if_sf.c revision 122625
1/*
2 * Copyright (c) 1997, 1998, 1999
3 *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 *    must display the following acknowledgement:
15 *	This product includes software developed by Bill Paul.
16 * 4. Neither the name of the author nor the names of any co-contributors
17 *    may be used to endorse or promote products derived from this software
18 *    without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30 * THE POSSIBILITY OF SUCH DAMAGE.
31 */
32
33/*
34 * Adaptec AIC-6915 "Starfire" PCI fast ethernet driver for FreeBSD.
35 * Programming manual is available from:
36 * ftp.adaptec.com:/pub/BBS/userguides/aic6915_pg.pdf.
37 *
38 * Written by Bill Paul <wpaul@ctr.columbia.edu>
39 * Department of Electical Engineering
40 * Columbia University, New York City
41 */
42
43/*
44 * The Adaptec AIC-6915 "Starfire" is a 64-bit 10/100 PCI ethernet
45 * controller designed with flexibility and reducing CPU load in mind.
46 * The Starfire offers high and low priority buffer queues, a
47 * producer/consumer index mechanism and several different buffer
48 * queue and completion queue descriptor types. Any one of a number
49 * of different driver designs can be used, depending on system and
50 * OS requirements. This driver makes use of type0 transmit frame
51 * descriptors (since BSD fragments packets across an mbuf chain)
52 * and two RX buffer queues prioritized on size (one queue for small
53 * frames that will fit into a single mbuf, another with full size
54 * mbuf clusters for everything else). The producer/consumer indexes
55 * and completion queues are also used.
56 *
57 * One downside to the Starfire has to do with alignment: buffer
58 * queues must be aligned on 256-byte boundaries, and receive buffers
59 * must be aligned on longword boundaries. The receive buffer alignment
60 * causes problems on the Alpha platform, where the packet payload
61 * should be longword aligned. There is no simple way around this.
62 *
63 * For receive filtering, the Starfire offers 16 perfect filter slots
64 * and a 512-bit hash table.
65 *
66 * The Starfire has no internal transceiver, relying instead on an
67 * external MII-based transceiver. Accessing registers on external
68 * PHYs is done through a special register map rather than with the
69 * usual bitbang MDIO method.
70 *
71 * Acesssing the registers on the Starfire is a little tricky. The
72 * Starfire has a 512K internal register space. When programmed for
73 * PCI memory mapped mode, the entire register space can be accessed
74 * directly. However in I/O space mode, only 256 bytes are directly
75 * mapped into PCI I/O space. The other registers can be accessed
76 * indirectly using the SF_INDIRECTIO_ADDR and SF_INDIRECTIO_DATA
77 * registers inside the 256-byte I/O window.
78 */
79
80#include <sys/cdefs.h>
81__FBSDID("$FreeBSD: head/sys/dev/sf/if_sf.c 122625 2003-11-13 20:55:53Z obrien $");
82
83#include <sys/param.h>
84#include <sys/systm.h>
85#include <sys/sockio.h>
86#include <sys/mbuf.h>
87#include <sys/malloc.h>
88#include <sys/kernel.h>
89#include <sys/socket.h>
90
91#include <net/if.h>
92#include <net/if_arp.h>
93#include <net/ethernet.h>
94#include <net/if_dl.h>
95#include <net/if_media.h>
96
97#include <net/bpf.h>
98
99#include <vm/vm.h>              /* for vtophys */
100#include <vm/pmap.h>            /* for vtophys */
101#include <machine/bus_pio.h>
102#include <machine/bus_memio.h>
103#include <machine/bus.h>
104#include <machine/resource.h>
105#include <sys/bus.h>
106#include <sys/rman.h>
107
108#include <dev/mii/mii.h>
109#include <dev/mii/miivar.h>
110
111/* "controller miibus0" required.  See GENERIC if you get errors here. */
112#include "miibus_if.h"
113
114#include <dev/pci/pcireg.h>
115#include <dev/pci/pcivar.h>
116
117#define SF_USEIOSPACE
118
119#include <pci/if_sfreg.h>
120
121MODULE_DEPEND(sf, pci, 1, 1, 1);
122MODULE_DEPEND(sf, ether, 1, 1, 1);
123MODULE_DEPEND(sf, miibus, 1, 1, 1);
124
125static struct sf_type sf_devs[] = {
126	{ AD_VENDORID, AD_DEVICEID_STARFIRE,
127		"Adaptec AIC-6915 10/100BaseTX" },
128	{ 0, 0, NULL }
129};
130
131static int sf_probe		(device_t);
132static int sf_attach		(device_t);
133static int sf_detach		(device_t);
134static void sf_intr		(void *);
135static void sf_stats_update	(void *);
136static void sf_rxeof		(struct sf_softc *);
137static void sf_txeof		(struct sf_softc *);
138static int sf_encap		(struct sf_softc *,
139					struct sf_tx_bufdesc_type0 *,
140					struct mbuf *);
141static void sf_start		(struct ifnet *);
142static int sf_ioctl		(struct ifnet *, u_long, caddr_t);
143static void sf_init		(void *);
144static void sf_stop		(struct sf_softc *);
145static void sf_watchdog		(struct ifnet *);
146static void sf_shutdown		(device_t);
147static int sf_ifmedia_upd	(struct ifnet *);
148static void sf_ifmedia_sts	(struct ifnet *, struct ifmediareq *);
149static void sf_reset		(struct sf_softc *);
150static int sf_init_rx_ring	(struct sf_softc *);
151static void sf_init_tx_ring	(struct sf_softc *);
152static int sf_newbuf		(struct sf_softc *,
153					struct sf_rx_bufdesc_type0 *,
154					struct mbuf *);
155static void sf_setmulti		(struct sf_softc *);
156static int sf_setperf		(struct sf_softc *, int, caddr_t);
157static int sf_sethash		(struct sf_softc *, caddr_t, int);
158#ifdef notdef
159static int sf_setvlan		(struct sf_softc *, int, u_int32_t);
160#endif
161
162static u_int8_t sf_read_eeprom	(struct sf_softc *, int);
163static u_int32_t sf_mchash	(caddr_t);
164
165static int sf_miibus_readreg	(device_t, int, int);
166static int sf_miibus_writereg	(device_t, int, int, int);
167static void sf_miibus_statchg	(device_t);
168
169static u_int32_t csr_read_4	(struct sf_softc *, int);
170static void csr_write_4		(struct sf_softc *, int, u_int32_t);
171static void sf_txthresh_adjust	(struct sf_softc *);
172
173#ifdef SF_USEIOSPACE
174#define SF_RES			SYS_RES_IOPORT
175#define SF_RID			SF_PCI_LOIO
176#else
177#define SF_RES			SYS_RES_MEMORY
178#define SF_RID			SF_PCI_LOMEM
179#endif
180
181static device_method_t sf_methods[] = {
182	/* Device interface */
183	DEVMETHOD(device_probe,		sf_probe),
184	DEVMETHOD(device_attach,	sf_attach),
185	DEVMETHOD(device_detach,	sf_detach),
186	DEVMETHOD(device_shutdown,	sf_shutdown),
187
188	/* bus interface */
189	DEVMETHOD(bus_print_child,	bus_generic_print_child),
190	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
191
192	/* MII interface */
193	DEVMETHOD(miibus_readreg,	sf_miibus_readreg),
194	DEVMETHOD(miibus_writereg,	sf_miibus_writereg),
195	DEVMETHOD(miibus_statchg,	sf_miibus_statchg),
196
197	{ 0, 0 }
198};
199
200static driver_t sf_driver = {
201	"sf",
202	sf_methods,
203	sizeof(struct sf_softc),
204};
205
206static devclass_t sf_devclass;
207
208DRIVER_MODULE(sf, pci, sf_driver, sf_devclass, 0, 0);
209DRIVER_MODULE(miibus, sf, miibus_driver, miibus_devclass, 0, 0);
210
211#define SF_SETBIT(sc, reg, x)	\
212	csr_write_4(sc, reg, csr_read_4(sc, reg) | (x))
213
214#define SF_CLRBIT(sc, reg, x)				\
215	csr_write_4(sc, reg, csr_read_4(sc, reg) & ~(x))
216
217static u_int32_t
218csr_read_4(sc, reg)
219	struct sf_softc		*sc;
220	int			reg;
221{
222	u_int32_t		val;
223
224#ifdef SF_USEIOSPACE
225	CSR_WRITE_4(sc, SF_INDIRECTIO_ADDR, reg + SF_RMAP_INTREG_BASE);
226	val = CSR_READ_4(sc, SF_INDIRECTIO_DATA);
227#else
228	val = CSR_READ_4(sc, (reg + SF_RMAP_INTREG_BASE));
229#endif
230
231	return(val);
232}
233
234static u_int8_t
235sf_read_eeprom(sc, reg)
236	struct sf_softc		*sc;
237	int			reg;
238{
239	u_int8_t		val;
240
241	val = (csr_read_4(sc, SF_EEADDR_BASE +
242	    (reg & 0xFFFFFFFC)) >> (8 * (reg & 3))) & 0xFF;
243
244	return(val);
245}
246
247static void
248csr_write_4(sc, reg, val)
249	struct sf_softc		*sc;
250	int			reg;
251	u_int32_t		val;
252{
253#ifdef SF_USEIOSPACE
254	CSR_WRITE_4(sc, SF_INDIRECTIO_ADDR, reg + SF_RMAP_INTREG_BASE);
255	CSR_WRITE_4(sc, SF_INDIRECTIO_DATA, val);
256#else
257	CSR_WRITE_4(sc, (reg + SF_RMAP_INTREG_BASE), val);
258#endif
259	return;
260}
261
262static u_int32_t
263sf_mchash(addr)
264	caddr_t		addr;
265{
266	u_int32_t	crc, carry;
267	int		idx, bit;
268	u_int8_t	data;
269
270	/* Compute CRC for the address value. */
271	crc = 0xFFFFFFFF; /* initial value */
272
273	for (idx = 0; idx < 6; idx++) {
274		for (data = *addr++, bit = 0; bit < 8; bit++, data >>= 1) {
275			carry = ((crc & 0x80000000) ? 1 : 0) ^ (data & 0x01);
276			crc <<= 1;
277			if (carry)
278				crc = (crc ^ 0x04c11db6) | carry;
279		}
280	}
281
282	/* return the filter bit position */
283	return(crc >> 23 & 0x1FF);
284}
285
286/*
287 * Copy the address 'mac' into the perfect RX filter entry at
288 * offset 'idx.' The perfect filter only has 16 entries so do
289 * some sanity tests.
290 */
291static int
292sf_setperf(sc, idx, mac)
293	struct sf_softc		*sc;
294	int			idx;
295	caddr_t			mac;
296{
297	u_int16_t		*p;
298
299	if (idx < 0 || idx > SF_RXFILT_PERFECT_CNT)
300		return(EINVAL);
301
302	if (mac == NULL)
303		return(EINVAL);
304
305	p = (u_int16_t *)mac;
306
307	csr_write_4(sc, SF_RXFILT_PERFECT_BASE +
308	    (idx * SF_RXFILT_PERFECT_SKIP), htons(p[2]));
309	csr_write_4(sc, SF_RXFILT_PERFECT_BASE +
310	    (idx * SF_RXFILT_PERFECT_SKIP) + 4, htons(p[1]));
311	csr_write_4(sc, SF_RXFILT_PERFECT_BASE +
312	    (idx * SF_RXFILT_PERFECT_SKIP) + 8, htons(p[0]));
313
314	return(0);
315}
316
317/*
318 * Set the bit in the 512-bit hash table that corresponds to the
319 * specified mac address 'mac.' If 'prio' is nonzero, update the
320 * priority hash table instead of the filter hash table.
321 */
322static int
323sf_sethash(sc, mac, prio)
324	struct sf_softc		*sc;
325	caddr_t			mac;
326	int			prio;
327{
328	u_int32_t		h = 0;
329
330	if (mac == NULL)
331		return(EINVAL);
332
333	h = sf_mchash(mac);
334
335	if (prio) {
336		SF_SETBIT(sc, SF_RXFILT_HASH_BASE + SF_RXFILT_HASH_PRIOOFF +
337		    (SF_RXFILT_HASH_SKIP * (h >> 4)), (1 << (h & 0xF)));
338	} else {
339		SF_SETBIT(sc, SF_RXFILT_HASH_BASE + SF_RXFILT_HASH_ADDROFF +
340		    (SF_RXFILT_HASH_SKIP * (h >> 4)), (1 << (h & 0xF)));
341	}
342
343	return(0);
344}
345
346#ifdef notdef
347/*
348 * Set a VLAN tag in the receive filter.
349 */
350static int
351sf_setvlan(sc, idx, vlan)
352	struct sf_softc		*sc;
353	int			idx;
354	u_int32_t		vlan;
355{
356	if (idx < 0 || idx >> SF_RXFILT_HASH_CNT)
357		return(EINVAL);
358
359	csr_write_4(sc, SF_RXFILT_HASH_BASE +
360	    (idx * SF_RXFILT_HASH_SKIP) + SF_RXFILT_HASH_VLANOFF, vlan);
361
362	return(0);
363}
364#endif
365
366static int
367sf_miibus_readreg(dev, phy, reg)
368	device_t		dev;
369	int			phy, reg;
370{
371	struct sf_softc		*sc;
372	int			i;
373	u_int32_t		val = 0;
374
375	sc = device_get_softc(dev);
376
377	for (i = 0; i < SF_TIMEOUT; i++) {
378		val = csr_read_4(sc, SF_PHY_REG(phy, reg));
379		if (val & SF_MII_DATAVALID)
380			break;
381	}
382
383	if (i == SF_TIMEOUT)
384		return(0);
385
386	if ((val & 0x0000FFFF) == 0xFFFF)
387		return(0);
388
389	return(val & 0x0000FFFF);
390}
391
392static int
393sf_miibus_writereg(dev, phy, reg, val)
394	device_t		dev;
395	int			phy, reg, val;
396{
397	struct sf_softc		*sc;
398	int			i;
399	int			busy;
400
401	sc = device_get_softc(dev);
402
403	csr_write_4(sc, SF_PHY_REG(phy, reg), val);
404
405	for (i = 0; i < SF_TIMEOUT; i++) {
406		busy = csr_read_4(sc, SF_PHY_REG(phy, reg));
407		if (!(busy & SF_MII_BUSY))
408			break;
409	}
410
411	return(0);
412}
413
414static void
415sf_miibus_statchg(dev)
416	device_t		dev;
417{
418	struct sf_softc		*sc;
419	struct mii_data		*mii;
420
421	sc = device_get_softc(dev);
422	mii = device_get_softc(sc->sf_miibus);
423
424	if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
425		SF_SETBIT(sc, SF_MACCFG_1, SF_MACCFG1_FULLDUPLEX);
426		csr_write_4(sc, SF_BKTOBKIPG, SF_IPGT_FDX);
427	} else {
428		SF_CLRBIT(sc, SF_MACCFG_1, SF_MACCFG1_FULLDUPLEX);
429		csr_write_4(sc, SF_BKTOBKIPG, SF_IPGT_HDX);
430	}
431
432	return;
433}
434
435static void
436sf_setmulti(sc)
437	struct sf_softc		*sc;
438{
439	struct ifnet		*ifp;
440	int			i;
441	struct ifmultiaddr	*ifma;
442	u_int8_t		dummy[] = { 0, 0, 0, 0, 0, 0 };
443
444	ifp = &sc->arpcom.ac_if;
445
446	/* First zot all the existing filters. */
447	for (i = 1; i < SF_RXFILT_PERFECT_CNT; i++)
448		sf_setperf(sc, i, (char *)&dummy);
449	for (i = SF_RXFILT_HASH_BASE;
450	    i < (SF_RXFILT_HASH_MAX + 1); i += 4)
451		csr_write_4(sc, i, 0);
452	SF_CLRBIT(sc, SF_RXFILT, SF_RXFILT_ALLMULTI);
453
454	/* Now program new ones. */
455	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
456		SF_SETBIT(sc, SF_RXFILT, SF_RXFILT_ALLMULTI);
457	} else {
458		i = 1;
459		TAILQ_FOREACH_REVERSE(ifma, &ifp->if_multiaddrs, ifmultihead, ifma_link) {
460			if (ifma->ifma_addr->sa_family != AF_LINK)
461				continue;
462			/*
463			 * Program the first 15 multicast groups
464			 * into the perfect filter. For all others,
465			 * use the hash table.
466			 */
467			if (i < SF_RXFILT_PERFECT_CNT) {
468				sf_setperf(sc, i,
469			LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
470				i++;
471				continue;
472			}
473
474			sf_sethash(sc,
475			    LLADDR((struct sockaddr_dl *)ifma->ifma_addr), 0);
476		}
477	}
478
479	return;
480}
481
482/*
483 * Set media options.
484 */
485static int
486sf_ifmedia_upd(ifp)
487	struct ifnet		*ifp;
488{
489	struct sf_softc		*sc;
490	struct mii_data		*mii;
491
492	sc = ifp->if_softc;
493	mii = device_get_softc(sc->sf_miibus);
494	sc->sf_link = 0;
495	if (mii->mii_instance) {
496		struct mii_softc        *miisc;
497		LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
498			mii_phy_reset(miisc);
499	}
500	mii_mediachg(mii);
501
502	return(0);
503}
504
505/*
506 * Report current media status.
507 */
508static void
509sf_ifmedia_sts(ifp, ifmr)
510	struct ifnet		*ifp;
511	struct ifmediareq	*ifmr;
512{
513	struct sf_softc		*sc;
514	struct mii_data		*mii;
515
516	sc = ifp->if_softc;
517	mii = device_get_softc(sc->sf_miibus);
518
519	mii_pollstat(mii);
520	ifmr->ifm_active = mii->mii_media_active;
521	ifmr->ifm_status = mii->mii_media_status;
522
523	return;
524}
525
526static int
527sf_ioctl(ifp, command, data)
528	struct ifnet		*ifp;
529	u_long			command;
530	caddr_t			data;
531{
532	struct sf_softc		*sc = ifp->if_softc;
533	struct ifreq		*ifr = (struct ifreq *) data;
534	struct mii_data		*mii;
535	int			error = 0;
536
537	SF_LOCK(sc);
538
539	switch(command) {
540	case SIOCSIFFLAGS:
541		if (ifp->if_flags & IFF_UP) {
542			if (ifp->if_flags & IFF_RUNNING &&
543			    ifp->if_flags & IFF_PROMISC &&
544			    !(sc->sf_if_flags & IFF_PROMISC)) {
545				SF_SETBIT(sc, SF_RXFILT, SF_RXFILT_PROMISC);
546			} else if (ifp->if_flags & IFF_RUNNING &&
547			    !(ifp->if_flags & IFF_PROMISC) &&
548			    sc->sf_if_flags & IFF_PROMISC) {
549				SF_CLRBIT(sc, SF_RXFILT, SF_RXFILT_PROMISC);
550			} else if (!(ifp->if_flags & IFF_RUNNING))
551				sf_init(sc);
552		} else {
553			if (ifp->if_flags & IFF_RUNNING)
554				sf_stop(sc);
555		}
556		sc->sf_if_flags = ifp->if_flags;
557		error = 0;
558		break;
559	case SIOCADDMULTI:
560	case SIOCDELMULTI:
561		sf_setmulti(sc);
562		error = 0;
563		break;
564	case SIOCGIFMEDIA:
565	case SIOCSIFMEDIA:
566		mii = device_get_softc(sc->sf_miibus);
567		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
568		break;
569	default:
570		error = ether_ioctl(ifp, command, data);
571		break;
572	}
573
574	SF_UNLOCK(sc);
575
576	return(error);
577}
578
579static void
580sf_reset(sc)
581	struct sf_softc		*sc;
582{
583	register int		i;
584
585	csr_write_4(sc, SF_GEN_ETH_CTL, 0);
586	SF_SETBIT(sc, SF_MACCFG_1, SF_MACCFG1_SOFTRESET);
587	DELAY(1000);
588	SF_CLRBIT(sc, SF_MACCFG_1, SF_MACCFG1_SOFTRESET);
589
590	SF_SETBIT(sc, SF_PCI_DEVCFG, SF_PCIDEVCFG_RESET);
591
592	for (i = 0; i < SF_TIMEOUT; i++) {
593		DELAY(10);
594		if (!(csr_read_4(sc, SF_PCI_DEVCFG) & SF_PCIDEVCFG_RESET))
595			break;
596	}
597
598	if (i == SF_TIMEOUT)
599		printf("sf%d: reset never completed!\n", sc->sf_unit);
600
601	/* Wait a little while for the chip to get its brains in order. */
602	DELAY(1000);
603	return;
604}
605
606/*
607 * Probe for an Adaptec AIC-6915 chip. Check the PCI vendor and device
608 * IDs against our list and return a device name if we find a match.
609 * We also check the subsystem ID so that we can identify exactly which
610 * NIC has been found, if possible.
611 */
612static int
613sf_probe(dev)
614	device_t		dev;
615{
616	struct sf_type		*t;
617
618	t = sf_devs;
619
620	while(t->sf_name != NULL) {
621		if ((pci_get_vendor(dev) == t->sf_vid) &&
622		    (pci_get_device(dev) == t->sf_did)) {
623			switch((pci_read_config(dev,
624			    SF_PCI_SUBVEN_ID, 4) >> 16) & 0xFFFF) {
625			case AD_SUBSYSID_62011_REV0:
626			case AD_SUBSYSID_62011_REV1:
627				device_set_desc(dev,
628				    "Adaptec ANA-62011 10/100BaseTX");
629				return(0);
630			case AD_SUBSYSID_62022:
631				device_set_desc(dev,
632				    "Adaptec ANA-62022 10/100BaseTX");
633				return(0);
634			case AD_SUBSYSID_62044_REV0:
635			case AD_SUBSYSID_62044_REV1:
636				device_set_desc(dev,
637				    "Adaptec ANA-62044 10/100BaseTX");
638				return(0);
639			case AD_SUBSYSID_62020:
640				device_set_desc(dev,
641				    "Adaptec ANA-62020 10/100BaseFX");
642				return(0);
643			case AD_SUBSYSID_69011:
644				device_set_desc(dev,
645				    "Adaptec ANA-69011 10/100BaseTX");
646				return(0);
647			default:
648				device_set_desc(dev, t->sf_name);
649				return(0);
650				break;
651			}
652		}
653		t++;
654	}
655
656	return(ENXIO);
657}
658
659/*
660 * Attach the interface. Allocate softc structures, do ifmedia
661 * setup and ethernet/BPF attach.
662 */
663static int
664sf_attach(dev)
665	device_t		dev;
666{
667	int			i;
668	struct sf_softc		*sc;
669	struct ifnet		*ifp;
670	int			unit, rid, error = 0;
671
672	sc = device_get_softc(dev);
673	unit = device_get_unit(dev);
674
675	mtx_init(&sc->sf_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
676	    MTX_DEF | MTX_RECURSE);
677#ifndef BURN_BRIDGES
678	/*
679	 * Handle power management nonsense.
680	 */
681	if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
682		u_int32_t		iobase, membase, irq;
683
684		/* Save important PCI config data. */
685		iobase = pci_read_config(dev, SF_PCI_LOIO, 4);
686		membase = pci_read_config(dev, SF_PCI_LOMEM, 4);
687		irq = pci_read_config(dev, SF_PCI_INTLINE, 4);
688
689		/* Reset the power state. */
690		printf("sf%d: chip is in D%d power mode "
691		    "-- setting to D0\n", unit,
692		    pci_get_powerstate(dev));
693		pci_set_powerstate(dev, PCI_POWERSTATE_D0);
694
695		/* Restore PCI config data. */
696		pci_write_config(dev, SF_PCI_LOIO, iobase, 4);
697		pci_write_config(dev, SF_PCI_LOMEM, membase, 4);
698		pci_write_config(dev, SF_PCI_INTLINE, irq, 4);
699	}
700#endif
701	/*
702	 * Map control/status registers.
703	 */
704	pci_enable_busmaster(dev);
705
706	rid = SF_RID;
707	sc->sf_res = bus_alloc_resource(dev, SF_RES, &rid,
708	    0, ~0, 1, RF_ACTIVE);
709
710	if (sc->sf_res == NULL) {
711		printf ("sf%d: couldn't map ports\n", unit);
712		error = ENXIO;
713		goto fail;
714	}
715
716	sc->sf_btag = rman_get_bustag(sc->sf_res);
717	sc->sf_bhandle = rman_get_bushandle(sc->sf_res);
718
719	/* Allocate interrupt */
720	rid = 0;
721	sc->sf_irq = bus_alloc_resource(dev, SYS_RES_IRQ, &rid, 0, ~0, 1,
722	    RF_SHAREABLE | RF_ACTIVE);
723
724	if (sc->sf_irq == NULL) {
725		printf("sf%d: couldn't map interrupt\n", unit);
726		error = ENXIO;
727		goto fail;
728	}
729
730	callout_handle_init(&sc->sf_stat_ch);
731	/* Reset the adapter. */
732	sf_reset(sc);
733
734	/*
735	 * Get station address from the EEPROM.
736	 */
737	for (i = 0; i < ETHER_ADDR_LEN; i++)
738		sc->arpcom.ac_enaddr[i] =
739		    sf_read_eeprom(sc, SF_EE_NODEADDR + ETHER_ADDR_LEN - i);
740
741	/*
742	 * An Adaptec chip was detected. Inform the world.
743	 */
744	printf("sf%d: Ethernet address: %6D\n", unit,
745	    sc->arpcom.ac_enaddr, ":");
746
747	sc->sf_unit = unit;
748
749	/* Allocate the descriptor queues. */
750	sc->sf_ldata = contigmalloc(sizeof(struct sf_list_data), M_DEVBUF,
751	    M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0);
752
753	if (sc->sf_ldata == NULL) {
754		printf("sf%d: no memory for list buffers!\n", unit);
755		error = ENXIO;
756		goto fail;
757	}
758
759	bzero(sc->sf_ldata, sizeof(struct sf_list_data));
760
761	/* Do MII setup. */
762	if (mii_phy_probe(dev, &sc->sf_miibus,
763	    sf_ifmedia_upd, sf_ifmedia_sts)) {
764		printf("sf%d: MII without any phy!\n", sc->sf_unit);
765		error = ENXIO;
766		goto fail;
767	}
768
769	ifp = &sc->arpcom.ac_if;
770	ifp->if_softc = sc;
771	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
772	ifp->if_mtu = ETHERMTU;
773	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
774	ifp->if_ioctl = sf_ioctl;
775	ifp->if_output = ether_output;
776	ifp->if_start = sf_start;
777	ifp->if_watchdog = sf_watchdog;
778	ifp->if_init = sf_init;
779	ifp->if_baudrate = 10000000;
780	ifp->if_snd.ifq_maxlen = SF_TX_DLIST_CNT - 1;
781
782	/*
783	 * Call MI attach routine.
784	 */
785	ether_ifattach(ifp, sc->arpcom.ac_enaddr);
786
787	/* Hook interrupt last to avoid having to lock softc */
788	error = bus_setup_intr(dev, sc->sf_irq, INTR_TYPE_NET,
789	    sf_intr, sc, &sc->sf_intrhand);
790
791	if (error) {
792		printf("sf%d: couldn't set up irq\n", unit);
793		ether_ifdetach(ifp);
794		goto fail;
795	}
796
797fail:
798	if (error)
799		sf_detach(dev);
800
801	return(error);
802}
803
804/*
805 * Shutdown hardware and free up resources. This can be called any
806 * time after the mutex has been initialized. It is called in both
807 * the error case in attach and the normal detach case so it needs
808 * to be careful about only freeing resources that have actually been
809 * allocated.
810 */
811static int
812sf_detach(dev)
813	device_t		dev;
814{
815	struct sf_softc		*sc;
816	struct ifnet		*ifp;
817
818	sc = device_get_softc(dev);
819	KASSERT(mtx_initialized(&sc->sf_mtx), ("sf mutex not initialized"));
820	SF_LOCK(sc);
821	ifp = &sc->arpcom.ac_if;
822
823	/* These should only be active if attach succeeded */
824	if (device_is_attached(dev)) {
825		sf_stop(sc);
826		ether_ifdetach(ifp);
827	}
828	if (sc->sf_miibus)
829		device_delete_child(dev, sc->sf_miibus);
830	bus_generic_detach(dev);
831
832	if (sc->sf_intrhand)
833		bus_teardown_intr(dev, sc->sf_irq, sc->sf_intrhand);
834	if (sc->sf_irq)
835		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sf_irq);
836	if (sc->sf_res)
837		bus_release_resource(dev, SF_RES, SF_RID, sc->sf_res);
838
839	if (sc->sf_ldata)
840		contigfree(sc->sf_ldata, sizeof(struct sf_list_data), M_DEVBUF);
841
842	SF_UNLOCK(sc);
843	mtx_destroy(&sc->sf_mtx);
844
845	return(0);
846}
847
848static int
849sf_init_rx_ring(sc)
850	struct sf_softc		*sc;
851{
852	struct sf_list_data	*ld;
853	int			i;
854
855	ld = sc->sf_ldata;
856
857	bzero((char *)ld->sf_rx_dlist_big,
858	    sizeof(struct sf_rx_bufdesc_type0) * SF_RX_DLIST_CNT);
859	bzero((char *)ld->sf_rx_clist,
860	    sizeof(struct sf_rx_cmpdesc_type3) * SF_RX_CLIST_CNT);
861
862	for (i = 0; i < SF_RX_DLIST_CNT; i++) {
863		if (sf_newbuf(sc, &ld->sf_rx_dlist_big[i], NULL) == ENOBUFS)
864			return(ENOBUFS);
865	}
866
867	return(0);
868}
869
870static void
871sf_init_tx_ring(sc)
872	struct sf_softc		*sc;
873{
874	struct sf_list_data	*ld;
875	int			i;
876
877	ld = sc->sf_ldata;
878
879	bzero((char *)ld->sf_tx_dlist,
880	    sizeof(struct sf_tx_bufdesc_type0) * SF_TX_DLIST_CNT);
881	bzero((char *)ld->sf_tx_clist,
882	    sizeof(struct sf_tx_cmpdesc_type0) * SF_TX_CLIST_CNT);
883
884	for (i = 0; i < SF_TX_DLIST_CNT; i++)
885		ld->sf_tx_dlist[i].sf_id = SF_TX_BUFDESC_ID;
886	for (i = 0; i < SF_TX_CLIST_CNT; i++)
887		ld->sf_tx_clist[i].sf_type = SF_TXCMPTYPE_TX;
888
889	ld->sf_tx_dlist[SF_TX_DLIST_CNT - 1].sf_end = 1;
890	sc->sf_tx_cnt = 0;
891
892	return;
893}
894
895static int
896sf_newbuf(sc, c, m)
897	struct sf_softc		*sc;
898	struct sf_rx_bufdesc_type0	*c;
899	struct mbuf		*m;
900{
901	struct mbuf		*m_new = NULL;
902
903	if (m == NULL) {
904		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
905		if (m_new == NULL)
906			return(ENOBUFS);
907
908		MCLGET(m_new, M_DONTWAIT);
909		if (!(m_new->m_flags & M_EXT)) {
910			m_freem(m_new);
911			return(ENOBUFS);
912		}
913		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
914	} else {
915		m_new = m;
916		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
917		m_new->m_data = m_new->m_ext.ext_buf;
918	}
919
920	m_adj(m_new, sizeof(u_int64_t));
921
922	c->sf_mbuf = m_new;
923	c->sf_addrlo = SF_RX_HOSTADDR(vtophys(mtod(m_new, caddr_t)));
924	c->sf_valid = 1;
925
926	return(0);
927}
928
929/*
930 * The starfire is programmed to use 'normal' mode for packet reception,
931 * which means we use the consumer/producer model for both the buffer
932 * descriptor queue and the completion descriptor queue. The only problem
933 * with this is that it involves a lot of register accesses: we have to
934 * read the RX completion consumer and producer indexes and the RX buffer
935 * producer index, plus the RX completion consumer and RX buffer producer
936 * indexes have to be updated. It would have been easier if Adaptec had
937 * put each index in a separate register, especially given that the damn
938 * NIC has a 512K register space.
939 *
940 * In spite of all the lovely features that Adaptec crammed into the 6915,
941 * it is marred by one truly stupid design flaw, which is that receive
942 * buffer addresses must be aligned on a longword boundary. This forces
943 * the packet payload to be unaligned, which is suboptimal on the x86 and
944 * completely unuseable on the Alpha. Our only recourse is to copy received
945 * packets into properly aligned buffers before handing them off.
946 */
947
948static void
949sf_rxeof(sc)
950	struct sf_softc		*sc;
951{
952	struct mbuf		*m;
953	struct ifnet		*ifp;
954	struct sf_rx_bufdesc_type0	*desc;
955	struct sf_rx_cmpdesc_type3	*cur_rx;
956	u_int32_t		rxcons, rxprod;
957	int			cmpprodidx, cmpconsidx, bufprodidx;
958
959	ifp = &sc->arpcom.ac_if;
960
961	rxcons = csr_read_4(sc, SF_CQ_CONSIDX);
962	rxprod = csr_read_4(sc, SF_RXDQ_PTR_Q1);
963	cmpprodidx = SF_IDX_LO(csr_read_4(sc, SF_CQ_PRODIDX));
964	cmpconsidx = SF_IDX_LO(rxcons);
965	bufprodidx = SF_IDX_LO(rxprod);
966
967	while (cmpconsidx != cmpprodidx) {
968		struct mbuf		*m0;
969
970		cur_rx = &sc->sf_ldata->sf_rx_clist[cmpconsidx];
971		desc = &sc->sf_ldata->sf_rx_dlist_big[cur_rx->sf_endidx];
972		m = desc->sf_mbuf;
973		SF_INC(cmpconsidx, SF_RX_CLIST_CNT);
974		SF_INC(bufprodidx, SF_RX_DLIST_CNT);
975
976		if (!(cur_rx->sf_status1 & SF_RXSTAT1_OK)) {
977			ifp->if_ierrors++;
978			sf_newbuf(sc, desc, m);
979			continue;
980		}
981
982		m0 = m_devget(mtod(m, char *), cur_rx->sf_len, ETHER_ALIGN,
983		    ifp, NULL);
984		sf_newbuf(sc, desc, m);
985		if (m0 == NULL) {
986			ifp->if_ierrors++;
987			continue;
988		}
989		m = m0;
990
991		ifp->if_ipackets++;
992		(*ifp->if_input)(ifp, m);
993	}
994
995	csr_write_4(sc, SF_CQ_CONSIDX,
996	    (rxcons & ~SF_CQ_CONSIDX_RXQ1) | cmpconsidx);
997	csr_write_4(sc, SF_RXDQ_PTR_Q1,
998	    (rxprod & ~SF_RXDQ_PRODIDX) | bufprodidx);
999
1000	return;
1001}
1002
1003/*
1004 * Read the transmit status from the completion queue and release
1005 * mbufs. Note that the buffer descriptor index in the completion
1006 * descriptor is an offset from the start of the transmit buffer
1007 * descriptor list in bytes. This is important because the manual
1008 * gives the impression that it should match the producer/consumer
1009 * index, which is the offset in 8 byte blocks.
1010 */
1011static void
1012sf_txeof(sc)
1013	struct sf_softc		*sc;
1014{
1015	int			txcons, cmpprodidx, cmpconsidx;
1016	struct sf_tx_cmpdesc_type1 *cur_cmp;
1017	struct sf_tx_bufdesc_type0 *cur_tx;
1018	struct ifnet		*ifp;
1019
1020	ifp = &sc->arpcom.ac_if;
1021
1022	txcons = csr_read_4(sc, SF_CQ_CONSIDX);
1023	cmpprodidx = SF_IDX_HI(csr_read_4(sc, SF_CQ_PRODIDX));
1024	cmpconsidx = SF_IDX_HI(txcons);
1025
1026	while (cmpconsidx != cmpprodidx) {
1027		cur_cmp = &sc->sf_ldata->sf_tx_clist[cmpconsidx];
1028		cur_tx = &sc->sf_ldata->sf_tx_dlist[cur_cmp->sf_index >> 7];
1029
1030		if (cur_cmp->sf_txstat & SF_TXSTAT_TX_OK)
1031			ifp->if_opackets++;
1032		else {
1033			if (cur_cmp->sf_txstat & SF_TXSTAT_TX_UNDERRUN)
1034				sf_txthresh_adjust(sc);
1035			ifp->if_oerrors++;
1036		}
1037
1038		sc->sf_tx_cnt--;
1039		if (cur_tx->sf_mbuf != NULL) {
1040			m_freem(cur_tx->sf_mbuf);
1041			cur_tx->sf_mbuf = NULL;
1042		} else
1043			break;
1044		SF_INC(cmpconsidx, SF_TX_CLIST_CNT);
1045	}
1046
1047	ifp->if_timer = 0;
1048	ifp->if_flags &= ~IFF_OACTIVE;
1049
1050	csr_write_4(sc, SF_CQ_CONSIDX,
1051	    (txcons & ~SF_CQ_CONSIDX_TXQ) |
1052	    ((cmpconsidx << 16) & 0xFFFF0000));
1053
1054	return;
1055}
1056
1057static void
1058sf_txthresh_adjust(sc)
1059	struct sf_softc		*sc;
1060{
1061	u_int32_t		txfctl;
1062	u_int8_t		txthresh;
1063
1064	txfctl = csr_read_4(sc, SF_TX_FRAMCTL);
1065	txthresh = txfctl & SF_TXFRMCTL_TXTHRESH;
1066	if (txthresh < 0xFF) {
1067		txthresh++;
1068		txfctl &= ~SF_TXFRMCTL_TXTHRESH;
1069		txfctl |= txthresh;
1070#ifdef DIAGNOSTIC
1071		printf("sf%d: tx underrun, increasing "
1072		    "tx threshold to %d bytes\n",
1073		    sc->sf_unit, txthresh * 4);
1074#endif
1075		csr_write_4(sc, SF_TX_FRAMCTL, txfctl);
1076	}
1077
1078	return;
1079}
1080
1081static void
1082sf_intr(arg)
1083	void			*arg;
1084{
1085	struct sf_softc		*sc;
1086	struct ifnet		*ifp;
1087	u_int32_t		status;
1088
1089	sc = arg;
1090	SF_LOCK(sc);
1091
1092	ifp = &sc->arpcom.ac_if;
1093
1094	if (!(csr_read_4(sc, SF_ISR_SHADOW) & SF_ISR_PCIINT_ASSERTED)) {
1095		SF_UNLOCK(sc);
1096		return;
1097	}
1098
1099	/* Disable interrupts. */
1100	csr_write_4(sc, SF_IMR, 0x00000000);
1101
1102	for (;;) {
1103		status = csr_read_4(sc, SF_ISR);
1104		if (status)
1105			csr_write_4(sc, SF_ISR, status);
1106
1107		if (!(status & SF_INTRS))
1108			break;
1109
1110		if (status & SF_ISR_RXDQ1_DMADONE)
1111			sf_rxeof(sc);
1112
1113		if (status & SF_ISR_TX_TXDONE ||
1114		    status & SF_ISR_TX_DMADONE ||
1115		    status & SF_ISR_TX_QUEUEDONE)
1116			sf_txeof(sc);
1117
1118		if (status & SF_ISR_TX_LOFIFO)
1119			sf_txthresh_adjust(sc);
1120
1121		if (status & SF_ISR_ABNORMALINTR) {
1122			if (status & SF_ISR_STATSOFLOW) {
1123				untimeout(sf_stats_update, sc,
1124				    sc->sf_stat_ch);
1125				sf_stats_update(sc);
1126			} else
1127				sf_init(sc);
1128		}
1129	}
1130
1131	/* Re-enable interrupts. */
1132	csr_write_4(sc, SF_IMR, SF_INTRS);
1133
1134	if (ifp->if_snd.ifq_head != NULL)
1135		sf_start(ifp);
1136
1137	SF_UNLOCK(sc);
1138	return;
1139}
1140
1141static void
1142sf_init(xsc)
1143	void			*xsc;
1144{
1145	struct sf_softc		*sc;
1146	struct ifnet		*ifp;
1147	struct mii_data		*mii;
1148	int			i;
1149
1150	sc = xsc;
1151	SF_LOCK(sc);
1152	ifp = &sc->arpcom.ac_if;
1153	mii = device_get_softc(sc->sf_miibus);
1154
1155	sf_stop(sc);
1156	sf_reset(sc);
1157
1158	/* Init all the receive filter registers */
1159	for (i = SF_RXFILT_PERFECT_BASE;
1160	    i < (SF_RXFILT_HASH_MAX + 1); i += 4)
1161		csr_write_4(sc, i, 0);
1162
1163	/* Empty stats counter registers. */
1164	for (i = 0; i < sizeof(struct sf_stats)/sizeof(u_int32_t); i++)
1165		csr_write_4(sc, SF_STATS_BASE +
1166		    (i + sizeof(u_int32_t)), 0);
1167
1168	/* Init our MAC address */
1169	csr_write_4(sc, SF_PAR0, *(u_int32_t *)(&sc->arpcom.ac_enaddr[0]));
1170	csr_write_4(sc, SF_PAR1, *(u_int32_t *)(&sc->arpcom.ac_enaddr[4]));
1171	sf_setperf(sc, 0, (caddr_t)&sc->arpcom.ac_enaddr);
1172
1173	if (sf_init_rx_ring(sc) == ENOBUFS) {
1174		printf("sf%d: initialization failed: no "
1175		    "memory for rx buffers\n", sc->sf_unit);
1176		SF_UNLOCK(sc);
1177		return;
1178	}
1179
1180	sf_init_tx_ring(sc);
1181
1182	csr_write_4(sc, SF_RXFILT, SF_PERFMODE_NORMAL|SF_HASHMODE_WITHVLAN);
1183
1184	/* If we want promiscuous mode, set the allframes bit. */
1185	if (ifp->if_flags & IFF_PROMISC) {
1186		SF_SETBIT(sc, SF_RXFILT, SF_RXFILT_PROMISC);
1187	} else {
1188		SF_CLRBIT(sc, SF_RXFILT, SF_RXFILT_PROMISC);
1189	}
1190
1191	if (ifp->if_flags & IFF_BROADCAST) {
1192		SF_SETBIT(sc, SF_RXFILT, SF_RXFILT_BROAD);
1193	} else {
1194		SF_CLRBIT(sc, SF_RXFILT, SF_RXFILT_BROAD);
1195	}
1196
1197	/*
1198	 * Load the multicast filter.
1199	 */
1200	sf_setmulti(sc);
1201
1202	/* Init the completion queue indexes */
1203	csr_write_4(sc, SF_CQ_CONSIDX, 0);
1204	csr_write_4(sc, SF_CQ_PRODIDX, 0);
1205
1206	/* Init the RX completion queue */
1207	csr_write_4(sc, SF_RXCQ_CTL_1,
1208	    vtophys(sc->sf_ldata->sf_rx_clist) & SF_RXCQ_ADDR);
1209	SF_SETBIT(sc, SF_RXCQ_CTL_1, SF_RXCQTYPE_3);
1210
1211	/* Init RX DMA control. */
1212	SF_SETBIT(sc, SF_RXDMA_CTL, SF_RXDMA_REPORTBADPKTS);
1213
1214	/* Init the RX buffer descriptor queue. */
1215	csr_write_4(sc, SF_RXDQ_ADDR_Q1,
1216	    vtophys(sc->sf_ldata->sf_rx_dlist_big));
1217	csr_write_4(sc, SF_RXDQ_CTL_1, (MCLBYTES << 16) | SF_DESCSPACE_16BYTES);
1218	csr_write_4(sc, SF_RXDQ_PTR_Q1, SF_RX_DLIST_CNT - 1);
1219
1220	/* Init the TX completion queue */
1221	csr_write_4(sc, SF_TXCQ_CTL,
1222	    vtophys(sc->sf_ldata->sf_tx_clist) & SF_RXCQ_ADDR);
1223
1224	/* Init the TX buffer descriptor queue. */
1225	csr_write_4(sc, SF_TXDQ_ADDR_HIPRIO,
1226		vtophys(sc->sf_ldata->sf_tx_dlist));
1227	SF_SETBIT(sc, SF_TX_FRAMCTL, SF_TXFRMCTL_CPLAFTERTX);
1228	csr_write_4(sc, SF_TXDQ_CTL,
1229	    SF_TXBUFDESC_TYPE0|SF_TXMINSPACE_128BYTES|SF_TXSKIPLEN_8BYTES);
1230	SF_SETBIT(sc, SF_TXDQ_CTL, SF_TXDQCTL_NODMACMP);
1231
1232	/* Enable autopadding of short TX frames. */
1233	SF_SETBIT(sc, SF_MACCFG_1, SF_MACCFG1_AUTOPAD);
1234
1235	/* Enable interrupts. */
1236	csr_write_4(sc, SF_IMR, SF_INTRS);
1237	SF_SETBIT(sc, SF_PCI_DEVCFG, SF_PCIDEVCFG_INTR_ENB);
1238
1239	/* Enable the RX and TX engines. */
1240	SF_SETBIT(sc, SF_GEN_ETH_CTL, SF_ETHCTL_RX_ENB|SF_ETHCTL_RXDMA_ENB);
1241	SF_SETBIT(sc, SF_GEN_ETH_CTL, SF_ETHCTL_TX_ENB|SF_ETHCTL_TXDMA_ENB);
1242
1243	/*mii_mediachg(mii);*/
1244	sf_ifmedia_upd(ifp);
1245
1246	ifp->if_flags |= IFF_RUNNING;
1247	ifp->if_flags &= ~IFF_OACTIVE;
1248
1249	sc->sf_stat_ch = timeout(sf_stats_update, sc, hz);
1250
1251	SF_UNLOCK(sc);
1252
1253	return;
1254}
1255
1256static int
1257sf_encap(sc, c, m_head)
1258	struct sf_softc		*sc;
1259	struct sf_tx_bufdesc_type0 *c;
1260	struct mbuf		*m_head;
1261{
1262	int			frag = 0;
1263	struct sf_frag		*f = NULL;
1264	struct mbuf		*m;
1265
1266	m = m_head;
1267
1268	for (m = m_head, frag = 0; m != NULL; m = m->m_next) {
1269		if (m->m_len != 0) {
1270			if (frag == SF_MAXFRAGS)
1271				break;
1272			f = &c->sf_frags[frag];
1273			if (frag == 0)
1274				f->sf_pktlen = m_head->m_pkthdr.len;
1275			f->sf_fraglen = m->m_len;
1276			f->sf_addr = vtophys(mtod(m, vm_offset_t));
1277			frag++;
1278		}
1279	}
1280
1281	if (m != NULL) {
1282		struct mbuf		*m_new = NULL;
1283
1284		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1285		if (m_new == NULL) {
1286			printf("sf%d: no memory for tx list\n", sc->sf_unit);
1287			return(1);
1288		}
1289
1290		if (m_head->m_pkthdr.len > MHLEN) {
1291			MCLGET(m_new, M_DONTWAIT);
1292			if (!(m_new->m_flags & M_EXT)) {
1293				m_freem(m_new);
1294				printf("sf%d: no memory for tx list\n",
1295				    sc->sf_unit);
1296				return(1);
1297			}
1298		}
1299		m_copydata(m_head, 0, m_head->m_pkthdr.len,
1300		    mtod(m_new, caddr_t));
1301		m_new->m_pkthdr.len = m_new->m_len = m_head->m_pkthdr.len;
1302		m_freem(m_head);
1303		m_head = m_new;
1304		f = &c->sf_frags[0];
1305		f->sf_fraglen = f->sf_pktlen = m_head->m_pkthdr.len;
1306		f->sf_addr = vtophys(mtod(m_head, caddr_t));
1307		frag = 1;
1308	}
1309
1310	c->sf_mbuf = m_head;
1311	c->sf_id = SF_TX_BUFDESC_ID;
1312	c->sf_fragcnt = frag;
1313	c->sf_intr = 1;
1314	c->sf_caltcp = 0;
1315	c->sf_crcen = 1;
1316
1317	return(0);
1318}
1319
1320static void
1321sf_start(ifp)
1322	struct ifnet		*ifp;
1323{
1324	struct sf_softc		*sc;
1325	struct sf_tx_bufdesc_type0 *cur_tx = NULL;
1326	struct mbuf		*m_head = NULL;
1327	int			i, txprod;
1328
1329	sc = ifp->if_softc;
1330	SF_LOCK(sc);
1331
1332	if (!sc->sf_link && ifp->if_snd.ifq_len < 10) {
1333		SF_UNLOCK(sc);
1334		return;
1335	}
1336
1337	if (ifp->if_flags & IFF_OACTIVE) {
1338		SF_UNLOCK(sc);
1339		return;
1340	}
1341
1342	txprod = csr_read_4(sc, SF_TXDQ_PRODIDX);
1343	i = SF_IDX_HI(txprod) >> 4;
1344
1345	if (sc->sf_ldata->sf_tx_dlist[i].sf_mbuf != NULL) {
1346		printf("sf%d: TX ring full, resetting\n", sc->sf_unit);
1347		sf_init(sc);
1348		txprod = csr_read_4(sc, SF_TXDQ_PRODIDX);
1349		i = SF_IDX_HI(txprod) >> 4;
1350	}
1351
1352	while(sc->sf_ldata->sf_tx_dlist[i].sf_mbuf == NULL) {
1353		if (sc->sf_tx_cnt >= (SF_TX_DLIST_CNT - 5)) {
1354			ifp->if_flags |= IFF_OACTIVE;
1355			cur_tx = NULL;
1356			break;
1357		}
1358		IF_DEQUEUE(&ifp->if_snd, m_head);
1359		if (m_head == NULL)
1360			break;
1361
1362		cur_tx = &sc->sf_ldata->sf_tx_dlist[i];
1363		if (sf_encap(sc, cur_tx, m_head)) {
1364			IF_PREPEND(&ifp->if_snd, m_head);
1365			ifp->if_flags |= IFF_OACTIVE;
1366			cur_tx = NULL;
1367			break;
1368		}
1369
1370		/*
1371		 * If there's a BPF listener, bounce a copy of this frame
1372		 * to him.
1373		 */
1374		BPF_MTAP(ifp, m_head);
1375
1376		SF_INC(i, SF_TX_DLIST_CNT);
1377		sc->sf_tx_cnt++;
1378		/*
1379		 * Don't get the TX DMA queue get too full.
1380		 */
1381		if (sc->sf_tx_cnt > 64)
1382			break;
1383	}
1384
1385	if (cur_tx == NULL) {
1386		SF_UNLOCK(sc);
1387		return;
1388	}
1389
1390	/* Transmit */
1391	csr_write_4(sc, SF_TXDQ_PRODIDX,
1392	    (txprod & ~SF_TXDQ_PRODIDX_HIPRIO) |
1393	    ((i << 20) & 0xFFFF0000));
1394
1395	ifp->if_timer = 5;
1396
1397	SF_UNLOCK(sc);
1398
1399	return;
1400}
1401
1402static void
1403sf_stop(sc)
1404	struct sf_softc		*sc;
1405{
1406	int			i;
1407	struct ifnet		*ifp;
1408
1409	SF_LOCK(sc);
1410
1411	ifp = &sc->arpcom.ac_if;
1412
1413	untimeout(sf_stats_update, sc, sc->sf_stat_ch);
1414
1415	csr_write_4(sc, SF_GEN_ETH_CTL, 0);
1416	csr_write_4(sc, SF_CQ_CONSIDX, 0);
1417	csr_write_4(sc, SF_CQ_PRODIDX, 0);
1418	csr_write_4(sc, SF_RXDQ_ADDR_Q1, 0);
1419	csr_write_4(sc, SF_RXDQ_CTL_1, 0);
1420	csr_write_4(sc, SF_RXDQ_PTR_Q1, 0);
1421	csr_write_4(sc, SF_TXCQ_CTL, 0);
1422	csr_write_4(sc, SF_TXDQ_ADDR_HIPRIO, 0);
1423	csr_write_4(sc, SF_TXDQ_CTL, 0);
1424	sf_reset(sc);
1425
1426	sc->sf_link = 0;
1427
1428	for (i = 0; i < SF_RX_DLIST_CNT; i++) {
1429		if (sc->sf_ldata->sf_rx_dlist_big[i].sf_mbuf != NULL) {
1430			m_freem(sc->sf_ldata->sf_rx_dlist_big[i].sf_mbuf);
1431			sc->sf_ldata->sf_rx_dlist_big[i].sf_mbuf = NULL;
1432		}
1433	}
1434
1435	for (i = 0; i < SF_TX_DLIST_CNT; i++) {
1436		if (sc->sf_ldata->sf_tx_dlist[i].sf_mbuf != NULL) {
1437			m_freem(sc->sf_ldata->sf_tx_dlist[i].sf_mbuf);
1438			sc->sf_ldata->sf_tx_dlist[i].sf_mbuf = NULL;
1439		}
1440	}
1441
1442	ifp->if_flags &= ~(IFF_RUNNING|IFF_OACTIVE);
1443	SF_UNLOCK(sc);
1444
1445	return;
1446}
1447
1448/*
1449 * Note: it is important that this function not be interrupted. We
1450 * use a two-stage register access scheme: if we are interrupted in
1451 * between setting the indirect address register and reading from the
1452 * indirect data register, the contents of the address register could
1453 * be changed out from under us.
1454 */
1455static void
1456sf_stats_update(xsc)
1457	void			*xsc;
1458{
1459	struct sf_softc		*sc;
1460	struct ifnet		*ifp;
1461	struct mii_data		*mii;
1462	struct sf_stats		stats;
1463	u_int32_t		*ptr;
1464	int			i;
1465
1466	sc = xsc;
1467	SF_LOCK(sc);
1468	ifp = &sc->arpcom.ac_if;
1469	mii = device_get_softc(sc->sf_miibus);
1470
1471	ptr = (u_int32_t *)&stats;
1472	for (i = 0; i < sizeof(stats)/sizeof(u_int32_t); i++)
1473		ptr[i] = csr_read_4(sc, SF_STATS_BASE +
1474		    (i + sizeof(u_int32_t)));
1475
1476	for (i = 0; i < sizeof(stats)/sizeof(u_int32_t); i++)
1477		csr_write_4(sc, SF_STATS_BASE +
1478		    (i + sizeof(u_int32_t)), 0);
1479
1480	ifp->if_collisions += stats.sf_tx_single_colls +
1481	    stats.sf_tx_multi_colls + stats.sf_tx_excess_colls;
1482
1483	mii_tick(mii);
1484
1485	if (!sc->sf_link && mii->mii_media_status & IFM_ACTIVE &&
1486	    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
1487		sc->sf_link++;
1488		if (ifp->if_snd.ifq_head != NULL)
1489			sf_start(ifp);
1490	}
1491
1492	sc->sf_stat_ch = timeout(sf_stats_update, sc, hz);
1493
1494	SF_UNLOCK(sc);
1495
1496	return;
1497}
1498
1499static void
1500sf_watchdog(ifp)
1501	struct ifnet		*ifp;
1502{
1503	struct sf_softc		*sc;
1504
1505	sc = ifp->if_softc;
1506
1507	SF_LOCK(sc);
1508
1509	ifp->if_oerrors++;
1510	printf("sf%d: watchdog timeout\n", sc->sf_unit);
1511
1512	sf_stop(sc);
1513	sf_reset(sc);
1514	sf_init(sc);
1515
1516	if (ifp->if_snd.ifq_head != NULL)
1517		sf_start(ifp);
1518
1519	SF_UNLOCK(sc);
1520
1521	return;
1522}
1523
1524static void
1525sf_shutdown(dev)
1526	device_t		dev;
1527{
1528	struct sf_softc		*sc;
1529
1530	sc = device_get_softc(dev);
1531
1532	sf_stop(sc);
1533
1534	return;
1535}
1536