safe.c revision 256377
1/*-
2 * Copyright (c) 2003 Sam Leffler, Errno Consulting
3 * Copyright (c) 2003 Global Technology Associates, Inc.
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 *    notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25 * SUCH DAMAGE.
26 */
27
28#include <sys/cdefs.h>
29__FBSDID("$FreeBSD: head/sys/dev/safe/safe.c 256377 2013-10-12 12:57:57Z markm $");
30
31/*
32 * SafeNet SafeXcel-1141 hardware crypto accelerator
33 */
34#include "opt_safe.h"
35
36#include <sys/param.h>
37#include <sys/systm.h>
38#include <sys/proc.h>
39#include <sys/errno.h>
40#include <sys/malloc.h>
41#include <sys/kernel.h>
42#include <sys/mbuf.h>
43#include <sys/module.h>
44#include <sys/lock.h>
45#include <sys/mutex.h>
46#include <sys/sysctl.h>
47#include <sys/endian.h>
48
49#include <vm/vm.h>
50#include <vm/pmap.h>
51
52#include <machine/bus.h>
53#include <machine/resource.h>
54#include <sys/bus.h>
55#include <sys/rman.h>
56
57#include <crypto/sha1.h>
58#include <opencrypto/cryptodev.h>
59#include <opencrypto/cryptosoft.h>
60#include <sys/md5.h>
61#include <sys/random.h>
62#include <sys/kobj.h>
63
64#include "cryptodev_if.h"
65
66#include <dev/pci/pcivar.h>
67#include <dev/pci/pcireg.h>
68
69#ifdef SAFE_RNDTEST
70#include <dev/rndtest/rndtest.h>
71#endif
72#include <dev/safe/safereg.h>
73#include <dev/safe/safevar.h>
74
75#ifndef bswap32
76#define	bswap32	NTOHL
77#endif
78
79/*
80 * Prototypes and count for the pci_device structure
81 */
82static	int safe_probe(device_t);
83static	int safe_attach(device_t);
84static	int safe_detach(device_t);
85static	int safe_suspend(device_t);
86static	int safe_resume(device_t);
87static	int safe_shutdown(device_t);
88
89static	int safe_newsession(device_t, u_int32_t *, struct cryptoini *);
90static	int safe_freesession(device_t, u_int64_t);
91static	int safe_process(device_t, struct cryptop *, int);
92
93static device_method_t safe_methods[] = {
94	/* Device interface */
95	DEVMETHOD(device_probe,		safe_probe),
96	DEVMETHOD(device_attach,	safe_attach),
97	DEVMETHOD(device_detach,	safe_detach),
98	DEVMETHOD(device_suspend,	safe_suspend),
99	DEVMETHOD(device_resume,	safe_resume),
100	DEVMETHOD(device_shutdown,	safe_shutdown),
101
102	/* crypto device methods */
103	DEVMETHOD(cryptodev_newsession,	safe_newsession),
104	DEVMETHOD(cryptodev_freesession,safe_freesession),
105	DEVMETHOD(cryptodev_process,	safe_process),
106
107	DEVMETHOD_END
108};
109static driver_t safe_driver = {
110	"safe",
111	safe_methods,
112	sizeof (struct safe_softc)
113};
114static devclass_t safe_devclass;
115
116DRIVER_MODULE(safe, pci, safe_driver, safe_devclass, 0, 0);
117MODULE_DEPEND(safe, crypto, 1, 1, 1);
118#ifdef SAFE_RNDTEST
119MODULE_DEPEND(safe, rndtest, 1, 1, 1);
120#endif
121
122static	void safe_intr(void *);
123static	void safe_callback(struct safe_softc *, struct safe_ringentry *);
124static	void safe_feed(struct safe_softc *, struct safe_ringentry *);
125static	void safe_mcopy(struct mbuf *, struct mbuf *, u_int);
126#ifndef SAFE_NO_RNG
127static	void safe_rng_init(struct safe_softc *);
128static	void safe_rng(void *);
129#endif /* SAFE_NO_RNG */
130static	int safe_dma_malloc(struct safe_softc *, bus_size_t,
131	        struct safe_dma_alloc *, int);
132#define	safe_dma_sync(_dma, _flags) \
133	bus_dmamap_sync((_dma)->dma_tag, (_dma)->dma_map, (_flags))
134static	void safe_dma_free(struct safe_softc *, struct safe_dma_alloc *);
135static	int safe_dmamap_aligned(const struct safe_operand *);
136static	int safe_dmamap_uniform(const struct safe_operand *);
137
138static	void safe_reset_board(struct safe_softc *);
139static	void safe_init_board(struct safe_softc *);
140static	void safe_init_pciregs(device_t dev);
141static	void safe_cleanchip(struct safe_softc *);
142static	void safe_totalreset(struct safe_softc *);
143
144static	int safe_free_entry(struct safe_softc *, struct safe_ringentry *);
145
146static SYSCTL_NODE(_hw, OID_AUTO, safe, CTLFLAG_RD, 0,
147    "SafeNet driver parameters");
148
149#ifdef SAFE_DEBUG
150static	void safe_dump_dmastatus(struct safe_softc *, const char *);
151static	void safe_dump_ringstate(struct safe_softc *, const char *);
152static	void safe_dump_intrstate(struct safe_softc *, const char *);
153static	void safe_dump_request(struct safe_softc *, const char *,
154		struct safe_ringentry *);
155
156static	struct safe_softc *safec;		/* for use by hw.safe.dump */
157
158static	int safe_debug = 0;
159SYSCTL_INT(_hw_safe, OID_AUTO, debug, CTLFLAG_RW, &safe_debug,
160	    0, "control debugging msgs");
161#define	DPRINTF(_x)	if (safe_debug) printf _x
162#else
163#define	DPRINTF(_x)
164#endif
165
166#define	READ_REG(sc,r) \
167	bus_space_read_4((sc)->sc_st, (sc)->sc_sh, (r))
168
169#define WRITE_REG(sc,reg,val) \
170	bus_space_write_4((sc)->sc_st, (sc)->sc_sh, reg, val)
171
172struct safe_stats safestats;
173SYSCTL_STRUCT(_hw_safe, OID_AUTO, stats, CTLFLAG_RD, &safestats,
174	    safe_stats, "driver statistics");
175#ifndef SAFE_NO_RNG
176static	int safe_rnginterval = 1;		/* poll once a second */
177SYSCTL_INT(_hw_safe, OID_AUTO, rnginterval, CTLFLAG_RW, &safe_rnginterval,
178	    0, "RNG polling interval (secs)");
179static	int safe_rngbufsize = 16;		/* 64 bytes each poll  */
180SYSCTL_INT(_hw_safe, OID_AUTO, rngbufsize, CTLFLAG_RW, &safe_rngbufsize,
181	    0, "RNG polling buffer size (32-bit words)");
182static	int safe_rngmaxalarm = 8;		/* max alarms before reset */
183SYSCTL_INT(_hw_safe, OID_AUTO, rngmaxalarm, CTLFLAG_RW, &safe_rngmaxalarm,
184	    0, "RNG max alarms before reset");
185#endif /* SAFE_NO_RNG */
186
187static int
188safe_probe(device_t dev)
189{
190	if (pci_get_vendor(dev) == PCI_VENDOR_SAFENET &&
191	    pci_get_device(dev) == PCI_PRODUCT_SAFEXCEL)
192		return (BUS_PROBE_DEFAULT);
193	return (ENXIO);
194}
195
196static const char*
197safe_partname(struct safe_softc *sc)
198{
199	/* XXX sprintf numbers when not decoded */
200	switch (pci_get_vendor(sc->sc_dev)) {
201	case PCI_VENDOR_SAFENET:
202		switch (pci_get_device(sc->sc_dev)) {
203		case PCI_PRODUCT_SAFEXCEL: return "SafeNet SafeXcel-1141";
204		}
205		return "SafeNet unknown-part";
206	}
207	return "Unknown-vendor unknown-part";
208}
209
210#ifndef SAFE_NO_RNG
211static void
212default_harvest(struct rndtest_state *rsp, void *buf, u_int count)
213{
214	random_harvest(buf, count, count*NBBY/2, RANDOM_PURE_SAFE);
215}
216#endif /* SAFE_NO_RNG */
217
218static int
219safe_attach(device_t dev)
220{
221	struct safe_softc *sc = device_get_softc(dev);
222	u_int32_t raddr;
223	u_int32_t i, devinfo;
224	int rid;
225
226	bzero(sc, sizeof (*sc));
227	sc->sc_dev = dev;
228
229	/* XXX handle power management */
230
231	pci_enable_busmaster(dev);
232
233	/*
234	 * Setup memory-mapping of PCI registers.
235	 */
236	rid = BS_BAR;
237	sc->sc_sr = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
238					   RF_ACTIVE);
239	if (sc->sc_sr == NULL) {
240		device_printf(dev, "cannot map register space\n");
241		goto bad;
242	}
243	sc->sc_st = rman_get_bustag(sc->sc_sr);
244	sc->sc_sh = rman_get_bushandle(sc->sc_sr);
245
246	/*
247	 * Arrange interrupt line.
248	 */
249	rid = 0;
250	sc->sc_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
251					    RF_SHAREABLE|RF_ACTIVE);
252	if (sc->sc_irq == NULL) {
253		device_printf(dev, "could not map interrupt\n");
254		goto bad1;
255	}
256	/*
257	 * NB: Network code assumes we are blocked with splimp()
258	 *     so make sure the IRQ is mapped appropriately.
259	 */
260	if (bus_setup_intr(dev, sc->sc_irq, INTR_TYPE_NET | INTR_MPSAFE,
261			   NULL, safe_intr, sc, &sc->sc_ih)) {
262		device_printf(dev, "could not establish interrupt\n");
263		goto bad2;
264	}
265
266	sc->sc_cid = crypto_get_driverid(dev, CRYPTOCAP_F_HARDWARE);
267	if (sc->sc_cid < 0) {
268		device_printf(dev, "could not get crypto driver id\n");
269		goto bad3;
270	}
271
272	sc->sc_chiprev = READ_REG(sc, SAFE_DEVINFO) &
273		(SAFE_DEVINFO_REV_MAJ | SAFE_DEVINFO_REV_MIN);
274
275	/*
276	 * Setup DMA descriptor area.
277	 */
278	if (bus_dma_tag_create(bus_get_dma_tag(dev),	/* parent */
279			       1,			/* alignment */
280			       SAFE_DMA_BOUNDARY,	/* boundary */
281			       BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
282			       BUS_SPACE_MAXADDR,	/* highaddr */
283			       NULL, NULL,		/* filter, filterarg */
284			       SAFE_MAX_DMA,		/* maxsize */
285			       SAFE_MAX_PART,		/* nsegments */
286			       SAFE_MAX_SSIZE,		/* maxsegsize */
287			       BUS_DMA_ALLOCNOW,	/* flags */
288			       NULL, NULL,		/* locking */
289			       &sc->sc_srcdmat)) {
290		device_printf(dev, "cannot allocate DMA tag\n");
291		goto bad4;
292	}
293	if (bus_dma_tag_create(bus_get_dma_tag(dev),	/* parent */
294			       1,			/* alignment */
295			       SAFE_MAX_DSIZE,		/* boundary */
296			       BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
297			       BUS_SPACE_MAXADDR,	/* highaddr */
298			       NULL, NULL,		/* filter, filterarg */
299			       SAFE_MAX_DMA,		/* maxsize */
300			       SAFE_MAX_PART,		/* nsegments */
301			       SAFE_MAX_DSIZE,		/* maxsegsize */
302			       BUS_DMA_ALLOCNOW,	/* flags */
303			       NULL, NULL,		/* locking */
304			       &sc->sc_dstdmat)) {
305		device_printf(dev, "cannot allocate DMA tag\n");
306		goto bad4;
307	}
308
309	/*
310	 * Allocate packet engine descriptors.
311	 */
312	if (safe_dma_malloc(sc,
313	    SAFE_MAX_NQUEUE * sizeof (struct safe_ringentry),
314	    &sc->sc_ringalloc, 0)) {
315		device_printf(dev, "cannot allocate PE descriptor ring\n");
316		bus_dma_tag_destroy(sc->sc_srcdmat);
317		goto bad4;
318	}
319	/*
320	 * Hookup the static portion of all our data structures.
321	 */
322	sc->sc_ring = (struct safe_ringentry *) sc->sc_ringalloc.dma_vaddr;
323	sc->sc_ringtop = sc->sc_ring + SAFE_MAX_NQUEUE;
324	sc->sc_front = sc->sc_ring;
325	sc->sc_back = sc->sc_ring;
326	raddr = sc->sc_ringalloc.dma_paddr;
327	bzero(sc->sc_ring, SAFE_MAX_NQUEUE * sizeof(struct safe_ringentry));
328	for (i = 0; i < SAFE_MAX_NQUEUE; i++) {
329		struct safe_ringentry *re = &sc->sc_ring[i];
330
331		re->re_desc.d_sa = raddr +
332			offsetof(struct safe_ringentry, re_sa);
333		re->re_sa.sa_staterec = raddr +
334			offsetof(struct safe_ringentry, re_sastate);
335
336		raddr += sizeof (struct safe_ringentry);
337	}
338	mtx_init(&sc->sc_ringmtx, device_get_nameunit(dev),
339		"packet engine ring", MTX_DEF);
340
341	/*
342	 * Allocate scatter and gather particle descriptors.
343	 */
344	if (safe_dma_malloc(sc, SAFE_TOTAL_SPART * sizeof (struct safe_pdesc),
345	    &sc->sc_spalloc, 0)) {
346		device_printf(dev, "cannot allocate source particle "
347			"descriptor ring\n");
348		mtx_destroy(&sc->sc_ringmtx);
349		safe_dma_free(sc, &sc->sc_ringalloc);
350		bus_dma_tag_destroy(sc->sc_srcdmat);
351		goto bad4;
352	}
353	sc->sc_spring = (struct safe_pdesc *) sc->sc_spalloc.dma_vaddr;
354	sc->sc_springtop = sc->sc_spring + SAFE_TOTAL_SPART;
355	sc->sc_spfree = sc->sc_spring;
356	bzero(sc->sc_spring, SAFE_TOTAL_SPART * sizeof(struct safe_pdesc));
357
358	if (safe_dma_malloc(sc, SAFE_TOTAL_DPART * sizeof (struct safe_pdesc),
359	    &sc->sc_dpalloc, 0)) {
360		device_printf(dev, "cannot allocate destination particle "
361			"descriptor ring\n");
362		mtx_destroy(&sc->sc_ringmtx);
363		safe_dma_free(sc, &sc->sc_spalloc);
364		safe_dma_free(sc, &sc->sc_ringalloc);
365		bus_dma_tag_destroy(sc->sc_dstdmat);
366		goto bad4;
367	}
368	sc->sc_dpring = (struct safe_pdesc *) sc->sc_dpalloc.dma_vaddr;
369	sc->sc_dpringtop = sc->sc_dpring + SAFE_TOTAL_DPART;
370	sc->sc_dpfree = sc->sc_dpring;
371	bzero(sc->sc_dpring, SAFE_TOTAL_DPART * sizeof(struct safe_pdesc));
372
373	device_printf(sc->sc_dev, "%s", safe_partname(sc));
374
375	devinfo = READ_REG(sc, SAFE_DEVINFO);
376	if (devinfo & SAFE_DEVINFO_RNG) {
377		sc->sc_flags |= SAFE_FLAGS_RNG;
378		printf(" rng");
379	}
380	if (devinfo & SAFE_DEVINFO_PKEY) {
381#if 0
382		printf(" key");
383		sc->sc_flags |= SAFE_FLAGS_KEY;
384		crypto_kregister(sc->sc_cid, CRK_MOD_EXP, 0);
385		crypto_kregister(sc->sc_cid, CRK_MOD_EXP_CRT, 0);
386#endif
387	}
388	if (devinfo & SAFE_DEVINFO_DES) {
389		printf(" des/3des");
390		crypto_register(sc->sc_cid, CRYPTO_3DES_CBC, 0, 0);
391		crypto_register(sc->sc_cid, CRYPTO_DES_CBC, 0, 0);
392	}
393	if (devinfo & SAFE_DEVINFO_AES) {
394		printf(" aes");
395		crypto_register(sc->sc_cid, CRYPTO_AES_CBC, 0, 0);
396	}
397	if (devinfo & SAFE_DEVINFO_MD5) {
398		printf(" md5");
399		crypto_register(sc->sc_cid, CRYPTO_MD5_HMAC, 0, 0);
400	}
401	if (devinfo & SAFE_DEVINFO_SHA1) {
402		printf(" sha1");
403		crypto_register(sc->sc_cid, CRYPTO_SHA1_HMAC, 0, 0);
404	}
405	printf(" null");
406	crypto_register(sc->sc_cid, CRYPTO_NULL_CBC, 0, 0);
407	crypto_register(sc->sc_cid, CRYPTO_NULL_HMAC, 0, 0);
408	/* XXX other supported algorithms */
409	printf("\n");
410
411	safe_reset_board(sc);		/* reset h/w */
412	safe_init_pciregs(dev);		/* init pci settings */
413	safe_init_board(sc);		/* init h/w */
414
415#ifndef SAFE_NO_RNG
416	if (sc->sc_flags & SAFE_FLAGS_RNG) {
417#ifdef SAFE_RNDTEST
418		sc->sc_rndtest = rndtest_attach(dev);
419		if (sc->sc_rndtest)
420			sc->sc_harvest = rndtest_harvest;
421		else
422			sc->sc_harvest = default_harvest;
423#else
424		sc->sc_harvest = default_harvest;
425#endif
426		safe_rng_init(sc);
427
428		callout_init(&sc->sc_rngto, CALLOUT_MPSAFE);
429		callout_reset(&sc->sc_rngto, hz*safe_rnginterval, safe_rng, sc);
430	}
431#endif /* SAFE_NO_RNG */
432#ifdef SAFE_DEBUG
433	safec = sc;			/* for use by hw.safe.dump */
434#endif
435	return (0);
436bad4:
437	crypto_unregister_all(sc->sc_cid);
438bad3:
439	bus_teardown_intr(dev, sc->sc_irq, sc->sc_ih);
440bad2:
441	bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sc_irq);
442bad1:
443	bus_release_resource(dev, SYS_RES_MEMORY, BS_BAR, sc->sc_sr);
444bad:
445	return (ENXIO);
446}
447
448/*
449 * Detach a device that successfully probed.
450 */
451static int
452safe_detach(device_t dev)
453{
454	struct safe_softc *sc = device_get_softc(dev);
455
456	/* XXX wait/abort active ops */
457
458	WRITE_REG(sc, SAFE_HI_MASK, 0);		/* disable interrupts */
459
460	callout_stop(&sc->sc_rngto);
461
462	crypto_unregister_all(sc->sc_cid);
463
464#ifdef SAFE_RNDTEST
465	if (sc->sc_rndtest)
466		rndtest_detach(sc->sc_rndtest);
467#endif
468
469	safe_cleanchip(sc);
470	safe_dma_free(sc, &sc->sc_dpalloc);
471	safe_dma_free(sc, &sc->sc_spalloc);
472	mtx_destroy(&sc->sc_ringmtx);
473	safe_dma_free(sc, &sc->sc_ringalloc);
474
475	bus_generic_detach(dev);
476	bus_teardown_intr(dev, sc->sc_irq, sc->sc_ih);
477	bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sc_irq);
478
479	bus_dma_tag_destroy(sc->sc_srcdmat);
480	bus_dma_tag_destroy(sc->sc_dstdmat);
481	bus_release_resource(dev, SYS_RES_MEMORY, BS_BAR, sc->sc_sr);
482
483	return (0);
484}
485
486/*
487 * Stop all chip i/o so that the kernel's probe routines don't
488 * get confused by errant DMAs when rebooting.
489 */
490static int
491safe_shutdown(device_t dev)
492{
493#ifdef notyet
494	safe_stop(device_get_softc(dev));
495#endif
496	return (0);
497}
498
499/*
500 * Device suspend routine.
501 */
502static int
503safe_suspend(device_t dev)
504{
505	struct safe_softc *sc = device_get_softc(dev);
506
507#ifdef notyet
508	/* XXX stop the device and save PCI settings */
509#endif
510	sc->sc_suspended = 1;
511
512	return (0);
513}
514
515static int
516safe_resume(device_t dev)
517{
518	struct safe_softc *sc = device_get_softc(dev);
519
520#ifdef notyet
521	/* XXX retore PCI settings and start the device */
522#endif
523	sc->sc_suspended = 0;
524	return (0);
525}
526
527/*
528 * SafeXcel Interrupt routine
529 */
530static void
531safe_intr(void *arg)
532{
533	struct safe_softc *sc = arg;
534	volatile u_int32_t stat;
535
536	stat = READ_REG(sc, SAFE_HM_STAT);
537	if (stat == 0)			/* shared irq, not for us */
538		return;
539
540	WRITE_REG(sc, SAFE_HI_CLR, stat);	/* IACK */
541
542	if ((stat & SAFE_INT_PE_DDONE)) {
543		/*
544		 * Descriptor(s) done; scan the ring and
545		 * process completed operations.
546		 */
547		mtx_lock(&sc->sc_ringmtx);
548		while (sc->sc_back != sc->sc_front) {
549			struct safe_ringentry *re = sc->sc_back;
550#ifdef SAFE_DEBUG
551			if (safe_debug) {
552				safe_dump_ringstate(sc, __func__);
553				safe_dump_request(sc, __func__, re);
554			}
555#endif
556			/*
557			 * safe_process marks ring entries that were allocated
558			 * but not used with a csr of zero.  This insures the
559			 * ring front pointer never needs to be set backwards
560			 * in the event that an entry is allocated but not used
561			 * because of a setup error.
562			 */
563			if (re->re_desc.d_csr != 0) {
564				if (!SAFE_PE_CSR_IS_DONE(re->re_desc.d_csr))
565					break;
566				if (!SAFE_PE_LEN_IS_DONE(re->re_desc.d_len))
567					break;
568				sc->sc_nqchip--;
569				safe_callback(sc, re);
570			}
571			if (++(sc->sc_back) == sc->sc_ringtop)
572				sc->sc_back = sc->sc_ring;
573		}
574		mtx_unlock(&sc->sc_ringmtx);
575	}
576
577	/*
578	 * Check to see if we got any DMA Error
579	 */
580	if (stat & SAFE_INT_PE_ERROR) {
581		DPRINTF(("dmaerr dmastat %08x\n",
582			READ_REG(sc, SAFE_PE_DMASTAT)));
583		safestats.st_dmaerr++;
584		safe_totalreset(sc);
585#if 0
586		safe_feed(sc);
587#endif
588	}
589
590	if (sc->sc_needwakeup) {		/* XXX check high watermark */
591		int wakeup = sc->sc_needwakeup & (CRYPTO_SYMQ|CRYPTO_ASYMQ);
592		DPRINTF(("%s: wakeup crypto %x\n", __func__,
593			sc->sc_needwakeup));
594		sc->sc_needwakeup &= ~wakeup;
595		crypto_unblock(sc->sc_cid, wakeup);
596	}
597}
598
599/*
600 * safe_feed() - post a request to chip
601 */
602static void
603safe_feed(struct safe_softc *sc, struct safe_ringentry *re)
604{
605	bus_dmamap_sync(sc->sc_srcdmat, re->re_src_map, BUS_DMASYNC_PREWRITE);
606	if (re->re_dst_map != NULL)
607		bus_dmamap_sync(sc->sc_dstdmat, re->re_dst_map,
608			BUS_DMASYNC_PREREAD);
609	/* XXX have no smaller granularity */
610	safe_dma_sync(&sc->sc_ringalloc,
611		BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
612	safe_dma_sync(&sc->sc_spalloc, BUS_DMASYNC_PREWRITE);
613	safe_dma_sync(&sc->sc_dpalloc, BUS_DMASYNC_PREWRITE);
614
615#ifdef SAFE_DEBUG
616	if (safe_debug) {
617		safe_dump_ringstate(sc, __func__);
618		safe_dump_request(sc, __func__, re);
619	}
620#endif
621	sc->sc_nqchip++;
622	if (sc->sc_nqchip > safestats.st_maxqchip)
623		safestats.st_maxqchip = sc->sc_nqchip;
624	/* poke h/w to check descriptor ring, any value can be written */
625	WRITE_REG(sc, SAFE_HI_RD_DESCR, 0);
626}
627
628#define	N(a)	(sizeof(a) / sizeof (a[0]))
629static void
630safe_setup_enckey(struct safe_session *ses, caddr_t key)
631{
632	int i;
633
634	bcopy(key, ses->ses_key, ses->ses_klen / 8);
635
636	/* PE is little-endian, insure proper byte order */
637	for (i = 0; i < N(ses->ses_key); i++)
638		ses->ses_key[i] = htole32(ses->ses_key[i]);
639}
640
641static void
642safe_setup_mackey(struct safe_session *ses, int algo, caddr_t key, int klen)
643{
644	MD5_CTX md5ctx;
645	SHA1_CTX sha1ctx;
646	int i;
647
648
649	for (i = 0; i < klen; i++)
650		key[i] ^= HMAC_IPAD_VAL;
651
652	if (algo == CRYPTO_MD5_HMAC) {
653		MD5Init(&md5ctx);
654		MD5Update(&md5ctx, key, klen);
655		MD5Update(&md5ctx, hmac_ipad_buffer, MD5_HMAC_BLOCK_LEN - klen);
656		bcopy(md5ctx.state, ses->ses_hminner, sizeof(md5ctx.state));
657	} else {
658		SHA1Init(&sha1ctx);
659		SHA1Update(&sha1ctx, key, klen);
660		SHA1Update(&sha1ctx, hmac_ipad_buffer,
661		    SHA1_HMAC_BLOCK_LEN - klen);
662		bcopy(sha1ctx.h.b32, ses->ses_hminner, sizeof(sha1ctx.h.b32));
663	}
664
665	for (i = 0; i < klen; i++)
666		key[i] ^= (HMAC_IPAD_VAL ^ HMAC_OPAD_VAL);
667
668	if (algo == CRYPTO_MD5_HMAC) {
669		MD5Init(&md5ctx);
670		MD5Update(&md5ctx, key, klen);
671		MD5Update(&md5ctx, hmac_opad_buffer, MD5_HMAC_BLOCK_LEN - klen);
672		bcopy(md5ctx.state, ses->ses_hmouter, sizeof(md5ctx.state));
673	} else {
674		SHA1Init(&sha1ctx);
675		SHA1Update(&sha1ctx, key, klen);
676		SHA1Update(&sha1ctx, hmac_opad_buffer,
677		    SHA1_HMAC_BLOCK_LEN - klen);
678		bcopy(sha1ctx.h.b32, ses->ses_hmouter, sizeof(sha1ctx.h.b32));
679	}
680
681	for (i = 0; i < klen; i++)
682		key[i] ^= HMAC_OPAD_VAL;
683
684	/* PE is little-endian, insure proper byte order */
685	for (i = 0; i < N(ses->ses_hminner); i++) {
686		ses->ses_hminner[i] = htole32(ses->ses_hminner[i]);
687		ses->ses_hmouter[i] = htole32(ses->ses_hmouter[i]);
688	}
689}
690#undef N
691
692/*
693 * Allocate a new 'session' and return an encoded session id.  'sidp'
694 * contains our registration id, and should contain an encoded session
695 * id on successful allocation.
696 */
697static int
698safe_newsession(device_t dev, u_int32_t *sidp, struct cryptoini *cri)
699{
700	struct safe_softc *sc = device_get_softc(dev);
701	struct cryptoini *c, *encini = NULL, *macini = NULL;
702	struct safe_session *ses = NULL;
703	int sesn;
704
705	if (sidp == NULL || cri == NULL || sc == NULL)
706		return (EINVAL);
707
708	for (c = cri; c != NULL; c = c->cri_next) {
709		if (c->cri_alg == CRYPTO_MD5_HMAC ||
710		    c->cri_alg == CRYPTO_SHA1_HMAC ||
711		    c->cri_alg == CRYPTO_NULL_HMAC) {
712			if (macini)
713				return (EINVAL);
714			macini = c;
715		} else if (c->cri_alg == CRYPTO_DES_CBC ||
716		    c->cri_alg == CRYPTO_3DES_CBC ||
717		    c->cri_alg == CRYPTO_AES_CBC ||
718		    c->cri_alg == CRYPTO_NULL_CBC) {
719			if (encini)
720				return (EINVAL);
721			encini = c;
722		} else
723			return (EINVAL);
724	}
725	if (encini == NULL && macini == NULL)
726		return (EINVAL);
727	if (encini) {			/* validate key length */
728		switch (encini->cri_alg) {
729		case CRYPTO_DES_CBC:
730			if (encini->cri_klen != 64)
731				return (EINVAL);
732			break;
733		case CRYPTO_3DES_CBC:
734			if (encini->cri_klen != 192)
735				return (EINVAL);
736			break;
737		case CRYPTO_AES_CBC:
738			if (encini->cri_klen != 128 &&
739			    encini->cri_klen != 192 &&
740			    encini->cri_klen != 256)
741				return (EINVAL);
742			break;
743		}
744	}
745
746	if (sc->sc_sessions == NULL) {
747		ses = sc->sc_sessions = (struct safe_session *)malloc(
748		    sizeof(struct safe_session), M_DEVBUF, M_NOWAIT);
749		if (ses == NULL)
750			return (ENOMEM);
751		sesn = 0;
752		sc->sc_nsessions = 1;
753	} else {
754		for (sesn = 0; sesn < sc->sc_nsessions; sesn++) {
755			if (sc->sc_sessions[sesn].ses_used == 0) {
756				ses = &sc->sc_sessions[sesn];
757				break;
758			}
759		}
760
761		if (ses == NULL) {
762			sesn = sc->sc_nsessions;
763			ses = (struct safe_session *)malloc((sesn + 1) *
764			    sizeof(struct safe_session), M_DEVBUF, M_NOWAIT);
765			if (ses == NULL)
766				return (ENOMEM);
767			bcopy(sc->sc_sessions, ses, sesn *
768			    sizeof(struct safe_session));
769			bzero(sc->sc_sessions, sesn *
770			    sizeof(struct safe_session));
771			free(sc->sc_sessions, M_DEVBUF);
772			sc->sc_sessions = ses;
773			ses = &sc->sc_sessions[sesn];
774			sc->sc_nsessions++;
775		}
776	}
777
778	bzero(ses, sizeof(struct safe_session));
779	ses->ses_used = 1;
780
781	if (encini) {
782		/* get an IV */
783		/* XXX may read fewer than requested */
784		read_random(ses->ses_iv, sizeof(ses->ses_iv));
785
786		ses->ses_klen = encini->cri_klen;
787		if (encini->cri_key != NULL)
788			safe_setup_enckey(ses, encini->cri_key);
789	}
790
791	if (macini) {
792		ses->ses_mlen = macini->cri_mlen;
793		if (ses->ses_mlen == 0) {
794			if (macini->cri_alg == CRYPTO_MD5_HMAC)
795				ses->ses_mlen = MD5_HASH_LEN;
796			else
797				ses->ses_mlen = SHA1_HASH_LEN;
798		}
799
800		if (macini->cri_key != NULL) {
801			safe_setup_mackey(ses, macini->cri_alg, macini->cri_key,
802			    macini->cri_klen / 8);
803		}
804	}
805
806	*sidp = SAFE_SID(device_get_unit(sc->sc_dev), sesn);
807	return (0);
808}
809
810/*
811 * Deallocate a session.
812 */
813static int
814safe_freesession(device_t dev, u_int64_t tid)
815{
816	struct safe_softc *sc = device_get_softc(dev);
817	int session, ret;
818	u_int32_t sid = ((u_int32_t) tid) & 0xffffffff;
819
820	if (sc == NULL)
821		return (EINVAL);
822
823	session = SAFE_SESSION(sid);
824	if (session < sc->sc_nsessions) {
825		bzero(&sc->sc_sessions[session], sizeof(sc->sc_sessions[session]));
826		ret = 0;
827	} else
828		ret = EINVAL;
829	return (ret);
830}
831
832static void
833safe_op_cb(void *arg, bus_dma_segment_t *seg, int nsegs, bus_size_t mapsize, int error)
834{
835	struct safe_operand *op = arg;
836
837	DPRINTF(("%s: mapsize %u nsegs %d error %d\n", __func__,
838		(u_int) mapsize, nsegs, error));
839	if (error != 0)
840		return;
841	op->mapsize = mapsize;
842	op->nsegs = nsegs;
843	bcopy(seg, op->segs, nsegs * sizeof (seg[0]));
844}
845
846static int
847safe_process(device_t dev, struct cryptop *crp, int hint)
848{
849	struct safe_softc *sc = device_get_softc(dev);
850	int err = 0, i, nicealign, uniform;
851	struct cryptodesc *crd1, *crd2, *maccrd, *enccrd;
852	int bypass, oplen, ivsize;
853	caddr_t iv;
854	int16_t coffset;
855	struct safe_session *ses;
856	struct safe_ringentry *re;
857	struct safe_sarec *sa;
858	struct safe_pdesc *pd;
859	u_int32_t cmd0, cmd1, staterec;
860
861	if (crp == NULL || crp->crp_callback == NULL || sc == NULL) {
862		safestats.st_invalid++;
863		return (EINVAL);
864	}
865	if (SAFE_SESSION(crp->crp_sid) >= sc->sc_nsessions) {
866		safestats.st_badsession++;
867		return (EINVAL);
868	}
869
870	mtx_lock(&sc->sc_ringmtx);
871	if (sc->sc_front == sc->sc_back && sc->sc_nqchip != 0) {
872		safestats.st_ringfull++;
873		sc->sc_needwakeup |= CRYPTO_SYMQ;
874		mtx_unlock(&sc->sc_ringmtx);
875		return (ERESTART);
876	}
877	re = sc->sc_front;
878
879	staterec = re->re_sa.sa_staterec;	/* save */
880	/* NB: zero everything but the PE descriptor */
881	bzero(&re->re_sa, sizeof(struct safe_ringentry) - sizeof(re->re_desc));
882	re->re_sa.sa_staterec = staterec;	/* restore */
883
884	re->re_crp = crp;
885	re->re_sesn = SAFE_SESSION(crp->crp_sid);
886
887	if (crp->crp_flags & CRYPTO_F_IMBUF) {
888		re->re_src_m = (struct mbuf *)crp->crp_buf;
889		re->re_dst_m = (struct mbuf *)crp->crp_buf;
890	} else if (crp->crp_flags & CRYPTO_F_IOV) {
891		re->re_src_io = (struct uio *)crp->crp_buf;
892		re->re_dst_io = (struct uio *)crp->crp_buf;
893	} else {
894		safestats.st_badflags++;
895		err = EINVAL;
896		goto errout;	/* XXX we don't handle contiguous blocks! */
897	}
898
899	sa = &re->re_sa;
900	ses = &sc->sc_sessions[re->re_sesn];
901
902	crd1 = crp->crp_desc;
903	if (crd1 == NULL) {
904		safestats.st_nodesc++;
905		err = EINVAL;
906		goto errout;
907	}
908	crd2 = crd1->crd_next;
909
910	cmd0 = SAFE_SA_CMD0_BASIC;		/* basic group operation */
911	cmd1 = 0;
912	if (crd2 == NULL) {
913		if (crd1->crd_alg == CRYPTO_MD5_HMAC ||
914		    crd1->crd_alg == CRYPTO_SHA1_HMAC ||
915		    crd1->crd_alg == CRYPTO_NULL_HMAC) {
916			maccrd = crd1;
917			enccrd = NULL;
918			cmd0 |= SAFE_SA_CMD0_OP_HASH;
919		} else if (crd1->crd_alg == CRYPTO_DES_CBC ||
920		    crd1->crd_alg == CRYPTO_3DES_CBC ||
921		    crd1->crd_alg == CRYPTO_AES_CBC ||
922		    crd1->crd_alg == CRYPTO_NULL_CBC) {
923			maccrd = NULL;
924			enccrd = crd1;
925			cmd0 |= SAFE_SA_CMD0_OP_CRYPT;
926		} else {
927			safestats.st_badalg++;
928			err = EINVAL;
929			goto errout;
930		}
931	} else {
932		if ((crd1->crd_alg == CRYPTO_MD5_HMAC ||
933		    crd1->crd_alg == CRYPTO_SHA1_HMAC ||
934		    crd1->crd_alg == CRYPTO_NULL_HMAC) &&
935		    (crd2->crd_alg == CRYPTO_DES_CBC ||
936			crd2->crd_alg == CRYPTO_3DES_CBC ||
937		        crd2->crd_alg == CRYPTO_AES_CBC ||
938		        crd2->crd_alg == CRYPTO_NULL_CBC) &&
939		    ((crd2->crd_flags & CRD_F_ENCRYPT) == 0)) {
940			maccrd = crd1;
941			enccrd = crd2;
942		} else if ((crd1->crd_alg == CRYPTO_DES_CBC ||
943		    crd1->crd_alg == CRYPTO_3DES_CBC ||
944		    crd1->crd_alg == CRYPTO_AES_CBC ||
945		    crd1->crd_alg == CRYPTO_NULL_CBC) &&
946		    (crd2->crd_alg == CRYPTO_MD5_HMAC ||
947			crd2->crd_alg == CRYPTO_SHA1_HMAC ||
948			crd2->crd_alg == CRYPTO_NULL_HMAC) &&
949		    (crd1->crd_flags & CRD_F_ENCRYPT)) {
950			enccrd = crd1;
951			maccrd = crd2;
952		} else {
953			safestats.st_badalg++;
954			err = EINVAL;
955			goto errout;
956		}
957		cmd0 |= SAFE_SA_CMD0_OP_BOTH;
958	}
959
960	if (enccrd) {
961		if (enccrd->crd_flags & CRD_F_KEY_EXPLICIT)
962			safe_setup_enckey(ses, enccrd->crd_key);
963
964		if (enccrd->crd_alg == CRYPTO_DES_CBC) {
965			cmd0 |= SAFE_SA_CMD0_DES;
966			cmd1 |= SAFE_SA_CMD1_CBC;
967			ivsize = 2*sizeof(u_int32_t);
968		} else if (enccrd->crd_alg == CRYPTO_3DES_CBC) {
969			cmd0 |= SAFE_SA_CMD0_3DES;
970			cmd1 |= SAFE_SA_CMD1_CBC;
971			ivsize = 2*sizeof(u_int32_t);
972		} else if (enccrd->crd_alg == CRYPTO_AES_CBC) {
973			cmd0 |= SAFE_SA_CMD0_AES;
974			cmd1 |= SAFE_SA_CMD1_CBC;
975			if (ses->ses_klen == 128)
976			     cmd1 |=  SAFE_SA_CMD1_AES128;
977			else if (ses->ses_klen == 192)
978			     cmd1 |=  SAFE_SA_CMD1_AES192;
979			else
980			     cmd1 |=  SAFE_SA_CMD1_AES256;
981			ivsize = 4*sizeof(u_int32_t);
982		} else {
983			cmd0 |= SAFE_SA_CMD0_CRYPT_NULL;
984			ivsize = 0;
985		}
986
987		/*
988		 * Setup encrypt/decrypt state.  When using basic ops
989		 * we can't use an inline IV because hash/crypt offset
990		 * must be from the end of the IV to the start of the
991		 * crypt data and this leaves out the preceding header
992		 * from the hash calculation.  Instead we place the IV
993		 * in the state record and set the hash/crypt offset to
994		 * copy both the header+IV.
995		 */
996		if (enccrd->crd_flags & CRD_F_ENCRYPT) {
997			cmd0 |= SAFE_SA_CMD0_OUTBOUND;
998
999			if (enccrd->crd_flags & CRD_F_IV_EXPLICIT)
1000				iv = enccrd->crd_iv;
1001			else
1002				iv = (caddr_t) ses->ses_iv;
1003			if ((enccrd->crd_flags & CRD_F_IV_PRESENT) == 0) {
1004				crypto_copyback(crp->crp_flags, crp->crp_buf,
1005				    enccrd->crd_inject, ivsize, iv);
1006			}
1007			bcopy(iv, re->re_sastate.sa_saved_iv, ivsize);
1008			cmd0 |= SAFE_SA_CMD0_IVLD_STATE | SAFE_SA_CMD0_SAVEIV;
1009			re->re_flags |= SAFE_QFLAGS_COPYOUTIV;
1010		} else {
1011			cmd0 |= SAFE_SA_CMD0_INBOUND;
1012
1013			if (enccrd->crd_flags & CRD_F_IV_EXPLICIT) {
1014				bcopy(enccrd->crd_iv,
1015					re->re_sastate.sa_saved_iv, ivsize);
1016			} else {
1017				crypto_copydata(crp->crp_flags, crp->crp_buf,
1018				    enccrd->crd_inject, ivsize,
1019				    (caddr_t)re->re_sastate.sa_saved_iv);
1020			}
1021			cmd0 |= SAFE_SA_CMD0_IVLD_STATE;
1022		}
1023		/*
1024		 * For basic encryption use the zero pad algorithm.
1025		 * This pads results to an 8-byte boundary and
1026		 * suppresses padding verification for inbound (i.e.
1027		 * decrypt) operations.
1028		 *
1029		 * NB: Not sure if the 8-byte pad boundary is a problem.
1030		 */
1031		cmd0 |= SAFE_SA_CMD0_PAD_ZERO;
1032
1033		/* XXX assert key bufs have the same size */
1034		bcopy(ses->ses_key, sa->sa_key, sizeof(sa->sa_key));
1035	}
1036
1037	if (maccrd) {
1038		if (maccrd->crd_flags & CRD_F_KEY_EXPLICIT) {
1039			safe_setup_mackey(ses, maccrd->crd_alg,
1040			    maccrd->crd_key, maccrd->crd_klen / 8);
1041		}
1042
1043		if (maccrd->crd_alg == CRYPTO_MD5_HMAC) {
1044			cmd0 |= SAFE_SA_CMD0_MD5;
1045			cmd1 |= SAFE_SA_CMD1_HMAC;	/* NB: enable HMAC */
1046		} else if (maccrd->crd_alg == CRYPTO_SHA1_HMAC) {
1047			cmd0 |= SAFE_SA_CMD0_SHA1;
1048			cmd1 |= SAFE_SA_CMD1_HMAC;	/* NB: enable HMAC */
1049		} else {
1050			cmd0 |= SAFE_SA_CMD0_HASH_NULL;
1051		}
1052		/*
1053		 * Digest data is loaded from the SA and the hash
1054		 * result is saved to the state block where we
1055		 * retrieve it for return to the caller.
1056		 */
1057		/* XXX assert digest bufs have the same size */
1058		bcopy(ses->ses_hminner, sa->sa_indigest,
1059			sizeof(sa->sa_indigest));
1060		bcopy(ses->ses_hmouter, sa->sa_outdigest,
1061			sizeof(sa->sa_outdigest));
1062
1063		cmd0 |= SAFE_SA_CMD0_HSLD_SA | SAFE_SA_CMD0_SAVEHASH;
1064		re->re_flags |= SAFE_QFLAGS_COPYOUTICV;
1065	}
1066
1067	if (enccrd && maccrd) {
1068		/*
1069		 * The offset from hash data to the start of
1070		 * crypt data is the difference in the skips.
1071		 */
1072		bypass = maccrd->crd_skip;
1073		coffset = enccrd->crd_skip - maccrd->crd_skip;
1074		if (coffset < 0) {
1075			DPRINTF(("%s: hash does not precede crypt; "
1076				"mac skip %u enc skip %u\n",
1077				__func__, maccrd->crd_skip, enccrd->crd_skip));
1078			safestats.st_skipmismatch++;
1079			err = EINVAL;
1080			goto errout;
1081		}
1082		oplen = enccrd->crd_skip + enccrd->crd_len;
1083		if (maccrd->crd_skip + maccrd->crd_len != oplen) {
1084			DPRINTF(("%s: hash amount %u != crypt amount %u\n",
1085				__func__, maccrd->crd_skip + maccrd->crd_len,
1086				oplen));
1087			safestats.st_lenmismatch++;
1088			err = EINVAL;
1089			goto errout;
1090		}
1091#ifdef SAFE_DEBUG
1092		if (safe_debug) {
1093			printf("mac: skip %d, len %d, inject %d\n",
1094			    maccrd->crd_skip, maccrd->crd_len,
1095			    maccrd->crd_inject);
1096			printf("enc: skip %d, len %d, inject %d\n",
1097			    enccrd->crd_skip, enccrd->crd_len,
1098			    enccrd->crd_inject);
1099			printf("bypass %d coffset %d oplen %d\n",
1100				bypass, coffset, oplen);
1101		}
1102#endif
1103		if (coffset & 3) {	/* offset must be 32-bit aligned */
1104			DPRINTF(("%s: coffset %u misaligned\n",
1105				__func__, coffset));
1106			safestats.st_coffmisaligned++;
1107			err = EINVAL;
1108			goto errout;
1109		}
1110		coffset >>= 2;
1111		if (coffset > 255) {	/* offset must be <256 dwords */
1112			DPRINTF(("%s: coffset %u too big\n",
1113				__func__, coffset));
1114			safestats.st_cofftoobig++;
1115			err = EINVAL;
1116			goto errout;
1117		}
1118		/*
1119		 * Tell the hardware to copy the header to the output.
1120		 * The header is defined as the data from the end of
1121		 * the bypass to the start of data to be encrypted.
1122		 * Typically this is the inline IV.  Note that you need
1123		 * to do this even if src+dst are the same; it appears
1124		 * that w/o this bit the crypted data is written
1125		 * immediately after the bypass data.
1126		 */
1127		cmd1 |= SAFE_SA_CMD1_HDRCOPY;
1128		/*
1129		 * Disable IP header mutable bit handling.  This is
1130		 * needed to get correct HMAC calculations.
1131		 */
1132		cmd1 |= SAFE_SA_CMD1_MUTABLE;
1133	} else {
1134		if (enccrd) {
1135			bypass = enccrd->crd_skip;
1136			oplen = bypass + enccrd->crd_len;
1137		} else {
1138			bypass = maccrd->crd_skip;
1139			oplen = bypass + maccrd->crd_len;
1140		}
1141		coffset = 0;
1142	}
1143	/* XXX verify multiple of 4 when using s/g */
1144	if (bypass > 96) {		/* bypass offset must be <= 96 bytes */
1145		DPRINTF(("%s: bypass %u too big\n", __func__, bypass));
1146		safestats.st_bypasstoobig++;
1147		err = EINVAL;
1148		goto errout;
1149	}
1150
1151	if (bus_dmamap_create(sc->sc_srcdmat, BUS_DMA_NOWAIT, &re->re_src_map)) {
1152		safestats.st_nomap++;
1153		err = ENOMEM;
1154		goto errout;
1155	}
1156	if (crp->crp_flags & CRYPTO_F_IMBUF) {
1157		if (bus_dmamap_load_mbuf(sc->sc_srcdmat, re->re_src_map,
1158		    re->re_src_m, safe_op_cb,
1159		    &re->re_src, BUS_DMA_NOWAIT) != 0) {
1160			bus_dmamap_destroy(sc->sc_srcdmat, re->re_src_map);
1161			re->re_src_map = NULL;
1162			safestats.st_noload++;
1163			err = ENOMEM;
1164			goto errout;
1165		}
1166	} else if (crp->crp_flags & CRYPTO_F_IOV) {
1167		if (bus_dmamap_load_uio(sc->sc_srcdmat, re->re_src_map,
1168		    re->re_src_io, safe_op_cb,
1169		    &re->re_src, BUS_DMA_NOWAIT) != 0) {
1170			bus_dmamap_destroy(sc->sc_srcdmat, re->re_src_map);
1171			re->re_src_map = NULL;
1172			safestats.st_noload++;
1173			err = ENOMEM;
1174			goto errout;
1175		}
1176	}
1177	nicealign = safe_dmamap_aligned(&re->re_src);
1178	uniform = safe_dmamap_uniform(&re->re_src);
1179
1180	DPRINTF(("src nicealign %u uniform %u nsegs %u\n",
1181		nicealign, uniform, re->re_src.nsegs));
1182	if (re->re_src.nsegs > 1) {
1183		re->re_desc.d_src = sc->sc_spalloc.dma_paddr +
1184			((caddr_t) sc->sc_spfree - (caddr_t) sc->sc_spring);
1185		for (i = 0; i < re->re_src_nsegs; i++) {
1186			/* NB: no need to check if there's space */
1187			pd = sc->sc_spfree;
1188			if (++(sc->sc_spfree) == sc->sc_springtop)
1189				sc->sc_spfree = sc->sc_spring;
1190
1191			KASSERT((pd->pd_flags&3) == 0 ||
1192				(pd->pd_flags&3) == SAFE_PD_DONE,
1193				("bogus source particle descriptor; flags %x",
1194				pd->pd_flags));
1195			pd->pd_addr = re->re_src_segs[i].ds_addr;
1196			pd->pd_size = re->re_src_segs[i].ds_len;
1197			pd->pd_flags = SAFE_PD_READY;
1198		}
1199		cmd0 |= SAFE_SA_CMD0_IGATHER;
1200	} else {
1201		/*
1202		 * No need for gather, reference the operand directly.
1203		 */
1204		re->re_desc.d_src = re->re_src_segs[0].ds_addr;
1205	}
1206
1207	if (enccrd == NULL && maccrd != NULL) {
1208		/*
1209		 * Hash op; no destination needed.
1210		 */
1211	} else {
1212		if (crp->crp_flags & CRYPTO_F_IOV) {
1213			if (!nicealign) {
1214				safestats.st_iovmisaligned++;
1215				err = EINVAL;
1216				goto errout;
1217			}
1218			if (uniform != 1) {
1219				/*
1220				 * Source is not suitable for direct use as
1221				 * the destination.  Create a new scatter/gather
1222				 * list based on the destination requirements
1223				 * and check if that's ok.
1224				 */
1225				if (bus_dmamap_create(sc->sc_dstdmat,
1226				    BUS_DMA_NOWAIT, &re->re_dst_map)) {
1227					safestats.st_nomap++;
1228					err = ENOMEM;
1229					goto errout;
1230				}
1231				if (bus_dmamap_load_uio(sc->sc_dstdmat,
1232				    re->re_dst_map, re->re_dst_io,
1233				    safe_op_cb, &re->re_dst,
1234				    BUS_DMA_NOWAIT) != 0) {
1235					bus_dmamap_destroy(sc->sc_dstdmat,
1236						re->re_dst_map);
1237					re->re_dst_map = NULL;
1238					safestats.st_noload++;
1239					err = ENOMEM;
1240					goto errout;
1241				}
1242				uniform = safe_dmamap_uniform(&re->re_dst);
1243				if (!uniform) {
1244					/*
1245					 * There's no way to handle the DMA
1246					 * requirements with this uio.  We
1247					 * could create a separate DMA area for
1248					 * the result and then copy it back,
1249					 * but for now we just bail and return
1250					 * an error.  Note that uio requests
1251					 * > SAFE_MAX_DSIZE are handled because
1252					 * the DMA map and segment list for the
1253					 * destination wil result in a
1254					 * destination particle list that does
1255					 * the necessary scatter DMA.
1256					 */
1257					safestats.st_iovnotuniform++;
1258					err = EINVAL;
1259					goto errout;
1260				}
1261			} else
1262				re->re_dst = re->re_src;
1263		} else if (crp->crp_flags & CRYPTO_F_IMBUF) {
1264			if (nicealign && uniform == 1) {
1265				/*
1266				 * Source layout is suitable for direct
1267				 * sharing of the DMA map and segment list.
1268				 */
1269				re->re_dst = re->re_src;
1270			} else if (nicealign && uniform == 2) {
1271				/*
1272				 * The source is properly aligned but requires a
1273				 * different particle list to handle DMA of the
1274				 * result.  Create a new map and do the load to
1275				 * create the segment list.  The particle
1276				 * descriptor setup code below will handle the
1277				 * rest.
1278				 */
1279				if (bus_dmamap_create(sc->sc_dstdmat,
1280				    BUS_DMA_NOWAIT, &re->re_dst_map)) {
1281					safestats.st_nomap++;
1282					err = ENOMEM;
1283					goto errout;
1284				}
1285				if (bus_dmamap_load_mbuf(sc->sc_dstdmat,
1286				    re->re_dst_map, re->re_dst_m,
1287				    safe_op_cb, &re->re_dst,
1288				    BUS_DMA_NOWAIT) != 0) {
1289					bus_dmamap_destroy(sc->sc_dstdmat,
1290						re->re_dst_map);
1291					re->re_dst_map = NULL;
1292					safestats.st_noload++;
1293					err = ENOMEM;
1294					goto errout;
1295				}
1296			} else {		/* !(aligned and/or uniform) */
1297				int totlen, len;
1298				struct mbuf *m, *top, **mp;
1299
1300				/*
1301				 * DMA constraints require that we allocate a
1302				 * new mbuf chain for the destination.  We
1303				 * allocate an entire new set of mbufs of
1304				 * optimal/required size and then tell the
1305				 * hardware to copy any bits that are not
1306				 * created as a byproduct of the operation.
1307				 */
1308				if (!nicealign)
1309					safestats.st_unaligned++;
1310				if (!uniform)
1311					safestats.st_notuniform++;
1312				totlen = re->re_src_mapsize;
1313				if (re->re_src_m->m_flags & M_PKTHDR) {
1314					len = MHLEN;
1315					MGETHDR(m, M_NOWAIT, MT_DATA);
1316					if (m && !m_dup_pkthdr(m, re->re_src_m,
1317					    M_NOWAIT)) {
1318						m_free(m);
1319						m = NULL;
1320					}
1321				} else {
1322					len = MLEN;
1323					MGET(m, M_NOWAIT, MT_DATA);
1324				}
1325				if (m == NULL) {
1326					safestats.st_nombuf++;
1327					err = sc->sc_nqchip ? ERESTART : ENOMEM;
1328					goto errout;
1329				}
1330				if (totlen >= MINCLSIZE) {
1331					MCLGET(m, M_NOWAIT);
1332					if ((m->m_flags & M_EXT) == 0) {
1333						m_free(m);
1334						safestats.st_nomcl++;
1335						err = sc->sc_nqchip ?
1336							ERESTART : ENOMEM;
1337						goto errout;
1338					}
1339					len = MCLBYTES;
1340				}
1341				m->m_len = len;
1342				top = NULL;
1343				mp = &top;
1344
1345				while (totlen > 0) {
1346					if (top) {
1347						MGET(m, M_NOWAIT, MT_DATA);
1348						if (m == NULL) {
1349							m_freem(top);
1350							safestats.st_nombuf++;
1351							err = sc->sc_nqchip ?
1352							    ERESTART : ENOMEM;
1353							goto errout;
1354						}
1355						len = MLEN;
1356					}
1357					if (top && totlen >= MINCLSIZE) {
1358						MCLGET(m, M_NOWAIT);
1359						if ((m->m_flags & M_EXT) == 0) {
1360							*mp = m;
1361							m_freem(top);
1362							safestats.st_nomcl++;
1363							err = sc->sc_nqchip ?
1364							    ERESTART : ENOMEM;
1365							goto errout;
1366						}
1367						len = MCLBYTES;
1368					}
1369					m->m_len = len = min(totlen, len);
1370					totlen -= len;
1371					*mp = m;
1372					mp = &m->m_next;
1373				}
1374				re->re_dst_m = top;
1375				if (bus_dmamap_create(sc->sc_dstdmat,
1376				    BUS_DMA_NOWAIT, &re->re_dst_map) != 0) {
1377					safestats.st_nomap++;
1378					err = ENOMEM;
1379					goto errout;
1380				}
1381				if (bus_dmamap_load_mbuf(sc->sc_dstdmat,
1382				    re->re_dst_map, re->re_dst_m,
1383				    safe_op_cb, &re->re_dst,
1384				    BUS_DMA_NOWAIT) != 0) {
1385					bus_dmamap_destroy(sc->sc_dstdmat,
1386					re->re_dst_map);
1387					re->re_dst_map = NULL;
1388					safestats.st_noload++;
1389					err = ENOMEM;
1390					goto errout;
1391				}
1392				if (re->re_src.mapsize > oplen) {
1393					/*
1394					 * There's data following what the
1395					 * hardware will copy for us.  If this
1396					 * isn't just the ICV (that's going to
1397					 * be written on completion), copy it
1398					 * to the new mbufs
1399					 */
1400					if (!(maccrd &&
1401					    (re->re_src.mapsize-oplen) == 12 &&
1402					    maccrd->crd_inject == oplen))
1403						safe_mcopy(re->re_src_m,
1404							   re->re_dst_m,
1405							   oplen);
1406					else
1407						safestats.st_noicvcopy++;
1408				}
1409			}
1410		} else {
1411			safestats.st_badflags++;
1412			err = EINVAL;
1413			goto errout;
1414		}
1415
1416		if (re->re_dst.nsegs > 1) {
1417			re->re_desc.d_dst = sc->sc_dpalloc.dma_paddr +
1418			    ((caddr_t) sc->sc_dpfree - (caddr_t) sc->sc_dpring);
1419			for (i = 0; i < re->re_dst_nsegs; i++) {
1420				pd = sc->sc_dpfree;
1421				KASSERT((pd->pd_flags&3) == 0 ||
1422					(pd->pd_flags&3) == SAFE_PD_DONE,
1423					("bogus dest particle descriptor; flags %x",
1424						pd->pd_flags));
1425				if (++(sc->sc_dpfree) == sc->sc_dpringtop)
1426					sc->sc_dpfree = sc->sc_dpring;
1427				pd->pd_addr = re->re_dst_segs[i].ds_addr;
1428				pd->pd_flags = SAFE_PD_READY;
1429			}
1430			cmd0 |= SAFE_SA_CMD0_OSCATTER;
1431		} else {
1432			/*
1433			 * No need for scatter, reference the operand directly.
1434			 */
1435			re->re_desc.d_dst = re->re_dst_segs[0].ds_addr;
1436		}
1437	}
1438
1439	/*
1440	 * All done with setup; fillin the SA command words
1441	 * and the packet engine descriptor.  The operation
1442	 * is now ready for submission to the hardware.
1443	 */
1444	sa->sa_cmd0 = cmd0 | SAFE_SA_CMD0_IPCI | SAFE_SA_CMD0_OPCI;
1445	sa->sa_cmd1 = cmd1
1446		    | (coffset << SAFE_SA_CMD1_OFFSET_S)
1447		    | SAFE_SA_CMD1_SAREV1	/* Rev 1 SA data structure */
1448		    | SAFE_SA_CMD1_SRPCI
1449		    ;
1450	/*
1451	 * NB: the order of writes is important here.  In case the
1452	 * chip is scanning the ring because of an outstanding request
1453	 * it might nab this one too.  In that case we need to make
1454	 * sure the setup is complete before we write the length
1455	 * field of the descriptor as it signals the descriptor is
1456	 * ready for processing.
1457	 */
1458	re->re_desc.d_csr = SAFE_PE_CSR_READY | SAFE_PE_CSR_SAPCI;
1459	if (maccrd)
1460		re->re_desc.d_csr |= SAFE_PE_CSR_LOADSA | SAFE_PE_CSR_HASHFINAL;
1461	re->re_desc.d_len = oplen
1462			  | SAFE_PE_LEN_READY
1463			  | (bypass << SAFE_PE_LEN_BYPASS_S)
1464			  ;
1465
1466	safestats.st_ipackets++;
1467	safestats.st_ibytes += oplen;
1468
1469	if (++(sc->sc_front) == sc->sc_ringtop)
1470		sc->sc_front = sc->sc_ring;
1471
1472	/* XXX honor batching */
1473	safe_feed(sc, re);
1474	mtx_unlock(&sc->sc_ringmtx);
1475	return (0);
1476
1477errout:
1478	if ((re->re_dst_m != NULL) && (re->re_src_m != re->re_dst_m))
1479		m_freem(re->re_dst_m);
1480
1481	if (re->re_dst_map != NULL && re->re_dst_map != re->re_src_map) {
1482		bus_dmamap_unload(sc->sc_dstdmat, re->re_dst_map);
1483		bus_dmamap_destroy(sc->sc_dstdmat, re->re_dst_map);
1484	}
1485	if (re->re_src_map != NULL) {
1486		bus_dmamap_unload(sc->sc_srcdmat, re->re_src_map);
1487		bus_dmamap_destroy(sc->sc_srcdmat, re->re_src_map);
1488	}
1489	mtx_unlock(&sc->sc_ringmtx);
1490	if (err != ERESTART) {
1491		crp->crp_etype = err;
1492		crypto_done(crp);
1493	} else {
1494		sc->sc_needwakeup |= CRYPTO_SYMQ;
1495	}
1496	return (err);
1497}
1498
1499static void
1500safe_callback(struct safe_softc *sc, struct safe_ringentry *re)
1501{
1502	struct cryptop *crp = (struct cryptop *)re->re_crp;
1503	struct cryptodesc *crd;
1504
1505	safestats.st_opackets++;
1506	safestats.st_obytes += re->re_dst.mapsize;
1507
1508	safe_dma_sync(&sc->sc_ringalloc,
1509		BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1510	if (re->re_desc.d_csr & SAFE_PE_CSR_STATUS) {
1511		device_printf(sc->sc_dev, "csr 0x%x cmd0 0x%x cmd1 0x%x\n",
1512			re->re_desc.d_csr,
1513			re->re_sa.sa_cmd0, re->re_sa.sa_cmd1);
1514		safestats.st_peoperr++;
1515		crp->crp_etype = EIO;		/* something more meaningful? */
1516	}
1517	if (re->re_dst_map != NULL && re->re_dst_map != re->re_src_map) {
1518		bus_dmamap_sync(sc->sc_dstdmat, re->re_dst_map,
1519		    BUS_DMASYNC_POSTREAD);
1520		bus_dmamap_unload(sc->sc_dstdmat, re->re_dst_map);
1521		bus_dmamap_destroy(sc->sc_dstdmat, re->re_dst_map);
1522	}
1523	bus_dmamap_sync(sc->sc_srcdmat, re->re_src_map, BUS_DMASYNC_POSTWRITE);
1524	bus_dmamap_unload(sc->sc_srcdmat, re->re_src_map);
1525	bus_dmamap_destroy(sc->sc_srcdmat, re->re_src_map);
1526
1527	/*
1528	 * If result was written to a differet mbuf chain, swap
1529	 * it in as the return value and reclaim the original.
1530	 */
1531	if ((crp->crp_flags & CRYPTO_F_IMBUF) && re->re_src_m != re->re_dst_m) {
1532		m_freem(re->re_src_m);
1533		crp->crp_buf = (caddr_t)re->re_dst_m;
1534	}
1535
1536	if (re->re_flags & SAFE_QFLAGS_COPYOUTIV) {
1537		/* copy out IV for future use */
1538		for (crd = crp->crp_desc; crd; crd = crd->crd_next) {
1539			int ivsize;
1540
1541			if (crd->crd_alg == CRYPTO_DES_CBC ||
1542			    crd->crd_alg == CRYPTO_3DES_CBC) {
1543				ivsize = 2*sizeof(u_int32_t);
1544			} else if (crd->crd_alg == CRYPTO_AES_CBC) {
1545				ivsize = 4*sizeof(u_int32_t);
1546			} else
1547				continue;
1548			crypto_copydata(crp->crp_flags, crp->crp_buf,
1549			    crd->crd_skip + crd->crd_len - ivsize, ivsize,
1550			    (caddr_t)sc->sc_sessions[re->re_sesn].ses_iv);
1551			break;
1552		}
1553	}
1554
1555	if (re->re_flags & SAFE_QFLAGS_COPYOUTICV) {
1556		/* copy out ICV result */
1557		for (crd = crp->crp_desc; crd; crd = crd->crd_next) {
1558			if (!(crd->crd_alg == CRYPTO_MD5_HMAC ||
1559			    crd->crd_alg == CRYPTO_SHA1_HMAC ||
1560			    crd->crd_alg == CRYPTO_NULL_HMAC))
1561				continue;
1562			if (crd->crd_alg == CRYPTO_SHA1_HMAC) {
1563				/*
1564				 * SHA-1 ICV's are byte-swapped; fix 'em up
1565				 * before copy them to their destination.
1566				 */
1567				re->re_sastate.sa_saved_indigest[0] =
1568				    bswap32(re->re_sastate.sa_saved_indigest[0]);
1569				re->re_sastate.sa_saved_indigest[1] =
1570				    bswap32(re->re_sastate.sa_saved_indigest[1]);
1571				re->re_sastate.sa_saved_indigest[2] =
1572				    bswap32(re->re_sastate.sa_saved_indigest[2]);
1573			}
1574			crypto_copyback(crp->crp_flags, crp->crp_buf,
1575			    crd->crd_inject,
1576			    sc->sc_sessions[re->re_sesn].ses_mlen,
1577			    (caddr_t)re->re_sastate.sa_saved_indigest);
1578			break;
1579		}
1580	}
1581	crypto_done(crp);
1582}
1583
1584/*
1585 * Copy all data past offset from srcm to dstm.
1586 */
1587static void
1588safe_mcopy(struct mbuf *srcm, struct mbuf *dstm, u_int offset)
1589{
1590	u_int j, dlen, slen;
1591	caddr_t dptr, sptr;
1592
1593	/*
1594	 * Advance src and dst to offset.
1595	 */
1596	j = offset;
1597	while (j >= 0) {
1598		if (srcm->m_len > j)
1599			break;
1600		j -= srcm->m_len;
1601		srcm = srcm->m_next;
1602		if (srcm == NULL)
1603			return;
1604	}
1605	sptr = mtod(srcm, caddr_t) + j;
1606	slen = srcm->m_len - j;
1607
1608	j = offset;
1609	while (j >= 0) {
1610		if (dstm->m_len > j)
1611			break;
1612		j -= dstm->m_len;
1613		dstm = dstm->m_next;
1614		if (dstm == NULL)
1615			return;
1616	}
1617	dptr = mtod(dstm, caddr_t) + j;
1618	dlen = dstm->m_len - j;
1619
1620	/*
1621	 * Copy everything that remains.
1622	 */
1623	for (;;) {
1624		j = min(slen, dlen);
1625		bcopy(sptr, dptr, j);
1626		if (slen == j) {
1627			srcm = srcm->m_next;
1628			if (srcm == NULL)
1629				return;
1630			sptr = srcm->m_data;
1631			slen = srcm->m_len;
1632		} else
1633			sptr += j, slen -= j;
1634		if (dlen == j) {
1635			dstm = dstm->m_next;
1636			if (dstm == NULL)
1637				return;
1638			dptr = dstm->m_data;
1639			dlen = dstm->m_len;
1640		} else
1641			dptr += j, dlen -= j;
1642	}
1643}
1644
1645#ifndef SAFE_NO_RNG
1646#define	SAFE_RNG_MAXWAIT	1000
1647
1648static void
1649safe_rng_init(struct safe_softc *sc)
1650{
1651	u_int32_t w, v;
1652	int i;
1653
1654	WRITE_REG(sc, SAFE_RNG_CTRL, 0);
1655	/* use default value according to the manual */
1656	WRITE_REG(sc, SAFE_RNG_CNFG, 0x834);	/* magic from SafeNet */
1657	WRITE_REG(sc, SAFE_RNG_ALM_CNT, 0);
1658
1659	/*
1660	 * There is a bug in rev 1.0 of the 1140 that when the RNG
1661	 * is brought out of reset the ready status flag does not
1662	 * work until the RNG has finished its internal initialization.
1663	 *
1664	 * So in order to determine the device is through its
1665	 * initialization we must read the data register, using the
1666	 * status reg in the read in case it is initialized.  Then read
1667	 * the data register until it changes from the first read.
1668	 * Once it changes read the data register until it changes
1669	 * again.  At this time the RNG is considered initialized.
1670	 * This could take between 750ms - 1000ms in time.
1671	 */
1672	i = 0;
1673	w = READ_REG(sc, SAFE_RNG_OUT);
1674	do {
1675		v = READ_REG(sc, SAFE_RNG_OUT);
1676		if (v != w) {
1677			w = v;
1678			break;
1679		}
1680		DELAY(10);
1681	} while (++i < SAFE_RNG_MAXWAIT);
1682
1683	/* Wait Until data changes again */
1684	i = 0;
1685	do {
1686		v = READ_REG(sc, SAFE_RNG_OUT);
1687		if (v != w)
1688			break;
1689		DELAY(10);
1690	} while (++i < SAFE_RNG_MAXWAIT);
1691}
1692
1693static __inline void
1694safe_rng_disable_short_cycle(struct safe_softc *sc)
1695{
1696	WRITE_REG(sc, SAFE_RNG_CTRL,
1697		READ_REG(sc, SAFE_RNG_CTRL) &~ SAFE_RNG_CTRL_SHORTEN);
1698}
1699
1700static __inline void
1701safe_rng_enable_short_cycle(struct safe_softc *sc)
1702{
1703	WRITE_REG(sc, SAFE_RNG_CTRL,
1704		READ_REG(sc, SAFE_RNG_CTRL) | SAFE_RNG_CTRL_SHORTEN);
1705}
1706
1707static __inline u_int32_t
1708safe_rng_read(struct safe_softc *sc)
1709{
1710	int i;
1711
1712	i = 0;
1713	while (READ_REG(sc, SAFE_RNG_STAT) != 0 && ++i < SAFE_RNG_MAXWAIT)
1714		;
1715	return READ_REG(sc, SAFE_RNG_OUT);
1716}
1717
1718static void
1719safe_rng(void *arg)
1720{
1721	struct safe_softc *sc = arg;
1722	u_int32_t buf[SAFE_RNG_MAXBUFSIZ];	/* NB: maybe move to softc */
1723	u_int maxwords;
1724	int i;
1725
1726	safestats.st_rng++;
1727	/*
1728	 * Fetch the next block of data.
1729	 */
1730	maxwords = safe_rngbufsize;
1731	if (maxwords > SAFE_RNG_MAXBUFSIZ)
1732		maxwords = SAFE_RNG_MAXBUFSIZ;
1733retry:
1734	for (i = 0; i < maxwords; i++)
1735		buf[i] = safe_rng_read(sc);
1736	/*
1737	 * Check the comparator alarm count and reset the h/w if
1738	 * it exceeds our threshold.  This guards against the
1739	 * hardware oscillators resonating with external signals.
1740	 */
1741	if (READ_REG(sc, SAFE_RNG_ALM_CNT) > safe_rngmaxalarm) {
1742		u_int32_t freq_inc, w;
1743
1744		DPRINTF(("%s: alarm count %u exceeds threshold %u\n", __func__,
1745			READ_REG(sc, SAFE_RNG_ALM_CNT), safe_rngmaxalarm));
1746		safestats.st_rngalarm++;
1747		safe_rng_enable_short_cycle(sc);
1748		freq_inc = 18;
1749		for (i = 0; i < 64; i++) {
1750			w = READ_REG(sc, SAFE_RNG_CNFG);
1751			freq_inc = ((w + freq_inc) & 0x3fL);
1752			w = ((w & ~0x3fL) | freq_inc);
1753			WRITE_REG(sc, SAFE_RNG_CNFG, w);
1754
1755			WRITE_REG(sc, SAFE_RNG_ALM_CNT, 0);
1756
1757			(void) safe_rng_read(sc);
1758			DELAY(25);
1759
1760			if (READ_REG(sc, SAFE_RNG_ALM_CNT) == 0) {
1761				safe_rng_disable_short_cycle(sc);
1762				goto retry;
1763			}
1764			freq_inc = 1;
1765		}
1766		safe_rng_disable_short_cycle(sc);
1767	} else
1768		WRITE_REG(sc, SAFE_RNG_ALM_CNT, 0);
1769
1770	(*sc->sc_harvest)(sc->sc_rndtest, buf, maxwords*sizeof (u_int32_t));
1771	callout_reset(&sc->sc_rngto,
1772		hz * (safe_rnginterval ? safe_rnginterval : 1), safe_rng, sc);
1773}
1774#endif /* SAFE_NO_RNG */
1775
1776static void
1777safe_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1778{
1779	bus_addr_t *paddr = (bus_addr_t*) arg;
1780	*paddr = segs->ds_addr;
1781}
1782
1783static int
1784safe_dma_malloc(
1785	struct safe_softc *sc,
1786	bus_size_t size,
1787	struct safe_dma_alloc *dma,
1788	int mapflags
1789)
1790{
1791	int r;
1792
1793	r = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev),	/* parent */
1794			       sizeof(u_int32_t), 0,	/* alignment, bounds */
1795			       BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
1796			       BUS_SPACE_MAXADDR,	/* highaddr */
1797			       NULL, NULL,		/* filter, filterarg */
1798			       size,			/* maxsize */
1799			       1,			/* nsegments */
1800			       size,			/* maxsegsize */
1801			       BUS_DMA_ALLOCNOW,	/* flags */
1802			       NULL, NULL,		/* locking */
1803			       &dma->dma_tag);
1804	if (r != 0) {
1805		device_printf(sc->sc_dev, "safe_dma_malloc: "
1806			"bus_dma_tag_create failed; error %u\n", r);
1807		goto fail_0;
1808	}
1809
1810	r = bus_dmamap_create(dma->dma_tag, BUS_DMA_NOWAIT, &dma->dma_map);
1811	if (r != 0) {
1812		device_printf(sc->sc_dev, "safe_dma_malloc: "
1813			"bus_dmamap_create failed; error %u\n", r);
1814		goto fail_1;
1815	}
1816
1817	r = bus_dmamem_alloc(dma->dma_tag, (void**) &dma->dma_vaddr,
1818			     BUS_DMA_NOWAIT, &dma->dma_map);
1819	if (r != 0) {
1820		device_printf(sc->sc_dev, "safe_dma_malloc: "
1821			"bus_dmammem_alloc failed; size %zu, error %u\n",
1822			size, r);
1823		goto fail_2;
1824	}
1825
1826	r = bus_dmamap_load(dma->dma_tag, dma->dma_map, dma->dma_vaddr,
1827		            size,
1828			    safe_dmamap_cb,
1829			    &dma->dma_paddr,
1830			    mapflags | BUS_DMA_NOWAIT);
1831	if (r != 0) {
1832		device_printf(sc->sc_dev, "safe_dma_malloc: "
1833			"bus_dmamap_load failed; error %u\n", r);
1834		goto fail_3;
1835	}
1836
1837	dma->dma_size = size;
1838	return (0);
1839
1840fail_3:
1841	bus_dmamap_unload(dma->dma_tag, dma->dma_map);
1842fail_2:
1843	bus_dmamem_free(dma->dma_tag, dma->dma_vaddr, dma->dma_map);
1844fail_1:
1845	bus_dmamap_destroy(dma->dma_tag, dma->dma_map);
1846	bus_dma_tag_destroy(dma->dma_tag);
1847fail_0:
1848	dma->dma_map = NULL;
1849	dma->dma_tag = NULL;
1850	return (r);
1851}
1852
1853static void
1854safe_dma_free(struct safe_softc *sc, struct safe_dma_alloc *dma)
1855{
1856	bus_dmamap_unload(dma->dma_tag, dma->dma_map);
1857	bus_dmamem_free(dma->dma_tag, dma->dma_vaddr, dma->dma_map);
1858	bus_dmamap_destroy(dma->dma_tag, dma->dma_map);
1859	bus_dma_tag_destroy(dma->dma_tag);
1860}
1861
1862/*
1863 * Resets the board.  Values in the regesters are left as is
1864 * from the reset (i.e. initial values are assigned elsewhere).
1865 */
1866static void
1867safe_reset_board(struct safe_softc *sc)
1868{
1869	u_int32_t v;
1870	/*
1871	 * Reset the device.  The manual says no delay
1872	 * is needed between marking and clearing reset.
1873	 */
1874	v = READ_REG(sc, SAFE_PE_DMACFG) &~
1875		(SAFE_PE_DMACFG_PERESET | SAFE_PE_DMACFG_PDRRESET |
1876		 SAFE_PE_DMACFG_SGRESET);
1877	WRITE_REG(sc, SAFE_PE_DMACFG, v
1878				    | SAFE_PE_DMACFG_PERESET
1879				    | SAFE_PE_DMACFG_PDRRESET
1880				    | SAFE_PE_DMACFG_SGRESET);
1881	WRITE_REG(sc, SAFE_PE_DMACFG, v);
1882}
1883
1884/*
1885 * Initialize registers we need to touch only once.
1886 */
1887static void
1888safe_init_board(struct safe_softc *sc)
1889{
1890	u_int32_t v, dwords;
1891
1892	v = READ_REG(sc, SAFE_PE_DMACFG);
1893	v &=~ SAFE_PE_DMACFG_PEMODE;
1894	v |= SAFE_PE_DMACFG_FSENA		/* failsafe enable */
1895	  |  SAFE_PE_DMACFG_GPRPCI		/* gather ring on PCI */
1896	  |  SAFE_PE_DMACFG_SPRPCI		/* scatter ring on PCI */
1897	  |  SAFE_PE_DMACFG_ESDESC		/* endian-swap descriptors */
1898	  |  SAFE_PE_DMACFG_ESSA		/* endian-swap SA's */
1899	  |  SAFE_PE_DMACFG_ESPDESC		/* endian-swap part. desc's */
1900	  ;
1901	WRITE_REG(sc, SAFE_PE_DMACFG, v);
1902#if 0
1903	/* XXX select byte swap based on host byte order */
1904	WRITE_REG(sc, SAFE_ENDIAN, 0x1b);
1905#endif
1906	if (sc->sc_chiprev == SAFE_REV(1,0)) {
1907		/*
1908		 * Avoid large PCI DMA transfers.  Rev 1.0 has a bug where
1909		 * "target mode transfers" done while the chip is DMA'ing
1910		 * >1020 bytes cause the hardware to lockup.  To avoid this
1911		 * we reduce the max PCI transfer size and use small source
1912		 * particle descriptors (<= 256 bytes).
1913		 */
1914		WRITE_REG(sc, SAFE_DMA_CFG, 256);
1915		device_printf(sc->sc_dev,
1916			"Reduce max DMA size to %u words for rev %u.%u WAR\n",
1917			(READ_REG(sc, SAFE_DMA_CFG)>>2) & 0xff,
1918			SAFE_REV_MAJ(sc->sc_chiprev),
1919			SAFE_REV_MIN(sc->sc_chiprev));
1920	}
1921
1922	/* NB: operands+results are overlaid */
1923	WRITE_REG(sc, SAFE_PE_PDRBASE, sc->sc_ringalloc.dma_paddr);
1924	WRITE_REG(sc, SAFE_PE_RDRBASE, sc->sc_ringalloc.dma_paddr);
1925	/*
1926	 * Configure ring entry size and number of items in the ring.
1927	 */
1928	KASSERT((sizeof(struct safe_ringentry) % sizeof(u_int32_t)) == 0,
1929		("PE ring entry not 32-bit aligned!"));
1930	dwords = sizeof(struct safe_ringentry) / sizeof(u_int32_t);
1931	WRITE_REG(sc, SAFE_PE_RINGCFG,
1932		(dwords << SAFE_PE_RINGCFG_OFFSET_S) | SAFE_MAX_NQUEUE);
1933	WRITE_REG(sc, SAFE_PE_RINGPOLL, 0);	/* disable polling */
1934
1935	WRITE_REG(sc, SAFE_PE_GRNGBASE, sc->sc_spalloc.dma_paddr);
1936	WRITE_REG(sc, SAFE_PE_SRNGBASE, sc->sc_dpalloc.dma_paddr);
1937	WRITE_REG(sc, SAFE_PE_PARTSIZE,
1938		(SAFE_TOTAL_DPART<<16) | SAFE_TOTAL_SPART);
1939	/*
1940	 * NB: destination particles are fixed size.  We use
1941	 *     an mbuf cluster and require all results go to
1942	 *     clusters or smaller.
1943	 */
1944	WRITE_REG(sc, SAFE_PE_PARTCFG, SAFE_MAX_DSIZE);
1945
1946	/* it's now safe to enable PE mode, do it */
1947	WRITE_REG(sc, SAFE_PE_DMACFG, v | SAFE_PE_DMACFG_PEMODE);
1948
1949	/*
1950	 * Configure hardware to use level-triggered interrupts and
1951	 * to interrupt after each descriptor is processed.
1952	 */
1953	WRITE_REG(sc, SAFE_HI_CFG, SAFE_HI_CFG_LEVEL);
1954	WRITE_REG(sc, SAFE_HI_DESC_CNT, 1);
1955	WRITE_REG(sc, SAFE_HI_MASK, SAFE_INT_PE_DDONE | SAFE_INT_PE_ERROR);
1956}
1957
1958/*
1959 * Init PCI registers
1960 */
1961static void
1962safe_init_pciregs(device_t dev)
1963{
1964}
1965
1966/*
1967 * Clean up after a chip crash.
1968 * It is assumed that the caller in splimp()
1969 */
1970static void
1971safe_cleanchip(struct safe_softc *sc)
1972{
1973
1974	if (sc->sc_nqchip != 0) {
1975		struct safe_ringentry *re = sc->sc_back;
1976
1977		while (re != sc->sc_front) {
1978			if (re->re_desc.d_csr != 0)
1979				safe_free_entry(sc, re);
1980			if (++re == sc->sc_ringtop)
1981				re = sc->sc_ring;
1982		}
1983		sc->sc_back = re;
1984		sc->sc_nqchip = 0;
1985	}
1986}
1987
1988/*
1989 * free a safe_q
1990 * It is assumed that the caller is within splimp().
1991 */
1992static int
1993safe_free_entry(struct safe_softc *sc, struct safe_ringentry *re)
1994{
1995	struct cryptop *crp;
1996
1997	/*
1998	 * Free header MCR
1999	 */
2000	if ((re->re_dst_m != NULL) && (re->re_src_m != re->re_dst_m))
2001		m_freem(re->re_dst_m);
2002
2003	crp = (struct cryptop *)re->re_crp;
2004
2005	re->re_desc.d_csr = 0;
2006
2007	crp->crp_etype = EFAULT;
2008	crypto_done(crp);
2009	return(0);
2010}
2011
2012/*
2013 * Routine to reset the chip and clean up.
2014 * It is assumed that the caller is in splimp()
2015 */
2016static void
2017safe_totalreset(struct safe_softc *sc)
2018{
2019	safe_reset_board(sc);
2020	safe_init_board(sc);
2021	safe_cleanchip(sc);
2022}
2023
2024/*
2025 * Is the operand suitable aligned for direct DMA.  Each
2026 * segment must be aligned on a 32-bit boundary and all
2027 * but the last segment must be a multiple of 4 bytes.
2028 */
2029static int
2030safe_dmamap_aligned(const struct safe_operand *op)
2031{
2032	int i;
2033
2034	for (i = 0; i < op->nsegs; i++) {
2035		if (op->segs[i].ds_addr & 3)
2036			return (0);
2037		if (i != (op->nsegs - 1) && (op->segs[i].ds_len & 3))
2038			return (0);
2039	}
2040	return (1);
2041}
2042
2043/*
2044 * Is the operand suitable for direct DMA as the destination
2045 * of an operation.  The hardware requires that each ``particle''
2046 * but the last in an operation result have the same size.  We
2047 * fix that size at SAFE_MAX_DSIZE bytes.  This routine returns
2048 * 0 if some segment is not a multiple of of this size, 1 if all
2049 * segments are exactly this size, or 2 if segments are at worst
2050 * a multple of this size.
2051 */
2052static int
2053safe_dmamap_uniform(const struct safe_operand *op)
2054{
2055	int result = 1;
2056
2057	if (op->nsegs > 0) {
2058		int i;
2059
2060		for (i = 0; i < op->nsegs-1; i++) {
2061			if (op->segs[i].ds_len % SAFE_MAX_DSIZE)
2062				return (0);
2063			if (op->segs[i].ds_len != SAFE_MAX_DSIZE)
2064				result = 2;
2065		}
2066	}
2067	return (result);
2068}
2069
2070#ifdef SAFE_DEBUG
2071static void
2072safe_dump_dmastatus(struct safe_softc *sc, const char *tag)
2073{
2074	printf("%s: ENDIAN 0x%x SRC 0x%x DST 0x%x STAT 0x%x\n"
2075		, tag
2076		, READ_REG(sc, SAFE_DMA_ENDIAN)
2077		, READ_REG(sc, SAFE_DMA_SRCADDR)
2078		, READ_REG(sc, SAFE_DMA_DSTADDR)
2079		, READ_REG(sc, SAFE_DMA_STAT)
2080	);
2081}
2082
2083static void
2084safe_dump_intrstate(struct safe_softc *sc, const char *tag)
2085{
2086	printf("%s: HI_CFG 0x%x HI_MASK 0x%x HI_DESC_CNT 0x%x HU_STAT 0x%x HM_STAT 0x%x\n"
2087		, tag
2088		, READ_REG(sc, SAFE_HI_CFG)
2089		, READ_REG(sc, SAFE_HI_MASK)
2090		, READ_REG(sc, SAFE_HI_DESC_CNT)
2091		, READ_REG(sc, SAFE_HU_STAT)
2092		, READ_REG(sc, SAFE_HM_STAT)
2093	);
2094}
2095
2096static void
2097safe_dump_ringstate(struct safe_softc *sc, const char *tag)
2098{
2099	u_int32_t estat = READ_REG(sc, SAFE_PE_ERNGSTAT);
2100
2101	/* NB: assume caller has lock on ring */
2102	printf("%s: ERNGSTAT %x (next %u) back %lu front %lu\n",
2103		tag,
2104		estat, (estat >> SAFE_PE_ERNGSTAT_NEXT_S),
2105		(unsigned long)(sc->sc_back - sc->sc_ring),
2106		(unsigned long)(sc->sc_front - sc->sc_ring));
2107}
2108
2109static void
2110safe_dump_request(struct safe_softc *sc, const char* tag, struct safe_ringentry *re)
2111{
2112	int ix, nsegs;
2113
2114	ix = re - sc->sc_ring;
2115	printf("%s: %p (%u): csr %x src %x dst %x sa %x len %x\n"
2116		, tag
2117		, re, ix
2118		, re->re_desc.d_csr
2119		, re->re_desc.d_src
2120		, re->re_desc.d_dst
2121		, re->re_desc.d_sa
2122		, re->re_desc.d_len
2123	);
2124	if (re->re_src.nsegs > 1) {
2125		ix = (re->re_desc.d_src - sc->sc_spalloc.dma_paddr) /
2126			sizeof(struct safe_pdesc);
2127		for (nsegs = re->re_src.nsegs; nsegs; nsegs--) {
2128			printf(" spd[%u] %p: %p size %u flags %x"
2129				, ix, &sc->sc_spring[ix]
2130				, (caddr_t)(uintptr_t) sc->sc_spring[ix].pd_addr
2131				, sc->sc_spring[ix].pd_size
2132				, sc->sc_spring[ix].pd_flags
2133			);
2134			if (sc->sc_spring[ix].pd_size == 0)
2135				printf(" (zero!)");
2136			printf("\n");
2137			if (++ix == SAFE_TOTAL_SPART)
2138				ix = 0;
2139		}
2140	}
2141	if (re->re_dst.nsegs > 1) {
2142		ix = (re->re_desc.d_dst - sc->sc_dpalloc.dma_paddr) /
2143			sizeof(struct safe_pdesc);
2144		for (nsegs = re->re_dst.nsegs; nsegs; nsegs--) {
2145			printf(" dpd[%u] %p: %p flags %x\n"
2146				, ix, &sc->sc_dpring[ix]
2147				, (caddr_t)(uintptr_t) sc->sc_dpring[ix].pd_addr
2148				, sc->sc_dpring[ix].pd_flags
2149			);
2150			if (++ix == SAFE_TOTAL_DPART)
2151				ix = 0;
2152		}
2153	}
2154	printf("sa: cmd0 %08x cmd1 %08x staterec %x\n",
2155		re->re_sa.sa_cmd0, re->re_sa.sa_cmd1, re->re_sa.sa_staterec);
2156	printf("sa: key %x %x %x %x %x %x %x %x\n"
2157		, re->re_sa.sa_key[0]
2158		, re->re_sa.sa_key[1]
2159		, re->re_sa.sa_key[2]
2160		, re->re_sa.sa_key[3]
2161		, re->re_sa.sa_key[4]
2162		, re->re_sa.sa_key[5]
2163		, re->re_sa.sa_key[6]
2164		, re->re_sa.sa_key[7]
2165	);
2166	printf("sa: indigest %x %x %x %x %x\n"
2167		, re->re_sa.sa_indigest[0]
2168		, re->re_sa.sa_indigest[1]
2169		, re->re_sa.sa_indigest[2]
2170		, re->re_sa.sa_indigest[3]
2171		, re->re_sa.sa_indigest[4]
2172	);
2173	printf("sa: outdigest %x %x %x %x %x\n"
2174		, re->re_sa.sa_outdigest[0]
2175		, re->re_sa.sa_outdigest[1]
2176		, re->re_sa.sa_outdigest[2]
2177		, re->re_sa.sa_outdigest[3]
2178		, re->re_sa.sa_outdigest[4]
2179	);
2180	printf("sr: iv %x %x %x %x\n"
2181		, re->re_sastate.sa_saved_iv[0]
2182		, re->re_sastate.sa_saved_iv[1]
2183		, re->re_sastate.sa_saved_iv[2]
2184		, re->re_sastate.sa_saved_iv[3]
2185	);
2186	printf("sr: hashbc %u indigest %x %x %x %x %x\n"
2187		, re->re_sastate.sa_saved_hashbc
2188		, re->re_sastate.sa_saved_indigest[0]
2189		, re->re_sastate.sa_saved_indigest[1]
2190		, re->re_sastate.sa_saved_indigest[2]
2191		, re->re_sastate.sa_saved_indigest[3]
2192		, re->re_sastate.sa_saved_indigest[4]
2193	);
2194}
2195
2196static void
2197safe_dump_ring(struct safe_softc *sc, const char *tag)
2198{
2199	mtx_lock(&sc->sc_ringmtx);
2200	printf("\nSafeNet Ring State:\n");
2201	safe_dump_intrstate(sc, tag);
2202	safe_dump_dmastatus(sc, tag);
2203	safe_dump_ringstate(sc, tag);
2204	if (sc->sc_nqchip) {
2205		struct safe_ringentry *re = sc->sc_back;
2206		do {
2207			safe_dump_request(sc, tag, re);
2208			if (++re == sc->sc_ringtop)
2209				re = sc->sc_ring;
2210		} while (re != sc->sc_front);
2211	}
2212	mtx_unlock(&sc->sc_ringmtx);
2213}
2214
2215static int
2216sysctl_hw_safe_dump(SYSCTL_HANDLER_ARGS)
2217{
2218	char dmode[64];
2219	int error;
2220
2221	strncpy(dmode, "", sizeof(dmode) - 1);
2222	dmode[sizeof(dmode) - 1] = '\0';
2223	error = sysctl_handle_string(oidp, &dmode[0], sizeof(dmode), req);
2224
2225	if (error == 0 && req->newptr != NULL) {
2226		struct safe_softc *sc = safec;
2227
2228		if (!sc)
2229			return EINVAL;
2230		if (strncmp(dmode, "dma", 3) == 0)
2231			safe_dump_dmastatus(sc, "safe0");
2232		else if (strncmp(dmode, "int", 3) == 0)
2233			safe_dump_intrstate(sc, "safe0");
2234		else if (strncmp(dmode, "ring", 4) == 0)
2235			safe_dump_ring(sc, "safe0");
2236		else
2237			return EINVAL;
2238	}
2239	return error;
2240}
2241SYSCTL_PROC(_hw_safe, OID_AUTO, dump, CTLTYPE_STRING | CTLFLAG_RW,
2242	0, 0, sysctl_hw_safe_dump, "A", "Dump driver state");
2243#endif /* SAFE_DEBUG */
2244