if_sf.c revision 166901
1/*-
2 * Copyright (c) 1997, 1998, 1999
3 *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 *    must display the following acknowledgement:
15 *	This product includes software developed by Bill Paul.
16 * 4. Neither the name of the author nor the names of any co-contributors
17 *    may be used to endorse or promote products derived from this software
18 *    without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30 * THE POSSIBILITY OF SUCH DAMAGE.
31 */
32
33#include <sys/cdefs.h>
34__FBSDID("$FreeBSD: head/sys/dev/sf/if_sf.c 166901 2007-02-23 12:19:07Z piso $");
35
36/*
37 * Adaptec AIC-6915 "Starfire" PCI fast ethernet driver for FreeBSD.
38 * Programming manual is available from:
39 * http://download.adaptec.com/pdfs/user_guides/aic6915_pg.pdf.
40 *
41 * Written by Bill Paul <wpaul@ctr.columbia.edu>
42 * Department of Electical Engineering
43 * Columbia University, New York City
44 */
45/*
46 * The Adaptec AIC-6915 "Starfire" is a 64-bit 10/100 PCI ethernet
47 * controller designed with flexibility and reducing CPU load in mind.
48 * The Starfire offers high and low priority buffer queues, a
49 * producer/consumer index mechanism and several different buffer
50 * queue and completion queue descriptor types. Any one of a number
51 * of different driver designs can be used, depending on system and
52 * OS requirements. This driver makes use of type0 transmit frame
53 * descriptors (since BSD fragments packets across an mbuf chain)
54 * and two RX buffer queues prioritized on size (one queue for small
55 * frames that will fit into a single mbuf, another with full size
56 * mbuf clusters for everything else). The producer/consumer indexes
57 * and completion queues are also used.
58 *
59 * One downside to the Starfire has to do with alignment: buffer
60 * queues must be aligned on 256-byte boundaries, and receive buffers
61 * must be aligned on longword boundaries. The receive buffer alignment
62 * causes problems on the Alpha platform, where the packet payload
63 * should be longword aligned. There is no simple way around this.
64 *
65 * For receive filtering, the Starfire offers 16 perfect filter slots
66 * and a 512-bit hash table.
67 *
68 * The Starfire has no internal transceiver, relying instead on an
69 * external MII-based transceiver. Accessing registers on external
70 * PHYs is done through a special register map rather than with the
71 * usual bitbang MDIO method.
72 *
73 * Acesssing the registers on the Starfire is a little tricky. The
74 * Starfire has a 512K internal register space. When programmed for
75 * PCI memory mapped mode, the entire register space can be accessed
76 * directly. However in I/O space mode, only 256 bytes are directly
77 * mapped into PCI I/O space. The other registers can be accessed
78 * indirectly using the SF_INDIRECTIO_ADDR and SF_INDIRECTIO_DATA
79 * registers inside the 256-byte I/O window.
80 */
81
82#ifdef HAVE_KERNEL_OPTION_HEADERS
83#include "opt_device_polling.h"
84#endif
85
86#include <sys/param.h>
87#include <sys/systm.h>
88#include <sys/sockio.h>
89#include <sys/mbuf.h>
90#include <sys/malloc.h>
91#include <sys/kernel.h>
92#include <sys/module.h>
93#include <sys/socket.h>
94
95#include <net/if.h>
96#include <net/if_arp.h>
97#include <net/ethernet.h>
98#include <net/if_dl.h>
99#include <net/if_media.h>
100#include <net/if_types.h>
101
102#include <net/bpf.h>
103
104#include <vm/vm.h>              /* for vtophys */
105#include <vm/pmap.h>            /* for vtophys */
106#include <machine/bus.h>
107#include <machine/resource.h>
108#include <sys/bus.h>
109#include <sys/rman.h>
110
111#include <dev/mii/mii.h>
112#include <dev/mii/miivar.h>
113
114/* "device miibus" required.  See GENERIC if you get errors here. */
115#include "miibus_if.h"
116
117#include <dev/pci/pcireg.h>
118#include <dev/pci/pcivar.h>
119
120#define SF_USEIOSPACE
121
122#include <pci/if_sfreg.h>
123
124MODULE_DEPEND(sf, pci, 1, 1, 1);
125MODULE_DEPEND(sf, ether, 1, 1, 1);
126MODULE_DEPEND(sf, miibus, 1, 1, 1);
127
128static struct sf_type sf_devs[] = {
129	{ AD_VENDORID, AD_DEVICEID_STARFIRE,
130		"Adaptec AIC-6915 10/100BaseTX" },
131	{ 0, 0, NULL }
132};
133
134static int sf_probe(device_t);
135static int sf_attach(device_t);
136static int sf_detach(device_t);
137static void sf_intr(void *);
138static void sf_stats_update(void *);
139static void sf_rxeof(struct sf_softc *);
140static void sf_txeof(struct sf_softc *);
141static int sf_encap(struct sf_softc *, struct sf_tx_bufdesc_type0 *,
142		struct mbuf *);
143static void sf_start(struct ifnet *);
144static void sf_start_locked(struct ifnet *);
145static int sf_ioctl(struct ifnet *, u_long, caddr_t);
146static void sf_init(void *);
147static void sf_init_locked(struct sf_softc *);
148static void sf_stop(struct sf_softc *);
149static void sf_watchdog(struct ifnet *);
150static void sf_shutdown(device_t);
151static int sf_ifmedia_upd(struct ifnet *);
152static void sf_ifmedia_upd_locked(struct ifnet *);
153static void sf_ifmedia_sts(struct ifnet *, struct ifmediareq *);
154static void sf_reset(struct sf_softc *);
155static int sf_init_rx_ring(struct sf_softc *);
156static void sf_init_tx_ring(struct sf_softc *);
157static int sf_newbuf(struct sf_softc *, struct sf_rx_bufdesc_type0 *,
158		struct mbuf *);
159static void sf_setmulti(struct sf_softc *);
160static int sf_setperf(struct sf_softc *, int, caddr_t);
161static int sf_sethash(struct sf_softc *, caddr_t, int);
162#ifdef notdef
163static int sf_setvlan(struct sf_softc *, int, u_int32_t);
164#endif
165
166static u_int8_t sf_read_eeprom(struct sf_softc *, int);
167
168static int sf_miibus_readreg(device_t, int, int);
169static int sf_miibus_writereg(device_t, int, int, int);
170static void sf_miibus_statchg(device_t);
171#ifdef DEVICE_POLLING
172static void sf_poll(struct ifnet *ifp, enum poll_cmd cmd, int count);
173static void sf_poll_locked(struct ifnet *ifp, enum poll_cmd cmd, int count);
174#endif
175
176static u_int32_t csr_read_4(struct sf_softc *, int);
177static void csr_write_4(struct sf_softc *, int, u_int32_t);
178static void sf_txthresh_adjust(struct sf_softc *);
179
180#ifdef SF_USEIOSPACE
181#define SF_RES			SYS_RES_IOPORT
182#define SF_RID			SF_PCI_LOIO
183#else
184#define SF_RES			SYS_RES_MEMORY
185#define SF_RID			SF_PCI_LOMEM
186#endif
187
188static device_method_t sf_methods[] = {
189	/* Device interface */
190	DEVMETHOD(device_probe,		sf_probe),
191	DEVMETHOD(device_attach,	sf_attach),
192	DEVMETHOD(device_detach,	sf_detach),
193	DEVMETHOD(device_shutdown,	sf_shutdown),
194
195	/* bus interface */
196	DEVMETHOD(bus_print_child,	bus_generic_print_child),
197	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
198
199	/* MII interface */
200	DEVMETHOD(miibus_readreg,	sf_miibus_readreg),
201	DEVMETHOD(miibus_writereg,	sf_miibus_writereg),
202	DEVMETHOD(miibus_statchg,	sf_miibus_statchg),
203
204	{ 0, 0 }
205};
206
207static driver_t sf_driver = {
208	"sf",
209	sf_methods,
210	sizeof(struct sf_softc),
211};
212
213static devclass_t sf_devclass;
214
215DRIVER_MODULE(sf, pci, sf_driver, sf_devclass, 0, 0);
216DRIVER_MODULE(miibus, sf, miibus_driver, miibus_devclass, 0, 0);
217
218#define SF_SETBIT(sc, reg, x)	\
219	csr_write_4(sc, reg, csr_read_4(sc, reg) | (x))
220
221#define SF_CLRBIT(sc, reg, x)				\
222	csr_write_4(sc, reg, csr_read_4(sc, reg) & ~(x))
223
224static u_int32_t
225csr_read_4(sc, reg)
226	struct sf_softc		*sc;
227	int			reg;
228{
229	u_int32_t		val;
230
231#ifdef SF_USEIOSPACE
232	CSR_WRITE_4(sc, SF_INDIRECTIO_ADDR, reg + SF_RMAP_INTREG_BASE);
233	val = CSR_READ_4(sc, SF_INDIRECTIO_DATA);
234#else
235	val = CSR_READ_4(sc, (reg + SF_RMAP_INTREG_BASE));
236#endif
237
238	return(val);
239}
240
241static u_int8_t
242sf_read_eeprom(sc, reg)
243	struct sf_softc		*sc;
244	int			reg;
245{
246	u_int8_t		val;
247
248	val = (csr_read_4(sc, SF_EEADDR_BASE +
249	    (reg & 0xFFFFFFFC)) >> (8 * (reg & 3))) & 0xFF;
250
251	return(val);
252}
253
254static void
255csr_write_4(sc, reg, val)
256	struct sf_softc		*sc;
257	int			reg;
258	u_int32_t		val;
259{
260#ifdef SF_USEIOSPACE
261	CSR_WRITE_4(sc, SF_INDIRECTIO_ADDR, reg + SF_RMAP_INTREG_BASE);
262	CSR_WRITE_4(sc, SF_INDIRECTIO_DATA, val);
263#else
264	CSR_WRITE_4(sc, (reg + SF_RMAP_INTREG_BASE), val);
265#endif
266}
267
268/*
269 * Copy the address 'mac' into the perfect RX filter entry at
270 * offset 'idx.' The perfect filter only has 16 entries so do
271 * some sanity tests.
272 */
273static int
274sf_setperf(sc, idx, mac)
275	struct sf_softc		*sc;
276	int			idx;
277	caddr_t			mac;
278{
279	u_int16_t		*p;
280
281	if (idx < 0 || idx > SF_RXFILT_PERFECT_CNT)
282		return(EINVAL);
283
284	if (mac == NULL)
285		return(EINVAL);
286
287	p = (u_int16_t *)mac;
288
289	csr_write_4(sc, SF_RXFILT_PERFECT_BASE +
290	    (idx * SF_RXFILT_PERFECT_SKIP), htons(p[2]));
291	csr_write_4(sc, SF_RXFILT_PERFECT_BASE +
292	    (idx * SF_RXFILT_PERFECT_SKIP) + 4, htons(p[1]));
293	csr_write_4(sc, SF_RXFILT_PERFECT_BASE +
294	    (idx * SF_RXFILT_PERFECT_SKIP) + 8, htons(p[0]));
295
296	return(0);
297}
298
299/*
300 * Set the bit in the 512-bit hash table that corresponds to the
301 * specified mac address 'mac.' If 'prio' is nonzero, update the
302 * priority hash table instead of the filter hash table.
303 */
304static int
305sf_sethash(sc, mac, prio)
306	struct sf_softc		*sc;
307	caddr_t			mac;
308	int			prio;
309{
310	u_int32_t		h;
311
312	if (mac == NULL)
313		return(EINVAL);
314
315	h = ether_crc32_be(mac, ETHER_ADDR_LEN) >> 23;
316
317	if (prio) {
318		SF_SETBIT(sc, SF_RXFILT_HASH_BASE + SF_RXFILT_HASH_PRIOOFF +
319		    (SF_RXFILT_HASH_SKIP * (h >> 4)), (1 << (h & 0xF)));
320	} else {
321		SF_SETBIT(sc, SF_RXFILT_HASH_BASE + SF_RXFILT_HASH_ADDROFF +
322		    (SF_RXFILT_HASH_SKIP * (h >> 4)), (1 << (h & 0xF)));
323	}
324
325	return(0);
326}
327
328#ifdef notdef
329/*
330 * Set a VLAN tag in the receive filter.
331 */
332static int
333sf_setvlan(sc, idx, vlan)
334	struct sf_softc		*sc;
335	int			idx;
336	u_int32_t		vlan;
337{
338	if (idx < 0 || idx >> SF_RXFILT_HASH_CNT)
339		return(EINVAL);
340
341	csr_write_4(sc, SF_RXFILT_HASH_BASE +
342	    (idx * SF_RXFILT_HASH_SKIP) + SF_RXFILT_HASH_VLANOFF, vlan);
343
344	return(0);
345}
346#endif
347
348static int
349sf_miibus_readreg(dev, phy, reg)
350	device_t		dev;
351	int			phy, reg;
352{
353	struct sf_softc		*sc;
354	int			i;
355	u_int32_t		val = 0;
356
357	sc = device_get_softc(dev);
358
359	for (i = 0; i < SF_TIMEOUT; i++) {
360		val = csr_read_4(sc, SF_PHY_REG(phy, reg));
361		if (val & SF_MII_DATAVALID)
362			break;
363	}
364
365	if (i == SF_TIMEOUT)
366		return(0);
367
368	if ((val & 0x0000FFFF) == 0xFFFF)
369		return(0);
370
371	return(val & 0x0000FFFF);
372}
373
374static int
375sf_miibus_writereg(dev, phy, reg, val)
376	device_t		dev;
377	int			phy, reg, val;
378{
379	struct sf_softc		*sc;
380	int			i;
381	int			busy;
382
383	sc = device_get_softc(dev);
384
385	csr_write_4(sc, SF_PHY_REG(phy, reg), val);
386
387	for (i = 0; i < SF_TIMEOUT; i++) {
388		busy = csr_read_4(sc, SF_PHY_REG(phy, reg));
389		if (!(busy & SF_MII_BUSY))
390			break;
391	}
392
393	return(0);
394}
395
396static void
397sf_miibus_statchg(dev)
398	device_t		dev;
399{
400	struct sf_softc		*sc;
401	struct mii_data		*mii;
402
403	sc = device_get_softc(dev);
404	mii = device_get_softc(sc->sf_miibus);
405
406	if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
407		SF_SETBIT(sc, SF_MACCFG_1, SF_MACCFG1_FULLDUPLEX);
408		csr_write_4(sc, SF_BKTOBKIPG, SF_IPGT_FDX);
409	} else {
410		SF_CLRBIT(sc, SF_MACCFG_1, SF_MACCFG1_FULLDUPLEX);
411		csr_write_4(sc, SF_BKTOBKIPG, SF_IPGT_HDX);
412	}
413}
414
415static void
416sf_setmulti(sc)
417	struct sf_softc		*sc;
418{
419	struct ifnet		*ifp;
420	int			i;
421	struct ifmultiaddr	*ifma;
422	u_int8_t		dummy[] = { 0, 0, 0, 0, 0, 0 };
423
424	ifp = sc->sf_ifp;
425
426	/* First zot all the existing filters. */
427	for (i = 1; i < SF_RXFILT_PERFECT_CNT; i++)
428		sf_setperf(sc, i, (char *)&dummy);
429	for (i = SF_RXFILT_HASH_BASE;
430	    i < (SF_RXFILT_HASH_MAX + 1); i += 4)
431		csr_write_4(sc, i, 0);
432	SF_CLRBIT(sc, SF_RXFILT, SF_RXFILT_ALLMULTI);
433
434	/* Now program new ones. */
435	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
436		SF_SETBIT(sc, SF_RXFILT, SF_RXFILT_ALLMULTI);
437	} else {
438		i = 1;
439		IF_ADDR_LOCK(ifp);
440		TAILQ_FOREACH_REVERSE(ifma, &ifp->if_multiaddrs, ifmultihead, ifma_link) {
441			if (ifma->ifma_addr->sa_family != AF_LINK)
442				continue;
443			/*
444			 * Program the first 15 multicast groups
445			 * into the perfect filter. For all others,
446			 * use the hash table.
447			 */
448			if (i < SF_RXFILT_PERFECT_CNT) {
449				sf_setperf(sc, i,
450			LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
451				i++;
452				continue;
453			}
454
455			sf_sethash(sc,
456			    LLADDR((struct sockaddr_dl *)ifma->ifma_addr), 0);
457		}
458		IF_ADDR_UNLOCK(ifp);
459	}
460}
461
462/*
463 * Set media options.
464 */
465static int
466sf_ifmedia_upd(ifp)
467	struct ifnet		*ifp;
468{
469	struct sf_softc		*sc;
470
471	sc = ifp->if_softc;
472	SF_LOCK(sc);
473	sf_ifmedia_upd_locked(ifp);
474	SF_UNLOCK(sc);
475
476	return(0);
477}
478
479static void
480sf_ifmedia_upd_locked(ifp)
481	struct ifnet		*ifp;
482{
483	struct sf_softc		*sc;
484	struct mii_data		*mii;
485
486	sc = ifp->if_softc;
487	mii = device_get_softc(sc->sf_miibus);
488	SF_LOCK_ASSERT(sc);
489	sc->sf_link = 0;
490	if (mii->mii_instance) {
491		struct mii_softc        *miisc;
492		LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
493			mii_phy_reset(miisc);
494	}
495	mii_mediachg(mii);
496}
497
498/*
499 * Report current media status.
500 */
501static void
502sf_ifmedia_sts(ifp, ifmr)
503	struct ifnet		*ifp;
504	struct ifmediareq	*ifmr;
505{
506	struct sf_softc		*sc;
507	struct mii_data		*mii;
508
509	sc = ifp->if_softc;
510	SF_LOCK(sc);
511	mii = device_get_softc(sc->sf_miibus);
512
513	mii_pollstat(mii);
514	ifmr->ifm_active = mii->mii_media_active;
515	ifmr->ifm_status = mii->mii_media_status;
516	SF_UNLOCK(sc);
517}
518
519static int
520sf_ioctl(ifp, command, data)
521	struct ifnet		*ifp;
522	u_long			command;
523	caddr_t			data;
524{
525	struct sf_softc		*sc = ifp->if_softc;
526	struct ifreq		*ifr = (struct ifreq *) data;
527	struct mii_data		*mii;
528	int			error = 0;
529
530	switch(command) {
531	case SIOCSIFFLAGS:
532		SF_LOCK(sc);
533		if (ifp->if_flags & IFF_UP) {
534			if (ifp->if_drv_flags & IFF_DRV_RUNNING &&
535			    ifp->if_flags & IFF_PROMISC &&
536			    !(sc->sf_if_flags & IFF_PROMISC)) {
537				SF_SETBIT(sc, SF_RXFILT, SF_RXFILT_PROMISC);
538			} else if (ifp->if_drv_flags & IFF_DRV_RUNNING &&
539			    !(ifp->if_flags & IFF_PROMISC) &&
540			    sc->sf_if_flags & IFF_PROMISC) {
541				SF_CLRBIT(sc, SF_RXFILT, SF_RXFILT_PROMISC);
542			} else if (!(ifp->if_drv_flags & IFF_DRV_RUNNING))
543				sf_init_locked(sc);
544		} else {
545			if (ifp->if_drv_flags & IFF_DRV_RUNNING)
546				sf_stop(sc);
547		}
548		sc->sf_if_flags = ifp->if_flags;
549		SF_UNLOCK(sc);
550		error = 0;
551		break;
552	case SIOCADDMULTI:
553	case SIOCDELMULTI:
554		SF_LOCK(sc);
555		sf_setmulti(sc);
556		SF_UNLOCK(sc);
557		error = 0;
558		break;
559	case SIOCGIFMEDIA:
560	case SIOCSIFMEDIA:
561		mii = device_get_softc(sc->sf_miibus);
562		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
563		break;
564	case SIOCSIFCAP:
565#ifdef DEVICE_POLLING
566		if (ifr->ifr_reqcap & IFCAP_POLLING &&
567		    !(ifp->if_capenable & IFCAP_POLLING)) {
568			error = ether_poll_register(sf_poll, ifp);
569			if (error)
570				return(error);
571			SF_LOCK(sc);
572			/* Disable interrupts */
573			csr_write_4(sc, SF_IMR, 0x00000000);
574			ifp->if_capenable |= IFCAP_POLLING;
575			SF_UNLOCK(sc);
576			return (error);
577
578		}
579		if (!(ifr->ifr_reqcap & IFCAP_POLLING) &&
580		    ifp->if_capenable & IFCAP_POLLING) {
581			error = ether_poll_deregister(ifp);
582			/* Enable interrupts. */
583			SF_LOCK(sc);
584			csr_write_4(sc, SF_IMR, SF_INTRS);
585			ifp->if_capenable &= ~IFCAP_POLLING;
586			SF_UNLOCK(sc);
587			return (error);
588		}
589#endif /* DEVICE_POLLING */
590		break;
591	default:
592		error = ether_ioctl(ifp, command, data);
593		break;
594	}
595
596	return(error);
597}
598
599static void
600sf_reset(sc)
601	struct sf_softc		*sc;
602{
603	register int		i;
604
605	csr_write_4(sc, SF_GEN_ETH_CTL, 0);
606	SF_SETBIT(sc, SF_MACCFG_1, SF_MACCFG1_SOFTRESET);
607	DELAY(1000);
608	SF_CLRBIT(sc, SF_MACCFG_1, SF_MACCFG1_SOFTRESET);
609
610	SF_SETBIT(sc, SF_PCI_DEVCFG, SF_PCIDEVCFG_RESET);
611
612	for (i = 0; i < SF_TIMEOUT; i++) {
613		DELAY(10);
614		if (!(csr_read_4(sc, SF_PCI_DEVCFG) & SF_PCIDEVCFG_RESET))
615			break;
616	}
617
618	if (i == SF_TIMEOUT)
619		device_printf(sc->sf_dev, "reset never completed!\n");
620
621	/* Wait a little while for the chip to get its brains in order. */
622	DELAY(1000);
623}
624
625/*
626 * Probe for an Adaptec AIC-6915 chip. Check the PCI vendor and device
627 * IDs against our list and return a device name if we find a match.
628 * We also check the subsystem ID so that we can identify exactly which
629 * NIC has been found, if possible.
630 */
631static int
632sf_probe(dev)
633	device_t		dev;
634{
635	struct sf_type		*t;
636
637	t = sf_devs;
638
639	while(t->sf_name != NULL) {
640		if ((pci_get_vendor(dev) == t->sf_vid) &&
641		    (pci_get_device(dev) == t->sf_did)) {
642			switch((pci_read_config(dev,
643			    SF_PCI_SUBVEN_ID, 4) >> 16) & 0xFFFF) {
644			case AD_SUBSYSID_62011_REV0:
645			case AD_SUBSYSID_62011_REV1:
646				device_set_desc(dev,
647				    "Adaptec ANA-62011 10/100BaseTX");
648				return (BUS_PROBE_DEFAULT);
649			case AD_SUBSYSID_62022:
650				device_set_desc(dev,
651				    "Adaptec ANA-62022 10/100BaseTX");
652				return (BUS_PROBE_DEFAULT);
653			case AD_SUBSYSID_62044_REV0:
654			case AD_SUBSYSID_62044_REV1:
655				device_set_desc(dev,
656				    "Adaptec ANA-62044 10/100BaseTX");
657				return (BUS_PROBE_DEFAULT);
658			case AD_SUBSYSID_62020:
659				device_set_desc(dev,
660				    "Adaptec ANA-62020 10/100BaseFX");
661				return (BUS_PROBE_DEFAULT);
662			case AD_SUBSYSID_69011:
663				device_set_desc(dev,
664				    "Adaptec ANA-69011 10/100BaseTX");
665				return (BUS_PROBE_DEFAULT);
666			default:
667				device_set_desc(dev, t->sf_name);
668				return (BUS_PROBE_DEFAULT);
669				break;
670			}
671		}
672		t++;
673	}
674
675	return(ENXIO);
676}
677
678/*
679 * Attach the interface. Allocate softc structures, do ifmedia
680 * setup and ethernet/BPF attach.
681 */
682static int
683sf_attach(dev)
684	device_t		dev;
685{
686	int			i;
687	struct sf_softc		*sc;
688	struct ifnet		*ifp;
689	int			rid, error = 0;
690	u_char			eaddr[6];
691
692	sc = device_get_softc(dev);
693	sc->sf_dev = dev;
694
695	mtx_init(&sc->sf_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
696	    MTX_DEF);
697	/*
698	 * Map control/status registers.
699	 */
700	pci_enable_busmaster(dev);
701
702	rid = SF_RID;
703	sc->sf_res = bus_alloc_resource_any(dev, SF_RES, &rid, RF_ACTIVE);
704
705	if (sc->sf_res == NULL) {
706		device_printf(dev, "couldn't map ports\n");
707		error = ENXIO;
708		goto fail;
709	}
710
711	sc->sf_btag = rman_get_bustag(sc->sf_res);
712	sc->sf_bhandle = rman_get_bushandle(sc->sf_res);
713
714	/* Allocate interrupt */
715	rid = 0;
716	sc->sf_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
717	    RF_SHAREABLE | RF_ACTIVE);
718
719	if (sc->sf_irq == NULL) {
720		device_printf(dev, "couldn't map interrupt\n");
721		error = ENXIO;
722		goto fail;
723	}
724
725	callout_init_mtx(&sc->sf_stat_callout, &sc->sf_mtx, 0);
726
727	/* Reset the adapter. */
728	sf_reset(sc);
729
730	/*
731	 * Get station address from the EEPROM.
732	 */
733	for (i = 0; i < ETHER_ADDR_LEN; i++)
734		eaddr[i] =
735		    sf_read_eeprom(sc, SF_EE_NODEADDR + ETHER_ADDR_LEN - i);
736
737	/* Allocate the descriptor queues. */
738	sc->sf_ldata = contigmalloc(sizeof(struct sf_list_data), M_DEVBUF,
739	    M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0);
740
741	if (sc->sf_ldata == NULL) {
742		device_printf(dev, "no memory for list buffers!\n");
743		error = ENXIO;
744		goto fail;
745	}
746
747	bzero(sc->sf_ldata, sizeof(struct sf_list_data));
748
749	ifp = sc->sf_ifp = if_alloc(IFT_ETHER);
750	if (ifp == NULL) {
751		device_printf(dev, "can not if_alloc()\n");
752		error = ENOSPC;
753		goto fail;
754	}
755
756	/* Do MII setup. */
757	if (mii_phy_probe(dev, &sc->sf_miibus,
758	    sf_ifmedia_upd, sf_ifmedia_sts)) {
759		device_printf(dev, "MII without any phy!\n");
760		error = ENXIO;
761		goto fail;
762	}
763
764	ifp->if_softc = sc;
765	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
766	ifp->if_mtu = ETHERMTU;
767	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
768	ifp->if_ioctl = sf_ioctl;
769	ifp->if_start = sf_start;
770	ifp->if_watchdog = sf_watchdog;
771	ifp->if_init = sf_init;
772	IFQ_SET_MAXLEN(&ifp->if_snd, SF_TX_DLIST_CNT - 1);
773	ifp->if_snd.ifq_drv_maxlen = SF_TX_DLIST_CNT - 1;
774	IFQ_SET_READY(&ifp->if_snd);
775	ifp->if_capenable = ifp->if_capabilities;
776#ifdef DEVICE_POLLING
777	ifp->if_capabilities |= IFCAP_POLLING;
778#endif
779
780	/*
781	 * Call MI attach routine.
782	 */
783	ether_ifattach(ifp, eaddr);
784
785	/* Hook interrupt last to avoid having to lock softc */
786	error = bus_setup_intr(dev, sc->sf_irq, INTR_TYPE_NET | INTR_MPSAFE,
787	    NULL, sf_intr, sc, &sc->sf_intrhand);
788
789	if (error) {
790		device_printf(dev, "couldn't set up irq\n");
791		ether_ifdetach(ifp);
792		goto fail;
793	}
794
795fail:
796	if (error)
797		sf_detach(dev);
798
799	return(error);
800}
801
802/*
803 * Shutdown hardware and free up resources. This can be called any
804 * time after the mutex has been initialized. It is called in both
805 * the error case in attach and the normal detach case so it needs
806 * to be careful about only freeing resources that have actually been
807 * allocated.
808 */
809static int
810sf_detach(dev)
811	device_t		dev;
812{
813	struct sf_softc		*sc;
814	struct ifnet		*ifp;
815
816	sc = device_get_softc(dev);
817	KASSERT(mtx_initialized(&sc->sf_mtx), ("sf mutex not initialized"));
818	ifp = sc->sf_ifp;
819
820#ifdef DEVICE_POLLING
821	if (ifp->if_capenable & IFCAP_POLLING)
822		ether_poll_deregister(ifp);
823#endif
824
825	/* These should only be active if attach succeeded */
826	if (device_is_attached(dev)) {
827		SF_LOCK(sc);
828		sf_stop(sc);
829		SF_UNLOCK(sc);
830		callout_drain(&sc->sf_stat_callout);
831		ether_ifdetach(ifp);
832	}
833	if (sc->sf_miibus)
834		device_delete_child(dev, sc->sf_miibus);
835	bus_generic_detach(dev);
836
837	if (sc->sf_intrhand)
838		bus_teardown_intr(dev, sc->sf_irq, sc->sf_intrhand);
839	if (sc->sf_irq)
840		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sf_irq);
841	if (sc->sf_res)
842		bus_release_resource(dev, SF_RES, SF_RID, sc->sf_res);
843
844	if (ifp)
845		if_free(ifp);
846
847	if (sc->sf_ldata)
848		contigfree(sc->sf_ldata, sizeof(struct sf_list_data), M_DEVBUF);
849
850	mtx_destroy(&sc->sf_mtx);
851
852	return(0);
853}
854
855static int
856sf_init_rx_ring(sc)
857	struct sf_softc		*sc;
858{
859	struct sf_list_data	*ld;
860	int			i;
861
862	ld = sc->sf_ldata;
863
864	bzero((char *)ld->sf_rx_dlist_big,
865	    sizeof(struct sf_rx_bufdesc_type0) * SF_RX_DLIST_CNT);
866	bzero((char *)ld->sf_rx_clist,
867	    sizeof(struct sf_rx_cmpdesc_type3) * SF_RX_CLIST_CNT);
868
869	for (i = 0; i < SF_RX_DLIST_CNT; i++) {
870		if (sf_newbuf(sc, &ld->sf_rx_dlist_big[i], NULL) == ENOBUFS)
871			return(ENOBUFS);
872	}
873
874	return(0);
875}
876
877static void
878sf_init_tx_ring(sc)
879	struct sf_softc		*sc;
880{
881	struct sf_list_data	*ld;
882	int			i;
883
884	ld = sc->sf_ldata;
885
886	bzero((char *)ld->sf_tx_dlist,
887	    sizeof(struct sf_tx_bufdesc_type0) * SF_TX_DLIST_CNT);
888	bzero((char *)ld->sf_tx_clist,
889	    sizeof(struct sf_tx_cmpdesc_type0) * SF_TX_CLIST_CNT);
890
891	for (i = 0; i < SF_TX_DLIST_CNT; i++)
892		ld->sf_tx_dlist[i].sf_id = SF_TX_BUFDESC_ID;
893	for (i = 0; i < SF_TX_CLIST_CNT; i++)
894		ld->sf_tx_clist[i].sf_type = SF_TXCMPTYPE_TX;
895
896	ld->sf_tx_dlist[SF_TX_DLIST_CNT - 1].sf_end = 1;
897	sc->sf_tx_cnt = 0;
898}
899
900static int
901sf_newbuf(sc, c, m)
902	struct sf_softc		*sc;
903	struct sf_rx_bufdesc_type0	*c;
904	struct mbuf		*m;
905{
906	struct mbuf		*m_new = NULL;
907
908	if (m == NULL) {
909		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
910		if (m_new == NULL)
911			return(ENOBUFS);
912
913		MCLGET(m_new, M_DONTWAIT);
914		if (!(m_new->m_flags & M_EXT)) {
915			m_freem(m_new);
916			return(ENOBUFS);
917		}
918		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
919	} else {
920		m_new = m;
921		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
922		m_new->m_data = m_new->m_ext.ext_buf;
923	}
924
925	m_adj(m_new, sizeof(u_int64_t));
926
927	c->sf_mbuf = m_new;
928	c->sf_addrlo = SF_RX_HOSTADDR(vtophys(mtod(m_new, caddr_t)));
929	c->sf_valid = 1;
930
931	return(0);
932}
933
934/*
935 * The starfire is programmed to use 'normal' mode for packet reception,
936 * which means we use the consumer/producer model for both the buffer
937 * descriptor queue and the completion descriptor queue. The only problem
938 * with this is that it involves a lot of register accesses: we have to
939 * read the RX completion consumer and producer indexes and the RX buffer
940 * producer index, plus the RX completion consumer and RX buffer producer
941 * indexes have to be updated. It would have been easier if Adaptec had
942 * put each index in a separate register, especially given that the damn
943 * NIC has a 512K register space.
944 *
945 * In spite of all the lovely features that Adaptec crammed into the 6915,
946 * it is marred by one truly stupid design flaw, which is that receive
947 * buffer addresses must be aligned on a longword boundary. This forces
948 * the packet payload to be unaligned, which is suboptimal on the x86 and
949 * completely unuseable on the Alpha. Our only recourse is to copy received
950 * packets into properly aligned buffers before handing them off.
951 */
952
953static void
954sf_rxeof(sc)
955	struct sf_softc		*sc;
956{
957	struct mbuf		*m;
958	struct ifnet		*ifp;
959	struct sf_rx_bufdesc_type0	*desc;
960	struct sf_rx_cmpdesc_type3	*cur_rx;
961	u_int32_t		rxcons, rxprod;
962	int			cmpprodidx, cmpconsidx, bufprodidx;
963
964	SF_LOCK_ASSERT(sc);
965
966	ifp = sc->sf_ifp;
967
968	rxcons = csr_read_4(sc, SF_CQ_CONSIDX);
969	rxprod = csr_read_4(sc, SF_RXDQ_PTR_Q1);
970	cmpprodidx = SF_IDX_LO(csr_read_4(sc, SF_CQ_PRODIDX));
971	cmpconsidx = SF_IDX_LO(rxcons);
972	bufprodidx = SF_IDX_LO(rxprod);
973
974	while (cmpconsidx != cmpprodidx) {
975		struct mbuf		*m0;
976
977#ifdef DEVICE_POLLING
978		if (ifp->if_capenable & IFCAP_POLLING) {
979			if (sc->rxcycles <= 0)
980				break;
981			sc->rxcycles--;
982		}
983#endif
984
985		cur_rx = &sc->sf_ldata->sf_rx_clist[cmpconsidx];
986		desc = &sc->sf_ldata->sf_rx_dlist_big[cur_rx->sf_endidx];
987		m = desc->sf_mbuf;
988		SF_INC(cmpconsidx, SF_RX_CLIST_CNT);
989		SF_INC(bufprodidx, SF_RX_DLIST_CNT);
990
991		if (!(cur_rx->sf_status1 & SF_RXSTAT1_OK)) {
992			ifp->if_ierrors++;
993			sf_newbuf(sc, desc, m);
994			continue;
995		}
996
997		m0 = m_devget(mtod(m, char *), cur_rx->sf_len, ETHER_ALIGN,
998		    ifp, NULL);
999		sf_newbuf(sc, desc, m);
1000		if (m0 == NULL) {
1001			ifp->if_ierrors++;
1002			continue;
1003		}
1004		m = m0;
1005
1006		ifp->if_ipackets++;
1007		SF_UNLOCK(sc);
1008		(*ifp->if_input)(ifp, m);
1009		SF_LOCK(sc);
1010	}
1011
1012	csr_write_4(sc, SF_CQ_CONSIDX,
1013	    (rxcons & ~SF_CQ_CONSIDX_RXQ1) | cmpconsidx);
1014	csr_write_4(sc, SF_RXDQ_PTR_Q1,
1015	    (rxprod & ~SF_RXDQ_PRODIDX) | bufprodidx);
1016}
1017
1018/*
1019 * Read the transmit status from the completion queue and release
1020 * mbufs. Note that the buffer descriptor index in the completion
1021 * descriptor is an offset from the start of the transmit buffer
1022 * descriptor list in bytes. This is important because the manual
1023 * gives the impression that it should match the producer/consumer
1024 * index, which is the offset in 8 byte blocks.
1025 */
1026static void
1027sf_txeof(sc)
1028	struct sf_softc		*sc;
1029{
1030	int			txcons, cmpprodidx, cmpconsidx;
1031	struct sf_tx_cmpdesc_type1 *cur_cmp;
1032	struct sf_tx_bufdesc_type0 *cur_tx;
1033	struct ifnet		*ifp;
1034
1035	ifp = sc->sf_ifp;
1036
1037	SF_LOCK_ASSERT(sc);
1038	txcons = csr_read_4(sc, SF_CQ_CONSIDX);
1039	cmpprodidx = SF_IDX_HI(csr_read_4(sc, SF_CQ_PRODIDX));
1040	cmpconsidx = SF_IDX_HI(txcons);
1041
1042	while (cmpconsidx != cmpprodidx) {
1043		cur_cmp = &sc->sf_ldata->sf_tx_clist[cmpconsidx];
1044		cur_tx = &sc->sf_ldata->sf_tx_dlist[cur_cmp->sf_index >> 7];
1045
1046		if (cur_cmp->sf_txstat & SF_TXSTAT_TX_OK)
1047			ifp->if_opackets++;
1048		else {
1049			if (cur_cmp->sf_txstat & SF_TXSTAT_TX_UNDERRUN)
1050				sf_txthresh_adjust(sc);
1051			ifp->if_oerrors++;
1052		}
1053
1054		sc->sf_tx_cnt--;
1055		if (cur_tx->sf_mbuf != NULL) {
1056			m_freem(cur_tx->sf_mbuf);
1057			cur_tx->sf_mbuf = NULL;
1058		} else
1059			break;
1060		SF_INC(cmpconsidx, SF_TX_CLIST_CNT);
1061	}
1062
1063	ifp->if_timer = 0;
1064	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1065
1066	csr_write_4(sc, SF_CQ_CONSIDX,
1067	    (txcons & ~SF_CQ_CONSIDX_TXQ) |
1068	    ((cmpconsidx << 16) & 0xFFFF0000));
1069}
1070
1071static void
1072sf_txthresh_adjust(sc)
1073	struct sf_softc		*sc;
1074{
1075	u_int32_t		txfctl;
1076	u_int8_t		txthresh;
1077
1078	txfctl = csr_read_4(sc, SF_TX_FRAMCTL);
1079	txthresh = txfctl & SF_TXFRMCTL_TXTHRESH;
1080	if (txthresh < 0xFF) {
1081		txthresh++;
1082		txfctl &= ~SF_TXFRMCTL_TXTHRESH;
1083		txfctl |= txthresh;
1084#ifdef DIAGNOSTIC
1085		device_printf(sc->sf_dev, "tx underrun, increasing "
1086		    "tx threshold to %d bytes\n",
1087		    txthresh * 4);
1088#endif
1089		csr_write_4(sc, SF_TX_FRAMCTL, txfctl);
1090	}
1091}
1092
1093#ifdef DEVICE_POLLING
1094static void
1095sf_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1096{
1097	struct sf_softc *sc = ifp->if_softc;
1098
1099	SF_LOCK(sc);
1100	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
1101		sf_poll_locked(ifp, cmd, count);
1102	SF_UNLOCK(sc);
1103}
1104
1105static void
1106sf_poll_locked(struct ifnet *ifp, enum poll_cmd cmd, int count)
1107{
1108	struct sf_softc *sc = ifp->if_softc;
1109
1110	SF_LOCK_ASSERT(sc);
1111
1112	sc->rxcycles = count;
1113	sf_rxeof(sc);
1114	sf_txeof(sc);
1115	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1116		sf_start_locked(ifp);
1117
1118	if (cmd == POLL_AND_CHECK_STATUS) {
1119		u_int32_t status;
1120
1121		status = csr_read_4(sc, SF_ISR);
1122		if (status)
1123			csr_write_4(sc, SF_ISR, status);
1124
1125		if (status & SF_ISR_TX_LOFIFO)
1126			sf_txthresh_adjust(sc);
1127
1128		if (status & SF_ISR_ABNORMALINTR) {
1129			if (status & SF_ISR_STATSOFLOW) {
1130				callout_stop(&sc->sf_stat_callout);
1131				sf_stats_update(sc);
1132			} else
1133				sf_init_locked(sc);
1134		}
1135	}
1136}
1137#endif /* DEVICE_POLLING */
1138
1139static void
1140sf_intr(arg)
1141	void			*arg;
1142{
1143	struct sf_softc		*sc;
1144	struct ifnet		*ifp;
1145	u_int32_t		status;
1146
1147	sc = arg;
1148	SF_LOCK(sc);
1149
1150	ifp = sc->sf_ifp;
1151
1152#ifdef DEVICE_POLLING
1153	if (ifp->if_capenable & IFCAP_POLLING) {
1154		SF_UNLOCK(sc);
1155		return;
1156	}
1157#endif
1158
1159	if (!(csr_read_4(sc, SF_ISR_SHADOW) & SF_ISR_PCIINT_ASSERTED)) {
1160		SF_UNLOCK(sc);
1161		return;
1162	}
1163
1164	/* Disable interrupts. */
1165	csr_write_4(sc, SF_IMR, 0x00000000);
1166
1167	for (;;) {
1168		status = csr_read_4(sc, SF_ISR);
1169		if (status)
1170			csr_write_4(sc, SF_ISR, status);
1171
1172		if (!(status & SF_INTRS))
1173			break;
1174
1175		if (status & SF_ISR_RXDQ1_DMADONE)
1176			sf_rxeof(sc);
1177
1178		if (status & SF_ISR_TX_TXDONE ||
1179		    status & SF_ISR_TX_DMADONE ||
1180		    status & SF_ISR_TX_QUEUEDONE)
1181			sf_txeof(sc);
1182
1183		if (status & SF_ISR_TX_LOFIFO)
1184			sf_txthresh_adjust(sc);
1185
1186		if (status & SF_ISR_ABNORMALINTR) {
1187			if (status & SF_ISR_STATSOFLOW) {
1188				callout_stop(&sc->sf_stat_callout);
1189				sf_stats_update(sc);
1190			} else
1191				sf_init_locked(sc);
1192		}
1193	}
1194
1195	/* Re-enable interrupts. */
1196	csr_write_4(sc, SF_IMR, SF_INTRS);
1197
1198	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1199		sf_start_locked(ifp);
1200
1201	SF_UNLOCK(sc);
1202}
1203
1204static void
1205sf_init(xsc)
1206	void			*xsc;
1207{
1208	struct sf_softc		*sc;
1209
1210	sc = xsc;
1211	SF_LOCK(sc);
1212	sf_init_locked(sc);
1213	SF_UNLOCK(sc);
1214}
1215
1216static void
1217sf_init_locked(sc)
1218	struct sf_softc		*sc;
1219{
1220	struct ifnet		*ifp;
1221	struct mii_data		*mii;
1222	int			i;
1223
1224	SF_LOCK_ASSERT(sc);
1225	ifp = sc->sf_ifp;
1226	mii = device_get_softc(sc->sf_miibus);
1227
1228	sf_stop(sc);
1229	sf_reset(sc);
1230
1231	/* Init all the receive filter registers */
1232	for (i = SF_RXFILT_PERFECT_BASE;
1233	    i < (SF_RXFILT_HASH_MAX + 1); i += 4)
1234		csr_write_4(sc, i, 0);
1235
1236	/* Empty stats counter registers. */
1237	for (i = 0; i < sizeof(struct sf_stats)/sizeof(u_int32_t); i++)
1238		csr_write_4(sc, SF_STATS_BASE +
1239		    (i + sizeof(u_int32_t)), 0);
1240
1241	/* Init our MAC address */
1242	csr_write_4(sc, SF_PAR0, *(u_int32_t *)(&IF_LLADDR(sc->sf_ifp)[0]));
1243	csr_write_4(sc, SF_PAR1, *(u_int32_t *)(&IF_LLADDR(sc->sf_ifp)[4]));
1244	sf_setperf(sc, 0, IF_LLADDR(sc->sf_ifp));
1245
1246	if (sf_init_rx_ring(sc) == ENOBUFS) {
1247		device_printf(sc->sf_dev,
1248		    "initialization failed: no memory for rx buffers\n");
1249		return;
1250	}
1251
1252	sf_init_tx_ring(sc);
1253
1254	csr_write_4(sc, SF_RXFILT, SF_PERFMODE_NORMAL|SF_HASHMODE_WITHVLAN);
1255
1256	/* If we want promiscuous mode, set the allframes bit. */
1257	if (ifp->if_flags & IFF_PROMISC) {
1258		SF_SETBIT(sc, SF_RXFILT, SF_RXFILT_PROMISC);
1259	} else {
1260		SF_CLRBIT(sc, SF_RXFILT, SF_RXFILT_PROMISC);
1261	}
1262
1263	if (ifp->if_flags & IFF_BROADCAST) {
1264		SF_SETBIT(sc, SF_RXFILT, SF_RXFILT_BROAD);
1265	} else {
1266		SF_CLRBIT(sc, SF_RXFILT, SF_RXFILT_BROAD);
1267	}
1268
1269	/*
1270	 * Load the multicast filter.
1271	 */
1272	sf_setmulti(sc);
1273
1274	/* Init the completion queue indexes */
1275	csr_write_4(sc, SF_CQ_CONSIDX, 0);
1276	csr_write_4(sc, SF_CQ_PRODIDX, 0);
1277
1278	/* Init the RX completion queue */
1279	csr_write_4(sc, SF_RXCQ_CTL_1,
1280	    vtophys(sc->sf_ldata->sf_rx_clist) & SF_RXCQ_ADDR);
1281	SF_SETBIT(sc, SF_RXCQ_CTL_1, SF_RXCQTYPE_3);
1282
1283	/* Init RX DMA control. */
1284	SF_SETBIT(sc, SF_RXDMA_CTL, SF_RXDMA_REPORTBADPKTS);
1285
1286	/* Init the RX buffer descriptor queue. */
1287	csr_write_4(sc, SF_RXDQ_ADDR_Q1,
1288	    vtophys(sc->sf_ldata->sf_rx_dlist_big));
1289	csr_write_4(sc, SF_RXDQ_CTL_1, (MCLBYTES << 16) | SF_DESCSPACE_16BYTES);
1290	csr_write_4(sc, SF_RXDQ_PTR_Q1, SF_RX_DLIST_CNT - 1);
1291
1292	/* Init the TX completion queue */
1293	csr_write_4(sc, SF_TXCQ_CTL,
1294	    vtophys(sc->sf_ldata->sf_tx_clist) & SF_RXCQ_ADDR);
1295
1296	/* Init the TX buffer descriptor queue. */
1297	csr_write_4(sc, SF_TXDQ_ADDR_HIPRIO,
1298		vtophys(sc->sf_ldata->sf_tx_dlist));
1299	SF_SETBIT(sc, SF_TX_FRAMCTL, SF_TXFRMCTL_CPLAFTERTX);
1300	csr_write_4(sc, SF_TXDQ_CTL,
1301	    SF_TXBUFDESC_TYPE0|SF_TXMINSPACE_128BYTES|SF_TXSKIPLEN_8BYTES);
1302	SF_SETBIT(sc, SF_TXDQ_CTL, SF_TXDQCTL_NODMACMP);
1303
1304	/* Enable autopadding of short TX frames. */
1305	SF_SETBIT(sc, SF_MACCFG_1, SF_MACCFG1_AUTOPAD);
1306
1307#ifdef DEVICE_POLLING
1308	/* Disable interrupts if we are polling. */
1309	if (ifp->if_capenable & IFCAP_POLLING)
1310		csr_write_4(sc, SF_IMR, 0x00000000);
1311	else
1312#endif
1313
1314	/* Enable interrupts. */
1315	csr_write_4(sc, SF_IMR, SF_INTRS);
1316	SF_SETBIT(sc, SF_PCI_DEVCFG, SF_PCIDEVCFG_INTR_ENB);
1317
1318	/* Enable the RX and TX engines. */
1319	SF_SETBIT(sc, SF_GEN_ETH_CTL, SF_ETHCTL_RX_ENB|SF_ETHCTL_RXDMA_ENB);
1320	SF_SETBIT(sc, SF_GEN_ETH_CTL, SF_ETHCTL_TX_ENB|SF_ETHCTL_TXDMA_ENB);
1321
1322	/*mii_mediachg(mii);*/
1323	sf_ifmedia_upd_locked(ifp);
1324
1325	ifp->if_drv_flags |= IFF_DRV_RUNNING;
1326	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1327
1328	callout_reset(&sc->sf_stat_callout, hz, sf_stats_update, sc);
1329}
1330
1331static int
1332sf_encap(sc, c, m_head)
1333	struct sf_softc		*sc;
1334	struct sf_tx_bufdesc_type0 *c;
1335	struct mbuf		*m_head;
1336{
1337	int			frag = 0;
1338	struct sf_frag		*f = NULL;
1339	struct mbuf		*m;
1340
1341	m = m_head;
1342
1343	for (m = m_head, frag = 0; m != NULL; m = m->m_next) {
1344		if (m->m_len != 0) {
1345			if (frag == SF_MAXFRAGS)
1346				break;
1347			f = &c->sf_frags[frag];
1348			if (frag == 0)
1349				f->sf_pktlen = m_head->m_pkthdr.len;
1350			f->sf_fraglen = m->m_len;
1351			f->sf_addr = vtophys(mtod(m, vm_offset_t));
1352			frag++;
1353		}
1354	}
1355
1356	if (m != NULL) {
1357		struct mbuf		*m_new = NULL;
1358
1359		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1360		if (m_new == NULL) {
1361			if_printf(sc->sf_ifp, "no memory for tx list\n");
1362			return(1);
1363		}
1364
1365		if (m_head->m_pkthdr.len > MHLEN) {
1366			MCLGET(m_new, M_DONTWAIT);
1367			if (!(m_new->m_flags & M_EXT)) {
1368				m_freem(m_new);
1369				if_printf(sc->sf_ifp, "no memory for tx list\n");
1370				return(1);
1371			}
1372		}
1373		m_copydata(m_head, 0, m_head->m_pkthdr.len,
1374		    mtod(m_new, caddr_t));
1375		m_new->m_pkthdr.len = m_new->m_len = m_head->m_pkthdr.len;
1376		m_freem(m_head);
1377		m_head = m_new;
1378		f = &c->sf_frags[0];
1379		f->sf_fraglen = f->sf_pktlen = m_head->m_pkthdr.len;
1380		f->sf_addr = vtophys(mtod(m_head, caddr_t));
1381		frag = 1;
1382	}
1383
1384	c->sf_mbuf = m_head;
1385	c->sf_id = SF_TX_BUFDESC_ID;
1386	c->sf_fragcnt = frag;
1387	c->sf_intr = 1;
1388	c->sf_caltcp = 0;
1389	c->sf_crcen = 1;
1390
1391	return(0);
1392}
1393
1394static void
1395sf_start(ifp)
1396	struct ifnet		*ifp;
1397{
1398	struct sf_softc		*sc;
1399
1400	sc = ifp->if_softc;
1401	SF_LOCK(sc);
1402	sf_start_locked(ifp);
1403	SF_UNLOCK(sc);
1404}
1405
1406static void
1407sf_start_locked(ifp)
1408	struct ifnet		*ifp;
1409{
1410	struct sf_softc		*sc;
1411	struct sf_tx_bufdesc_type0 *cur_tx = NULL;
1412	struct mbuf		*m_head = NULL;
1413	int			i, txprod;
1414
1415	sc = ifp->if_softc;
1416	SF_LOCK_ASSERT(sc);
1417
1418	if (!sc->sf_link && ifp->if_snd.ifq_len < 10)
1419		return;
1420
1421	if (ifp->if_drv_flags & IFF_DRV_OACTIVE)
1422		return;
1423
1424	txprod = csr_read_4(sc, SF_TXDQ_PRODIDX);
1425	i = SF_IDX_HI(txprod) >> 4;
1426
1427	if (sc->sf_ldata->sf_tx_dlist[i].sf_mbuf != NULL) {
1428		if_printf(ifp, "TX ring full, resetting\n");
1429		sf_init_locked(sc);
1430		txprod = csr_read_4(sc, SF_TXDQ_PRODIDX);
1431		i = SF_IDX_HI(txprod) >> 4;
1432	}
1433
1434	while(sc->sf_ldata->sf_tx_dlist[i].sf_mbuf == NULL) {
1435		if (sc->sf_tx_cnt >= (SF_TX_DLIST_CNT - 5)) {
1436			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1437			cur_tx = NULL;
1438			break;
1439		}
1440		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
1441		if (m_head == NULL)
1442			break;
1443
1444		cur_tx = &sc->sf_ldata->sf_tx_dlist[i];
1445		if (sf_encap(sc, cur_tx, m_head)) {
1446			IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
1447			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1448			cur_tx = NULL;
1449			break;
1450		}
1451
1452		/*
1453		 * If there's a BPF listener, bounce a copy of this frame
1454		 * to him.
1455		 */
1456		BPF_MTAP(ifp, m_head);
1457
1458		SF_INC(i, SF_TX_DLIST_CNT);
1459		sc->sf_tx_cnt++;
1460		/*
1461		 * Don't get the TX DMA queue get too full.
1462		 */
1463		if (sc->sf_tx_cnt > 64)
1464			break;
1465	}
1466
1467	if (cur_tx == NULL)
1468		return;
1469
1470	/* Transmit */
1471	csr_write_4(sc, SF_TXDQ_PRODIDX,
1472	    (txprod & ~SF_TXDQ_PRODIDX_HIPRIO) |
1473	    ((i << 20) & 0xFFFF0000));
1474
1475	ifp->if_timer = 5;
1476}
1477
1478static void
1479sf_stop(sc)
1480	struct sf_softc		*sc;
1481{
1482	int			i;
1483	struct ifnet		*ifp;
1484
1485	SF_LOCK_ASSERT(sc);
1486
1487	ifp = sc->sf_ifp;
1488
1489	callout_stop(&sc->sf_stat_callout);
1490
1491	csr_write_4(sc, SF_GEN_ETH_CTL, 0);
1492	csr_write_4(sc, SF_CQ_CONSIDX, 0);
1493	csr_write_4(sc, SF_CQ_PRODIDX, 0);
1494	csr_write_4(sc, SF_RXDQ_ADDR_Q1, 0);
1495	csr_write_4(sc, SF_RXDQ_CTL_1, 0);
1496	csr_write_4(sc, SF_RXDQ_PTR_Q1, 0);
1497	csr_write_4(sc, SF_TXCQ_CTL, 0);
1498	csr_write_4(sc, SF_TXDQ_ADDR_HIPRIO, 0);
1499	csr_write_4(sc, SF_TXDQ_CTL, 0);
1500	sf_reset(sc);
1501
1502	sc->sf_link = 0;
1503
1504	for (i = 0; i < SF_RX_DLIST_CNT; i++) {
1505		if (sc->sf_ldata->sf_rx_dlist_big[i].sf_mbuf != NULL) {
1506			m_freem(sc->sf_ldata->sf_rx_dlist_big[i].sf_mbuf);
1507			sc->sf_ldata->sf_rx_dlist_big[i].sf_mbuf = NULL;
1508		}
1509	}
1510
1511	for (i = 0; i < SF_TX_DLIST_CNT; i++) {
1512		if (sc->sf_ldata->sf_tx_dlist[i].sf_mbuf != NULL) {
1513			m_freem(sc->sf_ldata->sf_tx_dlist[i].sf_mbuf);
1514			sc->sf_ldata->sf_tx_dlist[i].sf_mbuf = NULL;
1515		}
1516	}
1517
1518	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING|IFF_DRV_OACTIVE);
1519}
1520
1521/*
1522 * Note: it is important that this function not be interrupted. We
1523 * use a two-stage register access scheme: if we are interrupted in
1524 * between setting the indirect address register and reading from the
1525 * indirect data register, the contents of the address register could
1526 * be changed out from under us.
1527 */
1528static void
1529sf_stats_update(xsc)
1530	void			*xsc;
1531{
1532	struct sf_softc		*sc;
1533	struct ifnet		*ifp;
1534	struct mii_data		*mii;
1535	struct sf_stats		stats;
1536	u_int32_t		*ptr;
1537	int			i;
1538
1539	sc = xsc;
1540	SF_LOCK_ASSERT(sc);
1541	ifp = sc->sf_ifp;
1542	mii = device_get_softc(sc->sf_miibus);
1543
1544	ptr = (u_int32_t *)&stats;
1545	for (i = 0; i < sizeof(stats)/sizeof(u_int32_t); i++)
1546		ptr[i] = csr_read_4(sc, SF_STATS_BASE +
1547		    (i + sizeof(u_int32_t)));
1548
1549	for (i = 0; i < sizeof(stats)/sizeof(u_int32_t); i++)
1550		csr_write_4(sc, SF_STATS_BASE +
1551		    (i + sizeof(u_int32_t)), 0);
1552
1553	ifp->if_collisions += stats.sf_tx_single_colls +
1554	    stats.sf_tx_multi_colls + stats.sf_tx_excess_colls;
1555
1556	mii_tick(mii);
1557
1558	if (!sc->sf_link && mii->mii_media_status & IFM_ACTIVE &&
1559	    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
1560		sc->sf_link++;
1561		if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1562			sf_start_locked(ifp);
1563	}
1564
1565	callout_reset(&sc->sf_stat_callout, hz, sf_stats_update, sc);
1566}
1567
1568static void
1569sf_watchdog(ifp)
1570	struct ifnet		*ifp;
1571{
1572	struct sf_softc		*sc;
1573
1574	sc = ifp->if_softc;
1575
1576	SF_LOCK(sc);
1577
1578	ifp->if_oerrors++;
1579	if_printf(ifp, "watchdog timeout\n");
1580
1581	sf_stop(sc);
1582	sf_reset(sc);
1583	sf_init_locked(sc);
1584
1585	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1586		sf_start_locked(ifp);
1587
1588	SF_UNLOCK(sc);
1589}
1590
1591static void
1592sf_shutdown(dev)
1593	device_t		dev;
1594{
1595	struct sf_softc		*sc;
1596
1597	sc = device_get_softc(dev);
1598
1599	SF_LOCK(sc);
1600	sf_stop(sc);
1601	SF_UNLOCK(sc);
1602}
1603