1177
1178	/* If we want promiscuous mode, set the allframes bit. */
1179	if (ifp->if_flags & IFF_PROMISC) {
1180		SF_SETBIT(sc, SF_RXFILT, SF_RXFILT_PROMISC);
1181	} else {
1182		SF_CLRBIT(sc, SF_RXFILT, SF_RXFILT_PROMISC);
1183	}
1184
1185	if (ifp->if_flags & IFF_BROADCAST) {
1186		SF_SETBIT(sc, SF_RXFILT, SF_RXFILT_BROAD);
1187	} else {
1188		SF_CLRBIT(sc, SF_RXFILT, SF_RXFILT_BROAD);
1189	}
1190
1191	/*
1192	 * Load the multicast filter.
1193	 */
1194	sf_setmulti(sc);
1195
1196	/* Init the completion queue indexes */
1197	csr_write_4(sc, SF_CQ_CONSIDX, 0);
1198	csr_write_4(sc, SF_CQ_PRODIDX, 0);
1199
1200	/* Init the RX completion queue */
1201	csr_write_4(sc, SF_RXCQ_CTL_1,
1202	    vtophys(sc->sf_ldata->sf_rx_clist) & SF_RXCQ_ADDR);
1203	SF_SETBIT(sc, SF_RXCQ_CTL_1, SF_RXCQTYPE_3);
1204
1205	/* Init RX DMA control. */
1206	SF_SETBIT(sc, SF_RXDMA_CTL, SF_RXDMA_REPORTBADPKTS);
1207
1208	/* Init the RX buffer descriptor queue. */
1209	csr_write_4(sc, SF_RXDQ_ADDR_Q1,
1210	    vtophys(sc->sf_ldata->sf_rx_dlist_big));
1211	csr_write_4(sc, SF_RXDQ_CTL_1, (MCLBYTES << 16) | SF_DESCSPACE_16BYTES);
1212	csr_write_4(sc, SF_RXDQ_PTR_Q1, SF_RX_DLIST_CNT - 1);
1213
1214	/* Init the TX completion queue */
1215	csr_write_4(sc, SF_TXCQ_CTL,
1216	    vtophys(sc->sf_ldata->sf_tx_clist) & SF_RXCQ_ADDR);
1217
1218	/* Init the TX buffer descriptor queue. */
1219	csr_write_4(sc, SF_TXDQ_ADDR_HIPRIO,
1220		vtophys(sc->sf_ldata->sf_tx_dlist));
1221	SF_SETBIT(sc, SF_TX_FRAMCTL, SF_TXFRMCTL_CPLAFTERTX);
1222	csr_write_4(sc, SF_TXDQ_CTL,
1223	    SF_TXBUFDESC_TYPE0|SF_TXMINSPACE_128BYTES|SF_TXSKIPLEN_8BYTES);
1224	SF_SETBIT(sc, SF_TXDQ_CTL, SF_TXDQCTL_NODMACMP);
1225
1226	/* Enable autopadding of short TX frames. */
1227	SF_SETBIT(sc, SF_MACCFG_1, SF_MACCFG1_AUTOPAD);
1228
1229	/* Enable interrupts. */
1230	csr_write_4(sc, SF_IMR, SF_INTRS);
1231	SF_SETBIT(sc, SF_PCI_DEVCFG, SF_PCIDEVCFG_INTR_ENB);
1232
1233	/* Enable the RX and TX engines. */
1234	SF_SETBIT(sc, SF_GEN_ETH_CTL, SF_ETHCTL_RX_ENB|SF_ETHCTL_RXDMA_ENB);
1235	SF_SETBIT(sc, SF_GEN_ETH_CTL, SF_ETHCTL_TX_ENB|SF_ETHCTL_TXDMA_ENB);
1236
1237	/*mii_mediachg(mii);*/
1238	sf_ifmedia_upd(ifp);
1239
1240	ifp->if_flags |= IFF_RUNNING;
1241	ifp->if_flags &= ~IFF_OACTIVE;
1242
1243	sc->sf_stat_ch = timeout(sf_stats_update, sc, hz);
1244
1245	SF_UNLOCK(sc);
1246
1247	return;
1248}
1249
1250static int sf_encap(sc, c, m_head)
1251	struct sf_softc		*sc;
1252	struct sf_tx_bufdesc_type0 *c;
1253	struct mbuf		*m_head;
1254{
1255	int			frag = 0;
1256	struct sf_frag		*f = NULL;
1257	struct mbuf		*m;
1258
1259	m = m_head;
1260
1261	for (m = m_head, frag = 0; m != NULL; m = m->m_next) {
1262		if (m->m_len != 0) {
1263			if (frag == SF_MAXFRAGS)
1264				break;
1265			f = &c->sf_frags[frag];
1266			if (frag == 0)
1267				f->sf_pktlen = m_head->m_pkthdr.len;
1268			f->sf_fraglen = m->m_len;
1269			f->sf_addr = vtophys(mtod(m, vm_offset_t));
1270			frag++;
1271		}
1272	}
1273
1274	if (m != NULL) {
1275		struct mbuf		*m_new = NULL;
1276
1277		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1278		if (m_new == NULL) {
1279			printf("sf%d: no memory for tx list", sc->sf_unit);
1280			return(1);
1281		}
1282
1283		if (m_head->m_pkthdr.len > MHLEN) {
1284			MCLGET(m_new, M_DONTWAIT);
1285			if (!(m_new->m_flags & M_EXT)) {
1286				m_freem(m_new);
1287				printf("sf%d: no memory for tx list",
1288				    sc->sf_unit);
1289				return(1);
1290			}
1291		}
1292		m_copydata(m_head, 0, m_head->m_pkthdr.len,
1293		    mtod(m_new, caddr_t));
1294		m_new->m_pkthdr.len = m_new->m_len = m_head->m_pkthdr.len;
1295		m_freem(m_head);
1296		m_head = m_new;
1297		f = &c->sf_frags[0];
1298		f->sf_fraglen = f->sf_pktlen = m_head->m_pkthdr.len;
1299		f->sf_addr = vtophys(mtod(m_head, caddr_t));
1300		frag = 1;
1301	}
1302
1303	c->sf_mbuf = m_head;
1304	c->sf_id = SF_TX_BUFDESC_ID;
1305	c->sf_fragcnt = frag;
1306	c->sf_intr = 1;
1307	c->sf_caltcp = 0;
1308	c->sf_crcen = 1;
1309
1310	return(0);
1311}
1312
1313static void sf_start(ifp)
1314	struct ifnet		*ifp;
1315{
1316	struct sf_softc		*sc;
1317	struct sf_tx_bufdesc_type0 *cur_tx = NULL;
1318	struct mbuf		*m_head = NULL;
1319	int			i, txprod;
1320
1321	sc = ifp->if_softc;
1322	SF_LOCK(sc);
1323
1324	if (!sc->sf_link) {
1325		SF_UNLOCK(sc);
1326		return;
1327	}
1328
1329	if (ifp->if_flags & IFF_OACTIVE) {
1330		SF_UNLOCK(sc);
1331		return;
1332	}
1333
1334	txprod = csr_read_4(sc, SF_TXDQ_PRODIDX);
1335	i = SF_IDX_HI(txprod) >> 4;
1336
1337	while(sc->sf_ldata->sf_tx_dlist[i].sf_mbuf == NULL) {
1338		IF_DEQUEUE(&ifp->if_snd, m_head);
1339		if (m_head == NULL)
1340			break;
1341
1342		cur_tx = &sc->sf_ldata->sf_tx_dlist[i];
1343		sf_encap(sc, cur_tx, m_head);
1344
1345		/*
1346		 * If there's a BPF listener, bounce a copy of this frame
1347		 * to him.
1348		 */
1349		if (ifp->if_bpf)
1350			bpf_mtap(ifp, m_head);
1351
1352		SF_INC(i, SF_TX_DLIST_CNT);
1353		sc->sf_tx_cnt++;
1354		if (sc->sf_tx_cnt == (SF_TX_DLIST_CNT - 2))
1355			break;
1356	}
1357
1358	if (cur_tx == NULL) {
1359		SF_UNLOCK(sc);
1360		return;
1361	}
1362
1363	/* Transmit */
1364	csr_write_4(sc, SF_TXDQ_PRODIDX,
1365	    (txprod & ~SF_TXDQ_PRODIDX_HIPRIO) |
1366	    ((i << 20) & 0xFFFF0000));
1367
1368	ifp->if_timer = 5;
1369
1370	SF_UNLOCK(sc);
1371
1372	return;
1373}
1374
1375static void sf_stop(sc)
1376	struct sf_softc		*sc;
1377{
1378	int			i;
1379	struct ifnet		*ifp;
1380
1381	SF_LOCK(sc);
1382
1383	ifp = &sc->arpcom.ac_if;
1384
1385	untimeout(sf_stats_update, sc, sc->sf_stat_ch);
1386
1387	csr_write_4(sc, SF_GEN_ETH_CTL, 0);
1388	csr_write_4(sc, SF_CQ_CONSIDX, 0);
1389	csr_write_4(sc, SF_CQ_PRODIDX, 0);
1390	csr_write_4(sc, SF_RXDQ_ADDR_Q1, 0);
1391	csr_write_4(sc, SF_RXDQ_CTL_1, 0);
1392	csr_write_4(sc, SF_RXDQ_PTR_Q1, 0);
1393	csr_write_4(sc, SF_TXCQ_CTL, 0);
1394	csr_write_4(sc, SF_TXDQ_ADDR_HIPRIO, 0);
1395	csr_write_4(sc, SF_TXDQ_CTL, 0);
1396	sf_reset(sc);
1397
1398	sc->sf_link = 0;
1399
1400	for (i = 0; i < SF_RX_DLIST_CNT; i++) {
1401		if (sc->sf_ldata->sf_rx_dlist_big[i].sf_mbuf != NULL) {
1402			m_freem(sc->sf_ldata->sf_rx_dlist_big[i].sf_mbuf);
1403			sc->sf_ldata->sf_rx_dlist_big[i].sf_mbuf = NULL;
1404		}
1405	}
1406
1407	for (i = 0; i < SF_TX_DLIST_CNT; i++) {
1408		if (sc->sf_ldata->sf_tx_dlist[i].sf_mbuf != NULL) {
1409			m_freem(sc->sf_ldata->sf_tx_dlist[i].sf_mbuf);
1410			sc->sf_ldata->sf_tx_dlist[i].sf_mbuf = NULL;
1411		}
1412	}
1413
1414	ifp->if_flags &= ~(IFF_RUNNING|IFF_OACTIVE);
1415	SF_UNLOCK(sc);
1416
1417	return;
1418}
1419
1420/*
1421 * Note: it is important that this function not be interrupted. We
1422 * use a two-stage register access scheme: if we are interrupted in
1423 * between setting the indirect address register and reading from the
1424 * indirect data register, the contents of the address register could
1425 * be changed out from under us.
1426 */
1427static void sf_stats_update(xsc)
1428	void			*xsc;
1429{
1430	struct sf_softc		*sc;
1431	struct ifnet		*ifp;
1432	struct mii_data		*mii;
1433	struct sf_stats		stats;
1434	u_int32_t		*ptr;
1435	int			i;
1436
1437	sc = xsc;
1438	SF_LOCK(sc);
1439	ifp = &sc->arpcom.ac_if;
1440	mii = device_get_softc(sc->sf_miibus);
1441
1442	ptr = (u_int32_t *)&stats;
1443	for (i = 0; i < sizeof(stats)/sizeof(u_int32_t); i++)
1444		ptr[i] = csr_read_4(sc, SF_STATS_BASE +
1445		    (i + sizeof(u_int32_t)));
1446
1447	for (i = 0; i < sizeof(stats)/sizeof(u_int32_t); i++)
1448		csr_write_4(sc, SF_STATS_BASE +
1449		    (i + sizeof(u_int32_t)), 0);
1450
1451	ifp->if_collisions += stats.sf_tx_single_colls +
1452	    stats.sf_tx_multi_colls + stats.sf_tx_excess_colls;
1453
1454	mii_tick(mii);
1455	if (!sc->sf_link) {
1456		mii_pollstat(mii);
1457		if (mii->mii_media_status & IFM_ACTIVE &&
1458		    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
1459			sc->sf_link++;
1460			if (ifp->if_snd.ifq_head != NULL)
1461				sf_start(ifp);
1462	}
1463
1464	sc->sf_stat_ch = timeout(sf_stats_update, sc, hz);
1465
1466	SF_UNLOCK(sc);
1467
1468	return;
1469}
1470
1471static void sf_watchdog(ifp)
1472	struct ifnet		*ifp;
1473{
1474	struct sf_softc		*sc;
1475
1476	sc = ifp->if_softc;
1477
1478	SF_LOCK(sc);
1479
1480	ifp->if_oerrors++;
1481	printf("sf%d: watchdog timeout\n", sc->sf_unit);
1482
1483	sf_stop(sc);
1484	sf_reset(sc);
1485	sf_init(sc);
1486
1487	if (ifp->if_snd.ifq_head != NULL)
1488		sf_start(ifp);
1489
1490	SF_UNLOCK(sc);
1491
1492	return;
1493}
1494
1495static void sf_shutdown(dev)
1496	device_t		dev;
1497{
1498	struct sf_softc		*sc;
1499
1500	sc = device_get_softc(dev);
1501
1502	sf_stop(sc);
1503
1504	return;
1505}
1506