if_sf.c revision 232025
1/*-
2 * Copyright (c) 1997, 1998, 1999
3 *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 *    must display the following acknowledgement:
15 *	This product includes software developed by Bill Paul.
16 * 4. Neither the name of the author nor the names of any co-contributors
17 *    may be used to endorse or promote products derived from this software
18 *    without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30 * THE POSSIBILITY OF SUCH DAMAGE.
31 */
32
33#include <sys/cdefs.h>
34__FBSDID("$FreeBSD: head/sys/dev/sf/if_sf.c 232025 2012-02-23 05:23:21Z yongari $");
35
36/*
37 * Adaptec AIC-6915 "Starfire" PCI fast ethernet driver for FreeBSD.
38 * Programming manual is available from:
39 * http://download.adaptec.com/pdfs/user_guides/aic6915_pg.pdf.
40 *
41 * Written by Bill Paul <wpaul@ctr.columbia.edu>
42 * Department of Electical Engineering
43 * Columbia University, New York City
44 */
45/*
46 * The Adaptec AIC-6915 "Starfire" is a 64-bit 10/100 PCI ethernet
47 * controller designed with flexibility and reducing CPU load in mind.
48 * The Starfire offers high and low priority buffer queues, a
49 * producer/consumer index mechanism and several different buffer
50 * queue and completion queue descriptor types. Any one of a number
51 * of different driver designs can be used, depending on system and
52 * OS requirements. This driver makes use of type2 transmit frame
53 * descriptors to take full advantage of fragmented packets buffers
54 * and two RX buffer queues prioritized on size (one queue for small
55 * frames that will fit into a single mbuf, another with full size
56 * mbuf clusters for everything else). The producer/consumer indexes
57 * and completion queues are also used.
58 *
59 * One downside to the Starfire has to do with alignment: buffer
60 * queues must be aligned on 256-byte boundaries, and receive buffers
61 * must be aligned on longword boundaries. The receive buffer alignment
62 * causes problems on the strict alignment architecture, where the
63 * packet payload should be longword aligned. There is no simple way
64 * around this.
65 *
66 * For receive filtering, the Starfire offers 16 perfect filter slots
67 * and a 512-bit hash table.
68 *
69 * The Starfire has no internal transceiver, relying instead on an
70 * external MII-based transceiver. Accessing registers on external
71 * PHYs is done through a special register map rather than with the
72 * usual bitbang MDIO method.
73 *
74 * Acesssing the registers on the Starfire is a little tricky. The
75 * Starfire has a 512K internal register space. When programmed for
76 * PCI memory mapped mode, the entire register space can be accessed
77 * directly. However in I/O space mode, only 256 bytes are directly
78 * mapped into PCI I/O space. The other registers can be accessed
79 * indirectly using the SF_INDIRECTIO_ADDR and SF_INDIRECTIO_DATA
80 * registers inside the 256-byte I/O window.
81 */
82
83#ifdef HAVE_KERNEL_OPTION_HEADERS
84#include "opt_device_polling.h"
85#endif
86
87#include <sys/param.h>
88#include <sys/systm.h>
89#include <sys/bus.h>
90#include <sys/endian.h>
91#include <sys/kernel.h>
92#include <sys/malloc.h>
93#include <sys/mbuf.h>
94#include <sys/rman.h>
95#include <sys/module.h>
96#include <sys/socket.h>
97#include <sys/sockio.h>
98#include <sys/sysctl.h>
99#include <sys/taskqueue.h>
100
101#include <net/bpf.h>
102#include <net/if.h>
103#include <net/if_arp.h>
104#include <net/ethernet.h>
105#include <net/if_dl.h>
106#include <net/if_media.h>
107#include <net/if_types.h>
108#include <net/if_vlan_var.h>
109
110#include <dev/mii/mii.h>
111#include <dev/mii/miivar.h>
112
113#include <dev/pci/pcireg.h>
114#include <dev/pci/pcivar.h>
115
116#include <machine/bus.h>
117
118#include <dev/sf/if_sfreg.h>
119#include <dev/sf/starfire_rx.h>
120#include <dev/sf/starfire_tx.h>
121
122/* "device miibus" required.  See GENERIC if you get errors here. */
123#include "miibus_if.h"
124
125MODULE_DEPEND(sf, pci, 1, 1, 1);
126MODULE_DEPEND(sf, ether, 1, 1, 1);
127MODULE_DEPEND(sf, miibus, 1, 1, 1);
128
129#undef	SF_GFP_DEBUG
130#define	SF_CSUM_FEATURES	(CSUM_TCP | CSUM_UDP)
131/* Define this to activate partial TCP/UDP checksum offload. */
132#undef	SF_PARTIAL_CSUM_SUPPORT
133
134static struct sf_type sf_devs[] = {
135	{ AD_VENDORID, AD_DEVICEID_STARFIRE, "Adaptec AIC-6915 10/100BaseTX",
136	    AD_SUBSYSID_62011_REV0, "Adaptec ANA-62011 (rev 0) 10/100BaseTX" },
137	{ AD_VENDORID, AD_DEVICEID_STARFIRE, "Adaptec AIC-6915 10/100BaseTX",
138	    AD_SUBSYSID_62011_REV1, "Adaptec ANA-62011 (rev 1) 10/100BaseTX" },
139	{ AD_VENDORID, AD_DEVICEID_STARFIRE, "Adaptec AIC-6915 10/100BaseTX",
140	    AD_SUBSYSID_62022, "Adaptec ANA-62022 10/100BaseTX" },
141	{ AD_VENDORID, AD_DEVICEID_STARFIRE, "Adaptec AIC-6915 10/100BaseTX",
142	    AD_SUBSYSID_62044_REV0, "Adaptec ANA-62044 (rev 0) 10/100BaseTX" },
143	{ AD_VENDORID, AD_DEVICEID_STARFIRE, "Adaptec AIC-6915 10/100BaseTX",
144	    AD_SUBSYSID_62044_REV1, "Adaptec ANA-62044 (rev 1) 10/100BaseTX" },
145	{ AD_VENDORID, AD_DEVICEID_STARFIRE, "Adaptec AIC-6915 10/100BaseTX",
146	    AD_SUBSYSID_62020, "Adaptec ANA-62020 10/100BaseFX" },
147	{ AD_VENDORID, AD_DEVICEID_STARFIRE, "Adaptec AIC-6915 10/100BaseTX",
148	    AD_SUBSYSID_69011, "Adaptec ANA-69011 10/100BaseTX" },
149};
150
151static int sf_probe(device_t);
152static int sf_attach(device_t);
153static int sf_detach(device_t);
154static int sf_shutdown(device_t);
155static int sf_suspend(device_t);
156static int sf_resume(device_t);
157static void sf_intr(void *);
158static void sf_tick(void *);
159static void sf_stats_update(struct sf_softc *);
160#ifndef __NO_STRICT_ALIGNMENT
161static __inline void sf_fixup_rx(struct mbuf *);
162#endif
163static int sf_rxeof(struct sf_softc *);
164static void sf_txeof(struct sf_softc *);
165static int sf_encap(struct sf_softc *, struct mbuf **);
166static void sf_start(struct ifnet *);
167static void sf_start_locked(struct ifnet *);
168static int sf_ioctl(struct ifnet *, u_long, caddr_t);
169static void sf_download_fw(struct sf_softc *);
170static void sf_init(void *);
171static void sf_init_locked(struct sf_softc *);
172static void sf_stop(struct sf_softc *);
173static void sf_watchdog(struct sf_softc *);
174static int sf_ifmedia_upd(struct ifnet *);
175static int sf_ifmedia_upd_locked(struct ifnet *);
176static void sf_ifmedia_sts(struct ifnet *, struct ifmediareq *);
177static void sf_reset(struct sf_softc *);
178static int sf_dma_alloc(struct sf_softc *);
179static void sf_dma_free(struct sf_softc *);
180static int sf_init_rx_ring(struct sf_softc *);
181static void sf_init_tx_ring(struct sf_softc *);
182static int sf_newbuf(struct sf_softc *, int);
183static void sf_rxfilter(struct sf_softc *);
184static int sf_setperf(struct sf_softc *, int, uint8_t *);
185static int sf_sethash(struct sf_softc *, caddr_t, int);
186#ifdef notdef
187static int sf_setvlan(struct sf_softc *, int, uint32_t);
188#endif
189
190static uint8_t sf_read_eeprom(struct sf_softc *, int);
191
192static int sf_miibus_readreg(device_t, int, int);
193static int sf_miibus_writereg(device_t, int, int, int);
194static void sf_miibus_statchg(device_t);
195static void sf_link_task(void *, int);
196#ifdef DEVICE_POLLING
197static int sf_poll(struct ifnet *ifp, enum poll_cmd cmd, int count);
198#endif
199
200static uint32_t csr_read_4(struct sf_softc *, int);
201static void csr_write_4(struct sf_softc *, int, uint32_t);
202static void sf_txthresh_adjust(struct sf_softc *);
203static int sf_sysctl_stats(SYSCTL_HANDLER_ARGS);
204static int sysctl_int_range(SYSCTL_HANDLER_ARGS, int, int);
205static int sysctl_hw_sf_int_mod(SYSCTL_HANDLER_ARGS);
206
207static device_method_t sf_methods[] = {
208	/* Device interface */
209	DEVMETHOD(device_probe,		sf_probe),
210	DEVMETHOD(device_attach,	sf_attach),
211	DEVMETHOD(device_detach,	sf_detach),
212	DEVMETHOD(device_shutdown,	sf_shutdown),
213	DEVMETHOD(device_suspend,	sf_suspend),
214	DEVMETHOD(device_resume,	sf_resume),
215
216	/* MII interface */
217	DEVMETHOD(miibus_readreg,	sf_miibus_readreg),
218	DEVMETHOD(miibus_writereg,	sf_miibus_writereg),
219	DEVMETHOD(miibus_statchg,	sf_miibus_statchg),
220
221	DEVMETHOD_END
222};
223
224static driver_t sf_driver = {
225	"sf",
226	sf_methods,
227	sizeof(struct sf_softc),
228};
229
230static devclass_t sf_devclass;
231
232DRIVER_MODULE(sf, pci, sf_driver, sf_devclass, 0, 0);
233DRIVER_MODULE(miibus, sf, miibus_driver, miibus_devclass, 0, 0);
234
235#define SF_SETBIT(sc, reg, x)	\
236	csr_write_4(sc, reg, csr_read_4(sc, reg) | (x))
237
238#define SF_CLRBIT(sc, reg, x)				\
239	csr_write_4(sc, reg, csr_read_4(sc, reg) & ~(x))
240
241static uint32_t
242csr_read_4(struct sf_softc *sc, int reg)
243{
244	uint32_t		val;
245
246	if (sc->sf_restype == SYS_RES_MEMORY)
247		val = CSR_READ_4(sc, (reg + SF_RMAP_INTREG_BASE));
248	else {
249		CSR_WRITE_4(sc, SF_INDIRECTIO_ADDR, reg + SF_RMAP_INTREG_BASE);
250		val = CSR_READ_4(sc, SF_INDIRECTIO_DATA);
251	}
252
253	return (val);
254}
255
256static uint8_t
257sf_read_eeprom(struct sf_softc *sc, int reg)
258{
259	uint8_t		val;
260
261	val = (csr_read_4(sc, SF_EEADDR_BASE +
262	    (reg & 0xFFFFFFFC)) >> (8 * (reg & 3))) & 0xFF;
263
264	return (val);
265}
266
267static void
268csr_write_4(struct sf_softc *sc, int reg, uint32_t val)
269{
270
271	if (sc->sf_restype == SYS_RES_MEMORY)
272		CSR_WRITE_4(sc, (reg + SF_RMAP_INTREG_BASE), val);
273	else {
274		CSR_WRITE_4(sc, SF_INDIRECTIO_ADDR, reg + SF_RMAP_INTREG_BASE);
275		CSR_WRITE_4(sc, SF_INDIRECTIO_DATA, val);
276	}
277}
278
279/*
280 * Copy the address 'mac' into the perfect RX filter entry at
281 * offset 'idx.' The perfect filter only has 16 entries so do
282 * some sanity tests.
283 */
284static int
285sf_setperf(struct sf_softc *sc, int idx, uint8_t *mac)
286{
287
288	if (idx < 0 || idx > SF_RXFILT_PERFECT_CNT)
289		return (EINVAL);
290
291	if (mac == NULL)
292		return (EINVAL);
293
294	csr_write_4(sc, SF_RXFILT_PERFECT_BASE +
295	    (idx * SF_RXFILT_PERFECT_SKIP) + 0, mac[5] | (mac[4] << 8));
296	csr_write_4(sc, SF_RXFILT_PERFECT_BASE +
297	    (idx * SF_RXFILT_PERFECT_SKIP) + 4, mac[3] | (mac[2] << 8));
298	csr_write_4(sc, SF_RXFILT_PERFECT_BASE +
299	    (idx * SF_RXFILT_PERFECT_SKIP) + 8, mac[1] | (mac[0] << 8));
300
301	return (0);
302}
303
304/*
305 * Set the bit in the 512-bit hash table that corresponds to the
306 * specified mac address 'mac.' If 'prio' is nonzero, update the
307 * priority hash table instead of the filter hash table.
308 */
309static int
310sf_sethash(struct sf_softc *sc, caddr_t	mac, int prio)
311{
312	uint32_t		h;
313
314	if (mac == NULL)
315		return (EINVAL);
316
317	h = ether_crc32_be(mac, ETHER_ADDR_LEN) >> 23;
318
319	if (prio) {
320		SF_SETBIT(sc, SF_RXFILT_HASH_BASE + SF_RXFILT_HASH_PRIOOFF +
321		    (SF_RXFILT_HASH_SKIP * (h >> 4)), (1 << (h & 0xF)));
322	} else {
323		SF_SETBIT(sc, SF_RXFILT_HASH_BASE + SF_RXFILT_HASH_ADDROFF +
324		    (SF_RXFILT_HASH_SKIP * (h >> 4)), (1 << (h & 0xF)));
325	}
326
327	return (0);
328}
329
330#ifdef notdef
331/*
332 * Set a VLAN tag in the receive filter.
333 */
334static int
335sf_setvlan(struct sf_softc *sc, int idx, uint32_t vlan)
336{
337
338	if (idx < 0 || idx >> SF_RXFILT_HASH_CNT)
339		return (EINVAL);
340
341	csr_write_4(sc, SF_RXFILT_HASH_BASE +
342	    (idx * SF_RXFILT_HASH_SKIP) + SF_RXFILT_HASH_VLANOFF, vlan);
343
344	return (0);
345}
346#endif
347
348static int
349sf_miibus_readreg(device_t dev, int phy, int reg)
350{
351	struct sf_softc		*sc;
352	int			i;
353	uint32_t		val = 0;
354
355	sc = device_get_softc(dev);
356
357	for (i = 0; i < SF_TIMEOUT; i++) {
358		val = csr_read_4(sc, SF_PHY_REG(phy, reg));
359		if ((val & SF_MII_DATAVALID) != 0)
360			break;
361	}
362
363	if (i == SF_TIMEOUT)
364		return (0);
365
366	val &= SF_MII_DATAPORT;
367	if (val == 0xffff)
368		return (0);
369
370	return (val);
371}
372
373static int
374sf_miibus_writereg(device_t dev, int phy, int reg, int val)
375{
376	struct sf_softc		*sc;
377	int			i;
378	int			busy;
379
380	sc = device_get_softc(dev);
381
382	csr_write_4(sc, SF_PHY_REG(phy, reg), val);
383
384	for (i = 0; i < SF_TIMEOUT; i++) {
385		busy = csr_read_4(sc, SF_PHY_REG(phy, reg));
386		if ((busy & SF_MII_BUSY) == 0)
387			break;
388	}
389
390	return (0);
391}
392
393static void
394sf_miibus_statchg(device_t dev)
395{
396	struct sf_softc		*sc;
397
398	sc = device_get_softc(dev);
399	taskqueue_enqueue(taskqueue_swi, &sc->sf_link_task);
400}
401
402static void
403sf_link_task(void *arg, int pending)
404{
405	struct sf_softc		*sc;
406	struct mii_data		*mii;
407	struct ifnet		*ifp;
408	uint32_t		val;
409
410	sc = (struct sf_softc *)arg;
411
412	SF_LOCK(sc);
413
414	mii = device_get_softc(sc->sf_miibus);
415	ifp = sc->sf_ifp;
416	if (mii == NULL || ifp == NULL ||
417	    (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
418		SF_UNLOCK(sc);
419		return;
420	}
421
422	if (mii->mii_media_status & IFM_ACTIVE) {
423		if (IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
424			sc->sf_link = 1;
425	} else
426		sc->sf_link = 0;
427
428	val = csr_read_4(sc, SF_MACCFG_1);
429	val &= ~SF_MACCFG1_FULLDUPLEX;
430	val &= ~(SF_MACCFG1_RX_FLOWENB | SF_MACCFG1_TX_FLOWENB);
431	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
432		val |= SF_MACCFG1_FULLDUPLEX;
433		csr_write_4(sc, SF_BKTOBKIPG, SF_IPGT_FDX);
434#ifdef notyet
435		/* Configure flow-control bits. */
436		if ((IFM_OPTIONS(sc->sc_mii->mii_media_active) &
437		    IFM_ETH_RXPAUSE) != 0)
438			val |= SF_MACCFG1_RX_FLOWENB;
439		if ((IFM_OPTIONS(sc->sc_mii->mii_media_active) &
440		    IFM_ETH_TXPAUSE) != 0)
441			val |= SF_MACCFG1_TX_FLOWENB;
442#endif
443	} else
444		csr_write_4(sc, SF_BKTOBKIPG, SF_IPGT_HDX);
445
446	/* Make sure to reset MAC to take changes effect. */
447	csr_write_4(sc, SF_MACCFG_1, val | SF_MACCFG1_SOFTRESET);
448	DELAY(1000);
449	csr_write_4(sc, SF_MACCFG_1, val);
450
451	val = csr_read_4(sc, SF_TIMER_CTL);
452	if (IFM_SUBTYPE(mii->mii_media_active) == IFM_100_TX)
453		val |= SF_TIMER_TIMES_TEN;
454	else
455		val &= ~SF_TIMER_TIMES_TEN;
456	csr_write_4(sc, SF_TIMER_CTL, val);
457
458	SF_UNLOCK(sc);
459}
460
461static void
462sf_rxfilter(struct sf_softc *sc)
463{
464	struct ifnet		*ifp;
465	int			i;
466	struct ifmultiaddr	*ifma;
467	uint8_t			dummy[ETHER_ADDR_LEN] = { 0, 0, 0, 0, 0, 0 };
468	uint32_t		rxfilt;
469
470	ifp = sc->sf_ifp;
471
472	/* First zot all the existing filters. */
473	for (i = 1; i < SF_RXFILT_PERFECT_CNT; i++)
474		sf_setperf(sc, i, dummy);
475	for (i = SF_RXFILT_HASH_BASE; i < (SF_RXFILT_HASH_MAX + 1);
476	    i += sizeof(uint32_t))
477		csr_write_4(sc, i, 0);
478
479	rxfilt = csr_read_4(sc, SF_RXFILT);
480	rxfilt &= ~(SF_RXFILT_PROMISC | SF_RXFILT_ALLMULTI | SF_RXFILT_BROAD);
481	if ((ifp->if_flags & IFF_BROADCAST) != 0)
482		rxfilt |= SF_RXFILT_BROAD;
483	if ((ifp->if_flags & IFF_ALLMULTI) != 0 ||
484	    (ifp->if_flags & IFF_PROMISC) != 0) {
485		if ((ifp->if_flags & IFF_PROMISC) != 0)
486			rxfilt |= SF_RXFILT_PROMISC;
487		if ((ifp->if_flags & IFF_ALLMULTI) != 0)
488			rxfilt |= SF_RXFILT_ALLMULTI;
489		goto done;
490	}
491
492	/* Now program new ones. */
493	i = 1;
494	if_maddr_rlock(ifp);
495	TAILQ_FOREACH_REVERSE(ifma, &ifp->if_multiaddrs, ifmultihead,
496	    ifma_link) {
497		if (ifma->ifma_addr->sa_family != AF_LINK)
498			continue;
499		/*
500		 * Program the first 15 multicast groups
501		 * into the perfect filter. For all others,
502		 * use the hash table.
503		 */
504		if (i < SF_RXFILT_PERFECT_CNT) {
505			sf_setperf(sc, i,
506			    LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
507			i++;
508			continue;
509		}
510
511		sf_sethash(sc,
512		    LLADDR((struct sockaddr_dl *)ifma->ifma_addr), 0);
513	}
514	if_maddr_runlock(ifp);
515
516done:
517	csr_write_4(sc, SF_RXFILT, rxfilt);
518}
519
520/*
521 * Set media options.
522 */
523static int
524sf_ifmedia_upd(struct ifnet *ifp)
525{
526	struct sf_softc		*sc;
527	int			error;
528
529	sc = ifp->if_softc;
530	SF_LOCK(sc);
531	error = sf_ifmedia_upd_locked(ifp);
532	SF_UNLOCK(sc);
533	return (error);
534}
535
536static int
537sf_ifmedia_upd_locked(struct ifnet *ifp)
538{
539	struct sf_softc		*sc;
540	struct mii_data		*mii;
541	struct mii_softc        *miisc;
542
543	sc = ifp->if_softc;
544	mii = device_get_softc(sc->sf_miibus);
545	LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
546		PHY_RESET(miisc);
547	return (mii_mediachg(mii));
548}
549
550/*
551 * Report current media status.
552 */
553static void
554sf_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
555{
556	struct sf_softc		*sc;
557	struct mii_data		*mii;
558
559	sc = ifp->if_softc;
560	SF_LOCK(sc);
561	mii = device_get_softc(sc->sf_miibus);
562
563	mii_pollstat(mii);
564	ifmr->ifm_active = mii->mii_media_active;
565	ifmr->ifm_status = mii->mii_media_status;
566	SF_UNLOCK(sc);
567}
568
569static int
570sf_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
571{
572	struct sf_softc		*sc;
573	struct ifreq		*ifr;
574	struct mii_data		*mii;
575	int			error, mask;
576
577	sc = ifp->if_softc;
578	ifr = (struct ifreq *)data;
579	error = 0;
580
581	switch (command) {
582	case SIOCSIFFLAGS:
583		SF_LOCK(sc);
584		if (ifp->if_flags & IFF_UP) {
585			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
586				if ((ifp->if_flags ^ sc->sf_if_flags) &
587				    (IFF_PROMISC | IFF_ALLMULTI))
588					sf_rxfilter(sc);
589			} else {
590				if (sc->sf_detach == 0)
591					sf_init_locked(sc);
592			}
593		} else {
594			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
595				sf_stop(sc);
596		}
597		sc->sf_if_flags = ifp->if_flags;
598		SF_UNLOCK(sc);
599		break;
600	case SIOCADDMULTI:
601	case SIOCDELMULTI:
602		SF_LOCK(sc);
603		sf_rxfilter(sc);
604		SF_UNLOCK(sc);
605		break;
606	case SIOCGIFMEDIA:
607	case SIOCSIFMEDIA:
608		mii = device_get_softc(sc->sf_miibus);
609		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
610		break;
611	case SIOCSIFCAP:
612		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
613#ifdef DEVICE_POLLING
614		if ((mask & IFCAP_POLLING) != 0) {
615			if ((ifr->ifr_reqcap & IFCAP_POLLING) != 0) {
616				error = ether_poll_register(sf_poll, ifp);
617				if (error != 0)
618					break;
619				SF_LOCK(sc);
620				/* Disable interrupts. */
621				csr_write_4(sc, SF_IMR, 0);
622				ifp->if_capenable |= IFCAP_POLLING;
623				SF_UNLOCK(sc);
624			} else {
625				error = ether_poll_deregister(ifp);
626				/* Enable interrupts. */
627				SF_LOCK(sc);
628				csr_write_4(sc, SF_IMR, SF_INTRS);
629				ifp->if_capenable &= ~IFCAP_POLLING;
630				SF_UNLOCK(sc);
631			}
632		}
633#endif /* DEVICE_POLLING */
634		if ((mask & IFCAP_TXCSUM) != 0) {
635			if ((IFCAP_TXCSUM & ifp->if_capabilities) != 0) {
636				SF_LOCK(sc);
637				ifp->if_capenable ^= IFCAP_TXCSUM;
638				if ((IFCAP_TXCSUM & ifp->if_capenable) != 0) {
639					ifp->if_hwassist |= SF_CSUM_FEATURES;
640					SF_SETBIT(sc, SF_GEN_ETH_CTL,
641					    SF_ETHCTL_TXGFP_ENB);
642				} else {
643					ifp->if_hwassist &= ~SF_CSUM_FEATURES;
644					SF_CLRBIT(sc, SF_GEN_ETH_CTL,
645					    SF_ETHCTL_TXGFP_ENB);
646				}
647				SF_UNLOCK(sc);
648			}
649		}
650		if ((mask & IFCAP_RXCSUM) != 0) {
651			if ((IFCAP_RXCSUM & ifp->if_capabilities) != 0) {
652				SF_LOCK(sc);
653				ifp->if_capenable ^= IFCAP_RXCSUM;
654				if ((IFCAP_RXCSUM & ifp->if_capenable) != 0)
655					SF_SETBIT(sc, SF_GEN_ETH_CTL,
656					    SF_ETHCTL_RXGFP_ENB);
657				else
658					SF_CLRBIT(sc, SF_GEN_ETH_CTL,
659					    SF_ETHCTL_RXGFP_ENB);
660				SF_UNLOCK(sc);
661			}
662		}
663		break;
664	default:
665		error = ether_ioctl(ifp, command, data);
666		break;
667	}
668
669	return (error);
670}
671
672static void
673sf_reset(struct sf_softc *sc)
674{
675	int		i;
676
677	csr_write_4(sc, SF_GEN_ETH_CTL, 0);
678	SF_SETBIT(sc, SF_MACCFG_1, SF_MACCFG1_SOFTRESET);
679	DELAY(1000);
680	SF_CLRBIT(sc, SF_MACCFG_1, SF_MACCFG1_SOFTRESET);
681
682	SF_SETBIT(sc, SF_PCI_DEVCFG, SF_PCIDEVCFG_RESET);
683
684	for (i = 0; i < SF_TIMEOUT; i++) {
685		DELAY(10);
686		if (!(csr_read_4(sc, SF_PCI_DEVCFG) & SF_PCIDEVCFG_RESET))
687			break;
688	}
689
690	if (i == SF_TIMEOUT)
691		device_printf(sc->sf_dev, "reset never completed!\n");
692
693	/* Wait a little while for the chip to get its brains in order. */
694	DELAY(1000);
695}
696
697/*
698 * Probe for an Adaptec AIC-6915 chip. Check the PCI vendor and device
699 * IDs against our list and return a device name if we find a match.
700 * We also check the subsystem ID so that we can identify exactly which
701 * NIC has been found, if possible.
702 */
703static int
704sf_probe(device_t dev)
705{
706	struct sf_type		*t;
707	uint16_t		vid;
708	uint16_t		did;
709	uint16_t		sdid;
710	int			i;
711
712	vid = pci_get_vendor(dev);
713	did = pci_get_device(dev);
714	sdid = pci_get_subdevice(dev);
715
716	t = sf_devs;
717	for (i = 0; i < sizeof(sf_devs) / sizeof(sf_devs[0]); i++, t++) {
718		if (vid == t->sf_vid && did == t->sf_did) {
719			if (sdid == t->sf_sdid) {
720				device_set_desc(dev, t->sf_sname);
721				return (BUS_PROBE_DEFAULT);
722			}
723		}
724	}
725
726	if (vid == AD_VENDORID && did == AD_DEVICEID_STARFIRE) {
727		/* unkown subdevice */
728		device_set_desc(dev, sf_devs[0].sf_name);
729		return (BUS_PROBE_DEFAULT);
730	}
731
732	return (ENXIO);
733}
734
735/*
736 * Attach the interface. Allocate softc structures, do ifmedia
737 * setup and ethernet/BPF attach.
738 */
739static int
740sf_attach(device_t dev)
741{
742	int			i;
743	struct sf_softc		*sc;
744	struct ifnet		*ifp;
745	uint32_t		reg;
746	int			rid, error = 0;
747	uint8_t			eaddr[ETHER_ADDR_LEN];
748
749	sc = device_get_softc(dev);
750	sc->sf_dev = dev;
751
752	mtx_init(&sc->sf_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
753	    MTX_DEF);
754	callout_init_mtx(&sc->sf_co, &sc->sf_mtx, 0);
755	TASK_INIT(&sc->sf_link_task, 0, sf_link_task, sc);
756
757	/*
758	 * Map control/status registers.
759	 */
760	pci_enable_busmaster(dev);
761
762	/*
763	 * Prefer memory space register mapping over I/O space as the
764	 * hardware requires lots of register access to get various
765	 * producer/consumer index during Tx/Rx operation. However this
766	 * requires large memory space(512K) to map the entire register
767	 * space.
768	 */
769	sc->sf_rid = PCIR_BAR(0);
770	sc->sf_restype = SYS_RES_MEMORY;
771	sc->sf_res = bus_alloc_resource_any(dev, sc->sf_restype, &sc->sf_rid,
772	    RF_ACTIVE);
773	if (sc->sf_res == NULL) {
774		reg = pci_read_config(dev, PCIR_BAR(0), 4);
775		if ((reg & PCIM_BAR_MEM_64) == PCIM_BAR_MEM_64)
776			sc->sf_rid = PCIR_BAR(2);
777		else
778			sc->sf_rid = PCIR_BAR(1);
779		sc->sf_restype = SYS_RES_IOPORT;
780		sc->sf_res = bus_alloc_resource_any(dev, sc->sf_restype,
781		    &sc->sf_rid, RF_ACTIVE);
782		if (sc->sf_res == NULL) {
783			device_printf(dev, "couldn't allocate resources\n");
784			mtx_destroy(&sc->sf_mtx);
785			return (ENXIO);
786		}
787	}
788	if (bootverbose)
789		device_printf(dev, "using %s space register mapping\n",
790		    sc->sf_restype == SYS_RES_MEMORY ? "memory" : "I/O");
791
792	reg = pci_read_config(dev, PCIR_CACHELNSZ, 1);
793	if (reg == 0) {
794		/*
795		 * If cache line size is 0, MWI is not used at all, so set
796		 * reasonable default. AIC-6915 supports 0, 4, 8, 16, 32
797		 * and 64.
798		 */
799		reg = 16;
800		device_printf(dev, "setting PCI cache line size to %u\n", reg);
801		pci_write_config(dev, PCIR_CACHELNSZ, reg, 1);
802	} else {
803		if (bootverbose)
804			device_printf(dev, "PCI cache line size : %u\n", reg);
805	}
806	/* Enable MWI. */
807	reg = pci_read_config(dev, PCIR_COMMAND, 2);
808	reg |= PCIM_CMD_MWRICEN;
809	pci_write_config(dev, PCIR_COMMAND, reg, 2);
810
811	/* Allocate interrupt. */
812	rid = 0;
813	sc->sf_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
814	    RF_SHAREABLE | RF_ACTIVE);
815
816	if (sc->sf_irq == NULL) {
817		device_printf(dev, "couldn't map interrupt\n");
818		error = ENXIO;
819		goto fail;
820	}
821
822	SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
823	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
824	    OID_AUTO, "stats", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
825	    sf_sysctl_stats, "I", "Statistics");
826
827	SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
828		SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
829		OID_AUTO, "int_mod", CTLTYPE_INT | CTLFLAG_RW,
830		&sc->sf_int_mod, 0, sysctl_hw_sf_int_mod, "I",
831		"sf interrupt moderation");
832	/* Pull in device tunables. */
833	sc->sf_int_mod = SF_IM_DEFAULT;
834	error = resource_int_value(device_get_name(dev), device_get_unit(dev),
835	    "int_mod", &sc->sf_int_mod);
836	if (error == 0) {
837		if (sc->sf_int_mod < SF_IM_MIN ||
838		    sc->sf_int_mod > SF_IM_MAX) {
839			device_printf(dev, "int_mod value out of range; "
840			    "using default: %d\n", SF_IM_DEFAULT);
841			sc->sf_int_mod = SF_IM_DEFAULT;
842		}
843	}
844
845	/* Reset the adapter. */
846	sf_reset(sc);
847
848	/*
849	 * Get station address from the EEPROM.
850	 */
851	for (i = 0; i < ETHER_ADDR_LEN; i++)
852		eaddr[i] =
853		    sf_read_eeprom(sc, SF_EE_NODEADDR + ETHER_ADDR_LEN - i);
854
855	/* Allocate DMA resources. */
856	if (sf_dma_alloc(sc) != 0) {
857		error = ENOSPC;
858		goto fail;
859	}
860
861	sc->sf_txthresh = SF_MIN_TX_THRESHOLD;
862
863	ifp = sc->sf_ifp = if_alloc(IFT_ETHER);
864	if (ifp == NULL) {
865		device_printf(dev, "can not allocate ifnet structure\n");
866		error = ENOSPC;
867		goto fail;
868	}
869
870	/* Do MII setup. */
871	error = mii_attach(dev, &sc->sf_miibus, ifp, sf_ifmedia_upd,
872	    sf_ifmedia_sts, BMSR_DEFCAPMASK, MII_PHY_ANY, MII_OFFSET_ANY, 0);
873	if (error != 0) {
874		device_printf(dev, "attaching PHYs failed\n");
875		goto fail;
876	}
877
878	ifp->if_softc = sc;
879	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
880	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
881	ifp->if_ioctl = sf_ioctl;
882	ifp->if_start = sf_start;
883	ifp->if_init = sf_init;
884	IFQ_SET_MAXLEN(&ifp->if_snd, SF_TX_DLIST_CNT - 1);
885	ifp->if_snd.ifq_drv_maxlen = SF_TX_DLIST_CNT - 1;
886	IFQ_SET_READY(&ifp->if_snd);
887	/*
888	 * With the help of firmware, AIC-6915 supports
889	 * Tx/Rx TCP/UDP checksum offload.
890	 */
891	ifp->if_hwassist = SF_CSUM_FEATURES;
892	ifp->if_capabilities = IFCAP_HWCSUM;
893
894	/*
895	 * Call MI attach routine.
896	 */
897	ether_ifattach(ifp, eaddr);
898
899	/* VLAN capability setup. */
900	ifp->if_capabilities |= IFCAP_VLAN_MTU;
901	ifp->if_capenable = ifp->if_capabilities;
902#ifdef DEVICE_POLLING
903	ifp->if_capabilities |= IFCAP_POLLING;
904#endif
905	/*
906	 * Tell the upper layer(s) we support long frames.
907	 * Must appear after the call to ether_ifattach() because
908	 * ether_ifattach() sets ifi_hdrlen to the default value.
909	 */
910	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
911
912	/* Hook interrupt last to avoid having to lock softc */
913	error = bus_setup_intr(dev, sc->sf_irq, INTR_TYPE_NET | INTR_MPSAFE,
914	    NULL, sf_intr, sc, &sc->sf_intrhand);
915
916	if (error) {
917		device_printf(dev, "couldn't set up irq\n");
918		ether_ifdetach(ifp);
919		goto fail;
920	}
921
922fail:
923	if (error)
924		sf_detach(dev);
925
926	return (error);
927}
928
929/*
930 * Shutdown hardware and free up resources. This can be called any
931 * time after the mutex has been initialized. It is called in both
932 * the error case in attach and the normal detach case so it needs
933 * to be careful about only freeing resources that have actually been
934 * allocated.
935 */
936static int
937sf_detach(device_t dev)
938{
939	struct sf_softc		*sc;
940	struct ifnet		*ifp;
941
942	sc = device_get_softc(dev);
943	ifp = sc->sf_ifp;
944
945#ifdef DEVICE_POLLING
946	if (ifp != NULL && ifp->if_capenable & IFCAP_POLLING)
947		ether_poll_deregister(ifp);
948#endif
949
950	/* These should only be active if attach succeeded */
951	if (device_is_attached(dev)) {
952		SF_LOCK(sc);
953		sc->sf_detach = 1;
954		sf_stop(sc);
955		SF_UNLOCK(sc);
956		callout_drain(&sc->sf_co);
957		taskqueue_drain(taskqueue_swi, &sc->sf_link_task);
958		if (ifp != NULL)
959			ether_ifdetach(ifp);
960	}
961	if (sc->sf_miibus) {
962		device_delete_child(dev, sc->sf_miibus);
963		sc->sf_miibus = NULL;
964	}
965	bus_generic_detach(dev);
966
967	if (sc->sf_intrhand != NULL)
968		bus_teardown_intr(dev, sc->sf_irq, sc->sf_intrhand);
969	if (sc->sf_irq != NULL)
970		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sf_irq);
971	if (sc->sf_res != NULL)
972		bus_release_resource(dev, sc->sf_restype, sc->sf_rid,
973		    sc->sf_res);
974
975	sf_dma_free(sc);
976	if (ifp != NULL)
977		if_free(ifp);
978
979	mtx_destroy(&sc->sf_mtx);
980
981	return (0);
982}
983
984struct sf_dmamap_arg {
985	bus_addr_t		sf_busaddr;
986};
987
988static void
989sf_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
990{
991	struct sf_dmamap_arg	*ctx;
992
993	if (error != 0)
994		return;
995	ctx = arg;
996	ctx->sf_busaddr = segs[0].ds_addr;
997}
998
999static int
1000sf_dma_alloc(struct sf_softc *sc)
1001{
1002	struct sf_dmamap_arg	ctx;
1003	struct sf_txdesc	*txd;
1004	struct sf_rxdesc	*rxd;
1005	bus_addr_t		lowaddr;
1006	bus_addr_t		rx_ring_end, rx_cring_end;
1007	bus_addr_t		tx_ring_end, tx_cring_end;
1008	int			error, i;
1009
1010	lowaddr = BUS_SPACE_MAXADDR;
1011
1012again:
1013	/* Create parent DMA tag. */
1014	error = bus_dma_tag_create(
1015	    bus_get_dma_tag(sc->sf_dev),	/* parent */
1016	    1, 0,			/* alignment, boundary */
1017	    lowaddr,			/* lowaddr */
1018	    BUS_SPACE_MAXADDR,		/* highaddr */
1019	    NULL, NULL,			/* filter, filterarg */
1020	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
1021	    0,				/* nsegments */
1022	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
1023	    0,				/* flags */
1024	    NULL, NULL,			/* lockfunc, lockarg */
1025	    &sc->sf_cdata.sf_parent_tag);
1026	if (error != 0) {
1027		device_printf(sc->sf_dev, "failed to create parent DMA tag\n");
1028		goto fail;
1029	}
1030	/* Create tag for Tx ring. */
1031	error = bus_dma_tag_create(sc->sf_cdata.sf_parent_tag,/* parent */
1032	    SF_RING_ALIGN, 0, 		/* alignment, boundary */
1033	    BUS_SPACE_MAXADDR,		/* lowaddr */
1034	    BUS_SPACE_MAXADDR,		/* highaddr */
1035	    NULL, NULL,			/* filter, filterarg */
1036	    SF_TX_DLIST_SIZE,		/* maxsize */
1037	    1,				/* nsegments */
1038	    SF_TX_DLIST_SIZE,		/* maxsegsize */
1039	    0,				/* flags */
1040	    NULL, NULL,			/* lockfunc, lockarg */
1041	    &sc->sf_cdata.sf_tx_ring_tag);
1042	if (error != 0) {
1043		device_printf(sc->sf_dev, "failed to create Tx ring DMA tag\n");
1044		goto fail;
1045	}
1046
1047	/* Create tag for Tx completion ring. */
1048	error = bus_dma_tag_create(sc->sf_cdata.sf_parent_tag,/* parent */
1049	    SF_RING_ALIGN, 0, 		/* alignment, boundary */
1050	    BUS_SPACE_MAXADDR,		/* lowaddr */
1051	    BUS_SPACE_MAXADDR,		/* highaddr */
1052	    NULL, NULL,			/* filter, filterarg */
1053	    SF_TX_CLIST_SIZE,		/* maxsize */
1054	    1,				/* nsegments */
1055	    SF_TX_CLIST_SIZE,		/* maxsegsize */
1056	    0,				/* flags */
1057	    NULL, NULL,			/* lockfunc, lockarg */
1058	    &sc->sf_cdata.sf_tx_cring_tag);
1059	if (error != 0) {
1060		device_printf(sc->sf_dev,
1061		    "failed to create Tx completion ring DMA tag\n");
1062		goto fail;
1063	}
1064
1065	/* Create tag for Rx ring. */
1066	error = bus_dma_tag_create(sc->sf_cdata.sf_parent_tag,/* parent */
1067	    SF_RING_ALIGN, 0,		/* alignment, boundary */
1068	    BUS_SPACE_MAXADDR,		/* lowaddr */
1069	    BUS_SPACE_MAXADDR,		/* highaddr */
1070	    NULL, NULL,			/* filter, filterarg */
1071	    SF_RX_DLIST_SIZE,		/* maxsize */
1072	    1,				/* nsegments */
1073	    SF_RX_DLIST_SIZE,		/* maxsegsize */
1074	    0,				/* flags */
1075	    NULL, NULL,			/* lockfunc, lockarg */
1076	    &sc->sf_cdata.sf_rx_ring_tag);
1077	if (error != 0) {
1078		device_printf(sc->sf_dev,
1079		    "failed to create Rx ring DMA tag\n");
1080		goto fail;
1081	}
1082
1083	/* Create tag for Rx completion ring. */
1084	error = bus_dma_tag_create(sc->sf_cdata.sf_parent_tag,/* parent */
1085	    SF_RING_ALIGN, 0,		/* alignment, boundary */
1086	    BUS_SPACE_MAXADDR,		/* lowaddr */
1087	    BUS_SPACE_MAXADDR,		/* highaddr */
1088	    NULL, NULL,			/* filter, filterarg */
1089	    SF_RX_CLIST_SIZE,		/* maxsize */
1090	    1,				/* nsegments */
1091	    SF_RX_CLIST_SIZE,		/* maxsegsize */
1092	    0,				/* flags */
1093	    NULL, NULL,			/* lockfunc, lockarg */
1094	    &sc->sf_cdata.sf_rx_cring_tag);
1095	if (error != 0) {
1096		device_printf(sc->sf_dev,
1097		    "failed to create Rx completion ring DMA tag\n");
1098		goto fail;
1099	}
1100
1101	/* Create tag for Tx buffers. */
1102	error = bus_dma_tag_create(sc->sf_cdata.sf_parent_tag,/* parent */
1103	    1, 0,			/* alignment, boundary */
1104	    BUS_SPACE_MAXADDR,		/* lowaddr */
1105	    BUS_SPACE_MAXADDR,		/* highaddr */
1106	    NULL, NULL,			/* filter, filterarg */
1107	    MCLBYTES * SF_MAXTXSEGS,	/* maxsize */
1108	    SF_MAXTXSEGS,		/* nsegments */
1109	    MCLBYTES,			/* maxsegsize */
1110	    0,				/* flags */
1111	    NULL, NULL,			/* lockfunc, lockarg */
1112	    &sc->sf_cdata.sf_tx_tag);
1113	if (error != 0) {
1114		device_printf(sc->sf_dev, "failed to create Tx DMA tag\n");
1115		goto fail;
1116	}
1117
1118	/* Create tag for Rx buffers. */
1119	error = bus_dma_tag_create(sc->sf_cdata.sf_parent_tag,/* parent */
1120	    SF_RX_ALIGN, 0,		/* alignment, boundary */
1121	    BUS_SPACE_MAXADDR,		/* lowaddr */
1122	    BUS_SPACE_MAXADDR,		/* highaddr */
1123	    NULL, NULL,			/* filter, filterarg */
1124	    MCLBYTES,			/* maxsize */
1125	    1,				/* nsegments */
1126	    MCLBYTES,			/* maxsegsize */
1127	    0,				/* flags */
1128	    NULL, NULL,			/* lockfunc, lockarg */
1129	    &sc->sf_cdata.sf_rx_tag);
1130	if (error != 0) {
1131		device_printf(sc->sf_dev, "failed to create Rx DMA tag\n");
1132		goto fail;
1133	}
1134
1135	/* Allocate DMA'able memory and load the DMA map for Tx ring. */
1136	error = bus_dmamem_alloc(sc->sf_cdata.sf_tx_ring_tag,
1137	    (void **)&sc->sf_rdata.sf_tx_ring, BUS_DMA_WAITOK |
1138	    BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc->sf_cdata.sf_tx_ring_map);
1139	if (error != 0) {
1140		device_printf(sc->sf_dev,
1141		    "failed to allocate DMA'able memory for Tx ring\n");
1142		goto fail;
1143	}
1144
1145	ctx.sf_busaddr = 0;
1146	error = bus_dmamap_load(sc->sf_cdata.sf_tx_ring_tag,
1147	    sc->sf_cdata.sf_tx_ring_map, sc->sf_rdata.sf_tx_ring,
1148	    SF_TX_DLIST_SIZE, sf_dmamap_cb, &ctx, 0);
1149	if (error != 0 || ctx.sf_busaddr == 0) {
1150		device_printf(sc->sf_dev,
1151		    "failed to load DMA'able memory for Tx ring\n");
1152		goto fail;
1153	}
1154	sc->sf_rdata.sf_tx_ring_paddr = ctx.sf_busaddr;
1155
1156	/*
1157	 * Allocate DMA'able memory and load the DMA map for Tx completion ring.
1158	 */
1159	error = bus_dmamem_alloc(sc->sf_cdata.sf_tx_cring_tag,
1160	    (void **)&sc->sf_rdata.sf_tx_cring, BUS_DMA_WAITOK |
1161	    BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc->sf_cdata.sf_tx_cring_map);
1162	if (error != 0) {
1163		device_printf(sc->sf_dev,
1164		    "failed to allocate DMA'able memory for "
1165		    "Tx completion ring\n");
1166		goto fail;
1167	}
1168
1169	ctx.sf_busaddr = 0;
1170	error = bus_dmamap_load(sc->sf_cdata.sf_tx_cring_tag,
1171	    sc->sf_cdata.sf_tx_cring_map, sc->sf_rdata.sf_tx_cring,
1172	    SF_TX_CLIST_SIZE, sf_dmamap_cb, &ctx, 0);
1173	if (error != 0 || ctx.sf_busaddr == 0) {
1174		device_printf(sc->sf_dev,
1175		    "failed to load DMA'able memory for Tx completion ring\n");
1176		goto fail;
1177	}
1178	sc->sf_rdata.sf_tx_cring_paddr = ctx.sf_busaddr;
1179
1180	/* Allocate DMA'able memory and load the DMA map for Rx ring. */
1181	error = bus_dmamem_alloc(sc->sf_cdata.sf_rx_ring_tag,
1182	    (void **)&sc->sf_rdata.sf_rx_ring, BUS_DMA_WAITOK |
1183	    BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc->sf_cdata.sf_rx_ring_map);
1184	if (error != 0) {
1185		device_printf(sc->sf_dev,
1186		    "failed to allocate DMA'able memory for Rx ring\n");
1187		goto fail;
1188	}
1189
1190	ctx.sf_busaddr = 0;
1191	error = bus_dmamap_load(sc->sf_cdata.sf_rx_ring_tag,
1192	    sc->sf_cdata.sf_rx_ring_map, sc->sf_rdata.sf_rx_ring,
1193	    SF_RX_DLIST_SIZE, sf_dmamap_cb, &ctx, 0);
1194	if (error != 0 || ctx.sf_busaddr == 0) {
1195		device_printf(sc->sf_dev,
1196		    "failed to load DMA'able memory for Rx ring\n");
1197		goto fail;
1198	}
1199	sc->sf_rdata.sf_rx_ring_paddr = ctx.sf_busaddr;
1200
1201	/*
1202	 * Allocate DMA'able memory and load the DMA map for Rx completion ring.
1203	 */
1204	error = bus_dmamem_alloc(sc->sf_cdata.sf_rx_cring_tag,
1205	    (void **)&sc->sf_rdata.sf_rx_cring, BUS_DMA_WAITOK |
1206	    BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc->sf_cdata.sf_rx_cring_map);
1207	if (error != 0) {
1208		device_printf(sc->sf_dev,
1209		    "failed to allocate DMA'able memory for "
1210		    "Rx completion ring\n");
1211		goto fail;
1212	}
1213
1214	ctx.sf_busaddr = 0;
1215	error = bus_dmamap_load(sc->sf_cdata.sf_rx_cring_tag,
1216	    sc->sf_cdata.sf_rx_cring_map, sc->sf_rdata.sf_rx_cring,
1217	    SF_RX_CLIST_SIZE, sf_dmamap_cb, &ctx, 0);
1218	if (error != 0 || ctx.sf_busaddr == 0) {
1219		device_printf(sc->sf_dev,
1220		    "failed to load DMA'able memory for Rx completion ring\n");
1221		goto fail;
1222	}
1223	sc->sf_rdata.sf_rx_cring_paddr = ctx.sf_busaddr;
1224
1225	/*
1226	 * Tx desciptor ring and Tx completion ring should be addressed in
1227	 * the same 4GB space. The same rule applys to Rx ring and Rx
1228	 * completion ring. Unfortunately there is no way to specify this
1229	 * boundary restriction with bus_dma(9). So just try to allocate
1230	 * without the restriction and check the restriction was satisfied.
1231	 * If not, fall back to 32bit dma addressing mode which always
1232	 * guarantees the restriction.
1233	 */
1234	tx_ring_end = sc->sf_rdata.sf_tx_ring_paddr + SF_TX_DLIST_SIZE;
1235	tx_cring_end = sc->sf_rdata.sf_tx_cring_paddr + SF_TX_CLIST_SIZE;
1236	rx_ring_end = sc->sf_rdata.sf_rx_ring_paddr + SF_RX_DLIST_SIZE;
1237	rx_cring_end = sc->sf_rdata.sf_rx_cring_paddr + SF_RX_CLIST_SIZE;
1238	if ((SF_ADDR_HI(sc->sf_rdata.sf_tx_ring_paddr) !=
1239	    SF_ADDR_HI(tx_cring_end)) ||
1240	    (SF_ADDR_HI(sc->sf_rdata.sf_tx_cring_paddr) !=
1241	    SF_ADDR_HI(tx_ring_end)) ||
1242	    (SF_ADDR_HI(sc->sf_rdata.sf_rx_ring_paddr) !=
1243	    SF_ADDR_HI(rx_cring_end)) ||
1244	    (SF_ADDR_HI(sc->sf_rdata.sf_rx_cring_paddr) !=
1245	    SF_ADDR_HI(rx_ring_end))) {
1246		device_printf(sc->sf_dev,
1247		    "switching to 32bit DMA mode\n");
1248		sf_dma_free(sc);
1249		/* Limit DMA address space to 32bit and try again. */
1250		lowaddr = BUS_SPACE_MAXADDR_32BIT;
1251		goto again;
1252	}
1253
1254	/* Create DMA maps for Tx buffers. */
1255	for (i = 0; i < SF_TX_DLIST_CNT; i++) {
1256		txd = &sc->sf_cdata.sf_txdesc[i];
1257		txd->tx_m = NULL;
1258		txd->ndesc = 0;
1259		txd->tx_dmamap = NULL;
1260		error = bus_dmamap_create(sc->sf_cdata.sf_tx_tag, 0,
1261		    &txd->tx_dmamap);
1262		if (error != 0) {
1263			device_printf(sc->sf_dev,
1264			    "failed to create Tx dmamap\n");
1265			goto fail;
1266		}
1267	}
1268	/* Create DMA maps for Rx buffers. */
1269	if ((error = bus_dmamap_create(sc->sf_cdata.sf_rx_tag, 0,
1270	    &sc->sf_cdata.sf_rx_sparemap)) != 0) {
1271		device_printf(sc->sf_dev,
1272		    "failed to create spare Rx dmamap\n");
1273		goto fail;
1274	}
1275	for (i = 0; i < SF_RX_DLIST_CNT; i++) {
1276		rxd = &sc->sf_cdata.sf_rxdesc[i];
1277		rxd->rx_m = NULL;
1278		rxd->rx_dmamap = NULL;
1279		error = bus_dmamap_create(sc->sf_cdata.sf_rx_tag, 0,
1280		    &rxd->rx_dmamap);
1281		if (error != 0) {
1282			device_printf(sc->sf_dev,
1283			    "failed to create Rx dmamap\n");
1284			goto fail;
1285		}
1286	}
1287
1288fail:
1289	return (error);
1290}
1291
1292static void
1293sf_dma_free(struct sf_softc *sc)
1294{
1295	struct sf_txdesc	*txd;
1296	struct sf_rxdesc	*rxd;
1297	int			i;
1298
1299	/* Tx ring. */
1300	if (sc->sf_cdata.sf_tx_ring_tag) {
1301		if (sc->sf_cdata.sf_tx_ring_map)
1302			bus_dmamap_unload(sc->sf_cdata.sf_tx_ring_tag,
1303			    sc->sf_cdata.sf_tx_ring_map);
1304		if (sc->sf_cdata.sf_tx_ring_map &&
1305		    sc->sf_rdata.sf_tx_ring)
1306			bus_dmamem_free(sc->sf_cdata.sf_tx_ring_tag,
1307			    sc->sf_rdata.sf_tx_ring,
1308			    sc->sf_cdata.sf_tx_ring_map);
1309		sc->sf_rdata.sf_tx_ring = NULL;
1310		sc->sf_cdata.sf_tx_ring_map = NULL;
1311		bus_dma_tag_destroy(sc->sf_cdata.sf_tx_ring_tag);
1312		sc->sf_cdata.sf_tx_ring_tag = NULL;
1313	}
1314	/* Tx completion ring. */
1315	if (sc->sf_cdata.sf_tx_cring_tag) {
1316		if (sc->sf_cdata.sf_tx_cring_map)
1317			bus_dmamap_unload(sc->sf_cdata.sf_tx_cring_tag,
1318			    sc->sf_cdata.sf_tx_cring_map);
1319		if (sc->sf_cdata.sf_tx_cring_map &&
1320		    sc->sf_rdata.sf_tx_cring)
1321			bus_dmamem_free(sc->sf_cdata.sf_tx_cring_tag,
1322			    sc->sf_rdata.sf_tx_cring,
1323			    sc->sf_cdata.sf_tx_cring_map);
1324		sc->sf_rdata.sf_tx_cring = NULL;
1325		sc->sf_cdata.sf_tx_cring_map = NULL;
1326		bus_dma_tag_destroy(sc->sf_cdata.sf_tx_cring_tag);
1327		sc->sf_cdata.sf_tx_cring_tag = NULL;
1328	}
1329	/* Rx ring. */
1330	if (sc->sf_cdata.sf_rx_ring_tag) {
1331		if (sc->sf_cdata.sf_rx_ring_map)
1332			bus_dmamap_unload(sc->sf_cdata.sf_rx_ring_tag,
1333			    sc->sf_cdata.sf_rx_ring_map);
1334		if (sc->sf_cdata.sf_rx_ring_map &&
1335		    sc->sf_rdata.sf_rx_ring)
1336			bus_dmamem_free(sc->sf_cdata.sf_rx_ring_tag,
1337			    sc->sf_rdata.sf_rx_ring,
1338			    sc->sf_cdata.sf_rx_ring_map);
1339		sc->sf_rdata.sf_rx_ring = NULL;
1340		sc->sf_cdata.sf_rx_ring_map = NULL;
1341		bus_dma_tag_destroy(sc->sf_cdata.sf_rx_ring_tag);
1342		sc->sf_cdata.sf_rx_ring_tag = NULL;
1343	}
1344	/* Rx completion ring. */
1345	if (sc->sf_cdata.sf_rx_cring_tag) {
1346		if (sc->sf_cdata.sf_rx_cring_map)
1347			bus_dmamap_unload(sc->sf_cdata.sf_rx_cring_tag,
1348			    sc->sf_cdata.sf_rx_cring_map);
1349		if (sc->sf_cdata.sf_rx_cring_map &&
1350		    sc->sf_rdata.sf_rx_cring)
1351			bus_dmamem_free(sc->sf_cdata.sf_rx_cring_tag,
1352			    sc->sf_rdata.sf_rx_cring,
1353			    sc->sf_cdata.sf_rx_cring_map);
1354		sc->sf_rdata.sf_rx_cring = NULL;
1355		sc->sf_cdata.sf_rx_cring_map = NULL;
1356		bus_dma_tag_destroy(sc->sf_cdata.sf_rx_cring_tag);
1357		sc->sf_cdata.sf_rx_cring_tag = NULL;
1358	}
1359	/* Tx buffers. */
1360	if (sc->sf_cdata.sf_tx_tag) {
1361		for (i = 0; i < SF_TX_DLIST_CNT; i++) {
1362			txd = &sc->sf_cdata.sf_txdesc[i];
1363			if (txd->tx_dmamap) {
1364				bus_dmamap_destroy(sc->sf_cdata.sf_tx_tag,
1365				    txd->tx_dmamap);
1366				txd->tx_dmamap = NULL;
1367			}
1368		}
1369		bus_dma_tag_destroy(sc->sf_cdata.sf_tx_tag);
1370		sc->sf_cdata.sf_tx_tag = NULL;
1371	}
1372	/* Rx buffers. */
1373	if (sc->sf_cdata.sf_rx_tag) {
1374		for (i = 0; i < SF_RX_DLIST_CNT; i++) {
1375			rxd = &sc->sf_cdata.sf_rxdesc[i];
1376			if (rxd->rx_dmamap) {
1377				bus_dmamap_destroy(sc->sf_cdata.sf_rx_tag,
1378				    rxd->rx_dmamap);
1379				rxd->rx_dmamap = NULL;
1380			}
1381		}
1382		if (sc->sf_cdata.sf_rx_sparemap) {
1383			bus_dmamap_destroy(sc->sf_cdata.sf_rx_tag,
1384			    sc->sf_cdata.sf_rx_sparemap);
1385			sc->sf_cdata.sf_rx_sparemap = 0;
1386		}
1387		bus_dma_tag_destroy(sc->sf_cdata.sf_rx_tag);
1388		sc->sf_cdata.sf_rx_tag = NULL;
1389	}
1390
1391	if (sc->sf_cdata.sf_parent_tag) {
1392		bus_dma_tag_destroy(sc->sf_cdata.sf_parent_tag);
1393		sc->sf_cdata.sf_parent_tag = NULL;
1394	}
1395}
1396
1397static int
1398sf_init_rx_ring(struct sf_softc *sc)
1399{
1400	struct sf_ring_data	*rd;
1401	int			i;
1402
1403	sc->sf_cdata.sf_rxc_cons = 0;
1404
1405	rd = &sc->sf_rdata;
1406	bzero(rd->sf_rx_ring, SF_RX_DLIST_SIZE);
1407	bzero(rd->sf_rx_cring, SF_RX_CLIST_SIZE);
1408
1409	for (i = 0; i < SF_RX_DLIST_CNT; i++) {
1410		if (sf_newbuf(sc, i) != 0)
1411			return (ENOBUFS);
1412	}
1413
1414	bus_dmamap_sync(sc->sf_cdata.sf_rx_cring_tag,
1415	    sc->sf_cdata.sf_rx_cring_map,
1416	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1417	bus_dmamap_sync(sc->sf_cdata.sf_rx_ring_tag,
1418	    sc->sf_cdata.sf_rx_ring_map,
1419	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1420
1421	return (0);
1422}
1423
1424static void
1425sf_init_tx_ring(struct sf_softc *sc)
1426{
1427	struct sf_ring_data	*rd;
1428	int			i;
1429
1430	sc->sf_cdata.sf_tx_prod = 0;
1431	sc->sf_cdata.sf_tx_cnt = 0;
1432	sc->sf_cdata.sf_txc_cons = 0;
1433
1434	rd = &sc->sf_rdata;
1435	bzero(rd->sf_tx_ring, SF_TX_DLIST_SIZE);
1436	bzero(rd->sf_tx_cring, SF_TX_CLIST_SIZE);
1437	for (i = 0; i < SF_TX_DLIST_CNT; i++) {
1438		rd->sf_tx_ring[i].sf_tx_ctrl = htole32(SF_TX_DESC_ID);
1439		sc->sf_cdata.sf_txdesc[i].tx_m = NULL;
1440		sc->sf_cdata.sf_txdesc[i].ndesc = 0;
1441	}
1442	rd->sf_tx_ring[i].sf_tx_ctrl |= htole32(SF_TX_DESC_END);
1443
1444	bus_dmamap_sync(sc->sf_cdata.sf_tx_ring_tag,
1445	    sc->sf_cdata.sf_tx_ring_map,
1446	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1447	bus_dmamap_sync(sc->sf_cdata.sf_tx_cring_tag,
1448	    sc->sf_cdata.sf_tx_cring_map,
1449	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1450}
1451
1452/*
1453 * Initialize an RX descriptor and attach an MBUF cluster.
1454 */
1455static int
1456sf_newbuf(struct sf_softc *sc, int idx)
1457{
1458	struct sf_rx_rdesc	*desc;
1459	struct sf_rxdesc	*rxd;
1460	struct mbuf		*m;
1461	bus_dma_segment_t	segs[1];
1462	bus_dmamap_t		map;
1463	int			nsegs;
1464
1465	m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
1466	if (m == NULL)
1467		return (ENOBUFS);
1468	m->m_len = m->m_pkthdr.len = MCLBYTES;
1469	m_adj(m, sizeof(uint32_t));
1470
1471	if (bus_dmamap_load_mbuf_sg(sc->sf_cdata.sf_rx_tag,
1472	    sc->sf_cdata.sf_rx_sparemap, m, segs, &nsegs, 0) != 0) {
1473		m_freem(m);
1474		return (ENOBUFS);
1475	}
1476	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
1477
1478	rxd = &sc->sf_cdata.sf_rxdesc[idx];
1479	if (rxd->rx_m != NULL) {
1480		bus_dmamap_sync(sc->sf_cdata.sf_rx_tag, rxd->rx_dmamap,
1481		    BUS_DMASYNC_POSTREAD);
1482		bus_dmamap_unload(sc->sf_cdata.sf_rx_tag, rxd->rx_dmamap);
1483	}
1484	map = rxd->rx_dmamap;
1485	rxd->rx_dmamap = sc->sf_cdata.sf_rx_sparemap;
1486	sc->sf_cdata.sf_rx_sparemap = map;
1487	bus_dmamap_sync(sc->sf_cdata.sf_rx_tag, rxd->rx_dmamap,
1488	    BUS_DMASYNC_PREREAD);
1489	rxd->rx_m = m;
1490	desc = &sc->sf_rdata.sf_rx_ring[idx];
1491	desc->sf_addr = htole64(segs[0].ds_addr);
1492
1493	return (0);
1494}
1495
1496#ifndef __NO_STRICT_ALIGNMENT
1497static __inline void
1498sf_fixup_rx(struct mbuf *m)
1499{
1500        int			i;
1501        uint16_t		*src, *dst;
1502
1503	src = mtod(m, uint16_t *);
1504	dst = src - 1;
1505
1506	for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++)
1507		*dst++ = *src++;
1508
1509	m->m_data -= ETHER_ALIGN;
1510}
1511#endif
1512
1513/*
1514 * The starfire is programmed to use 'normal' mode for packet reception,
1515 * which means we use the consumer/producer model for both the buffer
1516 * descriptor queue and the completion descriptor queue. The only problem
1517 * with this is that it involves a lot of register accesses: we have to
1518 * read the RX completion consumer and producer indexes and the RX buffer
1519 * producer index, plus the RX completion consumer and RX buffer producer
1520 * indexes have to be updated. It would have been easier if Adaptec had
1521 * put each index in a separate register, especially given that the damn
1522 * NIC has a 512K register space.
1523 *
1524 * In spite of all the lovely features that Adaptec crammed into the 6915,
1525 * it is marred by one truly stupid design flaw, which is that receive
1526 * buffer addresses must be aligned on a longword boundary. This forces
1527 * the packet payload to be unaligned, which is suboptimal on the x86 and
1528 * completely unuseable on the Alpha. Our only recourse is to copy received
1529 * packets into properly aligned buffers before handing them off.
1530 */
1531static int
1532sf_rxeof(struct sf_softc *sc)
1533{
1534	struct mbuf		*m;
1535	struct ifnet		*ifp;
1536	struct sf_rxdesc	*rxd;
1537	struct sf_rx_rcdesc	*cur_cmp;
1538	int			cons, eidx, prog, rx_npkts;
1539	uint32_t		status, status2;
1540
1541	SF_LOCK_ASSERT(sc);
1542
1543	ifp = sc->sf_ifp;
1544	rx_npkts = 0;
1545
1546	bus_dmamap_sync(sc->sf_cdata.sf_rx_ring_tag,
1547	    sc->sf_cdata.sf_rx_ring_map,
1548	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1549	bus_dmamap_sync(sc->sf_cdata.sf_rx_cring_tag,
1550	    sc->sf_cdata.sf_rx_cring_map,
1551	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1552
1553	/*
1554	 * To reduce register access, directly read Receive completion
1555	 * queue entry.
1556	 */
1557	eidx = 0;
1558	prog = 0;
1559	for (cons = sc->sf_cdata.sf_rxc_cons; ; SF_INC(cons, SF_RX_CLIST_CNT)) {
1560		cur_cmp = &sc->sf_rdata.sf_rx_cring[cons];
1561		status = le32toh(cur_cmp->sf_rx_status1);
1562		if (status == 0)
1563			break;
1564#ifdef DEVICE_POLLING
1565		if ((ifp->if_capenable & IFCAP_POLLING) != 0) {
1566			if (sc->rxcycles <= 0)
1567				break;
1568			sc->rxcycles--;
1569		}
1570#endif
1571		prog++;
1572		eidx = (status & SF_RX_CMPDESC_EIDX) >> 16;
1573		rxd = &sc->sf_cdata.sf_rxdesc[eidx];
1574		m = rxd->rx_m;
1575
1576		/*
1577		 * Note, if_ipackets and if_ierrors counters
1578		 * are handled in sf_stats_update().
1579		 */
1580		if ((status & SF_RXSTAT1_OK) == 0) {
1581			cur_cmp->sf_rx_status1 = 0;
1582			continue;
1583		}
1584
1585		if (sf_newbuf(sc, eidx) != 0) {
1586			ifp->if_iqdrops++;
1587			cur_cmp->sf_rx_status1 = 0;
1588			continue;
1589		}
1590
1591		/* AIC-6915 supports TCP/UDP checksum offload. */
1592		if ((ifp->if_capenable & IFCAP_RXCSUM) != 0) {
1593			status2 = le32toh(cur_cmp->sf_rx_status2);
1594			/*
1595			 * Sometimes AIC-6915 generates an interrupt to
1596			 * warn RxGFP stall with bad checksum bit set
1597			 * in status word. I'm not sure what conditioan
1598			 * triggers it but recevied packet's checksum
1599			 * was correct even though AIC-6915 does not
1600			 * agree on this. This may be an indication of
1601			 * firmware bug. To fix the issue, do not rely
1602			 * on bad checksum bit in status word and let
1603			 * upper layer verify integrity of received
1604			 * frame.
1605			 * Another nice feature of AIC-6915 is hardware
1606			 * assistance of checksum calculation by
1607			 * providing partial checksum value for received
1608			 * frame. The partial checksum value can be used
1609			 * to accelerate checksum computation for
1610			 * fragmented TCP/UDP packets. Upper network
1611			 * stack already takes advantage of the partial
1612			 * checksum value in IP reassembly stage. But
1613			 * I'm not sure the correctness of the partial
1614			 * hardware checksum assistance as frequent
1615			 * RxGFP stalls are seen on non-fragmented
1616			 * frames. Due to the nature of the complexity
1617			 * of checksum computation code in firmware it's
1618			 * possible to see another bug in RxGFP so
1619			 * ignore checksum assistance for fragmented
1620			 * frames. This can be changed in future.
1621			 */
1622			if ((status2 & SF_RXSTAT2_FRAG) == 0) {
1623				if ((status2 & (SF_RXSTAT2_TCP |
1624				    SF_RXSTAT2_UDP)) != 0) {
1625					if ((status2 & SF_RXSTAT2_CSUM_OK)) {
1626						m->m_pkthdr.csum_flags =
1627						    CSUM_DATA_VALID |
1628						    CSUM_PSEUDO_HDR;
1629						m->m_pkthdr.csum_data = 0xffff;
1630					}
1631				}
1632			}
1633#ifdef SF_PARTIAL_CSUM_SUPPORT
1634			else if ((status2 & SF_RXSTAT2_FRAG) != 0) {
1635				if ((status2 & (SF_RXSTAT2_TCP |
1636				    SF_RXSTAT2_UDP)) != 0) {
1637					if ((status2 & SF_RXSTAT2_PCSUM_OK)) {
1638						m->m_pkthdr.csum_flags =
1639						    CSUM_DATA_VALID;
1640						m->m_pkthdr.csum_data =
1641						    (status &
1642						    SF_RX_CMPDESC_CSUM2);
1643					}
1644				}
1645			}
1646#endif
1647		}
1648
1649		m->m_pkthdr.len = m->m_len = status & SF_RX_CMPDESC_LEN;
1650#ifndef	__NO_STRICT_ALIGNMENT
1651		sf_fixup_rx(m);
1652#endif
1653		m->m_pkthdr.rcvif = ifp;
1654
1655		SF_UNLOCK(sc);
1656		(*ifp->if_input)(ifp, m);
1657		SF_LOCK(sc);
1658		rx_npkts++;
1659
1660		/* Clear completion status. */
1661		cur_cmp->sf_rx_status1 = 0;
1662	}
1663
1664	if (prog > 0) {
1665		sc->sf_cdata.sf_rxc_cons = cons;
1666		bus_dmamap_sync(sc->sf_cdata.sf_rx_ring_tag,
1667		    sc->sf_cdata.sf_rx_ring_map,
1668		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1669		bus_dmamap_sync(sc->sf_cdata.sf_rx_cring_tag,
1670		    sc->sf_cdata.sf_rx_cring_map,
1671		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1672
1673		/* Update Rx completion Q1 consumer index. */
1674		csr_write_4(sc, SF_CQ_CONSIDX,
1675		    (csr_read_4(sc, SF_CQ_CONSIDX) & ~SF_CQ_CONSIDX_RXQ1) |
1676		    (cons & SF_CQ_CONSIDX_RXQ1));
1677		/* Update Rx descriptor Q1 ptr. */
1678		csr_write_4(sc, SF_RXDQ_PTR_Q1,
1679		    (csr_read_4(sc, SF_RXDQ_PTR_Q1) & ~SF_RXDQ_PRODIDX) |
1680		    (eidx & SF_RXDQ_PRODIDX));
1681	}
1682	return (rx_npkts);
1683}
1684
1685/*
1686 * Read the transmit status from the completion queue and release
1687 * mbufs. Note that the buffer descriptor index in the completion
1688 * descriptor is an offset from the start of the transmit buffer
1689 * descriptor list in bytes. This is important because the manual
1690 * gives the impression that it should match the producer/consumer
1691 * index, which is the offset in 8 byte blocks.
1692 */
1693static void
1694sf_txeof(struct sf_softc *sc)
1695{
1696	struct sf_txdesc	*txd;
1697	struct sf_tx_rcdesc	*cur_cmp;
1698	struct ifnet		*ifp;
1699	uint32_t		status;
1700	int			cons, idx, prod;
1701
1702	SF_LOCK_ASSERT(sc);
1703
1704	ifp = sc->sf_ifp;
1705
1706	bus_dmamap_sync(sc->sf_cdata.sf_tx_cring_tag,
1707	    sc->sf_cdata.sf_tx_cring_map,
1708	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1709
1710	cons = sc->sf_cdata.sf_txc_cons;
1711	prod = (csr_read_4(sc, SF_CQ_PRODIDX) & SF_TXDQ_PRODIDX_HIPRIO) >> 16;
1712	if (prod == cons)
1713		return;
1714
1715	for (; cons != prod; SF_INC(cons, SF_TX_CLIST_CNT)) {
1716		cur_cmp = &sc->sf_rdata.sf_tx_cring[cons];
1717		status = le32toh(cur_cmp->sf_tx_status1);
1718		if (status == 0)
1719			break;
1720		switch (status & SF_TX_CMPDESC_TYPE) {
1721		case SF_TXCMPTYPE_TX:
1722			/* Tx complete entry. */
1723			break;
1724		case SF_TXCMPTYPE_DMA:
1725			/* DMA complete entry. */
1726			idx = status & SF_TX_CMPDESC_IDX;
1727			idx = idx / sizeof(struct sf_tx_rdesc);
1728			/*
1729			 * We don't need to check Tx status here.
1730			 * SF_ISR_TX_LOFIFO intr would handle this.
1731			 * Note, if_opackets, if_collisions and if_oerrors
1732			 * counters are handled in sf_stats_update().
1733			 */
1734			txd = &sc->sf_cdata.sf_txdesc[idx];
1735			if (txd->tx_m != NULL) {
1736				bus_dmamap_sync(sc->sf_cdata.sf_tx_tag,
1737				    txd->tx_dmamap,
1738				    BUS_DMASYNC_POSTWRITE);
1739				bus_dmamap_unload(sc->sf_cdata.sf_tx_tag,
1740				    txd->tx_dmamap);
1741				m_freem(txd->tx_m);
1742				txd->tx_m = NULL;
1743			}
1744			sc->sf_cdata.sf_tx_cnt -= txd->ndesc;
1745			KASSERT(sc->sf_cdata.sf_tx_cnt >= 0,
1746			    ("%s: Active Tx desc counter was garbled\n",
1747			    __func__));
1748			txd->ndesc = 0;
1749			ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1750			break;
1751		default:
1752			/* It should not happen. */
1753			device_printf(sc->sf_dev,
1754			    "unknown Tx completion type : 0x%08x : %d : %d\n",
1755			    status, cons, prod);
1756			break;
1757		}
1758		cur_cmp->sf_tx_status1 = 0;
1759	}
1760
1761	sc->sf_cdata.sf_txc_cons = cons;
1762	bus_dmamap_sync(sc->sf_cdata.sf_tx_cring_tag,
1763	    sc->sf_cdata.sf_tx_cring_map,
1764	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1765
1766	if (sc->sf_cdata.sf_tx_cnt == 0)
1767		sc->sf_watchdog_timer = 0;
1768
1769	/* Update Tx completion consumer index. */
1770	csr_write_4(sc, SF_CQ_CONSIDX,
1771	    (csr_read_4(sc, SF_CQ_CONSIDX) & 0xffff) |
1772	    ((cons << 16) & 0xffff0000));
1773}
1774
1775static void
1776sf_txthresh_adjust(struct sf_softc *sc)
1777{
1778	uint32_t		txfctl;
1779
1780	device_printf(sc->sf_dev, "Tx underrun -- ");
1781	if (sc->sf_txthresh < SF_MAX_TX_THRESHOLD) {
1782		txfctl = csr_read_4(sc, SF_TX_FRAMCTL);
1783		/* Increase Tx threshold 256 bytes. */
1784		sc->sf_txthresh += 16;
1785		if (sc->sf_txthresh > SF_MAX_TX_THRESHOLD)
1786			sc->sf_txthresh = SF_MAX_TX_THRESHOLD;
1787		txfctl &= ~SF_TXFRMCTL_TXTHRESH;
1788		txfctl |= sc->sf_txthresh;
1789		printf("increasing Tx threshold to %d bytes\n",
1790		    sc->sf_txthresh * SF_TX_THRESHOLD_UNIT);
1791		csr_write_4(sc, SF_TX_FRAMCTL, txfctl);
1792	} else
1793		printf("\n");
1794}
1795
1796#ifdef DEVICE_POLLING
1797static int
1798sf_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1799{
1800	struct sf_softc		*sc;
1801	uint32_t		status;
1802	int			rx_npkts;
1803
1804	sc = ifp->if_softc;
1805	rx_npkts = 0;
1806	SF_LOCK(sc);
1807
1808	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
1809		SF_UNLOCK(sc);
1810		return (rx_npkts);
1811	}
1812
1813	sc->rxcycles = count;
1814	rx_npkts = sf_rxeof(sc);
1815	sf_txeof(sc);
1816	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1817		sf_start_locked(ifp);
1818
1819	if (cmd == POLL_AND_CHECK_STATUS) {
1820		/* Reading the ISR register clears all interrrupts. */
1821		status = csr_read_4(sc, SF_ISR);
1822
1823		if ((status & SF_ISR_ABNORMALINTR) != 0) {
1824			if ((status & SF_ISR_STATSOFLOW) != 0)
1825				sf_stats_update(sc);
1826			else if ((status & SF_ISR_TX_LOFIFO) != 0)
1827				sf_txthresh_adjust(sc);
1828			else if ((status & SF_ISR_DMAERR) != 0) {
1829				device_printf(sc->sf_dev,
1830				    "DMA error, resetting\n");
1831				ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1832				sf_init_locked(sc);
1833				SF_UNLOCK(sc);
1834				return (rx_npkts);
1835			} else if ((status & SF_ISR_NO_TX_CSUM) != 0) {
1836				sc->sf_statistics.sf_tx_gfp_stall++;
1837#ifdef	SF_GFP_DEBUG
1838				device_printf(sc->sf_dev,
1839				    "TxGFP is not responding!\n");
1840#endif
1841			} else if ((status & SF_ISR_RXGFP_NORESP) != 0) {
1842				sc->sf_statistics.sf_rx_gfp_stall++;
1843#ifdef	SF_GFP_DEBUG
1844				device_printf(sc->sf_dev,
1845				    "RxGFP is not responding!\n");
1846#endif
1847			}
1848		}
1849	}
1850
1851	SF_UNLOCK(sc);
1852	return (rx_npkts);
1853}
1854#endif /* DEVICE_POLLING */
1855
1856static void
1857sf_intr(void *arg)
1858{
1859	struct sf_softc		*sc;
1860	struct ifnet		*ifp;
1861	uint32_t		status;
1862
1863	sc = (struct sf_softc *)arg;
1864	SF_LOCK(sc);
1865
1866	if (sc->sf_suspended != 0)
1867		goto done_locked;
1868
1869	/* Reading the ISR register clears all interrrupts. */
1870	status = csr_read_4(sc, SF_ISR);
1871	if (status == 0 || status == 0xffffffff ||
1872	    (status & SF_ISR_PCIINT_ASSERTED) == 0)
1873		goto done_locked;
1874
1875	ifp = sc->sf_ifp;
1876#ifdef DEVICE_POLLING
1877	if ((ifp->if_capenable & IFCAP_POLLING) != 0)
1878		goto done_locked;
1879#endif
1880	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
1881		goto done_locked;
1882
1883	/* Disable interrupts. */
1884	csr_write_4(sc, SF_IMR, 0x00000000);
1885
1886	for (; (status & SF_INTRS) != 0;) {
1887		if ((status & SF_ISR_RXDQ1_DMADONE) != 0)
1888			sf_rxeof(sc);
1889
1890		if ((status & (SF_ISR_TX_TXDONE | SF_ISR_TX_DMADONE |
1891		    SF_ISR_TX_QUEUEDONE)) != 0)
1892			sf_txeof(sc);
1893
1894		if ((status & SF_ISR_ABNORMALINTR) != 0) {
1895			if ((status & SF_ISR_STATSOFLOW) != 0)
1896				sf_stats_update(sc);
1897			else if ((status & SF_ISR_TX_LOFIFO) != 0)
1898				sf_txthresh_adjust(sc);
1899			else if ((status & SF_ISR_DMAERR) != 0) {
1900				device_printf(sc->sf_dev,
1901				    "DMA error, resetting\n");
1902				ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1903				sf_init_locked(sc);
1904				SF_UNLOCK(sc);
1905				return;
1906			} else if ((status & SF_ISR_NO_TX_CSUM) != 0) {
1907				sc->sf_statistics.sf_tx_gfp_stall++;
1908#ifdef	SF_GFP_DEBUG
1909				device_printf(sc->sf_dev,
1910				    "TxGFP is not responding!\n");
1911#endif
1912			}
1913			else if ((status & SF_ISR_RXGFP_NORESP) != 0) {
1914				sc->sf_statistics.sf_rx_gfp_stall++;
1915#ifdef	SF_GFP_DEBUG
1916				device_printf(sc->sf_dev,
1917				    "RxGFP is not responding!\n");
1918#endif
1919			}
1920		}
1921		/* Reading the ISR register clears all interrrupts. */
1922		status = csr_read_4(sc, SF_ISR);
1923	}
1924
1925	/* Re-enable interrupts. */
1926	csr_write_4(sc, SF_IMR, SF_INTRS);
1927
1928	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1929		sf_start_locked(ifp);
1930done_locked:
1931	SF_UNLOCK(sc);
1932}
1933
1934static void
1935sf_download_fw(struct sf_softc *sc)
1936{
1937	uint32_t gfpinst;
1938	int i, ndx;
1939	uint8_t *p;
1940
1941	/*
1942	 * A FP instruction is composed of 48bits so we have to
1943	 * write it with two parts.
1944	 */
1945	p = txfwdata;
1946	ndx = 0;
1947	for (i = 0; i < sizeof(txfwdata) / SF_GFP_INST_BYTES; i++) {
1948		gfpinst = p[2] << 24 | p[3] << 16 | p[4] << 8 | p[5];
1949		csr_write_4(sc, SF_TXGFP_MEM_BASE + ndx * 4, gfpinst);
1950		gfpinst = p[0] << 8 | p[1];
1951		csr_write_4(sc, SF_TXGFP_MEM_BASE + (ndx + 1) * 4, gfpinst);
1952		p += SF_GFP_INST_BYTES;
1953		ndx += 2;
1954	}
1955	if (bootverbose)
1956		device_printf(sc->sf_dev, "%d Tx instructions downloaded\n", i);
1957
1958	p = rxfwdata;
1959	ndx = 0;
1960	for (i = 0; i < sizeof(rxfwdata) / SF_GFP_INST_BYTES; i++) {
1961		gfpinst = p[2] << 24 | p[3] << 16 | p[4] << 8 | p[5];
1962		csr_write_4(sc, SF_RXGFP_MEM_BASE + (ndx * 4), gfpinst);
1963		gfpinst = p[0] << 8 | p[1];
1964		csr_write_4(sc, SF_RXGFP_MEM_BASE + (ndx + 1) * 4, gfpinst);
1965		p += SF_GFP_INST_BYTES;
1966		ndx += 2;
1967	}
1968	if (bootverbose)
1969		device_printf(sc->sf_dev, "%d Rx instructions downloaded\n", i);
1970}
1971
1972static void
1973sf_init(void *xsc)
1974{
1975	struct sf_softc		*sc;
1976
1977	sc = (struct sf_softc *)xsc;
1978	SF_LOCK(sc);
1979	sf_init_locked(sc);
1980	SF_UNLOCK(sc);
1981}
1982
1983static void
1984sf_init_locked(struct sf_softc *sc)
1985{
1986	struct ifnet		*ifp;
1987	struct mii_data		*mii;
1988	uint8_t			eaddr[ETHER_ADDR_LEN];
1989	bus_addr_t		addr;
1990	int			i;
1991
1992	SF_LOCK_ASSERT(sc);
1993	ifp = sc->sf_ifp;
1994	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
1995		return;
1996	mii = device_get_softc(sc->sf_miibus);
1997
1998	sf_stop(sc);
1999	/* Reset the hardware to a known state. */
2000	sf_reset(sc);
2001
2002	/* Init all the receive filter registers */
2003	for (i = SF_RXFILT_PERFECT_BASE;
2004	    i < (SF_RXFILT_HASH_MAX + 1); i += sizeof(uint32_t))
2005		csr_write_4(sc, i, 0);
2006
2007	/* Empty stats counter registers. */
2008	for (i = SF_STATS_BASE; i < (SF_STATS_END + 1); i += sizeof(uint32_t))
2009		csr_write_4(sc, i, 0);
2010
2011	/* Init our MAC address. */
2012	bcopy(IF_LLADDR(sc->sf_ifp), eaddr, sizeof(eaddr));
2013	csr_write_4(sc, SF_PAR0,
2014	    eaddr[2] << 24 | eaddr[3] << 16 | eaddr[4] << 8 | eaddr[5]);
2015	csr_write_4(sc, SF_PAR1, eaddr[0] << 8 | eaddr[1]);
2016	sf_setperf(sc, 0, eaddr);
2017
2018	if (sf_init_rx_ring(sc) == ENOBUFS) {
2019		device_printf(sc->sf_dev,
2020		    "initialization failed: no memory for rx buffers\n");
2021		sf_stop(sc);
2022		return;
2023	}
2024
2025	sf_init_tx_ring(sc);
2026
2027	/*
2028	 * 16 perfect address filtering.
2029	 * Hash only multicast destination address, Accept matching
2030	 * frames regardless of VLAN ID.
2031	 */
2032	csr_write_4(sc, SF_RXFILT, SF_PERFMODE_NORMAL | SF_HASHMODE_ANYVLAN);
2033
2034	/*
2035	 * Set Rx filter.
2036	 */
2037	sf_rxfilter(sc);
2038
2039	/* Init the completion queue indexes. */
2040	csr_write_4(sc, SF_CQ_CONSIDX, 0);
2041	csr_write_4(sc, SF_CQ_PRODIDX, 0);
2042
2043	/* Init the RX completion queue. */
2044	addr = sc->sf_rdata.sf_rx_cring_paddr;
2045	csr_write_4(sc, SF_CQ_ADDR_HI, SF_ADDR_HI(addr));
2046	csr_write_4(sc, SF_RXCQ_CTL_1, SF_ADDR_LO(addr) & SF_RXCQ_ADDR);
2047	if (SF_ADDR_HI(addr) != 0)
2048		SF_SETBIT(sc, SF_RXCQ_CTL_1, SF_RXCQ_USE_64BIT);
2049	/* Set RX completion queue type 2. */
2050	SF_SETBIT(sc, SF_RXCQ_CTL_1, SF_RXCQTYPE_2);
2051	csr_write_4(sc, SF_RXCQ_CTL_2, 0);
2052
2053	/*
2054	 * Init RX DMA control.
2055	 * default RxHighPriority Threshold,
2056	 * default RxBurstSize, 128bytes.
2057	 */
2058	SF_SETBIT(sc, SF_RXDMA_CTL,
2059	    SF_RXDMA_REPORTBADPKTS |
2060	    (SF_RXDMA_HIGHPRIO_THRESH << 8) |
2061	    SF_RXDMA_BURST);
2062
2063	/* Init the RX buffer descriptor queue. */
2064	addr = sc->sf_rdata.sf_rx_ring_paddr;
2065	csr_write_4(sc, SF_RXDQ_ADDR_HI, SF_ADDR_HI(addr));
2066	csr_write_4(sc, SF_RXDQ_ADDR_Q1, SF_ADDR_LO(addr));
2067
2068	/* Set RX queue buffer length. */
2069	csr_write_4(sc, SF_RXDQ_CTL_1,
2070	    ((MCLBYTES  - sizeof(uint32_t)) << 16) |
2071	    SF_RXDQCTL_64BITBADDR | SF_RXDQCTL_VARIABLE);
2072
2073	if (SF_ADDR_HI(addr) != 0)
2074		SF_SETBIT(sc, SF_RXDQ_CTL_1, SF_RXDQCTL_64BITDADDR);
2075	csr_write_4(sc, SF_RXDQ_PTR_Q1, SF_RX_DLIST_CNT - 1);
2076	csr_write_4(sc, SF_RXDQ_CTL_2, 0);
2077
2078	/* Init the TX completion queue */
2079	addr = sc->sf_rdata.sf_tx_cring_paddr;
2080	csr_write_4(sc, SF_TXCQ_CTL, SF_ADDR_LO(addr) & SF_TXCQ_ADDR);
2081	if (SF_ADDR_HI(addr) != 0)
2082		SF_SETBIT(sc, SF_TXCQ_CTL, SF_TXCQ_USE_64BIT);
2083
2084	/* Init the TX buffer descriptor queue. */
2085	addr = sc->sf_rdata.sf_tx_ring_paddr;
2086	csr_write_4(sc, SF_TXDQ_ADDR_HI, SF_ADDR_HI(addr));
2087	csr_write_4(sc, SF_TXDQ_ADDR_HIPRIO, 0);
2088	csr_write_4(sc, SF_TXDQ_ADDR_LOPRIO, SF_ADDR_LO(addr));
2089	csr_write_4(sc, SF_TX_FRAMCTL,
2090	    SF_TXFRMCTL_CPLAFTERTX | sc->sf_txthresh);
2091	csr_write_4(sc, SF_TXDQ_CTL,
2092	    SF_TXDMA_HIPRIO_THRESH << 24 |
2093	    SF_TXSKIPLEN_0BYTES << 16 |
2094	    SF_TXDDMA_BURST << 8 |
2095	    SF_TXBUFDESC_TYPE2 | SF_TXMINSPACE_UNLIMIT);
2096	if (SF_ADDR_HI(addr) != 0)
2097		SF_SETBIT(sc, SF_TXDQ_CTL, SF_TXDQCTL_64BITADDR);
2098
2099	/* Set VLAN Type register. */
2100	csr_write_4(sc, SF_VLANTYPE, ETHERTYPE_VLAN);
2101
2102	/* Set TxPause Timer. */
2103	csr_write_4(sc, SF_TXPAUSETIMER, 0xffff);
2104
2105	/* Enable autopadding of short TX frames. */
2106	SF_SETBIT(sc, SF_MACCFG_1, SF_MACCFG1_AUTOPAD);
2107	SF_SETBIT(sc, SF_MACCFG_2, SF_MACCFG2_AUTOVLANPAD);
2108	/* Make sure to reset MAC to take changes effect. */
2109	SF_SETBIT(sc, SF_MACCFG_1, SF_MACCFG1_SOFTRESET);
2110	DELAY(1000);
2111	SF_CLRBIT(sc, SF_MACCFG_1, SF_MACCFG1_SOFTRESET);
2112
2113	/* Enable PCI bus master. */
2114	SF_SETBIT(sc, SF_PCI_DEVCFG, SF_PCIDEVCFG_PCIMEN);
2115
2116	/* Load StarFire firmware. */
2117	sf_download_fw(sc);
2118
2119	/* Intialize interrupt moderation. */
2120	csr_write_4(sc, SF_TIMER_CTL, SF_TIMER_IMASK_MODE | SF_TIMER_TIMES_TEN |
2121	    (sc->sf_int_mod & SF_TIMER_IMASK_INTERVAL));
2122
2123#ifdef DEVICE_POLLING
2124	/* Disable interrupts if we are polling. */
2125	if ((ifp->if_capenable & IFCAP_POLLING) != 0)
2126		csr_write_4(sc, SF_IMR, 0x00000000);
2127	else
2128#endif
2129	/* Enable interrupts. */
2130	csr_write_4(sc, SF_IMR, SF_INTRS);
2131	SF_SETBIT(sc, SF_PCI_DEVCFG, SF_PCIDEVCFG_INTR_ENB);
2132
2133	/* Enable the RX and TX engines. */
2134	csr_write_4(sc, SF_GEN_ETH_CTL,
2135	    SF_ETHCTL_RX_ENB | SF_ETHCTL_RXDMA_ENB |
2136	    SF_ETHCTL_TX_ENB | SF_ETHCTL_TXDMA_ENB);
2137
2138	if ((ifp->if_capenable & IFCAP_TXCSUM) != 0)
2139		SF_SETBIT(sc, SF_GEN_ETH_CTL, SF_ETHCTL_TXGFP_ENB);
2140	else
2141		SF_CLRBIT(sc, SF_GEN_ETH_CTL, SF_ETHCTL_TXGFP_ENB);
2142	if ((ifp->if_capenable & IFCAP_RXCSUM) != 0)
2143		SF_SETBIT(sc, SF_GEN_ETH_CTL, SF_ETHCTL_RXGFP_ENB);
2144	else
2145		SF_CLRBIT(sc, SF_GEN_ETH_CTL, SF_ETHCTL_RXGFP_ENB);
2146
2147	ifp->if_drv_flags |= IFF_DRV_RUNNING;
2148	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2149
2150	sc->sf_link = 0;
2151	sf_ifmedia_upd_locked(ifp);
2152
2153	callout_reset(&sc->sf_co, hz, sf_tick, sc);
2154}
2155
2156static int
2157sf_encap(struct sf_softc *sc, struct mbuf **m_head)
2158{
2159	struct sf_txdesc	*txd;
2160	struct sf_tx_rdesc	*desc;
2161	struct mbuf		*m;
2162	bus_dmamap_t		map;
2163	bus_dma_segment_t	txsegs[SF_MAXTXSEGS];
2164	int			error, i, nsegs, prod, si;
2165	int			avail, nskip;
2166
2167	SF_LOCK_ASSERT(sc);
2168
2169	m = *m_head;
2170	prod = sc->sf_cdata.sf_tx_prod;
2171	txd = &sc->sf_cdata.sf_txdesc[prod];
2172	map = txd->tx_dmamap;
2173	error = bus_dmamap_load_mbuf_sg(sc->sf_cdata.sf_tx_tag, map,
2174	    *m_head, txsegs, &nsegs, BUS_DMA_NOWAIT);
2175	if (error == EFBIG) {
2176		m = m_collapse(*m_head, M_DONTWAIT, SF_MAXTXSEGS);
2177		if (m == NULL) {
2178			m_freem(*m_head);
2179			*m_head = NULL;
2180			return (ENOBUFS);
2181		}
2182		*m_head = m;
2183		error = bus_dmamap_load_mbuf_sg(sc->sf_cdata.sf_tx_tag,
2184		    map, *m_head, txsegs, &nsegs, BUS_DMA_NOWAIT);
2185		if (error != 0) {
2186			m_freem(*m_head);
2187			*m_head = NULL;
2188			return (error);
2189		}
2190	} else if (error != 0)
2191		return (error);
2192	if (nsegs == 0) {
2193		m_freem(*m_head);
2194		*m_head = NULL;
2195		return (EIO);
2196	}
2197
2198	/* Check number of available descriptors. */
2199	avail = (SF_TX_DLIST_CNT - 1) - sc->sf_cdata.sf_tx_cnt;
2200	if (avail < nsegs) {
2201		bus_dmamap_unload(sc->sf_cdata.sf_tx_tag, map);
2202		return (ENOBUFS);
2203	}
2204	nskip = 0;
2205	if (prod + nsegs >= SF_TX_DLIST_CNT) {
2206		nskip = SF_TX_DLIST_CNT - prod - 1;
2207		if (avail < nsegs + nskip) {
2208			bus_dmamap_unload(sc->sf_cdata.sf_tx_tag, map);
2209			return (ENOBUFS);
2210		}
2211	}
2212
2213	bus_dmamap_sync(sc->sf_cdata.sf_tx_tag, map, BUS_DMASYNC_PREWRITE);
2214
2215	si = prod;
2216	for (i = 0; i < nsegs; i++) {
2217		desc = &sc->sf_rdata.sf_tx_ring[prod];
2218		desc->sf_tx_ctrl = htole32(SF_TX_DESC_ID |
2219		    (txsegs[i].ds_len & SF_TX_DESC_FRAGLEN));
2220		desc->sf_tx_reserved = 0;
2221		desc->sf_addr = htole64(txsegs[i].ds_addr);
2222		if (i == 0 && prod + nsegs >= SF_TX_DLIST_CNT) {
2223			/* Queue wraps! */
2224			desc->sf_tx_ctrl |= htole32(SF_TX_DESC_END);
2225			prod = 0;
2226		} else
2227			SF_INC(prod, SF_TX_DLIST_CNT);
2228	}
2229	/* Update producer index. */
2230	sc->sf_cdata.sf_tx_prod = prod;
2231	sc->sf_cdata.sf_tx_cnt += nsegs + nskip;
2232
2233	desc = &sc->sf_rdata.sf_tx_ring[si];
2234	/* Check TDP/UDP checksum offload request. */
2235	if ((m->m_pkthdr.csum_flags & SF_CSUM_FEATURES) != 0)
2236		desc->sf_tx_ctrl |= htole32(SF_TX_DESC_CALTCP);
2237	desc->sf_tx_ctrl |=
2238	    htole32(SF_TX_DESC_CRCEN | SF_TX_DESC_INTR | (nsegs << 16));
2239
2240	txd->tx_dmamap = map;
2241	txd->tx_m = m;
2242	txd->ndesc = nsegs + nskip;
2243
2244	return (0);
2245}
2246
2247static void
2248sf_start(struct ifnet *ifp)
2249{
2250	struct sf_softc		*sc;
2251
2252	sc = ifp->if_softc;
2253	SF_LOCK(sc);
2254	sf_start_locked(ifp);
2255	SF_UNLOCK(sc);
2256}
2257
2258static void
2259sf_start_locked(struct ifnet *ifp)
2260{
2261	struct sf_softc		*sc;
2262	struct mbuf		*m_head;
2263	int			enq;
2264
2265	sc = ifp->if_softc;
2266	SF_LOCK_ASSERT(sc);
2267
2268	if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
2269	    IFF_DRV_RUNNING || sc->sf_link == 0)
2270		return;
2271
2272	/*
2273	 * Since we don't know when descriptor wrap occurrs in advance
2274	 * limit available number of active Tx descriptor counter to be
2275	 * higher than maximum number of DMA segments allowed in driver.
2276	 */
2277	for (enq = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd) &&
2278	    sc->sf_cdata.sf_tx_cnt < SF_TX_DLIST_CNT - SF_MAXTXSEGS; ) {
2279		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
2280		if (m_head == NULL)
2281			break;
2282		/*
2283		 * Pack the data into the transmit ring. If we
2284		 * don't have room, set the OACTIVE flag and wait
2285		 * for the NIC to drain the ring.
2286		 */
2287		if (sf_encap(sc, &m_head)) {
2288			if (m_head == NULL)
2289				break;
2290			IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
2291			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2292			break;
2293		}
2294
2295		enq++;
2296		/*
2297		 * If there's a BPF listener, bounce a copy of this frame
2298		 * to him.
2299		 */
2300		ETHER_BPF_MTAP(ifp, m_head);
2301	}
2302
2303	if (enq > 0) {
2304		bus_dmamap_sync(sc->sf_cdata.sf_tx_ring_tag,
2305		    sc->sf_cdata.sf_tx_ring_map,
2306		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2307		/* Kick transmit. */
2308		csr_write_4(sc, SF_TXDQ_PRODIDX,
2309		    sc->sf_cdata.sf_tx_prod * (sizeof(struct sf_tx_rdesc) / 8));
2310
2311		/* Set a timeout in case the chip goes out to lunch. */
2312		sc->sf_watchdog_timer = 5;
2313	}
2314}
2315
2316static void
2317sf_stop(struct sf_softc *sc)
2318{
2319	struct sf_txdesc	*txd;
2320	struct sf_rxdesc	*rxd;
2321	struct ifnet		*ifp;
2322	int			i;
2323
2324	SF_LOCK_ASSERT(sc);
2325
2326	ifp = sc->sf_ifp;
2327
2328	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
2329	sc->sf_link = 0;
2330	callout_stop(&sc->sf_co);
2331	sc->sf_watchdog_timer = 0;
2332
2333	/* Reading the ISR register clears all interrrupts. */
2334	csr_read_4(sc, SF_ISR);
2335	/* Disable further interrupts. */
2336	csr_write_4(sc, SF_IMR, 0);
2337
2338	/* Disable Tx/Rx egine. */
2339	csr_write_4(sc, SF_GEN_ETH_CTL, 0);
2340
2341	/* Give hardware chance to drain active DMA cycles. */
2342	DELAY(1000);
2343
2344	csr_write_4(sc, SF_CQ_CONSIDX, 0);
2345	csr_write_4(sc, SF_CQ_PRODIDX, 0);
2346	csr_write_4(sc, SF_RXDQ_ADDR_Q1, 0);
2347	csr_write_4(sc, SF_RXDQ_CTL_1, 0);
2348	csr_write_4(sc, SF_RXDQ_PTR_Q1, 0);
2349	csr_write_4(sc, SF_TXCQ_CTL, 0);
2350	csr_write_4(sc, SF_TXDQ_ADDR_HIPRIO, 0);
2351	csr_write_4(sc, SF_TXDQ_CTL, 0);
2352
2353	/*
2354	 * Free RX and TX mbufs still in the queues.
2355	 */
2356	for (i = 0; i < SF_RX_DLIST_CNT; i++) {
2357		rxd = &sc->sf_cdata.sf_rxdesc[i];
2358		if (rxd->rx_m != NULL) {
2359			bus_dmamap_sync(sc->sf_cdata.sf_rx_tag,
2360			    rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
2361			bus_dmamap_unload(sc->sf_cdata.sf_rx_tag,
2362			    rxd->rx_dmamap);
2363			m_freem(rxd->rx_m);
2364			rxd->rx_m = NULL;
2365		}
2366        }
2367	for (i = 0; i < SF_TX_DLIST_CNT; i++) {
2368		txd = &sc->sf_cdata.sf_txdesc[i];
2369		if (txd->tx_m != NULL) {
2370			bus_dmamap_sync(sc->sf_cdata.sf_tx_tag,
2371			    txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
2372			bus_dmamap_unload(sc->sf_cdata.sf_tx_tag,
2373			    txd->tx_dmamap);
2374			m_freem(txd->tx_m);
2375			txd->tx_m = NULL;
2376			txd->ndesc = 0;
2377		}
2378        }
2379}
2380
2381static void
2382sf_tick(void *xsc)
2383{
2384	struct sf_softc		*sc;
2385	struct mii_data		*mii;
2386
2387	sc = xsc;
2388	SF_LOCK_ASSERT(sc);
2389	mii = device_get_softc(sc->sf_miibus);
2390	mii_tick(mii);
2391	sf_stats_update(sc);
2392	sf_watchdog(sc);
2393	callout_reset(&sc->sf_co, hz, sf_tick, sc);
2394}
2395
2396/*
2397 * Note: it is important that this function not be interrupted. We
2398 * use a two-stage register access scheme: if we are interrupted in
2399 * between setting the indirect address register and reading from the
2400 * indirect data register, the contents of the address register could
2401 * be changed out from under us.
2402 */
2403static void
2404sf_stats_update(struct sf_softc *sc)
2405{
2406	struct ifnet		*ifp;
2407	struct sf_stats		now, *stats, *nstats;
2408	int			i;
2409
2410	SF_LOCK_ASSERT(sc);
2411
2412	ifp = sc->sf_ifp;
2413	stats = &now;
2414
2415	stats->sf_tx_frames =
2416	    csr_read_4(sc, SF_STATS_BASE + SF_STATS_TX_FRAMES);
2417	stats->sf_tx_single_colls =
2418	    csr_read_4(sc, SF_STATS_BASE + SF_STATS_TX_SINGLE_COL);
2419	stats->sf_tx_multi_colls =
2420	    csr_read_4(sc, SF_STATS_BASE + SF_STATS_TX_MULTI_COL);
2421	stats->sf_tx_crcerrs =
2422	    csr_read_4(sc, SF_STATS_BASE + SF_STATS_TX_CRC_ERRS);
2423	stats->sf_tx_bytes =
2424	    csr_read_4(sc, SF_STATS_BASE + SF_STATS_TX_BYTES);
2425	stats->sf_tx_deferred =
2426	    csr_read_4(sc, SF_STATS_BASE + SF_STATS_TX_DEFERRED);
2427	stats->sf_tx_late_colls =
2428	    csr_read_4(sc, SF_STATS_BASE + SF_STATS_TX_LATE_COL);
2429	stats->sf_tx_pause_frames =
2430	    csr_read_4(sc, SF_STATS_BASE + SF_STATS_TX_PAUSE);
2431	stats->sf_tx_control_frames =
2432	    csr_read_4(sc, SF_STATS_BASE + SF_STATS_TX_CTL_FRAME);
2433	stats->sf_tx_excess_colls =
2434	    csr_read_4(sc, SF_STATS_BASE + SF_STATS_TX_EXCESS_COL);
2435	stats->sf_tx_excess_defer =
2436	    csr_read_4(sc, SF_STATS_BASE + SF_STATS_TX_EXCESS_DEF);
2437	stats->sf_tx_mcast_frames =
2438	    csr_read_4(sc, SF_STATS_BASE + SF_STATS_TX_MULTI);
2439	stats->sf_tx_bcast_frames =
2440	    csr_read_4(sc, SF_STATS_BASE + SF_STATS_TX_BCAST);
2441	stats->sf_tx_frames_lost =
2442	    csr_read_4(sc, SF_STATS_BASE + SF_STATS_TX_FRAME_LOST);
2443	stats->sf_rx_frames =
2444	    csr_read_4(sc, SF_STATS_BASE + SF_STATS_RX_FRAMES);
2445	stats->sf_rx_crcerrs =
2446	    csr_read_4(sc, SF_STATS_BASE + SF_STATS_RX_CRC_ERRS);
2447	stats->sf_rx_alignerrs =
2448	    csr_read_4(sc, SF_STATS_BASE + SF_STATS_RX_ALIGN_ERRS);
2449	stats->sf_rx_bytes =
2450	    csr_read_4(sc, SF_STATS_BASE + SF_STATS_RX_BYTES);
2451	stats->sf_rx_pause_frames =
2452	    csr_read_4(sc, SF_STATS_BASE + SF_STATS_RX_PAUSE);
2453	stats->sf_rx_control_frames =
2454	    csr_read_4(sc, SF_STATS_BASE + SF_STATS_RX_CTL_FRAME);
2455	stats->sf_rx_unsup_control_frames =
2456	    csr_read_4(sc, SF_STATS_BASE + SF_STATS_RX_UNSUP_FRAME);
2457	stats->sf_rx_giants =
2458	    csr_read_4(sc, SF_STATS_BASE + SF_STATS_RX_GIANTS);
2459	stats->sf_rx_runts =
2460	    csr_read_4(sc, SF_STATS_BASE + SF_STATS_RX_RUNTS);
2461	stats->sf_rx_jabbererrs =
2462	    csr_read_4(sc, SF_STATS_BASE + SF_STATS_RX_JABBER);
2463	stats->sf_rx_fragments =
2464	    csr_read_4(sc, SF_STATS_BASE + SF_STATS_RX_FRAGMENTS);
2465	stats->sf_rx_pkts_64 =
2466	    csr_read_4(sc, SF_STATS_BASE + SF_STATS_RX_64);
2467	stats->sf_rx_pkts_65_127 =
2468	    csr_read_4(sc, SF_STATS_BASE + SF_STATS_RX_65_127);
2469	stats->sf_rx_pkts_128_255 =
2470	    csr_read_4(sc, SF_STATS_BASE + SF_STATS_RX_128_255);
2471	stats->sf_rx_pkts_256_511 =
2472	    csr_read_4(sc, SF_STATS_BASE + SF_STATS_RX_256_511);
2473	stats->sf_rx_pkts_512_1023 =
2474	    csr_read_4(sc, SF_STATS_BASE + SF_STATS_RX_512_1023);
2475	stats->sf_rx_pkts_1024_1518 =
2476	    csr_read_4(sc, SF_STATS_BASE + SF_STATS_RX_1024_1518);
2477	stats->sf_rx_frames_lost =
2478	    csr_read_4(sc, SF_STATS_BASE + SF_STATS_RX_FRAME_LOST);
2479	/* Lower 16bits are valid. */
2480	stats->sf_tx_underruns =
2481	    (csr_read_4(sc, SF_STATS_BASE + SF_STATS_TX_UNDERRUN) & 0xffff);
2482
2483	/* Empty stats counter registers. */
2484	for (i = SF_STATS_BASE; i < (SF_STATS_END + 1); i += sizeof(uint32_t))
2485		csr_write_4(sc, i, 0);
2486
2487	ifp->if_opackets += (u_long)stats->sf_tx_frames;
2488
2489	ifp->if_collisions += (u_long)stats->sf_tx_single_colls +
2490	    (u_long)stats->sf_tx_multi_colls;
2491
2492	ifp->if_oerrors += (u_long)stats->sf_tx_excess_colls +
2493	    (u_long)stats->sf_tx_excess_defer +
2494	    (u_long)stats->sf_tx_frames_lost;
2495
2496	ifp->if_ipackets += (u_long)stats->sf_rx_frames;
2497
2498	ifp->if_ierrors += (u_long)stats->sf_rx_crcerrs +
2499	    (u_long)stats->sf_rx_alignerrs +
2500	    (u_long)stats->sf_rx_giants +
2501	    (u_long)stats->sf_rx_runts +
2502	    (u_long)stats->sf_rx_jabbererrs +
2503	    (u_long)stats->sf_rx_frames_lost;
2504
2505	nstats = &sc->sf_statistics;
2506
2507	nstats->sf_tx_frames += stats->sf_tx_frames;
2508	nstats->sf_tx_single_colls += stats->sf_tx_single_colls;
2509	nstats->sf_tx_multi_colls += stats->sf_tx_multi_colls;
2510	nstats->sf_tx_crcerrs += stats->sf_tx_crcerrs;
2511	nstats->sf_tx_bytes += stats->sf_tx_bytes;
2512	nstats->sf_tx_deferred += stats->sf_tx_deferred;
2513	nstats->sf_tx_late_colls += stats->sf_tx_late_colls;
2514	nstats->sf_tx_pause_frames += stats->sf_tx_pause_frames;
2515	nstats->sf_tx_control_frames += stats->sf_tx_control_frames;
2516	nstats->sf_tx_excess_colls += stats->sf_tx_excess_colls;
2517	nstats->sf_tx_excess_defer += stats->sf_tx_excess_defer;
2518	nstats->sf_tx_mcast_frames += stats->sf_tx_mcast_frames;
2519	nstats->sf_tx_bcast_frames += stats->sf_tx_bcast_frames;
2520	nstats->sf_tx_frames_lost += stats->sf_tx_frames_lost;
2521	nstats->sf_rx_frames += stats->sf_rx_frames;
2522	nstats->sf_rx_crcerrs += stats->sf_rx_crcerrs;
2523	nstats->sf_rx_alignerrs += stats->sf_rx_alignerrs;
2524	nstats->sf_rx_bytes += stats->sf_rx_bytes;
2525	nstats->sf_rx_pause_frames += stats->sf_rx_pause_frames;
2526	nstats->sf_rx_control_frames += stats->sf_rx_control_frames;
2527	nstats->sf_rx_unsup_control_frames += stats->sf_rx_unsup_control_frames;
2528	nstats->sf_rx_giants += stats->sf_rx_giants;
2529	nstats->sf_rx_runts += stats->sf_rx_runts;
2530	nstats->sf_rx_jabbererrs += stats->sf_rx_jabbererrs;
2531	nstats->sf_rx_fragments += stats->sf_rx_fragments;
2532	nstats->sf_rx_pkts_64 += stats->sf_rx_pkts_64;
2533	nstats->sf_rx_pkts_65_127 += stats->sf_rx_pkts_65_127;
2534	nstats->sf_rx_pkts_128_255 += stats->sf_rx_pkts_128_255;
2535	nstats->sf_rx_pkts_256_511 += stats->sf_rx_pkts_256_511;
2536	nstats->sf_rx_pkts_512_1023 += stats->sf_rx_pkts_512_1023;
2537	nstats->sf_rx_pkts_1024_1518 += stats->sf_rx_pkts_1024_1518;
2538	nstats->sf_rx_frames_lost += stats->sf_rx_frames_lost;
2539	nstats->sf_tx_underruns += stats->sf_tx_underruns;
2540}
2541
2542static void
2543sf_watchdog(struct sf_softc *sc)
2544{
2545	struct ifnet		*ifp;
2546
2547	SF_LOCK_ASSERT(sc);
2548
2549	if (sc->sf_watchdog_timer == 0 || --sc->sf_watchdog_timer)
2550		return;
2551
2552	ifp = sc->sf_ifp;
2553
2554	ifp->if_oerrors++;
2555	if (sc->sf_link == 0) {
2556		if (bootverbose)
2557			if_printf(sc->sf_ifp, "watchdog timeout "
2558			   "(missed link)\n");
2559	} else
2560		if_printf(ifp, "watchdog timeout, %d Tx descs are active\n",
2561		    sc->sf_cdata.sf_tx_cnt);
2562
2563	ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2564	sf_init_locked(sc);
2565
2566	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
2567		sf_start_locked(ifp);
2568}
2569
2570static int
2571sf_shutdown(device_t dev)
2572{
2573	struct sf_softc		*sc;
2574
2575	sc = device_get_softc(dev);
2576
2577	SF_LOCK(sc);
2578	sf_stop(sc);
2579	SF_UNLOCK(sc);
2580
2581	return (0);
2582}
2583
2584static int
2585sf_suspend(device_t dev)
2586{
2587	struct sf_softc		*sc;
2588
2589	sc = device_get_softc(dev);
2590
2591	SF_LOCK(sc);
2592	sf_stop(sc);
2593	sc->sf_suspended = 1;
2594	bus_generic_suspend(dev);
2595	SF_UNLOCK(sc);
2596
2597	return (0);
2598}
2599
2600static int
2601sf_resume(device_t dev)
2602{
2603	struct sf_softc		*sc;
2604	struct ifnet		*ifp;
2605
2606	sc = device_get_softc(dev);
2607
2608	SF_LOCK(sc);
2609	bus_generic_resume(dev);
2610	ifp = sc->sf_ifp;
2611	if ((ifp->if_flags & IFF_UP) != 0)
2612		sf_init_locked(sc);
2613
2614	sc->sf_suspended = 0;
2615	SF_UNLOCK(sc);
2616
2617	return (0);
2618}
2619
2620static int
2621sf_sysctl_stats(SYSCTL_HANDLER_ARGS)
2622{
2623	struct sf_softc		*sc;
2624	struct sf_stats		*stats;
2625	int			error;
2626	int			result;
2627
2628	result = -1;
2629	error = sysctl_handle_int(oidp, &result, 0, req);
2630
2631	if (error != 0 || req->newptr == NULL)
2632		return (error);
2633
2634	if (result != 1)
2635		return (error);
2636
2637	sc = (struct sf_softc *)arg1;
2638	stats = &sc->sf_statistics;
2639
2640	printf("%s statistics:\n", device_get_nameunit(sc->sf_dev));
2641	printf("Transmit good frames : %ju\n",
2642	    (uintmax_t)stats->sf_tx_frames);
2643	printf("Transmit good octets : %ju\n",
2644	    (uintmax_t)stats->sf_tx_bytes);
2645	printf("Transmit single collisions : %u\n",
2646	    stats->sf_tx_single_colls);
2647	printf("Transmit multiple collisions : %u\n",
2648	    stats->sf_tx_multi_colls);
2649	printf("Transmit late collisions : %u\n",
2650	    stats->sf_tx_late_colls);
2651	printf("Transmit abort due to excessive collisions : %u\n",
2652	    stats->sf_tx_excess_colls);
2653	printf("Transmit CRC errors : %u\n",
2654	    stats->sf_tx_crcerrs);
2655	printf("Transmit deferrals : %u\n",
2656	    stats->sf_tx_deferred);
2657	printf("Transmit abort due to excessive deferrals : %u\n",
2658	    stats->sf_tx_excess_defer);
2659	printf("Transmit pause control frames : %u\n",
2660	    stats->sf_tx_pause_frames);
2661	printf("Transmit control frames : %u\n",
2662	    stats->sf_tx_control_frames);
2663	printf("Transmit good multicast frames : %u\n",
2664	    stats->sf_tx_mcast_frames);
2665	printf("Transmit good broadcast frames : %u\n",
2666	    stats->sf_tx_bcast_frames);
2667	printf("Transmit frames lost due to internal transmit errors : %u\n",
2668	    stats->sf_tx_frames_lost);
2669	printf("Transmit FIFO underflows : %u\n",
2670	    stats->sf_tx_underruns);
2671	printf("Transmit GFP stalls : %u\n", stats->sf_tx_gfp_stall);
2672	printf("Receive good frames : %ju\n",
2673	    (uint64_t)stats->sf_rx_frames);
2674	printf("Receive good octets : %ju\n",
2675	    (uint64_t)stats->sf_rx_bytes);
2676	printf("Receive CRC errors : %u\n",
2677	    stats->sf_rx_crcerrs);
2678	printf("Receive alignment errors : %u\n",
2679	    stats->sf_rx_alignerrs);
2680	printf("Receive pause frames : %u\n",
2681	    stats->sf_rx_pause_frames);
2682	printf("Receive control frames : %u\n",
2683	    stats->sf_rx_control_frames);
2684	printf("Receive control frames with unsupported opcode : %u\n",
2685	    stats->sf_rx_unsup_control_frames);
2686	printf("Receive frames too long : %u\n",
2687	    stats->sf_rx_giants);
2688	printf("Receive frames too short : %u\n",
2689	    stats->sf_rx_runts);
2690	printf("Receive frames jabber errors : %u\n",
2691	    stats->sf_rx_jabbererrs);
2692	printf("Receive frames fragments : %u\n",
2693	    stats->sf_rx_fragments);
2694	printf("Receive packets 64 bytes : %ju\n",
2695	    (uint64_t)stats->sf_rx_pkts_64);
2696	printf("Receive packets 65 to 127 bytes : %ju\n",
2697	    (uint64_t)stats->sf_rx_pkts_65_127);
2698	printf("Receive packets 128 to 255 bytes : %ju\n",
2699	    (uint64_t)stats->sf_rx_pkts_128_255);
2700	printf("Receive packets 256 to 511 bytes : %ju\n",
2701	    (uint64_t)stats->sf_rx_pkts_256_511);
2702	printf("Receive packets 512 to 1023 bytes : %ju\n",
2703	    (uint64_t)stats->sf_rx_pkts_512_1023);
2704	printf("Receive packets 1024 to 1518 bytes : %ju\n",
2705	    (uint64_t)stats->sf_rx_pkts_1024_1518);
2706	printf("Receive frames lost due to internal receive errors : %u\n",
2707	    stats->sf_rx_frames_lost);
2708	printf("Receive GFP stalls : %u\n", stats->sf_rx_gfp_stall);
2709
2710	return (error);
2711}
2712
2713static int
2714sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
2715{
2716	int error, value;
2717
2718	if (!arg1)
2719		return (EINVAL);
2720	value = *(int *)arg1;
2721	error = sysctl_handle_int(oidp, &value, 0, req);
2722	if (error || !req->newptr)
2723		return (error);
2724	if (value < low || value > high)
2725		return (EINVAL);
2726	*(int *)arg1 = value;
2727
2728	return (0);
2729}
2730
2731static int
2732sysctl_hw_sf_int_mod(SYSCTL_HANDLER_ARGS)
2733{
2734
2735	return (sysctl_int_range(oidp, arg1, arg2, req, SF_IM_MIN, SF_IM_MAX));
2736}
2737