if_sf.c revision 267363
1/*-
2 * Copyright (c) 1997, 1998, 1999
3 *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 *    must display the following acknowledgement:
15 *	This product includes software developed by Bill Paul.
16 * 4. Neither the name of the author nor the names of any co-contributors
17 *    may be used to endorse or promote products derived from this software
18 *    without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30 * THE POSSIBILITY OF SUCH DAMAGE.
31 */
32
33#include <sys/cdefs.h>
34__FBSDID("$FreeBSD: head/sys/dev/sf/if_sf.c 267363 2014-06-11 14:53:58Z jhb $");
35
36/*
37 * Adaptec AIC-6915 "Starfire" PCI fast ethernet driver for FreeBSD.
38 * Programming manual is available from:
39 * http://download.adaptec.com/pdfs/user_guides/aic6915_pg.pdf.
40 *
41 * Written by Bill Paul <wpaul@ctr.columbia.edu>
42 * Department of Electical Engineering
43 * Columbia University, New York City
44 */
45/*
46 * The Adaptec AIC-6915 "Starfire" is a 64-bit 10/100 PCI ethernet
47 * controller designed with flexibility and reducing CPU load in mind.
48 * The Starfire offers high and low priority buffer queues, a
49 * producer/consumer index mechanism and several different buffer
50 * queue and completion queue descriptor types. Any one of a number
51 * of different driver designs can be used, depending on system and
52 * OS requirements. This driver makes use of type2 transmit frame
53 * descriptors to take full advantage of fragmented packets buffers
54 * and two RX buffer queues prioritized on size (one queue for small
55 * frames that will fit into a single mbuf, another with full size
56 * mbuf clusters for everything else). The producer/consumer indexes
57 * and completion queues are also used.
58 *
59 * One downside to the Starfire has to do with alignment: buffer
60 * queues must be aligned on 256-byte boundaries, and receive buffers
61 * must be aligned on longword boundaries. The receive buffer alignment
62 * causes problems on the strict alignment architecture, where the
63 * packet payload should be longword aligned. There is no simple way
64 * around this.
65 *
66 * For receive filtering, the Starfire offers 16 perfect filter slots
67 * and a 512-bit hash table.
68 *
69 * The Starfire has no internal transceiver, relying instead on an
70 * external MII-based transceiver. Accessing registers on external
71 * PHYs is done through a special register map rather than with the
72 * usual bitbang MDIO method.
73 *
74 * Acesssing the registers on the Starfire is a little tricky. The
75 * Starfire has a 512K internal register space. When programmed for
76 * PCI memory mapped mode, the entire register space can be accessed
77 * directly. However in I/O space mode, only 256 bytes are directly
78 * mapped into PCI I/O space. The other registers can be accessed
79 * indirectly using the SF_INDIRECTIO_ADDR and SF_INDIRECTIO_DATA
80 * registers inside the 256-byte I/O window.
81 */
82
83#ifdef HAVE_KERNEL_OPTION_HEADERS
84#include "opt_device_polling.h"
85#endif
86
87#include <sys/param.h>
88#include <sys/systm.h>
89#include <sys/bus.h>
90#include <sys/endian.h>
91#include <sys/kernel.h>
92#include <sys/malloc.h>
93#include <sys/mbuf.h>
94#include <sys/rman.h>
95#include <sys/module.h>
96#include <sys/socket.h>
97#include <sys/sockio.h>
98#include <sys/sysctl.h>
99
100#include <net/bpf.h>
101#include <net/if.h>
102#include <net/if_var.h>
103#include <net/if_arp.h>
104#include <net/ethernet.h>
105#include <net/if_dl.h>
106#include <net/if_media.h>
107#include <net/if_types.h>
108#include <net/if_vlan_var.h>
109
110#include <dev/mii/mii.h>
111#include <dev/mii/miivar.h>
112
113#include <dev/pci/pcireg.h>
114#include <dev/pci/pcivar.h>
115
116#include <machine/bus.h>
117
118#include <dev/sf/if_sfreg.h>
119#include <dev/sf/starfire_rx.h>
120#include <dev/sf/starfire_tx.h>
121
122/* "device miibus" required.  See GENERIC if you get errors here. */
123#include "miibus_if.h"
124
125MODULE_DEPEND(sf, pci, 1, 1, 1);
126MODULE_DEPEND(sf, ether, 1, 1, 1);
127MODULE_DEPEND(sf, miibus, 1, 1, 1);
128
129#undef	SF_GFP_DEBUG
130#define	SF_CSUM_FEATURES	(CSUM_TCP | CSUM_UDP)
131/* Define this to activate partial TCP/UDP checksum offload. */
132#undef	SF_PARTIAL_CSUM_SUPPORT
133
134static struct sf_type sf_devs[] = {
135	{ AD_VENDORID, AD_DEVICEID_STARFIRE, "Adaptec AIC-6915 10/100BaseTX",
136	    AD_SUBSYSID_62011_REV0, "Adaptec ANA-62011 (rev 0) 10/100BaseTX" },
137	{ AD_VENDORID, AD_DEVICEID_STARFIRE, "Adaptec AIC-6915 10/100BaseTX",
138	    AD_SUBSYSID_62011_REV1, "Adaptec ANA-62011 (rev 1) 10/100BaseTX" },
139	{ AD_VENDORID, AD_DEVICEID_STARFIRE, "Adaptec AIC-6915 10/100BaseTX",
140	    AD_SUBSYSID_62022, "Adaptec ANA-62022 10/100BaseTX" },
141	{ AD_VENDORID, AD_DEVICEID_STARFIRE, "Adaptec AIC-6915 10/100BaseTX",
142	    AD_SUBSYSID_62044_REV0, "Adaptec ANA-62044 (rev 0) 10/100BaseTX" },
143	{ AD_VENDORID, AD_DEVICEID_STARFIRE, "Adaptec AIC-6915 10/100BaseTX",
144	    AD_SUBSYSID_62044_REV1, "Adaptec ANA-62044 (rev 1) 10/100BaseTX" },
145	{ AD_VENDORID, AD_DEVICEID_STARFIRE, "Adaptec AIC-6915 10/100BaseTX",
146	    AD_SUBSYSID_62020, "Adaptec ANA-62020 10/100BaseFX" },
147	{ AD_VENDORID, AD_DEVICEID_STARFIRE, "Adaptec AIC-6915 10/100BaseTX",
148	    AD_SUBSYSID_69011, "Adaptec ANA-69011 10/100BaseTX" },
149};
150
151static int sf_probe(device_t);
152static int sf_attach(device_t);
153static int sf_detach(device_t);
154static int sf_shutdown(device_t);
155static int sf_suspend(device_t);
156static int sf_resume(device_t);
157static void sf_intr(void *);
158static void sf_tick(void *);
159static void sf_stats_update(struct sf_softc *);
160#ifndef __NO_STRICT_ALIGNMENT
161static __inline void sf_fixup_rx(struct mbuf *);
162#endif
163static int sf_rxeof(struct sf_softc *);
164static void sf_txeof(struct sf_softc *);
165static int sf_encap(struct sf_softc *, struct mbuf **);
166static void sf_start(struct ifnet *);
167static void sf_start_locked(struct ifnet *);
168static int sf_ioctl(struct ifnet *, u_long, caddr_t);
169static void sf_download_fw(struct sf_softc *);
170static void sf_init(void *);
171static void sf_init_locked(struct sf_softc *);
172static void sf_stop(struct sf_softc *);
173static void sf_watchdog(struct sf_softc *);
174static int sf_ifmedia_upd(struct ifnet *);
175static int sf_ifmedia_upd_locked(struct ifnet *);
176static void sf_ifmedia_sts(struct ifnet *, struct ifmediareq *);
177static void sf_reset(struct sf_softc *);
178static int sf_dma_alloc(struct sf_softc *);
179static void sf_dma_free(struct sf_softc *);
180static int sf_init_rx_ring(struct sf_softc *);
181static void sf_init_tx_ring(struct sf_softc *);
182static int sf_newbuf(struct sf_softc *, int);
183static void sf_rxfilter(struct sf_softc *);
184static int sf_setperf(struct sf_softc *, int, uint8_t *);
185static int sf_sethash(struct sf_softc *, caddr_t, int);
186#ifdef notdef
187static int sf_setvlan(struct sf_softc *, int, uint32_t);
188#endif
189
190static uint8_t sf_read_eeprom(struct sf_softc *, int);
191
192static int sf_miibus_readreg(device_t, int, int);
193static int sf_miibus_writereg(device_t, int, int, int);
194static void sf_miibus_statchg(device_t);
195#ifdef DEVICE_POLLING
196static int sf_poll(struct ifnet *ifp, enum poll_cmd cmd, int count);
197#endif
198
199static uint32_t csr_read_4(struct sf_softc *, int);
200static void csr_write_4(struct sf_softc *, int, uint32_t);
201static void sf_txthresh_adjust(struct sf_softc *);
202static int sf_sysctl_stats(SYSCTL_HANDLER_ARGS);
203static int sysctl_int_range(SYSCTL_HANDLER_ARGS, int, int);
204static int sysctl_hw_sf_int_mod(SYSCTL_HANDLER_ARGS);
205
206static device_method_t sf_methods[] = {
207	/* Device interface */
208	DEVMETHOD(device_probe,		sf_probe),
209	DEVMETHOD(device_attach,	sf_attach),
210	DEVMETHOD(device_detach,	sf_detach),
211	DEVMETHOD(device_shutdown,	sf_shutdown),
212	DEVMETHOD(device_suspend,	sf_suspend),
213	DEVMETHOD(device_resume,	sf_resume),
214
215	/* MII interface */
216	DEVMETHOD(miibus_readreg,	sf_miibus_readreg),
217	DEVMETHOD(miibus_writereg,	sf_miibus_writereg),
218	DEVMETHOD(miibus_statchg,	sf_miibus_statchg),
219
220	DEVMETHOD_END
221};
222
223static driver_t sf_driver = {
224	"sf",
225	sf_methods,
226	sizeof(struct sf_softc),
227};
228
229static devclass_t sf_devclass;
230
231DRIVER_MODULE(sf, pci, sf_driver, sf_devclass, 0, 0);
232DRIVER_MODULE(miibus, sf, miibus_driver, miibus_devclass, 0, 0);
233
234#define SF_SETBIT(sc, reg, x)	\
235	csr_write_4(sc, reg, csr_read_4(sc, reg) | (x))
236
237#define SF_CLRBIT(sc, reg, x)				\
238	csr_write_4(sc, reg, csr_read_4(sc, reg) & ~(x))
239
240static uint32_t
241csr_read_4(struct sf_softc *sc, int reg)
242{
243	uint32_t		val;
244
245	if (sc->sf_restype == SYS_RES_MEMORY)
246		val = CSR_READ_4(sc, (reg + SF_RMAP_INTREG_BASE));
247	else {
248		CSR_WRITE_4(sc, SF_INDIRECTIO_ADDR, reg + SF_RMAP_INTREG_BASE);
249		val = CSR_READ_4(sc, SF_INDIRECTIO_DATA);
250	}
251
252	return (val);
253}
254
255static uint8_t
256sf_read_eeprom(struct sf_softc *sc, int reg)
257{
258	uint8_t		val;
259
260	val = (csr_read_4(sc, SF_EEADDR_BASE +
261	    (reg & 0xFFFFFFFC)) >> (8 * (reg & 3))) & 0xFF;
262
263	return (val);
264}
265
266static void
267csr_write_4(struct sf_softc *sc, int reg, uint32_t val)
268{
269
270	if (sc->sf_restype == SYS_RES_MEMORY)
271		CSR_WRITE_4(sc, (reg + SF_RMAP_INTREG_BASE), val);
272	else {
273		CSR_WRITE_4(sc, SF_INDIRECTIO_ADDR, reg + SF_RMAP_INTREG_BASE);
274		CSR_WRITE_4(sc, SF_INDIRECTIO_DATA, val);
275	}
276}
277
278/*
279 * Copy the address 'mac' into the perfect RX filter entry at
280 * offset 'idx.' The perfect filter only has 16 entries so do
281 * some sanity tests.
282 */
283static int
284sf_setperf(struct sf_softc *sc, int idx, uint8_t *mac)
285{
286
287	if (idx < 0 || idx > SF_RXFILT_PERFECT_CNT)
288		return (EINVAL);
289
290	if (mac == NULL)
291		return (EINVAL);
292
293	csr_write_4(sc, SF_RXFILT_PERFECT_BASE +
294	    (idx * SF_RXFILT_PERFECT_SKIP) + 0, mac[5] | (mac[4] << 8));
295	csr_write_4(sc, SF_RXFILT_PERFECT_BASE +
296	    (idx * SF_RXFILT_PERFECT_SKIP) + 4, mac[3] | (mac[2] << 8));
297	csr_write_4(sc, SF_RXFILT_PERFECT_BASE +
298	    (idx * SF_RXFILT_PERFECT_SKIP) + 8, mac[1] | (mac[0] << 8));
299
300	return (0);
301}
302
303/*
304 * Set the bit in the 512-bit hash table that corresponds to the
305 * specified mac address 'mac.' If 'prio' is nonzero, update the
306 * priority hash table instead of the filter hash table.
307 */
308static int
309sf_sethash(struct sf_softc *sc, caddr_t	mac, int prio)
310{
311	uint32_t		h;
312
313	if (mac == NULL)
314		return (EINVAL);
315
316	h = ether_crc32_be(mac, ETHER_ADDR_LEN) >> 23;
317
318	if (prio) {
319		SF_SETBIT(sc, SF_RXFILT_HASH_BASE + SF_RXFILT_HASH_PRIOOFF +
320		    (SF_RXFILT_HASH_SKIP * (h >> 4)), (1 << (h & 0xF)));
321	} else {
322		SF_SETBIT(sc, SF_RXFILT_HASH_BASE + SF_RXFILT_HASH_ADDROFF +
323		    (SF_RXFILT_HASH_SKIP * (h >> 4)), (1 << (h & 0xF)));
324	}
325
326	return (0);
327}
328
329#ifdef notdef
330/*
331 * Set a VLAN tag in the receive filter.
332 */
333static int
334sf_setvlan(struct sf_softc *sc, int idx, uint32_t vlan)
335{
336
337	if (idx < 0 || idx >> SF_RXFILT_HASH_CNT)
338		return (EINVAL);
339
340	csr_write_4(sc, SF_RXFILT_HASH_BASE +
341	    (idx * SF_RXFILT_HASH_SKIP) + SF_RXFILT_HASH_VLANOFF, vlan);
342
343	return (0);
344}
345#endif
346
347static int
348sf_miibus_readreg(device_t dev, int phy, int reg)
349{
350	struct sf_softc		*sc;
351	int			i;
352	uint32_t		val = 0;
353
354	sc = device_get_softc(dev);
355
356	for (i = 0; i < SF_TIMEOUT; i++) {
357		val = csr_read_4(sc, SF_PHY_REG(phy, reg));
358		if ((val & SF_MII_DATAVALID) != 0)
359			break;
360	}
361
362	if (i == SF_TIMEOUT)
363		return (0);
364
365	val &= SF_MII_DATAPORT;
366	if (val == 0xffff)
367		return (0);
368
369	return (val);
370}
371
372static int
373sf_miibus_writereg(device_t dev, int phy, int reg, int val)
374{
375	struct sf_softc		*sc;
376	int			i;
377	int			busy;
378
379	sc = device_get_softc(dev);
380
381	csr_write_4(sc, SF_PHY_REG(phy, reg), val);
382
383	for (i = 0; i < SF_TIMEOUT; i++) {
384		busy = csr_read_4(sc, SF_PHY_REG(phy, reg));
385		if ((busy & SF_MII_BUSY) == 0)
386			break;
387	}
388
389	return (0);
390}
391
392static void
393sf_miibus_statchg(device_t dev)
394{
395	struct sf_softc		*sc;
396	struct mii_data		*mii;
397	struct ifnet		*ifp;
398	uint32_t		val;
399
400	sc = device_get_softc(dev);
401	mii = device_get_softc(sc->sf_miibus);
402	ifp = sc->sf_ifp;
403	if (mii == NULL || ifp == NULL ||
404	    (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
405		return;
406
407	sc->sf_link = 0;
408	if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
409	    (IFM_ACTIVE | IFM_AVALID)) {
410		switch (IFM_SUBTYPE(mii->mii_media_active)) {
411		case IFM_10_T:
412		case IFM_100_TX:
413		case IFM_100_FX:
414			sc->sf_link = 1;
415			break;
416		}
417	}
418	if (sc->sf_link == 0)
419		return;
420
421	val = csr_read_4(sc, SF_MACCFG_1);
422	val &= ~SF_MACCFG1_FULLDUPLEX;
423	val &= ~(SF_MACCFG1_RX_FLOWENB | SF_MACCFG1_TX_FLOWENB);
424	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
425		val |= SF_MACCFG1_FULLDUPLEX;
426		csr_write_4(sc, SF_BKTOBKIPG, SF_IPGT_FDX);
427#ifdef notyet
428		/* Configure flow-control bits. */
429		if ((IFM_OPTIONS(sc->sc_mii->mii_media_active) &
430		    IFM_ETH_RXPAUSE) != 0)
431			val |= SF_MACCFG1_RX_FLOWENB;
432		if ((IFM_OPTIONS(sc->sc_mii->mii_media_active) &
433		    IFM_ETH_TXPAUSE) != 0)
434			val |= SF_MACCFG1_TX_FLOWENB;
435#endif
436	} else
437		csr_write_4(sc, SF_BKTOBKIPG, SF_IPGT_HDX);
438
439	/* Make sure to reset MAC to take changes effect. */
440	csr_write_4(sc, SF_MACCFG_1, val | SF_MACCFG1_SOFTRESET);
441	DELAY(1000);
442	csr_write_4(sc, SF_MACCFG_1, val);
443
444	val = csr_read_4(sc, SF_TIMER_CTL);
445	if (IFM_SUBTYPE(mii->mii_media_active) == IFM_100_TX)
446		val |= SF_TIMER_TIMES_TEN;
447	else
448		val &= ~SF_TIMER_TIMES_TEN;
449	csr_write_4(sc, SF_TIMER_CTL, val);
450}
451
452static void
453sf_rxfilter(struct sf_softc *sc)
454{
455	struct ifnet		*ifp;
456	int			i;
457	struct ifmultiaddr	*ifma;
458	uint8_t			dummy[ETHER_ADDR_LEN] = { 0, 0, 0, 0, 0, 0 };
459	uint32_t		rxfilt;
460
461	ifp = sc->sf_ifp;
462
463	/* First zot all the existing filters. */
464	for (i = 1; i < SF_RXFILT_PERFECT_CNT; i++)
465		sf_setperf(sc, i, dummy);
466	for (i = SF_RXFILT_HASH_BASE; i < (SF_RXFILT_HASH_MAX + 1);
467	    i += sizeof(uint32_t))
468		csr_write_4(sc, i, 0);
469
470	rxfilt = csr_read_4(sc, SF_RXFILT);
471	rxfilt &= ~(SF_RXFILT_PROMISC | SF_RXFILT_ALLMULTI | SF_RXFILT_BROAD);
472	if ((ifp->if_flags & IFF_BROADCAST) != 0)
473		rxfilt |= SF_RXFILT_BROAD;
474	if ((ifp->if_flags & IFF_ALLMULTI) != 0 ||
475	    (ifp->if_flags & IFF_PROMISC) != 0) {
476		if ((ifp->if_flags & IFF_PROMISC) != 0)
477			rxfilt |= SF_RXFILT_PROMISC;
478		if ((ifp->if_flags & IFF_ALLMULTI) != 0)
479			rxfilt |= SF_RXFILT_ALLMULTI;
480		goto done;
481	}
482
483	/* Now program new ones. */
484	i = 1;
485	if_maddr_rlock(ifp);
486	TAILQ_FOREACH_REVERSE(ifma, &ifp->if_multiaddrs, ifmultihead,
487	    ifma_link) {
488		if (ifma->ifma_addr->sa_family != AF_LINK)
489			continue;
490		/*
491		 * Program the first 15 multicast groups
492		 * into the perfect filter. For all others,
493		 * use the hash table.
494		 */
495		if (i < SF_RXFILT_PERFECT_CNT) {
496			sf_setperf(sc, i,
497			    LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
498			i++;
499			continue;
500		}
501
502		sf_sethash(sc,
503		    LLADDR((struct sockaddr_dl *)ifma->ifma_addr), 0);
504	}
505	if_maddr_runlock(ifp);
506
507done:
508	csr_write_4(sc, SF_RXFILT, rxfilt);
509}
510
511/*
512 * Set media options.
513 */
514static int
515sf_ifmedia_upd(struct ifnet *ifp)
516{
517	struct sf_softc		*sc;
518	int			error;
519
520	sc = ifp->if_softc;
521	SF_LOCK(sc);
522	error = sf_ifmedia_upd_locked(ifp);
523	SF_UNLOCK(sc);
524	return (error);
525}
526
527static int
528sf_ifmedia_upd_locked(struct ifnet *ifp)
529{
530	struct sf_softc		*sc;
531	struct mii_data		*mii;
532	struct mii_softc        *miisc;
533
534	sc = ifp->if_softc;
535	mii = device_get_softc(sc->sf_miibus);
536	LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
537		PHY_RESET(miisc);
538	return (mii_mediachg(mii));
539}
540
541/*
542 * Report current media status.
543 */
544static void
545sf_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
546{
547	struct sf_softc		*sc;
548	struct mii_data		*mii;
549
550	sc = ifp->if_softc;
551	SF_LOCK(sc);
552	if ((ifp->if_flags & IFF_UP) == 0) {
553		SF_UNLOCK(sc);
554		return;
555	}
556
557	mii = device_get_softc(sc->sf_miibus);
558	mii_pollstat(mii);
559	ifmr->ifm_active = mii->mii_media_active;
560	ifmr->ifm_status = mii->mii_media_status;
561	SF_UNLOCK(sc);
562}
563
564static int
565sf_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
566{
567	struct sf_softc		*sc;
568	struct ifreq		*ifr;
569	struct mii_data		*mii;
570	int			error, mask;
571
572	sc = ifp->if_softc;
573	ifr = (struct ifreq *)data;
574	error = 0;
575
576	switch (command) {
577	case SIOCSIFFLAGS:
578		SF_LOCK(sc);
579		if (ifp->if_flags & IFF_UP) {
580			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
581				if ((ifp->if_flags ^ sc->sf_if_flags) &
582				    (IFF_PROMISC | IFF_ALLMULTI))
583					sf_rxfilter(sc);
584			} else {
585				if (sc->sf_detach == 0)
586					sf_init_locked(sc);
587			}
588		} else {
589			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
590				sf_stop(sc);
591		}
592		sc->sf_if_flags = ifp->if_flags;
593		SF_UNLOCK(sc);
594		break;
595	case SIOCADDMULTI:
596	case SIOCDELMULTI:
597		SF_LOCK(sc);
598		if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
599			sf_rxfilter(sc);
600		SF_UNLOCK(sc);
601		break;
602	case SIOCGIFMEDIA:
603	case SIOCSIFMEDIA:
604		mii = device_get_softc(sc->sf_miibus);
605		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
606		break;
607	case SIOCSIFCAP:
608		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
609#ifdef DEVICE_POLLING
610		if ((mask & IFCAP_POLLING) != 0) {
611			if ((ifr->ifr_reqcap & IFCAP_POLLING) != 0) {
612				error = ether_poll_register(sf_poll, ifp);
613				if (error != 0)
614					break;
615				SF_LOCK(sc);
616				/* Disable interrupts. */
617				csr_write_4(sc, SF_IMR, 0);
618				ifp->if_capenable |= IFCAP_POLLING;
619				SF_UNLOCK(sc);
620			} else {
621				error = ether_poll_deregister(ifp);
622				/* Enable interrupts. */
623				SF_LOCK(sc);
624				csr_write_4(sc, SF_IMR, SF_INTRS);
625				ifp->if_capenable &= ~IFCAP_POLLING;
626				SF_UNLOCK(sc);
627			}
628		}
629#endif /* DEVICE_POLLING */
630		if ((mask & IFCAP_TXCSUM) != 0) {
631			if ((IFCAP_TXCSUM & ifp->if_capabilities) != 0) {
632				SF_LOCK(sc);
633				ifp->if_capenable ^= IFCAP_TXCSUM;
634				if ((IFCAP_TXCSUM & ifp->if_capenable) != 0) {
635					ifp->if_hwassist |= SF_CSUM_FEATURES;
636					SF_SETBIT(sc, SF_GEN_ETH_CTL,
637					    SF_ETHCTL_TXGFP_ENB);
638				} else {
639					ifp->if_hwassist &= ~SF_CSUM_FEATURES;
640					SF_CLRBIT(sc, SF_GEN_ETH_CTL,
641					    SF_ETHCTL_TXGFP_ENB);
642				}
643				SF_UNLOCK(sc);
644			}
645		}
646		if ((mask & IFCAP_RXCSUM) != 0) {
647			if ((IFCAP_RXCSUM & ifp->if_capabilities) != 0) {
648				SF_LOCK(sc);
649				ifp->if_capenable ^= IFCAP_RXCSUM;
650				if ((IFCAP_RXCSUM & ifp->if_capenable) != 0)
651					SF_SETBIT(sc, SF_GEN_ETH_CTL,
652					    SF_ETHCTL_RXGFP_ENB);
653				else
654					SF_CLRBIT(sc, SF_GEN_ETH_CTL,
655					    SF_ETHCTL_RXGFP_ENB);
656				SF_UNLOCK(sc);
657			}
658		}
659		break;
660	default:
661		error = ether_ioctl(ifp, command, data);
662		break;
663	}
664
665	return (error);
666}
667
668static void
669sf_reset(struct sf_softc *sc)
670{
671	int		i;
672
673	csr_write_4(sc, SF_GEN_ETH_CTL, 0);
674	SF_SETBIT(sc, SF_MACCFG_1, SF_MACCFG1_SOFTRESET);
675	DELAY(1000);
676	SF_CLRBIT(sc, SF_MACCFG_1, SF_MACCFG1_SOFTRESET);
677
678	SF_SETBIT(sc, SF_PCI_DEVCFG, SF_PCIDEVCFG_RESET);
679
680	for (i = 0; i < SF_TIMEOUT; i++) {
681		DELAY(10);
682		if (!(csr_read_4(sc, SF_PCI_DEVCFG) & SF_PCIDEVCFG_RESET))
683			break;
684	}
685
686	if (i == SF_TIMEOUT)
687		device_printf(sc->sf_dev, "reset never completed!\n");
688
689	/* Wait a little while for the chip to get its brains in order. */
690	DELAY(1000);
691}
692
693/*
694 * Probe for an Adaptec AIC-6915 chip. Check the PCI vendor and device
695 * IDs against our list and return a device name if we find a match.
696 * We also check the subsystem ID so that we can identify exactly which
697 * NIC has been found, if possible.
698 */
699static int
700sf_probe(device_t dev)
701{
702	struct sf_type		*t;
703	uint16_t		vid;
704	uint16_t		did;
705	uint16_t		sdid;
706	int			i;
707
708	vid = pci_get_vendor(dev);
709	did = pci_get_device(dev);
710	sdid = pci_get_subdevice(dev);
711
712	t = sf_devs;
713	for (i = 0; i < sizeof(sf_devs) / sizeof(sf_devs[0]); i++, t++) {
714		if (vid == t->sf_vid && did == t->sf_did) {
715			if (sdid == t->sf_sdid) {
716				device_set_desc(dev, t->sf_sname);
717				return (BUS_PROBE_DEFAULT);
718			}
719		}
720	}
721
722	if (vid == AD_VENDORID && did == AD_DEVICEID_STARFIRE) {
723		/* unkown subdevice */
724		device_set_desc(dev, sf_devs[0].sf_name);
725		return (BUS_PROBE_DEFAULT);
726	}
727
728	return (ENXIO);
729}
730
731/*
732 * Attach the interface. Allocate softc structures, do ifmedia
733 * setup and ethernet/BPF attach.
734 */
735static int
736sf_attach(device_t dev)
737{
738	int			i;
739	struct sf_softc		*sc;
740	struct ifnet		*ifp;
741	uint32_t		reg;
742	int			rid, error = 0;
743	uint8_t			eaddr[ETHER_ADDR_LEN];
744
745	sc = device_get_softc(dev);
746	sc->sf_dev = dev;
747
748	mtx_init(&sc->sf_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
749	    MTX_DEF);
750	callout_init_mtx(&sc->sf_co, &sc->sf_mtx, 0);
751
752	/*
753	 * Map control/status registers.
754	 */
755	pci_enable_busmaster(dev);
756
757	/*
758	 * Prefer memory space register mapping over I/O space as the
759	 * hardware requires lots of register access to get various
760	 * producer/consumer index during Tx/Rx operation. However this
761	 * requires large memory space(512K) to map the entire register
762	 * space.
763	 */
764	sc->sf_rid = PCIR_BAR(0);
765	sc->sf_restype = SYS_RES_MEMORY;
766	sc->sf_res = bus_alloc_resource_any(dev, sc->sf_restype, &sc->sf_rid,
767	    RF_ACTIVE);
768	if (sc->sf_res == NULL) {
769		reg = pci_read_config(dev, PCIR_BAR(0), 4);
770		if ((reg & PCIM_BAR_MEM_64) == PCIM_BAR_MEM_64)
771			sc->sf_rid = PCIR_BAR(2);
772		else
773			sc->sf_rid = PCIR_BAR(1);
774		sc->sf_restype = SYS_RES_IOPORT;
775		sc->sf_res = bus_alloc_resource_any(dev, sc->sf_restype,
776		    &sc->sf_rid, RF_ACTIVE);
777		if (sc->sf_res == NULL) {
778			device_printf(dev, "couldn't allocate resources\n");
779			mtx_destroy(&sc->sf_mtx);
780			return (ENXIO);
781		}
782	}
783	if (bootverbose)
784		device_printf(dev, "using %s space register mapping\n",
785		    sc->sf_restype == SYS_RES_MEMORY ? "memory" : "I/O");
786
787	reg = pci_read_config(dev, PCIR_CACHELNSZ, 1);
788	if (reg == 0) {
789		/*
790		 * If cache line size is 0, MWI is not used at all, so set
791		 * reasonable default. AIC-6915 supports 0, 4, 8, 16, 32
792		 * and 64.
793		 */
794		reg = 16;
795		device_printf(dev, "setting PCI cache line size to %u\n", reg);
796		pci_write_config(dev, PCIR_CACHELNSZ, reg, 1);
797	} else {
798		if (bootverbose)
799			device_printf(dev, "PCI cache line size : %u\n", reg);
800	}
801	/* Enable MWI. */
802	reg = pci_read_config(dev, PCIR_COMMAND, 2);
803	reg |= PCIM_CMD_MWRICEN;
804	pci_write_config(dev, PCIR_COMMAND, reg, 2);
805
806	/* Allocate interrupt. */
807	rid = 0;
808	sc->sf_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
809	    RF_SHAREABLE | RF_ACTIVE);
810
811	if (sc->sf_irq == NULL) {
812		device_printf(dev, "couldn't map interrupt\n");
813		error = ENXIO;
814		goto fail;
815	}
816
817	SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
818	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
819	    OID_AUTO, "stats", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
820	    sf_sysctl_stats, "I", "Statistics");
821
822	SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
823		SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
824		OID_AUTO, "int_mod", CTLTYPE_INT | CTLFLAG_RW,
825		&sc->sf_int_mod, 0, sysctl_hw_sf_int_mod, "I",
826		"sf interrupt moderation");
827	/* Pull in device tunables. */
828	sc->sf_int_mod = SF_IM_DEFAULT;
829	error = resource_int_value(device_get_name(dev), device_get_unit(dev),
830	    "int_mod", &sc->sf_int_mod);
831	if (error == 0) {
832		if (sc->sf_int_mod < SF_IM_MIN ||
833		    sc->sf_int_mod > SF_IM_MAX) {
834			device_printf(dev, "int_mod value out of range; "
835			    "using default: %d\n", SF_IM_DEFAULT);
836			sc->sf_int_mod = SF_IM_DEFAULT;
837		}
838	}
839
840	/* Reset the adapter. */
841	sf_reset(sc);
842
843	/*
844	 * Get station address from the EEPROM.
845	 */
846	for (i = 0; i < ETHER_ADDR_LEN; i++)
847		eaddr[i] =
848		    sf_read_eeprom(sc, SF_EE_NODEADDR + ETHER_ADDR_LEN - i);
849
850	/* Allocate DMA resources. */
851	if (sf_dma_alloc(sc) != 0) {
852		error = ENOSPC;
853		goto fail;
854	}
855
856	sc->sf_txthresh = SF_MIN_TX_THRESHOLD;
857
858	ifp = sc->sf_ifp = if_alloc(IFT_ETHER);
859	if (ifp == NULL) {
860		device_printf(dev, "can not allocate ifnet structure\n");
861		error = ENOSPC;
862		goto fail;
863	}
864
865	/* Do MII setup. */
866	error = mii_attach(dev, &sc->sf_miibus, ifp, sf_ifmedia_upd,
867	    sf_ifmedia_sts, BMSR_DEFCAPMASK, MII_PHY_ANY, MII_OFFSET_ANY, 0);
868	if (error != 0) {
869		device_printf(dev, "attaching PHYs failed\n");
870		goto fail;
871	}
872
873	ifp->if_softc = sc;
874	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
875	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
876	ifp->if_ioctl = sf_ioctl;
877	ifp->if_start = sf_start;
878	ifp->if_init = sf_init;
879	IFQ_SET_MAXLEN(&ifp->if_snd, SF_TX_DLIST_CNT - 1);
880	ifp->if_snd.ifq_drv_maxlen = SF_TX_DLIST_CNT - 1;
881	IFQ_SET_READY(&ifp->if_snd);
882	/*
883	 * With the help of firmware, AIC-6915 supports
884	 * Tx/Rx TCP/UDP checksum offload.
885	 */
886	ifp->if_hwassist = SF_CSUM_FEATURES;
887	ifp->if_capabilities = IFCAP_HWCSUM;
888
889	/*
890	 * Call MI attach routine.
891	 */
892	ether_ifattach(ifp, eaddr);
893
894	/* VLAN capability setup. */
895	ifp->if_capabilities |= IFCAP_VLAN_MTU;
896	ifp->if_capenable = ifp->if_capabilities;
897#ifdef DEVICE_POLLING
898	ifp->if_capabilities |= IFCAP_POLLING;
899#endif
900	/*
901	 * Tell the upper layer(s) we support long frames.
902	 * Must appear after the call to ether_ifattach() because
903	 * ether_ifattach() sets ifi_hdrlen to the default value.
904	 */
905	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
906
907	/* Hook interrupt last to avoid having to lock softc */
908	error = bus_setup_intr(dev, sc->sf_irq, INTR_TYPE_NET | INTR_MPSAFE,
909	    NULL, sf_intr, sc, &sc->sf_intrhand);
910
911	if (error) {
912		device_printf(dev, "couldn't set up irq\n");
913		ether_ifdetach(ifp);
914		goto fail;
915	}
916
917fail:
918	if (error)
919		sf_detach(dev);
920
921	return (error);
922}
923
924/*
925 * Shutdown hardware and free up resources. This can be called any
926 * time after the mutex has been initialized. It is called in both
927 * the error case in attach and the normal detach case so it needs
928 * to be careful about only freeing resources that have actually been
929 * allocated.
930 */
931static int
932sf_detach(device_t dev)
933{
934	struct sf_softc		*sc;
935	struct ifnet		*ifp;
936
937	sc = device_get_softc(dev);
938	ifp = sc->sf_ifp;
939
940#ifdef DEVICE_POLLING
941	if (ifp != NULL && ifp->if_capenable & IFCAP_POLLING)
942		ether_poll_deregister(ifp);
943#endif
944
945	/* These should only be active if attach succeeded */
946	if (device_is_attached(dev)) {
947		SF_LOCK(sc);
948		sc->sf_detach = 1;
949		sf_stop(sc);
950		SF_UNLOCK(sc);
951		callout_drain(&sc->sf_co);
952		if (ifp != NULL)
953			ether_ifdetach(ifp);
954	}
955	if (sc->sf_miibus) {
956		device_delete_child(dev, sc->sf_miibus);
957		sc->sf_miibus = NULL;
958	}
959	bus_generic_detach(dev);
960
961	if (sc->sf_intrhand != NULL)
962		bus_teardown_intr(dev, sc->sf_irq, sc->sf_intrhand);
963	if (sc->sf_irq != NULL)
964		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sf_irq);
965	if (sc->sf_res != NULL)
966		bus_release_resource(dev, sc->sf_restype, sc->sf_rid,
967		    sc->sf_res);
968
969	sf_dma_free(sc);
970	if (ifp != NULL)
971		if_free(ifp);
972
973	mtx_destroy(&sc->sf_mtx);
974
975	return (0);
976}
977
978struct sf_dmamap_arg {
979	bus_addr_t		sf_busaddr;
980};
981
982static void
983sf_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
984{
985	struct sf_dmamap_arg	*ctx;
986
987	if (error != 0)
988		return;
989	ctx = arg;
990	ctx->sf_busaddr = segs[0].ds_addr;
991}
992
993static int
994sf_dma_alloc(struct sf_softc *sc)
995{
996	struct sf_dmamap_arg	ctx;
997	struct sf_txdesc	*txd;
998	struct sf_rxdesc	*rxd;
999	bus_addr_t		lowaddr;
1000	bus_addr_t		rx_ring_end, rx_cring_end;
1001	bus_addr_t		tx_ring_end, tx_cring_end;
1002	int			error, i;
1003
1004	lowaddr = BUS_SPACE_MAXADDR;
1005
1006again:
1007	/* Create parent DMA tag. */
1008	error = bus_dma_tag_create(
1009	    bus_get_dma_tag(sc->sf_dev),	/* parent */
1010	    1, 0,			/* alignment, boundary */
1011	    lowaddr,			/* lowaddr */
1012	    BUS_SPACE_MAXADDR,		/* highaddr */
1013	    NULL, NULL,			/* filter, filterarg */
1014	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
1015	    0,				/* nsegments */
1016	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
1017	    0,				/* flags */
1018	    NULL, NULL,			/* lockfunc, lockarg */
1019	    &sc->sf_cdata.sf_parent_tag);
1020	if (error != 0) {
1021		device_printf(sc->sf_dev, "failed to create parent DMA tag\n");
1022		goto fail;
1023	}
1024	/* Create tag for Tx ring. */
1025	error = bus_dma_tag_create(sc->sf_cdata.sf_parent_tag,/* parent */
1026	    SF_RING_ALIGN, 0, 		/* alignment, boundary */
1027	    BUS_SPACE_MAXADDR,		/* lowaddr */
1028	    BUS_SPACE_MAXADDR,		/* highaddr */
1029	    NULL, NULL,			/* filter, filterarg */
1030	    SF_TX_DLIST_SIZE,		/* maxsize */
1031	    1,				/* nsegments */
1032	    SF_TX_DLIST_SIZE,		/* maxsegsize */
1033	    0,				/* flags */
1034	    NULL, NULL,			/* lockfunc, lockarg */
1035	    &sc->sf_cdata.sf_tx_ring_tag);
1036	if (error != 0) {
1037		device_printf(sc->sf_dev, "failed to create Tx ring DMA tag\n");
1038		goto fail;
1039	}
1040
1041	/* Create tag for Tx completion ring. */
1042	error = bus_dma_tag_create(sc->sf_cdata.sf_parent_tag,/* parent */
1043	    SF_RING_ALIGN, 0, 		/* alignment, boundary */
1044	    BUS_SPACE_MAXADDR,		/* lowaddr */
1045	    BUS_SPACE_MAXADDR,		/* highaddr */
1046	    NULL, NULL,			/* filter, filterarg */
1047	    SF_TX_CLIST_SIZE,		/* maxsize */
1048	    1,				/* nsegments */
1049	    SF_TX_CLIST_SIZE,		/* maxsegsize */
1050	    0,				/* flags */
1051	    NULL, NULL,			/* lockfunc, lockarg */
1052	    &sc->sf_cdata.sf_tx_cring_tag);
1053	if (error != 0) {
1054		device_printf(sc->sf_dev,
1055		    "failed to create Tx completion ring DMA tag\n");
1056		goto fail;
1057	}
1058
1059	/* Create tag for Rx ring. */
1060	error = bus_dma_tag_create(sc->sf_cdata.sf_parent_tag,/* parent */
1061	    SF_RING_ALIGN, 0,		/* alignment, boundary */
1062	    BUS_SPACE_MAXADDR,		/* lowaddr */
1063	    BUS_SPACE_MAXADDR,		/* highaddr */
1064	    NULL, NULL,			/* filter, filterarg */
1065	    SF_RX_DLIST_SIZE,		/* maxsize */
1066	    1,				/* nsegments */
1067	    SF_RX_DLIST_SIZE,		/* maxsegsize */
1068	    0,				/* flags */
1069	    NULL, NULL,			/* lockfunc, lockarg */
1070	    &sc->sf_cdata.sf_rx_ring_tag);
1071	if (error != 0) {
1072		device_printf(sc->sf_dev,
1073		    "failed to create Rx ring DMA tag\n");
1074		goto fail;
1075	}
1076
1077	/* Create tag for Rx completion ring. */
1078	error = bus_dma_tag_create(sc->sf_cdata.sf_parent_tag,/* parent */
1079	    SF_RING_ALIGN, 0,		/* alignment, boundary */
1080	    BUS_SPACE_MAXADDR,		/* lowaddr */
1081	    BUS_SPACE_MAXADDR,		/* highaddr */
1082	    NULL, NULL,			/* filter, filterarg */
1083	    SF_RX_CLIST_SIZE,		/* maxsize */
1084	    1,				/* nsegments */
1085	    SF_RX_CLIST_SIZE,		/* maxsegsize */
1086	    0,				/* flags */
1087	    NULL, NULL,			/* lockfunc, lockarg */
1088	    &sc->sf_cdata.sf_rx_cring_tag);
1089	if (error != 0) {
1090		device_printf(sc->sf_dev,
1091		    "failed to create Rx completion ring DMA tag\n");
1092		goto fail;
1093	}
1094
1095	/* Create tag for Tx buffers. */
1096	error = bus_dma_tag_create(sc->sf_cdata.sf_parent_tag,/* parent */
1097	    1, 0,			/* alignment, boundary */
1098	    BUS_SPACE_MAXADDR,		/* lowaddr */
1099	    BUS_SPACE_MAXADDR,		/* highaddr */
1100	    NULL, NULL,			/* filter, filterarg */
1101	    MCLBYTES * SF_MAXTXSEGS,	/* maxsize */
1102	    SF_MAXTXSEGS,		/* nsegments */
1103	    MCLBYTES,			/* maxsegsize */
1104	    0,				/* flags */
1105	    NULL, NULL,			/* lockfunc, lockarg */
1106	    &sc->sf_cdata.sf_tx_tag);
1107	if (error != 0) {
1108		device_printf(sc->sf_dev, "failed to create Tx DMA tag\n");
1109		goto fail;
1110	}
1111
1112	/* Create tag for Rx buffers. */
1113	error = bus_dma_tag_create(sc->sf_cdata.sf_parent_tag,/* parent */
1114	    SF_RX_ALIGN, 0,		/* alignment, boundary */
1115	    BUS_SPACE_MAXADDR,		/* lowaddr */
1116	    BUS_SPACE_MAXADDR,		/* highaddr */
1117	    NULL, NULL,			/* filter, filterarg */
1118	    MCLBYTES,			/* maxsize */
1119	    1,				/* nsegments */
1120	    MCLBYTES,			/* maxsegsize */
1121	    0,				/* flags */
1122	    NULL, NULL,			/* lockfunc, lockarg */
1123	    &sc->sf_cdata.sf_rx_tag);
1124	if (error != 0) {
1125		device_printf(sc->sf_dev, "failed to create Rx DMA tag\n");
1126		goto fail;
1127	}
1128
1129	/* Allocate DMA'able memory and load the DMA map for Tx ring. */
1130	error = bus_dmamem_alloc(sc->sf_cdata.sf_tx_ring_tag,
1131	    (void **)&sc->sf_rdata.sf_tx_ring, BUS_DMA_WAITOK |
1132	    BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc->sf_cdata.sf_tx_ring_map);
1133	if (error != 0) {
1134		device_printf(sc->sf_dev,
1135		    "failed to allocate DMA'able memory for Tx ring\n");
1136		goto fail;
1137	}
1138
1139	ctx.sf_busaddr = 0;
1140	error = bus_dmamap_load(sc->sf_cdata.sf_tx_ring_tag,
1141	    sc->sf_cdata.sf_tx_ring_map, sc->sf_rdata.sf_tx_ring,
1142	    SF_TX_DLIST_SIZE, sf_dmamap_cb, &ctx, 0);
1143	if (error != 0 || ctx.sf_busaddr == 0) {
1144		device_printf(sc->sf_dev,
1145		    "failed to load DMA'able memory for Tx ring\n");
1146		goto fail;
1147	}
1148	sc->sf_rdata.sf_tx_ring_paddr = ctx.sf_busaddr;
1149
1150	/*
1151	 * Allocate DMA'able memory and load the DMA map for Tx completion ring.
1152	 */
1153	error = bus_dmamem_alloc(sc->sf_cdata.sf_tx_cring_tag,
1154	    (void **)&sc->sf_rdata.sf_tx_cring, BUS_DMA_WAITOK |
1155	    BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc->sf_cdata.sf_tx_cring_map);
1156	if (error != 0) {
1157		device_printf(sc->sf_dev,
1158		    "failed to allocate DMA'able memory for "
1159		    "Tx completion ring\n");
1160		goto fail;
1161	}
1162
1163	ctx.sf_busaddr = 0;
1164	error = bus_dmamap_load(sc->sf_cdata.sf_tx_cring_tag,
1165	    sc->sf_cdata.sf_tx_cring_map, sc->sf_rdata.sf_tx_cring,
1166	    SF_TX_CLIST_SIZE, sf_dmamap_cb, &ctx, 0);
1167	if (error != 0 || ctx.sf_busaddr == 0) {
1168		device_printf(sc->sf_dev,
1169		    "failed to load DMA'able memory for Tx completion ring\n");
1170		goto fail;
1171	}
1172	sc->sf_rdata.sf_tx_cring_paddr = ctx.sf_busaddr;
1173
1174	/* Allocate DMA'able memory and load the DMA map for Rx ring. */
1175	error = bus_dmamem_alloc(sc->sf_cdata.sf_rx_ring_tag,
1176	    (void **)&sc->sf_rdata.sf_rx_ring, BUS_DMA_WAITOK |
1177	    BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc->sf_cdata.sf_rx_ring_map);
1178	if (error != 0) {
1179		device_printf(sc->sf_dev,
1180		    "failed to allocate DMA'able memory for Rx ring\n");
1181		goto fail;
1182	}
1183
1184	ctx.sf_busaddr = 0;
1185	error = bus_dmamap_load(sc->sf_cdata.sf_rx_ring_tag,
1186	    sc->sf_cdata.sf_rx_ring_map, sc->sf_rdata.sf_rx_ring,
1187	    SF_RX_DLIST_SIZE, sf_dmamap_cb, &ctx, 0);
1188	if (error != 0 || ctx.sf_busaddr == 0) {
1189		device_printf(sc->sf_dev,
1190		    "failed to load DMA'able memory for Rx ring\n");
1191		goto fail;
1192	}
1193	sc->sf_rdata.sf_rx_ring_paddr = ctx.sf_busaddr;
1194
1195	/*
1196	 * Allocate DMA'able memory and load the DMA map for Rx completion ring.
1197	 */
1198	error = bus_dmamem_alloc(sc->sf_cdata.sf_rx_cring_tag,
1199	    (void **)&sc->sf_rdata.sf_rx_cring, BUS_DMA_WAITOK |
1200	    BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc->sf_cdata.sf_rx_cring_map);
1201	if (error != 0) {
1202		device_printf(sc->sf_dev,
1203		    "failed to allocate DMA'able memory for "
1204		    "Rx completion ring\n");
1205		goto fail;
1206	}
1207
1208	ctx.sf_busaddr = 0;
1209	error = bus_dmamap_load(sc->sf_cdata.sf_rx_cring_tag,
1210	    sc->sf_cdata.sf_rx_cring_map, sc->sf_rdata.sf_rx_cring,
1211	    SF_RX_CLIST_SIZE, sf_dmamap_cb, &ctx, 0);
1212	if (error != 0 || ctx.sf_busaddr == 0) {
1213		device_printf(sc->sf_dev,
1214		    "failed to load DMA'able memory for Rx completion ring\n");
1215		goto fail;
1216	}
1217	sc->sf_rdata.sf_rx_cring_paddr = ctx.sf_busaddr;
1218
1219	/*
1220	 * Tx desciptor ring and Tx completion ring should be addressed in
1221	 * the same 4GB space. The same rule applys to Rx ring and Rx
1222	 * completion ring. Unfortunately there is no way to specify this
1223	 * boundary restriction with bus_dma(9). So just try to allocate
1224	 * without the restriction and check the restriction was satisfied.
1225	 * If not, fall back to 32bit dma addressing mode which always
1226	 * guarantees the restriction.
1227	 */
1228	tx_ring_end = sc->sf_rdata.sf_tx_ring_paddr + SF_TX_DLIST_SIZE;
1229	tx_cring_end = sc->sf_rdata.sf_tx_cring_paddr + SF_TX_CLIST_SIZE;
1230	rx_ring_end = sc->sf_rdata.sf_rx_ring_paddr + SF_RX_DLIST_SIZE;
1231	rx_cring_end = sc->sf_rdata.sf_rx_cring_paddr + SF_RX_CLIST_SIZE;
1232	if ((SF_ADDR_HI(sc->sf_rdata.sf_tx_ring_paddr) !=
1233	    SF_ADDR_HI(tx_cring_end)) ||
1234	    (SF_ADDR_HI(sc->sf_rdata.sf_tx_cring_paddr) !=
1235	    SF_ADDR_HI(tx_ring_end)) ||
1236	    (SF_ADDR_HI(sc->sf_rdata.sf_rx_ring_paddr) !=
1237	    SF_ADDR_HI(rx_cring_end)) ||
1238	    (SF_ADDR_HI(sc->sf_rdata.sf_rx_cring_paddr) !=
1239	    SF_ADDR_HI(rx_ring_end))) {
1240		device_printf(sc->sf_dev,
1241		    "switching to 32bit DMA mode\n");
1242		sf_dma_free(sc);
1243		/* Limit DMA address space to 32bit and try again. */
1244		lowaddr = BUS_SPACE_MAXADDR_32BIT;
1245		goto again;
1246	}
1247
1248	/* Create DMA maps for Tx buffers. */
1249	for (i = 0; i < SF_TX_DLIST_CNT; i++) {
1250		txd = &sc->sf_cdata.sf_txdesc[i];
1251		txd->tx_m = NULL;
1252		txd->ndesc = 0;
1253		txd->tx_dmamap = NULL;
1254		error = bus_dmamap_create(sc->sf_cdata.sf_tx_tag, 0,
1255		    &txd->tx_dmamap);
1256		if (error != 0) {
1257			device_printf(sc->sf_dev,
1258			    "failed to create Tx dmamap\n");
1259			goto fail;
1260		}
1261	}
1262	/* Create DMA maps for Rx buffers. */
1263	if ((error = bus_dmamap_create(sc->sf_cdata.sf_rx_tag, 0,
1264	    &sc->sf_cdata.sf_rx_sparemap)) != 0) {
1265		device_printf(sc->sf_dev,
1266		    "failed to create spare Rx dmamap\n");
1267		goto fail;
1268	}
1269	for (i = 0; i < SF_RX_DLIST_CNT; i++) {
1270		rxd = &sc->sf_cdata.sf_rxdesc[i];
1271		rxd->rx_m = NULL;
1272		rxd->rx_dmamap = NULL;
1273		error = bus_dmamap_create(sc->sf_cdata.sf_rx_tag, 0,
1274		    &rxd->rx_dmamap);
1275		if (error != 0) {
1276			device_printf(sc->sf_dev,
1277			    "failed to create Rx dmamap\n");
1278			goto fail;
1279		}
1280	}
1281
1282fail:
1283	return (error);
1284}
1285
1286static void
1287sf_dma_free(struct sf_softc *sc)
1288{
1289	struct sf_txdesc	*txd;
1290	struct sf_rxdesc	*rxd;
1291	int			i;
1292
1293	/* Tx ring. */
1294	if (sc->sf_cdata.sf_tx_ring_tag) {
1295		if (sc->sf_rdata.sf_tx_ring_paddr)
1296			bus_dmamap_unload(sc->sf_cdata.sf_tx_ring_tag,
1297			    sc->sf_cdata.sf_tx_ring_map);
1298		if (sc->sf_rdata.sf_tx_ring)
1299			bus_dmamem_free(sc->sf_cdata.sf_tx_ring_tag,
1300			    sc->sf_rdata.sf_tx_ring,
1301			    sc->sf_cdata.sf_tx_ring_map);
1302		sc->sf_rdata.sf_tx_ring = NULL;
1303		sc->sf_rdata.sf_tx_ring_paddr = 0;
1304		bus_dma_tag_destroy(sc->sf_cdata.sf_tx_ring_tag);
1305		sc->sf_cdata.sf_tx_ring_tag = NULL;
1306	}
1307	/* Tx completion ring. */
1308	if (sc->sf_cdata.sf_tx_cring_tag) {
1309		if (sc->sf_rdata.sf_tx_cring_paddr)
1310			bus_dmamap_unload(sc->sf_cdata.sf_tx_cring_tag,
1311			    sc->sf_cdata.sf_tx_cring_map);
1312		if (sc->sf_rdata.sf_tx_cring)
1313			bus_dmamem_free(sc->sf_cdata.sf_tx_cring_tag,
1314			    sc->sf_rdata.sf_tx_cring,
1315			    sc->sf_cdata.sf_tx_cring_map);
1316		sc->sf_rdata.sf_tx_cring = NULL;
1317		sc->sf_rdata.sf_tx_cring_paddr = 0;
1318		bus_dma_tag_destroy(sc->sf_cdata.sf_tx_cring_tag);
1319		sc->sf_cdata.sf_tx_cring_tag = NULL;
1320	}
1321	/* Rx ring. */
1322	if (sc->sf_cdata.sf_rx_ring_tag) {
1323		if (sc->sf_rdata.sf_rx_ring_paddr)
1324			bus_dmamap_unload(sc->sf_cdata.sf_rx_ring_tag,
1325			    sc->sf_cdata.sf_rx_ring_map);
1326		if (sc->sf_rdata.sf_rx_ring)
1327			bus_dmamem_free(sc->sf_cdata.sf_rx_ring_tag,
1328			    sc->sf_rdata.sf_rx_ring,
1329			    sc->sf_cdata.sf_rx_ring_map);
1330		sc->sf_rdata.sf_rx_ring = NULL;
1331		sc->sf_rdata.sf_rx_ring_paddr = 0;
1332		bus_dma_tag_destroy(sc->sf_cdata.sf_rx_ring_tag);
1333		sc->sf_cdata.sf_rx_ring_tag = NULL;
1334	}
1335	/* Rx completion ring. */
1336	if (sc->sf_cdata.sf_rx_cring_tag) {
1337		if (sc->sf_rdata.sf_rx_cring_paddr)
1338			bus_dmamap_unload(sc->sf_cdata.sf_rx_cring_tag,
1339			    sc->sf_cdata.sf_rx_cring_map);
1340		if (sc->sf_rdata.sf_rx_cring)
1341			bus_dmamem_free(sc->sf_cdata.sf_rx_cring_tag,
1342			    sc->sf_rdata.sf_rx_cring,
1343			    sc->sf_cdata.sf_rx_cring_map);
1344		sc->sf_rdata.sf_rx_cring = NULL;
1345		sc->sf_rdata.sf_rx_cring_paddr = 0;
1346		bus_dma_tag_destroy(sc->sf_cdata.sf_rx_cring_tag);
1347		sc->sf_cdata.sf_rx_cring_tag = NULL;
1348	}
1349	/* Tx buffers. */
1350	if (sc->sf_cdata.sf_tx_tag) {
1351		for (i = 0; i < SF_TX_DLIST_CNT; i++) {
1352			txd = &sc->sf_cdata.sf_txdesc[i];
1353			if (txd->tx_dmamap) {
1354				bus_dmamap_destroy(sc->sf_cdata.sf_tx_tag,
1355				    txd->tx_dmamap);
1356				txd->tx_dmamap = NULL;
1357			}
1358		}
1359		bus_dma_tag_destroy(sc->sf_cdata.sf_tx_tag);
1360		sc->sf_cdata.sf_tx_tag = NULL;
1361	}
1362	/* Rx buffers. */
1363	if (sc->sf_cdata.sf_rx_tag) {
1364		for (i = 0; i < SF_RX_DLIST_CNT; i++) {
1365			rxd = &sc->sf_cdata.sf_rxdesc[i];
1366			if (rxd->rx_dmamap) {
1367				bus_dmamap_destroy(sc->sf_cdata.sf_rx_tag,
1368				    rxd->rx_dmamap);
1369				rxd->rx_dmamap = NULL;
1370			}
1371		}
1372		if (sc->sf_cdata.sf_rx_sparemap) {
1373			bus_dmamap_destroy(sc->sf_cdata.sf_rx_tag,
1374			    sc->sf_cdata.sf_rx_sparemap);
1375			sc->sf_cdata.sf_rx_sparemap = 0;
1376		}
1377		bus_dma_tag_destroy(sc->sf_cdata.sf_rx_tag);
1378		sc->sf_cdata.sf_rx_tag = NULL;
1379	}
1380
1381	if (sc->sf_cdata.sf_parent_tag) {
1382		bus_dma_tag_destroy(sc->sf_cdata.sf_parent_tag);
1383		sc->sf_cdata.sf_parent_tag = NULL;
1384	}
1385}
1386
1387static int
1388sf_init_rx_ring(struct sf_softc *sc)
1389{
1390	struct sf_ring_data	*rd;
1391	int			i;
1392
1393	sc->sf_cdata.sf_rxc_cons = 0;
1394
1395	rd = &sc->sf_rdata;
1396	bzero(rd->sf_rx_ring, SF_RX_DLIST_SIZE);
1397	bzero(rd->sf_rx_cring, SF_RX_CLIST_SIZE);
1398
1399	for (i = 0; i < SF_RX_DLIST_CNT; i++) {
1400		if (sf_newbuf(sc, i) != 0)
1401			return (ENOBUFS);
1402	}
1403
1404	bus_dmamap_sync(sc->sf_cdata.sf_rx_cring_tag,
1405	    sc->sf_cdata.sf_rx_cring_map,
1406	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1407	bus_dmamap_sync(sc->sf_cdata.sf_rx_ring_tag,
1408	    sc->sf_cdata.sf_rx_ring_map,
1409	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1410
1411	return (0);
1412}
1413
1414static void
1415sf_init_tx_ring(struct sf_softc *sc)
1416{
1417	struct sf_ring_data	*rd;
1418	int			i;
1419
1420	sc->sf_cdata.sf_tx_prod = 0;
1421	sc->sf_cdata.sf_tx_cnt = 0;
1422	sc->sf_cdata.sf_txc_cons = 0;
1423
1424	rd = &sc->sf_rdata;
1425	bzero(rd->sf_tx_ring, SF_TX_DLIST_SIZE);
1426	bzero(rd->sf_tx_cring, SF_TX_CLIST_SIZE);
1427	for (i = 0; i < SF_TX_DLIST_CNT; i++) {
1428		rd->sf_tx_ring[i].sf_tx_ctrl = htole32(SF_TX_DESC_ID);
1429		sc->sf_cdata.sf_txdesc[i].tx_m = NULL;
1430		sc->sf_cdata.sf_txdesc[i].ndesc = 0;
1431	}
1432	rd->sf_tx_ring[i].sf_tx_ctrl |= htole32(SF_TX_DESC_END);
1433
1434	bus_dmamap_sync(sc->sf_cdata.sf_tx_ring_tag,
1435	    sc->sf_cdata.sf_tx_ring_map,
1436	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1437	bus_dmamap_sync(sc->sf_cdata.sf_tx_cring_tag,
1438	    sc->sf_cdata.sf_tx_cring_map,
1439	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1440}
1441
1442/*
1443 * Initialize an RX descriptor and attach an MBUF cluster.
1444 */
1445static int
1446sf_newbuf(struct sf_softc *sc, int idx)
1447{
1448	struct sf_rx_rdesc	*desc;
1449	struct sf_rxdesc	*rxd;
1450	struct mbuf		*m;
1451	bus_dma_segment_t	segs[1];
1452	bus_dmamap_t		map;
1453	int			nsegs;
1454
1455	m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
1456	if (m == NULL)
1457		return (ENOBUFS);
1458	m->m_len = m->m_pkthdr.len = MCLBYTES;
1459	m_adj(m, sizeof(uint32_t));
1460
1461	if (bus_dmamap_load_mbuf_sg(sc->sf_cdata.sf_rx_tag,
1462	    sc->sf_cdata.sf_rx_sparemap, m, segs, &nsegs, 0) != 0) {
1463		m_freem(m);
1464		return (ENOBUFS);
1465	}
1466	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
1467
1468	rxd = &sc->sf_cdata.sf_rxdesc[idx];
1469	if (rxd->rx_m != NULL) {
1470		bus_dmamap_sync(sc->sf_cdata.sf_rx_tag, rxd->rx_dmamap,
1471		    BUS_DMASYNC_POSTREAD);
1472		bus_dmamap_unload(sc->sf_cdata.sf_rx_tag, rxd->rx_dmamap);
1473	}
1474	map = rxd->rx_dmamap;
1475	rxd->rx_dmamap = sc->sf_cdata.sf_rx_sparemap;
1476	sc->sf_cdata.sf_rx_sparemap = map;
1477	bus_dmamap_sync(sc->sf_cdata.sf_rx_tag, rxd->rx_dmamap,
1478	    BUS_DMASYNC_PREREAD);
1479	rxd->rx_m = m;
1480	desc = &sc->sf_rdata.sf_rx_ring[idx];
1481	desc->sf_addr = htole64(segs[0].ds_addr);
1482
1483	return (0);
1484}
1485
1486#ifndef __NO_STRICT_ALIGNMENT
1487static __inline void
1488sf_fixup_rx(struct mbuf *m)
1489{
1490        int			i;
1491        uint16_t		*src, *dst;
1492
1493	src = mtod(m, uint16_t *);
1494	dst = src - 1;
1495
1496	for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++)
1497		*dst++ = *src++;
1498
1499	m->m_data -= ETHER_ALIGN;
1500}
1501#endif
1502
1503/*
1504 * The starfire is programmed to use 'normal' mode for packet reception,
1505 * which means we use the consumer/producer model for both the buffer
1506 * descriptor queue and the completion descriptor queue. The only problem
1507 * with this is that it involves a lot of register accesses: we have to
1508 * read the RX completion consumer and producer indexes and the RX buffer
1509 * producer index, plus the RX completion consumer and RX buffer producer
1510 * indexes have to be updated. It would have been easier if Adaptec had
1511 * put each index in a separate register, especially given that the damn
1512 * NIC has a 512K register space.
1513 *
1514 * In spite of all the lovely features that Adaptec crammed into the 6915,
1515 * it is marred by one truly stupid design flaw, which is that receive
1516 * buffer addresses must be aligned on a longword boundary. This forces
1517 * the packet payload to be unaligned, which is suboptimal on the x86 and
1518 * completely unuseable on the Alpha. Our only recourse is to copy received
1519 * packets into properly aligned buffers before handing them off.
1520 */
1521static int
1522sf_rxeof(struct sf_softc *sc)
1523{
1524	struct mbuf		*m;
1525	struct ifnet		*ifp;
1526	struct sf_rxdesc	*rxd;
1527	struct sf_rx_rcdesc	*cur_cmp;
1528	int			cons, eidx, prog, rx_npkts;
1529	uint32_t		status, status2;
1530
1531	SF_LOCK_ASSERT(sc);
1532
1533	ifp = sc->sf_ifp;
1534	rx_npkts = 0;
1535
1536	bus_dmamap_sync(sc->sf_cdata.sf_rx_ring_tag,
1537	    sc->sf_cdata.sf_rx_ring_map,
1538	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1539	bus_dmamap_sync(sc->sf_cdata.sf_rx_cring_tag,
1540	    sc->sf_cdata.sf_rx_cring_map,
1541	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1542
1543	/*
1544	 * To reduce register access, directly read Receive completion
1545	 * queue entry.
1546	 */
1547	eidx = 0;
1548	prog = 0;
1549	for (cons = sc->sf_cdata.sf_rxc_cons;
1550	    (ifp->if_drv_flags & IFF_DRV_RUNNING) != 0;
1551	    SF_INC(cons, SF_RX_CLIST_CNT)) {
1552		cur_cmp = &sc->sf_rdata.sf_rx_cring[cons];
1553		status = le32toh(cur_cmp->sf_rx_status1);
1554		if (status == 0)
1555			break;
1556#ifdef DEVICE_POLLING
1557		if ((ifp->if_capenable & IFCAP_POLLING) != 0) {
1558			if (sc->rxcycles <= 0)
1559				break;
1560			sc->rxcycles--;
1561		}
1562#endif
1563		prog++;
1564		eidx = (status & SF_RX_CMPDESC_EIDX) >> 16;
1565		rxd = &sc->sf_cdata.sf_rxdesc[eidx];
1566		m = rxd->rx_m;
1567
1568		/*
1569		 * Note, if_ipackets and if_ierrors counters
1570		 * are handled in sf_stats_update().
1571		 */
1572		if ((status & SF_RXSTAT1_OK) == 0) {
1573			cur_cmp->sf_rx_status1 = 0;
1574			continue;
1575		}
1576
1577		if (sf_newbuf(sc, eidx) != 0) {
1578			ifp->if_iqdrops++;
1579			cur_cmp->sf_rx_status1 = 0;
1580			continue;
1581		}
1582
1583		/* AIC-6915 supports TCP/UDP checksum offload. */
1584		if ((ifp->if_capenable & IFCAP_RXCSUM) != 0) {
1585			status2 = le32toh(cur_cmp->sf_rx_status2);
1586			/*
1587			 * Sometimes AIC-6915 generates an interrupt to
1588			 * warn RxGFP stall with bad checksum bit set
1589			 * in status word. I'm not sure what conditioan
1590			 * triggers it but recevied packet's checksum
1591			 * was correct even though AIC-6915 does not
1592			 * agree on this. This may be an indication of
1593			 * firmware bug. To fix the issue, do not rely
1594			 * on bad checksum bit in status word and let
1595			 * upper layer verify integrity of received
1596			 * frame.
1597			 * Another nice feature of AIC-6915 is hardware
1598			 * assistance of checksum calculation by
1599			 * providing partial checksum value for received
1600			 * frame. The partial checksum value can be used
1601			 * to accelerate checksum computation for
1602			 * fragmented TCP/UDP packets. Upper network
1603			 * stack already takes advantage of the partial
1604			 * checksum value in IP reassembly stage. But
1605			 * I'm not sure the correctness of the partial
1606			 * hardware checksum assistance as frequent
1607			 * RxGFP stalls are seen on non-fragmented
1608			 * frames. Due to the nature of the complexity
1609			 * of checksum computation code in firmware it's
1610			 * possible to see another bug in RxGFP so
1611			 * ignore checksum assistance for fragmented
1612			 * frames. This can be changed in future.
1613			 */
1614			if ((status2 & SF_RXSTAT2_FRAG) == 0) {
1615				if ((status2 & (SF_RXSTAT2_TCP |
1616				    SF_RXSTAT2_UDP)) != 0) {
1617					if ((status2 & SF_RXSTAT2_CSUM_OK)) {
1618						m->m_pkthdr.csum_flags =
1619						    CSUM_DATA_VALID |
1620						    CSUM_PSEUDO_HDR;
1621						m->m_pkthdr.csum_data = 0xffff;
1622					}
1623				}
1624			}
1625#ifdef SF_PARTIAL_CSUM_SUPPORT
1626			else if ((status2 & SF_RXSTAT2_FRAG) != 0) {
1627				if ((status2 & (SF_RXSTAT2_TCP |
1628				    SF_RXSTAT2_UDP)) != 0) {
1629					if ((status2 & SF_RXSTAT2_PCSUM_OK)) {
1630						m->m_pkthdr.csum_flags =
1631						    CSUM_DATA_VALID;
1632						m->m_pkthdr.csum_data =
1633						    (status &
1634						    SF_RX_CMPDESC_CSUM2);
1635					}
1636				}
1637			}
1638#endif
1639		}
1640
1641		m->m_pkthdr.len = m->m_len = status & SF_RX_CMPDESC_LEN;
1642#ifndef	__NO_STRICT_ALIGNMENT
1643		sf_fixup_rx(m);
1644#endif
1645		m->m_pkthdr.rcvif = ifp;
1646
1647		SF_UNLOCK(sc);
1648		(*ifp->if_input)(ifp, m);
1649		SF_LOCK(sc);
1650		rx_npkts++;
1651
1652		/* Clear completion status. */
1653		cur_cmp->sf_rx_status1 = 0;
1654	}
1655
1656	if (prog > 0) {
1657		sc->sf_cdata.sf_rxc_cons = cons;
1658		bus_dmamap_sync(sc->sf_cdata.sf_rx_ring_tag,
1659		    sc->sf_cdata.sf_rx_ring_map,
1660		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1661		bus_dmamap_sync(sc->sf_cdata.sf_rx_cring_tag,
1662		    sc->sf_cdata.sf_rx_cring_map,
1663		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1664
1665		/* Update Rx completion Q1 consumer index. */
1666		csr_write_4(sc, SF_CQ_CONSIDX,
1667		    (csr_read_4(sc, SF_CQ_CONSIDX) & ~SF_CQ_CONSIDX_RXQ1) |
1668		    (cons & SF_CQ_CONSIDX_RXQ1));
1669		/* Update Rx descriptor Q1 ptr. */
1670		csr_write_4(sc, SF_RXDQ_PTR_Q1,
1671		    (csr_read_4(sc, SF_RXDQ_PTR_Q1) & ~SF_RXDQ_PRODIDX) |
1672		    (eidx & SF_RXDQ_PRODIDX));
1673	}
1674	return (rx_npkts);
1675}
1676
1677/*
1678 * Read the transmit status from the completion queue and release
1679 * mbufs. Note that the buffer descriptor index in the completion
1680 * descriptor is an offset from the start of the transmit buffer
1681 * descriptor list in bytes. This is important because the manual
1682 * gives the impression that it should match the producer/consumer
1683 * index, which is the offset in 8 byte blocks.
1684 */
1685static void
1686sf_txeof(struct sf_softc *sc)
1687{
1688	struct sf_txdesc	*txd;
1689	struct sf_tx_rcdesc	*cur_cmp;
1690	struct ifnet		*ifp;
1691	uint32_t		status;
1692	int			cons, idx, prod;
1693
1694	SF_LOCK_ASSERT(sc);
1695
1696	ifp = sc->sf_ifp;
1697
1698	bus_dmamap_sync(sc->sf_cdata.sf_tx_cring_tag,
1699	    sc->sf_cdata.sf_tx_cring_map,
1700	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1701
1702	cons = sc->sf_cdata.sf_txc_cons;
1703	prod = (csr_read_4(sc, SF_CQ_PRODIDX) & SF_TXDQ_PRODIDX_HIPRIO) >> 16;
1704	if (prod == cons)
1705		return;
1706
1707	for (; cons != prod; SF_INC(cons, SF_TX_CLIST_CNT)) {
1708		cur_cmp = &sc->sf_rdata.sf_tx_cring[cons];
1709		status = le32toh(cur_cmp->sf_tx_status1);
1710		if (status == 0)
1711			break;
1712		switch (status & SF_TX_CMPDESC_TYPE) {
1713		case SF_TXCMPTYPE_TX:
1714			/* Tx complete entry. */
1715			break;
1716		case SF_TXCMPTYPE_DMA:
1717			/* DMA complete entry. */
1718			idx = status & SF_TX_CMPDESC_IDX;
1719			idx = idx / sizeof(struct sf_tx_rdesc);
1720			/*
1721			 * We don't need to check Tx status here.
1722			 * SF_ISR_TX_LOFIFO intr would handle this.
1723			 * Note, if_opackets, if_collisions and if_oerrors
1724			 * counters are handled in sf_stats_update().
1725			 */
1726			txd = &sc->sf_cdata.sf_txdesc[idx];
1727			if (txd->tx_m != NULL) {
1728				bus_dmamap_sync(sc->sf_cdata.sf_tx_tag,
1729				    txd->tx_dmamap,
1730				    BUS_DMASYNC_POSTWRITE);
1731				bus_dmamap_unload(sc->sf_cdata.sf_tx_tag,
1732				    txd->tx_dmamap);
1733				m_freem(txd->tx_m);
1734				txd->tx_m = NULL;
1735			}
1736			sc->sf_cdata.sf_tx_cnt -= txd->ndesc;
1737			KASSERT(sc->sf_cdata.sf_tx_cnt >= 0,
1738			    ("%s: Active Tx desc counter was garbled\n",
1739			    __func__));
1740			txd->ndesc = 0;
1741			ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1742			break;
1743		default:
1744			/* It should not happen. */
1745			device_printf(sc->sf_dev,
1746			    "unknown Tx completion type : 0x%08x : %d : %d\n",
1747			    status, cons, prod);
1748			break;
1749		}
1750		cur_cmp->sf_tx_status1 = 0;
1751	}
1752
1753	sc->sf_cdata.sf_txc_cons = cons;
1754	bus_dmamap_sync(sc->sf_cdata.sf_tx_cring_tag,
1755	    sc->sf_cdata.sf_tx_cring_map,
1756	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1757
1758	if (sc->sf_cdata.sf_tx_cnt == 0)
1759		sc->sf_watchdog_timer = 0;
1760
1761	/* Update Tx completion consumer index. */
1762	csr_write_4(sc, SF_CQ_CONSIDX,
1763	    (csr_read_4(sc, SF_CQ_CONSIDX) & 0xffff) |
1764	    ((cons << 16) & 0xffff0000));
1765}
1766
1767static void
1768sf_txthresh_adjust(struct sf_softc *sc)
1769{
1770	uint32_t		txfctl;
1771
1772	device_printf(sc->sf_dev, "Tx underrun -- ");
1773	if (sc->sf_txthresh < SF_MAX_TX_THRESHOLD) {
1774		txfctl = csr_read_4(sc, SF_TX_FRAMCTL);
1775		/* Increase Tx threshold 256 bytes. */
1776		sc->sf_txthresh += 16;
1777		if (sc->sf_txthresh > SF_MAX_TX_THRESHOLD)
1778			sc->sf_txthresh = SF_MAX_TX_THRESHOLD;
1779		txfctl &= ~SF_TXFRMCTL_TXTHRESH;
1780		txfctl |= sc->sf_txthresh;
1781		printf("increasing Tx threshold to %d bytes\n",
1782		    sc->sf_txthresh * SF_TX_THRESHOLD_UNIT);
1783		csr_write_4(sc, SF_TX_FRAMCTL, txfctl);
1784	} else
1785		printf("\n");
1786}
1787
1788#ifdef DEVICE_POLLING
1789static int
1790sf_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1791{
1792	struct sf_softc		*sc;
1793	uint32_t		status;
1794	int			rx_npkts;
1795
1796	sc = ifp->if_softc;
1797	rx_npkts = 0;
1798	SF_LOCK(sc);
1799
1800	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
1801		SF_UNLOCK(sc);
1802		return (rx_npkts);
1803	}
1804
1805	sc->rxcycles = count;
1806	rx_npkts = sf_rxeof(sc);
1807	sf_txeof(sc);
1808	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1809		sf_start_locked(ifp);
1810
1811	if (cmd == POLL_AND_CHECK_STATUS) {
1812		/* Reading the ISR register clears all interrrupts. */
1813		status = csr_read_4(sc, SF_ISR);
1814
1815		if ((status & SF_ISR_ABNORMALINTR) != 0) {
1816			if ((status & SF_ISR_STATSOFLOW) != 0)
1817				sf_stats_update(sc);
1818			else if ((status & SF_ISR_TX_LOFIFO) != 0)
1819				sf_txthresh_adjust(sc);
1820			else if ((status & SF_ISR_DMAERR) != 0) {
1821				device_printf(sc->sf_dev,
1822				    "DMA error, resetting\n");
1823				ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1824				sf_init_locked(sc);
1825				SF_UNLOCK(sc);
1826				return (rx_npkts);
1827			} else if ((status & SF_ISR_NO_TX_CSUM) != 0) {
1828				sc->sf_statistics.sf_tx_gfp_stall++;
1829#ifdef	SF_GFP_DEBUG
1830				device_printf(sc->sf_dev,
1831				    "TxGFP is not responding!\n");
1832#endif
1833			} else if ((status & SF_ISR_RXGFP_NORESP) != 0) {
1834				sc->sf_statistics.sf_rx_gfp_stall++;
1835#ifdef	SF_GFP_DEBUG
1836				device_printf(sc->sf_dev,
1837				    "RxGFP is not responding!\n");
1838#endif
1839			}
1840		}
1841	}
1842
1843	SF_UNLOCK(sc);
1844	return (rx_npkts);
1845}
1846#endif /* DEVICE_POLLING */
1847
1848static void
1849sf_intr(void *arg)
1850{
1851	struct sf_softc		*sc;
1852	struct ifnet		*ifp;
1853	uint32_t		status;
1854	int			cnt;
1855
1856	sc = (struct sf_softc *)arg;
1857	SF_LOCK(sc);
1858
1859	if (sc->sf_suspended != 0)
1860		goto done_locked;
1861
1862	/* Reading the ISR register clears all interrrupts. */
1863	status = csr_read_4(sc, SF_ISR);
1864	if (status == 0 || status == 0xffffffff ||
1865	    (status & SF_ISR_PCIINT_ASSERTED) == 0)
1866		goto done_locked;
1867
1868	ifp = sc->sf_ifp;
1869#ifdef DEVICE_POLLING
1870	if ((ifp->if_capenable & IFCAP_POLLING) != 0)
1871		goto done_locked;
1872#endif
1873
1874	/* Disable interrupts. */
1875	csr_write_4(sc, SF_IMR, 0x00000000);
1876
1877	for (cnt = 32; (status & SF_INTRS) != 0;) {
1878		if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
1879			break;
1880		if ((status & SF_ISR_RXDQ1_DMADONE) != 0)
1881			sf_rxeof(sc);
1882
1883		if ((status & (SF_ISR_TX_TXDONE | SF_ISR_TX_DMADONE |
1884		    SF_ISR_TX_QUEUEDONE)) != 0)
1885			sf_txeof(sc);
1886
1887		if ((status & SF_ISR_ABNORMALINTR) != 0) {
1888			if ((status & SF_ISR_STATSOFLOW) != 0)
1889				sf_stats_update(sc);
1890			else if ((status & SF_ISR_TX_LOFIFO) != 0)
1891				sf_txthresh_adjust(sc);
1892			else if ((status & SF_ISR_DMAERR) != 0) {
1893				device_printf(sc->sf_dev,
1894				    "DMA error, resetting\n");
1895				ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1896				sf_init_locked(sc);
1897				SF_UNLOCK(sc);
1898				return;
1899			} else if ((status & SF_ISR_NO_TX_CSUM) != 0) {
1900				sc->sf_statistics.sf_tx_gfp_stall++;
1901#ifdef	SF_GFP_DEBUG
1902				device_printf(sc->sf_dev,
1903				    "TxGFP is not responding!\n");
1904#endif
1905			}
1906			else if ((status & SF_ISR_RXGFP_NORESP) != 0) {
1907				sc->sf_statistics.sf_rx_gfp_stall++;
1908#ifdef	SF_GFP_DEBUG
1909				device_printf(sc->sf_dev,
1910				    "RxGFP is not responding!\n");
1911#endif
1912			}
1913		}
1914		if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1915			sf_start_locked(ifp);
1916		if (--cnt <= 0)
1917			break;
1918		/* Reading the ISR register clears all interrrupts. */
1919		status = csr_read_4(sc, SF_ISR);
1920	}
1921
1922	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
1923		/* Re-enable interrupts. */
1924		csr_write_4(sc, SF_IMR, SF_INTRS);
1925	}
1926
1927done_locked:
1928	SF_UNLOCK(sc);
1929}
1930
1931static void
1932sf_download_fw(struct sf_softc *sc)
1933{
1934	uint32_t gfpinst;
1935	int i, ndx;
1936	uint8_t *p;
1937
1938	/*
1939	 * A FP instruction is composed of 48bits so we have to
1940	 * write it with two parts.
1941	 */
1942	p = txfwdata;
1943	ndx = 0;
1944	for (i = 0; i < sizeof(txfwdata) / SF_GFP_INST_BYTES; i++) {
1945		gfpinst = p[2] << 24 | p[3] << 16 | p[4] << 8 | p[5];
1946		csr_write_4(sc, SF_TXGFP_MEM_BASE + ndx * 4, gfpinst);
1947		gfpinst = p[0] << 8 | p[1];
1948		csr_write_4(sc, SF_TXGFP_MEM_BASE + (ndx + 1) * 4, gfpinst);
1949		p += SF_GFP_INST_BYTES;
1950		ndx += 2;
1951	}
1952	if (bootverbose)
1953		device_printf(sc->sf_dev, "%d Tx instructions downloaded\n", i);
1954
1955	p = rxfwdata;
1956	ndx = 0;
1957	for (i = 0; i < sizeof(rxfwdata) / SF_GFP_INST_BYTES; i++) {
1958		gfpinst = p[2] << 24 | p[3] << 16 | p[4] << 8 | p[5];
1959		csr_write_4(sc, SF_RXGFP_MEM_BASE + (ndx * 4), gfpinst);
1960		gfpinst = p[0] << 8 | p[1];
1961		csr_write_4(sc, SF_RXGFP_MEM_BASE + (ndx + 1) * 4, gfpinst);
1962		p += SF_GFP_INST_BYTES;
1963		ndx += 2;
1964	}
1965	if (bootverbose)
1966		device_printf(sc->sf_dev, "%d Rx instructions downloaded\n", i);
1967}
1968
1969static void
1970sf_init(void *xsc)
1971{
1972	struct sf_softc		*sc;
1973
1974	sc = (struct sf_softc *)xsc;
1975	SF_LOCK(sc);
1976	sf_init_locked(sc);
1977	SF_UNLOCK(sc);
1978}
1979
1980static void
1981sf_init_locked(struct sf_softc *sc)
1982{
1983	struct ifnet		*ifp;
1984	uint8_t			eaddr[ETHER_ADDR_LEN];
1985	bus_addr_t		addr;
1986	int			i;
1987
1988	SF_LOCK_ASSERT(sc);
1989	ifp = sc->sf_ifp;
1990	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
1991		return;
1992
1993	sf_stop(sc);
1994	/* Reset the hardware to a known state. */
1995	sf_reset(sc);
1996
1997	/* Init all the receive filter registers */
1998	for (i = SF_RXFILT_PERFECT_BASE;
1999	    i < (SF_RXFILT_HASH_MAX + 1); i += sizeof(uint32_t))
2000		csr_write_4(sc, i, 0);
2001
2002	/* Empty stats counter registers. */
2003	for (i = SF_STATS_BASE; i < (SF_STATS_END + 1); i += sizeof(uint32_t))
2004		csr_write_4(sc, i, 0);
2005
2006	/* Init our MAC address. */
2007	bcopy(IF_LLADDR(sc->sf_ifp), eaddr, sizeof(eaddr));
2008	csr_write_4(sc, SF_PAR0,
2009	    eaddr[2] << 24 | eaddr[3] << 16 | eaddr[4] << 8 | eaddr[5]);
2010	csr_write_4(sc, SF_PAR1, eaddr[0] << 8 | eaddr[1]);
2011	sf_setperf(sc, 0, eaddr);
2012
2013	if (sf_init_rx_ring(sc) == ENOBUFS) {
2014		device_printf(sc->sf_dev,
2015		    "initialization failed: no memory for rx buffers\n");
2016		sf_stop(sc);
2017		return;
2018	}
2019
2020	sf_init_tx_ring(sc);
2021
2022	/*
2023	 * 16 perfect address filtering.
2024	 * Hash only multicast destination address, Accept matching
2025	 * frames regardless of VLAN ID.
2026	 */
2027	csr_write_4(sc, SF_RXFILT, SF_PERFMODE_NORMAL | SF_HASHMODE_ANYVLAN);
2028
2029	/*
2030	 * Set Rx filter.
2031	 */
2032	sf_rxfilter(sc);
2033
2034	/* Init the completion queue indexes. */
2035	csr_write_4(sc, SF_CQ_CONSIDX, 0);
2036	csr_write_4(sc, SF_CQ_PRODIDX, 0);
2037
2038	/* Init the RX completion queue. */
2039	addr = sc->sf_rdata.sf_rx_cring_paddr;
2040	csr_write_4(sc, SF_CQ_ADDR_HI, SF_ADDR_HI(addr));
2041	csr_write_4(sc, SF_RXCQ_CTL_1, SF_ADDR_LO(addr) & SF_RXCQ_ADDR);
2042	if (SF_ADDR_HI(addr) != 0)
2043		SF_SETBIT(sc, SF_RXCQ_CTL_1, SF_RXCQ_USE_64BIT);
2044	/* Set RX completion queue type 2. */
2045	SF_SETBIT(sc, SF_RXCQ_CTL_1, SF_RXCQTYPE_2);
2046	csr_write_4(sc, SF_RXCQ_CTL_2, 0);
2047
2048	/*
2049	 * Init RX DMA control.
2050	 * default RxHighPriority Threshold,
2051	 * default RxBurstSize, 128bytes.
2052	 */
2053	SF_SETBIT(sc, SF_RXDMA_CTL,
2054	    SF_RXDMA_REPORTBADPKTS |
2055	    (SF_RXDMA_HIGHPRIO_THRESH << 8) |
2056	    SF_RXDMA_BURST);
2057
2058	/* Init the RX buffer descriptor queue. */
2059	addr = sc->sf_rdata.sf_rx_ring_paddr;
2060	csr_write_4(sc, SF_RXDQ_ADDR_HI, SF_ADDR_HI(addr));
2061	csr_write_4(sc, SF_RXDQ_ADDR_Q1, SF_ADDR_LO(addr));
2062
2063	/* Set RX queue buffer length. */
2064	csr_write_4(sc, SF_RXDQ_CTL_1,
2065	    ((MCLBYTES  - sizeof(uint32_t)) << 16) |
2066	    SF_RXDQCTL_64BITBADDR | SF_RXDQCTL_VARIABLE);
2067
2068	if (SF_ADDR_HI(addr) != 0)
2069		SF_SETBIT(sc, SF_RXDQ_CTL_1, SF_RXDQCTL_64BITDADDR);
2070	csr_write_4(sc, SF_RXDQ_PTR_Q1, SF_RX_DLIST_CNT - 1);
2071	csr_write_4(sc, SF_RXDQ_CTL_2, 0);
2072
2073	/* Init the TX completion queue */
2074	addr = sc->sf_rdata.sf_tx_cring_paddr;
2075	csr_write_4(sc, SF_TXCQ_CTL, SF_ADDR_LO(addr) & SF_TXCQ_ADDR);
2076	if (SF_ADDR_HI(addr) != 0)
2077		SF_SETBIT(sc, SF_TXCQ_CTL, SF_TXCQ_USE_64BIT);
2078
2079	/* Init the TX buffer descriptor queue. */
2080	addr = sc->sf_rdata.sf_tx_ring_paddr;
2081	csr_write_4(sc, SF_TXDQ_ADDR_HI, SF_ADDR_HI(addr));
2082	csr_write_4(sc, SF_TXDQ_ADDR_HIPRIO, 0);
2083	csr_write_4(sc, SF_TXDQ_ADDR_LOPRIO, SF_ADDR_LO(addr));
2084	csr_write_4(sc, SF_TX_FRAMCTL,
2085	    SF_TXFRMCTL_CPLAFTERTX | sc->sf_txthresh);
2086	csr_write_4(sc, SF_TXDQ_CTL,
2087	    SF_TXDMA_HIPRIO_THRESH << 24 |
2088	    SF_TXSKIPLEN_0BYTES << 16 |
2089	    SF_TXDDMA_BURST << 8 |
2090	    SF_TXBUFDESC_TYPE2 | SF_TXMINSPACE_UNLIMIT);
2091	if (SF_ADDR_HI(addr) != 0)
2092		SF_SETBIT(sc, SF_TXDQ_CTL, SF_TXDQCTL_64BITADDR);
2093
2094	/* Set VLAN Type register. */
2095	csr_write_4(sc, SF_VLANTYPE, ETHERTYPE_VLAN);
2096
2097	/* Set TxPause Timer. */
2098	csr_write_4(sc, SF_TXPAUSETIMER, 0xffff);
2099
2100	/* Enable autopadding of short TX frames. */
2101	SF_SETBIT(sc, SF_MACCFG_1, SF_MACCFG1_AUTOPAD);
2102	SF_SETBIT(sc, SF_MACCFG_2, SF_MACCFG2_AUTOVLANPAD);
2103	/* Make sure to reset MAC to take changes effect. */
2104	SF_SETBIT(sc, SF_MACCFG_1, SF_MACCFG1_SOFTRESET);
2105	DELAY(1000);
2106	SF_CLRBIT(sc, SF_MACCFG_1, SF_MACCFG1_SOFTRESET);
2107
2108	/* Enable PCI bus master. */
2109	SF_SETBIT(sc, SF_PCI_DEVCFG, SF_PCIDEVCFG_PCIMEN);
2110
2111	/* Load StarFire firmware. */
2112	sf_download_fw(sc);
2113
2114	/* Intialize interrupt moderation. */
2115	csr_write_4(sc, SF_TIMER_CTL, SF_TIMER_IMASK_MODE | SF_TIMER_TIMES_TEN |
2116	    (sc->sf_int_mod & SF_TIMER_IMASK_INTERVAL));
2117
2118#ifdef DEVICE_POLLING
2119	/* Disable interrupts if we are polling. */
2120	if ((ifp->if_capenable & IFCAP_POLLING) != 0)
2121		csr_write_4(sc, SF_IMR, 0x00000000);
2122	else
2123#endif
2124	/* Enable interrupts. */
2125	csr_write_4(sc, SF_IMR, SF_INTRS);
2126	SF_SETBIT(sc, SF_PCI_DEVCFG, SF_PCIDEVCFG_INTR_ENB);
2127
2128	/* Enable the RX and TX engines. */
2129	csr_write_4(sc, SF_GEN_ETH_CTL,
2130	    SF_ETHCTL_RX_ENB | SF_ETHCTL_RXDMA_ENB |
2131	    SF_ETHCTL_TX_ENB | SF_ETHCTL_TXDMA_ENB);
2132
2133	if ((ifp->if_capenable & IFCAP_TXCSUM) != 0)
2134		SF_SETBIT(sc, SF_GEN_ETH_CTL, SF_ETHCTL_TXGFP_ENB);
2135	else
2136		SF_CLRBIT(sc, SF_GEN_ETH_CTL, SF_ETHCTL_TXGFP_ENB);
2137	if ((ifp->if_capenable & IFCAP_RXCSUM) != 0)
2138		SF_SETBIT(sc, SF_GEN_ETH_CTL, SF_ETHCTL_RXGFP_ENB);
2139	else
2140		SF_CLRBIT(sc, SF_GEN_ETH_CTL, SF_ETHCTL_RXGFP_ENB);
2141
2142	ifp->if_drv_flags |= IFF_DRV_RUNNING;
2143	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2144
2145	sc->sf_link = 0;
2146	sf_ifmedia_upd_locked(ifp);
2147
2148	callout_reset(&sc->sf_co, hz, sf_tick, sc);
2149}
2150
2151static int
2152sf_encap(struct sf_softc *sc, struct mbuf **m_head)
2153{
2154	struct sf_txdesc	*txd;
2155	struct sf_tx_rdesc	*desc;
2156	struct mbuf		*m;
2157	bus_dmamap_t		map;
2158	bus_dma_segment_t	txsegs[SF_MAXTXSEGS];
2159	int			error, i, nsegs, prod, si;
2160	int			avail, nskip;
2161
2162	SF_LOCK_ASSERT(sc);
2163
2164	m = *m_head;
2165	prod = sc->sf_cdata.sf_tx_prod;
2166	txd = &sc->sf_cdata.sf_txdesc[prod];
2167	map = txd->tx_dmamap;
2168	error = bus_dmamap_load_mbuf_sg(sc->sf_cdata.sf_tx_tag, map,
2169	    *m_head, txsegs, &nsegs, BUS_DMA_NOWAIT);
2170	if (error == EFBIG) {
2171		m = m_collapse(*m_head, M_NOWAIT, SF_MAXTXSEGS);
2172		if (m == NULL) {
2173			m_freem(*m_head);
2174			*m_head = NULL;
2175			return (ENOBUFS);
2176		}
2177		*m_head = m;
2178		error = bus_dmamap_load_mbuf_sg(sc->sf_cdata.sf_tx_tag,
2179		    map, *m_head, txsegs, &nsegs, BUS_DMA_NOWAIT);
2180		if (error != 0) {
2181			m_freem(*m_head);
2182			*m_head = NULL;
2183			return (error);
2184		}
2185	} else if (error != 0)
2186		return (error);
2187	if (nsegs == 0) {
2188		m_freem(*m_head);
2189		*m_head = NULL;
2190		return (EIO);
2191	}
2192
2193	/* Check number of available descriptors. */
2194	avail = (SF_TX_DLIST_CNT - 1) - sc->sf_cdata.sf_tx_cnt;
2195	if (avail < nsegs) {
2196		bus_dmamap_unload(sc->sf_cdata.sf_tx_tag, map);
2197		return (ENOBUFS);
2198	}
2199	nskip = 0;
2200	if (prod + nsegs >= SF_TX_DLIST_CNT) {
2201		nskip = SF_TX_DLIST_CNT - prod - 1;
2202		if (avail < nsegs + nskip) {
2203			bus_dmamap_unload(sc->sf_cdata.sf_tx_tag, map);
2204			return (ENOBUFS);
2205		}
2206	}
2207
2208	bus_dmamap_sync(sc->sf_cdata.sf_tx_tag, map, BUS_DMASYNC_PREWRITE);
2209
2210	si = prod;
2211	for (i = 0; i < nsegs; i++) {
2212		desc = &sc->sf_rdata.sf_tx_ring[prod];
2213		desc->sf_tx_ctrl = htole32(SF_TX_DESC_ID |
2214		    (txsegs[i].ds_len & SF_TX_DESC_FRAGLEN));
2215		desc->sf_tx_reserved = 0;
2216		desc->sf_addr = htole64(txsegs[i].ds_addr);
2217		if (i == 0 && prod + nsegs >= SF_TX_DLIST_CNT) {
2218			/* Queue wraps! */
2219			desc->sf_tx_ctrl |= htole32(SF_TX_DESC_END);
2220			prod = 0;
2221		} else
2222			SF_INC(prod, SF_TX_DLIST_CNT);
2223	}
2224	/* Update producer index. */
2225	sc->sf_cdata.sf_tx_prod = prod;
2226	sc->sf_cdata.sf_tx_cnt += nsegs + nskip;
2227
2228	desc = &sc->sf_rdata.sf_tx_ring[si];
2229	/* Check TDP/UDP checksum offload request. */
2230	if ((m->m_pkthdr.csum_flags & SF_CSUM_FEATURES) != 0)
2231		desc->sf_tx_ctrl |= htole32(SF_TX_DESC_CALTCP);
2232	desc->sf_tx_ctrl |=
2233	    htole32(SF_TX_DESC_CRCEN | SF_TX_DESC_INTR | (nsegs << 16));
2234
2235	txd->tx_dmamap = map;
2236	txd->tx_m = m;
2237	txd->ndesc = nsegs + nskip;
2238
2239	return (0);
2240}
2241
2242static void
2243sf_start(struct ifnet *ifp)
2244{
2245	struct sf_softc		*sc;
2246
2247	sc = ifp->if_softc;
2248	SF_LOCK(sc);
2249	sf_start_locked(ifp);
2250	SF_UNLOCK(sc);
2251}
2252
2253static void
2254sf_start_locked(struct ifnet *ifp)
2255{
2256	struct sf_softc		*sc;
2257	struct mbuf		*m_head;
2258	int			enq;
2259
2260	sc = ifp->if_softc;
2261	SF_LOCK_ASSERT(sc);
2262
2263	if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
2264	    IFF_DRV_RUNNING || sc->sf_link == 0)
2265		return;
2266
2267	/*
2268	 * Since we don't know when descriptor wrap occurrs in advance
2269	 * limit available number of active Tx descriptor counter to be
2270	 * higher than maximum number of DMA segments allowed in driver.
2271	 */
2272	for (enq = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd) &&
2273	    sc->sf_cdata.sf_tx_cnt < SF_TX_DLIST_CNT - SF_MAXTXSEGS; ) {
2274		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
2275		if (m_head == NULL)
2276			break;
2277		/*
2278		 * Pack the data into the transmit ring. If we
2279		 * don't have room, set the OACTIVE flag and wait
2280		 * for the NIC to drain the ring.
2281		 */
2282		if (sf_encap(sc, &m_head)) {
2283			if (m_head == NULL)
2284				break;
2285			IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
2286			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2287			break;
2288		}
2289
2290		enq++;
2291		/*
2292		 * If there's a BPF listener, bounce a copy of this frame
2293		 * to him.
2294		 */
2295		ETHER_BPF_MTAP(ifp, m_head);
2296	}
2297
2298	if (enq > 0) {
2299		bus_dmamap_sync(sc->sf_cdata.sf_tx_ring_tag,
2300		    sc->sf_cdata.sf_tx_ring_map,
2301		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2302		/* Kick transmit. */
2303		csr_write_4(sc, SF_TXDQ_PRODIDX,
2304		    sc->sf_cdata.sf_tx_prod * (sizeof(struct sf_tx_rdesc) / 8));
2305
2306		/* Set a timeout in case the chip goes out to lunch. */
2307		sc->sf_watchdog_timer = 5;
2308	}
2309}
2310
2311static void
2312sf_stop(struct sf_softc *sc)
2313{
2314	struct sf_txdesc	*txd;
2315	struct sf_rxdesc	*rxd;
2316	struct ifnet		*ifp;
2317	int			i;
2318
2319	SF_LOCK_ASSERT(sc);
2320
2321	ifp = sc->sf_ifp;
2322
2323	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
2324	sc->sf_link = 0;
2325	callout_stop(&sc->sf_co);
2326	sc->sf_watchdog_timer = 0;
2327
2328	/* Reading the ISR register clears all interrrupts. */
2329	csr_read_4(sc, SF_ISR);
2330	/* Disable further interrupts. */
2331	csr_write_4(sc, SF_IMR, 0);
2332
2333	/* Disable Tx/Rx egine. */
2334	csr_write_4(sc, SF_GEN_ETH_CTL, 0);
2335
2336	/* Give hardware chance to drain active DMA cycles. */
2337	DELAY(1000);
2338
2339	csr_write_4(sc, SF_CQ_CONSIDX, 0);
2340	csr_write_4(sc, SF_CQ_PRODIDX, 0);
2341	csr_write_4(sc, SF_RXDQ_ADDR_Q1, 0);
2342	csr_write_4(sc, SF_RXDQ_CTL_1, 0);
2343	csr_write_4(sc, SF_RXDQ_PTR_Q1, 0);
2344	csr_write_4(sc, SF_TXCQ_CTL, 0);
2345	csr_write_4(sc, SF_TXDQ_ADDR_HIPRIO, 0);
2346	csr_write_4(sc, SF_TXDQ_CTL, 0);
2347
2348	/*
2349	 * Free RX and TX mbufs still in the queues.
2350	 */
2351	for (i = 0; i < SF_RX_DLIST_CNT; i++) {
2352		rxd = &sc->sf_cdata.sf_rxdesc[i];
2353		if (rxd->rx_m != NULL) {
2354			bus_dmamap_sync(sc->sf_cdata.sf_rx_tag,
2355			    rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
2356			bus_dmamap_unload(sc->sf_cdata.sf_rx_tag,
2357			    rxd->rx_dmamap);
2358			m_freem(rxd->rx_m);
2359			rxd->rx_m = NULL;
2360		}
2361        }
2362	for (i = 0; i < SF_TX_DLIST_CNT; i++) {
2363		txd = &sc->sf_cdata.sf_txdesc[i];
2364		if (txd->tx_m != NULL) {
2365			bus_dmamap_sync(sc->sf_cdata.sf_tx_tag,
2366			    txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
2367			bus_dmamap_unload(sc->sf_cdata.sf_tx_tag,
2368			    txd->tx_dmamap);
2369			m_freem(txd->tx_m);
2370			txd->tx_m = NULL;
2371			txd->ndesc = 0;
2372		}
2373        }
2374}
2375
2376static void
2377sf_tick(void *xsc)
2378{
2379	struct sf_softc		*sc;
2380	struct mii_data		*mii;
2381
2382	sc = xsc;
2383	SF_LOCK_ASSERT(sc);
2384	mii = device_get_softc(sc->sf_miibus);
2385	mii_tick(mii);
2386	sf_stats_update(sc);
2387	sf_watchdog(sc);
2388	callout_reset(&sc->sf_co, hz, sf_tick, sc);
2389}
2390
2391/*
2392 * Note: it is important that this function not be interrupted. We
2393 * use a two-stage register access scheme: if we are interrupted in
2394 * between setting the indirect address register and reading from the
2395 * indirect data register, the contents of the address register could
2396 * be changed out from under us.
2397 */
2398static void
2399sf_stats_update(struct sf_softc *sc)
2400{
2401	struct ifnet		*ifp;
2402	struct sf_stats		now, *stats, *nstats;
2403	int			i;
2404
2405	SF_LOCK_ASSERT(sc);
2406
2407	ifp = sc->sf_ifp;
2408	stats = &now;
2409
2410	stats->sf_tx_frames =
2411	    csr_read_4(sc, SF_STATS_BASE + SF_STATS_TX_FRAMES);
2412	stats->sf_tx_single_colls =
2413	    csr_read_4(sc, SF_STATS_BASE + SF_STATS_TX_SINGLE_COL);
2414	stats->sf_tx_multi_colls =
2415	    csr_read_4(sc, SF_STATS_BASE + SF_STATS_TX_MULTI_COL);
2416	stats->sf_tx_crcerrs =
2417	    csr_read_4(sc, SF_STATS_BASE + SF_STATS_TX_CRC_ERRS);
2418	stats->sf_tx_bytes =
2419	    csr_read_4(sc, SF_STATS_BASE + SF_STATS_TX_BYTES);
2420	stats->sf_tx_deferred =
2421	    csr_read_4(sc, SF_STATS_BASE + SF_STATS_TX_DEFERRED);
2422	stats->sf_tx_late_colls =
2423	    csr_read_4(sc, SF_STATS_BASE + SF_STATS_TX_LATE_COL);
2424	stats->sf_tx_pause_frames =
2425	    csr_read_4(sc, SF_STATS_BASE + SF_STATS_TX_PAUSE);
2426	stats->sf_tx_control_frames =
2427	    csr_read_4(sc, SF_STATS_BASE + SF_STATS_TX_CTL_FRAME);
2428	stats->sf_tx_excess_colls =
2429	    csr_read_4(sc, SF_STATS_BASE + SF_STATS_TX_EXCESS_COL);
2430	stats->sf_tx_excess_defer =
2431	    csr_read_4(sc, SF_STATS_BASE + SF_STATS_TX_EXCESS_DEF);
2432	stats->sf_tx_mcast_frames =
2433	    csr_read_4(sc, SF_STATS_BASE + SF_STATS_TX_MULTI);
2434	stats->sf_tx_bcast_frames =
2435	    csr_read_4(sc, SF_STATS_BASE + SF_STATS_TX_BCAST);
2436	stats->sf_tx_frames_lost =
2437	    csr_read_4(sc, SF_STATS_BASE + SF_STATS_TX_FRAME_LOST);
2438	stats->sf_rx_frames =
2439	    csr_read_4(sc, SF_STATS_BASE + SF_STATS_RX_FRAMES);
2440	stats->sf_rx_crcerrs =
2441	    csr_read_4(sc, SF_STATS_BASE + SF_STATS_RX_CRC_ERRS);
2442	stats->sf_rx_alignerrs =
2443	    csr_read_4(sc, SF_STATS_BASE + SF_STATS_RX_ALIGN_ERRS);
2444	stats->sf_rx_bytes =
2445	    csr_read_4(sc, SF_STATS_BASE + SF_STATS_RX_BYTES);
2446	stats->sf_rx_pause_frames =
2447	    csr_read_4(sc, SF_STATS_BASE + SF_STATS_RX_PAUSE);
2448	stats->sf_rx_control_frames =
2449	    csr_read_4(sc, SF_STATS_BASE + SF_STATS_RX_CTL_FRAME);
2450	stats->sf_rx_unsup_control_frames =
2451	    csr_read_4(sc, SF_STATS_BASE + SF_STATS_RX_UNSUP_FRAME);
2452	stats->sf_rx_giants =
2453	    csr_read_4(sc, SF_STATS_BASE + SF_STATS_RX_GIANTS);
2454	stats->sf_rx_runts =
2455	    csr_read_4(sc, SF_STATS_BASE + SF_STATS_RX_RUNTS);
2456	stats->sf_rx_jabbererrs =
2457	    csr_read_4(sc, SF_STATS_BASE + SF_STATS_RX_JABBER);
2458	stats->sf_rx_fragments =
2459	    csr_read_4(sc, SF_STATS_BASE + SF_STATS_RX_FRAGMENTS);
2460	stats->sf_rx_pkts_64 =
2461	    csr_read_4(sc, SF_STATS_BASE + SF_STATS_RX_64);
2462	stats->sf_rx_pkts_65_127 =
2463	    csr_read_4(sc, SF_STATS_BASE + SF_STATS_RX_65_127);
2464	stats->sf_rx_pkts_128_255 =
2465	    csr_read_4(sc, SF_STATS_BASE + SF_STATS_RX_128_255);
2466	stats->sf_rx_pkts_256_511 =
2467	    csr_read_4(sc, SF_STATS_BASE + SF_STATS_RX_256_511);
2468	stats->sf_rx_pkts_512_1023 =
2469	    csr_read_4(sc, SF_STATS_BASE + SF_STATS_RX_512_1023);
2470	stats->sf_rx_pkts_1024_1518 =
2471	    csr_read_4(sc, SF_STATS_BASE + SF_STATS_RX_1024_1518);
2472	stats->sf_rx_frames_lost =
2473	    csr_read_4(sc, SF_STATS_BASE + SF_STATS_RX_FRAME_LOST);
2474	/* Lower 16bits are valid. */
2475	stats->sf_tx_underruns =
2476	    (csr_read_4(sc, SF_STATS_BASE + SF_STATS_TX_UNDERRUN) & 0xffff);
2477
2478	/* Empty stats counter registers. */
2479	for (i = SF_STATS_BASE; i < (SF_STATS_END + 1); i += sizeof(uint32_t))
2480		csr_write_4(sc, i, 0);
2481
2482	ifp->if_opackets += (u_long)stats->sf_tx_frames;
2483
2484	ifp->if_collisions += (u_long)stats->sf_tx_single_colls +
2485	    (u_long)stats->sf_tx_multi_colls;
2486
2487	ifp->if_oerrors += (u_long)stats->sf_tx_excess_colls +
2488	    (u_long)stats->sf_tx_excess_defer +
2489	    (u_long)stats->sf_tx_frames_lost;
2490
2491	ifp->if_ipackets += (u_long)stats->sf_rx_frames;
2492
2493	ifp->if_ierrors += (u_long)stats->sf_rx_crcerrs +
2494	    (u_long)stats->sf_rx_alignerrs +
2495	    (u_long)stats->sf_rx_giants +
2496	    (u_long)stats->sf_rx_runts +
2497	    (u_long)stats->sf_rx_jabbererrs +
2498	    (u_long)stats->sf_rx_frames_lost;
2499
2500	nstats = &sc->sf_statistics;
2501
2502	nstats->sf_tx_frames += stats->sf_tx_frames;
2503	nstats->sf_tx_single_colls += stats->sf_tx_single_colls;
2504	nstats->sf_tx_multi_colls += stats->sf_tx_multi_colls;
2505	nstats->sf_tx_crcerrs += stats->sf_tx_crcerrs;
2506	nstats->sf_tx_bytes += stats->sf_tx_bytes;
2507	nstats->sf_tx_deferred += stats->sf_tx_deferred;
2508	nstats->sf_tx_late_colls += stats->sf_tx_late_colls;
2509	nstats->sf_tx_pause_frames += stats->sf_tx_pause_frames;
2510	nstats->sf_tx_control_frames += stats->sf_tx_control_frames;
2511	nstats->sf_tx_excess_colls += stats->sf_tx_excess_colls;
2512	nstats->sf_tx_excess_defer += stats->sf_tx_excess_defer;
2513	nstats->sf_tx_mcast_frames += stats->sf_tx_mcast_frames;
2514	nstats->sf_tx_bcast_frames += stats->sf_tx_bcast_frames;
2515	nstats->sf_tx_frames_lost += stats->sf_tx_frames_lost;
2516	nstats->sf_rx_frames += stats->sf_rx_frames;
2517	nstats->sf_rx_crcerrs += stats->sf_rx_crcerrs;
2518	nstats->sf_rx_alignerrs += stats->sf_rx_alignerrs;
2519	nstats->sf_rx_bytes += stats->sf_rx_bytes;
2520	nstats->sf_rx_pause_frames += stats->sf_rx_pause_frames;
2521	nstats->sf_rx_control_frames += stats->sf_rx_control_frames;
2522	nstats->sf_rx_unsup_control_frames += stats->sf_rx_unsup_control_frames;
2523	nstats->sf_rx_giants += stats->sf_rx_giants;
2524	nstats->sf_rx_runts += stats->sf_rx_runts;
2525	nstats->sf_rx_jabbererrs += stats->sf_rx_jabbererrs;
2526	nstats->sf_rx_fragments += stats->sf_rx_fragments;
2527	nstats->sf_rx_pkts_64 += stats->sf_rx_pkts_64;
2528	nstats->sf_rx_pkts_65_127 += stats->sf_rx_pkts_65_127;
2529	nstats->sf_rx_pkts_128_255 += stats->sf_rx_pkts_128_255;
2530	nstats->sf_rx_pkts_256_511 += stats->sf_rx_pkts_256_511;
2531	nstats->sf_rx_pkts_512_1023 += stats->sf_rx_pkts_512_1023;
2532	nstats->sf_rx_pkts_1024_1518 += stats->sf_rx_pkts_1024_1518;
2533	nstats->sf_rx_frames_lost += stats->sf_rx_frames_lost;
2534	nstats->sf_tx_underruns += stats->sf_tx_underruns;
2535}
2536
2537static void
2538sf_watchdog(struct sf_softc *sc)
2539{
2540	struct ifnet		*ifp;
2541
2542	SF_LOCK_ASSERT(sc);
2543
2544	if (sc->sf_watchdog_timer == 0 || --sc->sf_watchdog_timer)
2545		return;
2546
2547	ifp = sc->sf_ifp;
2548
2549	ifp->if_oerrors++;
2550	if (sc->sf_link == 0) {
2551		if (bootverbose)
2552			if_printf(sc->sf_ifp, "watchdog timeout "
2553			   "(missed link)\n");
2554	} else
2555		if_printf(ifp, "watchdog timeout, %d Tx descs are active\n",
2556		    sc->sf_cdata.sf_tx_cnt);
2557
2558	ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2559	sf_init_locked(sc);
2560
2561	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
2562		sf_start_locked(ifp);
2563}
2564
2565static int
2566sf_shutdown(device_t dev)
2567{
2568	struct sf_softc		*sc;
2569
2570	sc = device_get_softc(dev);
2571
2572	SF_LOCK(sc);
2573	sf_stop(sc);
2574	SF_UNLOCK(sc);
2575
2576	return (0);
2577}
2578
2579static int
2580sf_suspend(device_t dev)
2581{
2582	struct sf_softc		*sc;
2583
2584	sc = device_get_softc(dev);
2585
2586	SF_LOCK(sc);
2587	sf_stop(sc);
2588	sc->sf_suspended = 1;
2589	bus_generic_suspend(dev);
2590	SF_UNLOCK(sc);
2591
2592	return (0);
2593}
2594
2595static int
2596sf_resume(device_t dev)
2597{
2598	struct sf_softc		*sc;
2599	struct ifnet		*ifp;
2600
2601	sc = device_get_softc(dev);
2602
2603	SF_LOCK(sc);
2604	bus_generic_resume(dev);
2605	ifp = sc->sf_ifp;
2606	if ((ifp->if_flags & IFF_UP) != 0)
2607		sf_init_locked(sc);
2608
2609	sc->sf_suspended = 0;
2610	SF_UNLOCK(sc);
2611
2612	return (0);
2613}
2614
2615static int
2616sf_sysctl_stats(SYSCTL_HANDLER_ARGS)
2617{
2618	struct sf_softc		*sc;
2619	struct sf_stats		*stats;
2620	int			error;
2621	int			result;
2622
2623	result = -1;
2624	error = sysctl_handle_int(oidp, &result, 0, req);
2625
2626	if (error != 0 || req->newptr == NULL)
2627		return (error);
2628
2629	if (result != 1)
2630		return (error);
2631
2632	sc = (struct sf_softc *)arg1;
2633	stats = &sc->sf_statistics;
2634
2635	printf("%s statistics:\n", device_get_nameunit(sc->sf_dev));
2636	printf("Transmit good frames : %ju\n",
2637	    (uintmax_t)stats->sf_tx_frames);
2638	printf("Transmit good octets : %ju\n",
2639	    (uintmax_t)stats->sf_tx_bytes);
2640	printf("Transmit single collisions : %u\n",
2641	    stats->sf_tx_single_colls);
2642	printf("Transmit multiple collisions : %u\n",
2643	    stats->sf_tx_multi_colls);
2644	printf("Transmit late collisions : %u\n",
2645	    stats->sf_tx_late_colls);
2646	printf("Transmit abort due to excessive collisions : %u\n",
2647	    stats->sf_tx_excess_colls);
2648	printf("Transmit CRC errors : %u\n",
2649	    stats->sf_tx_crcerrs);
2650	printf("Transmit deferrals : %u\n",
2651	    stats->sf_tx_deferred);
2652	printf("Transmit abort due to excessive deferrals : %u\n",
2653	    stats->sf_tx_excess_defer);
2654	printf("Transmit pause control frames : %u\n",
2655	    stats->sf_tx_pause_frames);
2656	printf("Transmit control frames : %u\n",
2657	    stats->sf_tx_control_frames);
2658	printf("Transmit good multicast frames : %u\n",
2659	    stats->sf_tx_mcast_frames);
2660	printf("Transmit good broadcast frames : %u\n",
2661	    stats->sf_tx_bcast_frames);
2662	printf("Transmit frames lost due to internal transmit errors : %u\n",
2663	    stats->sf_tx_frames_lost);
2664	printf("Transmit FIFO underflows : %u\n",
2665	    stats->sf_tx_underruns);
2666	printf("Transmit GFP stalls : %u\n", stats->sf_tx_gfp_stall);
2667	printf("Receive good frames : %ju\n",
2668	    (uint64_t)stats->sf_rx_frames);
2669	printf("Receive good octets : %ju\n",
2670	    (uint64_t)stats->sf_rx_bytes);
2671	printf("Receive CRC errors : %u\n",
2672	    stats->sf_rx_crcerrs);
2673	printf("Receive alignment errors : %u\n",
2674	    stats->sf_rx_alignerrs);
2675	printf("Receive pause frames : %u\n",
2676	    stats->sf_rx_pause_frames);
2677	printf("Receive control frames : %u\n",
2678	    stats->sf_rx_control_frames);
2679	printf("Receive control frames with unsupported opcode : %u\n",
2680	    stats->sf_rx_unsup_control_frames);
2681	printf("Receive frames too long : %u\n",
2682	    stats->sf_rx_giants);
2683	printf("Receive frames too short : %u\n",
2684	    stats->sf_rx_runts);
2685	printf("Receive frames jabber errors : %u\n",
2686	    stats->sf_rx_jabbererrs);
2687	printf("Receive frames fragments : %u\n",
2688	    stats->sf_rx_fragments);
2689	printf("Receive packets 64 bytes : %ju\n",
2690	    (uint64_t)stats->sf_rx_pkts_64);
2691	printf("Receive packets 65 to 127 bytes : %ju\n",
2692	    (uint64_t)stats->sf_rx_pkts_65_127);
2693	printf("Receive packets 128 to 255 bytes : %ju\n",
2694	    (uint64_t)stats->sf_rx_pkts_128_255);
2695	printf("Receive packets 256 to 511 bytes : %ju\n",
2696	    (uint64_t)stats->sf_rx_pkts_256_511);
2697	printf("Receive packets 512 to 1023 bytes : %ju\n",
2698	    (uint64_t)stats->sf_rx_pkts_512_1023);
2699	printf("Receive packets 1024 to 1518 bytes : %ju\n",
2700	    (uint64_t)stats->sf_rx_pkts_1024_1518);
2701	printf("Receive frames lost due to internal receive errors : %u\n",
2702	    stats->sf_rx_frames_lost);
2703	printf("Receive GFP stalls : %u\n", stats->sf_rx_gfp_stall);
2704
2705	return (error);
2706}
2707
2708static int
2709sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
2710{
2711	int error, value;
2712
2713	if (!arg1)
2714		return (EINVAL);
2715	value = *(int *)arg1;
2716	error = sysctl_handle_int(oidp, &value, 0, req);
2717	if (error || !req->newptr)
2718		return (error);
2719	if (value < low || value > high)
2720		return (EINVAL);
2721	*(int *)arg1 = value;
2722
2723	return (0);
2724}
2725
2726static int
2727sysctl_hw_sf_int_mod(SYSCTL_HANDLER_ARGS)
2728{
2729
2730	return (sysctl_int_range(oidp, arg1, arg2, req, SF_IM_MIN, SF_IM_MAX));
2731}
2732