if_sf.c revision 109623
1/*
2 * Copyright (c) 1997, 1998, 1999
3 *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 *    must display the following acknowledgement:
15 *	This product includes software developed by Bill Paul.
16 * 4. Neither the name of the author nor the names of any co-contributors
17 *    may be used to endorse or promote products derived from this software
18 *    without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30 * THE POSSIBILITY OF SUCH DAMAGE.
31 *
32 * $FreeBSD: head/sys/dev/sf/if_sf.c 109623 2003-01-21 08:56:16Z alfred $
33 */
34
35/*
36 * Adaptec AIC-6915 "Starfire" PCI fast ethernet driver for FreeBSD.
37 * Programming manual is available from:
38 * ftp.adaptec.com:/pub/BBS/userguides/aic6915_pg.pdf.
39 *
40 * Written by Bill Paul <wpaul@ctr.columbia.edu>
41 * Department of Electical Engineering
42 * Columbia University, New York City
43 */
44
45/*
46 * The Adaptec AIC-6915 "Starfire" is a 64-bit 10/100 PCI ethernet
47 * controller designed with flexibility and reducing CPU load in mind.
48 * The Starfire offers high and low priority buffer queues, a
49 * producer/consumer index mechanism and several different buffer
50 * queue and completion queue descriptor types. Any one of a number
51 * of different driver designs can be used, depending on system and
52 * OS requirements. This driver makes use of type0 transmit frame
53 * descriptors (since BSD fragments packets across an mbuf chain)
54 * and two RX buffer queues prioritized on size (one queue for small
55 * frames that will fit into a single mbuf, another with full size
56 * mbuf clusters for everything else). The producer/consumer indexes
57 * and completion queues are also used.
58 *
59 * One downside to the Starfire has to do with alignment: buffer
60 * queues must be aligned on 256-byte boundaries, and receive buffers
61 * must be aligned on longword boundaries. The receive buffer alignment
62 * causes problems on the Alpha platform, where the packet payload
63 * should be longword aligned. There is no simple way around this.
64 *
65 * For receive filtering, the Starfire offers 16 perfect filter slots
66 * and a 512-bit hash table.
67 *
68 * The Starfire has no internal transceiver, relying instead on an
69 * external MII-based transceiver. Accessing registers on external
70 * PHYs is done through a special register map rather than with the
71 * usual bitbang MDIO method.
72 *
73 * Acesssing the registers on the Starfire is a little tricky. The
74 * Starfire has a 512K internal register space. When programmed for
75 * PCI memory mapped mode, the entire register space can be accessed
76 * directly. However in I/O space mode, only 256 bytes are directly
77 * mapped into PCI I/O space. The other registers can be accessed
78 * indirectly using the SF_INDIRECTIO_ADDR and SF_INDIRECTIO_DATA
79 * registers inside the 256-byte I/O window.
80 */
81
82#include <sys/param.h>
83#include <sys/systm.h>
84#include <sys/sockio.h>
85#include <sys/mbuf.h>
86#include <sys/malloc.h>
87#include <sys/kernel.h>
88#include <sys/socket.h>
89
90#include <net/if.h>
91#include <net/if_arp.h>
92#include <net/ethernet.h>
93#include <net/if_dl.h>
94#include <net/if_media.h>
95
96#include <net/bpf.h>
97
98#include <vm/vm.h>              /* for vtophys */
99#include <vm/pmap.h>            /* for vtophys */
100#include <machine/bus_pio.h>
101#include <machine/bus_memio.h>
102#include <machine/bus.h>
103#include <machine/resource.h>
104#include <sys/bus.h>
105#include <sys/rman.h>
106
107#include <dev/mii/mii.h>
108#include <dev/mii/miivar.h>
109
110/* "controller miibus0" required.  See GENERIC if you get errors here. */
111#include "miibus_if.h"
112
113#include <pci/pcireg.h>
114#include <pci/pcivar.h>
115
116#define SF_USEIOSPACE
117
118#include <pci/if_sfreg.h>
119
120MODULE_DEPEND(sf, miibus, 1, 1, 1);
121
122#ifndef lint
123static const char rcsid[] =
124  "$FreeBSD: head/sys/dev/sf/if_sf.c 109623 2003-01-21 08:56:16Z alfred $";
125#endif
126
127static struct sf_type sf_devs[] = {
128	{ AD_VENDORID, AD_DEVICEID_STARFIRE,
129		"Adaptec AIC-6915 10/100BaseTX" },
130	{ 0, 0, NULL }
131};
132
133static int sf_probe		(device_t);
134static int sf_attach		(device_t);
135static int sf_detach		(device_t);
136static void sf_intr		(void *);
137static void sf_stats_update	(void *);
138static void sf_rxeof		(struct sf_softc *);
139static void sf_txeof		(struct sf_softc *);
140static int sf_encap		(struct sf_softc *,
141					struct sf_tx_bufdesc_type0 *,
142					struct mbuf *);
143static void sf_start		(struct ifnet *);
144static int sf_ioctl		(struct ifnet *, u_long, caddr_t);
145static void sf_init		(void *);
146static void sf_stop		(struct sf_softc *);
147static void sf_watchdog		(struct ifnet *);
148static void sf_shutdown		(device_t);
149static int sf_ifmedia_upd	(struct ifnet *);
150static void sf_ifmedia_sts	(struct ifnet *, struct ifmediareq *);
151static void sf_reset		(struct sf_softc *);
152static int sf_init_rx_ring	(struct sf_softc *);
153static void sf_init_tx_ring	(struct sf_softc *);
154static int sf_newbuf		(struct sf_softc *,
155					struct sf_rx_bufdesc_type0 *,
156					struct mbuf *);
157static void sf_setmulti		(struct sf_softc *);
158static int sf_setperf		(struct sf_softc *, int, caddr_t);
159static int sf_sethash		(struct sf_softc *, caddr_t, int);
160#ifdef notdef
161static int sf_setvlan		(struct sf_softc *, int, u_int32_t);
162#endif
163
164static u_int8_t sf_read_eeprom	(struct sf_softc *, int);
165static u_int32_t sf_calchash	(caddr_t);
166
167static int sf_miibus_readreg	(device_t, int, int);
168static int sf_miibus_writereg	(device_t, int, int, int);
169static void sf_miibus_statchg	(device_t);
170
171static u_int32_t csr_read_4	(struct sf_softc *, int);
172static void csr_write_4		(struct sf_softc *, int, u_int32_t);
173static void sf_txthresh_adjust	(struct sf_softc *);
174
175#ifdef SF_USEIOSPACE
176#define SF_RES			SYS_RES_IOPORT
177#define SF_RID			SF_PCI_LOIO
178#else
179#define SF_RES			SYS_RES_MEMORY
180#define SF_RID			SF_PCI_LOMEM
181#endif
182
183static device_method_t sf_methods[] = {
184	/* Device interface */
185	DEVMETHOD(device_probe,		sf_probe),
186	DEVMETHOD(device_attach,	sf_attach),
187	DEVMETHOD(device_detach,	sf_detach),
188	DEVMETHOD(device_shutdown,	sf_shutdown),
189
190	/* bus interface */
191	DEVMETHOD(bus_print_child,	bus_generic_print_child),
192	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
193
194	/* MII interface */
195	DEVMETHOD(miibus_readreg,	sf_miibus_readreg),
196	DEVMETHOD(miibus_writereg,	sf_miibus_writereg),
197	DEVMETHOD(miibus_statchg,	sf_miibus_statchg),
198
199	{ 0, 0 }
200};
201
202static driver_t sf_driver = {
203	"sf",
204	sf_methods,
205	sizeof(struct sf_softc),
206};
207
208static devclass_t sf_devclass;
209
210DRIVER_MODULE(if_sf, pci, sf_driver, sf_devclass, 0, 0);
211DRIVER_MODULE(miibus, sf, miibus_driver, miibus_devclass, 0, 0);
212
213#define SF_SETBIT(sc, reg, x)	\
214	csr_write_4(sc, reg, csr_read_4(sc, reg) | (x))
215
216#define SF_CLRBIT(sc, reg, x)				\
217	csr_write_4(sc, reg, csr_read_4(sc, reg) & ~(x))
218
219static u_int32_t
220csr_read_4(sc, reg)
221	struct sf_softc		*sc;
222	int			reg;
223{
224	u_int32_t		val;
225
226#ifdef SF_USEIOSPACE
227	CSR_WRITE_4(sc, SF_INDIRECTIO_ADDR, reg + SF_RMAP_INTREG_BASE);
228	val = CSR_READ_4(sc, SF_INDIRECTIO_DATA);
229#else
230	val = CSR_READ_4(sc, (reg + SF_RMAP_INTREG_BASE));
231#endif
232
233	return(val);
234}
235
236static u_int8_t
237sf_read_eeprom(sc, reg)
238	struct sf_softc		*sc;
239	int			reg;
240{
241	u_int8_t		val;
242
243	val = (csr_read_4(sc, SF_EEADDR_BASE +
244	    (reg & 0xFFFFFFFC)) >> (8 * (reg & 3))) & 0xFF;
245
246	return(val);
247}
248
249static void
250csr_write_4(sc, reg, val)
251	struct sf_softc		*sc;
252	int			reg;
253	u_int32_t		val;
254{
255#ifdef SF_USEIOSPACE
256	CSR_WRITE_4(sc, SF_INDIRECTIO_ADDR, reg + SF_RMAP_INTREG_BASE);
257	CSR_WRITE_4(sc, SF_INDIRECTIO_DATA, val);
258#else
259	CSR_WRITE_4(sc, (reg + SF_RMAP_INTREG_BASE), val);
260#endif
261	return;
262}
263
264static u_int32_t
265sf_calchash(addr)
266	caddr_t			addr;
267{
268	u_int32_t		crc, carry;
269	int			i, j;
270	u_int8_t		c;
271
272	/* Compute CRC for the address value. */
273	crc = 0xFFFFFFFF; /* initial value */
274
275	for (i = 0; i < 6; i++) {
276		c = *(addr + i);
277		for (j = 0; j < 8; j++) {
278			carry = ((crc & 0x80000000) ? 1 : 0) ^ (c & 0x01);
279			crc <<= 1;
280			c >>= 1;
281			if (carry)
282				crc = (crc ^ 0x04c11db6) | carry;
283		}
284	}
285
286	/* return the filter bit position */
287	return(crc >> 23 & 0x1FF);
288}
289
290/*
291 * Copy the address 'mac' into the perfect RX filter entry at
292 * offset 'idx.' The perfect filter only has 16 entries so do
293 * some sanity tests.
294 */
295static int
296sf_setperf(sc, idx, mac)
297	struct sf_softc		*sc;
298	int			idx;
299	caddr_t			mac;
300{
301	u_int16_t		*p;
302
303	if (idx < 0 || idx > SF_RXFILT_PERFECT_CNT)
304		return(EINVAL);
305
306	if (mac == NULL)
307		return(EINVAL);
308
309	p = (u_int16_t *)mac;
310
311	csr_write_4(sc, SF_RXFILT_PERFECT_BASE +
312	    (idx * SF_RXFILT_PERFECT_SKIP), htons(p[2]));
313	csr_write_4(sc, SF_RXFILT_PERFECT_BASE +
314	    (idx * SF_RXFILT_PERFECT_SKIP) + 4, htons(p[1]));
315	csr_write_4(sc, SF_RXFILT_PERFECT_BASE +
316	    (idx * SF_RXFILT_PERFECT_SKIP) + 8, htons(p[0]));
317
318	return(0);
319}
320
321/*
322 * Set the bit in the 512-bit hash table that corresponds to the
323 * specified mac address 'mac.' If 'prio' is nonzero, update the
324 * priority hash table instead of the filter hash table.
325 */
326static int
327sf_sethash(sc, mac, prio)
328	struct sf_softc		*sc;
329	caddr_t			mac;
330	int			prio;
331{
332	u_int32_t		h = 0;
333
334	if (mac == NULL)
335		return(EINVAL);
336
337	h = sf_calchash(mac);
338
339	if (prio) {
340		SF_SETBIT(sc, SF_RXFILT_HASH_BASE + SF_RXFILT_HASH_PRIOOFF +
341		    (SF_RXFILT_HASH_SKIP * (h >> 4)), (1 << (h & 0xF)));
342	} else {
343		SF_SETBIT(sc, SF_RXFILT_HASH_BASE + SF_RXFILT_HASH_ADDROFF +
344		    (SF_RXFILT_HASH_SKIP * (h >> 4)), (1 << (h & 0xF)));
345	}
346
347	return(0);
348}
349
350#ifdef notdef
351/*
352 * Set a VLAN tag in the receive filter.
353 */
354static int
355sf_setvlan(sc, idx, vlan)
356	struct sf_softc		*sc;
357	int			idx;
358	u_int32_t		vlan;
359{
360	if (idx < 0 || idx >> SF_RXFILT_HASH_CNT)
361		return(EINVAL);
362
363	csr_write_4(sc, SF_RXFILT_HASH_BASE +
364	    (idx * SF_RXFILT_HASH_SKIP) + SF_RXFILT_HASH_VLANOFF, vlan);
365
366	return(0);
367}
368#endif
369
370static int
371sf_miibus_readreg(dev, phy, reg)
372	device_t		dev;
373	int			phy, reg;
374{
375	struct sf_softc		*sc;
376	int			i;
377	u_int32_t		val = 0;
378
379	sc = device_get_softc(dev);
380
381	for (i = 0; i < SF_TIMEOUT; i++) {
382		val = csr_read_4(sc, SF_PHY_REG(phy, reg));
383		if (val & SF_MII_DATAVALID)
384			break;
385	}
386
387	if (i == SF_TIMEOUT)
388		return(0);
389
390	if ((val & 0x0000FFFF) == 0xFFFF)
391		return(0);
392
393	return(val & 0x0000FFFF);
394}
395
396static int
397sf_miibus_writereg(dev, phy, reg, val)
398	device_t		dev;
399	int			phy, reg, val;
400{
401	struct sf_softc		*sc;
402	int			i;
403	int			busy;
404
405	sc = device_get_softc(dev);
406
407	csr_write_4(sc, SF_PHY_REG(phy, reg), val);
408
409	for (i = 0; i < SF_TIMEOUT; i++) {
410		busy = csr_read_4(sc, SF_PHY_REG(phy, reg));
411		if (!(busy & SF_MII_BUSY))
412			break;
413	}
414
415	return(0);
416}
417
418static void
419sf_miibus_statchg(dev)
420	device_t		dev;
421{
422	struct sf_softc		*sc;
423	struct mii_data		*mii;
424
425	sc = device_get_softc(dev);
426	mii = device_get_softc(sc->sf_miibus);
427
428	if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
429		SF_SETBIT(sc, SF_MACCFG_1, SF_MACCFG1_FULLDUPLEX);
430		csr_write_4(sc, SF_BKTOBKIPG, SF_IPGT_FDX);
431	} else {
432		SF_CLRBIT(sc, SF_MACCFG_1, SF_MACCFG1_FULLDUPLEX);
433		csr_write_4(sc, SF_BKTOBKIPG, SF_IPGT_HDX);
434	}
435
436	return;
437}
438
439static void
440sf_setmulti(sc)
441	struct sf_softc		*sc;
442{
443	struct ifnet		*ifp;
444	int			i;
445	struct ifmultiaddr	*ifma;
446	u_int8_t		dummy[] = { 0, 0, 0, 0, 0, 0 };
447
448	ifp = &sc->arpcom.ac_if;
449
450	/* First zot all the existing filters. */
451	for (i = 1; i < SF_RXFILT_PERFECT_CNT; i++)
452		sf_setperf(sc, i, (char *)&dummy);
453	for (i = SF_RXFILT_HASH_BASE;
454	    i < (SF_RXFILT_HASH_MAX + 1); i += 4)
455		csr_write_4(sc, i, 0);
456	SF_CLRBIT(sc, SF_RXFILT, SF_RXFILT_ALLMULTI);
457
458	/* Now program new ones. */
459	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
460		SF_SETBIT(sc, SF_RXFILT, SF_RXFILT_ALLMULTI);
461	} else {
462		i = 1;
463		TAILQ_FOREACH_REVERSE(ifma, &ifp->if_multiaddrs, ifmultihead, ifma_link) {
464			if (ifma->ifma_addr->sa_family != AF_LINK)
465				continue;
466			/*
467			 * Program the first 15 multicast groups
468			 * into the perfect filter. For all others,
469			 * use the hash table.
470			 */
471			if (i < SF_RXFILT_PERFECT_CNT) {
472				sf_setperf(sc, i,
473			LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
474				i++;
475				continue;
476			}
477
478			sf_sethash(sc,
479			    LLADDR((struct sockaddr_dl *)ifma->ifma_addr), 0);
480		}
481	}
482
483	return;
484}
485
486/*
487 * Set media options.
488 */
489static int
490sf_ifmedia_upd(ifp)
491	struct ifnet		*ifp;
492{
493	struct sf_softc		*sc;
494	struct mii_data		*mii;
495
496	sc = ifp->if_softc;
497	mii = device_get_softc(sc->sf_miibus);
498	sc->sf_link = 0;
499	if (mii->mii_instance) {
500		struct mii_softc        *miisc;
501		LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
502			mii_phy_reset(miisc);
503	}
504	mii_mediachg(mii);
505
506	return(0);
507}
508
509/*
510 * Report current media status.
511 */
512static void
513sf_ifmedia_sts(ifp, ifmr)
514	struct ifnet		*ifp;
515	struct ifmediareq	*ifmr;
516{
517	struct sf_softc		*sc;
518	struct mii_data		*mii;
519
520	sc = ifp->if_softc;
521	mii = device_get_softc(sc->sf_miibus);
522
523	mii_pollstat(mii);
524	ifmr->ifm_active = mii->mii_media_active;
525	ifmr->ifm_status = mii->mii_media_status;
526
527	return;
528}
529
530static int
531sf_ioctl(ifp, command, data)
532	struct ifnet		*ifp;
533	u_long			command;
534	caddr_t			data;
535{
536	struct sf_softc		*sc = ifp->if_softc;
537	struct ifreq		*ifr = (struct ifreq *) data;
538	struct mii_data		*mii;
539	int			error = 0;
540
541	SF_LOCK(sc);
542
543	switch(command) {
544	case SIOCSIFFLAGS:
545		if (ifp->if_flags & IFF_UP) {
546			if (ifp->if_flags & IFF_RUNNING &&
547			    ifp->if_flags & IFF_PROMISC &&
548			    !(sc->sf_if_flags & IFF_PROMISC)) {
549				SF_SETBIT(sc, SF_RXFILT, SF_RXFILT_PROMISC);
550			} else if (ifp->if_flags & IFF_RUNNING &&
551			    !(ifp->if_flags & IFF_PROMISC) &&
552			    sc->sf_if_flags & IFF_PROMISC) {
553				SF_CLRBIT(sc, SF_RXFILT, SF_RXFILT_PROMISC);
554			} else if (!(ifp->if_flags & IFF_RUNNING))
555				sf_init(sc);
556		} else {
557			if (ifp->if_flags & IFF_RUNNING)
558				sf_stop(sc);
559		}
560		sc->sf_if_flags = ifp->if_flags;
561		error = 0;
562		break;
563	case SIOCADDMULTI:
564	case SIOCDELMULTI:
565		sf_setmulti(sc);
566		error = 0;
567		break;
568	case SIOCGIFMEDIA:
569	case SIOCSIFMEDIA:
570		mii = device_get_softc(sc->sf_miibus);
571		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
572		break;
573	default:
574		error = ether_ioctl(ifp, command, data);
575		break;
576	}
577
578	SF_UNLOCK(sc);
579
580	return(error);
581}
582
583static void
584sf_reset(sc)
585	struct sf_softc		*sc;
586{
587	register int		i;
588
589	csr_write_4(sc, SF_GEN_ETH_CTL, 0);
590	SF_SETBIT(sc, SF_MACCFG_1, SF_MACCFG1_SOFTRESET);
591	DELAY(1000);
592	SF_CLRBIT(sc, SF_MACCFG_1, SF_MACCFG1_SOFTRESET);
593
594	SF_SETBIT(sc, SF_PCI_DEVCFG, SF_PCIDEVCFG_RESET);
595
596	for (i = 0; i < SF_TIMEOUT; i++) {
597		DELAY(10);
598		if (!(csr_read_4(sc, SF_PCI_DEVCFG) & SF_PCIDEVCFG_RESET))
599			break;
600	}
601
602	if (i == SF_TIMEOUT)
603		printf("sf%d: reset never completed!\n", sc->sf_unit);
604
605	/* Wait a little while for the chip to get its brains in order. */
606	DELAY(1000);
607	return;
608}
609
610/*
611 * Probe for an Adaptec AIC-6915 chip. Check the PCI vendor and device
612 * IDs against our list and return a device name if we find a match.
613 * We also check the subsystem ID so that we can identify exactly which
614 * NIC has been found, if possible.
615 */
616static int
617sf_probe(dev)
618	device_t		dev;
619{
620	struct sf_type		*t;
621
622	t = sf_devs;
623
624	while(t->sf_name != NULL) {
625		if ((pci_get_vendor(dev) == t->sf_vid) &&
626		    (pci_get_device(dev) == t->sf_did)) {
627			switch((pci_read_config(dev,
628			    SF_PCI_SUBVEN_ID, 4) >> 16) & 0xFFFF) {
629			case AD_SUBSYSID_62011_REV0:
630			case AD_SUBSYSID_62011_REV1:
631				device_set_desc(dev,
632				    "Adaptec ANA-62011 10/100BaseTX");
633				return(0);
634				break;
635			case AD_SUBSYSID_62022:
636				device_set_desc(dev,
637				    "Adaptec ANA-62022 10/100BaseTX");
638				return(0);
639				break;
640			case AD_SUBSYSID_62044_REV0:
641			case AD_SUBSYSID_62044_REV1:
642				device_set_desc(dev,
643				    "Adaptec ANA-62044 10/100BaseTX");
644				return(0);
645				break;
646			case AD_SUBSYSID_62020:
647				device_set_desc(dev,
648				    "Adaptec ANA-62020 10/100BaseFX");
649				return(0);
650				break;
651			case AD_SUBSYSID_69011:
652				device_set_desc(dev,
653				    "Adaptec ANA-69011 10/100BaseTX");
654				return(0);
655				break;
656			default:
657				device_set_desc(dev, t->sf_name);
658				return(0);
659				break;
660			}
661		}
662		t++;
663	}
664
665	return(ENXIO);
666}
667
668/*
669 * Attach the interface. Allocate softc structures, do ifmedia
670 * setup and ethernet/BPF attach.
671 */
672static int
673sf_attach(dev)
674	device_t		dev;
675{
676	int			i;
677	u_int32_t		command;
678	struct sf_softc		*sc;
679	struct ifnet		*ifp;
680	int			unit, rid, error = 0;
681
682	sc = device_get_softc(dev);
683	unit = device_get_unit(dev);
684	bzero(sc, sizeof(struct sf_softc));
685
686	mtx_init(&sc->sf_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
687	    MTX_DEF | MTX_RECURSE);
688	SF_LOCK(sc);
689	/*
690	 * Handle power management nonsense.
691	 */
692	if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
693		u_int32_t		iobase, membase, irq;
694
695		/* Save important PCI config data. */
696		iobase = pci_read_config(dev, SF_PCI_LOIO, 4);
697		membase = pci_read_config(dev, SF_PCI_LOMEM, 4);
698		irq = pci_read_config(dev, SF_PCI_INTLINE, 4);
699
700		/* Reset the power state. */
701		printf("sf%d: chip is in D%d power mode "
702		    "-- setting to D0\n", unit,
703		    pci_get_powerstate(dev));
704		pci_set_powerstate(dev, PCI_POWERSTATE_D0);
705
706		/* Restore PCI config data. */
707		pci_write_config(dev, SF_PCI_LOIO, iobase, 4);
708		pci_write_config(dev, SF_PCI_LOMEM, membase, 4);
709		pci_write_config(dev, SF_PCI_INTLINE, irq, 4);
710	}
711
712	/*
713	 * Map control/status registers.
714	 */
715	pci_enable_busmaster(dev);
716	pci_enable_io(dev, SYS_RES_IOPORT);
717	pci_enable_io(dev, SYS_RES_MEMORY);
718	command = pci_read_config(dev, PCIR_COMMAND, 4);
719
720#ifdef SF_USEIOSPACE
721	if (!(command & PCIM_CMD_PORTEN)) {
722		printf("sf%d: failed to enable I/O ports!\n", unit);
723		error = ENXIO;
724		goto fail;
725	}
726#else
727	if (!(command & PCIM_CMD_MEMEN)) {
728		printf("sf%d: failed to enable memory mapping!\n", unit);
729		error = ENXIO;
730		goto fail;
731	}
732#endif
733
734	rid = SF_RID;
735	sc->sf_res = bus_alloc_resource(dev, SF_RES, &rid,
736	    0, ~0, 1, RF_ACTIVE);
737
738	if (sc->sf_res == NULL) {
739		printf ("sf%d: couldn't map ports\n", unit);
740		error = ENXIO;
741		goto fail;
742	}
743
744	sc->sf_btag = rman_get_bustag(sc->sf_res);
745	sc->sf_bhandle = rman_get_bushandle(sc->sf_res);
746
747	/* Allocate interrupt */
748	rid = 0;
749	sc->sf_irq = bus_alloc_resource(dev, SYS_RES_IRQ, &rid, 0, ~0, 1,
750	    RF_SHAREABLE | RF_ACTIVE);
751
752	if (sc->sf_irq == NULL) {
753		printf("sf%d: couldn't map interrupt\n", unit);
754		bus_release_resource(dev, SF_RES, SF_RID, sc->sf_res);
755		error = ENXIO;
756		goto fail;
757	}
758
759	error = bus_setup_intr(dev, sc->sf_irq, INTR_TYPE_NET,
760	    sf_intr, sc, &sc->sf_intrhand);
761
762	if (error) {
763		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sf_res);
764		bus_release_resource(dev, SF_RES, SF_RID, sc->sf_res);
765		printf("sf%d: couldn't set up irq\n", unit);
766		goto fail;
767	}
768
769	callout_handle_init(&sc->sf_stat_ch);
770	/* Reset the adapter. */
771	sf_reset(sc);
772
773	/*
774	 * Get station address from the EEPROM.
775	 */
776	for (i = 0; i < ETHER_ADDR_LEN; i++)
777		sc->arpcom.ac_enaddr[i] =
778		    sf_read_eeprom(sc, SF_EE_NODEADDR + ETHER_ADDR_LEN - i);
779
780	/*
781	 * An Adaptec chip was detected. Inform the world.
782	 */
783	printf("sf%d: Ethernet address: %6D\n", unit,
784	    sc->arpcom.ac_enaddr, ":");
785
786	sc->sf_unit = unit;
787
788	/* Allocate the descriptor queues. */
789	sc->sf_ldata = contigmalloc(sizeof(struct sf_list_data), M_DEVBUF,
790	    M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0);
791
792	if (sc->sf_ldata == NULL) {
793		printf("sf%d: no memory for list buffers!\n", unit);
794		bus_teardown_intr(dev, sc->sf_irq, sc->sf_intrhand);
795		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sf_irq);
796		bus_release_resource(dev, SF_RES, SF_RID, sc->sf_res);
797		error = ENXIO;
798		goto fail;
799	}
800
801	bzero(sc->sf_ldata, sizeof(struct sf_list_data));
802
803	/* Do MII setup. */
804	if (mii_phy_probe(dev, &sc->sf_miibus,
805	    sf_ifmedia_upd, sf_ifmedia_sts)) {
806		printf("sf%d: MII without any phy!\n", sc->sf_unit);
807		contigfree(sc->sf_ldata,sizeof(struct sf_list_data),M_DEVBUF);
808		bus_teardown_intr(dev, sc->sf_irq, sc->sf_intrhand);
809		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sf_irq);
810		bus_release_resource(dev, SF_RES, SF_RID, sc->sf_res);
811		error = ENXIO;
812		goto fail;
813	}
814
815	ifp = &sc->arpcom.ac_if;
816	ifp->if_softc = sc;
817	ifp->if_unit = unit;
818	ifp->if_name = "sf";
819	ifp->if_mtu = ETHERMTU;
820	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
821	ifp->if_ioctl = sf_ioctl;
822	ifp->if_output = ether_output;
823	ifp->if_start = sf_start;
824	ifp->if_watchdog = sf_watchdog;
825	ifp->if_init = sf_init;
826	ifp->if_baudrate = 10000000;
827	ifp->if_snd.ifq_maxlen = SF_TX_DLIST_CNT - 1;
828
829	/*
830	 * Call MI attach routine.
831	 */
832	ether_ifattach(ifp, sc->arpcom.ac_enaddr);
833	SF_UNLOCK(sc);
834	return(0);
835
836fail:
837	SF_UNLOCK(sc);
838	mtx_destroy(&sc->sf_mtx);
839	return(error);
840}
841
842static int
843sf_detach(dev)
844	device_t		dev;
845{
846	struct sf_softc		*sc;
847	struct ifnet		*ifp;
848
849	sc = device_get_softc(dev);
850	SF_LOCK(sc);
851	ifp = &sc->arpcom.ac_if;
852
853	ether_ifdetach(ifp);
854	sf_stop(sc);
855
856	bus_generic_detach(dev);
857	device_delete_child(dev, sc->sf_miibus);
858
859	bus_teardown_intr(dev, sc->sf_irq, sc->sf_intrhand);
860	bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sf_irq);
861	bus_release_resource(dev, SF_RES, SF_RID, sc->sf_res);
862
863	contigfree(sc->sf_ldata, sizeof(struct sf_list_data), M_DEVBUF);
864
865	SF_UNLOCK(sc);
866	mtx_destroy(&sc->sf_mtx);
867
868	return(0);
869}
870
871static int
872sf_init_rx_ring(sc)
873	struct sf_softc		*sc;
874{
875	struct sf_list_data	*ld;
876	int			i;
877
878	ld = sc->sf_ldata;
879
880	bzero((char *)ld->sf_rx_dlist_big,
881	    sizeof(struct sf_rx_bufdesc_type0) * SF_RX_DLIST_CNT);
882	bzero((char *)ld->sf_rx_clist,
883	    sizeof(struct sf_rx_cmpdesc_type3) * SF_RX_CLIST_CNT);
884
885	for (i = 0; i < SF_RX_DLIST_CNT; i++) {
886		if (sf_newbuf(sc, &ld->sf_rx_dlist_big[i], NULL) == ENOBUFS)
887			return(ENOBUFS);
888	}
889
890	return(0);
891}
892
893static void
894sf_init_tx_ring(sc)
895	struct sf_softc		*sc;
896{
897	struct sf_list_data	*ld;
898	int			i;
899
900	ld = sc->sf_ldata;
901
902	bzero((char *)ld->sf_tx_dlist,
903	    sizeof(struct sf_tx_bufdesc_type0) * SF_TX_DLIST_CNT);
904	bzero((char *)ld->sf_tx_clist,
905	    sizeof(struct sf_tx_cmpdesc_type0) * SF_TX_CLIST_CNT);
906
907	for (i = 0; i < SF_TX_DLIST_CNT; i++)
908		ld->sf_tx_dlist[i].sf_id = SF_TX_BUFDESC_ID;
909	for (i = 0; i < SF_TX_CLIST_CNT; i++)
910		ld->sf_tx_clist[i].sf_type = SF_TXCMPTYPE_TX;
911
912	ld->sf_tx_dlist[SF_TX_DLIST_CNT - 1].sf_end = 1;
913	sc->sf_tx_cnt = 0;
914
915	return;
916}
917
918static int
919sf_newbuf(sc, c, m)
920	struct sf_softc		*sc;
921	struct sf_rx_bufdesc_type0	*c;
922	struct mbuf		*m;
923{
924	struct mbuf		*m_new = NULL;
925
926	if (m == NULL) {
927		MGETHDR(m_new, M_NOWAIT, MT_DATA);
928		if (m_new == NULL)
929			return(ENOBUFS);
930
931		MCLGET(m_new, M_NOWAIT);
932		if (!(m_new->m_flags & M_EXT)) {
933			m_freem(m_new);
934			return(ENOBUFS);
935		}
936		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
937	} else {
938		m_new = m;
939		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
940		m_new->m_data = m_new->m_ext.ext_buf;
941	}
942
943	m_adj(m_new, sizeof(u_int64_t));
944
945	c->sf_mbuf = m_new;
946	c->sf_addrlo = SF_RX_HOSTADDR(vtophys(mtod(m_new, caddr_t)));
947	c->sf_valid = 1;
948
949	return(0);
950}
951
952/*
953 * The starfire is programmed to use 'normal' mode for packet reception,
954 * which means we use the consumer/producer model for both the buffer
955 * descriptor queue and the completion descriptor queue. The only problem
956 * with this is that it involves a lot of register accesses: we have to
957 * read the RX completion consumer and producer indexes and the RX buffer
958 * producer index, plus the RX completion consumer and RX buffer producer
959 * indexes have to be updated. It would have been easier if Adaptec had
960 * put each index in a separate register, especially given that the damn
961 * NIC has a 512K register space.
962 *
963 * In spite of all the lovely features that Adaptec crammed into the 6915,
964 * it is marred by one truly stupid design flaw, which is that receive
965 * buffer addresses must be aligned on a longword boundary. This forces
966 * the packet payload to be unaligned, which is suboptimal on the x86 and
967 * completely unuseable on the Alpha. Our only recourse is to copy received
968 * packets into properly aligned buffers before handing them off.
969 */
970
971static void
972sf_rxeof(sc)
973	struct sf_softc		*sc;
974{
975	struct mbuf		*m;
976	struct ifnet		*ifp;
977	struct sf_rx_bufdesc_type0	*desc;
978	struct sf_rx_cmpdesc_type3	*cur_rx;
979	u_int32_t		rxcons, rxprod;
980	int			cmpprodidx, cmpconsidx, bufprodidx;
981
982	ifp = &sc->arpcom.ac_if;
983
984	rxcons = csr_read_4(sc, SF_CQ_CONSIDX);
985	rxprod = csr_read_4(sc, SF_RXDQ_PTR_Q1);
986	cmpprodidx = SF_IDX_LO(csr_read_4(sc, SF_CQ_PRODIDX));
987	cmpconsidx = SF_IDX_LO(rxcons);
988	bufprodidx = SF_IDX_LO(rxprod);
989
990	while (cmpconsidx != cmpprodidx) {
991		struct mbuf		*m0;
992
993		cur_rx = &sc->sf_ldata->sf_rx_clist[cmpconsidx];
994		desc = &sc->sf_ldata->sf_rx_dlist_big[cur_rx->sf_endidx];
995		m = desc->sf_mbuf;
996		SF_INC(cmpconsidx, SF_RX_CLIST_CNT);
997		SF_INC(bufprodidx, SF_RX_DLIST_CNT);
998
999		if (!(cur_rx->sf_status1 & SF_RXSTAT1_OK)) {
1000			ifp->if_ierrors++;
1001			sf_newbuf(sc, desc, m);
1002			continue;
1003		}
1004
1005		m0 = m_devget(mtod(m, char *), cur_rx->sf_len, ETHER_ALIGN,
1006		    ifp, NULL);
1007		sf_newbuf(sc, desc, m);
1008		if (m0 == NULL) {
1009			ifp->if_ierrors++;
1010			continue;
1011		}
1012		m = m0;
1013
1014		ifp->if_ipackets++;
1015		(*ifp->if_input)(ifp, m);
1016	}
1017
1018	csr_write_4(sc, SF_CQ_CONSIDX,
1019	    (rxcons & ~SF_CQ_CONSIDX_RXQ1) | cmpconsidx);
1020	csr_write_4(sc, SF_RXDQ_PTR_Q1,
1021	    (rxprod & ~SF_RXDQ_PRODIDX) | bufprodidx);
1022
1023	return;
1024}
1025
1026/*
1027 * Read the transmit status from the completion queue and release
1028 * mbufs. Note that the buffer descriptor index in the completion
1029 * descriptor is an offset from the start of the transmit buffer
1030 * descriptor list in bytes. This is important because the manual
1031 * gives the impression that it should match the producer/consumer
1032 * index, which is the offset in 8 byte blocks.
1033 */
1034static void
1035sf_txeof(sc)
1036	struct sf_softc		*sc;
1037{
1038	int			txcons, cmpprodidx, cmpconsidx;
1039	struct sf_tx_cmpdesc_type1 *cur_cmp;
1040	struct sf_tx_bufdesc_type0 *cur_tx;
1041	struct ifnet		*ifp;
1042
1043	ifp = &sc->arpcom.ac_if;
1044
1045	txcons = csr_read_4(sc, SF_CQ_CONSIDX);
1046	cmpprodidx = SF_IDX_HI(csr_read_4(sc, SF_CQ_PRODIDX));
1047	cmpconsidx = SF_IDX_HI(txcons);
1048
1049	while (cmpconsidx != cmpprodidx) {
1050		cur_cmp = &sc->sf_ldata->sf_tx_clist[cmpconsidx];
1051		cur_tx = &sc->sf_ldata->sf_tx_dlist[cur_cmp->sf_index >> 7];
1052
1053		if (cur_cmp->sf_txstat & SF_TXSTAT_TX_OK)
1054			ifp->if_opackets++;
1055		else {
1056			if (cur_cmp->sf_txstat & SF_TXSTAT_TX_UNDERRUN)
1057				sf_txthresh_adjust(sc);
1058			ifp->if_oerrors++;
1059		}
1060
1061		sc->sf_tx_cnt--;
1062		if (cur_tx->sf_mbuf != NULL) {
1063			m_freem(cur_tx->sf_mbuf);
1064			cur_tx->sf_mbuf = NULL;
1065		} else
1066			break;
1067		SF_INC(cmpconsidx, SF_TX_CLIST_CNT);
1068	}
1069
1070	ifp->if_timer = 0;
1071	ifp->if_flags &= ~IFF_OACTIVE;
1072
1073	csr_write_4(sc, SF_CQ_CONSIDX,
1074	    (txcons & ~SF_CQ_CONSIDX_TXQ) |
1075	    ((cmpconsidx << 16) & 0xFFFF0000));
1076
1077	return;
1078}
1079
1080static void
1081sf_txthresh_adjust(sc)
1082	struct sf_softc		*sc;
1083{
1084	u_int32_t		txfctl;
1085	u_int8_t		txthresh;
1086
1087	txfctl = csr_read_4(sc, SF_TX_FRAMCTL);
1088	txthresh = txfctl & SF_TXFRMCTL_TXTHRESH;
1089	if (txthresh < 0xFF) {
1090		txthresh++;
1091		txfctl &= ~SF_TXFRMCTL_TXTHRESH;
1092		txfctl |= txthresh;
1093#ifdef DIAGNOSTIC
1094		printf("sf%d: tx underrun, increasing "
1095		    "tx threshold to %d bytes\n",
1096		    sc->sf_unit, txthresh * 4);
1097#endif
1098		csr_write_4(sc, SF_TX_FRAMCTL, txfctl);
1099	}
1100
1101	return;
1102}
1103
1104static void
1105sf_intr(arg)
1106	void			*arg;
1107{
1108	struct sf_softc		*sc;
1109	struct ifnet		*ifp;
1110	u_int32_t		status;
1111
1112	sc = arg;
1113	SF_LOCK(sc);
1114
1115	ifp = &sc->arpcom.ac_if;
1116
1117	if (!(csr_read_4(sc, SF_ISR_SHADOW) & SF_ISR_PCIINT_ASSERTED)) {
1118		SF_UNLOCK(sc);
1119		return;
1120	}
1121
1122	/* Disable interrupts. */
1123	csr_write_4(sc, SF_IMR, 0x00000000);
1124
1125	for (;;) {
1126		status = csr_read_4(sc, SF_ISR);
1127		if (status)
1128			csr_write_4(sc, SF_ISR, status);
1129
1130		if (!(status & SF_INTRS))
1131			break;
1132
1133		if (status & SF_ISR_RXDQ1_DMADONE)
1134			sf_rxeof(sc);
1135
1136		if (status & SF_ISR_TX_TXDONE ||
1137		    status & SF_ISR_TX_DMADONE ||
1138		    status & SF_ISR_TX_QUEUEDONE)
1139			sf_txeof(sc);
1140
1141		if (status & SF_ISR_TX_LOFIFO)
1142			sf_txthresh_adjust(sc);
1143
1144		if (status & SF_ISR_ABNORMALINTR) {
1145			if (status & SF_ISR_STATSOFLOW) {
1146				untimeout(sf_stats_update, sc,
1147				    sc->sf_stat_ch);
1148				sf_stats_update(sc);
1149			} else
1150				sf_init(sc);
1151		}
1152	}
1153
1154	/* Re-enable interrupts. */
1155	csr_write_4(sc, SF_IMR, SF_INTRS);
1156
1157	if (ifp->if_snd.ifq_head != NULL)
1158		sf_start(ifp);
1159
1160	SF_UNLOCK(sc);
1161	return;
1162}
1163
1164static void
1165sf_init(xsc)
1166	void			*xsc;
1167{
1168	struct sf_softc		*sc;
1169	struct ifnet		*ifp;
1170	struct mii_data		*mii;
1171	int			i;
1172
1173	sc = xsc;
1174	SF_LOCK(sc);
1175	ifp = &sc->arpcom.ac_if;
1176	mii = device_get_softc(sc->sf_miibus);
1177
1178	sf_stop(sc);
1179	sf_reset(sc);
1180
1181	/* Init all the receive filter registers */
1182	for (i = SF_RXFILT_PERFECT_BASE;
1183	    i < (SF_RXFILT_HASH_MAX + 1); i += 4)
1184		csr_write_4(sc, i, 0);
1185
1186	/* Empty stats counter registers. */
1187	for (i = 0; i < sizeof(struct sf_stats)/sizeof(u_int32_t); i++)
1188		csr_write_4(sc, SF_STATS_BASE +
1189		    (i + sizeof(u_int32_t)), 0);
1190
1191	/* Init our MAC address */
1192	csr_write_4(sc, SF_PAR0, *(u_int32_t *)(&sc->arpcom.ac_enaddr[0]));
1193	csr_write_4(sc, SF_PAR1, *(u_int32_t *)(&sc->arpcom.ac_enaddr[4]));
1194	sf_setperf(sc, 0, (caddr_t)&sc->arpcom.ac_enaddr);
1195
1196	if (sf_init_rx_ring(sc) == ENOBUFS) {
1197		printf("sf%d: initialization failed: no "
1198		    "memory for rx buffers\n", sc->sf_unit);
1199		SF_UNLOCK(sc);
1200		return;
1201	}
1202
1203	sf_init_tx_ring(sc);
1204
1205	csr_write_4(sc, SF_RXFILT, SF_PERFMODE_NORMAL|SF_HASHMODE_WITHVLAN);
1206
1207	/* If we want promiscuous mode, set the allframes bit. */
1208	if (ifp->if_flags & IFF_PROMISC) {
1209		SF_SETBIT(sc, SF_RXFILT, SF_RXFILT_PROMISC);
1210	} else {
1211		SF_CLRBIT(sc, SF_RXFILT, SF_RXFILT_PROMISC);
1212	}
1213
1214	if (ifp->if_flags & IFF_BROADCAST) {
1215		SF_SETBIT(sc, SF_RXFILT, SF_RXFILT_BROAD);
1216	} else {
1217		SF_CLRBIT(sc, SF_RXFILT, SF_RXFILT_BROAD);
1218	}
1219
1220	/*
1221	 * Load the multicast filter.
1222	 */
1223	sf_setmulti(sc);
1224
1225	/* Init the completion queue indexes */
1226	csr_write_4(sc, SF_CQ_CONSIDX, 0);
1227	csr_write_4(sc, SF_CQ_PRODIDX, 0);
1228
1229	/* Init the RX completion queue */
1230	csr_write_4(sc, SF_RXCQ_CTL_1,
1231	    vtophys(sc->sf_ldata->sf_rx_clist) & SF_RXCQ_ADDR);
1232	SF_SETBIT(sc, SF_RXCQ_CTL_1, SF_RXCQTYPE_3);
1233
1234	/* Init RX DMA control. */
1235	SF_SETBIT(sc, SF_RXDMA_CTL, SF_RXDMA_REPORTBADPKTS);
1236
1237	/* Init the RX buffer descriptor queue. */
1238	csr_write_4(sc, SF_RXDQ_ADDR_Q1,
1239	    vtophys(sc->sf_ldata->sf_rx_dlist_big));
1240	csr_write_4(sc, SF_RXDQ_CTL_1, (MCLBYTES << 16) | SF_DESCSPACE_16BYTES);
1241	csr_write_4(sc, SF_RXDQ_PTR_Q1, SF_RX_DLIST_CNT - 1);
1242
1243	/* Init the TX completion queue */
1244	csr_write_4(sc, SF_TXCQ_CTL,
1245	    vtophys(sc->sf_ldata->sf_tx_clist) & SF_RXCQ_ADDR);
1246
1247	/* Init the TX buffer descriptor queue. */
1248	csr_write_4(sc, SF_TXDQ_ADDR_HIPRIO,
1249		vtophys(sc->sf_ldata->sf_tx_dlist));
1250	SF_SETBIT(sc, SF_TX_FRAMCTL, SF_TXFRMCTL_CPLAFTERTX);
1251	csr_write_4(sc, SF_TXDQ_CTL,
1252	    SF_TXBUFDESC_TYPE0|SF_TXMINSPACE_128BYTES|SF_TXSKIPLEN_8BYTES);
1253	SF_SETBIT(sc, SF_TXDQ_CTL, SF_TXDQCTL_NODMACMP);
1254
1255	/* Enable autopadding of short TX frames. */
1256	SF_SETBIT(sc, SF_MACCFG_1, SF_MACCFG1_AUTOPAD);
1257
1258	/* Enable interrupts. */
1259	csr_write_4(sc, SF_IMR, SF_INTRS);
1260	SF_SETBIT(sc, SF_PCI_DEVCFG, SF_PCIDEVCFG_INTR_ENB);
1261
1262	/* Enable the RX and TX engines. */
1263	SF_SETBIT(sc, SF_GEN_ETH_CTL, SF_ETHCTL_RX_ENB|SF_ETHCTL_RXDMA_ENB);
1264	SF_SETBIT(sc, SF_GEN_ETH_CTL, SF_ETHCTL_TX_ENB|SF_ETHCTL_TXDMA_ENB);
1265
1266	/*mii_mediachg(mii);*/
1267	sf_ifmedia_upd(ifp);
1268
1269	ifp->if_flags |= IFF_RUNNING;
1270	ifp->if_flags &= ~IFF_OACTIVE;
1271
1272	sc->sf_stat_ch = timeout(sf_stats_update, sc, hz);
1273
1274	SF_UNLOCK(sc);
1275
1276	return;
1277}
1278
1279static int
1280sf_encap(sc, c, m_head)
1281	struct sf_softc		*sc;
1282	struct sf_tx_bufdesc_type0 *c;
1283	struct mbuf		*m_head;
1284{
1285	int			frag = 0;
1286	struct sf_frag		*f = NULL;
1287	struct mbuf		*m;
1288
1289	m = m_head;
1290
1291	for (m = m_head, frag = 0; m != NULL; m = m->m_next) {
1292		if (m->m_len != 0) {
1293			if (frag == SF_MAXFRAGS)
1294				break;
1295			f = &c->sf_frags[frag];
1296			if (frag == 0)
1297				f->sf_pktlen = m_head->m_pkthdr.len;
1298			f->sf_fraglen = m->m_len;
1299			f->sf_addr = vtophys(mtod(m, vm_offset_t));
1300			frag++;
1301		}
1302	}
1303
1304	if (m != NULL) {
1305		struct mbuf		*m_new = NULL;
1306
1307		MGETHDR(m_new, M_NOWAIT, MT_DATA);
1308		if (m_new == NULL) {
1309			printf("sf%d: no memory for tx list\n", sc->sf_unit);
1310			return(1);
1311		}
1312
1313		if (m_head->m_pkthdr.len > MHLEN) {
1314			MCLGET(m_new, M_NOWAIT);
1315			if (!(m_new->m_flags & M_EXT)) {
1316				m_freem(m_new);
1317				printf("sf%d: no memory for tx list\n",
1318				    sc->sf_unit);
1319				return(1);
1320			}
1321		}
1322		m_copydata(m_head, 0, m_head->m_pkthdr.len,
1323		    mtod(m_new, caddr_t));
1324		m_new->m_pkthdr.len = m_new->m_len = m_head->m_pkthdr.len;
1325		m_freem(m_head);
1326		m_head = m_new;
1327		f = &c->sf_frags[0];
1328		f->sf_fraglen = f->sf_pktlen = m_head->m_pkthdr.len;
1329		f->sf_addr = vtophys(mtod(m_head, caddr_t));
1330		frag = 1;
1331	}
1332
1333	c->sf_mbuf = m_head;
1334	c->sf_id = SF_TX_BUFDESC_ID;
1335	c->sf_fragcnt = frag;
1336	c->sf_intr = 1;
1337	c->sf_caltcp = 0;
1338	c->sf_crcen = 1;
1339
1340	return(0);
1341}
1342
1343static void
1344sf_start(ifp)
1345	struct ifnet		*ifp;
1346{
1347	struct sf_softc		*sc;
1348	struct sf_tx_bufdesc_type0 *cur_tx = NULL;
1349	struct mbuf		*m_head = NULL;
1350	int			i, txprod;
1351
1352	sc = ifp->if_softc;
1353	SF_LOCK(sc);
1354
1355	if (!sc->sf_link && ifp->if_snd.ifq_len < 10) {
1356		SF_UNLOCK(sc);
1357		return;
1358	}
1359
1360	if (ifp->if_flags & IFF_OACTIVE) {
1361		SF_UNLOCK(sc);
1362		return;
1363	}
1364
1365	txprod = csr_read_4(sc, SF_TXDQ_PRODIDX);
1366	i = SF_IDX_HI(txprod) >> 4;
1367
1368	if (sc->sf_ldata->sf_tx_dlist[i].sf_mbuf != NULL) {
1369		printf("sf%d: TX ring full, resetting\n", sc->sf_unit);
1370		sf_init(sc);
1371		txprod = csr_read_4(sc, SF_TXDQ_PRODIDX);
1372		i = SF_IDX_HI(txprod) >> 4;
1373	}
1374
1375	while(sc->sf_ldata->sf_tx_dlist[i].sf_mbuf == NULL) {
1376		if (sc->sf_tx_cnt >= (SF_TX_DLIST_CNT - 5)) {
1377			ifp->if_flags |= IFF_OACTIVE;
1378			cur_tx = NULL;
1379			break;
1380		}
1381		IF_DEQUEUE(&ifp->if_snd, m_head);
1382		if (m_head == NULL)
1383			break;
1384
1385		cur_tx = &sc->sf_ldata->sf_tx_dlist[i];
1386		if (sf_encap(sc, cur_tx, m_head)) {
1387			IF_PREPEND(&ifp->if_snd, m_head);
1388			ifp->if_flags |= IFF_OACTIVE;
1389			cur_tx = NULL;
1390			break;
1391		}
1392
1393		/*
1394		 * If there's a BPF listener, bounce a copy of this frame
1395		 * to him.
1396		 */
1397		BPF_MTAP(ifp, m_head);
1398
1399		SF_INC(i, SF_TX_DLIST_CNT);
1400		sc->sf_tx_cnt++;
1401		/*
1402		 * Don't get the TX DMA queue get too full.
1403		 */
1404		if (sc->sf_tx_cnt > 64)
1405			break;
1406	}
1407
1408	if (cur_tx == NULL) {
1409		SF_UNLOCK(sc);
1410		return;
1411	}
1412
1413	/* Transmit */
1414	csr_write_4(sc, SF_TXDQ_PRODIDX,
1415	    (txprod & ~SF_TXDQ_PRODIDX_HIPRIO) |
1416	    ((i << 20) & 0xFFFF0000));
1417
1418	ifp->if_timer = 5;
1419
1420	SF_UNLOCK(sc);
1421
1422	return;
1423}
1424
1425static void
1426sf_stop(sc)
1427	struct sf_softc		*sc;
1428{
1429	int			i;
1430	struct ifnet		*ifp;
1431
1432	SF_LOCK(sc);
1433
1434	ifp = &sc->arpcom.ac_if;
1435
1436	untimeout(sf_stats_update, sc, sc->sf_stat_ch);
1437
1438	csr_write_4(sc, SF_GEN_ETH_CTL, 0);
1439	csr_write_4(sc, SF_CQ_CONSIDX, 0);
1440	csr_write_4(sc, SF_CQ_PRODIDX, 0);
1441	csr_write_4(sc, SF_RXDQ_ADDR_Q1, 0);
1442	csr_write_4(sc, SF_RXDQ_CTL_1, 0);
1443	csr_write_4(sc, SF_RXDQ_PTR_Q1, 0);
1444	csr_write_4(sc, SF_TXCQ_CTL, 0);
1445	csr_write_4(sc, SF_TXDQ_ADDR_HIPRIO, 0);
1446	csr_write_4(sc, SF_TXDQ_CTL, 0);
1447	sf_reset(sc);
1448
1449	sc->sf_link = 0;
1450
1451	for (i = 0; i < SF_RX_DLIST_CNT; i++) {
1452		if (sc->sf_ldata->sf_rx_dlist_big[i].sf_mbuf != NULL) {
1453			m_freem(sc->sf_ldata->sf_rx_dlist_big[i].sf_mbuf);
1454			sc->sf_ldata->sf_rx_dlist_big[i].sf_mbuf = NULL;
1455		}
1456	}
1457
1458	for (i = 0; i < SF_TX_DLIST_CNT; i++) {
1459		if (sc->sf_ldata->sf_tx_dlist[i].sf_mbuf != NULL) {
1460			m_freem(sc->sf_ldata->sf_tx_dlist[i].sf_mbuf);
1461			sc->sf_ldata->sf_tx_dlist[i].sf_mbuf = NULL;
1462		}
1463	}
1464
1465	ifp->if_flags &= ~(IFF_RUNNING|IFF_OACTIVE);
1466	SF_UNLOCK(sc);
1467
1468	return;
1469}
1470
1471/*
1472 * Note: it is important that this function not be interrupted. We
1473 * use a two-stage register access scheme: if we are interrupted in
1474 * between setting the indirect address register and reading from the
1475 * indirect data register, the contents of the address register could
1476 * be changed out from under us.
1477 */
1478static void
1479sf_stats_update(xsc)
1480	void			*xsc;
1481{
1482	struct sf_softc		*sc;
1483	struct ifnet		*ifp;
1484	struct mii_data		*mii;
1485	struct sf_stats		stats;
1486	u_int32_t		*ptr;
1487	int			i;
1488
1489	sc = xsc;
1490	SF_LOCK(sc);
1491	ifp = &sc->arpcom.ac_if;
1492	mii = device_get_softc(sc->sf_miibus);
1493
1494	ptr = (u_int32_t *)&stats;
1495	for (i = 0; i < sizeof(stats)/sizeof(u_int32_t); i++)
1496		ptr[i] = csr_read_4(sc, SF_STATS_BASE +
1497		    (i + sizeof(u_int32_t)));
1498
1499	for (i = 0; i < sizeof(stats)/sizeof(u_int32_t); i++)
1500		csr_write_4(sc, SF_STATS_BASE +
1501		    (i + sizeof(u_int32_t)), 0);
1502
1503	ifp->if_collisions += stats.sf_tx_single_colls +
1504	    stats.sf_tx_multi_colls + stats.sf_tx_excess_colls;
1505
1506	mii_tick(mii);
1507
1508	if (!sc->sf_link && mii->mii_media_status & IFM_ACTIVE &&
1509	    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
1510		sc->sf_link++;
1511		if (ifp->if_snd.ifq_head != NULL)
1512			sf_start(ifp);
1513	}
1514
1515	sc->sf_stat_ch = timeout(sf_stats_update, sc, hz);
1516
1517	SF_UNLOCK(sc);
1518
1519	return;
1520}
1521
1522static void
1523sf_watchdog(ifp)
1524	struct ifnet		*ifp;
1525{
1526	struct sf_softc		*sc;
1527
1528	sc = ifp->if_softc;
1529
1530	SF_LOCK(sc);
1531
1532	ifp->if_oerrors++;
1533	printf("sf%d: watchdog timeout\n", sc->sf_unit);
1534
1535	sf_stop(sc);
1536	sf_reset(sc);
1537	sf_init(sc);
1538
1539	if (ifp->if_snd.ifq_head != NULL)
1540		sf_start(ifp);
1541
1542	SF_UNLOCK(sc);
1543
1544	return;
1545}
1546
1547static void
1548sf_shutdown(dev)
1549	device_t		dev;
1550{
1551	struct sf_softc		*sc;
1552
1553	sc = device_get_softc(dev);
1554
1555	sf_stop(sc);
1556
1557	return;
1558}
1559