if_sf.c revision 60536
1/*
2 * Copyright (c) 1997, 1998, 1999
3 *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 *    must display the following acknowledgement:
15 *	This product includes software developed by Bill Paul.
16 * 4. Neither the name of the author nor the names of any co-contributors
17 *    may be used to endorse or promote products derived from this software
18 *    without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30 * THE POSSIBILITY OF SUCH DAMAGE.
31 *
32 * $FreeBSD: head/sys/dev/sf/if_sf.c 60536 2000-05-14 02:18:43Z archie $
33 */
34
35/*
36 * Adaptec AIC-6915 "Starfire" PCI fast ethernet driver for FreeBSD.
37 * Programming manual is available from:
38 * ftp.adaptec.com:/pub/BBS/userguides/aic6915_pg.pdf.
39 *
40 * Written by Bill Paul <wpaul@ctr.columbia.edu>
41 * Department of Electical Engineering
42 * Columbia University, New York City
43 */
44
45/*
46 * The Adaptec AIC-6915 "Starfire" is a 64-bit 10/100 PCI ethernet
47 * controller designed with flexibility and reducing CPU load in mind.
48 * The Starfire offers high and low priority buffer queues, a
49 * producer/consumer index mechanism and several different buffer
50 * queue and completion queue descriptor types. Any one of a number
51 * of different driver designs can be used, depending on system and
52 * OS requirements. This driver makes use of type0 transmit frame
53 * descriptors (since BSD fragments packets across an mbuf chain)
54 * and two RX buffer queues prioritized on size (one queue for small
55 * frames that will fit into a single mbuf, another with full size
56 * mbuf clusters for everything else). The producer/consumer indexes
57 * and completion queues are also used.
58 *
59 * One downside to the Starfire has to do with alignment: buffer
60 * queues must be aligned on 256-byte boundaries, and receive buffers
61 * must be aligned on longword boundaries. The receive buffer alignment
62 * causes problems on the Alpha platform, where the packet payload
63 * should be longword aligned. There is no simple way around this.
64 *
65 * For receive filtering, the Starfire offers 16 perfect filter slots
66 * and a 512-bit hash table.
67 *
68 * The Starfire has no internal transceiver, relying instead on an
69 * external MII-based transceiver. Accessing registers on external
70 * PHYs is done through a special register map rather than with the
71 * usual bitbang MDIO method.
72 *
73 * Acesssing the registers on the Starfire is a little tricky. The
74 * Starfire has a 512K internal register space. When programmed for
75 * PCI memory mapped mode, the entire register space can be accessed
76 * directly. However in I/O space mode, only 256 bytes are directly
77 * mapped into PCI I/O space. The other registers can be accessed
78 * indirectly using the SF_INDIRECTIO_ADDR and SF_INDIRECTIO_DATA
79 * registers inside the 256-byte I/O window.
80 */
81
82#include <sys/param.h>
83#include <sys/systm.h>
84#include <sys/sockio.h>
85#include <sys/mbuf.h>
86#include <sys/malloc.h>
87#include <sys/kernel.h>
88#include <sys/socket.h>
89
90#include <net/if.h>
91#include <net/if_arp.h>
92#include <net/ethernet.h>
93#include <net/if_dl.h>
94#include <net/if_media.h>
95
96#include <net/bpf.h>
97
98#include <vm/vm.h>              /* for vtophys */
99#include <vm/pmap.h>            /* for vtophys */
100#include <machine/clock.h>      /* for DELAY */
101#include <machine/bus_pio.h>
102#include <machine/bus_memio.h>
103#include <machine/bus.h>
104#include <machine/resource.h>
105#include <sys/bus.h>
106#include <sys/rman.h>
107
108#include <dev/mii/mii.h>
109#include <dev/mii/miivar.h>
110
111/* "controller miibus0" required.  See GENERIC if you get errors here. */
112#include "miibus_if.h"
113
114#include <pci/pcireg.h>
115#include <pci/pcivar.h>
116
117#define SF_USEIOSPACE
118
119#include <pci/if_sfreg.h>
120
121MODULE_DEPEND(sf, miibus, 1, 1, 1);
122
123#ifndef lint
124static const char rcsid[] =
125  "$FreeBSD: head/sys/dev/sf/if_sf.c 60536 2000-05-14 02:18:43Z archie $";
126#endif
127
128static struct sf_type sf_devs[] = {
129	{ AD_VENDORID, AD_DEVICEID_STARFIRE,
130		"Adaptec AIC-6915 10/100BaseTX" },
131	{ 0, 0, NULL }
132};
133
134static int sf_probe		__P((device_t));
135static int sf_attach		__P((device_t));
136static int sf_detach		__P((device_t));
137static void sf_intr		__P((void *));
138static void sf_stats_update	__P((void *));
139static void sf_rxeof		__P((struct sf_softc *));
140static void sf_txeof		__P((struct sf_softc *));
141static int sf_encap		__P((struct sf_softc *,
142					struct sf_tx_bufdesc_type0 *,
143					struct mbuf *));
144static void sf_start		__P((struct ifnet *));
145static int sf_ioctl		__P((struct ifnet *, u_long, caddr_t));
146static void sf_init		__P((void *));
147static void sf_stop		__P((struct sf_softc *));
148static void sf_watchdog		__P((struct ifnet *));
149static void sf_shutdown		__P((device_t));
150static int sf_ifmedia_upd	__P((struct ifnet *));
151static void sf_ifmedia_sts	__P((struct ifnet *, struct ifmediareq *));
152static void sf_reset		__P((struct sf_softc *));
153static int sf_init_rx_ring	__P((struct sf_softc *));
154static void sf_init_tx_ring	__P((struct sf_softc *));
155static int sf_newbuf		__P((struct sf_softc *,
156					struct sf_rx_bufdesc_type0 *,
157					struct mbuf *));
158static void sf_setmulti		__P((struct sf_softc *));
159static int sf_setperf		__P((struct sf_softc *, int, caddr_t));
160static int sf_sethash		__P((struct sf_softc *, caddr_t, int));
161#ifdef notdef
162static int sf_setvlan		__P((struct sf_softc *, int, u_int32_t));
163#endif
164
165static u_int8_t sf_read_eeprom	__P((struct sf_softc *, int));
166static u_int32_t sf_calchash	__P((caddr_t));
167
168static int sf_miibus_readreg	__P((device_t, int, int));
169static int sf_miibus_writereg	__P((device_t, int, int, int));
170static void sf_miibus_statchg	__P((device_t));
171
172static u_int32_t csr_read_4	__P((struct sf_softc *, int));
173static void csr_write_4		__P((struct sf_softc *, int, u_int32_t));
174
175#ifdef SF_USEIOSPACE
176#define SF_RES			SYS_RES_IOPORT
177#define SF_RID			SF_PCI_LOIO
178#else
179#define SF_RES			SYS_RES_MEMORY
180#define SF_RID			SF_PCI_LOMEM
181#endif
182
183static device_method_t sf_methods[] = {
184	/* Device interface */
185	DEVMETHOD(device_probe,		sf_probe),
186	DEVMETHOD(device_attach,	sf_attach),
187	DEVMETHOD(device_detach,	sf_detach),
188	DEVMETHOD(device_shutdown,	sf_shutdown),
189
190	/* bus interface */
191	DEVMETHOD(bus_print_child,	bus_generic_print_child),
192	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
193
194	/* MII interface */
195	DEVMETHOD(miibus_readreg,	sf_miibus_readreg),
196	DEVMETHOD(miibus_writereg,	sf_miibus_writereg),
197	DEVMETHOD(miibus_statchg,	sf_miibus_statchg),
198
199	{ 0, 0 }
200};
201
202static driver_t sf_driver = {
203	"sf",
204	sf_methods,
205	sizeof(struct sf_softc),
206};
207
208static devclass_t sf_devclass;
209
210DRIVER_MODULE(if_sf, pci, sf_driver, sf_devclass, 0, 0);
211DRIVER_MODULE(miibus, sf, miibus_driver, miibus_devclass, 0, 0);
212
213#define SF_SETBIT(sc, reg, x)	\
214	csr_write_4(sc, reg, csr_read_4(sc, reg) | x)
215
216#define SF_CLRBIT(sc, reg, x)				\
217	csr_write_4(sc, reg, csr_read_4(sc, reg) & ~x)
218
219static u_int32_t csr_read_4(sc, reg)
220	struct sf_softc		*sc;
221	int			reg;
222{
223	u_int32_t		val;
224
225#ifdef SF_USEIOSPACE
226	CSR_WRITE_4(sc, SF_INDIRECTIO_ADDR, reg + SF_RMAP_INTREG_BASE);
227	val = CSR_READ_4(sc, SF_INDIRECTIO_DATA);
228#else
229	val = CSR_READ_4(sc, (reg + SF_RMAP_INTREG_BASE));
230#endif
231
232	return(val);
233}
234
235static u_int8_t sf_read_eeprom(sc, reg)
236	struct sf_softc		*sc;
237	int			reg;
238{
239	u_int8_t		val;
240
241	val = (csr_read_4(sc, SF_EEADDR_BASE +
242	    (reg & 0xFFFFFFFC)) >> (8 * (reg & 3))) & 0xFF;
243
244	return(val);
245}
246
247static void csr_write_4(sc, reg, val)
248	struct sf_softc		*sc;
249	int			reg;
250	u_int32_t		val;
251{
252#ifdef SF_USEIOSPACE
253	CSR_WRITE_4(sc, SF_INDIRECTIO_ADDR, reg + SF_RMAP_INTREG_BASE);
254	CSR_WRITE_4(sc, SF_INDIRECTIO_DATA, val);
255#else
256	CSR_WRITE_4(sc, (reg + SF_RMAP_INTREG_BASE), val);
257#endif
258	return;
259}
260
261static u_int32_t sf_calchash(addr)
262	caddr_t			addr;
263{
264	u_int32_t		crc, carry;
265	int			i, j;
266	u_int8_t		c;
267
268	/* Compute CRC for the address value. */
269	crc = 0xFFFFFFFF; /* initial value */
270
271	for (i = 0; i < 6; i++) {
272		c = *(addr + i);
273		for (j = 0; j < 8; j++) {
274			carry = ((crc & 0x80000000) ? 1 : 0) ^ (c & 0x01);
275			crc <<= 1;
276			c >>= 1;
277			if (carry)
278				crc = (crc ^ 0x04c11db6) | carry;
279		}
280	}
281
282	/* return the filter bit position */
283	return(crc >> 23 & 0x1FF);
284}
285
286/*
287 * Copy the address 'mac' into the perfect RX filter entry at
288 * offset 'idx.' The perfect filter only has 16 entries so do
289 * some sanity tests.
290 */
291static int sf_setperf(sc, idx, mac)
292	struct sf_softc		*sc;
293	int			idx;
294	caddr_t			mac;
295{
296	u_int16_t		*p;
297
298	if (idx < 0 || idx > SF_RXFILT_PERFECT_CNT)
299		return(EINVAL);
300
301	if (mac == NULL)
302		return(EINVAL);
303
304	p = (u_int16_t *)mac;
305
306	csr_write_4(sc, SF_RXFILT_PERFECT_BASE +
307	    (idx * SF_RXFILT_PERFECT_SKIP), htons(p[2]));
308	csr_write_4(sc, SF_RXFILT_PERFECT_BASE +
309	    (idx * SF_RXFILT_PERFECT_SKIP) + 4, htons(p[1]));
310	csr_write_4(sc, SF_RXFILT_PERFECT_BASE +
311	    (idx * SF_RXFILT_PERFECT_SKIP) + 8, htons(p[0]));
312
313	return(0);
314}
315
316/*
317 * Set the bit in the 512-bit hash table that corresponds to the
318 * specified mac address 'mac.' If 'prio' is nonzero, update the
319 * priority hash table instead of the filter hash table.
320 */
321static int sf_sethash(sc, mac, prio)
322	struct sf_softc		*sc;
323	caddr_t			mac;
324	int			prio;
325{
326	u_int32_t		h = 0;
327
328	if (mac == NULL)
329		return(EINVAL);
330
331	h = sf_calchash(mac);
332
333	if (prio) {
334		SF_SETBIT(sc, SF_RXFILT_HASH_BASE + SF_RXFILT_HASH_PRIOOFF +
335		    (SF_RXFILT_HASH_SKIP * (h >> 4)), (1 << (h & 0xF)));
336	} else {
337		SF_SETBIT(sc, SF_RXFILT_HASH_BASE + SF_RXFILT_HASH_ADDROFF +
338		    (SF_RXFILT_HASH_SKIP * (h >> 4)), (1 << (h & 0xF)));
339	}
340
341	return(0);
342}
343
344#ifdef notdef
345/*
346 * Set a VLAN tag in the receive filter.
347 */
348static int sf_setvlan(sc, idx, vlan)
349	struct sf_softc		*sc;
350	int			idx;
351	u_int32_t		vlan;
352{
353	if (idx < 0 || idx >> SF_RXFILT_HASH_CNT)
354		return(EINVAL);
355
356	csr_write_4(sc, SF_RXFILT_HASH_BASE +
357	    (idx * SF_RXFILT_HASH_SKIP) + SF_RXFILT_HASH_VLANOFF, vlan);
358
359	return(0);
360}
361#endif
362
363static int sf_miibus_readreg(dev, phy, reg)
364	device_t		dev;
365	int			phy, reg;
366{
367	struct sf_softc		*sc;
368	int			i;
369	u_int32_t		val = 0;
370
371	sc = device_get_softc(dev);
372
373	for (i = 0; i < SF_TIMEOUT; i++) {
374		val = csr_read_4(sc, SF_PHY_REG(phy, reg));
375		if (val & SF_MII_DATAVALID)
376			break;
377	}
378
379	if (i == SF_TIMEOUT)
380		return(0);
381
382	if ((val & 0x0000FFFF) == 0xFFFF)
383		return(0);
384
385	return(val & 0x0000FFFF);
386}
387
388static int sf_miibus_writereg(dev, phy, reg, val)
389	device_t		dev;
390	int			phy, reg, val;
391{
392	struct sf_softc		*sc;
393	int			i;
394	int			busy;
395
396	sc = device_get_softc(dev);
397
398	csr_write_4(sc, SF_PHY_REG(phy, reg), val);
399
400	for (i = 0; i < SF_TIMEOUT; i++) {
401		busy = csr_read_4(sc, SF_PHY_REG(phy, reg));
402		if (!(busy & SF_MII_BUSY))
403			break;
404	}
405
406	return(0);
407}
408
409static void sf_miibus_statchg(dev)
410	device_t		dev;
411{
412	struct sf_softc		*sc;
413	struct mii_data		*mii;
414
415	sc = device_get_softc(dev);
416	mii = device_get_softc(sc->sf_miibus);
417
418	if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
419		SF_SETBIT(sc, SF_MACCFG_1, SF_MACCFG1_FULLDUPLEX);
420		csr_write_4(sc, SF_BKTOBKIPG, SF_IPGT_FDX);
421	} else {
422		SF_CLRBIT(sc, SF_MACCFG_1, SF_MACCFG1_FULLDUPLEX);
423		csr_write_4(sc, SF_BKTOBKIPG, SF_IPGT_HDX);
424	}
425
426	return;
427}
428
429static void sf_setmulti(sc)
430	struct sf_softc		*sc;
431{
432	struct ifnet		*ifp;
433	int			i;
434	struct ifmultiaddr	*ifma;
435	u_int8_t		dummy[] = { 0, 0, 0, 0, 0, 0 };
436
437	ifp = &sc->arpcom.ac_if;
438
439	/* First zot all the existing filters. */
440	for (i = 1; i < SF_RXFILT_PERFECT_CNT; i++)
441		sf_setperf(sc, i, (char *)&dummy);
442	for (i = SF_RXFILT_HASH_BASE;
443	    i < (SF_RXFILT_HASH_MAX + 1); i += 4)
444		csr_write_4(sc, i, 0);
445	SF_CLRBIT(sc, SF_RXFILT, SF_RXFILT_ALLMULTI);
446
447	/* Now program new ones. */
448	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
449		SF_SETBIT(sc, SF_RXFILT, SF_RXFILT_ALLMULTI);
450	} else {
451		i = 1;
452		/* First find the tail of the list. */
453		for (ifma = ifp->if_multiaddrs.lh_first; ifma != NULL;
454					ifma = ifma->ifma_link.le_next) {
455			if (ifma->ifma_link.le_next == NULL)
456				break;
457		}
458		/* Now traverse the list backwards. */
459		for (; ifma != NULL && ifma != (void *)&ifp->if_multiaddrs;
460			ifma = (struct ifmultiaddr *)ifma->ifma_link.le_prev) {
461			if (ifma->ifma_addr->sa_family != AF_LINK)
462				continue;
463			/*
464			 * Program the first 15 multicast groups
465			 * into the perfect filter. For all others,
466			 * use the hash table.
467			 */
468			if (i < SF_RXFILT_PERFECT_CNT) {
469				sf_setperf(sc, i,
470			LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
471				i++;
472				continue;
473			}
474
475			sf_sethash(sc,
476			    LLADDR((struct sockaddr_dl *)ifma->ifma_addr), 0);
477		}
478	}
479
480	return;
481}
482
483/*
484 * Set media options.
485 */
486static int sf_ifmedia_upd(ifp)
487	struct ifnet		*ifp;
488{
489	struct sf_softc		*sc;
490	struct mii_data		*mii;
491
492	sc = ifp->if_softc;
493	mii = device_get_softc(sc->sf_miibus);
494	sc->sf_link = 0;
495	if (mii->mii_instance) {
496		struct mii_softc        *miisc;
497		for (miisc = LIST_FIRST(&mii->mii_phys); miisc != NULL;
498		    miisc = LIST_NEXT(miisc, mii_list))
499			mii_phy_reset(miisc);
500	}
501	mii_mediachg(mii);
502
503	return(0);
504}
505
506/*
507 * Report current media status.
508 */
509static void sf_ifmedia_sts(ifp, ifmr)
510	struct ifnet		*ifp;
511	struct ifmediareq	*ifmr;
512{
513	struct sf_softc		*sc;
514	struct mii_data		*mii;
515
516	sc = ifp->if_softc;
517	mii = device_get_softc(sc->sf_miibus);
518
519	mii_pollstat(mii);
520	ifmr->ifm_active = mii->mii_media_active;
521	ifmr->ifm_status = mii->mii_media_status;
522
523	return;
524}
525
526static int sf_ioctl(ifp, command, data)
527	struct ifnet		*ifp;
528	u_long			command;
529	caddr_t			data;
530{
531	struct sf_softc		*sc = ifp->if_softc;
532	struct ifreq		*ifr = (struct ifreq *) data;
533	struct mii_data		*mii;
534	int			s, error = 0;
535
536	s = splimp();
537
538	switch(command) {
539	case SIOCSIFADDR:
540	case SIOCGIFADDR:
541	case SIOCSIFMTU:
542		error = ether_ioctl(ifp, command, data);
543		break;
544	case SIOCSIFFLAGS:
545		if (ifp->if_flags & IFF_UP) {
546			if (ifp->if_flags & IFF_RUNNING &&
547			    ifp->if_flags & IFF_PROMISC &&
548			    !(sc->sf_if_flags & IFF_PROMISC)) {
549				SF_SETBIT(sc, SF_RXFILT, SF_RXFILT_PROMISC);
550			} else if (ifp->if_flags & IFF_RUNNING &&
551			    !(ifp->if_flags & IFF_PROMISC) &&
552			    sc->sf_if_flags & IFF_PROMISC) {
553				SF_CLRBIT(sc, SF_RXFILT, SF_RXFILT_PROMISC);
554			} else if (!(ifp->if_flags & IFF_RUNNING))
555				sf_init(sc);
556		} else {
557			if (ifp->if_flags & IFF_RUNNING)
558				sf_stop(sc);
559		}
560		sc->sf_if_flags = ifp->if_flags;
561		error = 0;
562		break;
563	case SIOCADDMULTI:
564	case SIOCDELMULTI:
565		sf_setmulti(sc);
566		error = 0;
567		break;
568	case SIOCGIFMEDIA:
569	case SIOCSIFMEDIA:
570		mii = device_get_softc(sc->sf_miibus);
571		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
572		break;
573	default:
574		error = EINVAL;
575		break;
576	}
577
578	(void)splx(s);
579
580	return(error);
581}
582
583static void sf_reset(sc)
584	struct sf_softc		*sc;
585{
586	register int		i;
587
588	csr_write_4(sc, SF_GEN_ETH_CTL, 0);
589	SF_SETBIT(sc, SF_MACCFG_1, SF_MACCFG1_SOFTRESET);
590	DELAY(1000);
591	SF_CLRBIT(sc, SF_MACCFG_1, SF_MACCFG1_SOFTRESET);
592
593	SF_SETBIT(sc, SF_PCI_DEVCFG, SF_PCIDEVCFG_RESET);
594
595	for (i = 0; i < SF_TIMEOUT; i++) {
596		DELAY(10);
597		if (!(csr_read_4(sc, SF_PCI_DEVCFG) & SF_PCIDEVCFG_RESET))
598			break;
599	}
600
601	if (i == SF_TIMEOUT)
602		printf("sf%d: reset never completed!\n", sc->sf_unit);
603
604	/* Wait a little while for the chip to get its brains in order. */
605	DELAY(1000);
606	return;
607}
608
609/*
610 * Probe for an Adaptec AIC-6915 chip. Check the PCI vendor and device
611 * IDs against our list and return a device name if we find a match.
612 * We also check the subsystem ID so that we can identify exactly which
613 * NIC has been found, if possible.
614 */
615static int sf_probe(dev)
616	device_t		dev;
617{
618	struct sf_type		*t;
619
620	t = sf_devs;
621
622	while(t->sf_name != NULL) {
623		if ((pci_get_vendor(dev) == t->sf_vid) &&
624		    (pci_get_device(dev) == t->sf_did)) {
625			switch((pci_read_config(dev,
626			    SF_PCI_SUBVEN_ID, 4) >> 16) & 0xFFFF) {
627			case AD_SUBSYSID_62011_REV0:
628			case AD_SUBSYSID_62011_REV1:
629				device_set_desc(dev,
630				    "Adaptec ANA-62011 10/100BaseTX");
631				return(0);
632				break;
633			case AD_SUBSYSID_62022:
634				device_set_desc(dev,
635				    "Adaptec ANA-62022 10/100BaseTX");
636				return(0);
637				break;
638			case AD_SUBSYSID_62044_REV0:
639			case AD_SUBSYSID_62044_REV1:
640				device_set_desc(dev,
641				    "Adaptec ANA-62044 10/100BaseTX");
642				return(0);
643				break;
644			case AD_SUBSYSID_62020:
645				device_set_desc(dev,
646				    "Adaptec ANA-62020 10/100BaseFX");
647				return(0);
648				break;
649			case AD_SUBSYSID_69011:
650				device_set_desc(dev,
651				    "Adaptec ANA-69011 10/100BaseTX");
652				return(0);
653				break;
654			default:
655				device_set_desc(dev, t->sf_name);
656				return(0);
657				break;
658			}
659		}
660		t++;
661	}
662
663	return(ENXIO);
664}
665
666/*
667 * Attach the interface. Allocate softc structures, do ifmedia
668 * setup and ethernet/BPF attach.
669 */
670static int sf_attach(dev)
671	device_t		dev;
672{
673	int			s, i;
674	u_int32_t		command;
675	struct sf_softc		*sc;
676	struct ifnet		*ifp;
677	int			unit, rid, error = 0;
678
679	s = splimp();
680
681	sc = device_get_softc(dev);
682	unit = device_get_unit(dev);
683	bzero(sc, sizeof(struct sf_softc));
684
685	/*
686	 * Handle power management nonsense.
687	 */
688	command = pci_read_config(dev, SF_PCI_CAPID, 4) & 0x000000FF;
689	if (command == 0x01) {
690
691		command = pci_read_config(dev, SF_PCI_PWRMGMTCTRL, 4);
692		if (command & SF_PSTATE_MASK) {
693			u_int32_t		iobase, membase, irq;
694
695			/* Save important PCI config data. */
696			iobase = pci_read_config(dev, SF_PCI_LOIO, 4);
697			membase = pci_read_config(dev, SF_PCI_LOMEM, 4);
698			irq = pci_read_config(dev, SF_PCI_INTLINE, 4);
699
700			/* Reset the power state. */
701			printf("sf%d: chip is in D%d power mode "
702			"-- setting to D0\n", unit, command & SF_PSTATE_MASK);
703			command &= 0xFFFFFFFC;
704			pci_write_config(dev, SF_PCI_PWRMGMTCTRL, command, 4);
705
706			/* Restore PCI config data. */
707			pci_write_config(dev, SF_PCI_LOIO, iobase, 4);
708			pci_write_config(dev, SF_PCI_LOMEM, membase, 4);
709			pci_write_config(dev, SF_PCI_INTLINE, irq, 4);
710		}
711	}
712
713	/*
714	 * Map control/status registers.
715	 */
716	command = pci_read_config(dev, PCI_COMMAND_STATUS_REG, 4);
717	command |= (PCIM_CMD_PORTEN|PCIM_CMD_MEMEN|PCIM_CMD_BUSMASTEREN);
718	pci_write_config(dev, PCI_COMMAND_STATUS_REG, command, 4);
719	command = pci_read_config(dev, PCI_COMMAND_STATUS_REG, 4);
720
721#ifdef SF_USEIOSPACE
722	if (!(command & PCIM_CMD_PORTEN)) {
723		printf("sf%d: failed to enable I/O ports!\n", unit);
724		error = ENXIO;
725		goto fail;
726	}
727#else
728	if (!(command & PCIM_CMD_MEMEN)) {
729		printf("sf%d: failed to enable memory mapping!\n", unit);
730		error = ENXIO;
731		goto fail;
732	}
733#endif
734
735	rid = SF_RID;
736	sc->sf_res = bus_alloc_resource(dev, SF_RES, &rid,
737	    0, ~0, 1, RF_ACTIVE);
738
739	if (sc->sf_res == NULL) {
740		printf ("sf%d: couldn't map ports\n", unit);
741		error = ENXIO;
742		goto fail;
743	}
744
745	sc->sf_btag = rman_get_bustag(sc->sf_res);
746	sc->sf_bhandle = rman_get_bushandle(sc->sf_res);
747
748	/* Allocate interrupt */
749	rid = 0;
750	sc->sf_irq = bus_alloc_resource(dev, SYS_RES_IRQ, &rid, 0, ~0, 1,
751	    RF_SHAREABLE | RF_ACTIVE);
752
753	if (sc->sf_irq == NULL) {
754		printf("sf%d: couldn't map interrupt\n", unit);
755		bus_release_resource(dev, SF_RES, SF_RID, sc->sf_res);
756		error = ENXIO;
757		goto fail;
758	}
759
760	error = bus_setup_intr(dev, sc->sf_irq, INTR_TYPE_NET,
761	    sf_intr, sc, &sc->sf_intrhand);
762
763	if (error) {
764		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sf_res);
765		bus_release_resource(dev, SF_RES, SF_RID, sc->sf_res);
766		printf("sf%d: couldn't set up irq\n", unit);
767		goto fail;
768	}
769
770	callout_handle_init(&sc->sf_stat_ch);
771
772	/* Reset the adapter. */
773	sf_reset(sc);
774
775	/*
776	 * Get station address from the EEPROM.
777	 */
778	for (i = 0; i < ETHER_ADDR_LEN; i++)
779		sc->arpcom.ac_enaddr[i] =
780		    sf_read_eeprom(sc, SF_EE_NODEADDR + ETHER_ADDR_LEN - i);
781
782	/*
783	 * An Adaptec chip was detected. Inform the world.
784	 */
785	printf("sf%d: Ethernet address: %6D\n", unit,
786	    sc->arpcom.ac_enaddr, ":");
787
788	sc->sf_unit = unit;
789
790	/* Allocate the descriptor queues. */
791	sc->sf_ldata = contigmalloc(sizeof(struct sf_list_data), M_DEVBUF,
792	    M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0);
793
794	if (sc->sf_ldata == NULL) {
795		printf("sf%d: no memory for list buffers!\n", unit);
796		bus_teardown_intr(dev, sc->sf_irq, sc->sf_intrhand);
797		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sf_irq);
798		bus_release_resource(dev, SF_RES, SF_RID, sc->sf_res);
799		error = ENXIO;
800		goto fail;
801	}
802
803	bzero(sc->sf_ldata, sizeof(struct sf_list_data));
804
805	/* Do MII setup. */
806	if (mii_phy_probe(dev, &sc->sf_miibus,
807	    sf_ifmedia_upd, sf_ifmedia_sts)) {
808		printf("sf%d: MII without any phy!\n", sc->sf_unit);
809		contigfree(sc->sf_ldata,sizeof(struct sf_list_data),M_DEVBUF);
810		bus_teardown_intr(dev, sc->sf_irq, sc->sf_intrhand);
811		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sf_irq);
812		bus_release_resource(dev, SF_RES, SF_RID, sc->sf_res);
813		error = ENXIO;
814		goto fail;
815	}
816
817	ifp = &sc->arpcom.ac_if;
818	ifp->if_softc = sc;
819	ifp->if_unit = unit;
820	ifp->if_name = "sf";
821	ifp->if_mtu = ETHERMTU;
822	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
823	ifp->if_ioctl = sf_ioctl;
824	ifp->if_output = ether_output;
825	ifp->if_start = sf_start;
826	ifp->if_watchdog = sf_watchdog;
827	ifp->if_init = sf_init;
828	ifp->if_baudrate = 10000000;
829	ifp->if_snd.ifq_maxlen = SF_TX_DLIST_CNT - 1;
830
831	/*
832	 * Call MI attach routines.
833	 */
834	if_attach(ifp);
835	ether_ifattach(ifp);
836
837	bpfattach(ifp, DLT_EN10MB, sizeof(struct ether_header));
838
839fail:
840	splx(s);
841	return(error);
842}
843
844static int sf_detach(dev)
845	device_t		dev;
846{
847	struct sf_softc		*sc;
848	struct ifnet		*ifp;
849	int			s;
850
851	s = splimp();
852
853	sc = device_get_softc(dev);
854	ifp = &sc->arpcom.ac_if;
855
856	if_detach(ifp);
857	sf_stop(sc);
858
859	bus_generic_detach(dev);
860	device_delete_child(dev, sc->sf_miibus);
861
862	bus_teardown_intr(dev, sc->sf_irq, sc->sf_intrhand);
863	bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sf_irq);
864	bus_release_resource(dev, SF_RES, SF_RID, sc->sf_res);
865
866	contigfree(sc->sf_ldata, sizeof(struct sf_list_data), M_DEVBUF);
867
868	splx(s);
869
870	return(0);
871}
872
873static int sf_init_rx_ring(sc)
874	struct sf_softc		*sc;
875{
876	struct sf_list_data	*ld;
877	int			i;
878
879	ld = sc->sf_ldata;
880
881	bzero((char *)ld->sf_rx_dlist_big,
882	    sizeof(struct sf_rx_bufdesc_type0) * SF_RX_DLIST_CNT);
883	bzero((char *)ld->sf_rx_clist,
884	    sizeof(struct sf_rx_cmpdesc_type3) * SF_RX_CLIST_CNT);
885
886	for (i = 0; i < SF_RX_DLIST_CNT; i++) {
887		if (sf_newbuf(sc, &ld->sf_rx_dlist_big[i], NULL) == ENOBUFS)
888			return(ENOBUFS);
889	}
890
891	return(0);
892}
893
894static void sf_init_tx_ring(sc)
895	struct sf_softc		*sc;
896{
897	struct sf_list_data	*ld;
898	int			i;
899
900	ld = sc->sf_ldata;
901
902	bzero((char *)ld->sf_tx_dlist,
903	    sizeof(struct sf_tx_bufdesc_type0) * SF_TX_DLIST_CNT);
904	bzero((char *)ld->sf_tx_clist,
905	    sizeof(struct sf_tx_cmpdesc_type0) * SF_TX_CLIST_CNT);
906
907	for (i = 0; i < SF_TX_DLIST_CNT; i++)
908		ld->sf_tx_dlist[i].sf_id = SF_TX_BUFDESC_ID;
909	for (i = 0; i < SF_TX_CLIST_CNT; i++)
910		ld->sf_tx_clist[i].sf_type = SF_TXCMPTYPE_TX;
911
912	ld->sf_tx_dlist[SF_TX_DLIST_CNT - 1].sf_end = 1;
913	sc->sf_tx_cnt = 0;
914
915	return;
916}
917
918static int sf_newbuf(sc, c, m)
919	struct sf_softc		*sc;
920	struct sf_rx_bufdesc_type0	*c;
921	struct mbuf		*m;
922{
923	struct mbuf		*m_new = NULL;
924
925	if (m == NULL) {
926		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
927		if (m_new == NULL) {
928			printf("sf%d: no memory for rx list -- "
929			    "packet dropped!\n", sc->sf_unit);
930			return(ENOBUFS);
931		}
932
933		MCLGET(m_new, M_DONTWAIT);
934		if (!(m_new->m_flags & M_EXT)) {
935			printf("sf%d: no memory for rx list -- "
936			    "packet dropped!\n", sc->sf_unit);
937			m_freem(m_new);
938			return(ENOBUFS);
939		}
940		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
941	} else {
942		m_new = m;
943		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
944		m_new->m_data = m_new->m_ext.ext_buf;
945	}
946
947	m_adj(m_new, sizeof(u_int64_t));
948
949	c->sf_mbuf = m_new;
950	c->sf_addrlo = SF_RX_HOSTADDR(vtophys(mtod(m_new, caddr_t)));
951	c->sf_valid = 1;
952
953	return(0);
954}
955
956/*
957 * The starfire is programmed to use 'normal' mode for packet reception,
958 * which means we use the consumer/producer model for both the buffer
959 * descriptor queue and the completion descriptor queue. The only problem
960 * with this is that it involves a lot of register accesses: we have to
961 * read the RX completion consumer and producer indexes and the RX buffer
962 * producer index, plus the RX completion consumer and RX buffer producer
963 * indexes have to be updated. It would have been easier if Adaptec had
964 * put each index in a separate register, especially given that the damn
965 * NIC has a 512K register space.
966 *
967 * In spite of all the lovely features that Adaptec crammed into the 6915,
968 * it is marred by one truly stupid design flaw, which is that receive
969 * buffer addresses must be aligned on a longword boundary. This forces
970 * the packet payload to be unaligned, which is suboptimal on the x86 and
971 * completely unuseable on the Alpha. Our only recourse is to copy received
972 * packets into properly aligned buffers before handing them off.
973 */
974
975static void sf_rxeof(sc)
976	struct sf_softc		*sc;
977{
978	struct ether_header	*eh;
979	struct mbuf		*m;
980	struct ifnet		*ifp;
981	struct sf_rx_bufdesc_type0	*desc;
982	struct sf_rx_cmpdesc_type3	*cur_rx;
983	u_int32_t		rxcons, rxprod;
984	int			cmpprodidx, cmpconsidx, bufprodidx;
985
986	ifp = &sc->arpcom.ac_if;
987
988	rxcons = csr_read_4(sc, SF_CQ_CONSIDX);
989	rxprod = csr_read_4(sc, SF_RXDQ_PTR_Q1);
990	cmpprodidx = SF_IDX_LO(csr_read_4(sc, SF_CQ_PRODIDX));
991	cmpconsidx = SF_IDX_LO(rxcons);
992	bufprodidx = SF_IDX_LO(rxprod);
993
994	while (cmpconsidx != cmpprodidx) {
995		struct mbuf		*m0;
996
997		cur_rx = &sc->sf_ldata->sf_rx_clist[cmpconsidx];
998		desc = &sc->sf_ldata->sf_rx_dlist_big[cur_rx->sf_endidx];
999		m = desc->sf_mbuf;
1000		SF_INC(cmpconsidx, SF_RX_CLIST_CNT);
1001		SF_INC(bufprodidx, SF_RX_DLIST_CNT);
1002
1003		if (!(cur_rx->sf_status1 & SF_RXSTAT1_OK)) {
1004			ifp->if_ierrors++;
1005			sf_newbuf(sc, desc, m);
1006			continue;
1007		}
1008
1009		m0 = m_devget(mtod(m, char *) - ETHER_ALIGN,
1010		    cur_rx->sf_len + ETHER_ALIGN, 0, ifp, NULL);
1011		sf_newbuf(sc, desc, m);
1012		if (m0 == NULL) {
1013			ifp->if_ierrors++;
1014			continue;
1015		}
1016		m_adj(m0, ETHER_ALIGN);
1017		m = m0;
1018
1019		eh = mtod(m, struct ether_header *);
1020		ifp->if_ipackets++;
1021
1022		/* Remove header from mbuf and pass it on. */
1023		m_adj(m, sizeof(struct ether_header));
1024		ether_input(ifp, eh, m);
1025	}
1026
1027	csr_write_4(sc, SF_CQ_CONSIDX,
1028	    (rxcons & ~SF_CQ_CONSIDX_RXQ1) | cmpconsidx);
1029	csr_write_4(sc, SF_RXDQ_PTR_Q1,
1030	    (rxprod & ~SF_RXDQ_PRODIDX) | bufprodidx);
1031
1032	return;
1033}
1034
1035/*
1036 * Read the transmit status from the completion queue and release
1037 * mbufs. Note that the buffer descriptor index in the completion
1038 * descriptor is an offset from the start of the transmit buffer
1039 * descriptor list in bytes. This is important because the manual
1040 * gives the impression that it should match the producer/consumer
1041 * index, which is the offset in 8 byte blocks.
1042 */
1043static void sf_txeof(sc)
1044	struct sf_softc		*sc;
1045{
1046	int			txcons, cmpprodidx, cmpconsidx;
1047	struct sf_tx_cmpdesc_type1 *cur_cmp;
1048	struct sf_tx_bufdesc_type0 *cur_tx;
1049	struct ifnet		*ifp;
1050
1051	ifp = &sc->arpcom.ac_if;
1052
1053	txcons = csr_read_4(sc, SF_CQ_CONSIDX);
1054	cmpprodidx = SF_IDX_HI(csr_read_4(sc, SF_CQ_PRODIDX));
1055	cmpconsidx = SF_IDX_HI(txcons);
1056
1057	while (cmpconsidx != cmpprodidx) {
1058		cur_cmp = &sc->sf_ldata->sf_tx_clist[cmpconsidx];
1059		cur_tx = &sc->sf_ldata->sf_tx_dlist[cur_cmp->sf_index >> 7];
1060		SF_INC(cmpconsidx, SF_TX_CLIST_CNT);
1061
1062		if (cur_cmp->sf_txstat & SF_TXSTAT_TX_OK)
1063			ifp->if_opackets++;
1064		else
1065			ifp->if_oerrors++;
1066
1067		sc->sf_tx_cnt--;
1068		if (cur_tx->sf_mbuf != NULL) {
1069			m_freem(cur_tx->sf_mbuf);
1070			cur_tx->sf_mbuf = NULL;
1071		}
1072	}
1073
1074	ifp->if_timer = 0;
1075	ifp->if_flags &= ~IFF_OACTIVE;
1076
1077	csr_write_4(sc, SF_CQ_CONSIDX,
1078	    (txcons & ~SF_CQ_CONSIDX_TXQ) |
1079	    ((cmpconsidx << 16) & 0xFFFF0000));
1080
1081	return;
1082}
1083
1084static void sf_intr(arg)
1085	void			*arg;
1086{
1087	struct sf_softc		*sc;
1088	struct ifnet		*ifp;
1089	u_int32_t		status;
1090
1091	sc = arg;
1092	ifp = &sc->arpcom.ac_if;
1093
1094	if (!(csr_read_4(sc, SF_ISR_SHADOW) & SF_ISR_PCIINT_ASSERTED))
1095		return;
1096
1097	/* Disable interrupts. */
1098	csr_write_4(sc, SF_IMR, 0x00000000);
1099
1100	for (;;) {
1101		status = csr_read_4(sc, SF_ISR);
1102		if (status)
1103			csr_write_4(sc, SF_ISR, status);
1104
1105		if (!(status & SF_INTRS))
1106			break;
1107
1108		if (status & SF_ISR_RXDQ1_DMADONE)
1109			sf_rxeof(sc);
1110
1111		if (status & SF_ISR_TX_TXDONE)
1112			sf_txeof(sc);
1113
1114		if (status & SF_ISR_ABNORMALINTR) {
1115			if (status & SF_ISR_STATSOFLOW) {
1116				untimeout(sf_stats_update, sc,
1117				    sc->sf_stat_ch);
1118				sf_stats_update(sc);
1119			} else
1120				sf_init(sc);
1121		}
1122	}
1123
1124	/* Re-enable interrupts. */
1125	csr_write_4(sc, SF_IMR, SF_INTRS);
1126
1127	if (ifp->if_snd.ifq_head != NULL)
1128		sf_start(ifp);
1129
1130	return;
1131}
1132
1133static void sf_init(xsc)
1134	void			*xsc;
1135{
1136	struct sf_softc		*sc;
1137	struct ifnet		*ifp;
1138	struct mii_data		*mii;
1139	int			i, s;
1140
1141	s = splimp();
1142
1143	sc = xsc;
1144	ifp = &sc->arpcom.ac_if;
1145	mii = device_get_softc(sc->sf_miibus);
1146
1147	sf_stop(sc);
1148	sf_reset(sc);
1149
1150	/* Init all the receive filter registers */
1151	for (i = SF_RXFILT_PERFECT_BASE;
1152	    i < (SF_RXFILT_HASH_MAX + 1); i += 4)
1153		csr_write_4(sc, i, 0);
1154
1155	/* Empty stats counter registers. */
1156	for (i = 0; i < sizeof(struct sf_stats)/sizeof(u_int32_t); i++)
1157		csr_write_4(sc, SF_STATS_BASE +
1158		    (i + sizeof(u_int32_t)), 0);
1159
1160	/* Init our MAC address */
1161	csr_write_4(sc, SF_PAR0, *(u_int32_t *)(&sc->arpcom.ac_enaddr[0]));
1162	csr_write_4(sc, SF_PAR1, *(u_int32_t *)(&sc->arpcom.ac_enaddr[4]));
1163	sf_setperf(sc, 0, (caddr_t)&sc->arpcom.ac_enaddr);
1164
1165	if (sf_init_rx_ring(sc) == ENOBUFS) {
1166		printf("sf%d: initialization failed: no "
1167		    "memory for rx buffers\n", sc->sf_unit);
1168		(void)splx(s);
1169		return;
1170	}
1171
1172	sf_init_tx_ring(sc);
1173
1174	csr_write_4(sc, SF_RXFILT, SF_PERFMODE_NORMAL|SF_HASHMODE_WITHVLAN);
1175
1176	/* If we want promiscuous mode, set the allframes bit. */
1177	if (ifp->if_flags & IFF_PROMISC) {
1178		SF_SETBIT(sc, SF_RXFILT, SF_RXFILT_PROMISC);
1179	} else {
1180		SF_CLRBIT(sc, SF_RXFILT, SF_RXFILT_PROMISC);
1181	}
1182
1183	if (ifp->if_flags & IFF_BROADCAST) {
1184		SF_SETBIT(sc, SF_RXFILT, SF_RXFILT_BROAD);
1185	} else {
1186		SF_CLRBIT(sc, SF_RXFILT, SF_RXFILT_BROAD);
1187	}
1188
1189	/* Init the completion queue indexes */
1190	csr_write_4(sc, SF_CQ_CONSIDX, 0);
1191	csr_write_4(sc, SF_CQ_PRODIDX, 0);
1192
1193	/* Init the RX completion queue */
1194	csr_write_4(sc, SF_RXCQ_CTL_1,
1195	    vtophys(sc->sf_ldata->sf_rx_clist) & SF_RXCQ_ADDR);
1196	SF_SETBIT(sc, SF_RXCQ_CTL_1, SF_RXCQTYPE_3);
1197
1198	/* Init RX DMA control. */
1199	SF_SETBIT(sc, SF_RXDMA_CTL, SF_RXDMA_REPORTBADPKTS);
1200
1201	/* Init the RX buffer descriptor queue. */
1202	csr_write_4(sc, SF_RXDQ_ADDR_Q1,
1203	    vtophys(sc->sf_ldata->sf_rx_dlist_big));
1204	csr_write_4(sc, SF_RXDQ_CTL_1, (MCLBYTES << 16) | SF_DESCSPACE_16BYTES);
1205	csr_write_4(sc, SF_RXDQ_PTR_Q1, SF_RX_DLIST_CNT - 1);
1206
1207	/* Init the TX completion queue */
1208	csr_write_4(sc, SF_TXCQ_CTL,
1209	    vtophys(sc->sf_ldata->sf_tx_clist) & SF_RXCQ_ADDR);
1210
1211	/* Init the TX buffer descriptor queue. */
1212	csr_write_4(sc, SF_TXDQ_ADDR_HIPRIO,
1213		vtophys(sc->sf_ldata->sf_tx_dlist));
1214	SF_SETBIT(sc, SF_TX_FRAMCTL, SF_TXFRMCTL_CPLAFTERTX);
1215	csr_write_4(sc, SF_TXDQ_CTL,
1216	    SF_TXBUFDESC_TYPE0|SF_TXMINSPACE_128BYTES|SF_TXSKIPLEN_8BYTES);
1217	SF_SETBIT(sc, SF_TXDQ_CTL, SF_TXDQCTL_NODMACMP);
1218
1219	/* Enable autopadding of short TX frames. */
1220	SF_SETBIT(sc, SF_MACCFG_1, SF_MACCFG1_AUTOPAD);
1221
1222	/* Enable interrupts. */
1223	csr_write_4(sc, SF_IMR, SF_INTRS);
1224	SF_SETBIT(sc, SF_PCI_DEVCFG, SF_PCIDEVCFG_INTR_ENB);
1225
1226	/* Enable the RX and TX engines. */
1227	SF_SETBIT(sc, SF_GEN_ETH_CTL, SF_ETHCTL_RX_ENB|SF_ETHCTL_RXDMA_ENB);
1228	SF_SETBIT(sc, SF_GEN_ETH_CTL, SF_ETHCTL_TX_ENB|SF_ETHCTL_TXDMA_ENB);
1229
1230	/*mii_mediachg(mii);*/
1231	sf_ifmedia_upd(ifp);
1232
1233	ifp->if_flags |= IFF_RUNNING;
1234	ifp->if_flags &= ~IFF_OACTIVE;
1235
1236	sc->sf_stat_ch = timeout(sf_stats_update, sc, hz);
1237
1238	splx(s);
1239
1240	return;
1241}
1242
1243static int sf_encap(sc, c, m_head)
1244	struct sf_softc		*sc;
1245	struct sf_tx_bufdesc_type0 *c;
1246	struct mbuf		*m_head;
1247{
1248	int			frag = 0;
1249	struct sf_frag		*f = NULL;
1250	struct mbuf		*m;
1251
1252	m = m_head;
1253
1254	for (m = m_head, frag = 0; m != NULL; m = m->m_next) {
1255		if (m->m_len != 0) {
1256			if (frag == SF_MAXFRAGS)
1257				break;
1258			f = &c->sf_frags[frag];
1259			if (frag == 0)
1260				f->sf_pktlen = m_head->m_pkthdr.len;
1261			f->sf_fraglen = m->m_len;
1262			f->sf_addr = vtophys(mtod(m, vm_offset_t));
1263			frag++;
1264		}
1265	}
1266
1267	if (m != NULL) {
1268		struct mbuf		*m_new = NULL;
1269
1270		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1271		if (m_new == NULL) {
1272			printf("sf%d: no memory for tx list", sc->sf_unit);
1273			return(1);
1274		}
1275
1276		if (m_head->m_pkthdr.len > MHLEN) {
1277			MCLGET(m_new, M_DONTWAIT);
1278			if (!(m_new->m_flags & M_EXT)) {
1279				m_freem(m_new);
1280				printf("sf%d: no memory for tx list",
1281				    sc->sf_unit);
1282				return(1);
1283			}
1284		}
1285		m_copydata(m_head, 0, m_head->m_pkthdr.len,
1286		    mtod(m_new, caddr_t));
1287		m_new->m_pkthdr.len = m_new->m_len = m_head->m_pkthdr.len;
1288		m_freem(m_head);
1289		m_head = m_new;
1290		f = &c->sf_frags[0];
1291		f->sf_fraglen = f->sf_pktlen = m_head->m_pkthdr.len;
1292		f->sf_addr = vtophys(mtod(m_head, caddr_t));
1293		frag = 1;
1294	}
1295
1296	c->sf_mbuf = m_head;
1297	c->sf_id = SF_TX_BUFDESC_ID;
1298	c->sf_fragcnt = frag;
1299	c->sf_intr = 1;
1300	c->sf_caltcp = 0;
1301	c->sf_crcen = 1;
1302
1303	return(0);
1304}
1305
1306static void sf_start(ifp)
1307	struct ifnet		*ifp;
1308{
1309	struct sf_softc		*sc;
1310	struct sf_tx_bufdesc_type0 *cur_tx = NULL;
1311	struct mbuf		*m_head = NULL;
1312	int			i, txprod;
1313
1314	sc = ifp->if_softc;
1315
1316	if (!sc->sf_link)
1317		return;
1318
1319	if (ifp->if_flags & IFF_OACTIVE)
1320		return;
1321
1322	txprod = csr_read_4(sc, SF_TXDQ_PRODIDX);
1323	i = SF_IDX_HI(txprod) >> 4;
1324
1325	while(sc->sf_ldata->sf_tx_dlist[i].sf_mbuf == NULL) {
1326		IF_DEQUEUE(&ifp->if_snd, m_head);
1327		if (m_head == NULL)
1328			break;
1329
1330		cur_tx = &sc->sf_ldata->sf_tx_dlist[i];
1331		sf_encap(sc, cur_tx, m_head);
1332
1333		/*
1334		 * If there's a BPF listener, bounce a copy of this frame
1335		 * to him.
1336		 */
1337		if (ifp->if_bpf)
1338			bpf_mtap(ifp, m_head);
1339
1340		SF_INC(i, SF_TX_DLIST_CNT);
1341		sc->sf_tx_cnt++;
1342		if (sc->sf_tx_cnt == (SF_TX_DLIST_CNT - 2))
1343			break;
1344	}
1345
1346	if (cur_tx == NULL)
1347		return;
1348
1349	/* Transmit */
1350	csr_write_4(sc, SF_TXDQ_PRODIDX,
1351	    (txprod & ~SF_TXDQ_PRODIDX_HIPRIO) |
1352	    ((i << 20) & 0xFFFF0000));
1353
1354	ifp->if_timer = 5;
1355
1356	return;
1357}
1358
1359static void sf_stop(sc)
1360	struct sf_softc		*sc;
1361{
1362	int			i;
1363	struct ifnet		*ifp;
1364
1365	ifp = &sc->arpcom.ac_if;
1366
1367	untimeout(sf_stats_update, sc, sc->sf_stat_ch);
1368
1369	csr_write_4(sc, SF_GEN_ETH_CTL, 0);
1370	csr_write_4(sc, SF_CQ_CONSIDX, 0);
1371	csr_write_4(sc, SF_CQ_PRODIDX, 0);
1372	csr_write_4(sc, SF_RXDQ_ADDR_Q1, 0);
1373	csr_write_4(sc, SF_RXDQ_CTL_1, 0);
1374	csr_write_4(sc, SF_RXDQ_PTR_Q1, 0);
1375	csr_write_4(sc, SF_TXCQ_CTL, 0);
1376	csr_write_4(sc, SF_TXDQ_ADDR_HIPRIO, 0);
1377	csr_write_4(sc, SF_TXDQ_CTL, 0);
1378	sf_reset(sc);
1379
1380	sc->sf_link = 0;
1381
1382	for (i = 0; i < SF_RX_DLIST_CNT; i++) {
1383		if (sc->sf_ldata->sf_rx_dlist_big[i].sf_mbuf != NULL) {
1384			m_freem(sc->sf_ldata->sf_rx_dlist_big[i].sf_mbuf);
1385			sc->sf_ldata->sf_rx_dlist_big[i].sf_mbuf = NULL;
1386		}
1387	}
1388
1389	for (i = 0; i < SF_TX_DLIST_CNT; i++) {
1390		if (sc->sf_ldata->sf_tx_dlist[i].sf_mbuf != NULL) {
1391			m_freem(sc->sf_ldata->sf_tx_dlist[i].sf_mbuf);
1392			sc->sf_ldata->sf_tx_dlist[i].sf_mbuf = NULL;
1393		}
1394	}
1395
1396	ifp->if_flags &= ~(IFF_RUNNING|IFF_OACTIVE);
1397
1398	return;
1399}
1400
1401/*
1402 * Note: it is important that this function not be interrupted. We
1403 * use a two-stage register access scheme: if we are interrupted in
1404 * between setting the indirect address register and reading from the
1405 * indirect data register, the contents of the address register could
1406 * be changed out from under us.
1407 */
1408static void sf_stats_update(xsc)
1409	void			*xsc;
1410{
1411	struct sf_softc		*sc;
1412	struct ifnet		*ifp;
1413	struct mii_data		*mii;
1414	struct sf_stats		stats;
1415	u_int32_t		*ptr;
1416	int			i, s;
1417
1418	s = splimp();
1419
1420	sc = xsc;
1421	ifp = &sc->arpcom.ac_if;
1422	mii = device_get_softc(sc->sf_miibus);
1423
1424	ptr = (u_int32_t *)&stats;
1425	for (i = 0; i < sizeof(stats)/sizeof(u_int32_t); i++)
1426		ptr[i] = csr_read_4(sc, SF_STATS_BASE +
1427		    (i + sizeof(u_int32_t)));
1428
1429	for (i = 0; i < sizeof(stats)/sizeof(u_int32_t); i++)
1430		csr_write_4(sc, SF_STATS_BASE +
1431		    (i + sizeof(u_int32_t)), 0);
1432
1433	ifp->if_collisions += stats.sf_tx_single_colls +
1434	    stats.sf_tx_multi_colls + stats.sf_tx_excess_colls;
1435
1436	mii_tick(mii);
1437	if (!sc->sf_link) {
1438		mii_pollstat(mii);
1439		if (mii->mii_media_status & IFM_ACTIVE &&
1440		    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
1441			sc->sf_link++;
1442			if (ifp->if_snd.ifq_head != NULL)
1443				sf_start(ifp);
1444	}
1445
1446	sc->sf_stat_ch = timeout(sf_stats_update, sc, hz);
1447
1448	splx(s);
1449
1450	return;
1451}
1452
1453static void sf_watchdog(ifp)
1454	struct ifnet		*ifp;
1455{
1456	struct sf_softc		*sc;
1457
1458	sc = ifp->if_softc;
1459
1460	ifp->if_oerrors++;
1461	printf("sf%d: watchdog timeout\n", sc->sf_unit);
1462
1463	sf_stop(sc);
1464	sf_reset(sc);
1465	sf_init(sc);
1466
1467	if (ifp->if_snd.ifq_head != NULL)
1468		sf_start(ifp);
1469
1470	return;
1471}
1472
1473static void sf_shutdown(dev)
1474	device_t		dev;
1475{
1476	struct sf_softc		*sc;
1477
1478	sc = device_get_softc(dev);
1479
1480	sf_stop(sc);
1481
1482	return;
1483}
1484