if_sf.c revision 149240
1/*-
2 * Copyright (c) 1997, 1998, 1999
3 *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 *    must display the following acknowledgement:
15 *	This product includes software developed by Bill Paul.
16 * 4. Neither the name of the author nor the names of any co-contributors
17 *    may be used to endorse or promote products derived from this software
18 *    without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30 * THE POSSIBILITY OF SUCH DAMAGE.
31 */
32
33#include <sys/cdefs.h>
34__FBSDID("$FreeBSD: head/sys/dev/sf/if_sf.c 149240 2005-08-18 17:09:16Z jhb $");
35
36/*
37 * Adaptec AIC-6915 "Starfire" PCI fast ethernet driver for FreeBSD.
38 * Programming manual is available from:
39 * http://download.adaptec.com/pdfs/user_guides/aic6915_pg.pdf.
40 *
41 * Written by Bill Paul <wpaul@ctr.columbia.edu>
42 * Department of Electical Engineering
43 * Columbia University, New York City
44 */
45/*
46 * The Adaptec AIC-6915 "Starfire" is a 64-bit 10/100 PCI ethernet
47 * controller designed with flexibility and reducing CPU load in mind.
48 * The Starfire offers high and low priority buffer queues, a
49 * producer/consumer index mechanism and several different buffer
50 * queue and completion queue descriptor types. Any one of a number
51 * of different driver designs can be used, depending on system and
52 * OS requirements. This driver makes use of type0 transmit frame
53 * descriptors (since BSD fragments packets across an mbuf chain)
54 * and two RX buffer queues prioritized on size (one queue for small
55 * frames that will fit into a single mbuf, another with full size
56 * mbuf clusters for everything else). The producer/consumer indexes
57 * and completion queues are also used.
58 *
59 * One downside to the Starfire has to do with alignment: buffer
60 * queues must be aligned on 256-byte boundaries, and receive buffers
61 * must be aligned on longword boundaries. The receive buffer alignment
62 * causes problems on the Alpha platform, where the packet payload
63 * should be longword aligned. There is no simple way around this.
64 *
65 * For receive filtering, the Starfire offers 16 perfect filter slots
66 * and a 512-bit hash table.
67 *
68 * The Starfire has no internal transceiver, relying instead on an
69 * external MII-based transceiver. Accessing registers on external
70 * PHYs is done through a special register map rather than with the
71 * usual bitbang MDIO method.
72 *
73 * Acesssing the registers on the Starfire is a little tricky. The
74 * Starfire has a 512K internal register space. When programmed for
75 * PCI memory mapped mode, the entire register space can be accessed
76 * directly. However in I/O space mode, only 256 bytes are directly
77 * mapped into PCI I/O space. The other registers can be accessed
78 * indirectly using the SF_INDIRECTIO_ADDR and SF_INDIRECTIO_DATA
79 * registers inside the 256-byte I/O window.
80 */
81
82#include <sys/param.h>
83#include <sys/systm.h>
84#include <sys/sockio.h>
85#include <sys/mbuf.h>
86#include <sys/malloc.h>
87#include <sys/kernel.h>
88#include <sys/module.h>
89#include <sys/socket.h>
90
91#include <net/if.h>
92#include <net/if_arp.h>
93#include <net/ethernet.h>
94#include <net/if_dl.h>
95#include <net/if_media.h>
96#include <net/if_types.h>
97
98#include <net/bpf.h>
99
100#include <vm/vm.h>              /* for vtophys */
101#include <vm/pmap.h>            /* for vtophys */
102#include <machine/bus.h>
103#include <machine/resource.h>
104#include <sys/bus.h>
105#include <sys/rman.h>
106
107#include <dev/mii/mii.h>
108#include <dev/mii/miivar.h>
109
110/* "controller miibus0" required.  See GENERIC if you get errors here. */
111#include "miibus_if.h"
112
113#include <dev/pci/pcireg.h>
114#include <dev/pci/pcivar.h>
115
116#define SF_USEIOSPACE
117
118#include <pci/if_sfreg.h>
119
120MODULE_DEPEND(sf, pci, 1, 1, 1);
121MODULE_DEPEND(sf, ether, 1, 1, 1);
122MODULE_DEPEND(sf, miibus, 1, 1, 1);
123
124static struct sf_type sf_devs[] = {
125	{ AD_VENDORID, AD_DEVICEID_STARFIRE,
126		"Adaptec AIC-6915 10/100BaseTX" },
127	{ 0, 0, NULL }
128};
129
130static int sf_probe(device_t);
131static int sf_attach(device_t);
132static int sf_detach(device_t);
133static void sf_intr(void *);
134static void sf_stats_update(void *);
135static void sf_rxeof(struct sf_softc *);
136static void sf_txeof(struct sf_softc *);
137static int sf_encap(struct sf_softc *, struct sf_tx_bufdesc_type0 *,
138		struct mbuf *);
139static void sf_start(struct ifnet *);
140static void sf_start_locked(struct ifnet *);
141static int sf_ioctl(struct ifnet *, u_long, caddr_t);
142static void sf_init(void *);
143static void sf_init_locked(struct sf_softc *);
144static void sf_stop(struct sf_softc *);
145static void sf_watchdog(struct ifnet *);
146static void sf_shutdown(device_t);
147static int sf_ifmedia_upd(struct ifnet *);
148static void sf_ifmedia_upd_locked(struct ifnet *);
149static void sf_ifmedia_sts(struct ifnet *, struct ifmediareq *);
150static void sf_reset(struct sf_softc *);
151static int sf_init_rx_ring(struct sf_softc *);
152static void sf_init_tx_ring(struct sf_softc *);
153static int sf_newbuf(struct sf_softc *, struct sf_rx_bufdesc_type0 *,
154		struct mbuf *);
155static void sf_setmulti(struct sf_softc *);
156static int sf_setperf(struct sf_softc *, int, caddr_t);
157static int sf_sethash(struct sf_softc *, caddr_t, int);
158#ifdef notdef
159static int sf_setvlan(struct sf_softc *, int, u_int32_t);
160#endif
161
162static u_int8_t sf_read_eeprom(struct sf_softc *, int);
163
164static int sf_miibus_readreg(device_t, int, int);
165static int sf_miibus_writereg(device_t, int, int, int);
166static void sf_miibus_statchg(device_t);
167#ifdef DEVICE_POLLING
168static void sf_poll(struct ifnet *ifp, enum poll_cmd cmd,
169				 int count);
170static void sf_poll_locked(struct ifnet *ifp, enum poll_cmd cmd,
171				 int count);
172#endif /* DEVICE_POLLING */
173
174static u_int32_t csr_read_4(struct sf_softc *, int);
175static void csr_write_4(struct sf_softc *, int, u_int32_t);
176static void sf_txthresh_adjust(struct sf_softc *);
177
178#ifdef SF_USEIOSPACE
179#define SF_RES			SYS_RES_IOPORT
180#define SF_RID			SF_PCI_LOIO
181#else
182#define SF_RES			SYS_RES_MEMORY
183#define SF_RID			SF_PCI_LOMEM
184#endif
185
186static device_method_t sf_methods[] = {
187	/* Device interface */
188	DEVMETHOD(device_probe,		sf_probe),
189	DEVMETHOD(device_attach,	sf_attach),
190	DEVMETHOD(device_detach,	sf_detach),
191	DEVMETHOD(device_shutdown,	sf_shutdown),
192
193	/* bus interface */
194	DEVMETHOD(bus_print_child,	bus_generic_print_child),
195	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
196
197	/* MII interface */
198	DEVMETHOD(miibus_readreg,	sf_miibus_readreg),
199	DEVMETHOD(miibus_writereg,	sf_miibus_writereg),
200	DEVMETHOD(miibus_statchg,	sf_miibus_statchg),
201
202	{ 0, 0 }
203};
204
205static driver_t sf_driver = {
206	"sf",
207	sf_methods,
208	sizeof(struct sf_softc),
209};
210
211static devclass_t sf_devclass;
212
213DRIVER_MODULE(sf, pci, sf_driver, sf_devclass, 0, 0);
214DRIVER_MODULE(miibus, sf, miibus_driver, miibus_devclass, 0, 0);
215
216#define SF_SETBIT(sc, reg, x)	\
217	csr_write_4(sc, reg, csr_read_4(sc, reg) | (x))
218
219#define SF_CLRBIT(sc, reg, x)				\
220	csr_write_4(sc, reg, csr_read_4(sc, reg) & ~(x))
221
222static u_int32_t
223csr_read_4(sc, reg)
224	struct sf_softc		*sc;
225	int			reg;
226{
227	u_int32_t		val;
228
229#ifdef SF_USEIOSPACE
230	CSR_WRITE_4(sc, SF_INDIRECTIO_ADDR, reg + SF_RMAP_INTREG_BASE);
231	val = CSR_READ_4(sc, SF_INDIRECTIO_DATA);
232#else
233	val = CSR_READ_4(sc, (reg + SF_RMAP_INTREG_BASE));
234#endif
235
236	return(val);
237}
238
239static u_int8_t
240sf_read_eeprom(sc, reg)
241	struct sf_softc		*sc;
242	int			reg;
243{
244	u_int8_t		val;
245
246	val = (csr_read_4(sc, SF_EEADDR_BASE +
247	    (reg & 0xFFFFFFFC)) >> (8 * (reg & 3))) & 0xFF;
248
249	return(val);
250}
251
252static void
253csr_write_4(sc, reg, val)
254	struct sf_softc		*sc;
255	int			reg;
256	u_int32_t		val;
257{
258#ifdef SF_USEIOSPACE
259	CSR_WRITE_4(sc, SF_INDIRECTIO_ADDR, reg + SF_RMAP_INTREG_BASE);
260	CSR_WRITE_4(sc, SF_INDIRECTIO_DATA, val);
261#else
262	CSR_WRITE_4(sc, (reg + SF_RMAP_INTREG_BASE), val);
263#endif
264}
265
266/*
267 * Copy the address 'mac' into the perfect RX filter entry at
268 * offset 'idx.' The perfect filter only has 16 entries so do
269 * some sanity tests.
270 */
271static int
272sf_setperf(sc, idx, mac)
273	struct sf_softc		*sc;
274	int			idx;
275	caddr_t			mac;
276{
277	u_int16_t		*p;
278
279	if (idx < 0 || idx > SF_RXFILT_PERFECT_CNT)
280		return(EINVAL);
281
282	if (mac == NULL)
283		return(EINVAL);
284
285	p = (u_int16_t *)mac;
286
287	csr_write_4(sc, SF_RXFILT_PERFECT_BASE +
288	    (idx * SF_RXFILT_PERFECT_SKIP), htons(p[2]));
289	csr_write_4(sc, SF_RXFILT_PERFECT_BASE +
290	    (idx * SF_RXFILT_PERFECT_SKIP) + 4, htons(p[1]));
291	csr_write_4(sc, SF_RXFILT_PERFECT_BASE +
292	    (idx * SF_RXFILT_PERFECT_SKIP) + 8, htons(p[0]));
293
294	return(0);
295}
296
297/*
298 * Set the bit in the 512-bit hash table that corresponds to the
299 * specified mac address 'mac.' If 'prio' is nonzero, update the
300 * priority hash table instead of the filter hash table.
301 */
302static int
303sf_sethash(sc, mac, prio)
304	struct sf_softc		*sc;
305	caddr_t			mac;
306	int			prio;
307{
308	u_int32_t		h;
309
310	if (mac == NULL)
311		return(EINVAL);
312
313	h = ether_crc32_be(mac, ETHER_ADDR_LEN) >> 23;
314
315	if (prio) {
316		SF_SETBIT(sc, SF_RXFILT_HASH_BASE + SF_RXFILT_HASH_PRIOOFF +
317		    (SF_RXFILT_HASH_SKIP * (h >> 4)), (1 << (h & 0xF)));
318	} else {
319		SF_SETBIT(sc, SF_RXFILT_HASH_BASE + SF_RXFILT_HASH_ADDROFF +
320		    (SF_RXFILT_HASH_SKIP * (h >> 4)), (1 << (h & 0xF)));
321	}
322
323	return(0);
324}
325
326#ifdef notdef
327/*
328 * Set a VLAN tag in the receive filter.
329 */
330static int
331sf_setvlan(sc, idx, vlan)
332	struct sf_softc		*sc;
333	int			idx;
334	u_int32_t		vlan;
335{
336	if (idx < 0 || idx >> SF_RXFILT_HASH_CNT)
337		return(EINVAL);
338
339	csr_write_4(sc, SF_RXFILT_HASH_BASE +
340	    (idx * SF_RXFILT_HASH_SKIP) + SF_RXFILT_HASH_VLANOFF, vlan);
341
342	return(0);
343}
344#endif
345
346static int
347sf_miibus_readreg(dev, phy, reg)
348	device_t		dev;
349	int			phy, reg;
350{
351	struct sf_softc		*sc;
352	int			i;
353	u_int32_t		val = 0;
354
355	sc = device_get_softc(dev);
356
357	for (i = 0; i < SF_TIMEOUT; i++) {
358		val = csr_read_4(sc, SF_PHY_REG(phy, reg));
359		if (val & SF_MII_DATAVALID)
360			break;
361	}
362
363	if (i == SF_TIMEOUT)
364		return(0);
365
366	if ((val & 0x0000FFFF) == 0xFFFF)
367		return(0);
368
369	return(val & 0x0000FFFF);
370}
371
372static int
373sf_miibus_writereg(dev, phy, reg, val)
374	device_t		dev;
375	int			phy, reg, val;
376{
377	struct sf_softc		*sc;
378	int			i;
379	int			busy;
380
381	sc = device_get_softc(dev);
382
383	csr_write_4(sc, SF_PHY_REG(phy, reg), val);
384
385	for (i = 0; i < SF_TIMEOUT; i++) {
386		busy = csr_read_4(sc, SF_PHY_REG(phy, reg));
387		if (!(busy & SF_MII_BUSY))
388			break;
389	}
390
391	return(0);
392}
393
394static void
395sf_miibus_statchg(dev)
396	device_t		dev;
397{
398	struct sf_softc		*sc;
399	struct mii_data		*mii;
400
401	sc = device_get_softc(dev);
402	mii = device_get_softc(sc->sf_miibus);
403
404	if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
405		SF_SETBIT(sc, SF_MACCFG_1, SF_MACCFG1_FULLDUPLEX);
406		csr_write_4(sc, SF_BKTOBKIPG, SF_IPGT_FDX);
407	} else {
408		SF_CLRBIT(sc, SF_MACCFG_1, SF_MACCFG1_FULLDUPLEX);
409		csr_write_4(sc, SF_BKTOBKIPG, SF_IPGT_HDX);
410	}
411}
412
413static void
414sf_setmulti(sc)
415	struct sf_softc		*sc;
416{
417	struct ifnet		*ifp;
418	int			i;
419	struct ifmultiaddr	*ifma;
420	u_int8_t		dummy[] = { 0, 0, 0, 0, 0, 0 };
421
422	ifp = sc->sf_ifp;
423
424	/* First zot all the existing filters. */
425	for (i = 1; i < SF_RXFILT_PERFECT_CNT; i++)
426		sf_setperf(sc, i, (char *)&dummy);
427	for (i = SF_RXFILT_HASH_BASE;
428	    i < (SF_RXFILT_HASH_MAX + 1); i += 4)
429		csr_write_4(sc, i, 0);
430	SF_CLRBIT(sc, SF_RXFILT, SF_RXFILT_ALLMULTI);
431
432	/* Now program new ones. */
433	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
434		SF_SETBIT(sc, SF_RXFILT, SF_RXFILT_ALLMULTI);
435	} else {
436		i = 1;
437		IF_ADDR_LOCK(ifp);
438		TAILQ_FOREACH_REVERSE(ifma, &ifp->if_multiaddrs, ifmultihead, ifma_link) {
439			if (ifma->ifma_addr->sa_family != AF_LINK)
440				continue;
441			/*
442			 * Program the first 15 multicast groups
443			 * into the perfect filter. For all others,
444			 * use the hash table.
445			 */
446			if (i < SF_RXFILT_PERFECT_CNT) {
447				sf_setperf(sc, i,
448			LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
449				i++;
450				continue;
451			}
452
453			sf_sethash(sc,
454			    LLADDR((struct sockaddr_dl *)ifma->ifma_addr), 0);
455		}
456		IF_ADDR_UNLOCK(ifp);
457	}
458}
459
460/*
461 * Set media options.
462 */
463static int
464sf_ifmedia_upd(ifp)
465	struct ifnet		*ifp;
466{
467	struct sf_softc		*sc;
468
469	sc = ifp->if_softc;
470	SF_LOCK(sc);
471	sf_ifmedia_upd_locked(ifp);
472	SF_UNLOCK(sc);
473
474	return(0);
475}
476
477static void
478sf_ifmedia_upd_locked(ifp)
479	struct ifnet		*ifp;
480{
481	struct sf_softc		*sc;
482	struct mii_data		*mii;
483
484	sc = ifp->if_softc;
485	mii = device_get_softc(sc->sf_miibus);
486	SF_LOCK_ASSERT(sc);
487	sc->sf_link = 0;
488	if (mii->mii_instance) {
489		struct mii_softc        *miisc;
490		LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
491			mii_phy_reset(miisc);
492	}
493	mii_mediachg(mii);
494}
495
496/*
497 * Report current media status.
498 */
499static void
500sf_ifmedia_sts(ifp, ifmr)
501	struct ifnet		*ifp;
502	struct ifmediareq	*ifmr;
503{
504	struct sf_softc		*sc;
505	struct mii_data		*mii;
506
507	sc = ifp->if_softc;
508	SF_LOCK(sc);
509	mii = device_get_softc(sc->sf_miibus);
510
511	mii_pollstat(mii);
512	ifmr->ifm_active = mii->mii_media_active;
513	ifmr->ifm_status = mii->mii_media_status;
514	SF_UNLOCK(sc);
515}
516
517static int
518sf_ioctl(ifp, command, data)
519	struct ifnet		*ifp;
520	u_long			command;
521	caddr_t			data;
522{
523	struct sf_softc		*sc = ifp->if_softc;
524	struct ifreq		*ifr = (struct ifreq *) data;
525	struct mii_data		*mii;
526	int			error = 0;
527
528	switch(command) {
529	case SIOCSIFFLAGS:
530		SF_LOCK(sc);
531		if (ifp->if_flags & IFF_UP) {
532			if (ifp->if_drv_flags & IFF_DRV_RUNNING &&
533			    ifp->if_flags & IFF_PROMISC &&
534			    !(sc->sf_if_flags & IFF_PROMISC)) {
535				SF_SETBIT(sc, SF_RXFILT, SF_RXFILT_PROMISC);
536			} else if (ifp->if_drv_flags & IFF_DRV_RUNNING &&
537			    !(ifp->if_flags & IFF_PROMISC) &&
538			    sc->sf_if_flags & IFF_PROMISC) {
539				SF_CLRBIT(sc, SF_RXFILT, SF_RXFILT_PROMISC);
540			} else if (!(ifp->if_drv_flags & IFF_DRV_RUNNING))
541				sf_init_locked(sc);
542		} else {
543			if (ifp->if_drv_flags & IFF_DRV_RUNNING)
544				sf_stop(sc);
545		}
546		sc->sf_if_flags = ifp->if_flags;
547		SF_UNLOCK(sc);
548		error = 0;
549		break;
550	case SIOCADDMULTI:
551	case SIOCDELMULTI:
552		SF_LOCK(sc);
553		sf_setmulti(sc);
554		SF_UNLOCK(sc);
555		error = 0;
556		break;
557	case SIOCGIFMEDIA:
558	case SIOCSIFMEDIA:
559		mii = device_get_softc(sc->sf_miibus);
560		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
561		break;
562	case SIOCSIFCAP:
563		SF_LOCK(sc);
564		ifp->if_capenable &= ~IFCAP_POLLING;
565		ifp->if_capenable |= ifr->ifr_reqcap & IFCAP_POLLING;
566		SF_UNLOCK(sc);
567		break;
568	default:
569		error = ether_ioctl(ifp, command, data);
570		break;
571	}
572
573	return(error);
574}
575
576static void
577sf_reset(sc)
578	struct sf_softc		*sc;
579{
580	register int		i;
581
582	csr_write_4(sc, SF_GEN_ETH_CTL, 0);
583	SF_SETBIT(sc, SF_MACCFG_1, SF_MACCFG1_SOFTRESET);
584	DELAY(1000);
585	SF_CLRBIT(sc, SF_MACCFG_1, SF_MACCFG1_SOFTRESET);
586
587	SF_SETBIT(sc, SF_PCI_DEVCFG, SF_PCIDEVCFG_RESET);
588
589	for (i = 0; i < SF_TIMEOUT; i++) {
590		DELAY(10);
591		if (!(csr_read_4(sc, SF_PCI_DEVCFG) & SF_PCIDEVCFG_RESET))
592			break;
593	}
594
595	if (i == SF_TIMEOUT)
596		if_printf(sc->sf_ifp, "reset never completed!\n");
597
598	/* Wait a little while for the chip to get its brains in order. */
599	DELAY(1000);
600}
601
602/*
603 * Probe for an Adaptec AIC-6915 chip. Check the PCI vendor and device
604 * IDs against our list and return a device name if we find a match.
605 * We also check the subsystem ID so that we can identify exactly which
606 * NIC has been found, if possible.
607 */
608static int
609sf_probe(dev)
610	device_t		dev;
611{
612	struct sf_type		*t;
613
614	t = sf_devs;
615
616	while(t->sf_name != NULL) {
617		if ((pci_get_vendor(dev) == t->sf_vid) &&
618		    (pci_get_device(dev) == t->sf_did)) {
619			switch((pci_read_config(dev,
620			    SF_PCI_SUBVEN_ID, 4) >> 16) & 0xFFFF) {
621			case AD_SUBSYSID_62011_REV0:
622			case AD_SUBSYSID_62011_REV1:
623				device_set_desc(dev,
624				    "Adaptec ANA-62011 10/100BaseTX");
625				return (BUS_PROBE_DEFAULT);
626			case AD_SUBSYSID_62022:
627				device_set_desc(dev,
628				    "Adaptec ANA-62022 10/100BaseTX");
629				return (BUS_PROBE_DEFAULT);
630			case AD_SUBSYSID_62044_REV0:
631			case AD_SUBSYSID_62044_REV1:
632				device_set_desc(dev,
633				    "Adaptec ANA-62044 10/100BaseTX");
634				return (BUS_PROBE_DEFAULT);
635			case AD_SUBSYSID_62020:
636				device_set_desc(dev,
637				    "Adaptec ANA-62020 10/100BaseFX");
638				return (BUS_PROBE_DEFAULT);
639			case AD_SUBSYSID_69011:
640				device_set_desc(dev,
641				    "Adaptec ANA-69011 10/100BaseTX");
642				return (BUS_PROBE_DEFAULT);
643			default:
644				device_set_desc(dev, t->sf_name);
645				return (BUS_PROBE_DEFAULT);
646				break;
647			}
648		}
649		t++;
650	}
651
652	return(ENXIO);
653}
654
655/*
656 * Attach the interface. Allocate softc structures, do ifmedia
657 * setup and ethernet/BPF attach.
658 */
659static int
660sf_attach(dev)
661	device_t		dev;
662{
663	int			i;
664	struct sf_softc		*sc;
665	struct ifnet		*ifp;
666	int			rid, error = 0;
667	u_char			eaddr[6];
668
669	sc = device_get_softc(dev);
670
671	mtx_init(&sc->sf_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
672	    MTX_DEF);
673	/*
674	 * Map control/status registers.
675	 */
676	pci_enable_busmaster(dev);
677
678	rid = SF_RID;
679	sc->sf_res = bus_alloc_resource_any(dev, SF_RES, &rid, RF_ACTIVE);
680
681	if (sc->sf_res == NULL) {
682		device_printf(dev, "couldn't map ports\n");
683		error = ENXIO;
684		goto fail;
685	}
686
687	sc->sf_btag = rman_get_bustag(sc->sf_res);
688	sc->sf_bhandle = rman_get_bushandle(sc->sf_res);
689
690	/* Allocate interrupt */
691	rid = 0;
692	sc->sf_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
693	    RF_SHAREABLE | RF_ACTIVE);
694
695	if (sc->sf_irq == NULL) {
696		device_printf(dev, "couldn't map interrupt\n");
697		error = ENXIO;
698		goto fail;
699	}
700
701	callout_init_mtx(&sc->sf_stat_callout, &sc->sf_mtx, 0);
702
703	/* Reset the adapter. */
704	sf_reset(sc);
705
706	/*
707	 * Get station address from the EEPROM.
708	 */
709	for (i = 0; i < ETHER_ADDR_LEN; i++)
710		eaddr[i] =
711		    sf_read_eeprom(sc, SF_EE_NODEADDR + ETHER_ADDR_LEN - i);
712
713	/* Allocate the descriptor queues. */
714	sc->sf_ldata = contigmalloc(sizeof(struct sf_list_data), M_DEVBUF,
715	    M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0);
716
717	if (sc->sf_ldata == NULL) {
718		device_printf(dev, "no memory for list buffers!\n");
719		error = ENXIO;
720		goto fail;
721	}
722
723	bzero(sc->sf_ldata, sizeof(struct sf_list_data));
724
725	ifp = sc->sf_ifp = if_alloc(IFT_ETHER);
726	if (ifp == NULL) {
727		device_printf(dev, "can not if_alloc()\n");
728		error = ENOSPC;
729		goto fail;
730	}
731
732	/* Do MII setup. */
733	if (mii_phy_probe(dev, &sc->sf_miibus,
734	    sf_ifmedia_upd, sf_ifmedia_sts)) {
735		device_printf(dev, "MII without any phy!\n");
736		error = ENXIO;
737		goto fail;
738	}
739
740	ifp->if_softc = sc;
741	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
742	ifp->if_mtu = ETHERMTU;
743	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
744	ifp->if_ioctl = sf_ioctl;
745	ifp->if_start = sf_start;
746	ifp->if_watchdog = sf_watchdog;
747	ifp->if_init = sf_init;
748	ifp->if_baudrate = 10000000;
749	IFQ_SET_MAXLEN(&ifp->if_snd, SF_TX_DLIST_CNT - 1);
750	ifp->if_snd.ifq_drv_maxlen = SF_TX_DLIST_CNT - 1;
751	IFQ_SET_READY(&ifp->if_snd);
752#ifdef DEVICE_POLLING
753	ifp->if_capabilities |= IFCAP_POLLING;
754#endif /* DEVICE_POLLING */
755	ifp->if_capenable = ifp->if_capabilities;
756
757	/*
758	 * Call MI attach routine.
759	 */
760	ether_ifattach(ifp, eaddr);
761
762	/* Hook interrupt last to avoid having to lock softc */
763	error = bus_setup_intr(dev, sc->sf_irq, INTR_TYPE_NET | INTR_MPSAFE,
764	    sf_intr, sc, &sc->sf_intrhand);
765
766	if (error) {
767		device_printf(dev, "couldn't set up irq\n");
768		ether_ifdetach(ifp);
769		if_free(ifp);
770		goto fail;
771	}
772
773fail:
774	if (error)
775		sf_detach(dev);
776
777	return(error);
778}
779
780/*
781 * Shutdown hardware and free up resources. This can be called any
782 * time after the mutex has been initialized. It is called in both
783 * the error case in attach and the normal detach case so it needs
784 * to be careful about only freeing resources that have actually been
785 * allocated.
786 */
787static int
788sf_detach(dev)
789	device_t		dev;
790{
791	struct sf_softc		*sc;
792	struct ifnet		*ifp;
793
794	sc = device_get_softc(dev);
795	KASSERT(mtx_initialized(&sc->sf_mtx), ("sf mutex not initialized"));
796	ifp = sc->sf_ifp;
797
798	/* These should only be active if attach succeeded */
799	if (device_is_attached(dev)) {
800		SF_LOCK(sc);
801		sf_stop(sc);
802		SF_UNLOCK(sc);
803		callout_drain(&sc->sf_stat_callout);
804		ether_ifdetach(ifp);
805		if_free(ifp);
806	}
807	if (sc->sf_miibus)
808		device_delete_child(dev, sc->sf_miibus);
809	bus_generic_detach(dev);
810
811	if (sc->sf_intrhand)
812		bus_teardown_intr(dev, sc->sf_irq, sc->sf_intrhand);
813	if (sc->sf_irq)
814		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sf_irq);
815	if (sc->sf_res)
816		bus_release_resource(dev, SF_RES, SF_RID, sc->sf_res);
817
818	if (sc->sf_ldata)
819		contigfree(sc->sf_ldata, sizeof(struct sf_list_data), M_DEVBUF);
820
821	mtx_destroy(&sc->sf_mtx);
822
823	return(0);
824}
825
826static int
827sf_init_rx_ring(sc)
828	struct sf_softc		*sc;
829{
830	struct sf_list_data	*ld;
831	int			i;
832
833	ld = sc->sf_ldata;
834
835	bzero((char *)ld->sf_rx_dlist_big,
836	    sizeof(struct sf_rx_bufdesc_type0) * SF_RX_DLIST_CNT);
837	bzero((char *)ld->sf_rx_clist,
838	    sizeof(struct sf_rx_cmpdesc_type3) * SF_RX_CLIST_CNT);
839
840	for (i = 0; i < SF_RX_DLIST_CNT; i++) {
841		if (sf_newbuf(sc, &ld->sf_rx_dlist_big[i], NULL) == ENOBUFS)
842			return(ENOBUFS);
843	}
844
845	return(0);
846}
847
848static void
849sf_init_tx_ring(sc)
850	struct sf_softc		*sc;
851{
852	struct sf_list_data	*ld;
853	int			i;
854
855	ld = sc->sf_ldata;
856
857	bzero((char *)ld->sf_tx_dlist,
858	    sizeof(struct sf_tx_bufdesc_type0) * SF_TX_DLIST_CNT);
859	bzero((char *)ld->sf_tx_clist,
860	    sizeof(struct sf_tx_cmpdesc_type0) * SF_TX_CLIST_CNT);
861
862	for (i = 0; i < SF_TX_DLIST_CNT; i++)
863		ld->sf_tx_dlist[i].sf_id = SF_TX_BUFDESC_ID;
864	for (i = 0; i < SF_TX_CLIST_CNT; i++)
865		ld->sf_tx_clist[i].sf_type = SF_TXCMPTYPE_TX;
866
867	ld->sf_tx_dlist[SF_TX_DLIST_CNT - 1].sf_end = 1;
868	sc->sf_tx_cnt = 0;
869}
870
871static int
872sf_newbuf(sc, c, m)
873	struct sf_softc		*sc;
874	struct sf_rx_bufdesc_type0	*c;
875	struct mbuf		*m;
876{
877	struct mbuf		*m_new = NULL;
878
879	if (m == NULL) {
880		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
881		if (m_new == NULL)
882			return(ENOBUFS);
883
884		MCLGET(m_new, M_DONTWAIT);
885		if (!(m_new->m_flags & M_EXT)) {
886			m_freem(m_new);
887			return(ENOBUFS);
888		}
889		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
890	} else {
891		m_new = m;
892		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
893		m_new->m_data = m_new->m_ext.ext_buf;
894	}
895
896	m_adj(m_new, sizeof(u_int64_t));
897
898	c->sf_mbuf = m_new;
899	c->sf_addrlo = SF_RX_HOSTADDR(vtophys(mtod(m_new, caddr_t)));
900	c->sf_valid = 1;
901
902	return(0);
903}
904
905/*
906 * The starfire is programmed to use 'normal' mode for packet reception,
907 * which means we use the consumer/producer model for both the buffer
908 * descriptor queue and the completion descriptor queue. The only problem
909 * with this is that it involves a lot of register accesses: we have to
910 * read the RX completion consumer and producer indexes and the RX buffer
911 * producer index, plus the RX completion consumer and RX buffer producer
912 * indexes have to be updated. It would have been easier if Adaptec had
913 * put each index in a separate register, especially given that the damn
914 * NIC has a 512K register space.
915 *
916 * In spite of all the lovely features that Adaptec crammed into the 6915,
917 * it is marred by one truly stupid design flaw, which is that receive
918 * buffer addresses must be aligned on a longword boundary. This forces
919 * the packet payload to be unaligned, which is suboptimal on the x86 and
920 * completely unuseable on the Alpha. Our only recourse is to copy received
921 * packets into properly aligned buffers before handing them off.
922 */
923
924static void
925sf_rxeof(sc)
926	struct sf_softc		*sc;
927{
928	struct mbuf		*m;
929	struct ifnet		*ifp;
930	struct sf_rx_bufdesc_type0	*desc;
931	struct sf_rx_cmpdesc_type3	*cur_rx;
932	u_int32_t		rxcons, rxprod;
933	int			cmpprodidx, cmpconsidx, bufprodidx;
934
935	SF_LOCK_ASSERT(sc);
936
937	ifp = sc->sf_ifp;
938
939	rxcons = csr_read_4(sc, SF_CQ_CONSIDX);
940	rxprod = csr_read_4(sc, SF_RXDQ_PTR_Q1);
941	cmpprodidx = SF_IDX_LO(csr_read_4(sc, SF_CQ_PRODIDX));
942	cmpconsidx = SF_IDX_LO(rxcons);
943	bufprodidx = SF_IDX_LO(rxprod);
944
945	while (cmpconsidx != cmpprodidx) {
946		struct mbuf		*m0;
947
948#ifdef DEVICE_POLLING
949		if (ifp->if_flags & IFF_POLLING) {
950			if (sc->rxcycles <= 0)
951				break;
952			sc->rxcycles--;
953		}
954#endif /* DEVICE_POLLING */
955
956		cur_rx = &sc->sf_ldata->sf_rx_clist[cmpconsidx];
957		desc = &sc->sf_ldata->sf_rx_dlist_big[cur_rx->sf_endidx];
958		m = desc->sf_mbuf;
959		SF_INC(cmpconsidx, SF_RX_CLIST_CNT);
960		SF_INC(bufprodidx, SF_RX_DLIST_CNT);
961
962		if (!(cur_rx->sf_status1 & SF_RXSTAT1_OK)) {
963			ifp->if_ierrors++;
964			sf_newbuf(sc, desc, m);
965			continue;
966		}
967
968		m0 = m_devget(mtod(m, char *), cur_rx->sf_len, ETHER_ALIGN,
969		    ifp, NULL);
970		sf_newbuf(sc, desc, m);
971		if (m0 == NULL) {
972			ifp->if_ierrors++;
973			continue;
974		}
975		m = m0;
976
977		ifp->if_ipackets++;
978		SF_UNLOCK(sc);
979		(*ifp->if_input)(ifp, m);
980		SF_LOCK(sc);
981	}
982
983	csr_write_4(sc, SF_CQ_CONSIDX,
984	    (rxcons & ~SF_CQ_CONSIDX_RXQ1) | cmpconsidx);
985	csr_write_4(sc, SF_RXDQ_PTR_Q1,
986	    (rxprod & ~SF_RXDQ_PRODIDX) | bufprodidx);
987}
988
989/*
990 * Read the transmit status from the completion queue and release
991 * mbufs. Note that the buffer descriptor index in the completion
992 * descriptor is an offset from the start of the transmit buffer
993 * descriptor list in bytes. This is important because the manual
994 * gives the impression that it should match the producer/consumer
995 * index, which is the offset in 8 byte blocks.
996 */
997static void
998sf_txeof(sc)
999	struct sf_softc		*sc;
1000{
1001	int			txcons, cmpprodidx, cmpconsidx;
1002	struct sf_tx_cmpdesc_type1 *cur_cmp;
1003	struct sf_tx_bufdesc_type0 *cur_tx;
1004	struct ifnet		*ifp;
1005
1006	ifp = sc->sf_ifp;
1007
1008	SF_LOCK_ASSERT(sc);
1009	txcons = csr_read_4(sc, SF_CQ_CONSIDX);
1010	cmpprodidx = SF_IDX_HI(csr_read_4(sc, SF_CQ_PRODIDX));
1011	cmpconsidx = SF_IDX_HI(txcons);
1012
1013	while (cmpconsidx != cmpprodidx) {
1014		cur_cmp = &sc->sf_ldata->sf_tx_clist[cmpconsidx];
1015		cur_tx = &sc->sf_ldata->sf_tx_dlist[cur_cmp->sf_index >> 7];
1016
1017		if (cur_cmp->sf_txstat & SF_TXSTAT_TX_OK)
1018			ifp->if_opackets++;
1019		else {
1020			if (cur_cmp->sf_txstat & SF_TXSTAT_TX_UNDERRUN)
1021				sf_txthresh_adjust(sc);
1022			ifp->if_oerrors++;
1023		}
1024
1025		sc->sf_tx_cnt--;
1026		if (cur_tx->sf_mbuf != NULL) {
1027			m_freem(cur_tx->sf_mbuf);
1028			cur_tx->sf_mbuf = NULL;
1029		} else
1030			break;
1031		SF_INC(cmpconsidx, SF_TX_CLIST_CNT);
1032	}
1033
1034	ifp->if_timer = 0;
1035	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1036
1037	csr_write_4(sc, SF_CQ_CONSIDX,
1038	    (txcons & ~SF_CQ_CONSIDX_TXQ) |
1039	    ((cmpconsidx << 16) & 0xFFFF0000));
1040}
1041
1042static void
1043sf_txthresh_adjust(sc)
1044	struct sf_softc		*sc;
1045{
1046	u_int32_t		txfctl;
1047	u_int8_t		txthresh;
1048
1049	txfctl = csr_read_4(sc, SF_TX_FRAMCTL);
1050	txthresh = txfctl & SF_TXFRMCTL_TXTHRESH;
1051	if (txthresh < 0xFF) {
1052		txthresh++;
1053		txfctl &= ~SF_TXFRMCTL_TXTHRESH;
1054		txfctl |= txthresh;
1055#ifdef DIAGNOSTIC
1056		if_printf(sc->sf_ifp, "tx underrun, increasing "
1057		    "tx threshold to %d bytes\n",
1058		    txthresh * 4);
1059#endif
1060		csr_write_4(sc, SF_TX_FRAMCTL, txfctl);
1061	}
1062}
1063
1064#ifdef DEVICE_POLLING
1065static void
1066sf_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1067{
1068	struct sf_softc *sc = ifp->if_softc;
1069
1070	SF_LOCK(sc);
1071	sf_poll_locked(ifp, cmd, count);
1072	SF_UNLOCK(sc);
1073}
1074
1075static void
1076sf_poll_locked(struct ifnet *ifp, enum poll_cmd cmd, int count)
1077{
1078	struct sf_softc *sc = ifp->if_softc;
1079
1080	SF_LOCK_ASSERT(sc);
1081
1082	if (!(ifp->if_capenable & IFCAP_POLLING)) {
1083		ether_poll_deregister(ifp);
1084		cmd = POLL_DEREGISTER;
1085	}
1086
1087	if (cmd == POLL_DEREGISTER) {
1088		/* Final call, enable interrupts. */
1089		csr_write_4(sc, SF_IMR, SF_INTRS);
1090		return;
1091	}
1092
1093	sc->rxcycles = count;
1094	sf_rxeof(sc);
1095	sf_txeof(sc);
1096	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1097		sf_start_locked(ifp);
1098
1099	if (cmd == POLL_AND_CHECK_STATUS) {
1100		u_int32_t status;
1101
1102		status = csr_read_4(sc, SF_ISR);
1103		if (status)
1104			csr_write_4(sc, SF_ISR, status);
1105
1106		if (status & SF_ISR_TX_LOFIFO)
1107			sf_txthresh_adjust(sc);
1108
1109		if (status & SF_ISR_ABNORMALINTR) {
1110			if (status & SF_ISR_STATSOFLOW) {
1111				callout_stop(&sc->sf_stat_callout);
1112				sf_stats_update(sc);
1113			} else
1114				sf_init_locked(sc);
1115		}
1116	}
1117}
1118#endif /* DEVICE_POLLING */
1119
1120static void
1121sf_intr(arg)
1122	void			*arg;
1123{
1124	struct sf_softc		*sc;
1125	struct ifnet		*ifp;
1126	u_int32_t		status;
1127
1128	sc = arg;
1129	SF_LOCK(sc);
1130
1131	ifp = sc->sf_ifp;
1132
1133#ifdef DEVICE_POLLING
1134	if (ifp->if_flags & IFF_POLLING)
1135		goto done_locked;
1136
1137	if ((ifp->if_capenable & IFCAP_POLLING) &&
1138	    ether_poll_register(sf_poll, ifp)) {
1139		/* OK, disable interrupts. */
1140		csr_write_4(sc, SF_IMR, 0x00000000);
1141		sf_poll_locked(ifp, 0, 1);
1142		goto done_locked;
1143	}
1144#endif /* DEVICE_POLLING */
1145
1146	if (!(csr_read_4(sc, SF_ISR_SHADOW) & SF_ISR_PCIINT_ASSERTED)) {
1147		SF_UNLOCK(sc);
1148		return;
1149	}
1150
1151	/* Disable interrupts. */
1152	csr_write_4(sc, SF_IMR, 0x00000000);
1153
1154	for (;;) {
1155		status = csr_read_4(sc, SF_ISR);
1156		if (status)
1157			csr_write_4(sc, SF_ISR, status);
1158
1159		if (!(status & SF_INTRS))
1160			break;
1161
1162		if (status & SF_ISR_RXDQ1_DMADONE)
1163			sf_rxeof(sc);
1164
1165		if (status & SF_ISR_TX_TXDONE ||
1166		    status & SF_ISR_TX_DMADONE ||
1167		    status & SF_ISR_TX_QUEUEDONE)
1168			sf_txeof(sc);
1169
1170		if (status & SF_ISR_TX_LOFIFO)
1171			sf_txthresh_adjust(sc);
1172
1173		if (status & SF_ISR_ABNORMALINTR) {
1174			if (status & SF_ISR_STATSOFLOW) {
1175				callout_stop(&sc->sf_stat_callout);
1176				sf_stats_update(sc);
1177			} else
1178				sf_init_locked(sc);
1179		}
1180	}
1181
1182	/* Re-enable interrupts. */
1183	csr_write_4(sc, SF_IMR, SF_INTRS);
1184
1185	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1186		sf_start_locked(ifp);
1187
1188#ifdef DEVICE_POLLING
1189done_locked:
1190#endif /* DEVICE_POLLING */
1191	SF_UNLOCK(sc);
1192}
1193
1194static void
1195sf_init(xsc)
1196	void			*xsc;
1197{
1198	struct sf_softc		*sc;
1199
1200	sc = xsc;
1201	SF_LOCK(sc);
1202	sf_init_locked(sc);
1203	SF_UNLOCK(sc);
1204}
1205
1206static void
1207sf_init_locked(sc)
1208	struct sf_softc		*sc;
1209{
1210	struct ifnet		*ifp;
1211	struct mii_data		*mii;
1212	int			i;
1213
1214	SF_LOCK_ASSERT(sc);
1215	ifp = sc->sf_ifp;
1216	mii = device_get_softc(sc->sf_miibus);
1217
1218	sf_stop(sc);
1219	sf_reset(sc);
1220
1221	/* Init all the receive filter registers */
1222	for (i = SF_RXFILT_PERFECT_BASE;
1223	    i < (SF_RXFILT_HASH_MAX + 1); i += 4)
1224		csr_write_4(sc, i, 0);
1225
1226	/* Empty stats counter registers. */
1227	for (i = 0; i < sizeof(struct sf_stats)/sizeof(u_int32_t); i++)
1228		csr_write_4(sc, SF_STATS_BASE +
1229		    (i + sizeof(u_int32_t)), 0);
1230
1231	/* Init our MAC address */
1232	csr_write_4(sc, SF_PAR0, *(u_int32_t *)(&IFP2ENADDR(sc->sf_ifp)[0]));
1233	csr_write_4(sc, SF_PAR1, *(u_int32_t *)(&IFP2ENADDR(sc->sf_ifp)[4]));
1234	sf_setperf(sc, 0, (caddr_t)&IFP2ENADDR(sc->sf_ifp));
1235
1236	if (sf_init_rx_ring(sc) == ENOBUFS) {
1237		if_printf(sc->sf_ifp,
1238		    "initialization failed: no memory for rx buffers\n");
1239		return;
1240	}
1241
1242	sf_init_tx_ring(sc);
1243
1244	csr_write_4(sc, SF_RXFILT, SF_PERFMODE_NORMAL|SF_HASHMODE_WITHVLAN);
1245
1246	/* If we want promiscuous mode, set the allframes bit. */
1247	if (ifp->if_flags & IFF_PROMISC) {
1248		SF_SETBIT(sc, SF_RXFILT, SF_RXFILT_PROMISC);
1249	} else {
1250		SF_CLRBIT(sc, SF_RXFILT, SF_RXFILT_PROMISC);
1251	}
1252
1253	if (ifp->if_flags & IFF_BROADCAST) {
1254		SF_SETBIT(sc, SF_RXFILT, SF_RXFILT_BROAD);
1255	} else {
1256		SF_CLRBIT(sc, SF_RXFILT, SF_RXFILT_BROAD);
1257	}
1258
1259	/*
1260	 * Load the multicast filter.
1261	 */
1262	sf_setmulti(sc);
1263
1264	/* Init the completion queue indexes */
1265	csr_write_4(sc, SF_CQ_CONSIDX, 0);
1266	csr_write_4(sc, SF_CQ_PRODIDX, 0);
1267
1268	/* Init the RX completion queue */
1269	csr_write_4(sc, SF_RXCQ_CTL_1,
1270	    vtophys(sc->sf_ldata->sf_rx_clist) & SF_RXCQ_ADDR);
1271	SF_SETBIT(sc, SF_RXCQ_CTL_1, SF_RXCQTYPE_3);
1272
1273	/* Init RX DMA control. */
1274	SF_SETBIT(sc, SF_RXDMA_CTL, SF_RXDMA_REPORTBADPKTS);
1275
1276	/* Init the RX buffer descriptor queue. */
1277	csr_write_4(sc, SF_RXDQ_ADDR_Q1,
1278	    vtophys(sc->sf_ldata->sf_rx_dlist_big));
1279	csr_write_4(sc, SF_RXDQ_CTL_1, (MCLBYTES << 16) | SF_DESCSPACE_16BYTES);
1280	csr_write_4(sc, SF_RXDQ_PTR_Q1, SF_RX_DLIST_CNT - 1);
1281
1282	/* Init the TX completion queue */
1283	csr_write_4(sc, SF_TXCQ_CTL,
1284	    vtophys(sc->sf_ldata->sf_tx_clist) & SF_RXCQ_ADDR);
1285
1286	/* Init the TX buffer descriptor queue. */
1287	csr_write_4(sc, SF_TXDQ_ADDR_HIPRIO,
1288		vtophys(sc->sf_ldata->sf_tx_dlist));
1289	SF_SETBIT(sc, SF_TX_FRAMCTL, SF_TXFRMCTL_CPLAFTERTX);
1290	csr_write_4(sc, SF_TXDQ_CTL,
1291	    SF_TXBUFDESC_TYPE0|SF_TXMINSPACE_128BYTES|SF_TXSKIPLEN_8BYTES);
1292	SF_SETBIT(sc, SF_TXDQ_CTL, SF_TXDQCTL_NODMACMP);
1293
1294	/* Enable autopadding of short TX frames. */
1295	SF_SETBIT(sc, SF_MACCFG_1, SF_MACCFG1_AUTOPAD);
1296
1297#ifdef DEVICE_POLLING
1298	/* Disable interrupts if we are polling. */
1299	if (ifp->if_flags & IFF_POLLING)
1300		csr_write_4(sc, SF_IMR, 0x00000000);
1301	else
1302#endif /* DEVICE_POLLING */
1303
1304	/* Enable interrupts. */
1305	csr_write_4(sc, SF_IMR, SF_INTRS);
1306	SF_SETBIT(sc, SF_PCI_DEVCFG, SF_PCIDEVCFG_INTR_ENB);
1307
1308	/* Enable the RX and TX engines. */
1309	SF_SETBIT(sc, SF_GEN_ETH_CTL, SF_ETHCTL_RX_ENB|SF_ETHCTL_RXDMA_ENB);
1310	SF_SETBIT(sc, SF_GEN_ETH_CTL, SF_ETHCTL_TX_ENB|SF_ETHCTL_TXDMA_ENB);
1311
1312	/*mii_mediachg(mii);*/
1313	sf_ifmedia_upd_locked(ifp);
1314
1315	ifp->if_drv_flags |= IFF_DRV_RUNNING;
1316	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1317
1318	callout_reset(&sc->sf_stat_callout, hz, sf_stats_update, sc);
1319}
1320
1321static int
1322sf_encap(sc, c, m_head)
1323	struct sf_softc		*sc;
1324	struct sf_tx_bufdesc_type0 *c;
1325	struct mbuf		*m_head;
1326{
1327	int			frag = 0;
1328	struct sf_frag		*f = NULL;
1329	struct mbuf		*m;
1330
1331	m = m_head;
1332
1333	for (m = m_head, frag = 0; m != NULL; m = m->m_next) {
1334		if (m->m_len != 0) {
1335			if (frag == SF_MAXFRAGS)
1336				break;
1337			f = &c->sf_frags[frag];
1338			if (frag == 0)
1339				f->sf_pktlen = m_head->m_pkthdr.len;
1340			f->sf_fraglen = m->m_len;
1341			f->sf_addr = vtophys(mtod(m, vm_offset_t));
1342			frag++;
1343		}
1344	}
1345
1346	if (m != NULL) {
1347		struct mbuf		*m_new = NULL;
1348
1349		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1350		if (m_new == NULL) {
1351			if_printf(sc->sf_ifp, "no memory for tx list\n");
1352			return(1);
1353		}
1354
1355		if (m_head->m_pkthdr.len > MHLEN) {
1356			MCLGET(m_new, M_DONTWAIT);
1357			if (!(m_new->m_flags & M_EXT)) {
1358				m_freem(m_new);
1359				if_printf(sc->sf_ifp, "no memory for tx list\n");
1360				return(1);
1361			}
1362		}
1363		m_copydata(m_head, 0, m_head->m_pkthdr.len,
1364		    mtod(m_new, caddr_t));
1365		m_new->m_pkthdr.len = m_new->m_len = m_head->m_pkthdr.len;
1366		m_freem(m_head);
1367		m_head = m_new;
1368		f = &c->sf_frags[0];
1369		f->sf_fraglen = f->sf_pktlen = m_head->m_pkthdr.len;
1370		f->sf_addr = vtophys(mtod(m_head, caddr_t));
1371		frag = 1;
1372	}
1373
1374	c->sf_mbuf = m_head;
1375	c->sf_id = SF_TX_BUFDESC_ID;
1376	c->sf_fragcnt = frag;
1377	c->sf_intr = 1;
1378	c->sf_caltcp = 0;
1379	c->sf_crcen = 1;
1380
1381	return(0);
1382}
1383
1384static void
1385sf_start(ifp)
1386	struct ifnet		*ifp;
1387{
1388	struct sf_softc		*sc;
1389
1390	sc = ifp->if_softc;
1391	SF_LOCK(sc);
1392	sf_start_locked(ifp);
1393	SF_UNLOCK(sc);
1394}
1395
1396static void
1397sf_start_locked(ifp)
1398	struct ifnet		*ifp;
1399{
1400	struct sf_softc		*sc;
1401	struct sf_tx_bufdesc_type0 *cur_tx = NULL;
1402	struct mbuf		*m_head = NULL;
1403	int			i, txprod;
1404
1405	sc = ifp->if_softc;
1406	SF_LOCK_ASSERT(sc);
1407
1408	if (!sc->sf_link && ifp->if_snd.ifq_len < 10)
1409		return;
1410
1411	if (ifp->if_drv_flags & IFF_DRV_OACTIVE)
1412		return;
1413
1414	txprod = csr_read_4(sc, SF_TXDQ_PRODIDX);
1415	i = SF_IDX_HI(txprod) >> 4;
1416
1417	if (sc->sf_ldata->sf_tx_dlist[i].sf_mbuf != NULL) {
1418		if_printf(ifp, "TX ring full, resetting\n");
1419		sf_init_locked(sc);
1420		txprod = csr_read_4(sc, SF_TXDQ_PRODIDX);
1421		i = SF_IDX_HI(txprod) >> 4;
1422	}
1423
1424	while(sc->sf_ldata->sf_tx_dlist[i].sf_mbuf == NULL) {
1425		if (sc->sf_tx_cnt >= (SF_TX_DLIST_CNT - 5)) {
1426			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1427			cur_tx = NULL;
1428			break;
1429		}
1430		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
1431		if (m_head == NULL)
1432			break;
1433
1434		cur_tx = &sc->sf_ldata->sf_tx_dlist[i];
1435		if (sf_encap(sc, cur_tx, m_head)) {
1436			IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
1437			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1438			cur_tx = NULL;
1439			break;
1440		}
1441
1442		/*
1443		 * If there's a BPF listener, bounce a copy of this frame
1444		 * to him.
1445		 */
1446		BPF_MTAP(ifp, m_head);
1447
1448		SF_INC(i, SF_TX_DLIST_CNT);
1449		sc->sf_tx_cnt++;
1450		/*
1451		 * Don't get the TX DMA queue get too full.
1452		 */
1453		if (sc->sf_tx_cnt > 64)
1454			break;
1455	}
1456
1457	if (cur_tx == NULL)
1458		return;
1459
1460	/* Transmit */
1461	csr_write_4(sc, SF_TXDQ_PRODIDX,
1462	    (txprod & ~SF_TXDQ_PRODIDX_HIPRIO) |
1463	    ((i << 20) & 0xFFFF0000));
1464
1465	ifp->if_timer = 5;
1466}
1467
1468static void
1469sf_stop(sc)
1470	struct sf_softc		*sc;
1471{
1472	int			i;
1473	struct ifnet		*ifp;
1474
1475	SF_LOCK_ASSERT(sc);
1476
1477	ifp = sc->sf_ifp;
1478
1479	callout_stop(&sc->sf_stat_callout);
1480
1481#ifdef DEVICE_POLLING
1482	ether_poll_deregister(ifp);
1483#endif /* DEVICE_POLLING */
1484
1485	csr_write_4(sc, SF_GEN_ETH_CTL, 0);
1486	csr_write_4(sc, SF_CQ_CONSIDX, 0);
1487	csr_write_4(sc, SF_CQ_PRODIDX, 0);
1488	csr_write_4(sc, SF_RXDQ_ADDR_Q1, 0);
1489	csr_write_4(sc, SF_RXDQ_CTL_1, 0);
1490	csr_write_4(sc, SF_RXDQ_PTR_Q1, 0);
1491	csr_write_4(sc, SF_TXCQ_CTL, 0);
1492	csr_write_4(sc, SF_TXDQ_ADDR_HIPRIO, 0);
1493	csr_write_4(sc, SF_TXDQ_CTL, 0);
1494	sf_reset(sc);
1495
1496	sc->sf_link = 0;
1497
1498	for (i = 0; i < SF_RX_DLIST_CNT; i++) {
1499		if (sc->sf_ldata->sf_rx_dlist_big[i].sf_mbuf != NULL) {
1500			m_freem(sc->sf_ldata->sf_rx_dlist_big[i].sf_mbuf);
1501			sc->sf_ldata->sf_rx_dlist_big[i].sf_mbuf = NULL;
1502		}
1503	}
1504
1505	for (i = 0; i < SF_TX_DLIST_CNT; i++) {
1506		if (sc->sf_ldata->sf_tx_dlist[i].sf_mbuf != NULL) {
1507			m_freem(sc->sf_ldata->sf_tx_dlist[i].sf_mbuf);
1508			sc->sf_ldata->sf_tx_dlist[i].sf_mbuf = NULL;
1509		}
1510	}
1511
1512	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING|IFF_DRV_OACTIVE);
1513}
1514
1515/*
1516 * Note: it is important that this function not be interrupted. We
1517 * use a two-stage register access scheme: if we are interrupted in
1518 * between setting the indirect address register and reading from the
1519 * indirect data register, the contents of the address register could
1520 * be changed out from under us.
1521 */
1522static void
1523sf_stats_update(xsc)
1524	void			*xsc;
1525{
1526	struct sf_softc		*sc;
1527	struct ifnet		*ifp;
1528	struct mii_data		*mii;
1529	struct sf_stats		stats;
1530	u_int32_t		*ptr;
1531	int			i;
1532
1533	sc = xsc;
1534	SF_LOCK_ASSERT(sc);
1535	ifp = sc->sf_ifp;
1536	mii = device_get_softc(sc->sf_miibus);
1537
1538	ptr = (u_int32_t *)&stats;
1539	for (i = 0; i < sizeof(stats)/sizeof(u_int32_t); i++)
1540		ptr[i] = csr_read_4(sc, SF_STATS_BASE +
1541		    (i + sizeof(u_int32_t)));
1542
1543	for (i = 0; i < sizeof(stats)/sizeof(u_int32_t); i++)
1544		csr_write_4(sc, SF_STATS_BASE +
1545		    (i + sizeof(u_int32_t)), 0);
1546
1547	ifp->if_collisions += stats.sf_tx_single_colls +
1548	    stats.sf_tx_multi_colls + stats.sf_tx_excess_colls;
1549
1550	mii_tick(mii);
1551
1552	if (!sc->sf_link && mii->mii_media_status & IFM_ACTIVE &&
1553	    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
1554		sc->sf_link++;
1555		if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1556			sf_start_locked(ifp);
1557	}
1558
1559	callout_reset(&sc->sf_stat_callout, hz, sf_stats_update, sc);
1560}
1561
1562static void
1563sf_watchdog(ifp)
1564	struct ifnet		*ifp;
1565{
1566	struct sf_softc		*sc;
1567
1568	sc = ifp->if_softc;
1569
1570	SF_LOCK(sc);
1571
1572	ifp->if_oerrors++;
1573	if_printf(ifp, "watchdog timeout\n");
1574
1575	sf_stop(sc);
1576	sf_reset(sc);
1577	sf_init_locked(sc);
1578
1579	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1580		sf_start_locked(ifp);
1581
1582	SF_UNLOCK(sc);
1583}
1584
1585static void
1586sf_shutdown(dev)
1587	device_t		dev;
1588{
1589	struct sf_softc		*sc;
1590
1591	sc = device_get_softc(dev);
1592
1593	SF_LOCK(sc);
1594	sf_stop(sc);
1595	SF_UNLOCK(sc);
1596}
1597