if_sf.c revision 122678
1/*
2 * Copyright (c) 1997, 1998, 1999
3 *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 *    must display the following acknowledgement:
15 *	This product includes software developed by Bill Paul.
16 * 4. Neither the name of the author nor the names of any co-contributors
17 *    may be used to endorse or promote products derived from this software
18 *    without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30 * THE POSSIBILITY OF SUCH DAMAGE.
31 */
32
33#include <sys/cdefs.h>
34__FBSDID("$FreeBSD: head/sys/dev/sf/if_sf.c 122678 2003-11-14 17:16:58Z obrien $");
35
36/*
37 * Adaptec AIC-6915 "Starfire" PCI fast ethernet driver for FreeBSD.
38 * Programming manual is available from:
39 * ftp.adaptec.com:/pub/BBS/userguides/aic6915_pg.pdf.
40 *
41 * Written by Bill Paul <wpaul@ctr.columbia.edu>
42 * Department of Electical Engineering
43 * Columbia University, New York City
44 */
45/*
46 * The Adaptec AIC-6915 "Starfire" is a 64-bit 10/100 PCI ethernet
47 * controller designed with flexibility and reducing CPU load in mind.
48 * The Starfire offers high and low priority buffer queues, a
49 * producer/consumer index mechanism and several different buffer
50 * queue and completion queue descriptor types. Any one of a number
51 * of different driver designs can be used, depending on system and
52 * OS requirements. This driver makes use of type0 transmit frame
53 * descriptors (since BSD fragments packets across an mbuf chain)
54 * and two RX buffer queues prioritized on size (one queue for small
55 * frames that will fit into a single mbuf, another with full size
56 * mbuf clusters for everything else). The producer/consumer indexes
57 * and completion queues are also used.
58 *
59 * One downside to the Starfire has to do with alignment: buffer
60 * queues must be aligned on 256-byte boundaries, and receive buffers
61 * must be aligned on longword boundaries. The receive buffer alignment
62 * causes problems on the Alpha platform, where the packet payload
63 * should be longword aligned. There is no simple way around this.
64 *
65 * For receive filtering, the Starfire offers 16 perfect filter slots
66 * and a 512-bit hash table.
67 *
68 * The Starfire has no internal transceiver, relying instead on an
69 * external MII-based transceiver. Accessing registers on external
70 * PHYs is done through a special register map rather than with the
71 * usual bitbang MDIO method.
72 *
73 * Acesssing the registers on the Starfire is a little tricky. The
74 * Starfire has a 512K internal register space. When programmed for
75 * PCI memory mapped mode, the entire register space can be accessed
76 * directly. However in I/O space mode, only 256 bytes are directly
77 * mapped into PCI I/O space. The other registers can be accessed
78 * indirectly using the SF_INDIRECTIO_ADDR and SF_INDIRECTIO_DATA
79 * registers inside the 256-byte I/O window.
80 */
81
82#include <sys/param.h>
83#include <sys/systm.h>
84#include <sys/sockio.h>
85#include <sys/mbuf.h>
86#include <sys/malloc.h>
87#include <sys/kernel.h>
88#include <sys/socket.h>
89
90#include <net/if.h>
91#include <net/if_arp.h>
92#include <net/ethernet.h>
93#include <net/if_dl.h>
94#include <net/if_media.h>
95
96#include <net/bpf.h>
97
98#include <vm/vm.h>              /* for vtophys */
99#include <vm/pmap.h>            /* for vtophys */
100#include <machine/bus_pio.h>
101#include <machine/bus_memio.h>
102#include <machine/bus.h>
103#include <machine/resource.h>
104#include <sys/bus.h>
105#include <sys/rman.h>
106
107#include <dev/mii/mii.h>
108#include <dev/mii/miivar.h>
109
110/* "controller miibus0" required.  See GENERIC if you get errors here. */
111#include "miibus_if.h"
112
113#include <dev/pci/pcireg.h>
114#include <dev/pci/pcivar.h>
115
116#define SF_USEIOSPACE
117
118#include <pci/if_sfreg.h>
119
120MODULE_DEPEND(sf, pci, 1, 1, 1);
121MODULE_DEPEND(sf, ether, 1, 1, 1);
122MODULE_DEPEND(sf, miibus, 1, 1, 1);
123
124static struct sf_type sf_devs[] = {
125	{ AD_VENDORID, AD_DEVICEID_STARFIRE,
126		"Adaptec AIC-6915 10/100BaseTX" },
127	{ 0, 0, NULL }
128};
129
130static int sf_probe		(device_t);
131static int sf_attach		(device_t);
132static int sf_detach		(device_t);
133static void sf_intr		(void *);
134static void sf_stats_update	(void *);
135static void sf_rxeof		(struct sf_softc *);
136static void sf_txeof		(struct sf_softc *);
137static int sf_encap		(struct sf_softc *,
138					struct sf_tx_bufdesc_type0 *,
139					struct mbuf *);
140static void sf_start		(struct ifnet *);
141static int sf_ioctl		(struct ifnet *, u_long, caddr_t);
142static void sf_init		(void *);
143static void sf_stop		(struct sf_softc *);
144static void sf_watchdog		(struct ifnet *);
145static void sf_shutdown		(device_t);
146static int sf_ifmedia_upd	(struct ifnet *);
147static void sf_ifmedia_sts	(struct ifnet *, struct ifmediareq *);
148static void sf_reset		(struct sf_softc *);
149static int sf_init_rx_ring	(struct sf_softc *);
150static void sf_init_tx_ring	(struct sf_softc *);
151static int sf_newbuf		(struct sf_softc *,
152					struct sf_rx_bufdesc_type0 *,
153					struct mbuf *);
154static void sf_setmulti		(struct sf_softc *);
155static int sf_setperf		(struct sf_softc *, int, caddr_t);
156static int sf_sethash		(struct sf_softc *, caddr_t, int);
157#ifdef notdef
158static int sf_setvlan		(struct sf_softc *, int, u_int32_t);
159#endif
160
161static u_int8_t sf_read_eeprom	(struct sf_softc *, int);
162static u_int32_t sf_mchash	(caddr_t);
163
164static int sf_miibus_readreg	(device_t, int, int);
165static int sf_miibus_writereg	(device_t, int, int, int);
166static void sf_miibus_statchg	(device_t);
167
168static u_int32_t csr_read_4	(struct sf_softc *, int);
169static void csr_write_4		(struct sf_softc *, int, u_int32_t);
170static void sf_txthresh_adjust	(struct sf_softc *);
171
172#ifdef SF_USEIOSPACE
173#define SF_RES			SYS_RES_IOPORT
174#define SF_RID			SF_PCI_LOIO
175#else
176#define SF_RES			SYS_RES_MEMORY
177#define SF_RID			SF_PCI_LOMEM
178#endif
179
180static device_method_t sf_methods[] = {
181	/* Device interface */
182	DEVMETHOD(device_probe,		sf_probe),
183	DEVMETHOD(device_attach,	sf_attach),
184	DEVMETHOD(device_detach,	sf_detach),
185	DEVMETHOD(device_shutdown,	sf_shutdown),
186
187	/* bus interface */
188	DEVMETHOD(bus_print_child,	bus_generic_print_child),
189	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
190
191	/* MII interface */
192	DEVMETHOD(miibus_readreg,	sf_miibus_readreg),
193	DEVMETHOD(miibus_writereg,	sf_miibus_writereg),
194	DEVMETHOD(miibus_statchg,	sf_miibus_statchg),
195
196	{ 0, 0 }
197};
198
199static driver_t sf_driver = {
200	"sf",
201	sf_methods,
202	sizeof(struct sf_softc),
203};
204
205static devclass_t sf_devclass;
206
207DRIVER_MODULE(sf, pci, sf_driver, sf_devclass, 0, 0);
208DRIVER_MODULE(miibus, sf, miibus_driver, miibus_devclass, 0, 0);
209
210#define SF_SETBIT(sc, reg, x)	\
211	csr_write_4(sc, reg, csr_read_4(sc, reg) | (x))
212
213#define SF_CLRBIT(sc, reg, x)				\
214	csr_write_4(sc, reg, csr_read_4(sc, reg) & ~(x))
215
216static u_int32_t
217csr_read_4(sc, reg)
218	struct sf_softc		*sc;
219	int			reg;
220{
221	u_int32_t		val;
222
223#ifdef SF_USEIOSPACE
224	CSR_WRITE_4(sc, SF_INDIRECTIO_ADDR, reg + SF_RMAP_INTREG_BASE);
225	val = CSR_READ_4(sc, SF_INDIRECTIO_DATA);
226#else
227	val = CSR_READ_4(sc, (reg + SF_RMAP_INTREG_BASE));
228#endif
229
230	return(val);
231}
232
233static u_int8_t
234sf_read_eeprom(sc, reg)
235	struct sf_softc		*sc;
236	int			reg;
237{
238	u_int8_t		val;
239
240	val = (csr_read_4(sc, SF_EEADDR_BASE +
241	    (reg & 0xFFFFFFFC)) >> (8 * (reg & 3))) & 0xFF;
242
243	return(val);
244}
245
246static void
247csr_write_4(sc, reg, val)
248	struct sf_softc		*sc;
249	int			reg;
250	u_int32_t		val;
251{
252#ifdef SF_USEIOSPACE
253	CSR_WRITE_4(sc, SF_INDIRECTIO_ADDR, reg + SF_RMAP_INTREG_BASE);
254	CSR_WRITE_4(sc, SF_INDIRECTIO_DATA, val);
255#else
256	CSR_WRITE_4(sc, (reg + SF_RMAP_INTREG_BASE), val);
257#endif
258	return;
259}
260
261static u_int32_t
262sf_mchash(addr)
263	caddr_t		addr;
264{
265	u_int32_t	crc, carry;
266	int		idx, bit;
267	u_int8_t	data;
268
269	/* Compute CRC for the address value. */
270	crc = 0xFFFFFFFF; /* initial value */
271
272	for (idx = 0; idx < 6; idx++) {
273		for (data = *addr++, bit = 0; bit < 8; bit++, data >>= 1) {
274			carry = ((crc & 0x80000000) ? 1 : 0) ^ (data & 0x01);
275			crc <<= 1;
276			if (carry)
277				crc = (crc ^ 0x04c11db6) | carry;
278		}
279	}
280
281	/* return the filter bit position */
282	return(crc >> 23 & 0x1FF);
283}
284
285/*
286 * Copy the address 'mac' into the perfect RX filter entry at
287 * offset 'idx.' The perfect filter only has 16 entries so do
288 * some sanity tests.
289 */
290static int
291sf_setperf(sc, idx, mac)
292	struct sf_softc		*sc;
293	int			idx;
294	caddr_t			mac;
295{
296	u_int16_t		*p;
297
298	if (idx < 0 || idx > SF_RXFILT_PERFECT_CNT)
299		return(EINVAL);
300
301	if (mac == NULL)
302		return(EINVAL);
303
304	p = (u_int16_t *)mac;
305
306	csr_write_4(sc, SF_RXFILT_PERFECT_BASE +
307	    (idx * SF_RXFILT_PERFECT_SKIP), htons(p[2]));
308	csr_write_4(sc, SF_RXFILT_PERFECT_BASE +
309	    (idx * SF_RXFILT_PERFECT_SKIP) + 4, htons(p[1]));
310	csr_write_4(sc, SF_RXFILT_PERFECT_BASE +
311	    (idx * SF_RXFILT_PERFECT_SKIP) + 8, htons(p[0]));
312
313	return(0);
314}
315
316/*
317 * Set the bit in the 512-bit hash table that corresponds to the
318 * specified mac address 'mac.' If 'prio' is nonzero, update the
319 * priority hash table instead of the filter hash table.
320 */
321static int
322sf_sethash(sc, mac, prio)
323	struct sf_softc		*sc;
324	caddr_t			mac;
325	int			prio;
326{
327	u_int32_t		h = 0;
328
329	if (mac == NULL)
330		return(EINVAL);
331
332	h = sf_mchash(mac);
333
334	if (prio) {
335		SF_SETBIT(sc, SF_RXFILT_HASH_BASE + SF_RXFILT_HASH_PRIOOFF +
336		    (SF_RXFILT_HASH_SKIP * (h >> 4)), (1 << (h & 0xF)));
337	} else {
338		SF_SETBIT(sc, SF_RXFILT_HASH_BASE + SF_RXFILT_HASH_ADDROFF +
339		    (SF_RXFILT_HASH_SKIP * (h >> 4)), (1 << (h & 0xF)));
340	}
341
342	return(0);
343}
344
345#ifdef notdef
346/*
347 * Set a VLAN tag in the receive filter.
348 */
349static int
350sf_setvlan(sc, idx, vlan)
351	struct sf_softc		*sc;
352	int			idx;
353	u_int32_t		vlan;
354{
355	if (idx < 0 || idx >> SF_RXFILT_HASH_CNT)
356		return(EINVAL);
357
358	csr_write_4(sc, SF_RXFILT_HASH_BASE +
359	    (idx * SF_RXFILT_HASH_SKIP) + SF_RXFILT_HASH_VLANOFF, vlan);
360
361	return(0);
362}
363#endif
364
365static int
366sf_miibus_readreg(dev, phy, reg)
367	device_t		dev;
368	int			phy, reg;
369{
370	struct sf_softc		*sc;
371	int			i;
372	u_int32_t		val = 0;
373
374	sc = device_get_softc(dev);
375
376	for (i = 0; i < SF_TIMEOUT; i++) {
377		val = csr_read_4(sc, SF_PHY_REG(phy, reg));
378		if (val & SF_MII_DATAVALID)
379			break;
380	}
381
382	if (i == SF_TIMEOUT)
383		return(0);
384
385	if ((val & 0x0000FFFF) == 0xFFFF)
386		return(0);
387
388	return(val & 0x0000FFFF);
389}
390
391static int
392sf_miibus_writereg(dev, phy, reg, val)
393	device_t		dev;
394	int			phy, reg, val;
395{
396	struct sf_softc		*sc;
397	int			i;
398	int			busy;
399
400	sc = device_get_softc(dev);
401
402	csr_write_4(sc, SF_PHY_REG(phy, reg), val);
403
404	for (i = 0; i < SF_TIMEOUT; i++) {
405		busy = csr_read_4(sc, SF_PHY_REG(phy, reg));
406		if (!(busy & SF_MII_BUSY))
407			break;
408	}
409
410	return(0);
411}
412
413static void
414sf_miibus_statchg(dev)
415	device_t		dev;
416{
417	struct sf_softc		*sc;
418	struct mii_data		*mii;
419
420	sc = device_get_softc(dev);
421	mii = device_get_softc(sc->sf_miibus);
422
423	if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
424		SF_SETBIT(sc, SF_MACCFG_1, SF_MACCFG1_FULLDUPLEX);
425		csr_write_4(sc, SF_BKTOBKIPG, SF_IPGT_FDX);
426	} else {
427		SF_CLRBIT(sc, SF_MACCFG_1, SF_MACCFG1_FULLDUPLEX);
428		csr_write_4(sc, SF_BKTOBKIPG, SF_IPGT_HDX);
429	}
430
431	return;
432}
433
434static void
435sf_setmulti(sc)
436	struct sf_softc		*sc;
437{
438	struct ifnet		*ifp;
439	int			i;
440	struct ifmultiaddr	*ifma;
441	u_int8_t		dummy[] = { 0, 0, 0, 0, 0, 0 };
442
443	ifp = &sc->arpcom.ac_if;
444
445	/* First zot all the existing filters. */
446	for (i = 1; i < SF_RXFILT_PERFECT_CNT; i++)
447		sf_setperf(sc, i, (char *)&dummy);
448	for (i = SF_RXFILT_HASH_BASE;
449	    i < (SF_RXFILT_HASH_MAX + 1); i += 4)
450		csr_write_4(sc, i, 0);
451	SF_CLRBIT(sc, SF_RXFILT, SF_RXFILT_ALLMULTI);
452
453	/* Now program new ones. */
454	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
455		SF_SETBIT(sc, SF_RXFILT, SF_RXFILT_ALLMULTI);
456	} else {
457		i = 1;
458		TAILQ_FOREACH_REVERSE(ifma, &ifp->if_multiaddrs, ifmultihead, ifma_link) {
459			if (ifma->ifma_addr->sa_family != AF_LINK)
460				continue;
461			/*
462			 * Program the first 15 multicast groups
463			 * into the perfect filter. For all others,
464			 * use the hash table.
465			 */
466			if (i < SF_RXFILT_PERFECT_CNT) {
467				sf_setperf(sc, i,
468			LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
469				i++;
470				continue;
471			}
472
473			sf_sethash(sc,
474			    LLADDR((struct sockaddr_dl *)ifma->ifma_addr), 0);
475		}
476	}
477
478	return;
479}
480
481/*
482 * Set media options.
483 */
484static int
485sf_ifmedia_upd(ifp)
486	struct ifnet		*ifp;
487{
488	struct sf_softc		*sc;
489	struct mii_data		*mii;
490
491	sc = ifp->if_softc;
492	mii = device_get_softc(sc->sf_miibus);
493	sc->sf_link = 0;
494	if (mii->mii_instance) {
495		struct mii_softc        *miisc;
496		LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
497			mii_phy_reset(miisc);
498	}
499	mii_mediachg(mii);
500
501	return(0);
502}
503
504/*
505 * Report current media status.
506 */
507static void
508sf_ifmedia_sts(ifp, ifmr)
509	struct ifnet		*ifp;
510	struct ifmediareq	*ifmr;
511{
512	struct sf_softc		*sc;
513	struct mii_data		*mii;
514
515	sc = ifp->if_softc;
516	mii = device_get_softc(sc->sf_miibus);
517
518	mii_pollstat(mii);
519	ifmr->ifm_active = mii->mii_media_active;
520	ifmr->ifm_status = mii->mii_media_status;
521
522	return;
523}
524
525static int
526sf_ioctl(ifp, command, data)
527	struct ifnet		*ifp;
528	u_long			command;
529	caddr_t			data;
530{
531	struct sf_softc		*sc = ifp->if_softc;
532	struct ifreq		*ifr = (struct ifreq *) data;
533	struct mii_data		*mii;
534	int			error = 0;
535
536	SF_LOCK(sc);
537
538	switch(command) {
539	case SIOCSIFFLAGS:
540		if (ifp->if_flags & IFF_UP) {
541			if (ifp->if_flags & IFF_RUNNING &&
542			    ifp->if_flags & IFF_PROMISC &&
543			    !(sc->sf_if_flags & IFF_PROMISC)) {
544				SF_SETBIT(sc, SF_RXFILT, SF_RXFILT_PROMISC);
545			} else if (ifp->if_flags & IFF_RUNNING &&
546			    !(ifp->if_flags & IFF_PROMISC) &&
547			    sc->sf_if_flags & IFF_PROMISC) {
548				SF_CLRBIT(sc, SF_RXFILT, SF_RXFILT_PROMISC);
549			} else if (!(ifp->if_flags & IFF_RUNNING))
550				sf_init(sc);
551		} else {
552			if (ifp->if_flags & IFF_RUNNING)
553				sf_stop(sc);
554		}
555		sc->sf_if_flags = ifp->if_flags;
556		error = 0;
557		break;
558	case SIOCADDMULTI:
559	case SIOCDELMULTI:
560		sf_setmulti(sc);
561		error = 0;
562		break;
563	case SIOCGIFMEDIA:
564	case SIOCSIFMEDIA:
565		mii = device_get_softc(sc->sf_miibus);
566		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
567		break;
568	default:
569		error = ether_ioctl(ifp, command, data);
570		break;
571	}
572
573	SF_UNLOCK(sc);
574
575	return(error);
576}
577
578static void
579sf_reset(sc)
580	struct sf_softc		*sc;
581{
582	register int		i;
583
584	csr_write_4(sc, SF_GEN_ETH_CTL, 0);
585	SF_SETBIT(sc, SF_MACCFG_1, SF_MACCFG1_SOFTRESET);
586	DELAY(1000);
587	SF_CLRBIT(sc, SF_MACCFG_1, SF_MACCFG1_SOFTRESET);
588
589	SF_SETBIT(sc, SF_PCI_DEVCFG, SF_PCIDEVCFG_RESET);
590
591	for (i = 0; i < SF_TIMEOUT; i++) {
592		DELAY(10);
593		if (!(csr_read_4(sc, SF_PCI_DEVCFG) & SF_PCIDEVCFG_RESET))
594			break;
595	}
596
597	if (i == SF_TIMEOUT)
598		printf("sf%d: reset never completed!\n", sc->sf_unit);
599
600	/* Wait a little while for the chip to get its brains in order. */
601	DELAY(1000);
602	return;
603}
604
605/*
606 * Probe for an Adaptec AIC-6915 chip. Check the PCI vendor and device
607 * IDs against our list and return a device name if we find a match.
608 * We also check the subsystem ID so that we can identify exactly which
609 * NIC has been found, if possible.
610 */
611static int
612sf_probe(dev)
613	device_t		dev;
614{
615	struct sf_type		*t;
616
617	t = sf_devs;
618
619	while(t->sf_name != NULL) {
620		if ((pci_get_vendor(dev) == t->sf_vid) &&
621		    (pci_get_device(dev) == t->sf_did)) {
622			switch((pci_read_config(dev,
623			    SF_PCI_SUBVEN_ID, 4) >> 16) & 0xFFFF) {
624			case AD_SUBSYSID_62011_REV0:
625			case AD_SUBSYSID_62011_REV1:
626				device_set_desc(dev,
627				    "Adaptec ANA-62011 10/100BaseTX");
628				return(0);
629			case AD_SUBSYSID_62022:
630				device_set_desc(dev,
631				    "Adaptec ANA-62022 10/100BaseTX");
632				return(0);
633			case AD_SUBSYSID_62044_REV0:
634			case AD_SUBSYSID_62044_REV1:
635				device_set_desc(dev,
636				    "Adaptec ANA-62044 10/100BaseTX");
637				return(0);
638			case AD_SUBSYSID_62020:
639				device_set_desc(dev,
640				    "Adaptec ANA-62020 10/100BaseFX");
641				return(0);
642			case AD_SUBSYSID_69011:
643				device_set_desc(dev,
644				    "Adaptec ANA-69011 10/100BaseTX");
645				return(0);
646			default:
647				device_set_desc(dev, t->sf_name);
648				return(0);
649				break;
650			}
651		}
652		t++;
653	}
654
655	return(ENXIO);
656}
657
658/*
659 * Attach the interface. Allocate softc structures, do ifmedia
660 * setup and ethernet/BPF attach.
661 */
662static int
663sf_attach(dev)
664	device_t		dev;
665{
666	int			i;
667	struct sf_softc		*sc;
668	struct ifnet		*ifp;
669	int			unit, rid, error = 0;
670
671	sc = device_get_softc(dev);
672	unit = device_get_unit(dev);
673
674	mtx_init(&sc->sf_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
675	    MTX_DEF | MTX_RECURSE);
676#ifndef BURN_BRIDGES
677	/*
678	 * Handle power management nonsense.
679	 */
680	if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
681		u_int32_t		iobase, membase, irq;
682
683		/* Save important PCI config data. */
684		iobase = pci_read_config(dev, SF_PCI_LOIO, 4);
685		membase = pci_read_config(dev, SF_PCI_LOMEM, 4);
686		irq = pci_read_config(dev, SF_PCI_INTLINE, 4);
687
688		/* Reset the power state. */
689		printf("sf%d: chip is in D%d power mode "
690		    "-- setting to D0\n", unit,
691		    pci_get_powerstate(dev));
692		pci_set_powerstate(dev, PCI_POWERSTATE_D0);
693
694		/* Restore PCI config data. */
695		pci_write_config(dev, SF_PCI_LOIO, iobase, 4);
696		pci_write_config(dev, SF_PCI_LOMEM, membase, 4);
697		pci_write_config(dev, SF_PCI_INTLINE, irq, 4);
698	}
699#endif
700	/*
701	 * Map control/status registers.
702	 */
703	pci_enable_busmaster(dev);
704
705	rid = SF_RID;
706	sc->sf_res = bus_alloc_resource(dev, SF_RES, &rid,
707	    0, ~0, 1, RF_ACTIVE);
708
709	if (sc->sf_res == NULL) {
710		printf ("sf%d: couldn't map ports\n", unit);
711		error = ENXIO;
712		goto fail;
713	}
714
715	sc->sf_btag = rman_get_bustag(sc->sf_res);
716	sc->sf_bhandle = rman_get_bushandle(sc->sf_res);
717
718	/* Allocate interrupt */
719	rid = 0;
720	sc->sf_irq = bus_alloc_resource(dev, SYS_RES_IRQ, &rid, 0, ~0, 1,
721	    RF_SHAREABLE | RF_ACTIVE);
722
723	if (sc->sf_irq == NULL) {
724		printf("sf%d: couldn't map interrupt\n", unit);
725		error = ENXIO;
726		goto fail;
727	}
728
729	callout_handle_init(&sc->sf_stat_ch);
730	/* Reset the adapter. */
731	sf_reset(sc);
732
733	/*
734	 * Get station address from the EEPROM.
735	 */
736	for (i = 0; i < ETHER_ADDR_LEN; i++)
737		sc->arpcom.ac_enaddr[i] =
738		    sf_read_eeprom(sc, SF_EE_NODEADDR + ETHER_ADDR_LEN - i);
739
740	/*
741	 * An Adaptec chip was detected. Inform the world.
742	 */
743	printf("sf%d: Ethernet address: %6D\n", unit,
744	    sc->arpcom.ac_enaddr, ":");
745
746	sc->sf_unit = unit;
747
748	/* Allocate the descriptor queues. */
749	sc->sf_ldata = contigmalloc(sizeof(struct sf_list_data), M_DEVBUF,
750	    M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0);
751
752	if (sc->sf_ldata == NULL) {
753		printf("sf%d: no memory for list buffers!\n", unit);
754		error = ENXIO;
755		goto fail;
756	}
757
758	bzero(sc->sf_ldata, sizeof(struct sf_list_data));
759
760	/* Do MII setup. */
761	if (mii_phy_probe(dev, &sc->sf_miibus,
762	    sf_ifmedia_upd, sf_ifmedia_sts)) {
763		printf("sf%d: MII without any phy!\n", sc->sf_unit);
764		error = ENXIO;
765		goto fail;
766	}
767
768	ifp = &sc->arpcom.ac_if;
769	ifp->if_softc = sc;
770	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
771	ifp->if_mtu = ETHERMTU;
772	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
773	ifp->if_ioctl = sf_ioctl;
774	ifp->if_output = ether_output;
775	ifp->if_start = sf_start;
776	ifp->if_watchdog = sf_watchdog;
777	ifp->if_init = sf_init;
778	ifp->if_baudrate = 10000000;
779	ifp->if_snd.ifq_maxlen = SF_TX_DLIST_CNT - 1;
780
781	/*
782	 * Call MI attach routine.
783	 */
784	ether_ifattach(ifp, sc->arpcom.ac_enaddr);
785
786	/* Hook interrupt last to avoid having to lock softc */
787	error = bus_setup_intr(dev, sc->sf_irq, INTR_TYPE_NET,
788	    sf_intr, sc, &sc->sf_intrhand);
789
790	if (error) {
791		printf("sf%d: couldn't set up irq\n", unit);
792		ether_ifdetach(ifp);
793		goto fail;
794	}
795
796fail:
797	if (error)
798		sf_detach(dev);
799
800	return(error);
801}
802
803/*
804 * Shutdown hardware and free up resources. This can be called any
805 * time after the mutex has been initialized. It is called in both
806 * the error case in attach and the normal detach case so it needs
807 * to be careful about only freeing resources that have actually been
808 * allocated.
809 */
810static int
811sf_detach(dev)
812	device_t		dev;
813{
814	struct sf_softc		*sc;
815	struct ifnet		*ifp;
816
817	sc = device_get_softc(dev);
818	KASSERT(mtx_initialized(&sc->sf_mtx), ("sf mutex not initialized"));
819	SF_LOCK(sc);
820	ifp = &sc->arpcom.ac_if;
821
822	/* These should only be active if attach succeeded */
823	if (device_is_attached(dev)) {
824		sf_stop(sc);
825		ether_ifdetach(ifp);
826	}
827	if (sc->sf_miibus)
828		device_delete_child(dev, sc->sf_miibus);
829	bus_generic_detach(dev);
830
831	if (sc->sf_intrhand)
832		bus_teardown_intr(dev, sc->sf_irq, sc->sf_intrhand);
833	if (sc->sf_irq)
834		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sf_irq);
835	if (sc->sf_res)
836		bus_release_resource(dev, SF_RES, SF_RID, sc->sf_res);
837
838	if (sc->sf_ldata)
839		contigfree(sc->sf_ldata, sizeof(struct sf_list_data), M_DEVBUF);
840
841	SF_UNLOCK(sc);
842	mtx_destroy(&sc->sf_mtx);
843
844	return(0);
845}
846
847static int
848sf_init_rx_ring(sc)
849	struct sf_softc		*sc;
850{
851	struct sf_list_data	*ld;
852	int			i;
853
854	ld = sc->sf_ldata;
855
856	bzero((char *)ld->sf_rx_dlist_big,
857	    sizeof(struct sf_rx_bufdesc_type0) * SF_RX_DLIST_CNT);
858	bzero((char *)ld->sf_rx_clist,
859	    sizeof(struct sf_rx_cmpdesc_type3) * SF_RX_CLIST_CNT);
860
861	for (i = 0; i < SF_RX_DLIST_CNT; i++) {
862		if (sf_newbuf(sc, &ld->sf_rx_dlist_big[i], NULL) == ENOBUFS)
863			return(ENOBUFS);
864	}
865
866	return(0);
867}
868
869static void
870sf_init_tx_ring(sc)
871	struct sf_softc		*sc;
872{
873	struct sf_list_data	*ld;
874	int			i;
875
876	ld = sc->sf_ldata;
877
878	bzero((char *)ld->sf_tx_dlist,
879	    sizeof(struct sf_tx_bufdesc_type0) * SF_TX_DLIST_CNT);
880	bzero((char *)ld->sf_tx_clist,
881	    sizeof(struct sf_tx_cmpdesc_type0) * SF_TX_CLIST_CNT);
882
883	for (i = 0; i < SF_TX_DLIST_CNT; i++)
884		ld->sf_tx_dlist[i].sf_id = SF_TX_BUFDESC_ID;
885	for (i = 0; i < SF_TX_CLIST_CNT; i++)
886		ld->sf_tx_clist[i].sf_type = SF_TXCMPTYPE_TX;
887
888	ld->sf_tx_dlist[SF_TX_DLIST_CNT - 1].sf_end = 1;
889	sc->sf_tx_cnt = 0;
890
891	return;
892}
893
894static int
895sf_newbuf(sc, c, m)
896	struct sf_softc		*sc;
897	struct sf_rx_bufdesc_type0	*c;
898	struct mbuf		*m;
899{
900	struct mbuf		*m_new = NULL;
901
902	if (m == NULL) {
903		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
904		if (m_new == NULL)
905			return(ENOBUFS);
906
907		MCLGET(m_new, M_DONTWAIT);
908		if (!(m_new->m_flags & M_EXT)) {
909			m_freem(m_new);
910			return(ENOBUFS);
911		}
912		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
913	} else {
914		m_new = m;
915		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
916		m_new->m_data = m_new->m_ext.ext_buf;
917	}
918
919	m_adj(m_new, sizeof(u_int64_t));
920
921	c->sf_mbuf = m_new;
922	c->sf_addrlo = SF_RX_HOSTADDR(vtophys(mtod(m_new, caddr_t)));
923	c->sf_valid = 1;
924
925	return(0);
926}
927
928/*
929 * The starfire is programmed to use 'normal' mode for packet reception,
930 * which means we use the consumer/producer model for both the buffer
931 * descriptor queue and the completion descriptor queue. The only problem
932 * with this is that it involves a lot of register accesses: we have to
933 * read the RX completion consumer and producer indexes and the RX buffer
934 * producer index, plus the RX completion consumer and RX buffer producer
935 * indexes have to be updated. It would have been easier if Adaptec had
936 * put each index in a separate register, especially given that the damn
937 * NIC has a 512K register space.
938 *
939 * In spite of all the lovely features that Adaptec crammed into the 6915,
940 * it is marred by one truly stupid design flaw, which is that receive
941 * buffer addresses must be aligned on a longword boundary. This forces
942 * the packet payload to be unaligned, which is suboptimal on the x86 and
943 * completely unuseable on the Alpha. Our only recourse is to copy received
944 * packets into properly aligned buffers before handing them off.
945 */
946
947static void
948sf_rxeof(sc)
949	struct sf_softc		*sc;
950{
951	struct mbuf		*m;
952	struct ifnet		*ifp;
953	struct sf_rx_bufdesc_type0	*desc;
954	struct sf_rx_cmpdesc_type3	*cur_rx;
955	u_int32_t		rxcons, rxprod;
956	int			cmpprodidx, cmpconsidx, bufprodidx;
957
958	ifp = &sc->arpcom.ac_if;
959
960	rxcons = csr_read_4(sc, SF_CQ_CONSIDX);
961	rxprod = csr_read_4(sc, SF_RXDQ_PTR_Q1);
962	cmpprodidx = SF_IDX_LO(csr_read_4(sc, SF_CQ_PRODIDX));
963	cmpconsidx = SF_IDX_LO(rxcons);
964	bufprodidx = SF_IDX_LO(rxprod);
965
966	while (cmpconsidx != cmpprodidx) {
967		struct mbuf		*m0;
968
969		cur_rx = &sc->sf_ldata->sf_rx_clist[cmpconsidx];
970		desc = &sc->sf_ldata->sf_rx_dlist_big[cur_rx->sf_endidx];
971		m = desc->sf_mbuf;
972		SF_INC(cmpconsidx, SF_RX_CLIST_CNT);
973		SF_INC(bufprodidx, SF_RX_DLIST_CNT);
974
975		if (!(cur_rx->sf_status1 & SF_RXSTAT1_OK)) {
976			ifp->if_ierrors++;
977			sf_newbuf(sc, desc, m);
978			continue;
979		}
980
981		m0 = m_devget(mtod(m, char *), cur_rx->sf_len, ETHER_ALIGN,
982		    ifp, NULL);
983		sf_newbuf(sc, desc, m);
984		if (m0 == NULL) {
985			ifp->if_ierrors++;
986			continue;
987		}
988		m = m0;
989
990		ifp->if_ipackets++;
991		(*ifp->if_input)(ifp, m);
992	}
993
994	csr_write_4(sc, SF_CQ_CONSIDX,
995	    (rxcons & ~SF_CQ_CONSIDX_RXQ1) | cmpconsidx);
996	csr_write_4(sc, SF_RXDQ_PTR_Q1,
997	    (rxprod & ~SF_RXDQ_PRODIDX) | bufprodidx);
998
999	return;
1000}
1001
1002/*
1003 * Read the transmit status from the completion queue and release
1004 * mbufs. Note that the buffer descriptor index in the completion
1005 * descriptor is an offset from the start of the transmit buffer
1006 * descriptor list in bytes. This is important because the manual
1007 * gives the impression that it should match the producer/consumer
1008 * index, which is the offset in 8 byte blocks.
1009 */
1010static void
1011sf_txeof(sc)
1012	struct sf_softc		*sc;
1013{
1014	int			txcons, cmpprodidx, cmpconsidx;
1015	struct sf_tx_cmpdesc_type1 *cur_cmp;
1016	struct sf_tx_bufdesc_type0 *cur_tx;
1017	struct ifnet		*ifp;
1018
1019	ifp = &sc->arpcom.ac_if;
1020
1021	txcons = csr_read_4(sc, SF_CQ_CONSIDX);
1022	cmpprodidx = SF_IDX_HI(csr_read_4(sc, SF_CQ_PRODIDX));
1023	cmpconsidx = SF_IDX_HI(txcons);
1024
1025	while (cmpconsidx != cmpprodidx) {
1026		cur_cmp = &sc->sf_ldata->sf_tx_clist[cmpconsidx];
1027		cur_tx = &sc->sf_ldata->sf_tx_dlist[cur_cmp->sf_index >> 7];
1028
1029		if (cur_cmp->sf_txstat & SF_TXSTAT_TX_OK)
1030			ifp->if_opackets++;
1031		else {
1032			if (cur_cmp->sf_txstat & SF_TXSTAT_TX_UNDERRUN)
1033				sf_txthresh_adjust(sc);
1034			ifp->if_oerrors++;
1035		}
1036
1037		sc->sf_tx_cnt--;
1038		if (cur_tx->sf_mbuf != NULL) {
1039			m_freem(cur_tx->sf_mbuf);
1040			cur_tx->sf_mbuf = NULL;
1041		} else
1042			break;
1043		SF_INC(cmpconsidx, SF_TX_CLIST_CNT);
1044	}
1045
1046	ifp->if_timer = 0;
1047	ifp->if_flags &= ~IFF_OACTIVE;
1048
1049	csr_write_4(sc, SF_CQ_CONSIDX,
1050	    (txcons & ~SF_CQ_CONSIDX_TXQ) |
1051	    ((cmpconsidx << 16) & 0xFFFF0000));
1052
1053	return;
1054}
1055
1056static void
1057sf_txthresh_adjust(sc)
1058	struct sf_softc		*sc;
1059{
1060	u_int32_t		txfctl;
1061	u_int8_t		txthresh;
1062
1063	txfctl = csr_read_4(sc, SF_TX_FRAMCTL);
1064	txthresh = txfctl & SF_TXFRMCTL_TXTHRESH;
1065	if (txthresh < 0xFF) {
1066		txthresh++;
1067		txfctl &= ~SF_TXFRMCTL_TXTHRESH;
1068		txfctl |= txthresh;
1069#ifdef DIAGNOSTIC
1070		printf("sf%d: tx underrun, increasing "
1071		    "tx threshold to %d bytes\n",
1072		    sc->sf_unit, txthresh * 4);
1073#endif
1074		csr_write_4(sc, SF_TX_FRAMCTL, txfctl);
1075	}
1076
1077	return;
1078}
1079
1080static void
1081sf_intr(arg)
1082	void			*arg;
1083{
1084	struct sf_softc		*sc;
1085	struct ifnet		*ifp;
1086	u_int32_t		status;
1087
1088	sc = arg;
1089	SF_LOCK(sc);
1090
1091	ifp = &sc->arpcom.ac_if;
1092
1093	if (!(csr_read_4(sc, SF_ISR_SHADOW) & SF_ISR_PCIINT_ASSERTED)) {
1094		SF_UNLOCK(sc);
1095		return;
1096	}
1097
1098	/* Disable interrupts. */
1099	csr_write_4(sc, SF_IMR, 0x00000000);
1100
1101	for (;;) {
1102		status = csr_read_4(sc, SF_ISR);
1103		if (status)
1104			csr_write_4(sc, SF_ISR, status);
1105
1106		if (!(status & SF_INTRS))
1107			break;
1108
1109		if (status & SF_ISR_RXDQ1_DMADONE)
1110			sf_rxeof(sc);
1111
1112		if (status & SF_ISR_TX_TXDONE ||
1113		    status & SF_ISR_TX_DMADONE ||
1114		    status & SF_ISR_TX_QUEUEDONE)
1115			sf_txeof(sc);
1116
1117		if (status & SF_ISR_TX_LOFIFO)
1118			sf_txthresh_adjust(sc);
1119
1120		if (status & SF_ISR_ABNORMALINTR) {
1121			if (status & SF_ISR_STATSOFLOW) {
1122				untimeout(sf_stats_update, sc,
1123				    sc->sf_stat_ch);
1124				sf_stats_update(sc);
1125			} else
1126				sf_init(sc);
1127		}
1128	}
1129
1130	/* Re-enable interrupts. */
1131	csr_write_4(sc, SF_IMR, SF_INTRS);
1132
1133	if (ifp->if_snd.ifq_head != NULL)
1134		sf_start(ifp);
1135
1136	SF_UNLOCK(sc);
1137	return;
1138}
1139
1140static void
1141sf_init(xsc)
1142	void			*xsc;
1143{
1144	struct sf_softc		*sc;
1145	struct ifnet		*ifp;
1146	struct mii_data		*mii;
1147	int			i;
1148
1149	sc = xsc;
1150	SF_LOCK(sc);
1151	ifp = &sc->arpcom.ac_if;
1152	mii = device_get_softc(sc->sf_miibus);
1153
1154	sf_stop(sc);
1155	sf_reset(sc);
1156
1157	/* Init all the receive filter registers */
1158	for (i = SF_RXFILT_PERFECT_BASE;
1159	    i < (SF_RXFILT_HASH_MAX + 1); i += 4)
1160		csr_write_4(sc, i, 0);
1161
1162	/* Empty stats counter registers. */
1163	for (i = 0; i < sizeof(struct sf_stats)/sizeof(u_int32_t); i++)
1164		csr_write_4(sc, SF_STATS_BASE +
1165		    (i + sizeof(u_int32_t)), 0);
1166
1167	/* Init our MAC address */
1168	csr_write_4(sc, SF_PAR0, *(u_int32_t *)(&sc->arpcom.ac_enaddr[0]));
1169	csr_write_4(sc, SF_PAR1, *(u_int32_t *)(&sc->arpcom.ac_enaddr[4]));
1170	sf_setperf(sc, 0, (caddr_t)&sc->arpcom.ac_enaddr);
1171
1172	if (sf_init_rx_ring(sc) == ENOBUFS) {
1173		printf("sf%d: initialization failed: no "
1174		    "memory for rx buffers\n", sc->sf_unit);
1175		SF_UNLOCK(sc);
1176		return;
1177	}
1178
1179	sf_init_tx_ring(sc);
1180
1181	csr_write_4(sc, SF_RXFILT, SF_PERFMODE_NORMAL|SF_HASHMODE_WITHVLAN);
1182
1183	/* If we want promiscuous mode, set the allframes bit. */
1184	if (ifp->if_flags & IFF_PROMISC) {
1185		SF_SETBIT(sc, SF_RXFILT, SF_RXFILT_PROMISC);
1186	} else {
1187		SF_CLRBIT(sc, SF_RXFILT, SF_RXFILT_PROMISC);
1188	}
1189
1190	if (ifp->if_flags & IFF_BROADCAST) {
1191		SF_SETBIT(sc, SF_RXFILT, SF_RXFILT_BROAD);
1192	} else {
1193		SF_CLRBIT(sc, SF_RXFILT, SF_RXFILT_BROAD);
1194	}
1195
1196	/*
1197	 * Load the multicast filter.
1198	 */
1199	sf_setmulti(sc);
1200
1201	/* Init the completion queue indexes */
1202	csr_write_4(sc, SF_CQ_CONSIDX, 0);
1203	csr_write_4(sc, SF_CQ_PRODIDX, 0);
1204
1205	/* Init the RX completion queue */
1206	csr_write_4(sc, SF_RXCQ_CTL_1,
1207	    vtophys(sc->sf_ldata->sf_rx_clist) & SF_RXCQ_ADDR);
1208	SF_SETBIT(sc, SF_RXCQ_CTL_1, SF_RXCQTYPE_3);
1209
1210	/* Init RX DMA control. */
1211	SF_SETBIT(sc, SF_RXDMA_CTL, SF_RXDMA_REPORTBADPKTS);
1212
1213	/* Init the RX buffer descriptor queue. */
1214	csr_write_4(sc, SF_RXDQ_ADDR_Q1,
1215	    vtophys(sc->sf_ldata->sf_rx_dlist_big));
1216	csr_write_4(sc, SF_RXDQ_CTL_1, (MCLBYTES << 16) | SF_DESCSPACE_16BYTES);
1217	csr_write_4(sc, SF_RXDQ_PTR_Q1, SF_RX_DLIST_CNT - 1);
1218
1219	/* Init the TX completion queue */
1220	csr_write_4(sc, SF_TXCQ_CTL,
1221	    vtophys(sc->sf_ldata->sf_tx_clist) & SF_RXCQ_ADDR);
1222
1223	/* Init the TX buffer descriptor queue. */
1224	csr_write_4(sc, SF_TXDQ_ADDR_HIPRIO,
1225		vtophys(sc->sf_ldata->sf_tx_dlist));
1226	SF_SETBIT(sc, SF_TX_FRAMCTL, SF_TXFRMCTL_CPLAFTERTX);
1227	csr_write_4(sc, SF_TXDQ_CTL,
1228	    SF_TXBUFDESC_TYPE0|SF_TXMINSPACE_128BYTES|SF_TXSKIPLEN_8BYTES);
1229	SF_SETBIT(sc, SF_TXDQ_CTL, SF_TXDQCTL_NODMACMP);
1230
1231	/* Enable autopadding of short TX frames. */
1232	SF_SETBIT(sc, SF_MACCFG_1, SF_MACCFG1_AUTOPAD);
1233
1234	/* Enable interrupts. */
1235	csr_write_4(sc, SF_IMR, SF_INTRS);
1236	SF_SETBIT(sc, SF_PCI_DEVCFG, SF_PCIDEVCFG_INTR_ENB);
1237
1238	/* Enable the RX and TX engines. */
1239	SF_SETBIT(sc, SF_GEN_ETH_CTL, SF_ETHCTL_RX_ENB|SF_ETHCTL_RXDMA_ENB);
1240	SF_SETBIT(sc, SF_GEN_ETH_CTL, SF_ETHCTL_TX_ENB|SF_ETHCTL_TXDMA_ENB);
1241
1242	/*mii_mediachg(mii);*/
1243	sf_ifmedia_upd(ifp);
1244
1245	ifp->if_flags |= IFF_RUNNING;
1246	ifp->if_flags &= ~IFF_OACTIVE;
1247
1248	sc->sf_stat_ch = timeout(sf_stats_update, sc, hz);
1249
1250	SF_UNLOCK(sc);
1251
1252	return;
1253}
1254
1255static int
1256sf_encap(sc, c, m_head)
1257	struct sf_softc		*sc;
1258	struct sf_tx_bufdesc_type0 *c;
1259	struct mbuf		*m_head;
1260{
1261	int			frag = 0;
1262	struct sf_frag		*f = NULL;
1263	struct mbuf		*m;
1264
1265	m = m_head;
1266
1267	for (m = m_head, frag = 0; m != NULL; m = m->m_next) {
1268		if (m->m_len != 0) {
1269			if (frag == SF_MAXFRAGS)
1270				break;
1271			f = &c->sf_frags[frag];
1272			if (frag == 0)
1273				f->sf_pktlen = m_head->m_pkthdr.len;
1274			f->sf_fraglen = m->m_len;
1275			f->sf_addr = vtophys(mtod(m, vm_offset_t));
1276			frag++;
1277		}
1278	}
1279
1280	if (m != NULL) {
1281		struct mbuf		*m_new = NULL;
1282
1283		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1284		if (m_new == NULL) {
1285			printf("sf%d: no memory for tx list\n", sc->sf_unit);
1286			return(1);
1287		}
1288
1289		if (m_head->m_pkthdr.len > MHLEN) {
1290			MCLGET(m_new, M_DONTWAIT);
1291			if (!(m_new->m_flags & M_EXT)) {
1292				m_freem(m_new);
1293				printf("sf%d: no memory for tx list\n",
1294				    sc->sf_unit);
1295				return(1);
1296			}
1297		}
1298		m_copydata(m_head, 0, m_head->m_pkthdr.len,
1299		    mtod(m_new, caddr_t));
1300		m_new->m_pkthdr.len = m_new->m_len = m_head->m_pkthdr.len;
1301		m_freem(m_head);
1302		m_head = m_new;
1303		f = &c->sf_frags[0];
1304		f->sf_fraglen = f->sf_pktlen = m_head->m_pkthdr.len;
1305		f->sf_addr = vtophys(mtod(m_head, caddr_t));
1306		frag = 1;
1307	}
1308
1309	c->sf_mbuf = m_head;
1310	c->sf_id = SF_TX_BUFDESC_ID;
1311	c->sf_fragcnt = frag;
1312	c->sf_intr = 1;
1313	c->sf_caltcp = 0;
1314	c->sf_crcen = 1;
1315
1316	return(0);
1317}
1318
1319static void
1320sf_start(ifp)
1321	struct ifnet		*ifp;
1322{
1323	struct sf_softc		*sc;
1324	struct sf_tx_bufdesc_type0 *cur_tx = NULL;
1325	struct mbuf		*m_head = NULL;
1326	int			i, txprod;
1327
1328	sc = ifp->if_softc;
1329	SF_LOCK(sc);
1330
1331	if (!sc->sf_link && ifp->if_snd.ifq_len < 10) {
1332		SF_UNLOCK(sc);
1333		return;
1334	}
1335
1336	if (ifp->if_flags & IFF_OACTIVE) {
1337		SF_UNLOCK(sc);
1338		return;
1339	}
1340
1341	txprod = csr_read_4(sc, SF_TXDQ_PRODIDX);
1342	i = SF_IDX_HI(txprod) >> 4;
1343
1344	if (sc->sf_ldata->sf_tx_dlist[i].sf_mbuf != NULL) {
1345		printf("sf%d: TX ring full, resetting\n", sc->sf_unit);
1346		sf_init(sc);
1347		txprod = csr_read_4(sc, SF_TXDQ_PRODIDX);
1348		i = SF_IDX_HI(txprod) >> 4;
1349	}
1350
1351	while(sc->sf_ldata->sf_tx_dlist[i].sf_mbuf == NULL) {
1352		if (sc->sf_tx_cnt >= (SF_TX_DLIST_CNT - 5)) {
1353			ifp->if_flags |= IFF_OACTIVE;
1354			cur_tx = NULL;
1355			break;
1356		}
1357		IF_DEQUEUE(&ifp->if_snd, m_head);
1358		if (m_head == NULL)
1359			break;
1360
1361		cur_tx = &sc->sf_ldata->sf_tx_dlist[i];
1362		if (sf_encap(sc, cur_tx, m_head)) {
1363			IF_PREPEND(&ifp->if_snd, m_head);
1364			ifp->if_flags |= IFF_OACTIVE;
1365			cur_tx = NULL;
1366			break;
1367		}
1368
1369		/*
1370		 * If there's a BPF listener, bounce a copy of this frame
1371		 * to him.
1372		 */
1373		BPF_MTAP(ifp, m_head);
1374
1375		SF_INC(i, SF_TX_DLIST_CNT);
1376		sc->sf_tx_cnt++;
1377		/*
1378		 * Don't get the TX DMA queue get too full.
1379		 */
1380		if (sc->sf_tx_cnt > 64)
1381			break;
1382	}
1383
1384	if (cur_tx == NULL) {
1385		SF_UNLOCK(sc);
1386		return;
1387	}
1388
1389	/* Transmit */
1390	csr_write_4(sc, SF_TXDQ_PRODIDX,
1391	    (txprod & ~SF_TXDQ_PRODIDX_HIPRIO) |
1392	    ((i << 20) & 0xFFFF0000));
1393
1394	ifp->if_timer = 5;
1395
1396	SF_UNLOCK(sc);
1397
1398	return;
1399}
1400
1401static void
1402sf_stop(sc)
1403	struct sf_softc		*sc;
1404{
1405	int			i;
1406	struct ifnet		*ifp;
1407
1408	SF_LOCK(sc);
1409
1410	ifp = &sc->arpcom.ac_if;
1411
1412	untimeout(sf_stats_update, sc, sc->sf_stat_ch);
1413
1414	csr_write_4(sc, SF_GEN_ETH_CTL, 0);
1415	csr_write_4(sc, SF_CQ_CONSIDX, 0);
1416	csr_write_4(sc, SF_CQ_PRODIDX, 0);
1417	csr_write_4(sc, SF_RXDQ_ADDR_Q1, 0);
1418	csr_write_4(sc, SF_RXDQ_CTL_1, 0);
1419	csr_write_4(sc, SF_RXDQ_PTR_Q1, 0);
1420	csr_write_4(sc, SF_TXCQ_CTL, 0);
1421	csr_write_4(sc, SF_TXDQ_ADDR_HIPRIO, 0);
1422	csr_write_4(sc, SF_TXDQ_CTL, 0);
1423	sf_reset(sc);
1424
1425	sc->sf_link = 0;
1426
1427	for (i = 0; i < SF_RX_DLIST_CNT; i++) {
1428		if (sc->sf_ldata->sf_rx_dlist_big[i].sf_mbuf != NULL) {
1429			m_freem(sc->sf_ldata->sf_rx_dlist_big[i].sf_mbuf);
1430			sc->sf_ldata->sf_rx_dlist_big[i].sf_mbuf = NULL;
1431		}
1432	}
1433
1434	for (i = 0; i < SF_TX_DLIST_CNT; i++) {
1435		if (sc->sf_ldata->sf_tx_dlist[i].sf_mbuf != NULL) {
1436			m_freem(sc->sf_ldata->sf_tx_dlist[i].sf_mbuf);
1437			sc->sf_ldata->sf_tx_dlist[i].sf_mbuf = NULL;
1438		}
1439	}
1440
1441	ifp->if_flags &= ~(IFF_RUNNING|IFF_OACTIVE);
1442	SF_UNLOCK(sc);
1443
1444	return;
1445}
1446
1447/*
1448 * Note: it is important that this function not be interrupted. We
1449 * use a two-stage register access scheme: if we are interrupted in
1450 * between setting the indirect address register and reading from the
1451 * indirect data register, the contents of the address register could
1452 * be changed out from under us.
1453 */
1454static void
1455sf_stats_update(xsc)
1456	void			*xsc;
1457{
1458	struct sf_softc		*sc;
1459	struct ifnet		*ifp;
1460	struct mii_data		*mii;
1461	struct sf_stats		stats;
1462	u_int32_t		*ptr;
1463	int			i;
1464
1465	sc = xsc;
1466	SF_LOCK(sc);
1467	ifp = &sc->arpcom.ac_if;
1468	mii = device_get_softc(sc->sf_miibus);
1469
1470	ptr = (u_int32_t *)&stats;
1471	for (i = 0; i < sizeof(stats)/sizeof(u_int32_t); i++)
1472		ptr[i] = csr_read_4(sc, SF_STATS_BASE +
1473		    (i + sizeof(u_int32_t)));
1474
1475	for (i = 0; i < sizeof(stats)/sizeof(u_int32_t); i++)
1476		csr_write_4(sc, SF_STATS_BASE +
1477		    (i + sizeof(u_int32_t)), 0);
1478
1479	ifp->if_collisions += stats.sf_tx_single_colls +
1480	    stats.sf_tx_multi_colls + stats.sf_tx_excess_colls;
1481
1482	mii_tick(mii);
1483
1484	if (!sc->sf_link && mii->mii_media_status & IFM_ACTIVE &&
1485	    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
1486		sc->sf_link++;
1487		if (ifp->if_snd.ifq_head != NULL)
1488			sf_start(ifp);
1489	}
1490
1491	sc->sf_stat_ch = timeout(sf_stats_update, sc, hz);
1492
1493	SF_UNLOCK(sc);
1494
1495	return;
1496}
1497
1498static void
1499sf_watchdog(ifp)
1500	struct ifnet		*ifp;
1501{
1502	struct sf_softc		*sc;
1503
1504	sc = ifp->if_softc;
1505
1506	SF_LOCK(sc);
1507
1508	ifp->if_oerrors++;
1509	printf("sf%d: watchdog timeout\n", sc->sf_unit);
1510
1511	sf_stop(sc);
1512	sf_reset(sc);
1513	sf_init(sc);
1514
1515	if (ifp->if_snd.ifq_head != NULL)
1516		sf_start(ifp);
1517
1518	SF_UNLOCK(sc);
1519
1520	return;
1521}
1522
1523static void
1524sf_shutdown(dev)
1525	device_t		dev;
1526{
1527	struct sf_softc		*sc;
1528
1529	sc = device_get_softc(dev);
1530
1531	sf_stop(sc);
1532
1533	return;
1534}
1535