if_sf.c revision 113038
1/*
2 * Copyright (c) 1997, 1998, 1999
3 *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 *    must display the following acknowledgement:
15 *	This product includes software developed by Bill Paul.
16 * 4. Neither the name of the author nor the names of any co-contributors
17 *    may be used to endorse or promote products derived from this software
18 *    without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30 * THE POSSIBILITY OF SUCH DAMAGE.
31 */
32
33/*
34 * Adaptec AIC-6915 "Starfire" PCI fast ethernet driver for FreeBSD.
35 * Programming manual is available from:
36 * ftp.adaptec.com:/pub/BBS/userguides/aic6915_pg.pdf.
37 *
38 * Written by Bill Paul <wpaul@ctr.columbia.edu>
39 * Department of Electical Engineering
40 * Columbia University, New York City
41 */
42
43/*
44 * The Adaptec AIC-6915 "Starfire" is a 64-bit 10/100 PCI ethernet
45 * controller designed with flexibility and reducing CPU load in mind.
46 * The Starfire offers high and low priority buffer queues, a
47 * producer/consumer index mechanism and several different buffer
48 * queue and completion queue descriptor types. Any one of a number
49 * of different driver designs can be used, depending on system and
50 * OS requirements. This driver makes use of type0 transmit frame
51 * descriptors (since BSD fragments packets across an mbuf chain)
52 * and two RX buffer queues prioritized on size (one queue for small
53 * frames that will fit into a single mbuf, another with full size
54 * mbuf clusters for everything else). The producer/consumer indexes
55 * and completion queues are also used.
56 *
57 * One downside to the Starfire has to do with alignment: buffer
58 * queues must be aligned on 256-byte boundaries, and receive buffers
59 * must be aligned on longword boundaries. The receive buffer alignment
60 * causes problems on the Alpha platform, where the packet payload
61 * should be longword aligned. There is no simple way around this.
62 *
63 * For receive filtering, the Starfire offers 16 perfect filter slots
64 * and a 512-bit hash table.
65 *
66 * The Starfire has no internal transceiver, relying instead on an
67 * external MII-based transceiver. Accessing registers on external
68 * PHYs is done through a special register map rather than with the
69 * usual bitbang MDIO method.
70 *
71 * Acesssing the registers on the Starfire is a little tricky. The
72 * Starfire has a 512K internal register space. When programmed for
73 * PCI memory mapped mode, the entire register space can be accessed
74 * directly. However in I/O space mode, only 256 bytes are directly
75 * mapped into PCI I/O space. The other registers can be accessed
76 * indirectly using the SF_INDIRECTIO_ADDR and SF_INDIRECTIO_DATA
77 * registers inside the 256-byte I/O window.
78 */
79
80#include <sys/cdefs.h>
81__FBSDID("$FreeBSD: head/sys/dev/sf/if_sf.c 113038 2003-04-03 21:36:33Z obrien $");
82
83#include <sys/param.h>
84#include <sys/systm.h>
85#include <sys/sockio.h>
86#include <sys/mbuf.h>
87#include <sys/malloc.h>
88#include <sys/kernel.h>
89#include <sys/socket.h>
90
91#include <net/if.h>
92#include <net/if_arp.h>
93#include <net/ethernet.h>
94#include <net/if_dl.h>
95#include <net/if_media.h>
96
97#include <net/bpf.h>
98
99#include <vm/vm.h>              /* for vtophys */
100#include <vm/pmap.h>            /* for vtophys */
101#include <machine/bus_pio.h>
102#include <machine/bus_memio.h>
103#include <machine/bus.h>
104#include <machine/resource.h>
105#include <sys/bus.h>
106#include <sys/rman.h>
107
108#include <dev/mii/mii.h>
109#include <dev/mii/miivar.h>
110
111/* "controller miibus0" required.  See GENERIC if you get errors here. */
112#include "miibus_if.h"
113
114#include <pci/pcireg.h>
115#include <pci/pcivar.h>
116
117#define SF_USEIOSPACE
118
119#include <pci/if_sfreg.h>
120
121MODULE_DEPEND(sf, miibus, 1, 1, 1);
122
123static struct sf_type sf_devs[] = {
124	{ AD_VENDORID, AD_DEVICEID_STARFIRE,
125		"Adaptec AIC-6915 10/100BaseTX" },
126	{ 0, 0, NULL }
127};
128
129static int sf_probe		(device_t);
130static int sf_attach		(device_t);
131static int sf_detach		(device_t);
132static void sf_intr		(void *);
133static void sf_stats_update	(void *);
134static void sf_rxeof		(struct sf_softc *);
135static void sf_txeof		(struct sf_softc *);
136static int sf_encap		(struct sf_softc *,
137					struct sf_tx_bufdesc_type0 *,
138					struct mbuf *);
139static void sf_start		(struct ifnet *);
140static int sf_ioctl		(struct ifnet *, u_long, caddr_t);
141static void sf_init		(void *);
142static void sf_stop		(struct sf_softc *);
143static void sf_watchdog		(struct ifnet *);
144static void sf_shutdown		(device_t);
145static int sf_ifmedia_upd	(struct ifnet *);
146static void sf_ifmedia_sts	(struct ifnet *, struct ifmediareq *);
147static void sf_reset		(struct sf_softc *);
148static int sf_init_rx_ring	(struct sf_softc *);
149static void sf_init_tx_ring	(struct sf_softc *);
150static int sf_newbuf		(struct sf_softc *,
151					struct sf_rx_bufdesc_type0 *,
152					struct mbuf *);
153static void sf_setmulti		(struct sf_softc *);
154static int sf_setperf		(struct sf_softc *, int, caddr_t);
155static int sf_sethash		(struct sf_softc *, caddr_t, int);
156#ifdef notdef
157static int sf_setvlan		(struct sf_softc *, int, u_int32_t);
158#endif
159
160static u_int8_t sf_read_eeprom	(struct sf_softc *, int);
161static u_int32_t sf_calchash	(caddr_t);
162
163static int sf_miibus_readreg	(device_t, int, int);
164static int sf_miibus_writereg	(device_t, int, int, int);
165static void sf_miibus_statchg	(device_t);
166
167static u_int32_t csr_read_4	(struct sf_softc *, int);
168static void csr_write_4		(struct sf_softc *, int, u_int32_t);
169static void sf_txthresh_adjust	(struct sf_softc *);
170
171#ifdef SF_USEIOSPACE
172#define SF_RES			SYS_RES_IOPORT
173#define SF_RID			SF_PCI_LOIO
174#else
175#define SF_RES			SYS_RES_MEMORY
176#define SF_RID			SF_PCI_LOMEM
177#endif
178
179static device_method_t sf_methods[] = {
180	/* Device interface */
181	DEVMETHOD(device_probe,		sf_probe),
182	DEVMETHOD(device_attach,	sf_attach),
183	DEVMETHOD(device_detach,	sf_detach),
184	DEVMETHOD(device_shutdown,	sf_shutdown),
185
186	/* bus interface */
187	DEVMETHOD(bus_print_child,	bus_generic_print_child),
188	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
189
190	/* MII interface */
191	DEVMETHOD(miibus_readreg,	sf_miibus_readreg),
192	DEVMETHOD(miibus_writereg,	sf_miibus_writereg),
193	DEVMETHOD(miibus_statchg,	sf_miibus_statchg),
194
195	{ 0, 0 }
196};
197
198static driver_t sf_driver = {
199	"sf",
200	sf_methods,
201	sizeof(struct sf_softc),
202};
203
204static devclass_t sf_devclass;
205
206DRIVER_MODULE(if_sf, pci, sf_driver, sf_devclass, 0, 0);
207DRIVER_MODULE(miibus, sf, miibus_driver, miibus_devclass, 0, 0);
208
209#define SF_SETBIT(sc, reg, x)	\
210	csr_write_4(sc, reg, csr_read_4(sc, reg) | (x))
211
212#define SF_CLRBIT(sc, reg, x)				\
213	csr_write_4(sc, reg, csr_read_4(sc, reg) & ~(x))
214
215static u_int32_t
216csr_read_4(sc, reg)
217	struct sf_softc		*sc;
218	int			reg;
219{
220	u_int32_t		val;
221
222#ifdef SF_USEIOSPACE
223	CSR_WRITE_4(sc, SF_INDIRECTIO_ADDR, reg + SF_RMAP_INTREG_BASE);
224	val = CSR_READ_4(sc, SF_INDIRECTIO_DATA);
225#else
226	val = CSR_READ_4(sc, (reg + SF_RMAP_INTREG_BASE));
227#endif
228
229	return(val);
230}
231
232static u_int8_t
233sf_read_eeprom(sc, reg)
234	struct sf_softc		*sc;
235	int			reg;
236{
237	u_int8_t		val;
238
239	val = (csr_read_4(sc, SF_EEADDR_BASE +
240	    (reg & 0xFFFFFFFC)) >> (8 * (reg & 3))) & 0xFF;
241
242	return(val);
243}
244
245static void
246csr_write_4(sc, reg, val)
247	struct sf_softc		*sc;
248	int			reg;
249	u_int32_t		val;
250{
251#ifdef SF_USEIOSPACE
252	CSR_WRITE_4(sc, SF_INDIRECTIO_ADDR, reg + SF_RMAP_INTREG_BASE);
253	CSR_WRITE_4(sc, SF_INDIRECTIO_DATA, val);
254#else
255	CSR_WRITE_4(sc, (reg + SF_RMAP_INTREG_BASE), val);
256#endif
257	return;
258}
259
260static u_int32_t
261sf_calchash(addr)
262	caddr_t			addr;
263{
264	u_int32_t		crc, carry;
265	int			i, j;
266	u_int8_t		c;
267
268	/* Compute CRC for the address value. */
269	crc = 0xFFFFFFFF; /* initial value */
270
271	for (i = 0; i < 6; i++) {
272		c = *(addr + i);
273		for (j = 0; j < 8; j++) {
274			carry = ((crc & 0x80000000) ? 1 : 0) ^ (c & 0x01);
275			crc <<= 1;
276			c >>= 1;
277			if (carry)
278				crc = (crc ^ 0x04c11db6) | carry;
279		}
280	}
281
282	/* return the filter bit position */
283	return(crc >> 23 & 0x1FF);
284}
285
286/*
287 * Copy the address 'mac' into the perfect RX filter entry at
288 * offset 'idx.' The perfect filter only has 16 entries so do
289 * some sanity tests.
290 */
291static int
292sf_setperf(sc, idx, mac)
293	struct sf_softc		*sc;
294	int			idx;
295	caddr_t			mac;
296{
297	u_int16_t		*p;
298
299	if (idx < 0 || idx > SF_RXFILT_PERFECT_CNT)
300		return(EINVAL);
301
302	if (mac == NULL)
303		return(EINVAL);
304
305	p = (u_int16_t *)mac;
306
307	csr_write_4(sc, SF_RXFILT_PERFECT_BASE +
308	    (idx * SF_RXFILT_PERFECT_SKIP), htons(p[2]));
309	csr_write_4(sc, SF_RXFILT_PERFECT_BASE +
310	    (idx * SF_RXFILT_PERFECT_SKIP) + 4, htons(p[1]));
311	csr_write_4(sc, SF_RXFILT_PERFECT_BASE +
312	    (idx * SF_RXFILT_PERFECT_SKIP) + 8, htons(p[0]));
313
314	return(0);
315}
316
317/*
318 * Set the bit in the 512-bit hash table that corresponds to the
319 * specified mac address 'mac.' If 'prio' is nonzero, update the
320 * priority hash table instead of the filter hash table.
321 */
322static int
323sf_sethash(sc, mac, prio)
324	struct sf_softc		*sc;
325	caddr_t			mac;
326	int			prio;
327{
328	u_int32_t		h = 0;
329
330	if (mac == NULL)
331		return(EINVAL);
332
333	h = sf_calchash(mac);
334
335	if (prio) {
336		SF_SETBIT(sc, SF_RXFILT_HASH_BASE + SF_RXFILT_HASH_PRIOOFF +
337		    (SF_RXFILT_HASH_SKIP * (h >> 4)), (1 << (h & 0xF)));
338	} else {
339		SF_SETBIT(sc, SF_RXFILT_HASH_BASE + SF_RXFILT_HASH_ADDROFF +
340		    (SF_RXFILT_HASH_SKIP * (h >> 4)), (1 << (h & 0xF)));
341	}
342
343	return(0);
344}
345
346#ifdef notdef
347/*
348 * Set a VLAN tag in the receive filter.
349 */
350static int
351sf_setvlan(sc, idx, vlan)
352	struct sf_softc		*sc;
353	int			idx;
354	u_int32_t		vlan;
355{
356	if (idx < 0 || idx >> SF_RXFILT_HASH_CNT)
357		return(EINVAL);
358
359	csr_write_4(sc, SF_RXFILT_HASH_BASE +
360	    (idx * SF_RXFILT_HASH_SKIP) + SF_RXFILT_HASH_VLANOFF, vlan);
361
362	return(0);
363}
364#endif
365
366static int
367sf_miibus_readreg(dev, phy, reg)
368	device_t		dev;
369	int			phy, reg;
370{
371	struct sf_softc		*sc;
372	int			i;
373	u_int32_t		val = 0;
374
375	sc = device_get_softc(dev);
376
377	for (i = 0; i < SF_TIMEOUT; i++) {
378		val = csr_read_4(sc, SF_PHY_REG(phy, reg));
379		if (val & SF_MII_DATAVALID)
380			break;
381	}
382
383	if (i == SF_TIMEOUT)
384		return(0);
385
386	if ((val & 0x0000FFFF) == 0xFFFF)
387		return(0);
388
389	return(val & 0x0000FFFF);
390}
391
392static int
393sf_miibus_writereg(dev, phy, reg, val)
394	device_t		dev;
395	int			phy, reg, val;
396{
397	struct sf_softc		*sc;
398	int			i;
399	int			busy;
400
401	sc = device_get_softc(dev);
402
403	csr_write_4(sc, SF_PHY_REG(phy, reg), val);
404
405	for (i = 0; i < SF_TIMEOUT; i++) {
406		busy = csr_read_4(sc, SF_PHY_REG(phy, reg));
407		if (!(busy & SF_MII_BUSY))
408			break;
409	}
410
411	return(0);
412}
413
414static void
415sf_miibus_statchg(dev)
416	device_t		dev;
417{
418	struct sf_softc		*sc;
419	struct mii_data		*mii;
420
421	sc = device_get_softc(dev);
422	mii = device_get_softc(sc->sf_miibus);
423
424	if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
425		SF_SETBIT(sc, SF_MACCFG_1, SF_MACCFG1_FULLDUPLEX);
426		csr_write_4(sc, SF_BKTOBKIPG, SF_IPGT_FDX);
427	} else {
428		SF_CLRBIT(sc, SF_MACCFG_1, SF_MACCFG1_FULLDUPLEX);
429		csr_write_4(sc, SF_BKTOBKIPG, SF_IPGT_HDX);
430	}
431
432	return;
433}
434
435static void
436sf_setmulti(sc)
437	struct sf_softc		*sc;
438{
439	struct ifnet		*ifp;
440	int			i;
441	struct ifmultiaddr	*ifma;
442	u_int8_t		dummy[] = { 0, 0, 0, 0, 0, 0 };
443
444	ifp = &sc->arpcom.ac_if;
445
446	/* First zot all the existing filters. */
447	for (i = 1; i < SF_RXFILT_PERFECT_CNT; i++)
448		sf_setperf(sc, i, (char *)&dummy);
449	for (i = SF_RXFILT_HASH_BASE;
450	    i < (SF_RXFILT_HASH_MAX + 1); i += 4)
451		csr_write_4(sc, i, 0);
452	SF_CLRBIT(sc, SF_RXFILT, SF_RXFILT_ALLMULTI);
453
454	/* Now program new ones. */
455	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
456		SF_SETBIT(sc, SF_RXFILT, SF_RXFILT_ALLMULTI);
457	} else {
458		i = 1;
459		TAILQ_FOREACH_REVERSE(ifma, &ifp->if_multiaddrs, ifmultihead, ifma_link) {
460			if (ifma->ifma_addr->sa_family != AF_LINK)
461				continue;
462			/*
463			 * Program the first 15 multicast groups
464			 * into the perfect filter. For all others,
465			 * use the hash table.
466			 */
467			if (i < SF_RXFILT_PERFECT_CNT) {
468				sf_setperf(sc, i,
469			LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
470				i++;
471				continue;
472			}
473
474			sf_sethash(sc,
475			    LLADDR((struct sockaddr_dl *)ifma->ifma_addr), 0);
476		}
477	}
478
479	return;
480}
481
482/*
483 * Set media options.
484 */
485static int
486sf_ifmedia_upd(ifp)
487	struct ifnet		*ifp;
488{
489	struct sf_softc		*sc;
490	struct mii_data		*mii;
491
492	sc = ifp->if_softc;
493	mii = device_get_softc(sc->sf_miibus);
494	sc->sf_link = 0;
495	if (mii->mii_instance) {
496		struct mii_softc        *miisc;
497		LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
498			mii_phy_reset(miisc);
499	}
500	mii_mediachg(mii);
501
502	return(0);
503}
504
505/*
506 * Report current media status.
507 */
508static void
509sf_ifmedia_sts(ifp, ifmr)
510	struct ifnet		*ifp;
511	struct ifmediareq	*ifmr;
512{
513	struct sf_softc		*sc;
514	struct mii_data		*mii;
515
516	sc = ifp->if_softc;
517	mii = device_get_softc(sc->sf_miibus);
518
519	mii_pollstat(mii);
520	ifmr->ifm_active = mii->mii_media_active;
521	ifmr->ifm_status = mii->mii_media_status;
522
523	return;
524}
525
526static int
527sf_ioctl(ifp, command, data)
528	struct ifnet		*ifp;
529	u_long			command;
530	caddr_t			data;
531{
532	struct sf_softc		*sc = ifp->if_softc;
533	struct ifreq		*ifr = (struct ifreq *) data;
534	struct mii_data		*mii;
535	int			error = 0;
536
537	SF_LOCK(sc);
538
539	switch(command) {
540	case SIOCSIFFLAGS:
541		if (ifp->if_flags & IFF_UP) {
542			if (ifp->if_flags & IFF_RUNNING &&
543			    ifp->if_flags & IFF_PROMISC &&
544			    !(sc->sf_if_flags & IFF_PROMISC)) {
545				SF_SETBIT(sc, SF_RXFILT, SF_RXFILT_PROMISC);
546			} else if (ifp->if_flags & IFF_RUNNING &&
547			    !(ifp->if_flags & IFF_PROMISC) &&
548			    sc->sf_if_flags & IFF_PROMISC) {
549				SF_CLRBIT(sc, SF_RXFILT, SF_RXFILT_PROMISC);
550			} else if (!(ifp->if_flags & IFF_RUNNING))
551				sf_init(sc);
552		} else {
553			if (ifp->if_flags & IFF_RUNNING)
554				sf_stop(sc);
555		}
556		sc->sf_if_flags = ifp->if_flags;
557		error = 0;
558		break;
559	case SIOCADDMULTI:
560	case SIOCDELMULTI:
561		sf_setmulti(sc);
562		error = 0;
563		break;
564	case SIOCGIFMEDIA:
565	case SIOCSIFMEDIA:
566		mii = device_get_softc(sc->sf_miibus);
567		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
568		break;
569	default:
570		error = ether_ioctl(ifp, command, data);
571		break;
572	}
573
574	SF_UNLOCK(sc);
575
576	return(error);
577}
578
579static void
580sf_reset(sc)
581	struct sf_softc		*sc;
582{
583	register int		i;
584
585	csr_write_4(sc, SF_GEN_ETH_CTL, 0);
586	SF_SETBIT(sc, SF_MACCFG_1, SF_MACCFG1_SOFTRESET);
587	DELAY(1000);
588	SF_CLRBIT(sc, SF_MACCFG_1, SF_MACCFG1_SOFTRESET);
589
590	SF_SETBIT(sc, SF_PCI_DEVCFG, SF_PCIDEVCFG_RESET);
591
592	for (i = 0; i < SF_TIMEOUT; i++) {
593		DELAY(10);
594		if (!(csr_read_4(sc, SF_PCI_DEVCFG) & SF_PCIDEVCFG_RESET))
595			break;
596	}
597
598	if (i == SF_TIMEOUT)
599		printf("sf%d: reset never completed!\n", sc->sf_unit);
600
601	/* Wait a little while for the chip to get its brains in order. */
602	DELAY(1000);
603	return;
604}
605
606/*
607 * Probe for an Adaptec AIC-6915 chip. Check the PCI vendor and device
608 * IDs against our list and return a device name if we find a match.
609 * We also check the subsystem ID so that we can identify exactly which
610 * NIC has been found, if possible.
611 */
612static int
613sf_probe(dev)
614	device_t		dev;
615{
616	struct sf_type		*t;
617
618	t = sf_devs;
619
620	while(t->sf_name != NULL) {
621		if ((pci_get_vendor(dev) == t->sf_vid) &&
622		    (pci_get_device(dev) == t->sf_did)) {
623			switch((pci_read_config(dev,
624			    SF_PCI_SUBVEN_ID, 4) >> 16) & 0xFFFF) {
625			case AD_SUBSYSID_62011_REV0:
626			case AD_SUBSYSID_62011_REV1:
627				device_set_desc(dev,
628				    "Adaptec ANA-62011 10/100BaseTX");
629				return(0);
630				break;
631			case AD_SUBSYSID_62022:
632				device_set_desc(dev,
633				    "Adaptec ANA-62022 10/100BaseTX");
634				return(0);
635				break;
636			case AD_SUBSYSID_62044_REV0:
637			case AD_SUBSYSID_62044_REV1:
638				device_set_desc(dev,
639				    "Adaptec ANA-62044 10/100BaseTX");
640				return(0);
641				break;
642			case AD_SUBSYSID_62020:
643				device_set_desc(dev,
644				    "Adaptec ANA-62020 10/100BaseFX");
645				return(0);
646				break;
647			case AD_SUBSYSID_69011:
648				device_set_desc(dev,
649				    "Adaptec ANA-69011 10/100BaseTX");
650				return(0);
651				break;
652			default:
653				device_set_desc(dev, t->sf_name);
654				return(0);
655				break;
656			}
657		}
658		t++;
659	}
660
661	return(ENXIO);
662}
663
664/*
665 * Attach the interface. Allocate softc structures, do ifmedia
666 * setup and ethernet/BPF attach.
667 */
668static int
669sf_attach(dev)
670	device_t		dev;
671{
672	int			i;
673	u_int32_t		command;
674	struct sf_softc		*sc;
675	struct ifnet		*ifp;
676	int			unit, rid, error = 0;
677
678	sc = device_get_softc(dev);
679	unit = device_get_unit(dev);
680
681	mtx_init(&sc->sf_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
682	    MTX_DEF | MTX_RECURSE);
683
684	/*
685	 * Handle power management nonsense.
686	 */
687	if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
688		u_int32_t		iobase, membase, irq;
689
690		/* Save important PCI config data. */
691		iobase = pci_read_config(dev, SF_PCI_LOIO, 4);
692		membase = pci_read_config(dev, SF_PCI_LOMEM, 4);
693		irq = pci_read_config(dev, SF_PCI_INTLINE, 4);
694
695		/* Reset the power state. */
696		printf("sf%d: chip is in D%d power mode "
697		    "-- setting to D0\n", unit,
698		    pci_get_powerstate(dev));
699		pci_set_powerstate(dev, PCI_POWERSTATE_D0);
700
701		/* Restore PCI config data. */
702		pci_write_config(dev, SF_PCI_LOIO, iobase, 4);
703		pci_write_config(dev, SF_PCI_LOMEM, membase, 4);
704		pci_write_config(dev, SF_PCI_INTLINE, irq, 4);
705	}
706
707	/*
708	 * Map control/status registers.
709	 */
710	pci_enable_busmaster(dev);
711	pci_enable_io(dev, SYS_RES_IOPORT);
712	pci_enable_io(dev, SYS_RES_MEMORY);
713	command = pci_read_config(dev, PCIR_COMMAND, 4);
714
715#ifdef SF_USEIOSPACE
716	if (!(command & PCIM_CMD_PORTEN)) {
717		printf("sf%d: failed to enable I/O ports!\n", unit);
718		error = ENXIO;
719		goto fail;
720	}
721#else
722	if (!(command & PCIM_CMD_MEMEN)) {
723		printf("sf%d: failed to enable memory mapping!\n", unit);
724		error = ENXIO;
725		goto fail;
726	}
727#endif
728
729	rid = SF_RID;
730	sc->sf_res = bus_alloc_resource(dev, SF_RES, &rid,
731	    0, ~0, 1, RF_ACTIVE);
732
733	if (sc->sf_res == NULL) {
734		printf ("sf%d: couldn't map ports\n", unit);
735		error = ENXIO;
736		goto fail;
737	}
738
739	sc->sf_btag = rman_get_bustag(sc->sf_res);
740	sc->sf_bhandle = rman_get_bushandle(sc->sf_res);
741
742	/* Allocate interrupt */
743	rid = 0;
744	sc->sf_irq = bus_alloc_resource(dev, SYS_RES_IRQ, &rid, 0, ~0, 1,
745	    RF_SHAREABLE | RF_ACTIVE);
746
747	if (sc->sf_irq == NULL) {
748		printf("sf%d: couldn't map interrupt\n", unit);
749		error = ENXIO;
750		goto fail;
751	}
752
753	callout_handle_init(&sc->sf_stat_ch);
754	/* Reset the adapter. */
755	sf_reset(sc);
756
757	/*
758	 * Get station address from the EEPROM.
759	 */
760	for (i = 0; i < ETHER_ADDR_LEN; i++)
761		sc->arpcom.ac_enaddr[i] =
762		    sf_read_eeprom(sc, SF_EE_NODEADDR + ETHER_ADDR_LEN - i);
763
764	/*
765	 * An Adaptec chip was detected. Inform the world.
766	 */
767	printf("sf%d: Ethernet address: %6D\n", unit,
768	    sc->arpcom.ac_enaddr, ":");
769
770	sc->sf_unit = unit;
771
772	/* Allocate the descriptor queues. */
773	sc->sf_ldata = contigmalloc(sizeof(struct sf_list_data), M_DEVBUF,
774	    M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0);
775
776	if (sc->sf_ldata == NULL) {
777		printf("sf%d: no memory for list buffers!\n", unit);
778		error = ENXIO;
779		goto fail;
780	}
781
782	bzero(sc->sf_ldata, sizeof(struct sf_list_data));
783
784	/* Do MII setup. */
785	if (mii_phy_probe(dev, &sc->sf_miibus,
786	    sf_ifmedia_upd, sf_ifmedia_sts)) {
787		printf("sf%d: MII without any phy!\n", sc->sf_unit);
788		error = ENXIO;
789		goto fail;
790	}
791
792	ifp = &sc->arpcom.ac_if;
793	ifp->if_softc = sc;
794	ifp->if_unit = unit;
795	ifp->if_name = "sf";
796	ifp->if_mtu = ETHERMTU;
797	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
798	ifp->if_ioctl = sf_ioctl;
799	ifp->if_output = ether_output;
800	ifp->if_start = sf_start;
801	ifp->if_watchdog = sf_watchdog;
802	ifp->if_init = sf_init;
803	ifp->if_baudrate = 10000000;
804	ifp->if_snd.ifq_maxlen = SF_TX_DLIST_CNT - 1;
805
806	/*
807	 * Call MI attach routine.
808	 */
809	ether_ifattach(ifp, sc->arpcom.ac_enaddr);
810
811	error = bus_setup_intr(dev, sc->sf_irq, INTR_TYPE_NET,
812	    sf_intr, sc, &sc->sf_intrhand);
813
814	if (error) {
815		printf("sf%d: couldn't set up irq\n", unit);
816		goto fail;
817	}
818
819fail:
820	if (error)
821		sf_detach(dev);
822
823	return(error);
824}
825
826static int
827sf_detach(dev)
828	device_t		dev;
829{
830	struct sf_softc		*sc;
831	struct ifnet		*ifp;
832
833	sc = device_get_softc(dev);
834	KASSERT(mtx_initialized(&sc->sf_mtx), ("sf mutex not initialized"));
835	SF_LOCK(sc);
836	ifp = &sc->arpcom.ac_if;
837
838	if (device_is_alive(dev)) {
839		if (bus_child_present(dev))
840			sf_stop(sc);
841		ether_ifdetach(ifp);
842		device_delete_child(dev, sc->sf_miibus);
843		bus_generic_detach(dev);
844	}
845
846	if (sc->sf_intrhand)
847		bus_teardown_intr(dev, sc->sf_irq, sc->sf_intrhand);
848	if (sc->sf_irq)
849		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sf_irq);
850	if (sc->sf_res)
851		bus_release_resource(dev, SF_RES, SF_RID, sc->sf_res);
852
853	if (sc->sf_ldata)
854		contigfree(sc->sf_ldata, sizeof(struct sf_list_data), M_DEVBUF);
855
856	SF_UNLOCK(sc);
857	mtx_destroy(&sc->sf_mtx);
858
859	return(0);
860}
861
862static int
863sf_init_rx_ring(sc)
864	struct sf_softc		*sc;
865{
866	struct sf_list_data	*ld;
867	int			i;
868
869	ld = sc->sf_ldata;
870
871	bzero((char *)ld->sf_rx_dlist_big,
872	    sizeof(struct sf_rx_bufdesc_type0) * SF_RX_DLIST_CNT);
873	bzero((char *)ld->sf_rx_clist,
874	    sizeof(struct sf_rx_cmpdesc_type3) * SF_RX_CLIST_CNT);
875
876	for (i = 0; i < SF_RX_DLIST_CNT; i++) {
877		if (sf_newbuf(sc, &ld->sf_rx_dlist_big[i], NULL) == ENOBUFS)
878			return(ENOBUFS);
879	}
880
881	return(0);
882}
883
884static void
885sf_init_tx_ring(sc)
886	struct sf_softc		*sc;
887{
888	struct sf_list_data	*ld;
889	int			i;
890
891	ld = sc->sf_ldata;
892
893	bzero((char *)ld->sf_tx_dlist,
894	    sizeof(struct sf_tx_bufdesc_type0) * SF_TX_DLIST_CNT);
895	bzero((char *)ld->sf_tx_clist,
896	    sizeof(struct sf_tx_cmpdesc_type0) * SF_TX_CLIST_CNT);
897
898	for (i = 0; i < SF_TX_DLIST_CNT; i++)
899		ld->sf_tx_dlist[i].sf_id = SF_TX_BUFDESC_ID;
900	for (i = 0; i < SF_TX_CLIST_CNT; i++)
901		ld->sf_tx_clist[i].sf_type = SF_TXCMPTYPE_TX;
902
903	ld->sf_tx_dlist[SF_TX_DLIST_CNT - 1].sf_end = 1;
904	sc->sf_tx_cnt = 0;
905
906	return;
907}
908
909static int
910sf_newbuf(sc, c, m)
911	struct sf_softc		*sc;
912	struct sf_rx_bufdesc_type0	*c;
913	struct mbuf		*m;
914{
915	struct mbuf		*m_new = NULL;
916
917	if (m == NULL) {
918		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
919		if (m_new == NULL)
920			return(ENOBUFS);
921
922		MCLGET(m_new, M_DONTWAIT);
923		if (!(m_new->m_flags & M_EXT)) {
924			m_freem(m_new);
925			return(ENOBUFS);
926		}
927		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
928	} else {
929		m_new = m;
930		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
931		m_new->m_data = m_new->m_ext.ext_buf;
932	}
933
934	m_adj(m_new, sizeof(u_int64_t));
935
936	c->sf_mbuf = m_new;
937	c->sf_addrlo = SF_RX_HOSTADDR(vtophys(mtod(m_new, caddr_t)));
938	c->sf_valid = 1;
939
940	return(0);
941}
942
943/*
944 * The starfire is programmed to use 'normal' mode for packet reception,
945 * which means we use the consumer/producer model for both the buffer
946 * descriptor queue and the completion descriptor queue. The only problem
947 * with this is that it involves a lot of register accesses: we have to
948 * read the RX completion consumer and producer indexes and the RX buffer
949 * producer index, plus the RX completion consumer and RX buffer producer
950 * indexes have to be updated. It would have been easier if Adaptec had
951 * put each index in a separate register, especially given that the damn
952 * NIC has a 512K register space.
953 *
954 * In spite of all the lovely features that Adaptec crammed into the 6915,
955 * it is marred by one truly stupid design flaw, which is that receive
956 * buffer addresses must be aligned on a longword boundary. This forces
957 * the packet payload to be unaligned, which is suboptimal on the x86 and
958 * completely unuseable on the Alpha. Our only recourse is to copy received
959 * packets into properly aligned buffers before handing them off.
960 */
961
962static void
963sf_rxeof(sc)
964	struct sf_softc		*sc;
965{
966	struct mbuf		*m;
967	struct ifnet		*ifp;
968	struct sf_rx_bufdesc_type0	*desc;
969	struct sf_rx_cmpdesc_type3	*cur_rx;
970	u_int32_t		rxcons, rxprod;
971	int			cmpprodidx, cmpconsidx, bufprodidx;
972
973	ifp = &sc->arpcom.ac_if;
974
975	rxcons = csr_read_4(sc, SF_CQ_CONSIDX);
976	rxprod = csr_read_4(sc, SF_RXDQ_PTR_Q1);
977	cmpprodidx = SF_IDX_LO(csr_read_4(sc, SF_CQ_PRODIDX));
978	cmpconsidx = SF_IDX_LO(rxcons);
979	bufprodidx = SF_IDX_LO(rxprod);
980
981	while (cmpconsidx != cmpprodidx) {
982		struct mbuf		*m0;
983
984		cur_rx = &sc->sf_ldata->sf_rx_clist[cmpconsidx];
985		desc = &sc->sf_ldata->sf_rx_dlist_big[cur_rx->sf_endidx];
986		m = desc->sf_mbuf;
987		SF_INC(cmpconsidx, SF_RX_CLIST_CNT);
988		SF_INC(bufprodidx, SF_RX_DLIST_CNT);
989
990		if (!(cur_rx->sf_status1 & SF_RXSTAT1_OK)) {
991			ifp->if_ierrors++;
992			sf_newbuf(sc, desc, m);
993			continue;
994		}
995
996		m0 = m_devget(mtod(m, char *), cur_rx->sf_len, ETHER_ALIGN,
997		    ifp, NULL);
998		sf_newbuf(sc, desc, m);
999		if (m0 == NULL) {
1000			ifp->if_ierrors++;
1001			continue;
1002		}
1003		m = m0;
1004
1005		ifp->if_ipackets++;
1006		(*ifp->if_input)(ifp, m);
1007	}
1008
1009	csr_write_4(sc, SF_CQ_CONSIDX,
1010	    (rxcons & ~SF_CQ_CONSIDX_RXQ1) | cmpconsidx);
1011	csr_write_4(sc, SF_RXDQ_PTR_Q1,
1012	    (rxprod & ~SF_RXDQ_PRODIDX) | bufprodidx);
1013
1014	return;
1015}
1016
1017/*
1018 * Read the transmit status from the completion queue and release
1019 * mbufs. Note that the buffer descriptor index in the completion
1020 * descriptor is an offset from the start of the transmit buffer
1021 * descriptor list in bytes. This is important because the manual
1022 * gives the impression that it should match the producer/consumer
1023 * index, which is the offset in 8 byte blocks.
1024 */
1025static void
1026sf_txeof(sc)
1027	struct sf_softc		*sc;
1028{
1029	int			txcons, cmpprodidx, cmpconsidx;
1030	struct sf_tx_cmpdesc_type1 *cur_cmp;
1031	struct sf_tx_bufdesc_type0 *cur_tx;
1032	struct ifnet		*ifp;
1033
1034	ifp = &sc->arpcom.ac_if;
1035
1036	txcons = csr_read_4(sc, SF_CQ_CONSIDX);
1037	cmpprodidx = SF_IDX_HI(csr_read_4(sc, SF_CQ_PRODIDX));
1038	cmpconsidx = SF_IDX_HI(txcons);
1039
1040	while (cmpconsidx != cmpprodidx) {
1041		cur_cmp = &sc->sf_ldata->sf_tx_clist[cmpconsidx];
1042		cur_tx = &sc->sf_ldata->sf_tx_dlist[cur_cmp->sf_index >> 7];
1043
1044		if (cur_cmp->sf_txstat & SF_TXSTAT_TX_OK)
1045			ifp->if_opackets++;
1046		else {
1047			if (cur_cmp->sf_txstat & SF_TXSTAT_TX_UNDERRUN)
1048				sf_txthresh_adjust(sc);
1049			ifp->if_oerrors++;
1050		}
1051
1052		sc->sf_tx_cnt--;
1053		if (cur_tx->sf_mbuf != NULL) {
1054			m_freem(cur_tx->sf_mbuf);
1055			cur_tx->sf_mbuf = NULL;
1056		} else
1057			break;
1058		SF_INC(cmpconsidx, SF_TX_CLIST_CNT);
1059	}
1060
1061	ifp->if_timer = 0;
1062	ifp->if_flags &= ~IFF_OACTIVE;
1063
1064	csr_write_4(sc, SF_CQ_CONSIDX,
1065	    (txcons & ~SF_CQ_CONSIDX_TXQ) |
1066	    ((cmpconsidx << 16) & 0xFFFF0000));
1067
1068	return;
1069}
1070
1071static void
1072sf_txthresh_adjust(sc)
1073	struct sf_softc		*sc;
1074{
1075	u_int32_t		txfctl;
1076	u_int8_t		txthresh;
1077
1078	txfctl = csr_read_4(sc, SF_TX_FRAMCTL);
1079	txthresh = txfctl & SF_TXFRMCTL_TXTHRESH;
1080	if (txthresh < 0xFF) {
1081		txthresh++;
1082		txfctl &= ~SF_TXFRMCTL_TXTHRESH;
1083		txfctl |= txthresh;
1084#ifdef DIAGNOSTIC
1085		printf("sf%d: tx underrun, increasing "
1086		    "tx threshold to %d bytes\n",
1087		    sc->sf_unit, txthresh * 4);
1088#endif
1089		csr_write_4(sc, SF_TX_FRAMCTL, txfctl);
1090	}
1091
1092	return;
1093}
1094
1095static void
1096sf_intr(arg)
1097	void			*arg;
1098{
1099	struct sf_softc		*sc;
1100	struct ifnet		*ifp;
1101	u_int32_t		status;
1102
1103	sc = arg;
1104	SF_LOCK(sc);
1105
1106	ifp = &sc->arpcom.ac_if;
1107
1108	if (!(csr_read_4(sc, SF_ISR_SHADOW) & SF_ISR_PCIINT_ASSERTED)) {
1109		SF_UNLOCK(sc);
1110		return;
1111	}
1112
1113	/* Disable interrupts. */
1114	csr_write_4(sc, SF_IMR, 0x00000000);
1115
1116	for (;;) {
1117		status = csr_read_4(sc, SF_ISR);
1118		if (status)
1119			csr_write_4(sc, SF_ISR, status);
1120
1121		if (!(status & SF_INTRS))
1122			break;
1123
1124		if (status & SF_ISR_RXDQ1_DMADONE)
1125			sf_rxeof(sc);
1126
1127		if (status & SF_ISR_TX_TXDONE ||
1128		    status & SF_ISR_TX_DMADONE ||
1129		    status & SF_ISR_TX_QUEUEDONE)
1130			sf_txeof(sc);
1131
1132		if (status & SF_ISR_TX_LOFIFO)
1133			sf_txthresh_adjust(sc);
1134
1135		if (status & SF_ISR_ABNORMALINTR) {
1136			if (status & SF_ISR_STATSOFLOW) {
1137				untimeout(sf_stats_update, sc,
1138				    sc->sf_stat_ch);
1139				sf_stats_update(sc);
1140			} else
1141				sf_init(sc);
1142		}
1143	}
1144
1145	/* Re-enable interrupts. */
1146	csr_write_4(sc, SF_IMR, SF_INTRS);
1147
1148	if (ifp->if_snd.ifq_head != NULL)
1149		sf_start(ifp);
1150
1151	SF_UNLOCK(sc);
1152	return;
1153}
1154
1155static void
1156sf_init(xsc)
1157	void			*xsc;
1158{
1159	struct sf_softc		*sc;
1160	struct ifnet		*ifp;
1161	struct mii_data		*mii;
1162	int			i;
1163
1164	sc = xsc;
1165	SF_LOCK(sc);
1166	ifp = &sc->arpcom.ac_if;
1167	mii = device_get_softc(sc->sf_miibus);
1168
1169	sf_stop(sc);
1170	sf_reset(sc);
1171
1172	/* Init all the receive filter registers */
1173	for (i = SF_RXFILT_PERFECT_BASE;
1174	    i < (SF_RXFILT_HASH_MAX + 1); i += 4)
1175		csr_write_4(sc, i, 0);
1176
1177	/* Empty stats counter registers. */
1178	for (i = 0; i < sizeof(struct sf_stats)/sizeof(u_int32_t); i++)
1179		csr_write_4(sc, SF_STATS_BASE +
1180		    (i + sizeof(u_int32_t)), 0);
1181
1182	/* Init our MAC address */
1183	csr_write_4(sc, SF_PAR0, *(u_int32_t *)(&sc->arpcom.ac_enaddr[0]));
1184	csr_write_4(sc, SF_PAR1, *(u_int32_t *)(&sc->arpcom.ac_enaddr[4]));
1185	sf_setperf(sc, 0, (caddr_t)&sc->arpcom.ac_enaddr);
1186
1187	if (sf_init_rx_ring(sc) == ENOBUFS) {
1188		printf("sf%d: initialization failed: no "
1189		    "memory for rx buffers\n", sc->sf_unit);
1190		SF_UNLOCK(sc);
1191		return;
1192	}
1193
1194	sf_init_tx_ring(sc);
1195
1196	csr_write_4(sc, SF_RXFILT, SF_PERFMODE_NORMAL|SF_HASHMODE_WITHVLAN);
1197
1198	/* If we want promiscuous mode, set the allframes bit. */
1199	if (ifp->if_flags & IFF_PROMISC) {
1200		SF_SETBIT(sc, SF_RXFILT, SF_RXFILT_PROMISC);
1201	} else {
1202		SF_CLRBIT(sc, SF_RXFILT, SF_RXFILT_PROMISC);
1203	}
1204
1205	if (ifp->if_flags & IFF_BROADCAST) {
1206		SF_SETBIT(sc, SF_RXFILT, SF_RXFILT_BROAD);
1207	} else {
1208		SF_CLRBIT(sc, SF_RXFILT, SF_RXFILT_BROAD);
1209	}
1210
1211	/*
1212	 * Load the multicast filter.
1213	 */
1214	sf_setmulti(sc);
1215
1216	/* Init the completion queue indexes */
1217	csr_write_4(sc, SF_CQ_CONSIDX, 0);
1218	csr_write_4(sc, SF_CQ_PRODIDX, 0);
1219
1220	/* Init the RX completion queue */
1221	csr_write_4(sc, SF_RXCQ_CTL_1,
1222	    vtophys(sc->sf_ldata->sf_rx_clist) & SF_RXCQ_ADDR);
1223	SF_SETBIT(sc, SF_RXCQ_CTL_1, SF_RXCQTYPE_3);
1224
1225	/* Init RX DMA control. */
1226	SF_SETBIT(sc, SF_RXDMA_CTL, SF_RXDMA_REPORTBADPKTS);
1227
1228	/* Init the RX buffer descriptor queue. */
1229	csr_write_4(sc, SF_RXDQ_ADDR_Q1,
1230	    vtophys(sc->sf_ldata->sf_rx_dlist_big));
1231	csr_write_4(sc, SF_RXDQ_CTL_1, (MCLBYTES << 16) | SF_DESCSPACE_16BYTES);
1232	csr_write_4(sc, SF_RXDQ_PTR_Q1, SF_RX_DLIST_CNT - 1);
1233
1234	/* Init the TX completion queue */
1235	csr_write_4(sc, SF_TXCQ_CTL,
1236	    vtophys(sc->sf_ldata->sf_tx_clist) & SF_RXCQ_ADDR);
1237
1238	/* Init the TX buffer descriptor queue. */
1239	csr_write_4(sc, SF_TXDQ_ADDR_HIPRIO,
1240		vtophys(sc->sf_ldata->sf_tx_dlist));
1241	SF_SETBIT(sc, SF_TX_FRAMCTL, SF_TXFRMCTL_CPLAFTERTX);
1242	csr_write_4(sc, SF_TXDQ_CTL,
1243	    SF_TXBUFDESC_TYPE0|SF_TXMINSPACE_128BYTES|SF_TXSKIPLEN_8BYTES);
1244	SF_SETBIT(sc, SF_TXDQ_CTL, SF_TXDQCTL_NODMACMP);
1245
1246	/* Enable autopadding of short TX frames. */
1247	SF_SETBIT(sc, SF_MACCFG_1, SF_MACCFG1_AUTOPAD);
1248
1249	/* Enable interrupts. */
1250	csr_write_4(sc, SF_IMR, SF_INTRS);
1251	SF_SETBIT(sc, SF_PCI_DEVCFG, SF_PCIDEVCFG_INTR_ENB);
1252
1253	/* Enable the RX and TX engines. */
1254	SF_SETBIT(sc, SF_GEN_ETH_CTL, SF_ETHCTL_RX_ENB|SF_ETHCTL_RXDMA_ENB);
1255	SF_SETBIT(sc, SF_GEN_ETH_CTL, SF_ETHCTL_TX_ENB|SF_ETHCTL_TXDMA_ENB);
1256
1257	/*mii_mediachg(mii);*/
1258	sf_ifmedia_upd(ifp);
1259
1260	ifp->if_flags |= IFF_RUNNING;
1261	ifp->if_flags &= ~IFF_OACTIVE;
1262
1263	sc->sf_stat_ch = timeout(sf_stats_update, sc, hz);
1264
1265	SF_UNLOCK(sc);
1266
1267	return;
1268}
1269
1270static int
1271sf_encap(sc, c, m_head)
1272	struct sf_softc		*sc;
1273	struct sf_tx_bufdesc_type0 *c;
1274	struct mbuf		*m_head;
1275{
1276	int			frag = 0;
1277	struct sf_frag		*f = NULL;
1278	struct mbuf		*m;
1279
1280	m = m_head;
1281
1282	for (m = m_head, frag = 0; m != NULL; m = m->m_next) {
1283		if (m->m_len != 0) {
1284			if (frag == SF_MAXFRAGS)
1285				break;
1286			f = &c->sf_frags[frag];
1287			if (frag == 0)
1288				f->sf_pktlen = m_head->m_pkthdr.len;
1289			f->sf_fraglen = m->m_len;
1290			f->sf_addr = vtophys(mtod(m, vm_offset_t));
1291			frag++;
1292		}
1293	}
1294
1295	if (m != NULL) {
1296		struct mbuf		*m_new = NULL;
1297
1298		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1299		if (m_new == NULL) {
1300			printf("sf%d: no memory for tx list\n", sc->sf_unit);
1301			return(1);
1302		}
1303
1304		if (m_head->m_pkthdr.len > MHLEN) {
1305			MCLGET(m_new, M_DONTWAIT);
1306			if (!(m_new->m_flags & M_EXT)) {
1307				m_freem(m_new);
1308				printf("sf%d: no memory for tx list\n",
1309				    sc->sf_unit);
1310				return(1);
1311			}
1312		}
1313		m_copydata(m_head, 0, m_head->m_pkthdr.len,
1314		    mtod(m_new, caddr_t));
1315		m_new->m_pkthdr.len = m_new->m_len = m_head->m_pkthdr.len;
1316		m_freem(m_head);
1317		m_head = m_new;
1318		f = &c->sf_frags[0];
1319		f->sf_fraglen = f->sf_pktlen = m_head->m_pkthdr.len;
1320		f->sf_addr = vtophys(mtod(m_head, caddr_t));
1321		frag = 1;
1322	}
1323
1324	c->sf_mbuf = m_head;
1325	c->sf_id = SF_TX_BUFDESC_ID;
1326	c->sf_fragcnt = frag;
1327	c->sf_intr = 1;
1328	c->sf_caltcp = 0;
1329	c->sf_crcen = 1;
1330
1331	return(0);
1332}
1333
1334static void
1335sf_start(ifp)
1336	struct ifnet		*ifp;
1337{
1338	struct sf_softc		*sc;
1339	struct sf_tx_bufdesc_type0 *cur_tx = NULL;
1340	struct mbuf		*m_head = NULL;
1341	int			i, txprod;
1342
1343	sc = ifp->if_softc;
1344	SF_LOCK(sc);
1345
1346	if (!sc->sf_link && ifp->if_snd.ifq_len < 10) {
1347		SF_UNLOCK(sc);
1348		return;
1349	}
1350
1351	if (ifp->if_flags & IFF_OACTIVE) {
1352		SF_UNLOCK(sc);
1353		return;
1354	}
1355
1356	txprod = csr_read_4(sc, SF_TXDQ_PRODIDX);
1357	i = SF_IDX_HI(txprod) >> 4;
1358
1359	if (sc->sf_ldata->sf_tx_dlist[i].sf_mbuf != NULL) {
1360		printf("sf%d: TX ring full, resetting\n", sc->sf_unit);
1361		sf_init(sc);
1362		txprod = csr_read_4(sc, SF_TXDQ_PRODIDX);
1363		i = SF_IDX_HI(txprod) >> 4;
1364	}
1365
1366	while(sc->sf_ldata->sf_tx_dlist[i].sf_mbuf == NULL) {
1367		if (sc->sf_tx_cnt >= (SF_TX_DLIST_CNT - 5)) {
1368			ifp->if_flags |= IFF_OACTIVE;
1369			cur_tx = NULL;
1370			break;
1371		}
1372		IF_DEQUEUE(&ifp->if_snd, m_head);
1373		if (m_head == NULL)
1374			break;
1375
1376		cur_tx = &sc->sf_ldata->sf_tx_dlist[i];
1377		if (sf_encap(sc, cur_tx, m_head)) {
1378			IF_PREPEND(&ifp->if_snd, m_head);
1379			ifp->if_flags |= IFF_OACTIVE;
1380			cur_tx = NULL;
1381			break;
1382		}
1383
1384		/*
1385		 * If there's a BPF listener, bounce a copy of this frame
1386		 * to him.
1387		 */
1388		BPF_MTAP(ifp, m_head);
1389
1390		SF_INC(i, SF_TX_DLIST_CNT);
1391		sc->sf_tx_cnt++;
1392		/*
1393		 * Don't get the TX DMA queue get too full.
1394		 */
1395		if (sc->sf_tx_cnt > 64)
1396			break;
1397	}
1398
1399	if (cur_tx == NULL) {
1400		SF_UNLOCK(sc);
1401		return;
1402	}
1403
1404	/* Transmit */
1405	csr_write_4(sc, SF_TXDQ_PRODIDX,
1406	    (txprod & ~SF_TXDQ_PRODIDX_HIPRIO) |
1407	    ((i << 20) & 0xFFFF0000));
1408
1409	ifp->if_timer = 5;
1410
1411	SF_UNLOCK(sc);
1412
1413	return;
1414}
1415
1416static void
1417sf_stop(sc)
1418	struct sf_softc		*sc;
1419{
1420	int			i;
1421	struct ifnet		*ifp;
1422
1423	SF_LOCK(sc);
1424
1425	ifp = &sc->arpcom.ac_if;
1426
1427	untimeout(sf_stats_update, sc, sc->sf_stat_ch);
1428
1429	csr_write_4(sc, SF_GEN_ETH_CTL, 0);
1430	csr_write_4(sc, SF_CQ_CONSIDX, 0);
1431	csr_write_4(sc, SF_CQ_PRODIDX, 0);
1432	csr_write_4(sc, SF_RXDQ_ADDR_Q1, 0);
1433	csr_write_4(sc, SF_RXDQ_CTL_1, 0);
1434	csr_write_4(sc, SF_RXDQ_PTR_Q1, 0);
1435	csr_write_4(sc, SF_TXCQ_CTL, 0);
1436	csr_write_4(sc, SF_TXDQ_ADDR_HIPRIO, 0);
1437	csr_write_4(sc, SF_TXDQ_CTL, 0);
1438	sf_reset(sc);
1439
1440	sc->sf_link = 0;
1441
1442	for (i = 0; i < SF_RX_DLIST_CNT; i++) {
1443		if (sc->sf_ldata->sf_rx_dlist_big[i].sf_mbuf != NULL) {
1444			m_freem(sc->sf_ldata->sf_rx_dlist_big[i].sf_mbuf);
1445			sc->sf_ldata->sf_rx_dlist_big[i].sf_mbuf = NULL;
1446		}
1447	}
1448
1449	for (i = 0; i < SF_TX_DLIST_CNT; i++) {
1450		if (sc->sf_ldata->sf_tx_dlist[i].sf_mbuf != NULL) {
1451			m_freem(sc->sf_ldata->sf_tx_dlist[i].sf_mbuf);
1452			sc->sf_ldata->sf_tx_dlist[i].sf_mbuf = NULL;
1453		}
1454	}
1455
1456	ifp->if_flags &= ~(IFF_RUNNING|IFF_OACTIVE);
1457	SF_UNLOCK(sc);
1458
1459	return;
1460}
1461
1462/*
1463 * Note: it is important that this function not be interrupted. We
1464 * use a two-stage register access scheme: if we are interrupted in
1465 * between setting the indirect address register and reading from the
1466 * indirect data register, the contents of the address register could
1467 * be changed out from under us.
1468 */
1469static void
1470sf_stats_update(xsc)
1471	void			*xsc;
1472{
1473	struct sf_softc		*sc;
1474	struct ifnet		*ifp;
1475	struct mii_data		*mii;
1476	struct sf_stats		stats;
1477	u_int32_t		*ptr;
1478	int			i;
1479
1480	sc = xsc;
1481	SF_LOCK(sc);
1482	ifp = &sc->arpcom.ac_if;
1483	mii = device_get_softc(sc->sf_miibus);
1484
1485	ptr = (u_int32_t *)&stats;
1486	for (i = 0; i < sizeof(stats)/sizeof(u_int32_t); i++)
1487		ptr[i] = csr_read_4(sc, SF_STATS_BASE +
1488		    (i + sizeof(u_int32_t)));
1489
1490	for (i = 0; i < sizeof(stats)/sizeof(u_int32_t); i++)
1491		csr_write_4(sc, SF_STATS_BASE +
1492		    (i + sizeof(u_int32_t)), 0);
1493
1494	ifp->if_collisions += stats.sf_tx_single_colls +
1495	    stats.sf_tx_multi_colls + stats.sf_tx_excess_colls;
1496
1497	mii_tick(mii);
1498
1499	if (!sc->sf_link && mii->mii_media_status & IFM_ACTIVE &&
1500	    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
1501		sc->sf_link++;
1502		if (ifp->if_snd.ifq_head != NULL)
1503			sf_start(ifp);
1504	}
1505
1506	sc->sf_stat_ch = timeout(sf_stats_update, sc, hz);
1507
1508	SF_UNLOCK(sc);
1509
1510	return;
1511}
1512
1513static void
1514sf_watchdog(ifp)
1515	struct ifnet		*ifp;
1516{
1517	struct sf_softc		*sc;
1518
1519	sc = ifp->if_softc;
1520
1521	SF_LOCK(sc);
1522
1523	ifp->if_oerrors++;
1524	printf("sf%d: watchdog timeout\n", sc->sf_unit);
1525
1526	sf_stop(sc);
1527	sf_reset(sc);
1528	sf_init(sc);
1529
1530	if (ifp->if_snd.ifq_head != NULL)
1531		sf_start(ifp);
1532
1533	SF_UNLOCK(sc);
1534
1535	return;
1536}
1537
1538static void
1539sf_shutdown(dev)
1540	device_t		dev;
1541{
1542	struct sf_softc		*sc;
1543
1544	sc = device_get_softc(dev);
1545
1546	sf_stop(sc);
1547
1548	return;
1549}
1550