if_sf.c revision 137557
1/*
2 * Copyright (c) 1997, 1998, 1999
3 *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 *    must display the following acknowledgement:
15 *	This product includes software developed by Bill Paul.
16 * 4. Neither the name of the author nor the names of any co-contributors
17 *    may be used to endorse or promote products derived from this software
18 *    without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30 * THE POSSIBILITY OF SUCH DAMAGE.
31 */
32
33#include <sys/cdefs.h>
34__FBSDID("$FreeBSD: head/sys/dev/sf/if_sf.c 137557 2004-11-10 23:04:39Z brueffer $");
35
36/*
37 * Adaptec AIC-6915 "Starfire" PCI fast ethernet driver for FreeBSD.
38 * Programming manual is available from:
39 * ftp.adaptec.com:/pub/BBS/userguides/aic6915_pg.pdf.
40 *
41 * Written by Bill Paul <wpaul@ctr.columbia.edu>
42 * Department of Electical Engineering
43 * Columbia University, New York City
44 */
45/*
46 * The Adaptec AIC-6915 "Starfire" is a 64-bit 10/100 PCI ethernet
47 * controller designed with flexibility and reducing CPU load in mind.
48 * The Starfire offers high and low priority buffer queues, a
49 * producer/consumer index mechanism and several different buffer
50 * queue and completion queue descriptor types. Any one of a number
51 * of different driver designs can be used, depending on system and
52 * OS requirements. This driver makes use of type0 transmit frame
53 * descriptors (since BSD fragments packets across an mbuf chain)
54 * and two RX buffer queues prioritized on size (one queue for small
55 * frames that will fit into a single mbuf, another with full size
56 * mbuf clusters for everything else). The producer/consumer indexes
57 * and completion queues are also used.
58 *
59 * One downside to the Starfire has to do with alignment: buffer
60 * queues must be aligned on 256-byte boundaries, and receive buffers
61 * must be aligned on longword boundaries. The receive buffer alignment
62 * causes problems on the Alpha platform, where the packet payload
63 * should be longword aligned. There is no simple way around this.
64 *
65 * For receive filtering, the Starfire offers 16 perfect filter slots
66 * and a 512-bit hash table.
67 *
68 * The Starfire has no internal transceiver, relying instead on an
69 * external MII-based transceiver. Accessing registers on external
70 * PHYs is done through a special register map rather than with the
71 * usual bitbang MDIO method.
72 *
73 * Acesssing the registers on the Starfire is a little tricky. The
74 * Starfire has a 512K internal register space. When programmed for
75 * PCI memory mapped mode, the entire register space can be accessed
76 * directly. However in I/O space mode, only 256 bytes are directly
77 * mapped into PCI I/O space. The other registers can be accessed
78 * indirectly using the SF_INDIRECTIO_ADDR and SF_INDIRECTIO_DATA
79 * registers inside the 256-byte I/O window.
80 */
81
82#include <sys/param.h>
83#include <sys/systm.h>
84#include <sys/sockio.h>
85#include <sys/mbuf.h>
86#include <sys/malloc.h>
87#include <sys/kernel.h>
88#include <sys/module.h>
89#include <sys/socket.h>
90
91#include <net/if.h>
92#include <net/if_arp.h>
93#include <net/ethernet.h>
94#include <net/if_dl.h>
95#include <net/if_media.h>
96
97#include <net/bpf.h>
98
99#include <vm/vm.h>              /* for vtophys */
100#include <vm/pmap.h>            /* for vtophys */
101#include <machine/bus_pio.h>
102#include <machine/bus_memio.h>
103#include <machine/bus.h>
104#include <machine/resource.h>
105#include <sys/bus.h>
106#include <sys/rman.h>
107
108#include <dev/mii/mii.h>
109#include <dev/mii/miivar.h>
110
111/* "controller miibus0" required.  See GENERIC if you get errors here. */
112#include "miibus_if.h"
113
114#include <dev/pci/pcireg.h>
115#include <dev/pci/pcivar.h>
116
117#define SF_USEIOSPACE
118
119#include <pci/if_sfreg.h>
120
121MODULE_DEPEND(sf, pci, 1, 1, 1);
122MODULE_DEPEND(sf, ether, 1, 1, 1);
123MODULE_DEPEND(sf, miibus, 1, 1, 1);
124
125static struct sf_type sf_devs[] = {
126	{ AD_VENDORID, AD_DEVICEID_STARFIRE,
127		"Adaptec AIC-6915 10/100BaseTX" },
128	{ 0, 0, NULL }
129};
130
131static int sf_probe		(device_t);
132static int sf_attach		(device_t);
133static int sf_detach		(device_t);
134static void sf_intr		(void *);
135static void sf_stats_update	(void *);
136static void sf_rxeof		(struct sf_softc *);
137static void sf_txeof		(struct sf_softc *);
138static int sf_encap		(struct sf_softc *,
139					struct sf_tx_bufdesc_type0 *,
140					struct mbuf *);
141static void sf_start		(struct ifnet *);
142static int sf_ioctl		(struct ifnet *, u_long, caddr_t);
143static void sf_init		(void *);
144static void sf_stop		(struct sf_softc *);
145static void sf_watchdog		(struct ifnet *);
146static void sf_shutdown		(device_t);
147static int sf_ifmedia_upd	(struct ifnet *);
148static void sf_ifmedia_sts	(struct ifnet *, struct ifmediareq *);
149static void sf_reset		(struct sf_softc *);
150static int sf_init_rx_ring	(struct sf_softc *);
151static void sf_init_tx_ring	(struct sf_softc *);
152static int sf_newbuf		(struct sf_softc *,
153					struct sf_rx_bufdesc_type0 *,
154					struct mbuf *);
155static void sf_setmulti		(struct sf_softc *);
156static int sf_setperf		(struct sf_softc *, int, caddr_t);
157static int sf_sethash		(struct sf_softc *, caddr_t, int);
158#ifdef notdef
159static int sf_setvlan		(struct sf_softc *, int, u_int32_t);
160#endif
161
162static u_int8_t sf_read_eeprom	(struct sf_softc *, int);
163
164static int sf_miibus_readreg	(device_t, int, int);
165static int sf_miibus_writereg	(device_t, int, int, int);
166static void sf_miibus_statchg	(device_t);
167#ifdef DEVICE_POLLING
168static void sf_poll		(struct ifnet *ifp, enum poll_cmd cmd,
169				 int count);
170static void sf_poll_locked	(struct ifnet *ifp, enum poll_cmd cmd,
171				 int count);
172#endif /* DEVICE_POLLING */
173
174static u_int32_t csr_read_4	(struct sf_softc *, int);
175static void csr_write_4		(struct sf_softc *, int, u_int32_t);
176static void sf_txthresh_adjust	(struct sf_softc *);
177
178#ifdef SF_USEIOSPACE
179#define SF_RES			SYS_RES_IOPORT
180#define SF_RID			SF_PCI_LOIO
181#else
182#define SF_RES			SYS_RES_MEMORY
183#define SF_RID			SF_PCI_LOMEM
184#endif
185
186static device_method_t sf_methods[] = {
187	/* Device interface */
188	DEVMETHOD(device_probe,		sf_probe),
189	DEVMETHOD(device_attach,	sf_attach),
190	DEVMETHOD(device_detach,	sf_detach),
191	DEVMETHOD(device_shutdown,	sf_shutdown),
192
193	/* bus interface */
194	DEVMETHOD(bus_print_child,	bus_generic_print_child),
195	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
196
197	/* MII interface */
198	DEVMETHOD(miibus_readreg,	sf_miibus_readreg),
199	DEVMETHOD(miibus_writereg,	sf_miibus_writereg),
200	DEVMETHOD(miibus_statchg,	sf_miibus_statchg),
201
202	{ 0, 0 }
203};
204
205static driver_t sf_driver = {
206	"sf",
207	sf_methods,
208	sizeof(struct sf_softc),
209};
210
211static devclass_t sf_devclass;
212
213DRIVER_MODULE(sf, pci, sf_driver, sf_devclass, 0, 0);
214DRIVER_MODULE(miibus, sf, miibus_driver, miibus_devclass, 0, 0);
215
216#define SF_SETBIT(sc, reg, x)	\
217	csr_write_4(sc, reg, csr_read_4(sc, reg) | (x))
218
219#define SF_CLRBIT(sc, reg, x)				\
220	csr_write_4(sc, reg, csr_read_4(sc, reg) & ~(x))
221
222static u_int32_t
223csr_read_4(sc, reg)
224	struct sf_softc		*sc;
225	int			reg;
226{
227	u_int32_t		val;
228
229#ifdef SF_USEIOSPACE
230	CSR_WRITE_4(sc, SF_INDIRECTIO_ADDR, reg + SF_RMAP_INTREG_BASE);
231	val = CSR_READ_4(sc, SF_INDIRECTIO_DATA);
232#else
233	val = CSR_READ_4(sc, (reg + SF_RMAP_INTREG_BASE));
234#endif
235
236	return(val);
237}
238
239static u_int8_t
240sf_read_eeprom(sc, reg)
241	struct sf_softc		*sc;
242	int			reg;
243{
244	u_int8_t		val;
245
246	val = (csr_read_4(sc, SF_EEADDR_BASE +
247	    (reg & 0xFFFFFFFC)) >> (8 * (reg & 3))) & 0xFF;
248
249	return(val);
250}
251
252static void
253csr_write_4(sc, reg, val)
254	struct sf_softc		*sc;
255	int			reg;
256	u_int32_t		val;
257{
258#ifdef SF_USEIOSPACE
259	CSR_WRITE_4(sc, SF_INDIRECTIO_ADDR, reg + SF_RMAP_INTREG_BASE);
260	CSR_WRITE_4(sc, SF_INDIRECTIO_DATA, val);
261#else
262	CSR_WRITE_4(sc, (reg + SF_RMAP_INTREG_BASE), val);
263#endif
264}
265
266/*
267 * Copy the address 'mac' into the perfect RX filter entry at
268 * offset 'idx.' The perfect filter only has 16 entries so do
269 * some sanity tests.
270 */
271static int
272sf_setperf(sc, idx, mac)
273	struct sf_softc		*sc;
274	int			idx;
275	caddr_t			mac;
276{
277	u_int16_t		*p;
278
279	if (idx < 0 || idx > SF_RXFILT_PERFECT_CNT)
280		return(EINVAL);
281
282	if (mac == NULL)
283		return(EINVAL);
284
285	p = (u_int16_t *)mac;
286
287	csr_write_4(sc, SF_RXFILT_PERFECT_BASE +
288	    (idx * SF_RXFILT_PERFECT_SKIP), htons(p[2]));
289	csr_write_4(sc, SF_RXFILT_PERFECT_BASE +
290	    (idx * SF_RXFILT_PERFECT_SKIP) + 4, htons(p[1]));
291	csr_write_4(sc, SF_RXFILT_PERFECT_BASE +
292	    (idx * SF_RXFILT_PERFECT_SKIP) + 8, htons(p[0]));
293
294	return(0);
295}
296
297/*
298 * Set the bit in the 512-bit hash table that corresponds to the
299 * specified mac address 'mac.' If 'prio' is nonzero, update the
300 * priority hash table instead of the filter hash table.
301 */
302static int
303sf_sethash(sc, mac, prio)
304	struct sf_softc		*sc;
305	caddr_t			mac;
306	int			prio;
307{
308	u_int32_t		h;
309
310	if (mac == NULL)
311		return(EINVAL);
312
313	h = ether_crc32_be(mac, ETHER_ADDR_LEN) >> 23;
314
315	if (prio) {
316		SF_SETBIT(sc, SF_RXFILT_HASH_BASE + SF_RXFILT_HASH_PRIOOFF +
317		    (SF_RXFILT_HASH_SKIP * (h >> 4)), (1 << (h & 0xF)));
318	} else {
319		SF_SETBIT(sc, SF_RXFILT_HASH_BASE + SF_RXFILT_HASH_ADDROFF +
320		    (SF_RXFILT_HASH_SKIP * (h >> 4)), (1 << (h & 0xF)));
321	}
322
323	return(0);
324}
325
326#ifdef notdef
327/*
328 * Set a VLAN tag in the receive filter.
329 */
330static int
331sf_setvlan(sc, idx, vlan)
332	struct sf_softc		*sc;
333	int			idx;
334	u_int32_t		vlan;
335{
336	if (idx < 0 || idx >> SF_RXFILT_HASH_CNT)
337		return(EINVAL);
338
339	csr_write_4(sc, SF_RXFILT_HASH_BASE +
340	    (idx * SF_RXFILT_HASH_SKIP) + SF_RXFILT_HASH_VLANOFF, vlan);
341
342	return(0);
343}
344#endif
345
346static int
347sf_miibus_readreg(dev, phy, reg)
348	device_t		dev;
349	int			phy, reg;
350{
351	struct sf_softc		*sc;
352	int			i;
353	u_int32_t		val = 0;
354
355	sc = device_get_softc(dev);
356
357	for (i = 0; i < SF_TIMEOUT; i++) {
358		val = csr_read_4(sc, SF_PHY_REG(phy, reg));
359		if (val & SF_MII_DATAVALID)
360			break;
361	}
362
363	if (i == SF_TIMEOUT)
364		return(0);
365
366	if ((val & 0x0000FFFF) == 0xFFFF)
367		return(0);
368
369	return(val & 0x0000FFFF);
370}
371
372static int
373sf_miibus_writereg(dev, phy, reg, val)
374	device_t		dev;
375	int			phy, reg, val;
376{
377	struct sf_softc		*sc;
378	int			i;
379	int			busy;
380
381	sc = device_get_softc(dev);
382
383	csr_write_4(sc, SF_PHY_REG(phy, reg), val);
384
385	for (i = 0; i < SF_TIMEOUT; i++) {
386		busy = csr_read_4(sc, SF_PHY_REG(phy, reg));
387		if (!(busy & SF_MII_BUSY))
388			break;
389	}
390
391	return(0);
392}
393
394static void
395sf_miibus_statchg(dev)
396	device_t		dev;
397{
398	struct sf_softc		*sc;
399	struct mii_data		*mii;
400
401	sc = device_get_softc(dev);
402	mii = device_get_softc(sc->sf_miibus);
403
404	if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
405		SF_SETBIT(sc, SF_MACCFG_1, SF_MACCFG1_FULLDUPLEX);
406		csr_write_4(sc, SF_BKTOBKIPG, SF_IPGT_FDX);
407	} else {
408		SF_CLRBIT(sc, SF_MACCFG_1, SF_MACCFG1_FULLDUPLEX);
409		csr_write_4(sc, SF_BKTOBKIPG, SF_IPGT_HDX);
410	}
411}
412
413static void
414sf_setmulti(sc)
415	struct sf_softc		*sc;
416{
417	struct ifnet		*ifp;
418	int			i;
419	struct ifmultiaddr	*ifma;
420	u_int8_t		dummy[] = { 0, 0, 0, 0, 0, 0 };
421
422	ifp = &sc->arpcom.ac_if;
423
424	/* First zot all the existing filters. */
425	for (i = 1; i < SF_RXFILT_PERFECT_CNT; i++)
426		sf_setperf(sc, i, (char *)&dummy);
427	for (i = SF_RXFILT_HASH_BASE;
428	    i < (SF_RXFILT_HASH_MAX + 1); i += 4)
429		csr_write_4(sc, i, 0);
430	SF_CLRBIT(sc, SF_RXFILT, SF_RXFILT_ALLMULTI);
431
432	/* Now program new ones. */
433	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
434		SF_SETBIT(sc, SF_RXFILT, SF_RXFILT_ALLMULTI);
435	} else {
436		i = 1;
437		TAILQ_FOREACH_REVERSE(ifma, &ifp->if_multiaddrs, ifmultihead, ifma_link) {
438			if (ifma->ifma_addr->sa_family != AF_LINK)
439				continue;
440			/*
441			 * Program the first 15 multicast groups
442			 * into the perfect filter. For all others,
443			 * use the hash table.
444			 */
445			if (i < SF_RXFILT_PERFECT_CNT) {
446				sf_setperf(sc, i,
447			LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
448				i++;
449				continue;
450			}
451
452			sf_sethash(sc,
453			    LLADDR((struct sockaddr_dl *)ifma->ifma_addr), 0);
454		}
455	}
456}
457
458/*
459 * Set media options.
460 */
461static int
462sf_ifmedia_upd(ifp)
463	struct ifnet		*ifp;
464{
465	struct sf_softc		*sc;
466	struct mii_data		*mii;
467
468	sc = ifp->if_softc;
469	mii = device_get_softc(sc->sf_miibus);
470	sc->sf_link = 0;
471	if (mii->mii_instance) {
472		struct mii_softc        *miisc;
473		LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
474			mii_phy_reset(miisc);
475	}
476	mii_mediachg(mii);
477
478	return(0);
479}
480
481/*
482 * Report current media status.
483 */
484static void
485sf_ifmedia_sts(ifp, ifmr)
486	struct ifnet		*ifp;
487	struct ifmediareq	*ifmr;
488{
489	struct sf_softc		*sc;
490	struct mii_data		*mii;
491
492	sc = ifp->if_softc;
493	mii = device_get_softc(sc->sf_miibus);
494
495	mii_pollstat(mii);
496	ifmr->ifm_active = mii->mii_media_active;
497	ifmr->ifm_status = mii->mii_media_status;
498}
499
500static int
501sf_ioctl(ifp, command, data)
502	struct ifnet		*ifp;
503	u_long			command;
504	caddr_t			data;
505{
506	struct sf_softc		*sc = ifp->if_softc;
507	struct ifreq		*ifr = (struct ifreq *) data;
508	struct mii_data		*mii;
509	int			error = 0;
510
511	SF_LOCK(sc);
512
513	switch(command) {
514	case SIOCSIFFLAGS:
515		if (ifp->if_flags & IFF_UP) {
516			if (ifp->if_flags & IFF_RUNNING &&
517			    ifp->if_flags & IFF_PROMISC &&
518			    !(sc->sf_if_flags & IFF_PROMISC)) {
519				SF_SETBIT(sc, SF_RXFILT, SF_RXFILT_PROMISC);
520			} else if (ifp->if_flags & IFF_RUNNING &&
521			    !(ifp->if_flags & IFF_PROMISC) &&
522			    sc->sf_if_flags & IFF_PROMISC) {
523				SF_CLRBIT(sc, SF_RXFILT, SF_RXFILT_PROMISC);
524			} else if (!(ifp->if_flags & IFF_RUNNING))
525				sf_init(sc);
526		} else {
527			if (ifp->if_flags & IFF_RUNNING)
528				sf_stop(sc);
529		}
530		sc->sf_if_flags = ifp->if_flags;
531		error = 0;
532		break;
533	case SIOCADDMULTI:
534	case SIOCDELMULTI:
535		sf_setmulti(sc);
536		error = 0;
537		break;
538	case SIOCGIFMEDIA:
539	case SIOCSIFMEDIA:
540		mii = device_get_softc(sc->sf_miibus);
541		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
542		break;
543	case SIOCSIFCAP:
544		ifp->if_capenable &= ~IFCAP_POLLING;
545		ifp->if_capenable |= ifr->ifr_reqcap & IFCAP_POLLING;
546		break;
547	default:
548		error = ether_ioctl(ifp, command, data);
549		break;
550	}
551
552	SF_UNLOCK(sc);
553
554	return(error);
555}
556
557static void
558sf_reset(sc)
559	struct sf_softc		*sc;
560{
561	register int		i;
562
563	csr_write_4(sc, SF_GEN_ETH_CTL, 0);
564	SF_SETBIT(sc, SF_MACCFG_1, SF_MACCFG1_SOFTRESET);
565	DELAY(1000);
566	SF_CLRBIT(sc, SF_MACCFG_1, SF_MACCFG1_SOFTRESET);
567
568	SF_SETBIT(sc, SF_PCI_DEVCFG, SF_PCIDEVCFG_RESET);
569
570	for (i = 0; i < SF_TIMEOUT; i++) {
571		DELAY(10);
572		if (!(csr_read_4(sc, SF_PCI_DEVCFG) & SF_PCIDEVCFG_RESET))
573			break;
574	}
575
576	if (i == SF_TIMEOUT)
577		printf("sf%d: reset never completed!\n", sc->sf_unit);
578
579	/* Wait a little while for the chip to get its brains in order. */
580	DELAY(1000);
581}
582
583/*
584 * Probe for an Adaptec AIC-6915 chip. Check the PCI vendor and device
585 * IDs against our list and return a device name if we find a match.
586 * We also check the subsystem ID so that we can identify exactly which
587 * NIC has been found, if possible.
588 */
589static int
590sf_probe(dev)
591	device_t		dev;
592{
593	struct sf_type		*t;
594
595	t = sf_devs;
596
597	while(t->sf_name != NULL) {
598		if ((pci_get_vendor(dev) == t->sf_vid) &&
599		    (pci_get_device(dev) == t->sf_did)) {
600			switch((pci_read_config(dev,
601			    SF_PCI_SUBVEN_ID, 4) >> 16) & 0xFFFF) {
602			case AD_SUBSYSID_62011_REV0:
603			case AD_SUBSYSID_62011_REV1:
604				device_set_desc(dev,
605				    "Adaptec ANA-62011 10/100BaseTX");
606				return(0);
607			case AD_SUBSYSID_62022:
608				device_set_desc(dev,
609				    "Adaptec ANA-62022 10/100BaseTX");
610				return(0);
611			case AD_SUBSYSID_62044_REV0:
612			case AD_SUBSYSID_62044_REV1:
613				device_set_desc(dev,
614				    "Adaptec ANA-62044 10/100BaseTX");
615				return(0);
616			case AD_SUBSYSID_62020:
617				device_set_desc(dev,
618				    "Adaptec ANA-62020 10/100BaseFX");
619				return(0);
620			case AD_SUBSYSID_69011:
621				device_set_desc(dev,
622				    "Adaptec ANA-69011 10/100BaseTX");
623				return(0);
624			default:
625				device_set_desc(dev, t->sf_name);
626				return(0);
627				break;
628			}
629		}
630		t++;
631	}
632
633	return(ENXIO);
634}
635
636/*
637 * Attach the interface. Allocate softc structures, do ifmedia
638 * setup and ethernet/BPF attach.
639 */
640static int
641sf_attach(dev)
642	device_t		dev;
643{
644	int			i;
645	struct sf_softc		*sc;
646	struct ifnet		*ifp;
647	int			unit, rid, error = 0;
648
649	sc = device_get_softc(dev);
650	unit = device_get_unit(dev);
651
652	mtx_init(&sc->sf_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
653	    MTX_DEF | MTX_RECURSE);
654	/*
655	 * Map control/status registers.
656	 */
657	pci_enable_busmaster(dev);
658
659	rid = SF_RID;
660	sc->sf_res = bus_alloc_resource_any(dev, SF_RES, &rid, RF_ACTIVE);
661
662	if (sc->sf_res == NULL) {
663		printf ("sf%d: couldn't map ports\n", unit);
664		error = ENXIO;
665		goto fail;
666	}
667
668	sc->sf_btag = rman_get_bustag(sc->sf_res);
669	sc->sf_bhandle = rman_get_bushandle(sc->sf_res);
670
671	/* Allocate interrupt */
672	rid = 0;
673	sc->sf_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
674	    RF_SHAREABLE | RF_ACTIVE);
675
676	if (sc->sf_irq == NULL) {
677		printf("sf%d: couldn't map interrupt\n", unit);
678		error = ENXIO;
679		goto fail;
680	}
681
682	callout_handle_init(&sc->sf_stat_ch);
683	/* Reset the adapter. */
684	sf_reset(sc);
685
686	/*
687	 * Get station address from the EEPROM.
688	 */
689	for (i = 0; i < ETHER_ADDR_LEN; i++)
690		sc->arpcom.ac_enaddr[i] =
691		    sf_read_eeprom(sc, SF_EE_NODEADDR + ETHER_ADDR_LEN - i);
692
693	sc->sf_unit = unit;
694
695	/* Allocate the descriptor queues. */
696	sc->sf_ldata = contigmalloc(sizeof(struct sf_list_data), M_DEVBUF,
697	    M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0);
698
699	if (sc->sf_ldata == NULL) {
700		printf("sf%d: no memory for list buffers!\n", unit);
701		error = ENXIO;
702		goto fail;
703	}
704
705	bzero(sc->sf_ldata, sizeof(struct sf_list_data));
706
707	/* Do MII setup. */
708	if (mii_phy_probe(dev, &sc->sf_miibus,
709	    sf_ifmedia_upd, sf_ifmedia_sts)) {
710		printf("sf%d: MII without any phy!\n", sc->sf_unit);
711		error = ENXIO;
712		goto fail;
713	}
714
715	ifp = &sc->arpcom.ac_if;
716	ifp->if_softc = sc;
717	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
718	ifp->if_mtu = ETHERMTU;
719	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST |
720	    IFF_NEEDSGIANT;
721	ifp->if_ioctl = sf_ioctl;
722	ifp->if_start = sf_start;
723	ifp->if_watchdog = sf_watchdog;
724	ifp->if_init = sf_init;
725	ifp->if_baudrate = 10000000;
726	ifp->if_snd.ifq_maxlen = SF_TX_DLIST_CNT - 1;
727#ifdef DEVICE_POLLING
728	ifp->if_capabilities |= IFCAP_POLLING;
729#endif /* DEVICE_POLLING */
730	ifp->if_capenable = ifp->if_capabilities;
731
732	/*
733	 * Call MI attach routine.
734	 */
735	ether_ifattach(ifp, sc->arpcom.ac_enaddr);
736
737	/* Hook interrupt last to avoid having to lock softc */
738	error = bus_setup_intr(dev, sc->sf_irq, INTR_TYPE_NET,
739	    sf_intr, sc, &sc->sf_intrhand);
740
741	if (error) {
742		printf("sf%d: couldn't set up irq\n", unit);
743		ether_ifdetach(ifp);
744		goto fail;
745	}
746
747fail:
748	if (error)
749		sf_detach(dev);
750
751	return(error);
752}
753
754/*
755 * Shutdown hardware and free up resources. This can be called any
756 * time after the mutex has been initialized. It is called in both
757 * the error case in attach and the normal detach case so it needs
758 * to be careful about only freeing resources that have actually been
759 * allocated.
760 */
761static int
762sf_detach(dev)
763	device_t		dev;
764{
765	struct sf_softc		*sc;
766	struct ifnet		*ifp;
767
768	sc = device_get_softc(dev);
769	KASSERT(mtx_initialized(&sc->sf_mtx), ("sf mutex not initialized"));
770	SF_LOCK(sc);
771	ifp = &sc->arpcom.ac_if;
772
773	/* These should only be active if attach succeeded */
774	if (device_is_attached(dev)) {
775		sf_stop(sc);
776		ether_ifdetach(ifp);
777	}
778	if (sc->sf_miibus)
779		device_delete_child(dev, sc->sf_miibus);
780	bus_generic_detach(dev);
781
782	if (sc->sf_intrhand)
783		bus_teardown_intr(dev, sc->sf_irq, sc->sf_intrhand);
784	if (sc->sf_irq)
785		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sf_irq);
786	if (sc->sf_res)
787		bus_release_resource(dev, SF_RES, SF_RID, sc->sf_res);
788
789	if (sc->sf_ldata)
790		contigfree(sc->sf_ldata, sizeof(struct sf_list_data), M_DEVBUF);
791
792	SF_UNLOCK(sc);
793	mtx_destroy(&sc->sf_mtx);
794
795	return(0);
796}
797
798static int
799sf_init_rx_ring(sc)
800	struct sf_softc		*sc;
801{
802	struct sf_list_data	*ld;
803	int			i;
804
805	ld = sc->sf_ldata;
806
807	bzero((char *)ld->sf_rx_dlist_big,
808	    sizeof(struct sf_rx_bufdesc_type0) * SF_RX_DLIST_CNT);
809	bzero((char *)ld->sf_rx_clist,
810	    sizeof(struct sf_rx_cmpdesc_type3) * SF_RX_CLIST_CNT);
811
812	for (i = 0; i < SF_RX_DLIST_CNT; i++) {
813		if (sf_newbuf(sc, &ld->sf_rx_dlist_big[i], NULL) == ENOBUFS)
814			return(ENOBUFS);
815	}
816
817	return(0);
818}
819
820static void
821sf_init_tx_ring(sc)
822	struct sf_softc		*sc;
823{
824	struct sf_list_data	*ld;
825	int			i;
826
827	ld = sc->sf_ldata;
828
829	bzero((char *)ld->sf_tx_dlist,
830	    sizeof(struct sf_tx_bufdesc_type0) * SF_TX_DLIST_CNT);
831	bzero((char *)ld->sf_tx_clist,
832	    sizeof(struct sf_tx_cmpdesc_type0) * SF_TX_CLIST_CNT);
833
834	for (i = 0; i < SF_TX_DLIST_CNT; i++)
835		ld->sf_tx_dlist[i].sf_id = SF_TX_BUFDESC_ID;
836	for (i = 0; i < SF_TX_CLIST_CNT; i++)
837		ld->sf_tx_clist[i].sf_type = SF_TXCMPTYPE_TX;
838
839	ld->sf_tx_dlist[SF_TX_DLIST_CNT - 1].sf_end = 1;
840	sc->sf_tx_cnt = 0;
841}
842
843static int
844sf_newbuf(sc, c, m)
845	struct sf_softc		*sc;
846	struct sf_rx_bufdesc_type0	*c;
847	struct mbuf		*m;
848{
849	struct mbuf		*m_new = NULL;
850
851	if (m == NULL) {
852		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
853		if (m_new == NULL)
854			return(ENOBUFS);
855
856		MCLGET(m_new, M_DONTWAIT);
857		if (!(m_new->m_flags & M_EXT)) {
858			m_freem(m_new);
859			return(ENOBUFS);
860		}
861		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
862	} else {
863		m_new = m;
864		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
865		m_new->m_data = m_new->m_ext.ext_buf;
866	}
867
868	m_adj(m_new, sizeof(u_int64_t));
869
870	c->sf_mbuf = m_new;
871	c->sf_addrlo = SF_RX_HOSTADDR(vtophys(mtod(m_new, caddr_t)));
872	c->sf_valid = 1;
873
874	return(0);
875}
876
877/*
878 * The starfire is programmed to use 'normal' mode for packet reception,
879 * which means we use the consumer/producer model for both the buffer
880 * descriptor queue and the completion descriptor queue. The only problem
881 * with this is that it involves a lot of register accesses: we have to
882 * read the RX completion consumer and producer indexes and the RX buffer
883 * producer index, plus the RX completion consumer and RX buffer producer
884 * indexes have to be updated. It would have been easier if Adaptec had
885 * put each index in a separate register, especially given that the damn
886 * NIC has a 512K register space.
887 *
888 * In spite of all the lovely features that Adaptec crammed into the 6915,
889 * it is marred by one truly stupid design flaw, which is that receive
890 * buffer addresses must be aligned on a longword boundary. This forces
891 * the packet payload to be unaligned, which is suboptimal on the x86 and
892 * completely unuseable on the Alpha. Our only recourse is to copy received
893 * packets into properly aligned buffers before handing them off.
894 */
895
896static void
897sf_rxeof(sc)
898	struct sf_softc		*sc;
899{
900	struct mbuf		*m;
901	struct ifnet		*ifp;
902	struct sf_rx_bufdesc_type0	*desc;
903	struct sf_rx_cmpdesc_type3	*cur_rx;
904	u_int32_t		rxcons, rxprod;
905	int			cmpprodidx, cmpconsidx, bufprodidx;
906
907	SF_LOCK_ASSERT(sc);
908
909	ifp = &sc->arpcom.ac_if;
910
911	rxcons = csr_read_4(sc, SF_CQ_CONSIDX);
912	rxprod = csr_read_4(sc, SF_RXDQ_PTR_Q1);
913	cmpprodidx = SF_IDX_LO(csr_read_4(sc, SF_CQ_PRODIDX));
914	cmpconsidx = SF_IDX_LO(rxcons);
915	bufprodidx = SF_IDX_LO(rxprod);
916
917	while (cmpconsidx != cmpprodidx) {
918		struct mbuf		*m0;
919
920#ifdef DEVICE_POLLING
921		if (ifp->if_flags & IFF_POLLING) {
922			if (sc->rxcycles <= 0)
923				break;
924			sc->rxcycles--;
925		}
926#endif /* DEVICE_POLLING */
927
928		cur_rx = &sc->sf_ldata->sf_rx_clist[cmpconsidx];
929		desc = &sc->sf_ldata->sf_rx_dlist_big[cur_rx->sf_endidx];
930		m = desc->sf_mbuf;
931		SF_INC(cmpconsidx, SF_RX_CLIST_CNT);
932		SF_INC(bufprodidx, SF_RX_DLIST_CNT);
933
934		if (!(cur_rx->sf_status1 & SF_RXSTAT1_OK)) {
935			ifp->if_ierrors++;
936			sf_newbuf(sc, desc, m);
937			continue;
938		}
939
940		m0 = m_devget(mtod(m, char *), cur_rx->sf_len, ETHER_ALIGN,
941		    ifp, NULL);
942		sf_newbuf(sc, desc, m);
943		if (m0 == NULL) {
944			ifp->if_ierrors++;
945			continue;
946		}
947		m = m0;
948
949		ifp->if_ipackets++;
950		SF_UNLOCK(sc);
951		(*ifp->if_input)(ifp, m);
952		SF_LOCK(sc);
953	}
954
955	csr_write_4(sc, SF_CQ_CONSIDX,
956	    (rxcons & ~SF_CQ_CONSIDX_RXQ1) | cmpconsidx);
957	csr_write_4(sc, SF_RXDQ_PTR_Q1,
958	    (rxprod & ~SF_RXDQ_PRODIDX) | bufprodidx);
959}
960
961/*
962 * Read the transmit status from the completion queue and release
963 * mbufs. Note that the buffer descriptor index in the completion
964 * descriptor is an offset from the start of the transmit buffer
965 * descriptor list in bytes. This is important because the manual
966 * gives the impression that it should match the producer/consumer
967 * index, which is the offset in 8 byte blocks.
968 */
969static void
970sf_txeof(sc)
971	struct sf_softc		*sc;
972{
973	int			txcons, cmpprodidx, cmpconsidx;
974	struct sf_tx_cmpdesc_type1 *cur_cmp;
975	struct sf_tx_bufdesc_type0 *cur_tx;
976	struct ifnet		*ifp;
977
978	ifp = &sc->arpcom.ac_if;
979
980	txcons = csr_read_4(sc, SF_CQ_CONSIDX);
981	cmpprodidx = SF_IDX_HI(csr_read_4(sc, SF_CQ_PRODIDX));
982	cmpconsidx = SF_IDX_HI(txcons);
983
984	while (cmpconsidx != cmpprodidx) {
985		cur_cmp = &sc->sf_ldata->sf_tx_clist[cmpconsidx];
986		cur_tx = &sc->sf_ldata->sf_tx_dlist[cur_cmp->sf_index >> 7];
987
988		if (cur_cmp->sf_txstat & SF_TXSTAT_TX_OK)
989			ifp->if_opackets++;
990		else {
991			if (cur_cmp->sf_txstat & SF_TXSTAT_TX_UNDERRUN)
992				sf_txthresh_adjust(sc);
993			ifp->if_oerrors++;
994		}
995
996		sc->sf_tx_cnt--;
997		if (cur_tx->sf_mbuf != NULL) {
998			m_freem(cur_tx->sf_mbuf);
999			cur_tx->sf_mbuf = NULL;
1000		} else
1001			break;
1002		SF_INC(cmpconsidx, SF_TX_CLIST_CNT);
1003	}
1004
1005	ifp->if_timer = 0;
1006	ifp->if_flags &= ~IFF_OACTIVE;
1007
1008	csr_write_4(sc, SF_CQ_CONSIDX,
1009	    (txcons & ~SF_CQ_CONSIDX_TXQ) |
1010	    ((cmpconsidx << 16) & 0xFFFF0000));
1011}
1012
1013static void
1014sf_txthresh_adjust(sc)
1015	struct sf_softc		*sc;
1016{
1017	u_int32_t		txfctl;
1018	u_int8_t		txthresh;
1019
1020	txfctl = csr_read_4(sc, SF_TX_FRAMCTL);
1021	txthresh = txfctl & SF_TXFRMCTL_TXTHRESH;
1022	if (txthresh < 0xFF) {
1023		txthresh++;
1024		txfctl &= ~SF_TXFRMCTL_TXTHRESH;
1025		txfctl |= txthresh;
1026#ifdef DIAGNOSTIC
1027		printf("sf%d: tx underrun, increasing "
1028		    "tx threshold to %d bytes\n",
1029		    sc->sf_unit, txthresh * 4);
1030#endif
1031		csr_write_4(sc, SF_TX_FRAMCTL, txfctl);
1032	}
1033}
1034
1035#ifdef DEVICE_POLLING
1036static void
1037sf_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1038{
1039	struct sf_softc *sc = ifp->if_softc;
1040
1041	SF_LOCK(sc);
1042	sf_poll_locked(ifp, cmd, count);
1043	SF_UNLOCK(sc);
1044}
1045
1046static void
1047sf_poll_locked(struct ifnet *ifp, enum poll_cmd cmd, int count)
1048{
1049	struct sf_softc *sc = ifp->if_softc;
1050
1051	SF_LOCK_ASSERT(sc);
1052
1053	if (!(ifp->if_capenable & IFCAP_POLLING)) {
1054		ether_poll_deregister(ifp);
1055		cmd = POLL_DEREGISTER;
1056	}
1057
1058	if (cmd == POLL_DEREGISTER) {
1059		/* Final call, enable interrupts. */
1060		csr_write_4(sc, SF_IMR, SF_INTRS);
1061		return;
1062	}
1063
1064	sc->rxcycles = count;
1065	sf_rxeof(sc);
1066	sf_txeof(sc);
1067	if (ifp->if_snd.ifq_head != NULL)
1068		sf_start(ifp);
1069
1070	if (cmd == POLL_AND_CHECK_STATUS) {
1071		u_int32_t status;
1072
1073		status = csr_read_4(sc, SF_ISR);
1074		if (status)
1075			csr_write_4(sc, SF_ISR, status);
1076
1077		if (status & SF_ISR_TX_LOFIFO)
1078			sf_txthresh_adjust(sc);
1079
1080		if (status & SF_ISR_ABNORMALINTR) {
1081			if (status & SF_ISR_STATSOFLOW) {
1082				untimeout(sf_stats_update, sc,
1083				    sc->sf_stat_ch);
1084				sf_stats_update(sc);
1085			} else
1086				sf_init(sc);
1087		}
1088	}
1089}
1090#endif /* DEVICE_POLLING */
1091
1092static void
1093sf_intr(arg)
1094	void			*arg;
1095{
1096	struct sf_softc		*sc;
1097	struct ifnet		*ifp;
1098	u_int32_t		status;
1099
1100	sc = arg;
1101	SF_LOCK(sc);
1102
1103	ifp = &sc->arpcom.ac_if;
1104
1105#ifdef DEVICE_POLLING
1106	if (ifp->if_flags & IFF_POLLING)
1107		goto done_locked;
1108
1109	if ((ifp->if_capenable & IFCAP_POLLING) &&
1110	    ether_poll_register(sf_poll, ifp)) {
1111		/* OK, disable interrupts. */
1112		csr_write_4(sc, SF_IMR, 0x00000000);
1113		sf_poll_locked(ifp, 0, 1);
1114		goto done_locked;
1115	}
1116#endif /* DEVICE_POLLING */
1117
1118	if (!(csr_read_4(sc, SF_ISR_SHADOW) & SF_ISR_PCIINT_ASSERTED)) {
1119		SF_UNLOCK(sc);
1120		return;
1121	}
1122
1123	/* Disable interrupts. */
1124	csr_write_4(sc, SF_IMR, 0x00000000);
1125
1126	for (;;) {
1127		status = csr_read_4(sc, SF_ISR);
1128		if (status)
1129			csr_write_4(sc, SF_ISR, status);
1130
1131		if (!(status & SF_INTRS))
1132			break;
1133
1134		if (status & SF_ISR_RXDQ1_DMADONE)
1135			sf_rxeof(sc);
1136
1137		if (status & SF_ISR_TX_TXDONE ||
1138		    status & SF_ISR_TX_DMADONE ||
1139		    status & SF_ISR_TX_QUEUEDONE)
1140			sf_txeof(sc);
1141
1142		if (status & SF_ISR_TX_LOFIFO)
1143			sf_txthresh_adjust(sc);
1144
1145		if (status & SF_ISR_ABNORMALINTR) {
1146			if (status & SF_ISR_STATSOFLOW) {
1147				untimeout(sf_stats_update, sc,
1148				    sc->sf_stat_ch);
1149				sf_stats_update(sc);
1150			} else
1151				sf_init(sc);
1152		}
1153	}
1154
1155	/* Re-enable interrupts. */
1156	csr_write_4(sc, SF_IMR, SF_INTRS);
1157
1158	if (ifp->if_snd.ifq_head != NULL)
1159		sf_start(ifp);
1160
1161#ifdef DEVICE_POLLING
1162done_locked:
1163#endif /* DEVICE_POLLING */
1164	SF_UNLOCK(sc);
1165}
1166
1167static void
1168sf_init(xsc)
1169	void			*xsc;
1170{
1171	struct sf_softc		*sc;
1172	struct ifnet		*ifp;
1173	struct mii_data		*mii;
1174	int			i;
1175
1176	sc = xsc;
1177	SF_LOCK(sc);
1178	ifp = &sc->arpcom.ac_if;
1179	mii = device_get_softc(sc->sf_miibus);
1180
1181	sf_stop(sc);
1182	sf_reset(sc);
1183
1184	/* Init all the receive filter registers */
1185	for (i = SF_RXFILT_PERFECT_BASE;
1186	    i < (SF_RXFILT_HASH_MAX + 1); i += 4)
1187		csr_write_4(sc, i, 0);
1188
1189	/* Empty stats counter registers. */
1190	for (i = 0; i < sizeof(struct sf_stats)/sizeof(u_int32_t); i++)
1191		csr_write_4(sc, SF_STATS_BASE +
1192		    (i + sizeof(u_int32_t)), 0);
1193
1194	/* Init our MAC address */
1195	csr_write_4(sc, SF_PAR0, *(u_int32_t *)(&sc->arpcom.ac_enaddr[0]));
1196	csr_write_4(sc, SF_PAR1, *(u_int32_t *)(&sc->arpcom.ac_enaddr[4]));
1197	sf_setperf(sc, 0, (caddr_t)&sc->arpcom.ac_enaddr);
1198
1199	if (sf_init_rx_ring(sc) == ENOBUFS) {
1200		printf("sf%d: initialization failed: no "
1201		    "memory for rx buffers\n", sc->sf_unit);
1202		SF_UNLOCK(sc);
1203		return;
1204	}
1205
1206	sf_init_tx_ring(sc);
1207
1208	csr_write_4(sc, SF_RXFILT, SF_PERFMODE_NORMAL|SF_HASHMODE_WITHVLAN);
1209
1210	/* If we want promiscuous mode, set the allframes bit. */
1211	if (ifp->if_flags & IFF_PROMISC) {
1212		SF_SETBIT(sc, SF_RXFILT, SF_RXFILT_PROMISC);
1213	} else {
1214		SF_CLRBIT(sc, SF_RXFILT, SF_RXFILT_PROMISC);
1215	}
1216
1217	if (ifp->if_flags & IFF_BROADCAST) {
1218		SF_SETBIT(sc, SF_RXFILT, SF_RXFILT_BROAD);
1219	} else {
1220		SF_CLRBIT(sc, SF_RXFILT, SF_RXFILT_BROAD);
1221	}
1222
1223	/*
1224	 * Load the multicast filter.
1225	 */
1226	sf_setmulti(sc);
1227
1228	/* Init the completion queue indexes */
1229	csr_write_4(sc, SF_CQ_CONSIDX, 0);
1230	csr_write_4(sc, SF_CQ_PRODIDX, 0);
1231
1232	/* Init the RX completion queue */
1233	csr_write_4(sc, SF_RXCQ_CTL_1,
1234	    vtophys(sc->sf_ldata->sf_rx_clist) & SF_RXCQ_ADDR);
1235	SF_SETBIT(sc, SF_RXCQ_CTL_1, SF_RXCQTYPE_3);
1236
1237	/* Init RX DMA control. */
1238	SF_SETBIT(sc, SF_RXDMA_CTL, SF_RXDMA_REPORTBADPKTS);
1239
1240	/* Init the RX buffer descriptor queue. */
1241	csr_write_4(sc, SF_RXDQ_ADDR_Q1,
1242	    vtophys(sc->sf_ldata->sf_rx_dlist_big));
1243	csr_write_4(sc, SF_RXDQ_CTL_1, (MCLBYTES << 16) | SF_DESCSPACE_16BYTES);
1244	csr_write_4(sc, SF_RXDQ_PTR_Q1, SF_RX_DLIST_CNT - 1);
1245
1246	/* Init the TX completion queue */
1247	csr_write_4(sc, SF_TXCQ_CTL,
1248	    vtophys(sc->sf_ldata->sf_tx_clist) & SF_RXCQ_ADDR);
1249
1250	/* Init the TX buffer descriptor queue. */
1251	csr_write_4(sc, SF_TXDQ_ADDR_HIPRIO,
1252		vtophys(sc->sf_ldata->sf_tx_dlist));
1253	SF_SETBIT(sc, SF_TX_FRAMCTL, SF_TXFRMCTL_CPLAFTERTX);
1254	csr_write_4(sc, SF_TXDQ_CTL,
1255	    SF_TXBUFDESC_TYPE0|SF_TXMINSPACE_128BYTES|SF_TXSKIPLEN_8BYTES);
1256	SF_SETBIT(sc, SF_TXDQ_CTL, SF_TXDQCTL_NODMACMP);
1257
1258	/* Enable autopadding of short TX frames. */
1259	SF_SETBIT(sc, SF_MACCFG_1, SF_MACCFG1_AUTOPAD);
1260
1261#ifdef DEVICE_POLLING
1262	/* Disable interrupts if we are polling. */
1263	if (ifp->if_flags & IFF_POLLING)
1264		csr_write_4(sc, SF_IMR, 0x00000000);
1265	else
1266#endif /* DEVICE_POLLING */
1267
1268	/* Enable interrupts. */
1269	csr_write_4(sc, SF_IMR, SF_INTRS);
1270	SF_SETBIT(sc, SF_PCI_DEVCFG, SF_PCIDEVCFG_INTR_ENB);
1271
1272	/* Enable the RX and TX engines. */
1273	SF_SETBIT(sc, SF_GEN_ETH_CTL, SF_ETHCTL_RX_ENB|SF_ETHCTL_RXDMA_ENB);
1274	SF_SETBIT(sc, SF_GEN_ETH_CTL, SF_ETHCTL_TX_ENB|SF_ETHCTL_TXDMA_ENB);
1275
1276	/*mii_mediachg(mii);*/
1277	sf_ifmedia_upd(ifp);
1278
1279	ifp->if_flags |= IFF_RUNNING;
1280	ifp->if_flags &= ~IFF_OACTIVE;
1281
1282	sc->sf_stat_ch = timeout(sf_stats_update, sc, hz);
1283
1284	SF_UNLOCK(sc);
1285}
1286
1287static int
1288sf_encap(sc, c, m_head)
1289	struct sf_softc		*sc;
1290	struct sf_tx_bufdesc_type0 *c;
1291	struct mbuf		*m_head;
1292{
1293	int			frag = 0;
1294	struct sf_frag		*f = NULL;
1295	struct mbuf		*m;
1296
1297	m = m_head;
1298
1299	for (m = m_head, frag = 0; m != NULL; m = m->m_next) {
1300		if (m->m_len != 0) {
1301			if (frag == SF_MAXFRAGS)
1302				break;
1303			f = &c->sf_frags[frag];
1304			if (frag == 0)
1305				f->sf_pktlen = m_head->m_pkthdr.len;
1306			f->sf_fraglen = m->m_len;
1307			f->sf_addr = vtophys(mtod(m, vm_offset_t));
1308			frag++;
1309		}
1310	}
1311
1312	if (m != NULL) {
1313		struct mbuf		*m_new = NULL;
1314
1315		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1316		if (m_new == NULL) {
1317			printf("sf%d: no memory for tx list\n", sc->sf_unit);
1318			return(1);
1319		}
1320
1321		if (m_head->m_pkthdr.len > MHLEN) {
1322			MCLGET(m_new, M_DONTWAIT);
1323			if (!(m_new->m_flags & M_EXT)) {
1324				m_freem(m_new);
1325				printf("sf%d: no memory for tx list\n",
1326				    sc->sf_unit);
1327				return(1);
1328			}
1329		}
1330		m_copydata(m_head, 0, m_head->m_pkthdr.len,
1331		    mtod(m_new, caddr_t));
1332		m_new->m_pkthdr.len = m_new->m_len = m_head->m_pkthdr.len;
1333		m_freem(m_head);
1334		m_head = m_new;
1335		f = &c->sf_frags[0];
1336		f->sf_fraglen = f->sf_pktlen = m_head->m_pkthdr.len;
1337		f->sf_addr = vtophys(mtod(m_head, caddr_t));
1338		frag = 1;
1339	}
1340
1341	c->sf_mbuf = m_head;
1342	c->sf_id = SF_TX_BUFDESC_ID;
1343	c->sf_fragcnt = frag;
1344	c->sf_intr = 1;
1345	c->sf_caltcp = 0;
1346	c->sf_crcen = 1;
1347
1348	return(0);
1349}
1350
1351static void
1352sf_start(ifp)
1353	struct ifnet		*ifp;
1354{
1355	struct sf_softc		*sc;
1356	struct sf_tx_bufdesc_type0 *cur_tx = NULL;
1357	struct mbuf		*m_head = NULL;
1358	int			i, txprod;
1359
1360	sc = ifp->if_softc;
1361	SF_LOCK(sc);
1362
1363	if (!sc->sf_link && ifp->if_snd.ifq_len < 10) {
1364		SF_UNLOCK(sc);
1365		return;
1366	}
1367
1368	if (ifp->if_flags & IFF_OACTIVE) {
1369		SF_UNLOCK(sc);
1370		return;
1371	}
1372
1373	txprod = csr_read_4(sc, SF_TXDQ_PRODIDX);
1374	i = SF_IDX_HI(txprod) >> 4;
1375
1376	if (sc->sf_ldata->sf_tx_dlist[i].sf_mbuf != NULL) {
1377		printf("sf%d: TX ring full, resetting\n", sc->sf_unit);
1378		sf_init(sc);
1379		txprod = csr_read_4(sc, SF_TXDQ_PRODIDX);
1380		i = SF_IDX_HI(txprod) >> 4;
1381	}
1382
1383	while(sc->sf_ldata->sf_tx_dlist[i].sf_mbuf == NULL) {
1384		if (sc->sf_tx_cnt >= (SF_TX_DLIST_CNT - 5)) {
1385			ifp->if_flags |= IFF_OACTIVE;
1386			cur_tx = NULL;
1387			break;
1388		}
1389		IF_DEQUEUE(&ifp->if_snd, m_head);
1390		if (m_head == NULL)
1391			break;
1392
1393		cur_tx = &sc->sf_ldata->sf_tx_dlist[i];
1394		if (sf_encap(sc, cur_tx, m_head)) {
1395			IF_PREPEND(&ifp->if_snd, m_head);
1396			ifp->if_flags |= IFF_OACTIVE;
1397			cur_tx = NULL;
1398			break;
1399		}
1400
1401		/*
1402		 * If there's a BPF listener, bounce a copy of this frame
1403		 * to him.
1404		 */
1405		BPF_MTAP(ifp, m_head);
1406
1407		SF_INC(i, SF_TX_DLIST_CNT);
1408		sc->sf_tx_cnt++;
1409		/*
1410		 * Don't get the TX DMA queue get too full.
1411		 */
1412		if (sc->sf_tx_cnt > 64)
1413			break;
1414	}
1415
1416	if (cur_tx == NULL) {
1417		SF_UNLOCK(sc);
1418		return;
1419	}
1420
1421	/* Transmit */
1422	csr_write_4(sc, SF_TXDQ_PRODIDX,
1423	    (txprod & ~SF_TXDQ_PRODIDX_HIPRIO) |
1424	    ((i << 20) & 0xFFFF0000));
1425
1426	ifp->if_timer = 5;
1427
1428	SF_UNLOCK(sc);
1429}
1430
1431static void
1432sf_stop(sc)
1433	struct sf_softc		*sc;
1434{
1435	int			i;
1436	struct ifnet		*ifp;
1437
1438	SF_LOCK(sc);
1439
1440	ifp = &sc->arpcom.ac_if;
1441
1442	untimeout(sf_stats_update, sc, sc->sf_stat_ch);
1443
1444#ifdef DEVICE_POLLING
1445	ether_poll_deregister(ifp);
1446#endif /* DEVICE_POLLING */
1447
1448	csr_write_4(sc, SF_GEN_ETH_CTL, 0);
1449	csr_write_4(sc, SF_CQ_CONSIDX, 0);
1450	csr_write_4(sc, SF_CQ_PRODIDX, 0);
1451	csr_write_4(sc, SF_RXDQ_ADDR_Q1, 0);
1452	csr_write_4(sc, SF_RXDQ_CTL_1, 0);
1453	csr_write_4(sc, SF_RXDQ_PTR_Q1, 0);
1454	csr_write_4(sc, SF_TXCQ_CTL, 0);
1455	csr_write_4(sc, SF_TXDQ_ADDR_HIPRIO, 0);
1456	csr_write_4(sc, SF_TXDQ_CTL, 0);
1457	sf_reset(sc);
1458
1459	sc->sf_link = 0;
1460
1461	for (i = 0; i < SF_RX_DLIST_CNT; i++) {
1462		if (sc->sf_ldata->sf_rx_dlist_big[i].sf_mbuf != NULL) {
1463			m_freem(sc->sf_ldata->sf_rx_dlist_big[i].sf_mbuf);
1464			sc->sf_ldata->sf_rx_dlist_big[i].sf_mbuf = NULL;
1465		}
1466	}
1467
1468	for (i = 0; i < SF_TX_DLIST_CNT; i++) {
1469		if (sc->sf_ldata->sf_tx_dlist[i].sf_mbuf != NULL) {
1470			m_freem(sc->sf_ldata->sf_tx_dlist[i].sf_mbuf);
1471			sc->sf_ldata->sf_tx_dlist[i].sf_mbuf = NULL;
1472		}
1473	}
1474
1475	ifp->if_flags &= ~(IFF_RUNNING|IFF_OACTIVE);
1476	SF_UNLOCK(sc);
1477}
1478
1479/*
1480 * Note: it is important that this function not be interrupted. We
1481 * use a two-stage register access scheme: if we are interrupted in
1482 * between setting the indirect address register and reading from the
1483 * indirect data register, the contents of the address register could
1484 * be changed out from under us.
1485 */
1486static void
1487sf_stats_update(xsc)
1488	void			*xsc;
1489{
1490	struct sf_softc		*sc;
1491	struct ifnet		*ifp;
1492	struct mii_data		*mii;
1493	struct sf_stats		stats;
1494	u_int32_t		*ptr;
1495	int			i;
1496
1497	sc = xsc;
1498	SF_LOCK(sc);
1499	ifp = &sc->arpcom.ac_if;
1500	mii = device_get_softc(sc->sf_miibus);
1501
1502	ptr = (u_int32_t *)&stats;
1503	for (i = 0; i < sizeof(stats)/sizeof(u_int32_t); i++)
1504		ptr[i] = csr_read_4(sc, SF_STATS_BASE +
1505		    (i + sizeof(u_int32_t)));
1506
1507	for (i = 0; i < sizeof(stats)/sizeof(u_int32_t); i++)
1508		csr_write_4(sc, SF_STATS_BASE +
1509		    (i + sizeof(u_int32_t)), 0);
1510
1511	ifp->if_collisions += stats.sf_tx_single_colls +
1512	    stats.sf_tx_multi_colls + stats.sf_tx_excess_colls;
1513
1514	mii_tick(mii);
1515
1516	if (!sc->sf_link && mii->mii_media_status & IFM_ACTIVE &&
1517	    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
1518		sc->sf_link++;
1519		if (ifp->if_snd.ifq_head != NULL)
1520			sf_start(ifp);
1521	}
1522
1523	sc->sf_stat_ch = timeout(sf_stats_update, sc, hz);
1524
1525	SF_UNLOCK(sc);
1526}
1527
1528static void
1529sf_watchdog(ifp)
1530	struct ifnet		*ifp;
1531{
1532	struct sf_softc		*sc;
1533
1534	sc = ifp->if_softc;
1535
1536	SF_LOCK(sc);
1537
1538	ifp->if_oerrors++;
1539	printf("sf%d: watchdog timeout\n", sc->sf_unit);
1540
1541	sf_stop(sc);
1542	sf_reset(sc);
1543	sf_init(sc);
1544
1545	if (ifp->if_snd.ifq_head != NULL)
1546		sf_start(ifp);
1547
1548	SF_UNLOCK(sc);
1549}
1550
1551static void
1552sf_shutdown(dev)
1553	device_t		dev;
1554{
1555	struct sf_softc		*sc;
1556
1557	sc = device_get_softc(dev);
1558
1559	sf_stop(sc);
1560}
1561