if_sf.c revision 147291
1/*-
2 * Copyright (c) 1997, 1998, 1999
3 *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 *    must display the following acknowledgement:
15 *	This product includes software developed by Bill Paul.
16 * 4. Neither the name of the author nor the names of any co-contributors
17 *    may be used to endorse or promote products derived from this software
18 *    without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30 * THE POSSIBILITY OF SUCH DAMAGE.
31 */
32
33#include <sys/cdefs.h>
34__FBSDID("$FreeBSD: head/sys/dev/sf/if_sf.c 147291 2005-06-11 01:37:46Z brooks $");
35
36/*
37 * Adaptec AIC-6915 "Starfire" PCI fast ethernet driver for FreeBSD.
38 * Programming manual is available from:
39 * http://download.adaptec.com/pdfs/user_guides/aic6915_pg.pdf.
40 *
41 * Written by Bill Paul <wpaul@ctr.columbia.edu>
42 * Department of Electical Engineering
43 * Columbia University, New York City
44 */
45/*
46 * The Adaptec AIC-6915 "Starfire" is a 64-bit 10/100 PCI ethernet
47 * controller designed with flexibility and reducing CPU load in mind.
48 * The Starfire offers high and low priority buffer queues, a
49 * producer/consumer index mechanism and several different buffer
50 * queue and completion queue descriptor types. Any one of a number
51 * of different driver designs can be used, depending on system and
52 * OS requirements. This driver makes use of type0 transmit frame
53 * descriptors (since BSD fragments packets across an mbuf chain)
54 * and two RX buffer queues prioritized on size (one queue for small
55 * frames that will fit into a single mbuf, another with full size
56 * mbuf clusters for everything else). The producer/consumer indexes
57 * and completion queues are also used.
58 *
59 * One downside to the Starfire has to do with alignment: buffer
60 * queues must be aligned on 256-byte boundaries, and receive buffers
61 * must be aligned on longword boundaries. The receive buffer alignment
62 * causes problems on the Alpha platform, where the packet payload
63 * should be longword aligned. There is no simple way around this.
64 *
65 * For receive filtering, the Starfire offers 16 perfect filter slots
66 * and a 512-bit hash table.
67 *
68 * The Starfire has no internal transceiver, relying instead on an
69 * external MII-based transceiver. Accessing registers on external
70 * PHYs is done through a special register map rather than with the
71 * usual bitbang MDIO method.
72 *
73 * Acesssing the registers on the Starfire is a little tricky. The
74 * Starfire has a 512K internal register space. When programmed for
75 * PCI memory mapped mode, the entire register space can be accessed
76 * directly. However in I/O space mode, only 256 bytes are directly
77 * mapped into PCI I/O space. The other registers can be accessed
78 * indirectly using the SF_INDIRECTIO_ADDR and SF_INDIRECTIO_DATA
79 * registers inside the 256-byte I/O window.
80 */
81
82#include <sys/param.h>
83#include <sys/systm.h>
84#include <sys/sockio.h>
85#include <sys/mbuf.h>
86#include <sys/malloc.h>
87#include <sys/kernel.h>
88#include <sys/module.h>
89#include <sys/socket.h>
90
91#include <net/if.h>
92#include <net/if_arp.h>
93#include <net/ethernet.h>
94#include <net/if_dl.h>
95#include <net/if_media.h>
96#include <net/if_types.h>
97
98#include <net/bpf.h>
99
100#include <vm/vm.h>              /* for vtophys */
101#include <vm/pmap.h>            /* for vtophys */
102#include <machine/bus.h>
103#include <machine/resource.h>
104#include <sys/bus.h>
105#include <sys/rman.h>
106
107#include <dev/mii/mii.h>
108#include <dev/mii/miivar.h>
109
110/* "controller miibus0" required.  See GENERIC if you get errors here. */
111#include "miibus_if.h"
112
113#include <dev/pci/pcireg.h>
114#include <dev/pci/pcivar.h>
115
116#define SF_USEIOSPACE
117
118#include <pci/if_sfreg.h>
119
120MODULE_DEPEND(sf, pci, 1, 1, 1);
121MODULE_DEPEND(sf, ether, 1, 1, 1);
122MODULE_DEPEND(sf, miibus, 1, 1, 1);
123
124static struct sf_type sf_devs[] = {
125	{ AD_VENDORID, AD_DEVICEID_STARFIRE,
126		"Adaptec AIC-6915 10/100BaseTX" },
127	{ 0, 0, NULL }
128};
129
130static int sf_probe(device_t);
131static int sf_attach(device_t);
132static int sf_detach(device_t);
133static void sf_intr(void *);
134static void sf_stats_update(void *);
135static void sf_rxeof(struct sf_softc *);
136static void sf_txeof(struct sf_softc *);
137static int sf_encap(struct sf_softc *, struct sf_tx_bufdesc_type0 *,
138		struct mbuf *);
139static void sf_start(struct ifnet *);
140static int sf_ioctl(struct ifnet *, u_long, caddr_t);
141static void sf_init(void *);
142static void sf_stop(struct sf_softc *);
143static void sf_watchdog(struct ifnet *);
144static void sf_shutdown(device_t);
145static int sf_ifmedia_upd(struct ifnet *);
146static void sf_ifmedia_sts(struct ifnet *, struct ifmediareq *);
147static void sf_reset(struct sf_softc *);
148static int sf_init_rx_ring(struct sf_softc *);
149static void sf_init_tx_ring(struct sf_softc *);
150static int sf_newbuf(struct sf_softc *, struct sf_rx_bufdesc_type0 *,
151		struct mbuf *);
152static void sf_setmulti(struct sf_softc *);
153static int sf_setperf(struct sf_softc *, int, caddr_t);
154static int sf_sethash(struct sf_softc *, caddr_t, int);
155#ifdef notdef
156static int sf_setvlan(struct sf_softc *, int, u_int32_t);
157#endif
158
159static u_int8_t sf_read_eeprom(struct sf_softc *, int);
160
161static int sf_miibus_readreg(device_t, int, int);
162static int sf_miibus_writereg(device_t, int, int, int);
163static void sf_miibus_statchg(device_t);
164#ifdef DEVICE_POLLING
165static void sf_poll(struct ifnet *ifp, enum poll_cmd cmd,
166				 int count);
167static void sf_poll_locked(struct ifnet *ifp, enum poll_cmd cmd,
168				 int count);
169#endif /* DEVICE_POLLING */
170
171static u_int32_t csr_read_4(struct sf_softc *, int);
172static void csr_write_4(struct sf_softc *, int, u_int32_t);
173static void sf_txthresh_adjust(struct sf_softc *);
174
175#ifdef SF_USEIOSPACE
176#define SF_RES			SYS_RES_IOPORT
177#define SF_RID			SF_PCI_LOIO
178#else
179#define SF_RES			SYS_RES_MEMORY
180#define SF_RID			SF_PCI_LOMEM
181#endif
182
183static device_method_t sf_methods[] = {
184	/* Device interface */
185	DEVMETHOD(device_probe,		sf_probe),
186	DEVMETHOD(device_attach,	sf_attach),
187	DEVMETHOD(device_detach,	sf_detach),
188	DEVMETHOD(device_shutdown,	sf_shutdown),
189
190	/* bus interface */
191	DEVMETHOD(bus_print_child,	bus_generic_print_child),
192	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
193
194	/* MII interface */
195	DEVMETHOD(miibus_readreg,	sf_miibus_readreg),
196	DEVMETHOD(miibus_writereg,	sf_miibus_writereg),
197	DEVMETHOD(miibus_statchg,	sf_miibus_statchg),
198
199	{ 0, 0 }
200};
201
202static driver_t sf_driver = {
203	"sf",
204	sf_methods,
205	sizeof(struct sf_softc),
206};
207
208static devclass_t sf_devclass;
209
210DRIVER_MODULE(sf, pci, sf_driver, sf_devclass, 0, 0);
211DRIVER_MODULE(miibus, sf, miibus_driver, miibus_devclass, 0, 0);
212
213#define SF_SETBIT(sc, reg, x)	\
214	csr_write_4(sc, reg, csr_read_4(sc, reg) | (x))
215
216#define SF_CLRBIT(sc, reg, x)				\
217	csr_write_4(sc, reg, csr_read_4(sc, reg) & ~(x))
218
219static u_int32_t
220csr_read_4(sc, reg)
221	struct sf_softc		*sc;
222	int			reg;
223{
224	u_int32_t		val;
225
226#ifdef SF_USEIOSPACE
227	CSR_WRITE_4(sc, SF_INDIRECTIO_ADDR, reg + SF_RMAP_INTREG_BASE);
228	val = CSR_READ_4(sc, SF_INDIRECTIO_DATA);
229#else
230	val = CSR_READ_4(sc, (reg + SF_RMAP_INTREG_BASE));
231#endif
232
233	return(val);
234}
235
236static u_int8_t
237sf_read_eeprom(sc, reg)
238	struct sf_softc		*sc;
239	int			reg;
240{
241	u_int8_t		val;
242
243	val = (csr_read_4(sc, SF_EEADDR_BASE +
244	    (reg & 0xFFFFFFFC)) >> (8 * (reg & 3))) & 0xFF;
245
246	return(val);
247}
248
249static void
250csr_write_4(sc, reg, val)
251	struct sf_softc		*sc;
252	int			reg;
253	u_int32_t		val;
254{
255#ifdef SF_USEIOSPACE
256	CSR_WRITE_4(sc, SF_INDIRECTIO_ADDR, reg + SF_RMAP_INTREG_BASE);
257	CSR_WRITE_4(sc, SF_INDIRECTIO_DATA, val);
258#else
259	CSR_WRITE_4(sc, (reg + SF_RMAP_INTREG_BASE), val);
260#endif
261}
262
263/*
264 * Copy the address 'mac' into the perfect RX filter entry at
265 * offset 'idx.' The perfect filter only has 16 entries so do
266 * some sanity tests.
267 */
268static int
269sf_setperf(sc, idx, mac)
270	struct sf_softc		*sc;
271	int			idx;
272	caddr_t			mac;
273{
274	u_int16_t		*p;
275
276	if (idx < 0 || idx > SF_RXFILT_PERFECT_CNT)
277		return(EINVAL);
278
279	if (mac == NULL)
280		return(EINVAL);
281
282	p = (u_int16_t *)mac;
283
284	csr_write_4(sc, SF_RXFILT_PERFECT_BASE +
285	    (idx * SF_RXFILT_PERFECT_SKIP), htons(p[2]));
286	csr_write_4(sc, SF_RXFILT_PERFECT_BASE +
287	    (idx * SF_RXFILT_PERFECT_SKIP) + 4, htons(p[1]));
288	csr_write_4(sc, SF_RXFILT_PERFECT_BASE +
289	    (idx * SF_RXFILT_PERFECT_SKIP) + 8, htons(p[0]));
290
291	return(0);
292}
293
294/*
295 * Set the bit in the 512-bit hash table that corresponds to the
296 * specified mac address 'mac.' If 'prio' is nonzero, update the
297 * priority hash table instead of the filter hash table.
298 */
299static int
300sf_sethash(sc, mac, prio)
301	struct sf_softc		*sc;
302	caddr_t			mac;
303	int			prio;
304{
305	u_int32_t		h;
306
307	if (mac == NULL)
308		return(EINVAL);
309
310	h = ether_crc32_be(mac, ETHER_ADDR_LEN) >> 23;
311
312	if (prio) {
313		SF_SETBIT(sc, SF_RXFILT_HASH_BASE + SF_RXFILT_HASH_PRIOOFF +
314		    (SF_RXFILT_HASH_SKIP * (h >> 4)), (1 << (h & 0xF)));
315	} else {
316		SF_SETBIT(sc, SF_RXFILT_HASH_BASE + SF_RXFILT_HASH_ADDROFF +
317		    (SF_RXFILT_HASH_SKIP * (h >> 4)), (1 << (h & 0xF)));
318	}
319
320	return(0);
321}
322
323#ifdef notdef
324/*
325 * Set a VLAN tag in the receive filter.
326 */
327static int
328sf_setvlan(sc, idx, vlan)
329	struct sf_softc		*sc;
330	int			idx;
331	u_int32_t		vlan;
332{
333	if (idx < 0 || idx >> SF_RXFILT_HASH_CNT)
334		return(EINVAL);
335
336	csr_write_4(sc, SF_RXFILT_HASH_BASE +
337	    (idx * SF_RXFILT_HASH_SKIP) + SF_RXFILT_HASH_VLANOFF, vlan);
338
339	return(0);
340}
341#endif
342
343static int
344sf_miibus_readreg(dev, phy, reg)
345	device_t		dev;
346	int			phy, reg;
347{
348	struct sf_softc		*sc;
349	int			i;
350	u_int32_t		val = 0;
351
352	sc = device_get_softc(dev);
353
354	for (i = 0; i < SF_TIMEOUT; i++) {
355		val = csr_read_4(sc, SF_PHY_REG(phy, reg));
356		if (val & SF_MII_DATAVALID)
357			break;
358	}
359
360	if (i == SF_TIMEOUT)
361		return(0);
362
363	if ((val & 0x0000FFFF) == 0xFFFF)
364		return(0);
365
366	return(val & 0x0000FFFF);
367}
368
369static int
370sf_miibus_writereg(dev, phy, reg, val)
371	device_t		dev;
372	int			phy, reg, val;
373{
374	struct sf_softc		*sc;
375	int			i;
376	int			busy;
377
378	sc = device_get_softc(dev);
379
380	csr_write_4(sc, SF_PHY_REG(phy, reg), val);
381
382	for (i = 0; i < SF_TIMEOUT; i++) {
383		busy = csr_read_4(sc, SF_PHY_REG(phy, reg));
384		if (!(busy & SF_MII_BUSY))
385			break;
386	}
387
388	return(0);
389}
390
391static void
392sf_miibus_statchg(dev)
393	device_t		dev;
394{
395	struct sf_softc		*sc;
396	struct mii_data		*mii;
397
398	sc = device_get_softc(dev);
399	mii = device_get_softc(sc->sf_miibus);
400
401	if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
402		SF_SETBIT(sc, SF_MACCFG_1, SF_MACCFG1_FULLDUPLEX);
403		csr_write_4(sc, SF_BKTOBKIPG, SF_IPGT_FDX);
404	} else {
405		SF_CLRBIT(sc, SF_MACCFG_1, SF_MACCFG1_FULLDUPLEX);
406		csr_write_4(sc, SF_BKTOBKIPG, SF_IPGT_HDX);
407	}
408}
409
410static void
411sf_setmulti(sc)
412	struct sf_softc		*sc;
413{
414	struct ifnet		*ifp;
415	int			i;
416	struct ifmultiaddr	*ifma;
417	u_int8_t		dummy[] = { 0, 0, 0, 0, 0, 0 };
418
419	ifp = sc->sf_ifp;
420
421	/* First zot all the existing filters. */
422	for (i = 1; i < SF_RXFILT_PERFECT_CNT; i++)
423		sf_setperf(sc, i, (char *)&dummy);
424	for (i = SF_RXFILT_HASH_BASE;
425	    i < (SF_RXFILT_HASH_MAX + 1); i += 4)
426		csr_write_4(sc, i, 0);
427	SF_CLRBIT(sc, SF_RXFILT, SF_RXFILT_ALLMULTI);
428
429	/* Now program new ones. */
430	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
431		SF_SETBIT(sc, SF_RXFILT, SF_RXFILT_ALLMULTI);
432	} else {
433		i = 1;
434		TAILQ_FOREACH_REVERSE(ifma, &ifp->if_multiaddrs, ifmultihead, ifma_link) {
435			if (ifma->ifma_addr->sa_family != AF_LINK)
436				continue;
437			/*
438			 * Program the first 15 multicast groups
439			 * into the perfect filter. For all others,
440			 * use the hash table.
441			 */
442			if (i < SF_RXFILT_PERFECT_CNT) {
443				sf_setperf(sc, i,
444			LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
445				i++;
446				continue;
447			}
448
449			sf_sethash(sc,
450			    LLADDR((struct sockaddr_dl *)ifma->ifma_addr), 0);
451		}
452	}
453}
454
455/*
456 * Set media options.
457 */
458static int
459sf_ifmedia_upd(ifp)
460	struct ifnet		*ifp;
461{
462	struct sf_softc		*sc;
463	struct mii_data		*mii;
464
465	sc = ifp->if_softc;
466	mii = device_get_softc(sc->sf_miibus);
467	sc->sf_link = 0;
468	if (mii->mii_instance) {
469		struct mii_softc        *miisc;
470		LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
471			mii_phy_reset(miisc);
472	}
473	mii_mediachg(mii);
474
475	return(0);
476}
477
478/*
479 * Report current media status.
480 */
481static void
482sf_ifmedia_sts(ifp, ifmr)
483	struct ifnet		*ifp;
484	struct ifmediareq	*ifmr;
485{
486	struct sf_softc		*sc;
487	struct mii_data		*mii;
488
489	sc = ifp->if_softc;
490	mii = device_get_softc(sc->sf_miibus);
491
492	mii_pollstat(mii);
493	ifmr->ifm_active = mii->mii_media_active;
494	ifmr->ifm_status = mii->mii_media_status;
495}
496
497static int
498sf_ioctl(ifp, command, data)
499	struct ifnet		*ifp;
500	u_long			command;
501	caddr_t			data;
502{
503	struct sf_softc		*sc = ifp->if_softc;
504	struct ifreq		*ifr = (struct ifreq *) data;
505	struct mii_data		*mii;
506	int			error = 0;
507
508	SF_LOCK(sc);
509
510	switch(command) {
511	case SIOCSIFFLAGS:
512		if (ifp->if_flags & IFF_UP) {
513			if (ifp->if_flags & IFF_RUNNING &&
514			    ifp->if_flags & IFF_PROMISC &&
515			    !(sc->sf_if_flags & IFF_PROMISC)) {
516				SF_SETBIT(sc, SF_RXFILT, SF_RXFILT_PROMISC);
517			} else if (ifp->if_flags & IFF_RUNNING &&
518			    !(ifp->if_flags & IFF_PROMISC) &&
519			    sc->sf_if_flags & IFF_PROMISC) {
520				SF_CLRBIT(sc, SF_RXFILT, SF_RXFILT_PROMISC);
521			} else if (!(ifp->if_flags & IFF_RUNNING))
522				sf_init(sc);
523		} else {
524			if (ifp->if_flags & IFF_RUNNING)
525				sf_stop(sc);
526		}
527		sc->sf_if_flags = ifp->if_flags;
528		error = 0;
529		break;
530	case SIOCADDMULTI:
531	case SIOCDELMULTI:
532		sf_setmulti(sc);
533		error = 0;
534		break;
535	case SIOCGIFMEDIA:
536	case SIOCSIFMEDIA:
537		mii = device_get_softc(sc->sf_miibus);
538		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
539		break;
540	case SIOCSIFCAP:
541		ifp->if_capenable &= ~IFCAP_POLLING;
542		ifp->if_capenable |= ifr->ifr_reqcap & IFCAP_POLLING;
543		break;
544	default:
545		error = ether_ioctl(ifp, command, data);
546		break;
547	}
548
549	SF_UNLOCK(sc);
550
551	return(error);
552}
553
554static void
555sf_reset(sc)
556	struct sf_softc		*sc;
557{
558	register int		i;
559
560	csr_write_4(sc, SF_GEN_ETH_CTL, 0);
561	SF_SETBIT(sc, SF_MACCFG_1, SF_MACCFG1_SOFTRESET);
562	DELAY(1000);
563	SF_CLRBIT(sc, SF_MACCFG_1, SF_MACCFG1_SOFTRESET);
564
565	SF_SETBIT(sc, SF_PCI_DEVCFG, SF_PCIDEVCFG_RESET);
566
567	for (i = 0; i < SF_TIMEOUT; i++) {
568		DELAY(10);
569		if (!(csr_read_4(sc, SF_PCI_DEVCFG) & SF_PCIDEVCFG_RESET))
570			break;
571	}
572
573	if (i == SF_TIMEOUT)
574		printf("sf%d: reset never completed!\n", sc->sf_unit);
575
576	/* Wait a little while for the chip to get its brains in order. */
577	DELAY(1000);
578}
579
580/*
581 * Probe for an Adaptec AIC-6915 chip. Check the PCI vendor and device
582 * IDs against our list and return a device name if we find a match.
583 * We also check the subsystem ID so that we can identify exactly which
584 * NIC has been found, if possible.
585 */
586static int
587sf_probe(dev)
588	device_t		dev;
589{
590	struct sf_type		*t;
591
592	t = sf_devs;
593
594	while(t->sf_name != NULL) {
595		if ((pci_get_vendor(dev) == t->sf_vid) &&
596		    (pci_get_device(dev) == t->sf_did)) {
597			switch((pci_read_config(dev,
598			    SF_PCI_SUBVEN_ID, 4) >> 16) & 0xFFFF) {
599			case AD_SUBSYSID_62011_REV0:
600			case AD_SUBSYSID_62011_REV1:
601				device_set_desc(dev,
602				    "Adaptec ANA-62011 10/100BaseTX");
603				return (BUS_PROBE_DEFAULT);
604			case AD_SUBSYSID_62022:
605				device_set_desc(dev,
606				    "Adaptec ANA-62022 10/100BaseTX");
607				return (BUS_PROBE_DEFAULT);
608			case AD_SUBSYSID_62044_REV0:
609			case AD_SUBSYSID_62044_REV1:
610				device_set_desc(dev,
611				    "Adaptec ANA-62044 10/100BaseTX");
612				return (BUS_PROBE_DEFAULT);
613			case AD_SUBSYSID_62020:
614				device_set_desc(dev,
615				    "Adaptec ANA-62020 10/100BaseFX");
616				return (BUS_PROBE_DEFAULT);
617			case AD_SUBSYSID_69011:
618				device_set_desc(dev,
619				    "Adaptec ANA-69011 10/100BaseTX");
620				return (BUS_PROBE_DEFAULT);
621			default:
622				device_set_desc(dev, t->sf_name);
623				return (BUS_PROBE_DEFAULT);
624				break;
625			}
626		}
627		t++;
628	}
629
630	return(ENXIO);
631}
632
633/*
634 * Attach the interface. Allocate softc structures, do ifmedia
635 * setup and ethernet/BPF attach.
636 */
637static int
638sf_attach(dev)
639	device_t		dev;
640{
641	int			i;
642	struct sf_softc		*sc;
643	struct ifnet		*ifp;
644	int			unit, rid, error = 0;
645	u_char			eaddr[6];
646
647	sc = device_get_softc(dev);
648	unit = device_get_unit(dev);
649
650	mtx_init(&sc->sf_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
651	    MTX_DEF | MTX_RECURSE);
652	/*
653	 * Map control/status registers.
654	 */
655	pci_enable_busmaster(dev);
656
657	rid = SF_RID;
658	sc->sf_res = bus_alloc_resource_any(dev, SF_RES, &rid, RF_ACTIVE);
659
660	if (sc->sf_res == NULL) {
661		printf ("sf%d: couldn't map ports\n", unit);
662		error = ENXIO;
663		goto fail;
664	}
665
666	sc->sf_btag = rman_get_bustag(sc->sf_res);
667	sc->sf_bhandle = rman_get_bushandle(sc->sf_res);
668
669	/* Allocate interrupt */
670	rid = 0;
671	sc->sf_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
672	    RF_SHAREABLE | RF_ACTIVE);
673
674	if (sc->sf_irq == NULL) {
675		printf("sf%d: couldn't map interrupt\n", unit);
676		error = ENXIO;
677		goto fail;
678	}
679
680	callout_handle_init(&sc->sf_stat_ch);
681	/* Reset the adapter. */
682	sf_reset(sc);
683
684	/*
685	 * Get station address from the EEPROM.
686	 */
687	for (i = 0; i < ETHER_ADDR_LEN; i++)
688		eaddr[i] =
689		    sf_read_eeprom(sc, SF_EE_NODEADDR + ETHER_ADDR_LEN - i);
690
691	sc->sf_unit = unit;
692
693	/* Allocate the descriptor queues. */
694	sc->sf_ldata = contigmalloc(sizeof(struct sf_list_data), M_DEVBUF,
695	    M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0);
696
697	if (sc->sf_ldata == NULL) {
698		printf("sf%d: no memory for list buffers!\n", unit);
699		error = ENXIO;
700		goto fail;
701	}
702
703	bzero(sc->sf_ldata, sizeof(struct sf_list_data));
704
705	ifp = sc->sf_ifp = if_alloc(IFT_ETHER);
706	if (ifp == NULL) {
707		printf("sf%d: can not if_alloc()\n", sc->sf_unit);
708		error = ENOSPC;
709		goto fail;
710	}
711
712	/* Do MII setup. */
713	if (mii_phy_probe(dev, &sc->sf_miibus,
714	    sf_ifmedia_upd, sf_ifmedia_sts)) {
715		printf("sf%d: MII without any phy!\n", sc->sf_unit);
716		error = ENXIO;
717		goto fail;
718	}
719
720	ifp->if_softc = sc;
721	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
722	ifp->if_mtu = ETHERMTU;
723	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST |
724	    IFF_NEEDSGIANT;
725	ifp->if_ioctl = sf_ioctl;
726	ifp->if_start = sf_start;
727	ifp->if_watchdog = sf_watchdog;
728	ifp->if_init = sf_init;
729	ifp->if_baudrate = 10000000;
730	IFQ_SET_MAXLEN(&ifp->if_snd, SF_TX_DLIST_CNT - 1);
731	ifp->if_snd.ifq_drv_maxlen = SF_TX_DLIST_CNT - 1;
732	IFQ_SET_READY(&ifp->if_snd);
733#ifdef DEVICE_POLLING
734	ifp->if_capabilities |= IFCAP_POLLING;
735#endif /* DEVICE_POLLING */
736	ifp->if_capenable = ifp->if_capabilities;
737
738	/*
739	 * Call MI attach routine.
740	 */
741	ether_ifattach(ifp, eaddr);
742
743	/* Hook interrupt last to avoid having to lock softc */
744	error = bus_setup_intr(dev, sc->sf_irq, INTR_TYPE_NET,
745	    sf_intr, sc, &sc->sf_intrhand);
746
747	if (error) {
748		printf("sf%d: couldn't set up irq\n", unit);
749		ether_ifdetach(ifp);
750		if_free(ifp);
751		goto fail;
752	}
753
754fail:
755	if (error)
756		sf_detach(dev);
757
758	return(error);
759}
760
761/*
762 * Shutdown hardware and free up resources. This can be called any
763 * time after the mutex has been initialized. It is called in both
764 * the error case in attach and the normal detach case so it needs
765 * to be careful about only freeing resources that have actually been
766 * allocated.
767 */
768static int
769sf_detach(dev)
770	device_t		dev;
771{
772	struct sf_softc		*sc;
773	struct ifnet		*ifp;
774
775	sc = device_get_softc(dev);
776	KASSERT(mtx_initialized(&sc->sf_mtx), ("sf mutex not initialized"));
777	SF_LOCK(sc);
778	ifp = sc->sf_ifp;
779
780	/* These should only be active if attach succeeded */
781	if (device_is_attached(dev)) {
782		sf_stop(sc);
783		ether_ifdetach(ifp);
784		if_free(ifp);
785	}
786	if (sc->sf_miibus)
787		device_delete_child(dev, sc->sf_miibus);
788	bus_generic_detach(dev);
789
790	if (sc->sf_intrhand)
791		bus_teardown_intr(dev, sc->sf_irq, sc->sf_intrhand);
792	if (sc->sf_irq)
793		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sf_irq);
794	if (sc->sf_res)
795		bus_release_resource(dev, SF_RES, SF_RID, sc->sf_res);
796
797	if (sc->sf_ldata)
798		contigfree(sc->sf_ldata, sizeof(struct sf_list_data), M_DEVBUF);
799
800	SF_UNLOCK(sc);
801	mtx_destroy(&sc->sf_mtx);
802
803	return(0);
804}
805
806static int
807sf_init_rx_ring(sc)
808	struct sf_softc		*sc;
809{
810	struct sf_list_data	*ld;
811	int			i;
812
813	ld = sc->sf_ldata;
814
815	bzero((char *)ld->sf_rx_dlist_big,
816	    sizeof(struct sf_rx_bufdesc_type0) * SF_RX_DLIST_CNT);
817	bzero((char *)ld->sf_rx_clist,
818	    sizeof(struct sf_rx_cmpdesc_type3) * SF_RX_CLIST_CNT);
819
820	for (i = 0; i < SF_RX_DLIST_CNT; i++) {
821		if (sf_newbuf(sc, &ld->sf_rx_dlist_big[i], NULL) == ENOBUFS)
822			return(ENOBUFS);
823	}
824
825	return(0);
826}
827
828static void
829sf_init_tx_ring(sc)
830	struct sf_softc		*sc;
831{
832	struct sf_list_data	*ld;
833	int			i;
834
835	ld = sc->sf_ldata;
836
837	bzero((char *)ld->sf_tx_dlist,
838	    sizeof(struct sf_tx_bufdesc_type0) * SF_TX_DLIST_CNT);
839	bzero((char *)ld->sf_tx_clist,
840	    sizeof(struct sf_tx_cmpdesc_type0) * SF_TX_CLIST_CNT);
841
842	for (i = 0; i < SF_TX_DLIST_CNT; i++)
843		ld->sf_tx_dlist[i].sf_id = SF_TX_BUFDESC_ID;
844	for (i = 0; i < SF_TX_CLIST_CNT; i++)
845		ld->sf_tx_clist[i].sf_type = SF_TXCMPTYPE_TX;
846
847	ld->sf_tx_dlist[SF_TX_DLIST_CNT - 1].sf_end = 1;
848	sc->sf_tx_cnt = 0;
849}
850
851static int
852sf_newbuf(sc, c, m)
853	struct sf_softc		*sc;
854	struct sf_rx_bufdesc_type0	*c;
855	struct mbuf		*m;
856{
857	struct mbuf		*m_new = NULL;
858
859	if (m == NULL) {
860		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
861		if (m_new == NULL)
862			return(ENOBUFS);
863
864		MCLGET(m_new, M_DONTWAIT);
865		if (!(m_new->m_flags & M_EXT)) {
866			m_freem(m_new);
867			return(ENOBUFS);
868		}
869		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
870	} else {
871		m_new = m;
872		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
873		m_new->m_data = m_new->m_ext.ext_buf;
874	}
875
876	m_adj(m_new, sizeof(u_int64_t));
877
878	c->sf_mbuf = m_new;
879	c->sf_addrlo = SF_RX_HOSTADDR(vtophys(mtod(m_new, caddr_t)));
880	c->sf_valid = 1;
881
882	return(0);
883}
884
885/*
886 * The starfire is programmed to use 'normal' mode for packet reception,
887 * which means we use the consumer/producer model for both the buffer
888 * descriptor queue and the completion descriptor queue. The only problem
889 * with this is that it involves a lot of register accesses: we have to
890 * read the RX completion consumer and producer indexes and the RX buffer
891 * producer index, plus the RX completion consumer and RX buffer producer
892 * indexes have to be updated. It would have been easier if Adaptec had
893 * put each index in a separate register, especially given that the damn
894 * NIC has a 512K register space.
895 *
896 * In spite of all the lovely features that Adaptec crammed into the 6915,
897 * it is marred by one truly stupid design flaw, which is that receive
898 * buffer addresses must be aligned on a longword boundary. This forces
899 * the packet payload to be unaligned, which is suboptimal on the x86 and
900 * completely unuseable on the Alpha. Our only recourse is to copy received
901 * packets into properly aligned buffers before handing them off.
902 */
903
904static void
905sf_rxeof(sc)
906	struct sf_softc		*sc;
907{
908	struct mbuf		*m;
909	struct ifnet		*ifp;
910	struct sf_rx_bufdesc_type0	*desc;
911	struct sf_rx_cmpdesc_type3	*cur_rx;
912	u_int32_t		rxcons, rxprod;
913	int			cmpprodidx, cmpconsidx, bufprodidx;
914
915	SF_LOCK_ASSERT(sc);
916
917	ifp = sc->sf_ifp;
918
919	rxcons = csr_read_4(sc, SF_CQ_CONSIDX);
920	rxprod = csr_read_4(sc, SF_RXDQ_PTR_Q1);
921	cmpprodidx = SF_IDX_LO(csr_read_4(sc, SF_CQ_PRODIDX));
922	cmpconsidx = SF_IDX_LO(rxcons);
923	bufprodidx = SF_IDX_LO(rxprod);
924
925	while (cmpconsidx != cmpprodidx) {
926		struct mbuf		*m0;
927
928#ifdef DEVICE_POLLING
929		if (ifp->if_flags & IFF_POLLING) {
930			if (sc->rxcycles <= 0)
931				break;
932			sc->rxcycles--;
933		}
934#endif /* DEVICE_POLLING */
935
936		cur_rx = &sc->sf_ldata->sf_rx_clist[cmpconsidx];
937		desc = &sc->sf_ldata->sf_rx_dlist_big[cur_rx->sf_endidx];
938		m = desc->sf_mbuf;
939		SF_INC(cmpconsidx, SF_RX_CLIST_CNT);
940		SF_INC(bufprodidx, SF_RX_DLIST_CNT);
941
942		if (!(cur_rx->sf_status1 & SF_RXSTAT1_OK)) {
943			ifp->if_ierrors++;
944			sf_newbuf(sc, desc, m);
945			continue;
946		}
947
948		m0 = m_devget(mtod(m, char *), cur_rx->sf_len, ETHER_ALIGN,
949		    ifp, NULL);
950		sf_newbuf(sc, desc, m);
951		if (m0 == NULL) {
952			ifp->if_ierrors++;
953			continue;
954		}
955		m = m0;
956
957		ifp->if_ipackets++;
958		SF_UNLOCK(sc);
959		(*ifp->if_input)(ifp, m);
960		SF_LOCK(sc);
961	}
962
963	csr_write_4(sc, SF_CQ_CONSIDX,
964	    (rxcons & ~SF_CQ_CONSIDX_RXQ1) | cmpconsidx);
965	csr_write_4(sc, SF_RXDQ_PTR_Q1,
966	    (rxprod & ~SF_RXDQ_PRODIDX) | bufprodidx);
967}
968
969/*
970 * Read the transmit status from the completion queue and release
971 * mbufs. Note that the buffer descriptor index in the completion
972 * descriptor is an offset from the start of the transmit buffer
973 * descriptor list in bytes. This is important because the manual
974 * gives the impression that it should match the producer/consumer
975 * index, which is the offset in 8 byte blocks.
976 */
977static void
978sf_txeof(sc)
979	struct sf_softc		*sc;
980{
981	int			txcons, cmpprodidx, cmpconsidx;
982	struct sf_tx_cmpdesc_type1 *cur_cmp;
983	struct sf_tx_bufdesc_type0 *cur_tx;
984	struct ifnet		*ifp;
985
986	ifp = sc->sf_ifp;
987
988	txcons = csr_read_4(sc, SF_CQ_CONSIDX);
989	cmpprodidx = SF_IDX_HI(csr_read_4(sc, SF_CQ_PRODIDX));
990	cmpconsidx = SF_IDX_HI(txcons);
991
992	while (cmpconsidx != cmpprodidx) {
993		cur_cmp = &sc->sf_ldata->sf_tx_clist[cmpconsidx];
994		cur_tx = &sc->sf_ldata->sf_tx_dlist[cur_cmp->sf_index >> 7];
995
996		if (cur_cmp->sf_txstat & SF_TXSTAT_TX_OK)
997			ifp->if_opackets++;
998		else {
999			if (cur_cmp->sf_txstat & SF_TXSTAT_TX_UNDERRUN)
1000				sf_txthresh_adjust(sc);
1001			ifp->if_oerrors++;
1002		}
1003
1004		sc->sf_tx_cnt--;
1005		if (cur_tx->sf_mbuf != NULL) {
1006			m_freem(cur_tx->sf_mbuf);
1007			cur_tx->sf_mbuf = NULL;
1008		} else
1009			break;
1010		SF_INC(cmpconsidx, SF_TX_CLIST_CNT);
1011	}
1012
1013	ifp->if_timer = 0;
1014	ifp->if_flags &= ~IFF_OACTIVE;
1015
1016	csr_write_4(sc, SF_CQ_CONSIDX,
1017	    (txcons & ~SF_CQ_CONSIDX_TXQ) |
1018	    ((cmpconsidx << 16) & 0xFFFF0000));
1019}
1020
1021static void
1022sf_txthresh_adjust(sc)
1023	struct sf_softc		*sc;
1024{
1025	u_int32_t		txfctl;
1026	u_int8_t		txthresh;
1027
1028	txfctl = csr_read_4(sc, SF_TX_FRAMCTL);
1029	txthresh = txfctl & SF_TXFRMCTL_TXTHRESH;
1030	if (txthresh < 0xFF) {
1031		txthresh++;
1032		txfctl &= ~SF_TXFRMCTL_TXTHRESH;
1033		txfctl |= txthresh;
1034#ifdef DIAGNOSTIC
1035		printf("sf%d: tx underrun, increasing "
1036		    "tx threshold to %d bytes\n",
1037		    sc->sf_unit, txthresh * 4);
1038#endif
1039		csr_write_4(sc, SF_TX_FRAMCTL, txfctl);
1040	}
1041}
1042
1043#ifdef DEVICE_POLLING
1044static void
1045sf_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1046{
1047	struct sf_softc *sc = ifp->if_softc;
1048
1049	SF_LOCK(sc);
1050	sf_poll_locked(ifp, cmd, count);
1051	SF_UNLOCK(sc);
1052}
1053
1054static void
1055sf_poll_locked(struct ifnet *ifp, enum poll_cmd cmd, int count)
1056{
1057	struct sf_softc *sc = ifp->if_softc;
1058
1059	SF_LOCK_ASSERT(sc);
1060
1061	if (!(ifp->if_capenable & IFCAP_POLLING)) {
1062		ether_poll_deregister(ifp);
1063		cmd = POLL_DEREGISTER;
1064	}
1065
1066	if (cmd == POLL_DEREGISTER) {
1067		/* Final call, enable interrupts. */
1068		csr_write_4(sc, SF_IMR, SF_INTRS);
1069		return;
1070	}
1071
1072	sc->rxcycles = count;
1073	sf_rxeof(sc);
1074	sf_txeof(sc);
1075	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1076		sf_start(ifp);
1077
1078	if (cmd == POLL_AND_CHECK_STATUS) {
1079		u_int32_t status;
1080
1081		status = csr_read_4(sc, SF_ISR);
1082		if (status)
1083			csr_write_4(sc, SF_ISR, status);
1084
1085		if (status & SF_ISR_TX_LOFIFO)
1086			sf_txthresh_adjust(sc);
1087
1088		if (status & SF_ISR_ABNORMALINTR) {
1089			if (status & SF_ISR_STATSOFLOW) {
1090				untimeout(sf_stats_update, sc,
1091				    sc->sf_stat_ch);
1092				sf_stats_update(sc);
1093			} else
1094				sf_init(sc);
1095		}
1096	}
1097}
1098#endif /* DEVICE_POLLING */
1099
1100static void
1101sf_intr(arg)
1102	void			*arg;
1103{
1104	struct sf_softc		*sc;
1105	struct ifnet		*ifp;
1106	u_int32_t		status;
1107
1108	sc = arg;
1109	SF_LOCK(sc);
1110
1111	ifp = sc->sf_ifp;
1112
1113#ifdef DEVICE_POLLING
1114	if (ifp->if_flags & IFF_POLLING)
1115		goto done_locked;
1116
1117	if ((ifp->if_capenable & IFCAP_POLLING) &&
1118	    ether_poll_register(sf_poll, ifp)) {
1119		/* OK, disable interrupts. */
1120		csr_write_4(sc, SF_IMR, 0x00000000);
1121		sf_poll_locked(ifp, 0, 1);
1122		goto done_locked;
1123	}
1124#endif /* DEVICE_POLLING */
1125
1126	if (!(csr_read_4(sc, SF_ISR_SHADOW) & SF_ISR_PCIINT_ASSERTED)) {
1127		SF_UNLOCK(sc);
1128		return;
1129	}
1130
1131	/* Disable interrupts. */
1132	csr_write_4(sc, SF_IMR, 0x00000000);
1133
1134	for (;;) {
1135		status = csr_read_4(sc, SF_ISR);
1136		if (status)
1137			csr_write_4(sc, SF_ISR, status);
1138
1139		if (!(status & SF_INTRS))
1140			break;
1141
1142		if (status & SF_ISR_RXDQ1_DMADONE)
1143			sf_rxeof(sc);
1144
1145		if (status & SF_ISR_TX_TXDONE ||
1146		    status & SF_ISR_TX_DMADONE ||
1147		    status & SF_ISR_TX_QUEUEDONE)
1148			sf_txeof(sc);
1149
1150		if (status & SF_ISR_TX_LOFIFO)
1151			sf_txthresh_adjust(sc);
1152
1153		if (status & SF_ISR_ABNORMALINTR) {
1154			if (status & SF_ISR_STATSOFLOW) {
1155				untimeout(sf_stats_update, sc,
1156				    sc->sf_stat_ch);
1157				sf_stats_update(sc);
1158			} else
1159				sf_init(sc);
1160		}
1161	}
1162
1163	/* Re-enable interrupts. */
1164	csr_write_4(sc, SF_IMR, SF_INTRS);
1165
1166	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1167		sf_start(ifp);
1168
1169#ifdef DEVICE_POLLING
1170done_locked:
1171#endif /* DEVICE_POLLING */
1172	SF_UNLOCK(sc);
1173}
1174
1175static void
1176sf_init(xsc)
1177	void			*xsc;
1178{
1179	struct sf_softc		*sc;
1180	struct ifnet		*ifp;
1181	struct mii_data		*mii;
1182	int			i;
1183
1184	sc = xsc;
1185	SF_LOCK(sc);
1186	ifp = sc->sf_ifp;
1187	mii = device_get_softc(sc->sf_miibus);
1188
1189	sf_stop(sc);
1190	sf_reset(sc);
1191
1192	/* Init all the receive filter registers */
1193	for (i = SF_RXFILT_PERFECT_BASE;
1194	    i < (SF_RXFILT_HASH_MAX + 1); i += 4)
1195		csr_write_4(sc, i, 0);
1196
1197	/* Empty stats counter registers. */
1198	for (i = 0; i < sizeof(struct sf_stats)/sizeof(u_int32_t); i++)
1199		csr_write_4(sc, SF_STATS_BASE +
1200		    (i + sizeof(u_int32_t)), 0);
1201
1202	/* Init our MAC address */
1203	csr_write_4(sc, SF_PAR0, *(u_int32_t *)(&IFP2ENADDR(sc->sf_ifp)[0]));
1204	csr_write_4(sc, SF_PAR1, *(u_int32_t *)(&IFP2ENADDR(sc->sf_ifp)[4]));
1205	sf_setperf(sc, 0, (caddr_t)&IFP2ENADDR(sc->sf_ifp));
1206
1207	if (sf_init_rx_ring(sc) == ENOBUFS) {
1208		printf("sf%d: initialization failed: no "
1209		    "memory for rx buffers\n", sc->sf_unit);
1210		SF_UNLOCK(sc);
1211		return;
1212	}
1213
1214	sf_init_tx_ring(sc);
1215
1216	csr_write_4(sc, SF_RXFILT, SF_PERFMODE_NORMAL|SF_HASHMODE_WITHVLAN);
1217
1218	/* If we want promiscuous mode, set the allframes bit. */
1219	if (ifp->if_flags & IFF_PROMISC) {
1220		SF_SETBIT(sc, SF_RXFILT, SF_RXFILT_PROMISC);
1221	} else {
1222		SF_CLRBIT(sc, SF_RXFILT, SF_RXFILT_PROMISC);
1223	}
1224
1225	if (ifp->if_flags & IFF_BROADCAST) {
1226		SF_SETBIT(sc, SF_RXFILT, SF_RXFILT_BROAD);
1227	} else {
1228		SF_CLRBIT(sc, SF_RXFILT, SF_RXFILT_BROAD);
1229	}
1230
1231	/*
1232	 * Load the multicast filter.
1233	 */
1234	sf_setmulti(sc);
1235
1236	/* Init the completion queue indexes */
1237	csr_write_4(sc, SF_CQ_CONSIDX, 0);
1238	csr_write_4(sc, SF_CQ_PRODIDX, 0);
1239
1240	/* Init the RX completion queue */
1241	csr_write_4(sc, SF_RXCQ_CTL_1,
1242	    vtophys(sc->sf_ldata->sf_rx_clist) & SF_RXCQ_ADDR);
1243	SF_SETBIT(sc, SF_RXCQ_CTL_1, SF_RXCQTYPE_3);
1244
1245	/* Init RX DMA control. */
1246	SF_SETBIT(sc, SF_RXDMA_CTL, SF_RXDMA_REPORTBADPKTS);
1247
1248	/* Init the RX buffer descriptor queue. */
1249	csr_write_4(sc, SF_RXDQ_ADDR_Q1,
1250	    vtophys(sc->sf_ldata->sf_rx_dlist_big));
1251	csr_write_4(sc, SF_RXDQ_CTL_1, (MCLBYTES << 16) | SF_DESCSPACE_16BYTES);
1252	csr_write_4(sc, SF_RXDQ_PTR_Q1, SF_RX_DLIST_CNT - 1);
1253
1254	/* Init the TX completion queue */
1255	csr_write_4(sc, SF_TXCQ_CTL,
1256	    vtophys(sc->sf_ldata->sf_tx_clist) & SF_RXCQ_ADDR);
1257
1258	/* Init the TX buffer descriptor queue. */
1259	csr_write_4(sc, SF_TXDQ_ADDR_HIPRIO,
1260		vtophys(sc->sf_ldata->sf_tx_dlist));
1261	SF_SETBIT(sc, SF_TX_FRAMCTL, SF_TXFRMCTL_CPLAFTERTX);
1262	csr_write_4(sc, SF_TXDQ_CTL,
1263	    SF_TXBUFDESC_TYPE0|SF_TXMINSPACE_128BYTES|SF_TXSKIPLEN_8BYTES);
1264	SF_SETBIT(sc, SF_TXDQ_CTL, SF_TXDQCTL_NODMACMP);
1265
1266	/* Enable autopadding of short TX frames. */
1267	SF_SETBIT(sc, SF_MACCFG_1, SF_MACCFG1_AUTOPAD);
1268
1269#ifdef DEVICE_POLLING
1270	/* Disable interrupts if we are polling. */
1271	if (ifp->if_flags & IFF_POLLING)
1272		csr_write_4(sc, SF_IMR, 0x00000000);
1273	else
1274#endif /* DEVICE_POLLING */
1275
1276	/* Enable interrupts. */
1277	csr_write_4(sc, SF_IMR, SF_INTRS);
1278	SF_SETBIT(sc, SF_PCI_DEVCFG, SF_PCIDEVCFG_INTR_ENB);
1279
1280	/* Enable the RX and TX engines. */
1281	SF_SETBIT(sc, SF_GEN_ETH_CTL, SF_ETHCTL_RX_ENB|SF_ETHCTL_RXDMA_ENB);
1282	SF_SETBIT(sc, SF_GEN_ETH_CTL, SF_ETHCTL_TX_ENB|SF_ETHCTL_TXDMA_ENB);
1283
1284	/*mii_mediachg(mii);*/
1285	sf_ifmedia_upd(ifp);
1286
1287	ifp->if_flags |= IFF_RUNNING;
1288	ifp->if_flags &= ~IFF_OACTIVE;
1289
1290	sc->sf_stat_ch = timeout(sf_stats_update, sc, hz);
1291
1292	SF_UNLOCK(sc);
1293}
1294
1295static int
1296sf_encap(sc, c, m_head)
1297	struct sf_softc		*sc;
1298	struct sf_tx_bufdesc_type0 *c;
1299	struct mbuf		*m_head;
1300{
1301	int			frag = 0;
1302	struct sf_frag		*f = NULL;
1303	struct mbuf		*m;
1304
1305	m = m_head;
1306
1307	for (m = m_head, frag = 0; m != NULL; m = m->m_next) {
1308		if (m->m_len != 0) {
1309			if (frag == SF_MAXFRAGS)
1310				break;
1311			f = &c->sf_frags[frag];
1312			if (frag == 0)
1313				f->sf_pktlen = m_head->m_pkthdr.len;
1314			f->sf_fraglen = m->m_len;
1315			f->sf_addr = vtophys(mtod(m, vm_offset_t));
1316			frag++;
1317		}
1318	}
1319
1320	if (m != NULL) {
1321		struct mbuf		*m_new = NULL;
1322
1323		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1324		if (m_new == NULL) {
1325			printf("sf%d: no memory for tx list\n", sc->sf_unit);
1326			return(1);
1327		}
1328
1329		if (m_head->m_pkthdr.len > MHLEN) {
1330			MCLGET(m_new, M_DONTWAIT);
1331			if (!(m_new->m_flags & M_EXT)) {
1332				m_freem(m_new);
1333				printf("sf%d: no memory for tx list\n",
1334				    sc->sf_unit);
1335				return(1);
1336			}
1337		}
1338		m_copydata(m_head, 0, m_head->m_pkthdr.len,
1339		    mtod(m_new, caddr_t));
1340		m_new->m_pkthdr.len = m_new->m_len = m_head->m_pkthdr.len;
1341		m_freem(m_head);
1342		m_head = m_new;
1343		f = &c->sf_frags[0];
1344		f->sf_fraglen = f->sf_pktlen = m_head->m_pkthdr.len;
1345		f->sf_addr = vtophys(mtod(m_head, caddr_t));
1346		frag = 1;
1347	}
1348
1349	c->sf_mbuf = m_head;
1350	c->sf_id = SF_TX_BUFDESC_ID;
1351	c->sf_fragcnt = frag;
1352	c->sf_intr = 1;
1353	c->sf_caltcp = 0;
1354	c->sf_crcen = 1;
1355
1356	return(0);
1357}
1358
1359static void
1360sf_start(ifp)
1361	struct ifnet		*ifp;
1362{
1363	struct sf_softc		*sc;
1364	struct sf_tx_bufdesc_type0 *cur_tx = NULL;
1365	struct mbuf		*m_head = NULL;
1366	int			i, txprod;
1367
1368	sc = ifp->if_softc;
1369	SF_LOCK(sc);
1370
1371	if (!sc->sf_link && ifp->if_snd.ifq_len < 10) {
1372		SF_UNLOCK(sc);
1373		return;
1374	}
1375
1376	if (ifp->if_flags & IFF_OACTIVE) {
1377		SF_UNLOCK(sc);
1378		return;
1379	}
1380
1381	txprod = csr_read_4(sc, SF_TXDQ_PRODIDX);
1382	i = SF_IDX_HI(txprod) >> 4;
1383
1384	if (sc->sf_ldata->sf_tx_dlist[i].sf_mbuf != NULL) {
1385		printf("sf%d: TX ring full, resetting\n", sc->sf_unit);
1386		sf_init(sc);
1387		txprod = csr_read_4(sc, SF_TXDQ_PRODIDX);
1388		i = SF_IDX_HI(txprod) >> 4;
1389	}
1390
1391	while(sc->sf_ldata->sf_tx_dlist[i].sf_mbuf == NULL) {
1392		if (sc->sf_tx_cnt >= (SF_TX_DLIST_CNT - 5)) {
1393			ifp->if_flags |= IFF_OACTIVE;
1394			cur_tx = NULL;
1395			break;
1396		}
1397		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
1398		if (m_head == NULL)
1399			break;
1400
1401		cur_tx = &sc->sf_ldata->sf_tx_dlist[i];
1402		if (sf_encap(sc, cur_tx, m_head)) {
1403			IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
1404			ifp->if_flags |= IFF_OACTIVE;
1405			cur_tx = NULL;
1406			break;
1407		}
1408
1409		/*
1410		 * If there's a BPF listener, bounce a copy of this frame
1411		 * to him.
1412		 */
1413		BPF_MTAP(ifp, m_head);
1414
1415		SF_INC(i, SF_TX_DLIST_CNT);
1416		sc->sf_tx_cnt++;
1417		/*
1418		 * Don't get the TX DMA queue get too full.
1419		 */
1420		if (sc->sf_tx_cnt > 64)
1421			break;
1422	}
1423
1424	if (cur_tx == NULL) {
1425		SF_UNLOCK(sc);
1426		return;
1427	}
1428
1429	/* Transmit */
1430	csr_write_4(sc, SF_TXDQ_PRODIDX,
1431	    (txprod & ~SF_TXDQ_PRODIDX_HIPRIO) |
1432	    ((i << 20) & 0xFFFF0000));
1433
1434	ifp->if_timer = 5;
1435
1436	SF_UNLOCK(sc);
1437}
1438
1439static void
1440sf_stop(sc)
1441	struct sf_softc		*sc;
1442{
1443	int			i;
1444	struct ifnet		*ifp;
1445
1446	SF_LOCK(sc);
1447
1448	ifp = sc->sf_ifp;
1449
1450	untimeout(sf_stats_update, sc, sc->sf_stat_ch);
1451
1452#ifdef DEVICE_POLLING
1453	ether_poll_deregister(ifp);
1454#endif /* DEVICE_POLLING */
1455
1456	csr_write_4(sc, SF_GEN_ETH_CTL, 0);
1457	csr_write_4(sc, SF_CQ_CONSIDX, 0);
1458	csr_write_4(sc, SF_CQ_PRODIDX, 0);
1459	csr_write_4(sc, SF_RXDQ_ADDR_Q1, 0);
1460	csr_write_4(sc, SF_RXDQ_CTL_1, 0);
1461	csr_write_4(sc, SF_RXDQ_PTR_Q1, 0);
1462	csr_write_4(sc, SF_TXCQ_CTL, 0);
1463	csr_write_4(sc, SF_TXDQ_ADDR_HIPRIO, 0);
1464	csr_write_4(sc, SF_TXDQ_CTL, 0);
1465	sf_reset(sc);
1466
1467	sc->sf_link = 0;
1468
1469	for (i = 0; i < SF_RX_DLIST_CNT; i++) {
1470		if (sc->sf_ldata->sf_rx_dlist_big[i].sf_mbuf != NULL) {
1471			m_freem(sc->sf_ldata->sf_rx_dlist_big[i].sf_mbuf);
1472			sc->sf_ldata->sf_rx_dlist_big[i].sf_mbuf = NULL;
1473		}
1474	}
1475
1476	for (i = 0; i < SF_TX_DLIST_CNT; i++) {
1477		if (sc->sf_ldata->sf_tx_dlist[i].sf_mbuf != NULL) {
1478			m_freem(sc->sf_ldata->sf_tx_dlist[i].sf_mbuf);
1479			sc->sf_ldata->sf_tx_dlist[i].sf_mbuf = NULL;
1480		}
1481	}
1482
1483	ifp->if_flags &= ~(IFF_RUNNING|IFF_OACTIVE);
1484	SF_UNLOCK(sc);
1485}
1486
1487/*
1488 * Note: it is important that this function not be interrupted. We
1489 * use a two-stage register access scheme: if we are interrupted in
1490 * between setting the indirect address register and reading from the
1491 * indirect data register, the contents of the address register could
1492 * be changed out from under us.
1493 */
1494static void
1495sf_stats_update(xsc)
1496	void			*xsc;
1497{
1498	struct sf_softc		*sc;
1499	struct ifnet		*ifp;
1500	struct mii_data		*mii;
1501	struct sf_stats		stats;
1502	u_int32_t		*ptr;
1503	int			i;
1504
1505	sc = xsc;
1506	SF_LOCK(sc);
1507	ifp = sc->sf_ifp;
1508	mii = device_get_softc(sc->sf_miibus);
1509
1510	ptr = (u_int32_t *)&stats;
1511	for (i = 0; i < sizeof(stats)/sizeof(u_int32_t); i++)
1512		ptr[i] = csr_read_4(sc, SF_STATS_BASE +
1513		    (i + sizeof(u_int32_t)));
1514
1515	for (i = 0; i < sizeof(stats)/sizeof(u_int32_t); i++)
1516		csr_write_4(sc, SF_STATS_BASE +
1517		    (i + sizeof(u_int32_t)), 0);
1518
1519	ifp->if_collisions += stats.sf_tx_single_colls +
1520	    stats.sf_tx_multi_colls + stats.sf_tx_excess_colls;
1521
1522	mii_tick(mii);
1523
1524	if (!sc->sf_link && mii->mii_media_status & IFM_ACTIVE &&
1525	    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
1526		sc->sf_link++;
1527		if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1528			sf_start(ifp);
1529	}
1530
1531	sc->sf_stat_ch = timeout(sf_stats_update, sc, hz);
1532
1533	SF_UNLOCK(sc);
1534}
1535
1536static void
1537sf_watchdog(ifp)
1538	struct ifnet		*ifp;
1539{
1540	struct sf_softc		*sc;
1541
1542	sc = ifp->if_softc;
1543
1544	SF_LOCK(sc);
1545
1546	ifp->if_oerrors++;
1547	printf("sf%d: watchdog timeout\n", sc->sf_unit);
1548
1549	sf_stop(sc);
1550	sf_reset(sc);
1551	sf_init(sc);
1552
1553	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1554		sf_start(ifp);
1555
1556	SF_UNLOCK(sc);
1557}
1558
1559static void
1560sf_shutdown(dev)
1561	device_t		dev;
1562{
1563	struct sf_softc		*sc;
1564
1565	sc = device_get_softc(dev);
1566
1567	sf_stop(sc);
1568}
1569