if_sf.c revision 112872
1/*
2 * Copyright (c) 1997, 1998, 1999
3 *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 *    must display the following acknowledgement:
15 *	This product includes software developed by Bill Paul.
16 * 4. Neither the name of the author nor the names of any co-contributors
17 *    may be used to endorse or promote products derived from this software
18 *    without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30 * THE POSSIBILITY OF SUCH DAMAGE.
31 *
32 * $FreeBSD: head/sys/dev/sf/if_sf.c 112872 2003-03-31 17:29:43Z njl $
33 */
34
35/*
36 * Adaptec AIC-6915 "Starfire" PCI fast ethernet driver for FreeBSD.
37 * Programming manual is available from:
38 * ftp.adaptec.com:/pub/BBS/userguides/aic6915_pg.pdf.
39 *
40 * Written by Bill Paul <wpaul@ctr.columbia.edu>
41 * Department of Electical Engineering
42 * Columbia University, New York City
43 */
44
45/*
46 * The Adaptec AIC-6915 "Starfire" is a 64-bit 10/100 PCI ethernet
47 * controller designed with flexibility and reducing CPU load in mind.
48 * The Starfire offers high and low priority buffer queues, a
49 * producer/consumer index mechanism and several different buffer
50 * queue and completion queue descriptor types. Any one of a number
51 * of different driver designs can be used, depending on system and
52 * OS requirements. This driver makes use of type0 transmit frame
53 * descriptors (since BSD fragments packets across an mbuf chain)
54 * and two RX buffer queues prioritized on size (one queue for small
55 * frames that will fit into a single mbuf, another with full size
56 * mbuf clusters for everything else). The producer/consumer indexes
57 * and completion queues are also used.
58 *
59 * One downside to the Starfire has to do with alignment: buffer
60 * queues must be aligned on 256-byte boundaries, and receive buffers
61 * must be aligned on longword boundaries. The receive buffer alignment
62 * causes problems on the Alpha platform, where the packet payload
63 * should be longword aligned. There is no simple way around this.
64 *
65 * For receive filtering, the Starfire offers 16 perfect filter slots
66 * and a 512-bit hash table.
67 *
68 * The Starfire has no internal transceiver, relying instead on an
69 * external MII-based transceiver. Accessing registers on external
70 * PHYs is done through a special register map rather than with the
71 * usual bitbang MDIO method.
72 *
73 * Acesssing the registers on the Starfire is a little tricky. The
74 * Starfire has a 512K internal register space. When programmed for
75 * PCI memory mapped mode, the entire register space can be accessed
76 * directly. However in I/O space mode, only 256 bytes are directly
77 * mapped into PCI I/O space. The other registers can be accessed
78 * indirectly using the SF_INDIRECTIO_ADDR and SF_INDIRECTIO_DATA
79 * registers inside the 256-byte I/O window.
80 */
81
82#include <sys/param.h>
83#include <sys/systm.h>
84#include <sys/sockio.h>
85#include <sys/mbuf.h>
86#include <sys/malloc.h>
87#include <sys/kernel.h>
88#include <sys/socket.h>
89
90#include <net/if.h>
91#include <net/if_arp.h>
92#include <net/ethernet.h>
93#include <net/if_dl.h>
94#include <net/if_media.h>
95
96#include <net/bpf.h>
97
98#include <vm/vm.h>              /* for vtophys */
99#include <vm/pmap.h>            /* for vtophys */
100#include <machine/bus_pio.h>
101#include <machine/bus_memio.h>
102#include <machine/bus.h>
103#include <machine/resource.h>
104#include <sys/bus.h>
105#include <sys/rman.h>
106
107#include <dev/mii/mii.h>
108#include <dev/mii/miivar.h>
109
110/* "controller miibus0" required.  See GENERIC if you get errors here. */
111#include "miibus_if.h"
112
113#include <pci/pcireg.h>
114#include <pci/pcivar.h>
115
116#define SF_USEIOSPACE
117
118#include <pci/if_sfreg.h>
119
120MODULE_DEPEND(sf, miibus, 1, 1, 1);
121
122#ifndef lint
123static const char rcsid[] =
124  "$FreeBSD: head/sys/dev/sf/if_sf.c 112872 2003-03-31 17:29:43Z njl $";
125#endif
126
127static struct sf_type sf_devs[] = {
128	{ AD_VENDORID, AD_DEVICEID_STARFIRE,
129		"Adaptec AIC-6915 10/100BaseTX" },
130	{ 0, 0, NULL }
131};
132
133static int sf_probe		(device_t);
134static int sf_attach		(device_t);
135static int sf_detach		(device_t);
136static void sf_intr		(void *);
137static void sf_stats_update	(void *);
138static void sf_rxeof		(struct sf_softc *);
139static void sf_txeof		(struct sf_softc *);
140static int sf_encap		(struct sf_softc *,
141					struct sf_tx_bufdesc_type0 *,
142					struct mbuf *);
143static void sf_start		(struct ifnet *);
144static int sf_ioctl		(struct ifnet *, u_long, caddr_t);
145static void sf_init		(void *);
146static void sf_stop		(struct sf_softc *);
147static void sf_watchdog		(struct ifnet *);
148static void sf_shutdown		(device_t);
149static int sf_ifmedia_upd	(struct ifnet *);
150static void sf_ifmedia_sts	(struct ifnet *, struct ifmediareq *);
151static void sf_reset		(struct sf_softc *);
152static int sf_init_rx_ring	(struct sf_softc *);
153static void sf_init_tx_ring	(struct sf_softc *);
154static int sf_newbuf		(struct sf_softc *,
155					struct sf_rx_bufdesc_type0 *,
156					struct mbuf *);
157static void sf_setmulti		(struct sf_softc *);
158static int sf_setperf		(struct sf_softc *, int, caddr_t);
159static int sf_sethash		(struct sf_softc *, caddr_t, int);
160#ifdef notdef
161static int sf_setvlan		(struct sf_softc *, int, u_int32_t);
162#endif
163
164static u_int8_t sf_read_eeprom	(struct sf_softc *, int);
165static u_int32_t sf_calchash	(caddr_t);
166
167static int sf_miibus_readreg	(device_t, int, int);
168static int sf_miibus_writereg	(device_t, int, int, int);
169static void sf_miibus_statchg	(device_t);
170
171static u_int32_t csr_read_4	(struct sf_softc *, int);
172static void csr_write_4		(struct sf_softc *, int, u_int32_t);
173static void sf_txthresh_adjust	(struct sf_softc *);
174
175#ifdef SF_USEIOSPACE
176#define SF_RES			SYS_RES_IOPORT
177#define SF_RID			SF_PCI_LOIO
178#else
179#define SF_RES			SYS_RES_MEMORY
180#define SF_RID			SF_PCI_LOMEM
181#endif
182
183static device_method_t sf_methods[] = {
184	/* Device interface */
185	DEVMETHOD(device_probe,		sf_probe),
186	DEVMETHOD(device_attach,	sf_attach),
187	DEVMETHOD(device_detach,	sf_detach),
188	DEVMETHOD(device_shutdown,	sf_shutdown),
189
190	/* bus interface */
191	DEVMETHOD(bus_print_child,	bus_generic_print_child),
192	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
193
194	/* MII interface */
195	DEVMETHOD(miibus_readreg,	sf_miibus_readreg),
196	DEVMETHOD(miibus_writereg,	sf_miibus_writereg),
197	DEVMETHOD(miibus_statchg,	sf_miibus_statchg),
198
199	{ 0, 0 }
200};
201
202static driver_t sf_driver = {
203	"sf",
204	sf_methods,
205	sizeof(struct sf_softc),
206};
207
208static devclass_t sf_devclass;
209
210DRIVER_MODULE(if_sf, pci, sf_driver, sf_devclass, 0, 0);
211DRIVER_MODULE(miibus, sf, miibus_driver, miibus_devclass, 0, 0);
212
213#define SF_SETBIT(sc, reg, x)	\
214	csr_write_4(sc, reg, csr_read_4(sc, reg) | (x))
215
216#define SF_CLRBIT(sc, reg, x)				\
217	csr_write_4(sc, reg, csr_read_4(sc, reg) & ~(x))
218
219static u_int32_t
220csr_read_4(sc, reg)
221	struct sf_softc		*sc;
222	int			reg;
223{
224	u_int32_t		val;
225
226#ifdef SF_USEIOSPACE
227	CSR_WRITE_4(sc, SF_INDIRECTIO_ADDR, reg + SF_RMAP_INTREG_BASE);
228	val = CSR_READ_4(sc, SF_INDIRECTIO_DATA);
229#else
230	val = CSR_READ_4(sc, (reg + SF_RMAP_INTREG_BASE));
231#endif
232
233	return(val);
234}
235
236static u_int8_t
237sf_read_eeprom(sc, reg)
238	struct sf_softc		*sc;
239	int			reg;
240{
241	u_int8_t		val;
242
243	val = (csr_read_4(sc, SF_EEADDR_BASE +
244	    (reg & 0xFFFFFFFC)) >> (8 * (reg & 3))) & 0xFF;
245
246	return(val);
247}
248
249static void
250csr_write_4(sc, reg, val)
251	struct sf_softc		*sc;
252	int			reg;
253	u_int32_t		val;
254{
255#ifdef SF_USEIOSPACE
256	CSR_WRITE_4(sc, SF_INDIRECTIO_ADDR, reg + SF_RMAP_INTREG_BASE);
257	CSR_WRITE_4(sc, SF_INDIRECTIO_DATA, val);
258#else
259	CSR_WRITE_4(sc, (reg + SF_RMAP_INTREG_BASE), val);
260#endif
261	return;
262}
263
264static u_int32_t
265sf_calchash(addr)
266	caddr_t			addr;
267{
268	u_int32_t		crc, carry;
269	int			i, j;
270	u_int8_t		c;
271
272	/* Compute CRC for the address value. */
273	crc = 0xFFFFFFFF; /* initial value */
274
275	for (i = 0; i < 6; i++) {
276		c = *(addr + i);
277		for (j = 0; j < 8; j++) {
278			carry = ((crc & 0x80000000) ? 1 : 0) ^ (c & 0x01);
279			crc <<= 1;
280			c >>= 1;
281			if (carry)
282				crc = (crc ^ 0x04c11db6) | carry;
283		}
284	}
285
286	/* return the filter bit position */
287	return(crc >> 23 & 0x1FF);
288}
289
290/*
291 * Copy the address 'mac' into the perfect RX filter entry at
292 * offset 'idx.' The perfect filter only has 16 entries so do
293 * some sanity tests.
294 */
295static int
296sf_setperf(sc, idx, mac)
297	struct sf_softc		*sc;
298	int			idx;
299	caddr_t			mac;
300{
301	u_int16_t		*p;
302
303	if (idx < 0 || idx > SF_RXFILT_PERFECT_CNT)
304		return(EINVAL);
305
306	if (mac == NULL)
307		return(EINVAL);
308
309	p = (u_int16_t *)mac;
310
311	csr_write_4(sc, SF_RXFILT_PERFECT_BASE +
312	    (idx * SF_RXFILT_PERFECT_SKIP), htons(p[2]));
313	csr_write_4(sc, SF_RXFILT_PERFECT_BASE +
314	    (idx * SF_RXFILT_PERFECT_SKIP) + 4, htons(p[1]));
315	csr_write_4(sc, SF_RXFILT_PERFECT_BASE +
316	    (idx * SF_RXFILT_PERFECT_SKIP) + 8, htons(p[0]));
317
318	return(0);
319}
320
321/*
322 * Set the bit in the 512-bit hash table that corresponds to the
323 * specified mac address 'mac.' If 'prio' is nonzero, update the
324 * priority hash table instead of the filter hash table.
325 */
326static int
327sf_sethash(sc, mac, prio)
328	struct sf_softc		*sc;
329	caddr_t			mac;
330	int			prio;
331{
332	u_int32_t		h = 0;
333
334	if (mac == NULL)
335		return(EINVAL);
336
337	h = sf_calchash(mac);
338
339	if (prio) {
340		SF_SETBIT(sc, SF_RXFILT_HASH_BASE + SF_RXFILT_HASH_PRIOOFF +
341		    (SF_RXFILT_HASH_SKIP * (h >> 4)), (1 << (h & 0xF)));
342	} else {
343		SF_SETBIT(sc, SF_RXFILT_HASH_BASE + SF_RXFILT_HASH_ADDROFF +
344		    (SF_RXFILT_HASH_SKIP * (h >> 4)), (1 << (h & 0xF)));
345	}
346
347	return(0);
348}
349
350#ifdef notdef
351/*
352 * Set a VLAN tag in the receive filter.
353 */
354static int
355sf_setvlan(sc, idx, vlan)
356	struct sf_softc		*sc;
357	int			idx;
358	u_int32_t		vlan;
359{
360	if (idx < 0 || idx >> SF_RXFILT_HASH_CNT)
361		return(EINVAL);
362
363	csr_write_4(sc, SF_RXFILT_HASH_BASE +
364	    (idx * SF_RXFILT_HASH_SKIP) + SF_RXFILT_HASH_VLANOFF, vlan);
365
366	return(0);
367}
368#endif
369
370static int
371sf_miibus_readreg(dev, phy, reg)
372	device_t		dev;
373	int			phy, reg;
374{
375	struct sf_softc		*sc;
376	int			i;
377	u_int32_t		val = 0;
378
379	sc = device_get_softc(dev);
380
381	for (i = 0; i < SF_TIMEOUT; i++) {
382		val = csr_read_4(sc, SF_PHY_REG(phy, reg));
383		if (val & SF_MII_DATAVALID)
384			break;
385	}
386
387	if (i == SF_TIMEOUT)
388		return(0);
389
390	if ((val & 0x0000FFFF) == 0xFFFF)
391		return(0);
392
393	return(val & 0x0000FFFF);
394}
395
396static int
397sf_miibus_writereg(dev, phy, reg, val)
398	device_t		dev;
399	int			phy, reg, val;
400{
401	struct sf_softc		*sc;
402	int			i;
403	int			busy;
404
405	sc = device_get_softc(dev);
406
407	csr_write_4(sc, SF_PHY_REG(phy, reg), val);
408
409	for (i = 0; i < SF_TIMEOUT; i++) {
410		busy = csr_read_4(sc, SF_PHY_REG(phy, reg));
411		if (!(busy & SF_MII_BUSY))
412			break;
413	}
414
415	return(0);
416}
417
418static void
419sf_miibus_statchg(dev)
420	device_t		dev;
421{
422	struct sf_softc		*sc;
423	struct mii_data		*mii;
424
425	sc = device_get_softc(dev);
426	mii = device_get_softc(sc->sf_miibus);
427
428	if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
429		SF_SETBIT(sc, SF_MACCFG_1, SF_MACCFG1_FULLDUPLEX);
430		csr_write_4(sc, SF_BKTOBKIPG, SF_IPGT_FDX);
431	} else {
432		SF_CLRBIT(sc, SF_MACCFG_1, SF_MACCFG1_FULLDUPLEX);
433		csr_write_4(sc, SF_BKTOBKIPG, SF_IPGT_HDX);
434	}
435
436	return;
437}
438
439static void
440sf_setmulti(sc)
441	struct sf_softc		*sc;
442{
443	struct ifnet		*ifp;
444	int			i;
445	struct ifmultiaddr	*ifma;
446	u_int8_t		dummy[] = { 0, 0, 0, 0, 0, 0 };
447
448	ifp = &sc->arpcom.ac_if;
449
450	/* First zot all the existing filters. */
451	for (i = 1; i < SF_RXFILT_PERFECT_CNT; i++)
452		sf_setperf(sc, i, (char *)&dummy);
453	for (i = SF_RXFILT_HASH_BASE;
454	    i < (SF_RXFILT_HASH_MAX + 1); i += 4)
455		csr_write_4(sc, i, 0);
456	SF_CLRBIT(sc, SF_RXFILT, SF_RXFILT_ALLMULTI);
457
458	/* Now program new ones. */
459	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
460		SF_SETBIT(sc, SF_RXFILT, SF_RXFILT_ALLMULTI);
461	} else {
462		i = 1;
463		TAILQ_FOREACH_REVERSE(ifma, &ifp->if_multiaddrs, ifmultihead, ifma_link) {
464			if (ifma->ifma_addr->sa_family != AF_LINK)
465				continue;
466			/*
467			 * Program the first 15 multicast groups
468			 * into the perfect filter. For all others,
469			 * use the hash table.
470			 */
471			if (i < SF_RXFILT_PERFECT_CNT) {
472				sf_setperf(sc, i,
473			LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
474				i++;
475				continue;
476			}
477
478			sf_sethash(sc,
479			    LLADDR((struct sockaddr_dl *)ifma->ifma_addr), 0);
480		}
481	}
482
483	return;
484}
485
486/*
487 * Set media options.
488 */
489static int
490sf_ifmedia_upd(ifp)
491	struct ifnet		*ifp;
492{
493	struct sf_softc		*sc;
494	struct mii_data		*mii;
495
496	sc = ifp->if_softc;
497	mii = device_get_softc(sc->sf_miibus);
498	sc->sf_link = 0;
499	if (mii->mii_instance) {
500		struct mii_softc        *miisc;
501		LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
502			mii_phy_reset(miisc);
503	}
504	mii_mediachg(mii);
505
506	return(0);
507}
508
509/*
510 * Report current media status.
511 */
512static void
513sf_ifmedia_sts(ifp, ifmr)
514	struct ifnet		*ifp;
515	struct ifmediareq	*ifmr;
516{
517	struct sf_softc		*sc;
518	struct mii_data		*mii;
519
520	sc = ifp->if_softc;
521	mii = device_get_softc(sc->sf_miibus);
522
523	mii_pollstat(mii);
524	ifmr->ifm_active = mii->mii_media_active;
525	ifmr->ifm_status = mii->mii_media_status;
526
527	return;
528}
529
530static int
531sf_ioctl(ifp, command, data)
532	struct ifnet		*ifp;
533	u_long			command;
534	caddr_t			data;
535{
536	struct sf_softc		*sc = ifp->if_softc;
537	struct ifreq		*ifr = (struct ifreq *) data;
538	struct mii_data		*mii;
539	int			error = 0;
540
541	SF_LOCK(sc);
542
543	switch(command) {
544	case SIOCSIFFLAGS:
545		if (ifp->if_flags & IFF_UP) {
546			if (ifp->if_flags & IFF_RUNNING &&
547			    ifp->if_flags & IFF_PROMISC &&
548			    !(sc->sf_if_flags & IFF_PROMISC)) {
549				SF_SETBIT(sc, SF_RXFILT, SF_RXFILT_PROMISC);
550			} else if (ifp->if_flags & IFF_RUNNING &&
551			    !(ifp->if_flags & IFF_PROMISC) &&
552			    sc->sf_if_flags & IFF_PROMISC) {
553				SF_CLRBIT(sc, SF_RXFILT, SF_RXFILT_PROMISC);
554			} else if (!(ifp->if_flags & IFF_RUNNING))
555				sf_init(sc);
556		} else {
557			if (ifp->if_flags & IFF_RUNNING)
558				sf_stop(sc);
559		}
560		sc->sf_if_flags = ifp->if_flags;
561		error = 0;
562		break;
563	case SIOCADDMULTI:
564	case SIOCDELMULTI:
565		sf_setmulti(sc);
566		error = 0;
567		break;
568	case SIOCGIFMEDIA:
569	case SIOCSIFMEDIA:
570		mii = device_get_softc(sc->sf_miibus);
571		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
572		break;
573	default:
574		error = ether_ioctl(ifp, command, data);
575		break;
576	}
577
578	SF_UNLOCK(sc);
579
580	return(error);
581}
582
583static void
584sf_reset(sc)
585	struct sf_softc		*sc;
586{
587	register int		i;
588
589	csr_write_4(sc, SF_GEN_ETH_CTL, 0);
590	SF_SETBIT(sc, SF_MACCFG_1, SF_MACCFG1_SOFTRESET);
591	DELAY(1000);
592	SF_CLRBIT(sc, SF_MACCFG_1, SF_MACCFG1_SOFTRESET);
593
594	SF_SETBIT(sc, SF_PCI_DEVCFG, SF_PCIDEVCFG_RESET);
595
596	for (i = 0; i < SF_TIMEOUT; i++) {
597		DELAY(10);
598		if (!(csr_read_4(sc, SF_PCI_DEVCFG) & SF_PCIDEVCFG_RESET))
599			break;
600	}
601
602	if (i == SF_TIMEOUT)
603		printf("sf%d: reset never completed!\n", sc->sf_unit);
604
605	/* Wait a little while for the chip to get its brains in order. */
606	DELAY(1000);
607	return;
608}
609
610/*
611 * Probe for an Adaptec AIC-6915 chip. Check the PCI vendor and device
612 * IDs against our list and return a device name if we find a match.
613 * We also check the subsystem ID so that we can identify exactly which
614 * NIC has been found, if possible.
615 */
616static int
617sf_probe(dev)
618	device_t		dev;
619{
620	struct sf_type		*t;
621
622	t = sf_devs;
623
624	while(t->sf_name != NULL) {
625		if ((pci_get_vendor(dev) == t->sf_vid) &&
626		    (pci_get_device(dev) == t->sf_did)) {
627			switch((pci_read_config(dev,
628			    SF_PCI_SUBVEN_ID, 4) >> 16) & 0xFFFF) {
629			case AD_SUBSYSID_62011_REV0:
630			case AD_SUBSYSID_62011_REV1:
631				device_set_desc(dev,
632				    "Adaptec ANA-62011 10/100BaseTX");
633				return(0);
634				break;
635			case AD_SUBSYSID_62022:
636				device_set_desc(dev,
637				    "Adaptec ANA-62022 10/100BaseTX");
638				return(0);
639				break;
640			case AD_SUBSYSID_62044_REV0:
641			case AD_SUBSYSID_62044_REV1:
642				device_set_desc(dev,
643				    "Adaptec ANA-62044 10/100BaseTX");
644				return(0);
645				break;
646			case AD_SUBSYSID_62020:
647				device_set_desc(dev,
648				    "Adaptec ANA-62020 10/100BaseFX");
649				return(0);
650				break;
651			case AD_SUBSYSID_69011:
652				device_set_desc(dev,
653				    "Adaptec ANA-69011 10/100BaseTX");
654				return(0);
655				break;
656			default:
657				device_set_desc(dev, t->sf_name);
658				return(0);
659				break;
660			}
661		}
662		t++;
663	}
664
665	return(ENXIO);
666}
667
668/*
669 * Attach the interface. Allocate softc structures, do ifmedia
670 * setup and ethernet/BPF attach.
671 */
672static int
673sf_attach(dev)
674	device_t		dev;
675{
676	int			i;
677	u_int32_t		command;
678	struct sf_softc		*sc;
679	struct ifnet		*ifp;
680	int			unit, rid, error = 0;
681
682	sc = device_get_softc(dev);
683	unit = device_get_unit(dev);
684
685	mtx_init(&sc->sf_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
686	    MTX_DEF | MTX_RECURSE);
687
688	/*
689	 * Handle power management nonsense.
690	 */
691	if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
692		u_int32_t		iobase, membase, irq;
693
694		/* Save important PCI config data. */
695		iobase = pci_read_config(dev, SF_PCI_LOIO, 4);
696		membase = pci_read_config(dev, SF_PCI_LOMEM, 4);
697		irq = pci_read_config(dev, SF_PCI_INTLINE, 4);
698
699		/* Reset the power state. */
700		printf("sf%d: chip is in D%d power mode "
701		    "-- setting to D0\n", unit,
702		    pci_get_powerstate(dev));
703		pci_set_powerstate(dev, PCI_POWERSTATE_D0);
704
705		/* Restore PCI config data. */
706		pci_write_config(dev, SF_PCI_LOIO, iobase, 4);
707		pci_write_config(dev, SF_PCI_LOMEM, membase, 4);
708		pci_write_config(dev, SF_PCI_INTLINE, irq, 4);
709	}
710
711	/*
712	 * Map control/status registers.
713	 */
714	pci_enable_busmaster(dev);
715	pci_enable_io(dev, SYS_RES_IOPORT);
716	pci_enable_io(dev, SYS_RES_MEMORY);
717	command = pci_read_config(dev, PCIR_COMMAND, 4);
718
719#ifdef SF_USEIOSPACE
720	if (!(command & PCIM_CMD_PORTEN)) {
721		printf("sf%d: failed to enable I/O ports!\n", unit);
722		error = ENXIO;
723		goto fail;
724	}
725#else
726	if (!(command & PCIM_CMD_MEMEN)) {
727		printf("sf%d: failed to enable memory mapping!\n", unit);
728		error = ENXIO;
729		goto fail;
730	}
731#endif
732
733	rid = SF_RID;
734	sc->sf_res = bus_alloc_resource(dev, SF_RES, &rid,
735	    0, ~0, 1, RF_ACTIVE);
736
737	if (sc->sf_res == NULL) {
738		printf ("sf%d: couldn't map ports\n", unit);
739		error = ENXIO;
740		goto fail;
741	}
742
743	sc->sf_btag = rman_get_bustag(sc->sf_res);
744	sc->sf_bhandle = rman_get_bushandle(sc->sf_res);
745
746	/* Allocate interrupt */
747	rid = 0;
748	sc->sf_irq = bus_alloc_resource(dev, SYS_RES_IRQ, &rid, 0, ~0, 1,
749	    RF_SHAREABLE | RF_ACTIVE);
750
751	if (sc->sf_irq == NULL) {
752		printf("sf%d: couldn't map interrupt\n", unit);
753		error = ENXIO;
754		goto fail;
755	}
756
757	callout_handle_init(&sc->sf_stat_ch);
758	/* Reset the adapter. */
759	sf_reset(sc);
760
761	/*
762	 * Get station address from the EEPROM.
763	 */
764	for (i = 0; i < ETHER_ADDR_LEN; i++)
765		sc->arpcom.ac_enaddr[i] =
766		    sf_read_eeprom(sc, SF_EE_NODEADDR + ETHER_ADDR_LEN - i);
767
768	/*
769	 * An Adaptec chip was detected. Inform the world.
770	 */
771	printf("sf%d: Ethernet address: %6D\n", unit,
772	    sc->arpcom.ac_enaddr, ":");
773
774	sc->sf_unit = unit;
775
776	/* Allocate the descriptor queues. */
777	sc->sf_ldata = contigmalloc(sizeof(struct sf_list_data), M_DEVBUF,
778	    M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0);
779
780	if (sc->sf_ldata == NULL) {
781		printf("sf%d: no memory for list buffers!\n", unit);
782		error = ENXIO;
783		goto fail;
784	}
785
786	bzero(sc->sf_ldata, sizeof(struct sf_list_data));
787
788	/* Do MII setup. */
789	if (mii_phy_probe(dev, &sc->sf_miibus,
790	    sf_ifmedia_upd, sf_ifmedia_sts)) {
791		printf("sf%d: MII without any phy!\n", sc->sf_unit);
792		error = ENXIO;
793		goto fail;
794	}
795
796	ifp = &sc->arpcom.ac_if;
797	ifp->if_softc = sc;
798	ifp->if_unit = unit;
799	ifp->if_name = "sf";
800	ifp->if_mtu = ETHERMTU;
801	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
802	ifp->if_ioctl = sf_ioctl;
803	ifp->if_output = ether_output;
804	ifp->if_start = sf_start;
805	ifp->if_watchdog = sf_watchdog;
806	ifp->if_init = sf_init;
807	ifp->if_baudrate = 10000000;
808	ifp->if_snd.ifq_maxlen = SF_TX_DLIST_CNT - 1;
809
810	/*
811	 * Call MI attach routine.
812	 */
813	ether_ifattach(ifp, sc->arpcom.ac_enaddr);
814
815	error = bus_setup_intr(dev, sc->sf_irq, INTR_TYPE_NET,
816	    sf_intr, sc, &sc->sf_intrhand);
817
818	if (error) {
819		printf("sf%d: couldn't set up irq\n", unit);
820		goto fail;
821	}
822
823fail:
824	if (error)
825		sf_detach(dev);
826
827	return(error);
828}
829
830static int
831sf_detach(dev)
832	device_t		dev;
833{
834	struct sf_softc		*sc;
835	struct ifnet		*ifp;
836
837	sc = device_get_softc(dev);
838	KASSERT(mtx_initialized(&sc->sf_mtx), "sf mutex not initialized");
839	SF_LOCK(sc);
840	ifp = &sc->arpcom.ac_if;
841
842	if (device_is_alive(dev)) {
843		if (bus_child_present(dev))
844			sf_stop(sc);
845		ether_ifdetach(ifp);
846		device_delete_child(dev, sc->sf_miibus);
847		bus_generic_detach(dev);
848	}
849
850	if (sc->sf_intrhand)
851		bus_teardown_intr(dev, sc->sf_irq, sc->sf_intrhand);
852	if (sc->sf_irq)
853		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sf_irq);
854	if (sc->sf_res)
855		bus_release_resource(dev, SF_RES, SF_RID, sc->sf_res);
856
857	if (sc->sf_ldata)
858		contigfree(sc->sf_ldata, sizeof(struct sf_list_data), M_DEVBUF);
859
860	SF_UNLOCK(sc);
861	mtx_destroy(&sc->sf_mtx);
862
863	return(0);
864}
865
866static int
867sf_init_rx_ring(sc)
868	struct sf_softc		*sc;
869{
870	struct sf_list_data	*ld;
871	int			i;
872
873	ld = sc->sf_ldata;
874
875	bzero((char *)ld->sf_rx_dlist_big,
876	    sizeof(struct sf_rx_bufdesc_type0) * SF_RX_DLIST_CNT);
877	bzero((char *)ld->sf_rx_clist,
878	    sizeof(struct sf_rx_cmpdesc_type3) * SF_RX_CLIST_CNT);
879
880	for (i = 0; i < SF_RX_DLIST_CNT; i++) {
881		if (sf_newbuf(sc, &ld->sf_rx_dlist_big[i], NULL) == ENOBUFS)
882			return(ENOBUFS);
883	}
884
885	return(0);
886}
887
888static void
889sf_init_tx_ring(sc)
890	struct sf_softc		*sc;
891{
892	struct sf_list_data	*ld;
893	int			i;
894
895	ld = sc->sf_ldata;
896
897	bzero((char *)ld->sf_tx_dlist,
898	    sizeof(struct sf_tx_bufdesc_type0) * SF_TX_DLIST_CNT);
899	bzero((char *)ld->sf_tx_clist,
900	    sizeof(struct sf_tx_cmpdesc_type0) * SF_TX_CLIST_CNT);
901
902	for (i = 0; i < SF_TX_DLIST_CNT; i++)
903		ld->sf_tx_dlist[i].sf_id = SF_TX_BUFDESC_ID;
904	for (i = 0; i < SF_TX_CLIST_CNT; i++)
905		ld->sf_tx_clist[i].sf_type = SF_TXCMPTYPE_TX;
906
907	ld->sf_tx_dlist[SF_TX_DLIST_CNT - 1].sf_end = 1;
908	sc->sf_tx_cnt = 0;
909
910	return;
911}
912
913static int
914sf_newbuf(sc, c, m)
915	struct sf_softc		*sc;
916	struct sf_rx_bufdesc_type0	*c;
917	struct mbuf		*m;
918{
919	struct mbuf		*m_new = NULL;
920
921	if (m == NULL) {
922		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
923		if (m_new == NULL)
924			return(ENOBUFS);
925
926		MCLGET(m_new, M_DONTWAIT);
927		if (!(m_new->m_flags & M_EXT)) {
928			m_freem(m_new);
929			return(ENOBUFS);
930		}
931		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
932	} else {
933		m_new = m;
934		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
935		m_new->m_data = m_new->m_ext.ext_buf;
936	}
937
938	m_adj(m_new, sizeof(u_int64_t));
939
940	c->sf_mbuf = m_new;
941	c->sf_addrlo = SF_RX_HOSTADDR(vtophys(mtod(m_new, caddr_t)));
942	c->sf_valid = 1;
943
944	return(0);
945}
946
947/*
948 * The starfire is programmed to use 'normal' mode for packet reception,
949 * which means we use the consumer/producer model for both the buffer
950 * descriptor queue and the completion descriptor queue. The only problem
951 * with this is that it involves a lot of register accesses: we have to
952 * read the RX completion consumer and producer indexes and the RX buffer
953 * producer index, plus the RX completion consumer and RX buffer producer
954 * indexes have to be updated. It would have been easier if Adaptec had
955 * put each index in a separate register, especially given that the damn
956 * NIC has a 512K register space.
957 *
958 * In spite of all the lovely features that Adaptec crammed into the 6915,
959 * it is marred by one truly stupid design flaw, which is that receive
960 * buffer addresses must be aligned on a longword boundary. This forces
961 * the packet payload to be unaligned, which is suboptimal on the x86 and
962 * completely unuseable on the Alpha. Our only recourse is to copy received
963 * packets into properly aligned buffers before handing them off.
964 */
965
966static void
967sf_rxeof(sc)
968	struct sf_softc		*sc;
969{
970	struct mbuf		*m;
971	struct ifnet		*ifp;
972	struct sf_rx_bufdesc_type0	*desc;
973	struct sf_rx_cmpdesc_type3	*cur_rx;
974	u_int32_t		rxcons, rxprod;
975	int			cmpprodidx, cmpconsidx, bufprodidx;
976
977	ifp = &sc->arpcom.ac_if;
978
979	rxcons = csr_read_4(sc, SF_CQ_CONSIDX);
980	rxprod = csr_read_4(sc, SF_RXDQ_PTR_Q1);
981	cmpprodidx = SF_IDX_LO(csr_read_4(sc, SF_CQ_PRODIDX));
982	cmpconsidx = SF_IDX_LO(rxcons);
983	bufprodidx = SF_IDX_LO(rxprod);
984
985	while (cmpconsidx != cmpprodidx) {
986		struct mbuf		*m0;
987
988		cur_rx = &sc->sf_ldata->sf_rx_clist[cmpconsidx];
989		desc = &sc->sf_ldata->sf_rx_dlist_big[cur_rx->sf_endidx];
990		m = desc->sf_mbuf;
991		SF_INC(cmpconsidx, SF_RX_CLIST_CNT);
992		SF_INC(bufprodidx, SF_RX_DLIST_CNT);
993
994		if (!(cur_rx->sf_status1 & SF_RXSTAT1_OK)) {
995			ifp->if_ierrors++;
996			sf_newbuf(sc, desc, m);
997			continue;
998		}
999
1000		m0 = m_devget(mtod(m, char *), cur_rx->sf_len, ETHER_ALIGN,
1001		    ifp, NULL);
1002		sf_newbuf(sc, desc, m);
1003		if (m0 == NULL) {
1004			ifp->if_ierrors++;
1005			continue;
1006		}
1007		m = m0;
1008
1009		ifp->if_ipackets++;
1010		(*ifp->if_input)(ifp, m);
1011	}
1012
1013	csr_write_4(sc, SF_CQ_CONSIDX,
1014	    (rxcons & ~SF_CQ_CONSIDX_RXQ1) | cmpconsidx);
1015	csr_write_4(sc, SF_RXDQ_PTR_Q1,
1016	    (rxprod & ~SF_RXDQ_PRODIDX) | bufprodidx);
1017
1018	return;
1019}
1020
1021/*
1022 * Read the transmit status from the completion queue and release
1023 * mbufs. Note that the buffer descriptor index in the completion
1024 * descriptor is an offset from the start of the transmit buffer
1025 * descriptor list in bytes. This is important because the manual
1026 * gives the impression that it should match the producer/consumer
1027 * index, which is the offset in 8 byte blocks.
1028 */
1029static void
1030sf_txeof(sc)
1031	struct sf_softc		*sc;
1032{
1033	int			txcons, cmpprodidx, cmpconsidx;
1034	struct sf_tx_cmpdesc_type1 *cur_cmp;
1035	struct sf_tx_bufdesc_type0 *cur_tx;
1036	struct ifnet		*ifp;
1037
1038	ifp = &sc->arpcom.ac_if;
1039
1040	txcons = csr_read_4(sc, SF_CQ_CONSIDX);
1041	cmpprodidx = SF_IDX_HI(csr_read_4(sc, SF_CQ_PRODIDX));
1042	cmpconsidx = SF_IDX_HI(txcons);
1043
1044	while (cmpconsidx != cmpprodidx) {
1045		cur_cmp = &sc->sf_ldata->sf_tx_clist[cmpconsidx];
1046		cur_tx = &sc->sf_ldata->sf_tx_dlist[cur_cmp->sf_index >> 7];
1047
1048		if (cur_cmp->sf_txstat & SF_TXSTAT_TX_OK)
1049			ifp->if_opackets++;
1050		else {
1051			if (cur_cmp->sf_txstat & SF_TXSTAT_TX_UNDERRUN)
1052				sf_txthresh_adjust(sc);
1053			ifp->if_oerrors++;
1054		}
1055
1056		sc->sf_tx_cnt--;
1057		if (cur_tx->sf_mbuf != NULL) {
1058			m_freem(cur_tx->sf_mbuf);
1059			cur_tx->sf_mbuf = NULL;
1060		} else
1061			break;
1062		SF_INC(cmpconsidx, SF_TX_CLIST_CNT);
1063	}
1064
1065	ifp->if_timer = 0;
1066	ifp->if_flags &= ~IFF_OACTIVE;
1067
1068	csr_write_4(sc, SF_CQ_CONSIDX,
1069	    (txcons & ~SF_CQ_CONSIDX_TXQ) |
1070	    ((cmpconsidx << 16) & 0xFFFF0000));
1071
1072	return;
1073}
1074
1075static void
1076sf_txthresh_adjust(sc)
1077	struct sf_softc		*sc;
1078{
1079	u_int32_t		txfctl;
1080	u_int8_t		txthresh;
1081
1082	txfctl = csr_read_4(sc, SF_TX_FRAMCTL);
1083	txthresh = txfctl & SF_TXFRMCTL_TXTHRESH;
1084	if (txthresh < 0xFF) {
1085		txthresh++;
1086		txfctl &= ~SF_TXFRMCTL_TXTHRESH;
1087		txfctl |= txthresh;
1088#ifdef DIAGNOSTIC
1089		printf("sf%d: tx underrun, increasing "
1090		    "tx threshold to %d bytes\n",
1091		    sc->sf_unit, txthresh * 4);
1092#endif
1093		csr_write_4(sc, SF_TX_FRAMCTL, txfctl);
1094	}
1095
1096	return;
1097}
1098
1099static void
1100sf_intr(arg)
1101	void			*arg;
1102{
1103	struct sf_softc		*sc;
1104	struct ifnet		*ifp;
1105	u_int32_t		status;
1106
1107	sc = arg;
1108	SF_LOCK(sc);
1109
1110	ifp = &sc->arpcom.ac_if;
1111
1112	if (!(csr_read_4(sc, SF_ISR_SHADOW) & SF_ISR_PCIINT_ASSERTED)) {
1113		SF_UNLOCK(sc);
1114		return;
1115	}
1116
1117	/* Disable interrupts. */
1118	csr_write_4(sc, SF_IMR, 0x00000000);
1119
1120	for (;;) {
1121		status = csr_read_4(sc, SF_ISR);
1122		if (status)
1123			csr_write_4(sc, SF_ISR, status);
1124
1125		if (!(status & SF_INTRS))
1126			break;
1127
1128		if (status & SF_ISR_RXDQ1_DMADONE)
1129			sf_rxeof(sc);
1130
1131		if (status & SF_ISR_TX_TXDONE ||
1132		    status & SF_ISR_TX_DMADONE ||
1133		    status & SF_ISR_TX_QUEUEDONE)
1134			sf_txeof(sc);
1135
1136		if (status & SF_ISR_TX_LOFIFO)
1137			sf_txthresh_adjust(sc);
1138
1139		if (status & SF_ISR_ABNORMALINTR) {
1140			if (status & SF_ISR_STATSOFLOW) {
1141				untimeout(sf_stats_update, sc,
1142				    sc->sf_stat_ch);
1143				sf_stats_update(sc);
1144			} else
1145				sf_init(sc);
1146		}
1147	}
1148
1149	/* Re-enable interrupts. */
1150	csr_write_4(sc, SF_IMR, SF_INTRS);
1151
1152	if (ifp->if_snd.ifq_head != NULL)
1153		sf_start(ifp);
1154
1155	SF_UNLOCK(sc);
1156	return;
1157}
1158
1159static void
1160sf_init(xsc)
1161	void			*xsc;
1162{
1163	struct sf_softc		*sc;
1164	struct ifnet		*ifp;
1165	struct mii_data		*mii;
1166	int			i;
1167
1168	sc = xsc;
1169	SF_LOCK(sc);
1170	ifp = &sc->arpcom.ac_if;
1171	mii = device_get_softc(sc->sf_miibus);
1172
1173	sf_stop(sc);
1174	sf_reset(sc);
1175
1176	/* Init all the receive filter registers */
1177	for (i = SF_RXFILT_PERFECT_BASE;
1178	    i < (SF_RXFILT_HASH_MAX + 1); i += 4)
1179		csr_write_4(sc, i, 0);
1180
1181	/* Empty stats counter registers. */
1182	for (i = 0; i < sizeof(struct sf_stats)/sizeof(u_int32_t); i++)
1183		csr_write_4(sc, SF_STATS_BASE +
1184		    (i + sizeof(u_int32_t)), 0);
1185
1186	/* Init our MAC address */
1187	csr_write_4(sc, SF_PAR0, *(u_int32_t *)(&sc->arpcom.ac_enaddr[0]));
1188	csr_write_4(sc, SF_PAR1, *(u_int32_t *)(&sc->arpcom.ac_enaddr[4]));
1189	sf_setperf(sc, 0, (caddr_t)&sc->arpcom.ac_enaddr);
1190
1191	if (sf_init_rx_ring(sc) == ENOBUFS) {
1192		printf("sf%d: initialization failed: no "
1193		    "memory for rx buffers\n", sc->sf_unit);
1194		SF_UNLOCK(sc);
1195		return;
1196	}
1197
1198	sf_init_tx_ring(sc);
1199
1200	csr_write_4(sc, SF_RXFILT, SF_PERFMODE_NORMAL|SF_HASHMODE_WITHVLAN);
1201
1202	/* If we want promiscuous mode, set the allframes bit. */
1203	if (ifp->if_flags & IFF_PROMISC) {
1204		SF_SETBIT(sc, SF_RXFILT, SF_RXFILT_PROMISC);
1205	} else {
1206		SF_CLRBIT(sc, SF_RXFILT, SF_RXFILT_PROMISC);
1207	}
1208
1209	if (ifp->if_flags & IFF_BROADCAST) {
1210		SF_SETBIT(sc, SF_RXFILT, SF_RXFILT_BROAD);
1211	} else {
1212		SF_CLRBIT(sc, SF_RXFILT, SF_RXFILT_BROAD);
1213	}
1214
1215	/*
1216	 * Load the multicast filter.
1217	 */
1218	sf_setmulti(sc);
1219
1220	/* Init the completion queue indexes */
1221	csr_write_4(sc, SF_CQ_CONSIDX, 0);
1222	csr_write_4(sc, SF_CQ_PRODIDX, 0);
1223
1224	/* Init the RX completion queue */
1225	csr_write_4(sc, SF_RXCQ_CTL_1,
1226	    vtophys(sc->sf_ldata->sf_rx_clist) & SF_RXCQ_ADDR);
1227	SF_SETBIT(sc, SF_RXCQ_CTL_1, SF_RXCQTYPE_3);
1228
1229	/* Init RX DMA control. */
1230	SF_SETBIT(sc, SF_RXDMA_CTL, SF_RXDMA_REPORTBADPKTS);
1231
1232	/* Init the RX buffer descriptor queue. */
1233	csr_write_4(sc, SF_RXDQ_ADDR_Q1,
1234	    vtophys(sc->sf_ldata->sf_rx_dlist_big));
1235	csr_write_4(sc, SF_RXDQ_CTL_1, (MCLBYTES << 16) | SF_DESCSPACE_16BYTES);
1236	csr_write_4(sc, SF_RXDQ_PTR_Q1, SF_RX_DLIST_CNT - 1);
1237
1238	/* Init the TX completion queue */
1239	csr_write_4(sc, SF_TXCQ_CTL,
1240	    vtophys(sc->sf_ldata->sf_tx_clist) & SF_RXCQ_ADDR);
1241
1242	/* Init the TX buffer descriptor queue. */
1243	csr_write_4(sc, SF_TXDQ_ADDR_HIPRIO,
1244		vtophys(sc->sf_ldata->sf_tx_dlist));
1245	SF_SETBIT(sc, SF_TX_FRAMCTL, SF_TXFRMCTL_CPLAFTERTX);
1246	csr_write_4(sc, SF_TXDQ_CTL,
1247	    SF_TXBUFDESC_TYPE0|SF_TXMINSPACE_128BYTES|SF_TXSKIPLEN_8BYTES);
1248	SF_SETBIT(sc, SF_TXDQ_CTL, SF_TXDQCTL_NODMACMP);
1249
1250	/* Enable autopadding of short TX frames. */
1251	SF_SETBIT(sc, SF_MACCFG_1, SF_MACCFG1_AUTOPAD);
1252
1253	/* Enable interrupts. */
1254	csr_write_4(sc, SF_IMR, SF_INTRS);
1255	SF_SETBIT(sc, SF_PCI_DEVCFG, SF_PCIDEVCFG_INTR_ENB);
1256
1257	/* Enable the RX and TX engines. */
1258	SF_SETBIT(sc, SF_GEN_ETH_CTL, SF_ETHCTL_RX_ENB|SF_ETHCTL_RXDMA_ENB);
1259	SF_SETBIT(sc, SF_GEN_ETH_CTL, SF_ETHCTL_TX_ENB|SF_ETHCTL_TXDMA_ENB);
1260
1261	/*mii_mediachg(mii);*/
1262	sf_ifmedia_upd(ifp);
1263
1264	ifp->if_flags |= IFF_RUNNING;
1265	ifp->if_flags &= ~IFF_OACTIVE;
1266
1267	sc->sf_stat_ch = timeout(sf_stats_update, sc, hz);
1268
1269	SF_UNLOCK(sc);
1270
1271	return;
1272}
1273
1274static int
1275sf_encap(sc, c, m_head)
1276	struct sf_softc		*sc;
1277	struct sf_tx_bufdesc_type0 *c;
1278	struct mbuf		*m_head;
1279{
1280	int			frag = 0;
1281	struct sf_frag		*f = NULL;
1282	struct mbuf		*m;
1283
1284	m = m_head;
1285
1286	for (m = m_head, frag = 0; m != NULL; m = m->m_next) {
1287		if (m->m_len != 0) {
1288			if (frag == SF_MAXFRAGS)
1289				break;
1290			f = &c->sf_frags[frag];
1291			if (frag == 0)
1292				f->sf_pktlen = m_head->m_pkthdr.len;
1293			f->sf_fraglen = m->m_len;
1294			f->sf_addr = vtophys(mtod(m, vm_offset_t));
1295			frag++;
1296		}
1297	}
1298
1299	if (m != NULL) {
1300		struct mbuf		*m_new = NULL;
1301
1302		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1303		if (m_new == NULL) {
1304			printf("sf%d: no memory for tx list\n", sc->sf_unit);
1305			return(1);
1306		}
1307
1308		if (m_head->m_pkthdr.len > MHLEN) {
1309			MCLGET(m_new, M_DONTWAIT);
1310			if (!(m_new->m_flags & M_EXT)) {
1311				m_freem(m_new);
1312				printf("sf%d: no memory for tx list\n",
1313				    sc->sf_unit);
1314				return(1);
1315			}
1316		}
1317		m_copydata(m_head, 0, m_head->m_pkthdr.len,
1318		    mtod(m_new, caddr_t));
1319		m_new->m_pkthdr.len = m_new->m_len = m_head->m_pkthdr.len;
1320		m_freem(m_head);
1321		m_head = m_new;
1322		f = &c->sf_frags[0];
1323		f->sf_fraglen = f->sf_pktlen = m_head->m_pkthdr.len;
1324		f->sf_addr = vtophys(mtod(m_head, caddr_t));
1325		frag = 1;
1326	}
1327
1328	c->sf_mbuf = m_head;
1329	c->sf_id = SF_TX_BUFDESC_ID;
1330	c->sf_fragcnt = frag;
1331	c->sf_intr = 1;
1332	c->sf_caltcp = 0;
1333	c->sf_crcen = 1;
1334
1335	return(0);
1336}
1337
1338static void
1339sf_start(ifp)
1340	struct ifnet		*ifp;
1341{
1342	struct sf_softc		*sc;
1343	struct sf_tx_bufdesc_type0 *cur_tx = NULL;
1344	struct mbuf		*m_head = NULL;
1345	int			i, txprod;
1346
1347	sc = ifp->if_softc;
1348	SF_LOCK(sc);
1349
1350	if (!sc->sf_link && ifp->if_snd.ifq_len < 10) {
1351		SF_UNLOCK(sc);
1352		return;
1353	}
1354
1355	if (ifp->if_flags & IFF_OACTIVE) {
1356		SF_UNLOCK(sc);
1357		return;
1358	}
1359
1360	txprod = csr_read_4(sc, SF_TXDQ_PRODIDX);
1361	i = SF_IDX_HI(txprod) >> 4;
1362
1363	if (sc->sf_ldata->sf_tx_dlist[i].sf_mbuf != NULL) {
1364		printf("sf%d: TX ring full, resetting\n", sc->sf_unit);
1365		sf_init(sc);
1366		txprod = csr_read_4(sc, SF_TXDQ_PRODIDX);
1367		i = SF_IDX_HI(txprod) >> 4;
1368	}
1369
1370	while(sc->sf_ldata->sf_tx_dlist[i].sf_mbuf == NULL) {
1371		if (sc->sf_tx_cnt >= (SF_TX_DLIST_CNT - 5)) {
1372			ifp->if_flags |= IFF_OACTIVE;
1373			cur_tx = NULL;
1374			break;
1375		}
1376		IF_DEQUEUE(&ifp->if_snd, m_head);
1377		if (m_head == NULL)
1378			break;
1379
1380		cur_tx = &sc->sf_ldata->sf_tx_dlist[i];
1381		if (sf_encap(sc, cur_tx, m_head)) {
1382			IF_PREPEND(&ifp->if_snd, m_head);
1383			ifp->if_flags |= IFF_OACTIVE;
1384			cur_tx = NULL;
1385			break;
1386		}
1387
1388		/*
1389		 * If there's a BPF listener, bounce a copy of this frame
1390		 * to him.
1391		 */
1392		BPF_MTAP(ifp, m_head);
1393
1394		SF_INC(i, SF_TX_DLIST_CNT);
1395		sc->sf_tx_cnt++;
1396		/*
1397		 * Don't get the TX DMA queue get too full.
1398		 */
1399		if (sc->sf_tx_cnt > 64)
1400			break;
1401	}
1402
1403	if (cur_tx == NULL) {
1404		SF_UNLOCK(sc);
1405		return;
1406	}
1407
1408	/* Transmit */
1409	csr_write_4(sc, SF_TXDQ_PRODIDX,
1410	    (txprod & ~SF_TXDQ_PRODIDX_HIPRIO) |
1411	    ((i << 20) & 0xFFFF0000));
1412
1413	ifp->if_timer = 5;
1414
1415	SF_UNLOCK(sc);
1416
1417	return;
1418}
1419
1420static void
1421sf_stop(sc)
1422	struct sf_softc		*sc;
1423{
1424	int			i;
1425	struct ifnet		*ifp;
1426
1427	SF_LOCK(sc);
1428
1429	ifp = &sc->arpcom.ac_if;
1430
1431	untimeout(sf_stats_update, sc, sc->sf_stat_ch);
1432
1433	csr_write_4(sc, SF_GEN_ETH_CTL, 0);
1434	csr_write_4(sc, SF_CQ_CONSIDX, 0);
1435	csr_write_4(sc, SF_CQ_PRODIDX, 0);
1436	csr_write_4(sc, SF_RXDQ_ADDR_Q1, 0);
1437	csr_write_4(sc, SF_RXDQ_CTL_1, 0);
1438	csr_write_4(sc, SF_RXDQ_PTR_Q1, 0);
1439	csr_write_4(sc, SF_TXCQ_CTL, 0);
1440	csr_write_4(sc, SF_TXDQ_ADDR_HIPRIO, 0);
1441	csr_write_4(sc, SF_TXDQ_CTL, 0);
1442	sf_reset(sc);
1443
1444	sc->sf_link = 0;
1445
1446	for (i = 0; i < SF_RX_DLIST_CNT; i++) {
1447		if (sc->sf_ldata->sf_rx_dlist_big[i].sf_mbuf != NULL) {
1448			m_freem(sc->sf_ldata->sf_rx_dlist_big[i].sf_mbuf);
1449			sc->sf_ldata->sf_rx_dlist_big[i].sf_mbuf = NULL;
1450		}
1451	}
1452
1453	for (i = 0; i < SF_TX_DLIST_CNT; i++) {
1454		if (sc->sf_ldata->sf_tx_dlist[i].sf_mbuf != NULL) {
1455			m_freem(sc->sf_ldata->sf_tx_dlist[i].sf_mbuf);
1456			sc->sf_ldata->sf_tx_dlist[i].sf_mbuf = NULL;
1457		}
1458	}
1459
1460	ifp->if_flags &= ~(IFF_RUNNING|IFF_OACTIVE);
1461	SF_UNLOCK(sc);
1462
1463	return;
1464}
1465
1466/*
1467 * Note: it is important that this function not be interrupted. We
1468 * use a two-stage register access scheme: if we are interrupted in
1469 * between setting the indirect address register and reading from the
1470 * indirect data register, the contents of the address register could
1471 * be changed out from under us.
1472 */
1473static void
1474sf_stats_update(xsc)
1475	void			*xsc;
1476{
1477	struct sf_softc		*sc;
1478	struct ifnet		*ifp;
1479	struct mii_data		*mii;
1480	struct sf_stats		stats;
1481	u_int32_t		*ptr;
1482	int			i;
1483
1484	sc = xsc;
1485	SF_LOCK(sc);
1486	ifp = &sc->arpcom.ac_if;
1487	mii = device_get_softc(sc->sf_miibus);
1488
1489	ptr = (u_int32_t *)&stats;
1490	for (i = 0; i < sizeof(stats)/sizeof(u_int32_t); i++)
1491		ptr[i] = csr_read_4(sc, SF_STATS_BASE +
1492		    (i + sizeof(u_int32_t)));
1493
1494	for (i = 0; i < sizeof(stats)/sizeof(u_int32_t); i++)
1495		csr_write_4(sc, SF_STATS_BASE +
1496		    (i + sizeof(u_int32_t)), 0);
1497
1498	ifp->if_collisions += stats.sf_tx_single_colls +
1499	    stats.sf_tx_multi_colls + stats.sf_tx_excess_colls;
1500
1501	mii_tick(mii);
1502
1503	if (!sc->sf_link && mii->mii_media_status & IFM_ACTIVE &&
1504	    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
1505		sc->sf_link++;
1506		if (ifp->if_snd.ifq_head != NULL)
1507			sf_start(ifp);
1508	}
1509
1510	sc->sf_stat_ch = timeout(sf_stats_update, sc, hz);
1511
1512	SF_UNLOCK(sc);
1513
1514	return;
1515}
1516
1517static void
1518sf_watchdog(ifp)
1519	struct ifnet		*ifp;
1520{
1521	struct sf_softc		*sc;
1522
1523	sc = ifp->if_softc;
1524
1525	SF_LOCK(sc);
1526
1527	ifp->if_oerrors++;
1528	printf("sf%d: watchdog timeout\n", sc->sf_unit);
1529
1530	sf_stop(sc);
1531	sf_reset(sc);
1532	sf_init(sc);
1533
1534	if (ifp->if_snd.ifq_head != NULL)
1535		sf_start(ifp);
1536
1537	SF_UNLOCK(sc);
1538
1539	return;
1540}
1541
1542static void
1543sf_shutdown(dev)
1544	device_t		dev;
1545{
1546	struct sf_softc		*sc;
1547
1548	sc = device_get_softc(dev);
1549
1550	sf_stop(sc);
1551
1552	return;
1553}
1554