if_sf.c revision 53468
1/*
2 * Copyright (c) 1997, 1998, 1999
3 *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 *    must display the following acknowledgement:
15 *	This product includes software developed by Bill Paul.
16 * 4. Neither the name of the author nor the names of any co-contributors
17 *    may be used to endorse or promote products derived from this software
18 *    without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30 * THE POSSIBILITY OF SUCH DAMAGE.
31 *
32 * $FreeBSD: head/sys/dev/sf/if_sf.c 53468 1999-11-20 18:29:44Z wpaul $
33 */
34
35/*
36 * Adaptec AIC-6915 "Starfire" PCI fast ethernet driver for FreeBSD.
37 * Programming manual is available from:
38 * ftp.adaptec.com:/pub/BBS/userguides/aic6915_pg.pdf.
39 *
40 * Written by Bill Paul <wpaul@ctr.columbia.edu>
41 * Department of Electical Engineering
42 * Columbia University, New York City
43 */
44
45/*
46 * The Adaptec AIC-6915 "Starfire" is a 64-bit 10/100 PCI ethernet
47 * controller designed with flexibility and reducing CPU load in mind.
48 * The Starfire offers high and low priority buffer queues, a
49 * producer/consumer index mechanism and several different buffer
50 * queue and completion queue descriptor types. Any one of a number
51 * of different driver designs can be used, depending on system and
52 * OS requirements. This driver makes use of type0 transmit frame
53 * descriptors (since BSD fragments packets across an mbuf chain)
54 * and two RX buffer queues prioritized on size (one queue for small
55 * frames that will fit into a single mbuf, another with full size
56 * mbuf clusters for everything else). The producer/consumer indexes
57 * and completion queues are also used.
58 *
59 * One downside to the Starfire has to do with alignment: buffer
60 * queues must be aligned on 256-byte boundaries, and receive buffers
61 * must be aligned on longword boundaries. The receive buffer alignment
62 * causes problems on the Alpha platform, where the packet payload
63 * should be longword aligned. There is no simple way around this.
64 *
65 * For receive filtering, the Starfire offers 16 perfect filter slots
66 * and a 512-bit hash table.
67 *
68 * The Starfire has no internal transceiver, relying instead on an
69 * external MII-based transceiver. Accessing registers on external
70 * PHYs is done through a special register map rather than with the
71 * usual bitbang MDIO method.
72 *
73 * Acesssing the registers on the Starfire is a little tricky. The
74 * Starfire has a 512K internal register space. When programmed for
75 * PCI memory mapped mode, the entire register space can be accessed
76 * directly. However in I/O space mode, only 256 bytes are directly
77 * mapped into PCI I/O space. The other registers can be accessed
78 * indirectly using the SF_INDIRECTIO_ADDR and SF_INDIRECTIO_DATA
79 * registers inside the 256-byte I/O window.
80 */
81
82#include <sys/param.h>
83#include <sys/systm.h>
84#include <sys/sockio.h>
85#include <sys/mbuf.h>
86#include <sys/malloc.h>
87#include <sys/kernel.h>
88#include <sys/socket.h>
89
90#include <net/if.h>
91#include <net/if_arp.h>
92#include <net/ethernet.h>
93#include <net/if_dl.h>
94#include <net/if_media.h>
95
96#include <net/bpf.h>
97
98#include <vm/vm.h>              /* for vtophys */
99#include <vm/pmap.h>            /* for vtophys */
100#include <machine/clock.h>      /* for DELAY */
101#include <machine/bus_pio.h>
102#include <machine/bus_memio.h>
103#include <machine/bus.h>
104#include <machine/resource.h>
105#include <sys/bus.h>
106#include <sys/rman.h>
107
108#include <dev/mii/mii.h>
109#include <dev/mii/miivar.h>
110
111/* "controller miibus0" required.  See GENERIC if you get errors here. */
112#include "miibus_if.h"
113
114#include <pci/pcireg.h>
115#include <pci/pcivar.h>
116
117#define SF_USEIOSPACE
118
119#include <pci/if_sfreg.h>
120
121#ifndef lint
122static const char rcsid[] =
123  "$FreeBSD: head/sys/dev/sf/if_sf.c 53468 1999-11-20 18:29:44Z wpaul $";
124#endif
125
126static struct sf_type sf_devs[] = {
127	{ AD_VENDORID, AD_DEVICEID_STARFIRE,
128		"Adaptec AIC-6915 10/100BaseTX" },
129	{ 0, 0, NULL }
130};
131
132static int sf_probe		__P((device_t));
133static int sf_attach		__P((device_t));
134static int sf_detach		__P((device_t));
135static void sf_intr		__P((void *));
136static void sf_stats_update	__P((void *));
137static void sf_rxeof		__P((struct sf_softc *));
138static void sf_txeof		__P((struct sf_softc *));
139static int sf_encap		__P((struct sf_softc *,
140					struct sf_tx_bufdesc_type0 *,
141					struct mbuf *));
142static void sf_start		__P((struct ifnet *));
143static int sf_ioctl		__P((struct ifnet *, u_long, caddr_t));
144static void sf_init		__P((void *));
145static void sf_stop		__P((struct sf_softc *));
146static void sf_watchdog		__P((struct ifnet *));
147static void sf_shutdown		__P((device_t));
148static int sf_ifmedia_upd	__P((struct ifnet *));
149static void sf_ifmedia_sts	__P((struct ifnet *, struct ifmediareq *));
150static void sf_reset		__P((struct sf_softc *));
151static int sf_init_rx_ring	__P((struct sf_softc *));
152static void sf_init_tx_ring	__P((struct sf_softc *));
153static int sf_newbuf		__P((struct sf_softc *,
154					struct sf_rx_bufdesc_type0 *,
155					struct mbuf *));
156static void sf_setmulti		__P((struct sf_softc *));
157static int sf_setperf		__P((struct sf_softc *, int, caddr_t));
158static int sf_sethash		__P((struct sf_softc *, caddr_t, int));
159#ifdef notdef
160static int sf_setvlan		__P((struct sf_softc *, int, u_int32_t));
161#endif
162
163static u_int8_t sf_read_eeprom	__P((struct sf_softc *, int));
164static u_int32_t sf_calchash	__P((caddr_t));
165
166static int sf_miibus_readreg	__P((device_t, int, int));
167static int sf_miibus_writereg	__P((device_t, int, int, int));
168static void sf_miibus_statchg	__P((device_t));
169
170static u_int32_t csr_read_4	__P((struct sf_softc *, int));
171static void csr_write_4		__P((struct sf_softc *, int, u_int32_t));
172
173#ifdef SF_USEIOSPACE
174#define SF_RES			SYS_RES_IOPORT
175#define SF_RID			SF_PCI_LOIO
176#else
177#define SF_RES			SYS_RES_MEMORY
178#define SF_RID			SF_PCI_LOMEM
179#endif
180
181static device_method_t sf_methods[] = {
182	/* Device interface */
183	DEVMETHOD(device_probe,		sf_probe),
184	DEVMETHOD(device_attach,	sf_attach),
185	DEVMETHOD(device_detach,	sf_detach),
186	DEVMETHOD(device_shutdown,	sf_shutdown),
187
188	/* bus interface */
189	DEVMETHOD(bus_print_child,	bus_generic_print_child),
190	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
191
192	/* MII interface */
193	DEVMETHOD(miibus_readreg,	sf_miibus_readreg),
194	DEVMETHOD(miibus_writereg,	sf_miibus_writereg),
195	DEVMETHOD(miibus_statchg,	sf_miibus_statchg),
196
197	{ 0, 0 }
198};
199
200static driver_t sf_driver = {
201	"sf",
202	sf_methods,
203	sizeof(struct sf_softc),
204};
205
206static devclass_t sf_devclass;
207
208DRIVER_MODULE(if_sf, pci, sf_driver, sf_devclass, 0, 0);
209DRIVER_MODULE(miibus, sf, miibus_driver, miibus_devclass, 0, 0);
210
211#define SF_SETBIT(sc, reg, x)	\
212	csr_write_4(sc, reg, csr_read_4(sc, reg) | x)
213
214#define SF_CLRBIT(sc, reg, x)				\
215	csr_write_4(sc, reg, csr_read_4(sc, reg) & ~x)
216
217static u_int32_t csr_read_4(sc, reg)
218	struct sf_softc		*sc;
219	int			reg;
220{
221	u_int32_t		val;
222
223#ifdef SF_USEIOSPACE
224	CSR_WRITE_4(sc, SF_INDIRECTIO_ADDR, reg + SF_RMAP_INTREG_BASE);
225	val = CSR_READ_4(sc, SF_INDIRECTIO_DATA);
226#else
227	val = CSR_READ_4(sc, (reg + SF_RMAP_INTREG_BASE));
228#endif
229
230	return(val);
231}
232
233static u_int8_t sf_read_eeprom(sc, reg)
234	struct sf_softc		*sc;
235	int			reg;
236{
237	u_int8_t		val;
238
239	val = (csr_read_4(sc, SF_EEADDR_BASE +
240	    (reg & 0xFFFFFFFC)) >> (8 * (reg & 3))) & 0xFF;
241
242	return(val);
243}
244
245static void csr_write_4(sc, reg, val)
246	struct sf_softc		*sc;
247	int			reg;
248	u_int32_t		val;
249{
250#ifdef SF_USEIOSPACE
251	CSR_WRITE_4(sc, SF_INDIRECTIO_ADDR, reg + SF_RMAP_INTREG_BASE);
252	CSR_WRITE_4(sc, SF_INDIRECTIO_DATA, val);
253#else
254	CSR_WRITE_4(sc, (reg + SF_RMAP_INTREG_BASE), val);
255#endif
256	return;
257}
258
259static u_int32_t sf_calchash(addr)
260	caddr_t			addr;
261{
262	u_int32_t		crc, carry;
263	int			i, j;
264	u_int8_t		c;
265
266	/* Compute CRC for the address value. */
267	crc = 0xFFFFFFFF; /* initial value */
268
269	for (i = 0; i < 6; i++) {
270		c = *(addr + i);
271		for (j = 0; j < 8; j++) {
272			carry = ((crc & 0x80000000) ? 1 : 0) ^ (c & 0x01);
273			crc <<= 1;
274			c >>= 1;
275			if (carry)
276				crc = (crc ^ 0x04c11db6) | carry;
277		}
278	}
279
280	/* return the filter bit position */
281	return(crc >> 23 & 0x1FF);
282}
283
284/*
285 * Copy the address 'mac' into the perfect RX filter entry at
286 * offset 'idx.' The perfect filter only has 16 entries so do
287 * some sanity tests.
288 */
289static int sf_setperf(sc, idx, mac)
290	struct sf_softc		*sc;
291	int			idx;
292	caddr_t			mac;
293{
294	u_int16_t		*p;
295
296	if (idx < 0 || idx > SF_RXFILT_PERFECT_CNT)
297		return(EINVAL);
298
299	if (mac == NULL)
300		return(EINVAL);
301
302	p = (u_int16_t *)mac;
303
304	csr_write_4(sc, SF_RXFILT_PERFECT_BASE +
305	    (idx * SF_RXFILT_PERFECT_SKIP), htons(p[2]));
306	csr_write_4(sc, SF_RXFILT_PERFECT_BASE +
307	    (idx * SF_RXFILT_PERFECT_SKIP) + 4, htons(p[1]));
308	csr_write_4(sc, SF_RXFILT_PERFECT_BASE +
309	    (idx * SF_RXFILT_PERFECT_SKIP) + 8, htons(p[0]));
310
311	return(0);
312}
313
314/*
315 * Set the bit in the 512-bit hash table that corresponds to the
316 * specified mac address 'mac.' If 'prio' is nonzero, update the
317 * priority hash table instead of the filter hash table.
318 */
319static int sf_sethash(sc, mac, prio)
320	struct sf_softc		*sc;
321	caddr_t			mac;
322	int			prio;
323{
324	u_int32_t		h = 0;
325
326	if (mac == NULL)
327		return(EINVAL);
328
329	h = sf_calchash(mac);
330
331	if (prio) {
332		SF_SETBIT(sc, SF_RXFILT_HASH_BASE + SF_RXFILT_HASH_PRIOOFF +
333		    (SF_RXFILT_HASH_SKIP * (h >> 4)), (1 << (h & 0xF)));
334	} else {
335		SF_SETBIT(sc, SF_RXFILT_HASH_BASE + SF_RXFILT_HASH_ADDROFF +
336		    (SF_RXFILT_HASH_SKIP * (h >> 4)), (1 << (h & 0xF)));
337	}
338
339	return(0);
340}
341
342#ifdef notdef
343/*
344 * Set a VLAN tag in the receive filter.
345 */
346static int sf_setvlan(sc, idx, vlan)
347	struct sf_softc		*sc;
348	int			idx;
349	u_int32_t		vlan;
350{
351	if (idx < 0 || idx >> SF_RXFILT_HASH_CNT)
352		return(EINVAL);
353
354	csr_write_4(sc, SF_RXFILT_HASH_BASE +
355	    (idx * SF_RXFILT_HASH_SKIP) + SF_RXFILT_HASH_VLANOFF, vlan);
356
357	return(0);
358}
359#endif
360
361static int sf_miibus_readreg(dev, phy, reg)
362	device_t		dev;
363	int			phy, reg;
364{
365	struct sf_softc		*sc;
366	int			i;
367	u_int32_t		val = 0;
368
369	sc = device_get_softc(dev);
370
371	for (i = 0; i < SF_TIMEOUT; i++) {
372		val = csr_read_4(sc, SF_PHY_REG(phy, reg));
373		if (val & SF_MII_DATAVALID)
374			break;
375	}
376
377	if (i == SF_TIMEOUT)
378		return(0);
379
380	if ((val & 0x0000FFFF) == 0xFFFF)
381		return(0);
382
383	return(val & 0x0000FFFF);
384}
385
386static int sf_miibus_writereg(dev, phy, reg, val)
387	device_t		dev;
388	int			phy, reg, val;
389{
390	struct sf_softc		*sc;
391	int			i;
392	int			busy;
393
394	sc = device_get_softc(dev);
395
396	csr_write_4(sc, SF_PHY_REG(phy, reg), val);
397
398	for (i = 0; i < SF_TIMEOUT; i++) {
399		busy = csr_read_4(sc, SF_PHY_REG(phy, reg));
400		if (!(busy & SF_MII_BUSY))
401			break;
402	}
403
404	return(0);
405}
406
407static void sf_miibus_statchg(dev)
408	device_t		dev;
409{
410	struct sf_softc		*sc;
411	struct mii_data		*mii;
412
413	sc = device_get_softc(dev);
414	mii = device_get_softc(sc->sf_miibus);
415
416	if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
417		SF_SETBIT(sc, SF_MACCFG_1, SF_MACCFG1_FULLDUPLEX);
418	} else {
419		SF_CLRBIT(sc, SF_MACCFG_1, SF_MACCFG1_FULLDUPLEX);
420	}
421
422	return;
423}
424
425static void sf_setmulti(sc)
426	struct sf_softc		*sc;
427{
428	struct ifnet		*ifp;
429	int			i;
430	struct ifmultiaddr	*ifma;
431	u_int8_t		dummy[] = { 0, 0, 0, 0, 0, 0 };
432
433	ifp = &sc->arpcom.ac_if;
434
435	/* First zot all the existing filters. */
436	for (i = 1; i < SF_RXFILT_PERFECT_CNT; i++)
437		sf_setperf(sc, i, (char *)&dummy);
438	for (i = SF_RXFILT_HASH_BASE;
439	    i < (SF_RXFILT_HASH_MAX + 1); i += 4)
440		csr_write_4(sc, i, 0);
441	SF_CLRBIT(sc, SF_RXFILT, SF_RXFILT_ALLMULTI);
442
443	/* Now program new ones. */
444	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
445		SF_SETBIT(sc, SF_RXFILT, SF_RXFILT_ALLMULTI);
446	} else {
447		i = 1;
448		/* First find the tail of the list. */
449		for (ifma = ifp->if_multiaddrs.lh_first; ifma != NULL;
450					ifma = ifma->ifma_link.le_next) {
451			if (ifma->ifma_link.le_next == NULL)
452				break;
453		}
454		/* Now traverse the list backwards. */
455		for (; ifma != NULL && ifma != (void *)&ifp->if_multiaddrs;
456			ifma = (struct ifmultiaddr *)ifma->ifma_link.le_prev) {
457			if (ifma->ifma_addr->sa_family != AF_LINK)
458				continue;
459			/*
460			 * Program the first 15 multicast groups
461			 * into the perfect filter. For all others,
462			 * use the hash table.
463			 */
464			if (i < SF_RXFILT_PERFECT_CNT) {
465				sf_setperf(sc, i,
466			LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
467				i++;
468				continue;
469			}
470
471			sf_sethash(sc,
472			    LLADDR((struct sockaddr_dl *)ifma->ifma_addr), 0);
473		}
474	}
475
476	return;
477}
478
479/*
480 * Set media options.
481 */
482static int sf_ifmedia_upd(ifp)
483	struct ifnet		*ifp;
484{
485	struct sf_softc		*sc;
486	struct mii_data		*mii;
487
488	sc = ifp->if_softc;
489	mii = device_get_softc(sc->sf_miibus);
490	mii_mediachg(mii);
491
492	return(0);
493}
494
495/*
496 * Report current media status.
497 */
498static void sf_ifmedia_sts(ifp, ifmr)
499	struct ifnet		*ifp;
500	struct ifmediareq	*ifmr;
501{
502	struct sf_softc		*sc;
503	struct mii_data		*mii;
504
505	sc = ifp->if_softc;
506	mii = device_get_softc(sc->sf_miibus);
507
508	mii_pollstat(mii);
509	ifmr->ifm_active = mii->mii_media_active;
510	ifmr->ifm_status = mii->mii_media_status;
511
512	return;
513}
514
515static int sf_ioctl(ifp, command, data)
516	struct ifnet		*ifp;
517	u_long			command;
518	caddr_t			data;
519{
520	struct sf_softc		*sc = ifp->if_softc;
521	struct ifreq		*ifr = (struct ifreq *) data;
522	struct mii_data		*mii;
523	int			s, error = 0;
524
525	s = splimp();
526
527	switch(command) {
528	case SIOCSIFADDR:
529	case SIOCGIFADDR:
530	case SIOCSIFMTU:
531		error = ether_ioctl(ifp, command, data);
532		break;
533	case SIOCSIFFLAGS:
534		if (ifp->if_flags & IFF_UP) {
535			sf_init(sc);
536		} else {
537			if (ifp->if_flags & IFF_RUNNING)
538				sf_stop(sc);
539		}
540		error = 0;
541		break;
542	case SIOCADDMULTI:
543	case SIOCDELMULTI:
544		sf_setmulti(sc);
545		error = 0;
546		break;
547	case SIOCGIFMEDIA:
548	case SIOCSIFMEDIA:
549		mii = device_get_softc(sc->sf_miibus);
550		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
551		break;
552	default:
553		error = EINVAL;
554		break;
555	}
556
557	(void)splx(s);
558
559	return(error);
560}
561
562static void sf_reset(sc)
563	struct sf_softc		*sc;
564{
565	register int		i;
566
567	csr_write_4(sc, SF_GEN_ETH_CTL, 0);
568	SF_SETBIT(sc, SF_MACCFG_1, SF_MACCFG1_SOFTRESET);
569	DELAY(1000);
570	SF_CLRBIT(sc, SF_MACCFG_1, SF_MACCFG1_SOFTRESET);
571
572	SF_SETBIT(sc, SF_PCI_DEVCFG, SF_PCIDEVCFG_RESET);
573
574	for (i = 0; i < SF_TIMEOUT; i++) {
575		DELAY(10);
576		if (!(csr_read_4(sc, SF_PCI_DEVCFG) & SF_PCIDEVCFG_RESET))
577			break;
578	}
579
580	if (i == SF_TIMEOUT)
581		printf("sf%d: reset never completed!\n", sc->sf_unit);
582
583	/* Wait a little while for the chip to get its brains in order. */
584	DELAY(1000);
585	return;
586}
587
588/*
589 * Probe for an Adaptec AIC-6915 chip. Check the PCI vendor and device
590 * IDs against our list and return a device name if we find a match.
591 * We also check the subsystem ID so that we can identify exactly which
592 * NIC has been found, if possible.
593 */
594static int sf_probe(dev)
595	device_t		dev;
596{
597	struct sf_type		*t;
598
599	t = sf_devs;
600
601	while(t->sf_name != NULL) {
602		if ((pci_get_vendor(dev) == t->sf_vid) &&
603		    (pci_get_device(dev) == t->sf_did)) {
604			switch((pci_read_config(dev,
605			    SF_PCI_SUBVEN_ID, 4) >> 16) & 0xFFFF) {
606			case AD_SUBSYSID_62011_REV0:
607			case AD_SUBSYSID_62011_REV1:
608				device_set_desc(dev,
609				    "Adaptec ANA-62011 10/100BaseTX");
610				return(0);
611				break;
612			case AD_SUBSYSID_62022:
613				device_set_desc(dev,
614				    "Adaptec ANA-62022 10/100BaseTX");
615				return(0);
616				break;
617			case AD_SUBSYSID_62044_REV0:
618			case AD_SUBSYSID_62044_REV1:
619				device_set_desc(dev,
620				    "Adaptec ANA-62044 10/100BaseTX");
621				return(0);
622				break;
623			case AD_SUBSYSID_62020:
624				device_set_desc(dev,
625				    "Adaptec ANA-62020 10/100BaseFX");
626				return(0);
627				break;
628			case AD_SUBSYSID_69011:
629				device_set_desc(dev,
630				    "Adaptec ANA-69011 10/100BaseTX");
631				return(0);
632				break;
633			default:
634				device_set_desc(dev, t->sf_name);
635				return(0);
636				break;
637			}
638		}
639		t++;
640	}
641
642	return(ENXIO);
643}
644
645/*
646 * Attach the interface. Allocate softc structures, do ifmedia
647 * setup and ethernet/BPF attach.
648 */
649static int sf_attach(dev)
650	device_t		dev;
651{
652	int			s, i;
653	u_int32_t		command;
654	struct sf_softc		*sc;
655	struct ifnet		*ifp;
656	int			unit, rid, error = 0;
657
658	s = splimp();
659
660	sc = device_get_softc(dev);
661	unit = device_get_unit(dev);
662	bzero(sc, sizeof(struct sf_softc));
663
664	/*
665	 * Handle power management nonsense.
666	 */
667	command = pci_read_config(dev, SF_PCI_CAPID, 4) & 0x000000FF;
668	if (command == 0x01) {
669
670		command = pci_read_config(dev, SF_PCI_PWRMGMTCTRL, 4);
671		if (command & SF_PSTATE_MASK) {
672			u_int32_t		iobase, membase, irq;
673
674			/* Save important PCI config data. */
675			iobase = pci_read_config(dev, SF_PCI_LOIO, 4);
676			membase = pci_read_config(dev, SF_PCI_LOMEM, 4);
677			irq = pci_read_config(dev, SF_PCI_INTLINE, 4);
678
679			/* Reset the power state. */
680			printf("sf%d: chip is in D%d power mode "
681			"-- setting to D0\n", unit, command & SF_PSTATE_MASK);
682			command &= 0xFFFFFFFC;
683			pci_write_config(dev, SF_PCI_PWRMGMTCTRL, command, 4);
684
685			/* Restore PCI config data. */
686			pci_write_config(dev, SF_PCI_LOIO, iobase, 4);
687			pci_write_config(dev, SF_PCI_LOMEM, membase, 4);
688			pci_write_config(dev, SF_PCI_INTLINE, irq, 4);
689		}
690	}
691
692	/*
693	 * Map control/status registers.
694	 */
695	command = pci_read_config(dev, PCI_COMMAND_STATUS_REG, 4);
696	command |= (PCIM_CMD_PORTEN|PCIM_CMD_MEMEN|PCIM_CMD_BUSMASTEREN);
697	pci_write_config(dev, PCI_COMMAND_STATUS_REG, command, 4);
698	command = pci_read_config(dev, PCI_COMMAND_STATUS_REG, 4);
699
700#ifdef SF_USEIOSPACE
701	if (!(command & PCIM_CMD_PORTEN)) {
702		printf("sf%d: failed to enable I/O ports!\n", unit);
703		error = ENXIO;
704		goto fail;
705	}
706#else
707	if (!(command & PCIM_CMD_MEMEN)) {
708		printf("sf%d: failed to enable memory mapping!\n", unit);
709		error = ENXIO;
710		goto fail;
711	}
712#endif
713
714	rid = SF_RID;
715	sc->sf_res = bus_alloc_resource(dev, SF_RES, &rid,
716	    0, ~0, 1, RF_ACTIVE);
717
718	if (sc->sf_res == NULL) {
719		printf ("sf%d: couldn't map ports\n", unit);
720		error = ENXIO;
721		goto fail;
722	}
723
724	sc->sf_btag = rman_get_bustag(sc->sf_res);
725	sc->sf_bhandle = rman_get_bushandle(sc->sf_res);
726
727	/* Allocate interrupt */
728	rid = 0;
729	sc->sf_irq = bus_alloc_resource(dev, SYS_RES_IRQ, &rid, 0, ~0, 1,
730	    RF_SHAREABLE | RF_ACTIVE);
731
732	if (sc->sf_irq == NULL) {
733		printf("sf%d: couldn't map interrupt\n", unit);
734		bus_release_resource(dev, SF_RES, SF_RID, sc->sf_res);
735		error = ENXIO;
736		goto fail;
737	}
738
739	error = bus_setup_intr(dev, sc->sf_irq, INTR_TYPE_NET,
740	    sf_intr, sc, &sc->sf_intrhand);
741
742	if (error) {
743		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sf_res);
744		bus_release_resource(dev, SF_RES, SF_RID, sc->sf_res);
745		printf("sf%d: couldn't set up irq\n", unit);
746		goto fail;
747	}
748
749	callout_handle_init(&sc->sf_stat_ch);
750
751	/* Reset the adapter. */
752	sf_reset(sc);
753
754	/*
755	 * Get station address from the EEPROM.
756	 */
757	for (i = 0; i < ETHER_ADDR_LEN; i++)
758		sc->arpcom.ac_enaddr[i] =
759		    sf_read_eeprom(sc, SF_EE_NODEADDR + ETHER_ADDR_LEN - i);
760
761	/*
762	 * An Adaptec chip was detected. Inform the world.
763	 */
764	printf("sf%d: Ethernet address: %6D\n", unit,
765	    sc->arpcom.ac_enaddr, ":");
766
767	sc->sf_unit = unit;
768
769	/* Allocate the descriptor queues. */
770	sc->sf_ldata = contigmalloc(sizeof(struct sf_list_data), M_DEVBUF,
771	    M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0);
772
773	if (sc->sf_ldata == NULL) {
774		printf("sf%d: no memory for list buffers!\n", unit);
775		bus_teardown_intr(dev, sc->sf_irq, sc->sf_intrhand);
776		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sf_irq);
777		bus_release_resource(dev, SF_RES, SF_RID, sc->sf_res);
778		error = ENXIO;
779		goto fail;
780	}
781
782	bzero(sc->sf_ldata, sizeof(struct sf_list_data));
783
784	/* Do MII setup. */
785	if (mii_phy_probe(dev, &sc->sf_miibus,
786	    sf_ifmedia_upd, sf_ifmedia_sts)) {
787		printf("sf%d: MII without any phy!\n", sc->sf_unit);
788		free(sc->sf_ldata, M_DEVBUF);
789		bus_teardown_intr(dev, sc->sf_irq, sc->sf_intrhand);
790		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sf_irq);
791		bus_release_resource(dev, SF_RES, SF_RID, sc->sf_res);
792		error = ENXIO;
793		goto fail;
794	}
795
796	ifp = &sc->arpcom.ac_if;
797	ifp->if_softc = sc;
798	ifp->if_unit = unit;
799	ifp->if_name = "sf";
800	ifp->if_mtu = ETHERMTU;
801	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
802	ifp->if_ioctl = sf_ioctl;
803	ifp->if_output = ether_output;
804	ifp->if_start = sf_start;
805	ifp->if_watchdog = sf_watchdog;
806	ifp->if_init = sf_init;
807	ifp->if_baudrate = 10000000;
808	ifp->if_snd.ifq_maxlen = SF_TX_DLIST_CNT - 1;
809
810	/*
811	 * Call MI attach routines.
812	 */
813	if_attach(ifp);
814	ether_ifattach(ifp);
815
816	bpfattach(ifp, DLT_EN10MB, sizeof(struct ether_header));
817
818fail:
819	splx(s);
820	return(error);
821}
822
823static int sf_detach(dev)
824	device_t		dev;
825{
826	struct sf_softc		*sc;
827	struct ifnet		*ifp;
828	int			s;
829
830	s = splimp();
831
832	sc = device_get_softc(dev);
833	ifp = &sc->arpcom.ac_if;
834
835	if_detach(ifp);
836	sf_stop(sc);
837
838	bus_generic_detach(dev);
839	device_delete_child(dev, sc->sf_miibus);
840
841	bus_teardown_intr(dev, sc->sf_irq, sc->sf_intrhand);
842	bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sf_irq);
843	bus_release_resource(dev, SF_RES, SF_RID, sc->sf_res);
844
845	free(sc->sf_ldata, M_DEVBUF);
846
847	splx(s);
848
849	return(0);
850}
851
852static int sf_init_rx_ring(sc)
853	struct sf_softc		*sc;
854{
855	struct sf_list_data	*ld;
856	int			i;
857
858	ld = sc->sf_ldata;
859
860	bzero((char *)ld->sf_rx_dlist_big,
861	    sizeof(struct sf_rx_bufdesc_type0) * SF_RX_DLIST_CNT);
862	bzero((char *)ld->sf_rx_clist,
863	    sizeof(struct sf_rx_cmpdesc_type3) * SF_RX_CLIST_CNT);
864
865	for (i = 0; i < SF_RX_DLIST_CNT; i++) {
866		if (sf_newbuf(sc, &ld->sf_rx_dlist_big[i], NULL) == ENOBUFS)
867			return(ENOBUFS);
868	}
869
870	return(0);
871}
872
873static void sf_init_tx_ring(sc)
874	struct sf_softc		*sc;
875{
876	struct sf_list_data	*ld;
877	int			i;
878
879	ld = sc->sf_ldata;
880
881	bzero((char *)ld->sf_tx_dlist,
882	    sizeof(struct sf_tx_bufdesc_type0) * SF_TX_DLIST_CNT);
883	bzero((char *)ld->sf_tx_clist,
884	    sizeof(struct sf_tx_cmpdesc_type0) * SF_TX_CLIST_CNT);
885
886	for (i = 0; i < SF_TX_DLIST_CNT; i++)
887		ld->sf_tx_dlist[i].sf_id = SF_TX_BUFDESC_ID;
888	for (i = 0; i < SF_TX_CLIST_CNT; i++)
889		ld->sf_tx_clist[i].sf_type = SF_TXCMPTYPE_TX;
890
891	ld->sf_tx_dlist[SF_TX_DLIST_CNT - 1].sf_end = 1;
892	sc->sf_tx_cnt = 0;
893
894	return;
895}
896
897static int sf_newbuf(sc, c, m)
898	struct sf_softc		*sc;
899	struct sf_rx_bufdesc_type0	*c;
900	struct mbuf		*m;
901{
902	struct mbuf		*m_new = NULL;
903
904	if (m == NULL) {
905		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
906		if (m_new == NULL) {
907			printf("sf%d: no memory for rx list -- "
908			    "packet dropped!\n", sc->sf_unit);
909			return(ENOBUFS);
910		}
911
912		MCLGET(m_new, M_DONTWAIT);
913		if (!(m_new->m_flags & M_EXT)) {
914			printf("sf%d: no memory for rx list -- "
915			    "packet dropped!\n", sc->sf_unit);
916			m_freem(m_new);
917			return(ENOBUFS);
918		}
919		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
920	} else {
921		m_new = m;
922		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
923		m_new->m_data = m_new->m_ext.ext_buf;
924	}
925
926	m_adj(m_new, sizeof(u_int64_t));
927
928	c->sf_mbuf = m_new;
929	c->sf_addrlo = SF_RX_HOSTADDR(vtophys(mtod(m_new, caddr_t)));
930	c->sf_valid = 1;
931
932	return(0);
933}
934
935/*
936 * The starfire is programmed to use 'normal' mode for packet reception,
937 * which means we use the consumer/producer model for both the buffer
938 * descriptor queue and the completion descriptor queue. The only problem
939 * with this is that it involves a lot of register accesses: we have to
940 * read the RX completion consumer and producer indexes and the RX buffer
941 * producer index, plus the RX completion consumer and RX buffer producer
942 * indexes have to be updated. It would have been easier if Adaptec had
943 * put each index in a separate register, especially given that the damn
944 * NIC has a 512K register space.
945 *
946 * In spite of all the lovely features that Adaptec crammed into the 6915,
947 * it is marred by one truly stupid design flaw, which is that receive
948 * buffer addresses must be aligned on a longword boundary. This forces
949 * the packet payload to be unaligned, which is suboptimal on the x86 and
950 * completely unuseable on the Alpha. Our only recourse is to copy received
951 * packets into properly aligned buffers before handing them off.
952 */
953
954static void sf_rxeof(sc)
955	struct sf_softc		*sc;
956{
957	struct ether_header	*eh;
958	struct mbuf		*m;
959	struct ifnet		*ifp;
960	struct sf_rx_bufdesc_type0	*desc;
961	struct sf_rx_cmpdesc_type3	*cur_rx;
962	u_int32_t		rxcons, rxprod;
963	int			cmpprodidx, cmpconsidx, bufprodidx;
964
965	ifp = &sc->arpcom.ac_if;
966
967	rxcons = csr_read_4(sc, SF_CQ_CONSIDX);
968	rxprod = csr_read_4(sc, SF_RXDQ_PTR_Q1);
969	cmpprodidx = SF_IDX_LO(csr_read_4(sc, SF_CQ_PRODIDX));
970	cmpconsidx = SF_IDX_LO(rxcons);
971	bufprodidx = SF_IDX_LO(rxprod);
972
973	while (cmpconsidx != cmpprodidx) {
974		struct mbuf		*m0;
975
976		cur_rx = &sc->sf_ldata->sf_rx_clist[cmpconsidx];
977		desc = &sc->sf_ldata->sf_rx_dlist_big[cur_rx->sf_endidx];
978		m = desc->sf_mbuf;
979		SF_INC(cmpconsidx, SF_RX_CLIST_CNT);
980		SF_INC(bufprodidx, SF_RX_DLIST_CNT);
981
982		if (!(cur_rx->sf_status1 & SF_RXSTAT1_OK)) {
983			ifp->if_ierrors++;
984			sf_newbuf(sc, desc, m);
985			continue;
986		}
987
988		m0 = m_devget(mtod(m, char *) - ETHER_ALIGN,
989		    cur_rx->sf_len + ETHER_ALIGN, 0, ifp, NULL);
990		sf_newbuf(sc, desc, m);
991		if (m0 == NULL) {
992			ifp->if_ierrors++;
993			continue;
994		}
995		m_adj(m0, ETHER_ALIGN);
996		m = m0;
997
998		eh = mtod(m, struct ether_header *);
999		ifp->if_ipackets++;
1000
1001		if (ifp->if_bpf) {
1002			bpf_mtap(ifp, m);
1003			if (ifp->if_flags & IFF_PROMISC &&
1004			    (bcmp(eh->ether_dhost, sc->arpcom.ac_enaddr,
1005			    ETHER_ADDR_LEN) && !(eh->ether_dhost[0] & 1))) {
1006				m_freem(m);
1007				continue;
1008			}
1009		}
1010
1011		/* Remove header from mbuf and pass it on. */
1012		m_adj(m, sizeof(struct ether_header));
1013		ether_input(ifp, eh, m);
1014
1015	}
1016
1017	csr_write_4(sc, SF_CQ_CONSIDX,
1018	    (rxcons & ~SF_CQ_CONSIDX_RXQ1) | cmpconsidx);
1019	csr_write_4(sc, SF_RXDQ_PTR_Q1,
1020	    (rxprod & ~SF_RXDQ_PRODIDX) | bufprodidx);
1021
1022	return;
1023}
1024
1025/*
1026 * Read the transmit status from the completion queue and release
1027 * mbufs. Note that the buffer descriptor index in the completion
1028 * descriptor is an offset from the start of the transmit buffer
1029 * descriptor list in bytes. This is important because the manual
1030 * gives the impression that it should match the producer/consumer
1031 * index, which is the offset in 8 byte blocks.
1032 */
1033static void sf_txeof(sc)
1034	struct sf_softc		*sc;
1035{
1036	int			txcons, cmpprodidx, cmpconsidx;
1037	struct sf_tx_cmpdesc_type1 *cur_cmp;
1038	struct sf_tx_bufdesc_type0 *cur_tx;
1039	struct ifnet		*ifp;
1040
1041	ifp = &sc->arpcom.ac_if;
1042
1043	txcons = csr_read_4(sc, SF_CQ_CONSIDX);
1044	cmpprodidx = SF_IDX_HI(csr_read_4(sc, SF_CQ_PRODIDX));
1045	cmpconsidx = SF_IDX_HI(txcons);
1046
1047	while (cmpconsidx != cmpprodidx) {
1048		cur_cmp = &sc->sf_ldata->sf_tx_clist[cmpconsidx];
1049		cur_tx = &sc->sf_ldata->sf_tx_dlist[cur_cmp->sf_index >> 7];
1050		SF_INC(cmpconsidx, SF_TX_CLIST_CNT);
1051
1052		if (cur_cmp->sf_txstat & SF_TXSTAT_TX_OK)
1053			ifp->if_opackets++;
1054		else
1055			ifp->if_oerrors++;
1056
1057		sc->sf_tx_cnt--;
1058		if (cur_tx->sf_mbuf != NULL) {
1059			m_freem(cur_tx->sf_mbuf);
1060			cur_tx->sf_mbuf = NULL;
1061		}
1062	}
1063
1064	ifp->if_timer = 0;
1065	ifp->if_flags &= ~IFF_OACTIVE;
1066
1067	csr_write_4(sc, SF_CQ_CONSIDX,
1068	    (txcons & ~SF_CQ_CONSIDX_TXQ) |
1069	    ((cmpconsidx << 16) & 0xFFFF0000));
1070
1071	return;
1072}
1073
1074static void sf_intr(arg)
1075	void			*arg;
1076{
1077	struct sf_softc		*sc;
1078	struct ifnet		*ifp;
1079	u_int32_t		status;
1080
1081	sc = arg;
1082	ifp = &sc->arpcom.ac_if;
1083
1084	if (!(csr_read_4(sc, SF_ISR_SHADOW) & SF_ISR_PCIINT_ASSERTED))
1085		return;
1086
1087	/* Disable interrupts. */
1088	csr_write_4(sc, SF_IMR, 0x00000000);
1089
1090	for (;;) {
1091		status = csr_read_4(sc, SF_ISR);
1092		if (status)
1093			csr_write_4(sc, SF_ISR, status);
1094
1095		if (!(status & SF_INTRS))
1096			break;
1097
1098		if (status & SF_ISR_RXDQ1_DMADONE)
1099			sf_rxeof(sc);
1100
1101		if (status & SF_ISR_TX_TXDONE)
1102			sf_txeof(sc);
1103
1104		if (status & SF_ISR_ABNORMALINTR) {
1105			if (status & SF_ISR_STATSOFLOW) {
1106				untimeout(sf_stats_update, sc,
1107				    sc->sf_stat_ch);
1108				sf_stats_update(sc);
1109			} else
1110				sf_init(sc);
1111		}
1112	}
1113
1114	/* Re-enable interrupts. */
1115	csr_write_4(sc, SF_IMR, SF_INTRS);
1116
1117	if (ifp->if_snd.ifq_head != NULL)
1118		sf_start(ifp);
1119
1120	return;
1121}
1122
1123static void sf_init(xsc)
1124	void			*xsc;
1125{
1126	struct sf_softc		*sc;
1127	struct ifnet		*ifp;
1128	struct mii_data		*mii;
1129	int			i, s;
1130
1131	s = splimp();
1132
1133	sc = xsc;
1134	ifp = &sc->arpcom.ac_if;
1135	mii = device_get_softc(sc->sf_miibus);
1136
1137	sf_stop(sc);
1138	sf_reset(sc);
1139
1140	/* Init all the receive filter registers */
1141	for (i = SF_RXFILT_PERFECT_BASE;
1142	    i < (SF_RXFILT_HASH_MAX + 1); i += 4)
1143		csr_write_4(sc, i, 0);
1144
1145	/* Empty stats counter registers. */
1146	for (i = 0; i < sizeof(struct sf_stats)/sizeof(u_int32_t); i++)
1147		csr_write_4(sc, SF_STATS_BASE +
1148		    (i + sizeof(u_int32_t)), 0);
1149
1150	/* Init our MAC address */
1151	csr_write_4(sc, SF_PAR0, *(u_int32_t *)(&sc->arpcom.ac_enaddr[0]));
1152	csr_write_4(sc, SF_PAR1, *(u_int32_t *)(&sc->arpcom.ac_enaddr[4]));
1153	sf_setperf(sc, 0, (caddr_t)&sc->arpcom.ac_enaddr);
1154
1155	if (sf_init_rx_ring(sc) == ENOBUFS) {
1156		printf("sf%d: initialization failed: no "
1157		    "memory for rx buffers\n", sc->sf_unit);
1158		(void)splx(s);
1159		return;
1160	}
1161
1162	sf_init_tx_ring(sc);
1163
1164	csr_write_4(sc, SF_RXFILT, SF_PERFMODE_NORMAL|SF_HASHMODE_WITHVLAN);
1165
1166	/* If we want promiscuous mode, set the allframes bit. */
1167	if (ifp->if_flags & IFF_PROMISC) {
1168		SF_SETBIT(sc, SF_RXFILT, SF_RXFILT_PROMISC);
1169	} else {
1170		SF_CLRBIT(sc, SF_RXFILT, SF_RXFILT_PROMISC);
1171	}
1172
1173	if (ifp->if_flags & IFF_BROADCAST) {
1174		SF_SETBIT(sc, SF_RXFILT, SF_RXFILT_BROAD);
1175	} else {
1176		SF_CLRBIT(sc, SF_RXFILT, SF_RXFILT_BROAD);
1177	}
1178
1179	/* Init the completion queue indexes */
1180	csr_write_4(sc, SF_CQ_CONSIDX, 0);
1181	csr_write_4(sc, SF_CQ_PRODIDX, 0);
1182
1183	/* Init the RX completion queue */
1184	csr_write_4(sc, SF_RXCQ_CTL_1,
1185	    vtophys(sc->sf_ldata->sf_rx_clist) & SF_RXCQ_ADDR);
1186	SF_SETBIT(sc, SF_RXCQ_CTL_1, SF_RXCQTYPE_3);
1187
1188	/* Init RX DMA control. */
1189	SF_SETBIT(sc, SF_RXDMA_CTL, SF_RXDMA_REPORTBADPKTS);
1190
1191	/* Init the RX buffer descriptor queue. */
1192	csr_write_4(sc, SF_RXDQ_ADDR_Q1,
1193	    vtophys(sc->sf_ldata->sf_rx_dlist_big));
1194	csr_write_4(sc, SF_RXDQ_CTL_1, (MCLBYTES << 16) | SF_DESCSPACE_16BYTES);
1195	csr_write_4(sc, SF_RXDQ_PTR_Q1, SF_RX_DLIST_CNT - 1);
1196
1197	/* Init the TX completion queue */
1198	csr_write_4(sc, SF_TXCQ_CTL,
1199	    vtophys(sc->sf_ldata->sf_tx_clist) & SF_RXCQ_ADDR);
1200
1201	/* Init the TX buffer descriptor queue. */
1202	csr_write_4(sc, SF_TXDQ_ADDR_HIPRIO,
1203		vtophys(sc->sf_ldata->sf_tx_dlist));
1204	SF_SETBIT(sc, SF_TX_FRAMCTL, SF_TXFRMCTL_CPLAFTERTX);
1205	csr_write_4(sc, SF_TXDQ_CTL,
1206	    SF_TXBUFDESC_TYPE0|SF_TXMINSPACE_128BYTES|SF_TXSKIPLEN_8BYTES);
1207	SF_SETBIT(sc, SF_TXDQ_CTL, SF_TXDQCTL_NODMACMP);
1208
1209	/* Enable autopadding of short TX frames. */
1210	SF_SETBIT(sc, SF_MACCFG_1, SF_MACCFG1_AUTOPAD);
1211
1212	/* Make sure the duplex mode is set correctly. */
1213	if ((mii->mii_media.ifm_media & IFM_GMASK) == IFM_FDX) {
1214		SF_SETBIT(sc, SF_MACCFG_1, SF_MACCFG1_FULLDUPLEX);
1215	} else {
1216		SF_CLRBIT(sc, SF_MACCFG_1, SF_MACCFG1_FULLDUPLEX);
1217	}
1218
1219	/* Enable interrupts. */
1220	csr_write_4(sc, SF_IMR, SF_INTRS);
1221	SF_SETBIT(sc, SF_PCI_DEVCFG, SF_PCIDEVCFG_INTR_ENB);
1222
1223	/* Enable the RX and TX engines. */
1224	SF_SETBIT(sc, SF_GEN_ETH_CTL, SF_ETHCTL_RX_ENB|SF_ETHCTL_RXDMA_ENB);
1225	SF_SETBIT(sc, SF_GEN_ETH_CTL, SF_ETHCTL_TX_ENB|SF_ETHCTL_TXDMA_ENB);
1226
1227	mii_mediachg(mii);
1228
1229	ifp->if_flags |= IFF_RUNNING;
1230	ifp->if_flags &= ~IFF_OACTIVE;
1231
1232	sc->sf_stat_ch = timeout(sf_stats_update, sc, hz);
1233
1234	splx(s);
1235
1236	return;
1237}
1238
1239static int sf_encap(sc, c, m_head)
1240	struct sf_softc		*sc;
1241	struct sf_tx_bufdesc_type0 *c;
1242	struct mbuf		*m_head;
1243{
1244	int			frag = 0;
1245	struct sf_frag		*f = NULL;
1246	struct mbuf		*m;
1247
1248	m = m_head;
1249
1250	for (m = m_head, frag = 0; m != NULL; m = m->m_next) {
1251		if (m->m_len != 0) {
1252			if (frag == SF_MAXFRAGS)
1253				break;
1254			f = &c->sf_frags[frag];
1255			if (frag == 0)
1256				f->sf_pktlen = m_head->m_pkthdr.len;
1257			f->sf_fraglen = m->m_len;
1258			f->sf_addr = vtophys(mtod(m, vm_offset_t));
1259			frag++;
1260		}
1261	}
1262
1263	if (m != NULL) {
1264		struct mbuf		*m_new = NULL;
1265
1266		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1267		if (m_new == NULL) {
1268			printf("sf%d: no memory for tx list", sc->sf_unit);
1269			return(1);
1270		}
1271
1272		if (m_head->m_pkthdr.len > MHLEN) {
1273			MCLGET(m_new, M_DONTWAIT);
1274			if (!(m_new->m_flags & M_EXT)) {
1275				m_freem(m_new);
1276				printf("sf%d: no memory for tx list",
1277				    sc->sf_unit);
1278				return(1);
1279			}
1280		}
1281		m_copydata(m_head, 0, m_head->m_pkthdr.len,
1282		    mtod(m_new, caddr_t));
1283		m_new->m_pkthdr.len = m_new->m_len = m_head->m_pkthdr.len;
1284		m_freem(m_head);
1285		m_head = m_new;
1286		f = &c->sf_frags[0];
1287		f->sf_fraglen = f->sf_pktlen = m_head->m_pkthdr.len;
1288		f->sf_addr = vtophys(mtod(m_head, caddr_t));
1289		frag = 1;
1290	}
1291
1292	c->sf_mbuf = m_head;
1293	c->sf_id = SF_TX_BUFDESC_ID;
1294	c->sf_fragcnt = frag;
1295	c->sf_intr = 1;
1296	c->sf_caltcp = 0;
1297	c->sf_crcen = 1;
1298
1299	return(0);
1300}
1301
1302static void sf_start(ifp)
1303	struct ifnet		*ifp;
1304{
1305	struct sf_softc		*sc;
1306	struct sf_tx_bufdesc_type0 *cur_tx = NULL;
1307	struct mbuf		*m_head = NULL;
1308	int			i, txprod;
1309
1310	sc = ifp->if_softc;
1311
1312	if (ifp->if_flags & IFF_OACTIVE)
1313		return;
1314
1315	txprod = csr_read_4(sc, SF_TXDQ_PRODIDX);
1316	i = SF_IDX_HI(txprod) >> 4;
1317
1318	while(sc->sf_ldata->sf_tx_dlist[i].sf_mbuf == NULL) {
1319		IF_DEQUEUE(&ifp->if_snd, m_head);
1320		if (m_head == NULL)
1321			break;
1322
1323		cur_tx = &sc->sf_ldata->sf_tx_dlist[i];
1324		sf_encap(sc, cur_tx, m_head);
1325
1326		/*
1327		 * If there's a BPF listener, bounce a copy of this frame
1328		 * to him.
1329		 */
1330		if (ifp->if_bpf)
1331			bpf_mtap(ifp, m_head);
1332
1333		SF_INC(i, SF_TX_DLIST_CNT);
1334		sc->sf_tx_cnt++;
1335		if (sc->sf_tx_cnt == (SF_TX_DLIST_CNT - 2))
1336			break;
1337	}
1338
1339	if (cur_tx == NULL)
1340		return;
1341
1342	/* Transmit */
1343	csr_write_4(sc, SF_TXDQ_PRODIDX,
1344	    (txprod & ~SF_TXDQ_PRODIDX_HIPRIO) |
1345	    ((i << 20) & 0xFFFF0000));
1346
1347	ifp->if_timer = 5;
1348
1349	return;
1350}
1351
1352static void sf_stop(sc)
1353	struct sf_softc		*sc;
1354{
1355	int			i;
1356	struct ifnet		*ifp;
1357
1358	ifp = &sc->arpcom.ac_if;
1359
1360	untimeout(sf_stats_update, sc, sc->sf_stat_ch);
1361
1362	csr_write_4(sc, SF_GEN_ETH_CTL, 0);
1363	csr_write_4(sc, SF_CQ_CONSIDX, 0);
1364	csr_write_4(sc, SF_CQ_PRODIDX, 0);
1365	csr_write_4(sc, SF_RXDQ_ADDR_Q1, 0);
1366	csr_write_4(sc, SF_RXDQ_CTL_1, 0);
1367	csr_write_4(sc, SF_RXDQ_PTR_Q1, 0);
1368	csr_write_4(sc, SF_TXCQ_CTL, 0);
1369	csr_write_4(sc, SF_TXDQ_ADDR_HIPRIO, 0);
1370	csr_write_4(sc, SF_TXDQ_CTL, 0);
1371	sf_reset(sc);
1372
1373	for (i = 0; i < SF_RX_DLIST_CNT; i++) {
1374		if (sc->sf_ldata->sf_rx_dlist_big[i].sf_mbuf != NULL) {
1375			m_freem(sc->sf_ldata->sf_rx_dlist_big[i].sf_mbuf);
1376			sc->sf_ldata->sf_rx_dlist_big[i].sf_mbuf = NULL;
1377		}
1378	}
1379
1380	for (i = 0; i < SF_TX_DLIST_CNT; i++) {
1381		if (sc->sf_ldata->sf_tx_dlist[i].sf_mbuf != NULL) {
1382			m_freem(sc->sf_ldata->sf_tx_dlist[i].sf_mbuf);
1383			sc->sf_ldata->sf_tx_dlist[i].sf_mbuf = NULL;
1384		}
1385	}
1386
1387	ifp->if_flags &= ~(IFF_RUNNING|IFF_OACTIVE);
1388
1389	return;
1390}
1391
1392/*
1393 * Note: it is important that this function not be interrupted. We
1394 * use a two-stage register access scheme: if we are interrupted in
1395 * between setting the indirect address register and reading from the
1396 * indirect data register, the contents of the address register could
1397 * be changed out from under us.
1398 */
1399static void sf_stats_update(xsc)
1400	void			*xsc;
1401{
1402	struct sf_softc		*sc;
1403	struct ifnet		*ifp;
1404	struct mii_data		*mii;
1405	struct sf_stats		stats;
1406	u_int32_t		*ptr;
1407	int			i, s;
1408
1409	s = splimp();
1410
1411	sc = xsc;
1412	ifp = &sc->arpcom.ac_if;
1413	mii = device_get_softc(sc->sf_miibus);
1414
1415	ptr = (u_int32_t *)&stats;
1416	for (i = 0; i < sizeof(stats)/sizeof(u_int32_t); i++)
1417		ptr[i] = csr_read_4(sc, SF_STATS_BASE +
1418		    (i + sizeof(u_int32_t)));
1419
1420	for (i = 0; i < sizeof(stats)/sizeof(u_int32_t); i++)
1421		csr_write_4(sc, SF_STATS_BASE +
1422		    (i + sizeof(u_int32_t)), 0);
1423
1424	ifp->if_collisions += stats.sf_tx_single_colls +
1425	    stats.sf_tx_multi_colls + stats.sf_tx_excess_colls;
1426
1427	mii_tick(mii);
1428
1429	sc->sf_stat_ch = timeout(sf_stats_update, sc, hz);
1430
1431	splx(s);
1432
1433	return;
1434}
1435
1436static void sf_watchdog(ifp)
1437	struct ifnet		*ifp;
1438{
1439	struct sf_softc		*sc;
1440
1441	sc = ifp->if_softc;
1442
1443	ifp->if_oerrors++;
1444	printf("sf%d: watchdog timeout\n", sc->sf_unit);
1445
1446	sf_stop(sc);
1447	sf_reset(sc);
1448	sf_init(sc);
1449
1450	if (ifp->if_snd.ifq_head != NULL)
1451		sf_start(ifp);
1452
1453	return;
1454}
1455
1456static void sf_shutdown(dev)
1457	device_t		dev;
1458{
1459	struct sf_softc		*sc;
1460
1461	sc = device_get_softc(dev);
1462
1463	sf_stop(sc);
1464
1465	return;
1466}
1467