1/*-
2 * Copyright (c) 2003 Sam Leffler, Errno Consulting
3 * Copyright (c) 2003 Global Technology Associates, Inc.
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 *    notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25 * SUCH DAMAGE.
26 */
27
28#include <sys/cdefs.h>
29__FBSDID("$FreeBSD$");
30
31/*
32 * SafeNet SafeXcel-1141 hardware crypto accelerator
33 */
34#include "opt_safe.h"
35
36#include <sys/param.h>
37#include <sys/systm.h>
38#include <sys/proc.h>
39#include <sys/errno.h>
40#include <sys/malloc.h>
41#include <sys/kernel.h>
42#include <sys/mbuf.h>
43#include <sys/module.h>
44#include <sys/lock.h>
45#include <sys/mutex.h>
46#include <sys/sysctl.h>
47#include <sys/endian.h>
48
49#include <vm/vm.h>
50#include <vm/pmap.h>
51
52#include <machine/bus.h>
53#include <machine/resource.h>
54#include <sys/bus.h>
55#include <sys/rman.h>
56
57#include <crypto/sha1.h>
58#include <opencrypto/cryptodev.h>
59#include <opencrypto/cryptosoft.h>
60#include <sys/md5.h>
61#include <sys/random.h>
62#include <sys/kobj.h>
63
64#include "cryptodev_if.h"
65
66#include <dev/pci/pcivar.h>
67#include <dev/pci/pcireg.h>
68
69#ifdef SAFE_RNDTEST
70#include <dev/rndtest/rndtest.h>
71#endif
72#include <dev/safe/safereg.h>
73#include <dev/safe/safevar.h>
74
75#ifndef bswap32
76#define	bswap32	NTOHL
77#endif
78
79/*
80 * Prototypes and count for the pci_device structure
81 */
82static	int safe_probe(device_t);
83static	int safe_attach(device_t);
84static	int safe_detach(device_t);
85static	int safe_suspend(device_t);
86static	int safe_resume(device_t);
87static	int safe_shutdown(device_t);
88
89static	int safe_newsession(device_t, u_int32_t *, struct cryptoini *);
90static	int safe_freesession(device_t, u_int64_t);
91static	int safe_process(device_t, struct cryptop *, int);
92
93static device_method_t safe_methods[] = {
94	/* Device interface */
95	DEVMETHOD(device_probe,		safe_probe),
96	DEVMETHOD(device_attach,	safe_attach),
97	DEVMETHOD(device_detach,	safe_detach),
98	DEVMETHOD(device_suspend,	safe_suspend),
99	DEVMETHOD(device_resume,	safe_resume),
100	DEVMETHOD(device_shutdown,	safe_shutdown),
101
102	/* crypto device methods */
103	DEVMETHOD(cryptodev_newsession,	safe_newsession),
104	DEVMETHOD(cryptodev_freesession,safe_freesession),
105	DEVMETHOD(cryptodev_process,	safe_process),
106
107	DEVMETHOD_END
108};
109static driver_t safe_driver = {
110	"safe",
111	safe_methods,
112	sizeof (struct safe_softc)
113};
114static devclass_t safe_devclass;
115
116DRIVER_MODULE(safe, pci, safe_driver, safe_devclass, 0, 0);
117MODULE_DEPEND(safe, crypto, 1, 1, 1);
118#ifdef SAFE_RNDTEST
119MODULE_DEPEND(safe, rndtest, 1, 1, 1);
120#endif
121
122static	void safe_intr(void *);
123static	void safe_callback(struct safe_softc *, struct safe_ringentry *);
124static	void safe_feed(struct safe_softc *, struct safe_ringentry *);
125static	void safe_mcopy(struct mbuf *, struct mbuf *, u_int);
126#ifndef SAFE_NO_RNG
127static	void safe_rng_init(struct safe_softc *);
128static	void safe_rng(void *);
129#endif /* SAFE_NO_RNG */
130static	int safe_dma_malloc(struct safe_softc *, bus_size_t,
131	        struct safe_dma_alloc *, int);
132#define	safe_dma_sync(_dma, _flags) \
133	bus_dmamap_sync((_dma)->dma_tag, (_dma)->dma_map, (_flags))
134static	void safe_dma_free(struct safe_softc *, struct safe_dma_alloc *);
135static	int safe_dmamap_aligned(const struct safe_operand *);
136static	int safe_dmamap_uniform(const struct safe_operand *);
137
138static	void safe_reset_board(struct safe_softc *);
139static	void safe_init_board(struct safe_softc *);
140static	void safe_init_pciregs(device_t dev);
141static	void safe_cleanchip(struct safe_softc *);
142static	void safe_totalreset(struct safe_softc *);
143
144static	int safe_free_entry(struct safe_softc *, struct safe_ringentry *);
145
146static SYSCTL_NODE(_hw, OID_AUTO, safe, CTLFLAG_RD, 0,
147    "SafeNet driver parameters");
148
149#ifdef SAFE_DEBUG
150static	void safe_dump_dmastatus(struct safe_softc *, const char *);
151static	void safe_dump_ringstate(struct safe_softc *, const char *);
152static	void safe_dump_intrstate(struct safe_softc *, const char *);
153static	void safe_dump_request(struct safe_softc *, const char *,
154		struct safe_ringentry *);
155
156static	struct safe_softc *safec;		/* for use by hw.safe.dump */
157
158static	int safe_debug = 0;
159SYSCTL_INT(_hw_safe, OID_AUTO, debug, CTLFLAG_RW, &safe_debug,
160	    0, "control debugging msgs");
161#define	DPRINTF(_x)	if (safe_debug) printf _x
162#else
163#define	DPRINTF(_x)
164#endif
165
166#define	READ_REG(sc,r) \
167	bus_space_read_4((sc)->sc_st, (sc)->sc_sh, (r))
168
169#define WRITE_REG(sc,reg,val) \
170	bus_space_write_4((sc)->sc_st, (sc)->sc_sh, reg, val)
171
172struct safe_stats safestats;
173SYSCTL_STRUCT(_hw_safe, OID_AUTO, stats, CTLFLAG_RD, &safestats,
174	    safe_stats, "driver statistics");
175#ifndef SAFE_NO_RNG
176static	int safe_rnginterval = 1;		/* poll once a second */
177SYSCTL_INT(_hw_safe, OID_AUTO, rnginterval, CTLFLAG_RW, &safe_rnginterval,
178	    0, "RNG polling interval (secs)");
179static	int safe_rngbufsize = 16;		/* 64 bytes each poll  */
180SYSCTL_INT(_hw_safe, OID_AUTO, rngbufsize, CTLFLAG_RW, &safe_rngbufsize,
181	    0, "RNG polling buffer size (32-bit words)");
182static	int safe_rngmaxalarm = 8;		/* max alarms before reset */
183SYSCTL_INT(_hw_safe, OID_AUTO, rngmaxalarm, CTLFLAG_RW, &safe_rngmaxalarm,
184	    0, "RNG max alarms before reset");
185#endif /* SAFE_NO_RNG */
186
187static int
188safe_probe(device_t dev)
189{
190	if (pci_get_vendor(dev) == PCI_VENDOR_SAFENET &&
191	    pci_get_device(dev) == PCI_PRODUCT_SAFEXCEL)
192		return (BUS_PROBE_DEFAULT);
193	return (ENXIO);
194}
195
196static const char*
197safe_partname(struct safe_softc *sc)
198{
199	/* XXX sprintf numbers when not decoded */
200	switch (pci_get_vendor(sc->sc_dev)) {
201	case PCI_VENDOR_SAFENET:
202		switch (pci_get_device(sc->sc_dev)) {
203		case PCI_PRODUCT_SAFEXCEL: return "SafeNet SafeXcel-1141";
204		}
205		return "SafeNet unknown-part";
206	}
207	return "Unknown-vendor unknown-part";
208}
209
210#ifndef SAFE_NO_RNG
211static void
212default_harvest(struct rndtest_state *rsp, void *buf, u_int count)
213{
214	/* MarkM: FIX!! Check that this does not swamp the harvester! */
215	random_harvest_queue(buf, count, count*NBBY/2, RANDOM_PURE_SAFE);
216}
217#endif /* SAFE_NO_RNG */
218
219static int
220safe_attach(device_t dev)
221{
222	struct safe_softc *sc = device_get_softc(dev);
223	u_int32_t raddr;
224	u_int32_t i, devinfo;
225	int rid;
226
227	bzero(sc, sizeof (*sc));
228	sc->sc_dev = dev;
229
230	/* XXX handle power management */
231
232	pci_enable_busmaster(dev);
233
234	/*
235	 * Setup memory-mapping of PCI registers.
236	 */
237	rid = BS_BAR;
238	sc->sc_sr = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
239					   RF_ACTIVE);
240	if (sc->sc_sr == NULL) {
241		device_printf(dev, "cannot map register space\n");
242		goto bad;
243	}
244	sc->sc_st = rman_get_bustag(sc->sc_sr);
245	sc->sc_sh = rman_get_bushandle(sc->sc_sr);
246
247	/*
248	 * Arrange interrupt line.
249	 */
250	rid = 0;
251	sc->sc_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
252					    RF_SHAREABLE|RF_ACTIVE);
253	if (sc->sc_irq == NULL) {
254		device_printf(dev, "could not map interrupt\n");
255		goto bad1;
256	}
257	/*
258	 * NB: Network code assumes we are blocked with splimp()
259	 *     so make sure the IRQ is mapped appropriately.
260	 */
261	if (bus_setup_intr(dev, sc->sc_irq, INTR_TYPE_NET | INTR_MPSAFE,
262			   NULL, safe_intr, sc, &sc->sc_ih)) {
263		device_printf(dev, "could not establish interrupt\n");
264		goto bad2;
265	}
266
267	sc->sc_cid = crypto_get_driverid(dev, CRYPTOCAP_F_HARDWARE);
268	if (sc->sc_cid < 0) {
269		device_printf(dev, "could not get crypto driver id\n");
270		goto bad3;
271	}
272
273	sc->sc_chiprev = READ_REG(sc, SAFE_DEVINFO) &
274		(SAFE_DEVINFO_REV_MAJ | SAFE_DEVINFO_REV_MIN);
275
276	/*
277	 * Setup DMA descriptor area.
278	 */
279	if (bus_dma_tag_create(bus_get_dma_tag(dev),	/* parent */
280			       1,			/* alignment */
281			       SAFE_DMA_BOUNDARY,	/* boundary */
282			       BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
283			       BUS_SPACE_MAXADDR,	/* highaddr */
284			       NULL, NULL,		/* filter, filterarg */
285			       SAFE_MAX_DMA,		/* maxsize */
286			       SAFE_MAX_PART,		/* nsegments */
287			       SAFE_MAX_SSIZE,		/* maxsegsize */
288			       BUS_DMA_ALLOCNOW,	/* flags */
289			       NULL, NULL,		/* locking */
290			       &sc->sc_srcdmat)) {
291		device_printf(dev, "cannot allocate DMA tag\n");
292		goto bad4;
293	}
294	if (bus_dma_tag_create(bus_get_dma_tag(dev),	/* parent */
295			       1,			/* alignment */
296			       SAFE_MAX_DSIZE,		/* boundary */
297			       BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
298			       BUS_SPACE_MAXADDR,	/* highaddr */
299			       NULL, NULL,		/* filter, filterarg */
300			       SAFE_MAX_DMA,		/* maxsize */
301			       SAFE_MAX_PART,		/* nsegments */
302			       SAFE_MAX_DSIZE,		/* maxsegsize */
303			       BUS_DMA_ALLOCNOW,	/* flags */
304			       NULL, NULL,		/* locking */
305			       &sc->sc_dstdmat)) {
306		device_printf(dev, "cannot allocate DMA tag\n");
307		goto bad4;
308	}
309
310	/*
311	 * Allocate packet engine descriptors.
312	 */
313	if (safe_dma_malloc(sc,
314	    SAFE_MAX_NQUEUE * sizeof (struct safe_ringentry),
315	    &sc->sc_ringalloc, 0)) {
316		device_printf(dev, "cannot allocate PE descriptor ring\n");
317		bus_dma_tag_destroy(sc->sc_srcdmat);
318		goto bad4;
319	}
320	/*
321	 * Hookup the static portion of all our data structures.
322	 */
323	sc->sc_ring = (struct safe_ringentry *) sc->sc_ringalloc.dma_vaddr;
324	sc->sc_ringtop = sc->sc_ring + SAFE_MAX_NQUEUE;
325	sc->sc_front = sc->sc_ring;
326	sc->sc_back = sc->sc_ring;
327	raddr = sc->sc_ringalloc.dma_paddr;
328	bzero(sc->sc_ring, SAFE_MAX_NQUEUE * sizeof(struct safe_ringentry));
329	for (i = 0; i < SAFE_MAX_NQUEUE; i++) {
330		struct safe_ringentry *re = &sc->sc_ring[i];
331
332		re->re_desc.d_sa = raddr +
333			offsetof(struct safe_ringentry, re_sa);
334		re->re_sa.sa_staterec = raddr +
335			offsetof(struct safe_ringentry, re_sastate);
336
337		raddr += sizeof (struct safe_ringentry);
338	}
339	mtx_init(&sc->sc_ringmtx, device_get_nameunit(dev),
340		"packet engine ring", MTX_DEF);
341
342	/*
343	 * Allocate scatter and gather particle descriptors.
344	 */
345	if (safe_dma_malloc(sc, SAFE_TOTAL_SPART * sizeof (struct safe_pdesc),
346	    &sc->sc_spalloc, 0)) {
347		device_printf(dev, "cannot allocate source particle "
348			"descriptor ring\n");
349		mtx_destroy(&sc->sc_ringmtx);
350		safe_dma_free(sc, &sc->sc_ringalloc);
351		bus_dma_tag_destroy(sc->sc_srcdmat);
352		goto bad4;
353	}
354	sc->sc_spring = (struct safe_pdesc *) sc->sc_spalloc.dma_vaddr;
355	sc->sc_springtop = sc->sc_spring + SAFE_TOTAL_SPART;
356	sc->sc_spfree = sc->sc_spring;
357	bzero(sc->sc_spring, SAFE_TOTAL_SPART * sizeof(struct safe_pdesc));
358
359	if (safe_dma_malloc(sc, SAFE_TOTAL_DPART * sizeof (struct safe_pdesc),
360	    &sc->sc_dpalloc, 0)) {
361		device_printf(dev, "cannot allocate destination particle "
362			"descriptor ring\n");
363		mtx_destroy(&sc->sc_ringmtx);
364		safe_dma_free(sc, &sc->sc_spalloc);
365		safe_dma_free(sc, &sc->sc_ringalloc);
366		bus_dma_tag_destroy(sc->sc_dstdmat);
367		goto bad4;
368	}
369	sc->sc_dpring = (struct safe_pdesc *) sc->sc_dpalloc.dma_vaddr;
370	sc->sc_dpringtop = sc->sc_dpring + SAFE_TOTAL_DPART;
371	sc->sc_dpfree = sc->sc_dpring;
372	bzero(sc->sc_dpring, SAFE_TOTAL_DPART * sizeof(struct safe_pdesc));
373
374	device_printf(sc->sc_dev, "%s", safe_partname(sc));
375
376	devinfo = READ_REG(sc, SAFE_DEVINFO);
377	if (devinfo & SAFE_DEVINFO_RNG) {
378		sc->sc_flags |= SAFE_FLAGS_RNG;
379		printf(" rng");
380	}
381	if (devinfo & SAFE_DEVINFO_PKEY) {
382#if 0
383		printf(" key");
384		sc->sc_flags |= SAFE_FLAGS_KEY;
385		crypto_kregister(sc->sc_cid, CRK_MOD_EXP, 0);
386		crypto_kregister(sc->sc_cid, CRK_MOD_EXP_CRT, 0);
387#endif
388	}
389	if (devinfo & SAFE_DEVINFO_DES) {
390		printf(" des/3des");
391		crypto_register(sc->sc_cid, CRYPTO_3DES_CBC, 0, 0);
392		crypto_register(sc->sc_cid, CRYPTO_DES_CBC, 0, 0);
393	}
394	if (devinfo & SAFE_DEVINFO_AES) {
395		printf(" aes");
396		crypto_register(sc->sc_cid, CRYPTO_AES_CBC, 0, 0);
397	}
398	if (devinfo & SAFE_DEVINFO_MD5) {
399		printf(" md5");
400		crypto_register(sc->sc_cid, CRYPTO_MD5_HMAC, 0, 0);
401	}
402	if (devinfo & SAFE_DEVINFO_SHA1) {
403		printf(" sha1");
404		crypto_register(sc->sc_cid, CRYPTO_SHA1_HMAC, 0, 0);
405	}
406	printf(" null");
407	crypto_register(sc->sc_cid, CRYPTO_NULL_CBC, 0, 0);
408	crypto_register(sc->sc_cid, CRYPTO_NULL_HMAC, 0, 0);
409	/* XXX other supported algorithms */
410	printf("\n");
411
412	safe_reset_board(sc);		/* reset h/w */
413	safe_init_pciregs(dev);		/* init pci settings */
414	safe_init_board(sc);		/* init h/w */
415
416#ifndef SAFE_NO_RNG
417	if (sc->sc_flags & SAFE_FLAGS_RNG) {
418#ifdef SAFE_RNDTEST
419		sc->sc_rndtest = rndtest_attach(dev);
420		if (sc->sc_rndtest)
421			sc->sc_harvest = rndtest_harvest;
422		else
423			sc->sc_harvest = default_harvest;
424#else
425		sc->sc_harvest = default_harvest;
426#endif
427		safe_rng_init(sc);
428
429		callout_init(&sc->sc_rngto, 1);
430		callout_reset(&sc->sc_rngto, hz*safe_rnginterval, safe_rng, sc);
431	}
432#endif /* SAFE_NO_RNG */
433#ifdef SAFE_DEBUG
434	safec = sc;			/* for use by hw.safe.dump */
435#endif
436	return (0);
437bad4:
438	crypto_unregister_all(sc->sc_cid);
439bad3:
440	bus_teardown_intr(dev, sc->sc_irq, sc->sc_ih);
441bad2:
442	bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sc_irq);
443bad1:
444	bus_release_resource(dev, SYS_RES_MEMORY, BS_BAR, sc->sc_sr);
445bad:
446	return (ENXIO);
447}
448
449/*
450 * Detach a device that successfully probed.
451 */
452static int
453safe_detach(device_t dev)
454{
455	struct safe_softc *sc = device_get_softc(dev);
456
457	/* XXX wait/abort active ops */
458
459	WRITE_REG(sc, SAFE_HI_MASK, 0);		/* disable interrupts */
460
461	callout_stop(&sc->sc_rngto);
462
463	crypto_unregister_all(sc->sc_cid);
464
465#ifdef SAFE_RNDTEST
466	if (sc->sc_rndtest)
467		rndtest_detach(sc->sc_rndtest);
468#endif
469
470	safe_cleanchip(sc);
471	safe_dma_free(sc, &sc->sc_dpalloc);
472	safe_dma_free(sc, &sc->sc_spalloc);
473	mtx_destroy(&sc->sc_ringmtx);
474	safe_dma_free(sc, &sc->sc_ringalloc);
475
476	bus_generic_detach(dev);
477	bus_teardown_intr(dev, sc->sc_irq, sc->sc_ih);
478	bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sc_irq);
479
480	bus_dma_tag_destroy(sc->sc_srcdmat);
481	bus_dma_tag_destroy(sc->sc_dstdmat);
482	bus_release_resource(dev, SYS_RES_MEMORY, BS_BAR, sc->sc_sr);
483
484	return (0);
485}
486
487/*
488 * Stop all chip i/o so that the kernel's probe routines don't
489 * get confused by errant DMAs when rebooting.
490 */
491static int
492safe_shutdown(device_t dev)
493{
494#ifdef notyet
495	safe_stop(device_get_softc(dev));
496#endif
497	return (0);
498}
499
500/*
501 * Device suspend routine.
502 */
503static int
504safe_suspend(device_t dev)
505{
506	struct safe_softc *sc = device_get_softc(dev);
507
508#ifdef notyet
509	/* XXX stop the device and save PCI settings */
510#endif
511	sc->sc_suspended = 1;
512
513	return (0);
514}
515
516static int
517safe_resume(device_t dev)
518{
519	struct safe_softc *sc = device_get_softc(dev);
520
521#ifdef notyet
522	/* XXX retore PCI settings and start the device */
523#endif
524	sc->sc_suspended = 0;
525	return (0);
526}
527
528/*
529 * SafeXcel Interrupt routine
530 */
531static void
532safe_intr(void *arg)
533{
534	struct safe_softc *sc = arg;
535	volatile u_int32_t stat;
536
537	stat = READ_REG(sc, SAFE_HM_STAT);
538	if (stat == 0)			/* shared irq, not for us */
539		return;
540
541	WRITE_REG(sc, SAFE_HI_CLR, stat);	/* IACK */
542
543	if ((stat & SAFE_INT_PE_DDONE)) {
544		/*
545		 * Descriptor(s) done; scan the ring and
546		 * process completed operations.
547		 */
548		mtx_lock(&sc->sc_ringmtx);
549		while (sc->sc_back != sc->sc_front) {
550			struct safe_ringentry *re = sc->sc_back;
551#ifdef SAFE_DEBUG
552			if (safe_debug) {
553				safe_dump_ringstate(sc, __func__);
554				safe_dump_request(sc, __func__, re);
555			}
556#endif
557			/*
558			 * safe_process marks ring entries that were allocated
559			 * but not used with a csr of zero.  This insures the
560			 * ring front pointer never needs to be set backwards
561			 * in the event that an entry is allocated but not used
562			 * because of a setup error.
563			 */
564			if (re->re_desc.d_csr != 0) {
565				if (!SAFE_PE_CSR_IS_DONE(re->re_desc.d_csr))
566					break;
567				if (!SAFE_PE_LEN_IS_DONE(re->re_desc.d_len))
568					break;
569				sc->sc_nqchip--;
570				safe_callback(sc, re);
571			}
572			if (++(sc->sc_back) == sc->sc_ringtop)
573				sc->sc_back = sc->sc_ring;
574		}
575		mtx_unlock(&sc->sc_ringmtx);
576	}
577
578	/*
579	 * Check to see if we got any DMA Error
580	 */
581	if (stat & SAFE_INT_PE_ERROR) {
582		DPRINTF(("dmaerr dmastat %08x\n",
583			READ_REG(sc, SAFE_PE_DMASTAT)));
584		safestats.st_dmaerr++;
585		safe_totalreset(sc);
586#if 0
587		safe_feed(sc);
588#endif
589	}
590
591	if (sc->sc_needwakeup) {		/* XXX check high watermark */
592		int wakeup = sc->sc_needwakeup & (CRYPTO_SYMQ|CRYPTO_ASYMQ);
593		DPRINTF(("%s: wakeup crypto %x\n", __func__,
594			sc->sc_needwakeup));
595		sc->sc_needwakeup &= ~wakeup;
596		crypto_unblock(sc->sc_cid, wakeup);
597	}
598}
599
600/*
601 * safe_feed() - post a request to chip
602 */
603static void
604safe_feed(struct safe_softc *sc, struct safe_ringentry *re)
605{
606	bus_dmamap_sync(sc->sc_srcdmat, re->re_src_map, BUS_DMASYNC_PREWRITE);
607	if (re->re_dst_map != NULL)
608		bus_dmamap_sync(sc->sc_dstdmat, re->re_dst_map,
609			BUS_DMASYNC_PREREAD);
610	/* XXX have no smaller granularity */
611	safe_dma_sync(&sc->sc_ringalloc,
612		BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
613	safe_dma_sync(&sc->sc_spalloc, BUS_DMASYNC_PREWRITE);
614	safe_dma_sync(&sc->sc_dpalloc, BUS_DMASYNC_PREWRITE);
615
616#ifdef SAFE_DEBUG
617	if (safe_debug) {
618		safe_dump_ringstate(sc, __func__);
619		safe_dump_request(sc, __func__, re);
620	}
621#endif
622	sc->sc_nqchip++;
623	if (sc->sc_nqchip > safestats.st_maxqchip)
624		safestats.st_maxqchip = sc->sc_nqchip;
625	/* poke h/w to check descriptor ring, any value can be written */
626	WRITE_REG(sc, SAFE_HI_RD_DESCR, 0);
627}
628
629#define	N(a)	(sizeof(a) / sizeof (a[0]))
630static void
631safe_setup_enckey(struct safe_session *ses, caddr_t key)
632{
633	int i;
634
635	bcopy(key, ses->ses_key, ses->ses_klen / 8);
636
637	/* PE is little-endian, insure proper byte order */
638	for (i = 0; i < N(ses->ses_key); i++)
639		ses->ses_key[i] = htole32(ses->ses_key[i]);
640}
641
642static void
643safe_setup_mackey(struct safe_session *ses, int algo, caddr_t key, int klen)
644{
645	MD5_CTX md5ctx;
646	SHA1_CTX sha1ctx;
647	int i;
648
649
650	for (i = 0; i < klen; i++)
651		key[i] ^= HMAC_IPAD_VAL;
652
653	if (algo == CRYPTO_MD5_HMAC) {
654		MD5Init(&md5ctx);
655		MD5Update(&md5ctx, key, klen);
656		MD5Update(&md5ctx, hmac_ipad_buffer, MD5_HMAC_BLOCK_LEN - klen);
657		bcopy(md5ctx.state, ses->ses_hminner, sizeof(md5ctx.state));
658	} else {
659		SHA1Init(&sha1ctx);
660		SHA1Update(&sha1ctx, key, klen);
661		SHA1Update(&sha1ctx, hmac_ipad_buffer,
662		    SHA1_HMAC_BLOCK_LEN - klen);
663		bcopy(sha1ctx.h.b32, ses->ses_hminner, sizeof(sha1ctx.h.b32));
664	}
665
666	for (i = 0; i < klen; i++)
667		key[i] ^= (HMAC_IPAD_VAL ^ HMAC_OPAD_VAL);
668
669	if (algo == CRYPTO_MD5_HMAC) {
670		MD5Init(&md5ctx);
671		MD5Update(&md5ctx, key, klen);
672		MD5Update(&md5ctx, hmac_opad_buffer, MD5_HMAC_BLOCK_LEN - klen);
673		bcopy(md5ctx.state, ses->ses_hmouter, sizeof(md5ctx.state));
674	} else {
675		SHA1Init(&sha1ctx);
676		SHA1Update(&sha1ctx, key, klen);
677		SHA1Update(&sha1ctx, hmac_opad_buffer,
678		    SHA1_HMAC_BLOCK_LEN - klen);
679		bcopy(sha1ctx.h.b32, ses->ses_hmouter, sizeof(sha1ctx.h.b32));
680	}
681
682	for (i = 0; i < klen; i++)
683		key[i] ^= HMAC_OPAD_VAL;
684
685	/* PE is little-endian, insure proper byte order */
686	for (i = 0; i < N(ses->ses_hminner); i++) {
687		ses->ses_hminner[i] = htole32(ses->ses_hminner[i]);
688		ses->ses_hmouter[i] = htole32(ses->ses_hmouter[i]);
689	}
690}
691#undef N
692
693/*
694 * Allocate a new 'session' and return an encoded session id.  'sidp'
695 * contains our registration id, and should contain an encoded session
696 * id on successful allocation.
697 */
698static int
699safe_newsession(device_t dev, u_int32_t *sidp, struct cryptoini *cri)
700{
701	struct safe_softc *sc = device_get_softc(dev);
702	struct cryptoini *c, *encini = NULL, *macini = NULL;
703	struct safe_session *ses = NULL;
704	int sesn;
705
706	if (sidp == NULL || cri == NULL || sc == NULL)
707		return (EINVAL);
708
709	for (c = cri; c != NULL; c = c->cri_next) {
710		if (c->cri_alg == CRYPTO_MD5_HMAC ||
711		    c->cri_alg == CRYPTO_SHA1_HMAC ||
712		    c->cri_alg == CRYPTO_NULL_HMAC) {
713			if (macini)
714				return (EINVAL);
715			macini = c;
716		} else if (c->cri_alg == CRYPTO_DES_CBC ||
717		    c->cri_alg == CRYPTO_3DES_CBC ||
718		    c->cri_alg == CRYPTO_AES_CBC ||
719		    c->cri_alg == CRYPTO_NULL_CBC) {
720			if (encini)
721				return (EINVAL);
722			encini = c;
723		} else
724			return (EINVAL);
725	}
726	if (encini == NULL && macini == NULL)
727		return (EINVAL);
728	if (encini) {			/* validate key length */
729		switch (encini->cri_alg) {
730		case CRYPTO_DES_CBC:
731			if (encini->cri_klen != 64)
732				return (EINVAL);
733			break;
734		case CRYPTO_3DES_CBC:
735			if (encini->cri_klen != 192)
736				return (EINVAL);
737			break;
738		case CRYPTO_AES_CBC:
739			if (encini->cri_klen != 128 &&
740			    encini->cri_klen != 192 &&
741			    encini->cri_klen != 256)
742				return (EINVAL);
743			break;
744		}
745	}
746
747	if (sc->sc_sessions == NULL) {
748		ses = sc->sc_sessions = (struct safe_session *)malloc(
749		    sizeof(struct safe_session), M_DEVBUF, M_NOWAIT);
750		if (ses == NULL)
751			return (ENOMEM);
752		sesn = 0;
753		sc->sc_nsessions = 1;
754	} else {
755		for (sesn = 0; sesn < sc->sc_nsessions; sesn++) {
756			if (sc->sc_sessions[sesn].ses_used == 0) {
757				ses = &sc->sc_sessions[sesn];
758				break;
759			}
760		}
761
762		if (ses == NULL) {
763			sesn = sc->sc_nsessions;
764			ses = (struct safe_session *)malloc((sesn + 1) *
765			    sizeof(struct safe_session), M_DEVBUF, M_NOWAIT);
766			if (ses == NULL)
767				return (ENOMEM);
768			bcopy(sc->sc_sessions, ses, sesn *
769			    sizeof(struct safe_session));
770			bzero(sc->sc_sessions, sesn *
771			    sizeof(struct safe_session));
772			free(sc->sc_sessions, M_DEVBUF);
773			sc->sc_sessions = ses;
774			ses = &sc->sc_sessions[sesn];
775			sc->sc_nsessions++;
776		}
777	}
778
779	bzero(ses, sizeof(struct safe_session));
780	ses->ses_used = 1;
781
782	if (encini) {
783		/* get an IV */
784		/* XXX may read fewer than requested */
785		read_random(ses->ses_iv, sizeof(ses->ses_iv));
786
787		ses->ses_klen = encini->cri_klen;
788		if (encini->cri_key != NULL)
789			safe_setup_enckey(ses, encini->cri_key);
790	}
791
792	if (macini) {
793		ses->ses_mlen = macini->cri_mlen;
794		if (ses->ses_mlen == 0) {
795			if (macini->cri_alg == CRYPTO_MD5_HMAC)
796				ses->ses_mlen = MD5_HASH_LEN;
797			else
798				ses->ses_mlen = SHA1_HASH_LEN;
799		}
800
801		if (macini->cri_key != NULL) {
802			safe_setup_mackey(ses, macini->cri_alg, macini->cri_key,
803			    macini->cri_klen / 8);
804		}
805	}
806
807	*sidp = SAFE_SID(device_get_unit(sc->sc_dev), sesn);
808	return (0);
809}
810
811/*
812 * Deallocate a session.
813 */
814static int
815safe_freesession(device_t dev, u_int64_t tid)
816{
817	struct safe_softc *sc = device_get_softc(dev);
818	int session, ret;
819	u_int32_t sid = ((u_int32_t) tid) & 0xffffffff;
820
821	if (sc == NULL)
822		return (EINVAL);
823
824	session = SAFE_SESSION(sid);
825	if (session < sc->sc_nsessions) {
826		bzero(&sc->sc_sessions[session], sizeof(sc->sc_sessions[session]));
827		ret = 0;
828	} else
829		ret = EINVAL;
830	return (ret);
831}
832
833static void
834safe_op_cb(void *arg, bus_dma_segment_t *seg, int nsegs, bus_size_t mapsize, int error)
835{
836	struct safe_operand *op = arg;
837
838	DPRINTF(("%s: mapsize %u nsegs %d error %d\n", __func__,
839		(u_int) mapsize, nsegs, error));
840	if (error != 0)
841		return;
842	op->mapsize = mapsize;
843	op->nsegs = nsegs;
844	bcopy(seg, op->segs, nsegs * sizeof (seg[0]));
845}
846
847static int
848safe_process(device_t dev, struct cryptop *crp, int hint)
849{
850	struct safe_softc *sc = device_get_softc(dev);
851	int err = 0, i, nicealign, uniform;
852	struct cryptodesc *crd1, *crd2, *maccrd, *enccrd;
853	int bypass, oplen, ivsize;
854	caddr_t iv;
855	int16_t coffset;
856	struct safe_session *ses;
857	struct safe_ringentry *re;
858	struct safe_sarec *sa;
859	struct safe_pdesc *pd;
860	u_int32_t cmd0, cmd1, staterec;
861
862	if (crp == NULL || crp->crp_callback == NULL || sc == NULL) {
863		safestats.st_invalid++;
864		return (EINVAL);
865	}
866	if (SAFE_SESSION(crp->crp_sid) >= sc->sc_nsessions) {
867		safestats.st_badsession++;
868		return (EINVAL);
869	}
870
871	mtx_lock(&sc->sc_ringmtx);
872	if (sc->sc_front == sc->sc_back && sc->sc_nqchip != 0) {
873		safestats.st_ringfull++;
874		sc->sc_needwakeup |= CRYPTO_SYMQ;
875		mtx_unlock(&sc->sc_ringmtx);
876		return (ERESTART);
877	}
878	re = sc->sc_front;
879
880	staterec = re->re_sa.sa_staterec;	/* save */
881	/* NB: zero everything but the PE descriptor */
882	bzero(&re->re_sa, sizeof(struct safe_ringentry) - sizeof(re->re_desc));
883	re->re_sa.sa_staterec = staterec;	/* restore */
884
885	re->re_crp = crp;
886	re->re_sesn = SAFE_SESSION(crp->crp_sid);
887
888	if (crp->crp_flags & CRYPTO_F_IMBUF) {
889		re->re_src_m = (struct mbuf *)crp->crp_buf;
890		re->re_dst_m = (struct mbuf *)crp->crp_buf;
891	} else if (crp->crp_flags & CRYPTO_F_IOV) {
892		re->re_src_io = (struct uio *)crp->crp_buf;
893		re->re_dst_io = (struct uio *)crp->crp_buf;
894	} else {
895		safestats.st_badflags++;
896		err = EINVAL;
897		goto errout;	/* XXX we don't handle contiguous blocks! */
898	}
899
900	sa = &re->re_sa;
901	ses = &sc->sc_sessions[re->re_sesn];
902
903	crd1 = crp->crp_desc;
904	if (crd1 == NULL) {
905		safestats.st_nodesc++;
906		err = EINVAL;
907		goto errout;
908	}
909	crd2 = crd1->crd_next;
910
911	cmd0 = SAFE_SA_CMD0_BASIC;		/* basic group operation */
912	cmd1 = 0;
913	if (crd2 == NULL) {
914		if (crd1->crd_alg == CRYPTO_MD5_HMAC ||
915		    crd1->crd_alg == CRYPTO_SHA1_HMAC ||
916		    crd1->crd_alg == CRYPTO_NULL_HMAC) {
917			maccrd = crd1;
918			enccrd = NULL;
919			cmd0 |= SAFE_SA_CMD0_OP_HASH;
920		} else if (crd1->crd_alg == CRYPTO_DES_CBC ||
921		    crd1->crd_alg == CRYPTO_3DES_CBC ||
922		    crd1->crd_alg == CRYPTO_AES_CBC ||
923		    crd1->crd_alg == CRYPTO_NULL_CBC) {
924			maccrd = NULL;
925			enccrd = crd1;
926			cmd0 |= SAFE_SA_CMD0_OP_CRYPT;
927		} else {
928			safestats.st_badalg++;
929			err = EINVAL;
930			goto errout;
931		}
932	} else {
933		if ((crd1->crd_alg == CRYPTO_MD5_HMAC ||
934		    crd1->crd_alg == CRYPTO_SHA1_HMAC ||
935		    crd1->crd_alg == CRYPTO_NULL_HMAC) &&
936		    (crd2->crd_alg == CRYPTO_DES_CBC ||
937			crd2->crd_alg == CRYPTO_3DES_CBC ||
938		        crd2->crd_alg == CRYPTO_AES_CBC ||
939		        crd2->crd_alg == CRYPTO_NULL_CBC) &&
940		    ((crd2->crd_flags & CRD_F_ENCRYPT) == 0)) {
941			maccrd = crd1;
942			enccrd = crd2;
943		} else if ((crd1->crd_alg == CRYPTO_DES_CBC ||
944		    crd1->crd_alg == CRYPTO_3DES_CBC ||
945		    crd1->crd_alg == CRYPTO_AES_CBC ||
946		    crd1->crd_alg == CRYPTO_NULL_CBC) &&
947		    (crd2->crd_alg == CRYPTO_MD5_HMAC ||
948			crd2->crd_alg == CRYPTO_SHA1_HMAC ||
949			crd2->crd_alg == CRYPTO_NULL_HMAC) &&
950		    (crd1->crd_flags & CRD_F_ENCRYPT)) {
951			enccrd = crd1;
952			maccrd = crd2;
953		} else {
954			safestats.st_badalg++;
955			err = EINVAL;
956			goto errout;
957		}
958		cmd0 |= SAFE_SA_CMD0_OP_BOTH;
959	}
960
961	if (enccrd) {
962		if (enccrd->crd_flags & CRD_F_KEY_EXPLICIT)
963			safe_setup_enckey(ses, enccrd->crd_key);
964
965		if (enccrd->crd_alg == CRYPTO_DES_CBC) {
966			cmd0 |= SAFE_SA_CMD0_DES;
967			cmd1 |= SAFE_SA_CMD1_CBC;
968			ivsize = 2*sizeof(u_int32_t);
969		} else if (enccrd->crd_alg == CRYPTO_3DES_CBC) {
970			cmd0 |= SAFE_SA_CMD0_3DES;
971			cmd1 |= SAFE_SA_CMD1_CBC;
972			ivsize = 2*sizeof(u_int32_t);
973		} else if (enccrd->crd_alg == CRYPTO_AES_CBC) {
974			cmd0 |= SAFE_SA_CMD0_AES;
975			cmd1 |= SAFE_SA_CMD1_CBC;
976			if (ses->ses_klen == 128)
977			     cmd1 |=  SAFE_SA_CMD1_AES128;
978			else if (ses->ses_klen == 192)
979			     cmd1 |=  SAFE_SA_CMD1_AES192;
980			else
981			     cmd1 |=  SAFE_SA_CMD1_AES256;
982			ivsize = 4*sizeof(u_int32_t);
983		} else {
984			cmd0 |= SAFE_SA_CMD0_CRYPT_NULL;
985			ivsize = 0;
986		}
987
988		/*
989		 * Setup encrypt/decrypt state.  When using basic ops
990		 * we can't use an inline IV because hash/crypt offset
991		 * must be from the end of the IV to the start of the
992		 * crypt data and this leaves out the preceding header
993		 * from the hash calculation.  Instead we place the IV
994		 * in the state record and set the hash/crypt offset to
995		 * copy both the header+IV.
996		 */
997		if (enccrd->crd_flags & CRD_F_ENCRYPT) {
998			cmd0 |= SAFE_SA_CMD0_OUTBOUND;
999
1000			if (enccrd->crd_flags & CRD_F_IV_EXPLICIT)
1001				iv = enccrd->crd_iv;
1002			else
1003				iv = (caddr_t) ses->ses_iv;
1004			if ((enccrd->crd_flags & CRD_F_IV_PRESENT) == 0) {
1005				crypto_copyback(crp->crp_flags, crp->crp_buf,
1006				    enccrd->crd_inject, ivsize, iv);
1007			}
1008			bcopy(iv, re->re_sastate.sa_saved_iv, ivsize);
1009			cmd0 |= SAFE_SA_CMD0_IVLD_STATE | SAFE_SA_CMD0_SAVEIV;
1010			re->re_flags |= SAFE_QFLAGS_COPYOUTIV;
1011		} else {
1012			cmd0 |= SAFE_SA_CMD0_INBOUND;
1013
1014			if (enccrd->crd_flags & CRD_F_IV_EXPLICIT) {
1015				bcopy(enccrd->crd_iv,
1016					re->re_sastate.sa_saved_iv, ivsize);
1017			} else {
1018				crypto_copydata(crp->crp_flags, crp->crp_buf,
1019				    enccrd->crd_inject, ivsize,
1020				    (caddr_t)re->re_sastate.sa_saved_iv);
1021			}
1022			cmd0 |= SAFE_SA_CMD0_IVLD_STATE;
1023		}
1024		/*
1025		 * For basic encryption use the zero pad algorithm.
1026		 * This pads results to an 8-byte boundary and
1027		 * suppresses padding verification for inbound (i.e.
1028		 * decrypt) operations.
1029		 *
1030		 * NB: Not sure if the 8-byte pad boundary is a problem.
1031		 */
1032		cmd0 |= SAFE_SA_CMD0_PAD_ZERO;
1033
1034		/* XXX assert key bufs have the same size */
1035		bcopy(ses->ses_key, sa->sa_key, sizeof(sa->sa_key));
1036	}
1037
1038	if (maccrd) {
1039		if (maccrd->crd_flags & CRD_F_KEY_EXPLICIT) {
1040			safe_setup_mackey(ses, maccrd->crd_alg,
1041			    maccrd->crd_key, maccrd->crd_klen / 8);
1042		}
1043
1044		if (maccrd->crd_alg == CRYPTO_MD5_HMAC) {
1045			cmd0 |= SAFE_SA_CMD0_MD5;
1046			cmd1 |= SAFE_SA_CMD1_HMAC;	/* NB: enable HMAC */
1047		} else if (maccrd->crd_alg == CRYPTO_SHA1_HMAC) {
1048			cmd0 |= SAFE_SA_CMD0_SHA1;
1049			cmd1 |= SAFE_SA_CMD1_HMAC;	/* NB: enable HMAC */
1050		} else {
1051			cmd0 |= SAFE_SA_CMD0_HASH_NULL;
1052		}
1053		/*
1054		 * Digest data is loaded from the SA and the hash
1055		 * result is saved to the state block where we
1056		 * retrieve it for return to the caller.
1057		 */
1058		/* XXX assert digest bufs have the same size */
1059		bcopy(ses->ses_hminner, sa->sa_indigest,
1060			sizeof(sa->sa_indigest));
1061		bcopy(ses->ses_hmouter, sa->sa_outdigest,
1062			sizeof(sa->sa_outdigest));
1063
1064		cmd0 |= SAFE_SA_CMD0_HSLD_SA | SAFE_SA_CMD0_SAVEHASH;
1065		re->re_flags |= SAFE_QFLAGS_COPYOUTICV;
1066	}
1067
1068	if (enccrd && maccrd) {
1069		/*
1070		 * The offset from hash data to the start of
1071		 * crypt data is the difference in the skips.
1072		 */
1073		bypass = maccrd->crd_skip;
1074		coffset = enccrd->crd_skip - maccrd->crd_skip;
1075		if (coffset < 0) {
1076			DPRINTF(("%s: hash does not precede crypt; "
1077				"mac skip %u enc skip %u\n",
1078				__func__, maccrd->crd_skip, enccrd->crd_skip));
1079			safestats.st_skipmismatch++;
1080			err = EINVAL;
1081			goto errout;
1082		}
1083		oplen = enccrd->crd_skip + enccrd->crd_len;
1084		if (maccrd->crd_skip + maccrd->crd_len != oplen) {
1085			DPRINTF(("%s: hash amount %u != crypt amount %u\n",
1086				__func__, maccrd->crd_skip + maccrd->crd_len,
1087				oplen));
1088			safestats.st_lenmismatch++;
1089			err = EINVAL;
1090			goto errout;
1091		}
1092#ifdef SAFE_DEBUG
1093		if (safe_debug) {
1094			printf("mac: skip %d, len %d, inject %d\n",
1095			    maccrd->crd_skip, maccrd->crd_len,
1096			    maccrd->crd_inject);
1097			printf("enc: skip %d, len %d, inject %d\n",
1098			    enccrd->crd_skip, enccrd->crd_len,
1099			    enccrd->crd_inject);
1100			printf("bypass %d coffset %d oplen %d\n",
1101				bypass, coffset, oplen);
1102		}
1103#endif
1104		if (coffset & 3) {	/* offset must be 32-bit aligned */
1105			DPRINTF(("%s: coffset %u misaligned\n",
1106				__func__, coffset));
1107			safestats.st_coffmisaligned++;
1108			err = EINVAL;
1109			goto errout;
1110		}
1111		coffset >>= 2;
1112		if (coffset > 255) {	/* offset must be <256 dwords */
1113			DPRINTF(("%s: coffset %u too big\n",
1114				__func__, coffset));
1115			safestats.st_cofftoobig++;
1116			err = EINVAL;
1117			goto errout;
1118		}
1119		/*
1120		 * Tell the hardware to copy the header to the output.
1121		 * The header is defined as the data from the end of
1122		 * the bypass to the start of data to be encrypted.
1123		 * Typically this is the inline IV.  Note that you need
1124		 * to do this even if src+dst are the same; it appears
1125		 * that w/o this bit the crypted data is written
1126		 * immediately after the bypass data.
1127		 */
1128		cmd1 |= SAFE_SA_CMD1_HDRCOPY;
1129		/*
1130		 * Disable IP header mutable bit handling.  This is
1131		 * needed to get correct HMAC calculations.
1132		 */
1133		cmd1 |= SAFE_SA_CMD1_MUTABLE;
1134	} else {
1135		if (enccrd) {
1136			bypass = enccrd->crd_skip;
1137			oplen = bypass + enccrd->crd_len;
1138		} else {
1139			bypass = maccrd->crd_skip;
1140			oplen = bypass + maccrd->crd_len;
1141		}
1142		coffset = 0;
1143	}
1144	/* XXX verify multiple of 4 when using s/g */
1145	if (bypass > 96) {		/* bypass offset must be <= 96 bytes */
1146		DPRINTF(("%s: bypass %u too big\n", __func__, bypass));
1147		safestats.st_bypasstoobig++;
1148		err = EINVAL;
1149		goto errout;
1150	}
1151
1152	if (bus_dmamap_create(sc->sc_srcdmat, BUS_DMA_NOWAIT, &re->re_src_map)) {
1153		safestats.st_nomap++;
1154		err = ENOMEM;
1155		goto errout;
1156	}
1157	if (crp->crp_flags & CRYPTO_F_IMBUF) {
1158		if (bus_dmamap_load_mbuf(sc->sc_srcdmat, re->re_src_map,
1159		    re->re_src_m, safe_op_cb,
1160		    &re->re_src, BUS_DMA_NOWAIT) != 0) {
1161			bus_dmamap_destroy(sc->sc_srcdmat, re->re_src_map);
1162			re->re_src_map = NULL;
1163			safestats.st_noload++;
1164			err = ENOMEM;
1165			goto errout;
1166		}
1167	} else if (crp->crp_flags & CRYPTO_F_IOV) {
1168		if (bus_dmamap_load_uio(sc->sc_srcdmat, re->re_src_map,
1169		    re->re_src_io, safe_op_cb,
1170		    &re->re_src, BUS_DMA_NOWAIT) != 0) {
1171			bus_dmamap_destroy(sc->sc_srcdmat, re->re_src_map);
1172			re->re_src_map = NULL;
1173			safestats.st_noload++;
1174			err = ENOMEM;
1175			goto errout;
1176		}
1177	}
1178	nicealign = safe_dmamap_aligned(&re->re_src);
1179	uniform = safe_dmamap_uniform(&re->re_src);
1180
1181	DPRINTF(("src nicealign %u uniform %u nsegs %u\n",
1182		nicealign, uniform, re->re_src.nsegs));
1183	if (re->re_src.nsegs > 1) {
1184		re->re_desc.d_src = sc->sc_spalloc.dma_paddr +
1185			((caddr_t) sc->sc_spfree - (caddr_t) sc->sc_spring);
1186		for (i = 0; i < re->re_src_nsegs; i++) {
1187			/* NB: no need to check if there's space */
1188			pd = sc->sc_spfree;
1189			if (++(sc->sc_spfree) == sc->sc_springtop)
1190				sc->sc_spfree = sc->sc_spring;
1191
1192			KASSERT((pd->pd_flags&3) == 0 ||
1193				(pd->pd_flags&3) == SAFE_PD_DONE,
1194				("bogus source particle descriptor; flags %x",
1195				pd->pd_flags));
1196			pd->pd_addr = re->re_src_segs[i].ds_addr;
1197			pd->pd_size = re->re_src_segs[i].ds_len;
1198			pd->pd_flags = SAFE_PD_READY;
1199		}
1200		cmd0 |= SAFE_SA_CMD0_IGATHER;
1201	} else {
1202		/*
1203		 * No need for gather, reference the operand directly.
1204		 */
1205		re->re_desc.d_src = re->re_src_segs[0].ds_addr;
1206	}
1207
1208	if (enccrd == NULL && maccrd != NULL) {
1209		/*
1210		 * Hash op; no destination needed.
1211		 */
1212	} else {
1213		if (crp->crp_flags & CRYPTO_F_IOV) {
1214			if (!nicealign) {
1215				safestats.st_iovmisaligned++;
1216				err = EINVAL;
1217				goto errout;
1218			}
1219			if (uniform != 1) {
1220				/*
1221				 * Source is not suitable for direct use as
1222				 * the destination.  Create a new scatter/gather
1223				 * list based on the destination requirements
1224				 * and check if that's ok.
1225				 */
1226				if (bus_dmamap_create(sc->sc_dstdmat,
1227				    BUS_DMA_NOWAIT, &re->re_dst_map)) {
1228					safestats.st_nomap++;
1229					err = ENOMEM;
1230					goto errout;
1231				}
1232				if (bus_dmamap_load_uio(sc->sc_dstdmat,
1233				    re->re_dst_map, re->re_dst_io,
1234				    safe_op_cb, &re->re_dst,
1235				    BUS_DMA_NOWAIT) != 0) {
1236					bus_dmamap_destroy(sc->sc_dstdmat,
1237						re->re_dst_map);
1238					re->re_dst_map = NULL;
1239					safestats.st_noload++;
1240					err = ENOMEM;
1241					goto errout;
1242				}
1243				uniform = safe_dmamap_uniform(&re->re_dst);
1244				if (!uniform) {
1245					/*
1246					 * There's no way to handle the DMA
1247					 * requirements with this uio.  We
1248					 * could create a separate DMA area for
1249					 * the result and then copy it back,
1250					 * but for now we just bail and return
1251					 * an error.  Note that uio requests
1252					 * > SAFE_MAX_DSIZE are handled because
1253					 * the DMA map and segment list for the
1254					 * destination wil result in a
1255					 * destination particle list that does
1256					 * the necessary scatter DMA.
1257					 */
1258					safestats.st_iovnotuniform++;
1259					err = EINVAL;
1260					goto errout;
1261				}
1262			} else
1263				re->re_dst = re->re_src;
1264		} else if (crp->crp_flags & CRYPTO_F_IMBUF) {
1265			if (nicealign && uniform == 1) {
1266				/*
1267				 * Source layout is suitable for direct
1268				 * sharing of the DMA map and segment list.
1269				 */
1270				re->re_dst = re->re_src;
1271			} else if (nicealign && uniform == 2) {
1272				/*
1273				 * The source is properly aligned but requires a
1274				 * different particle list to handle DMA of the
1275				 * result.  Create a new map and do the load to
1276				 * create the segment list.  The particle
1277				 * descriptor setup code below will handle the
1278				 * rest.
1279				 */
1280				if (bus_dmamap_create(sc->sc_dstdmat,
1281				    BUS_DMA_NOWAIT, &re->re_dst_map)) {
1282					safestats.st_nomap++;
1283					err = ENOMEM;
1284					goto errout;
1285				}
1286				if (bus_dmamap_load_mbuf(sc->sc_dstdmat,
1287				    re->re_dst_map, re->re_dst_m,
1288				    safe_op_cb, &re->re_dst,
1289				    BUS_DMA_NOWAIT) != 0) {
1290					bus_dmamap_destroy(sc->sc_dstdmat,
1291						re->re_dst_map);
1292					re->re_dst_map = NULL;
1293					safestats.st_noload++;
1294					err = ENOMEM;
1295					goto errout;
1296				}
1297			} else {		/* !(aligned and/or uniform) */
1298				int totlen, len;
1299				struct mbuf *m, *top, **mp;
1300
1301				/*
1302				 * DMA constraints require that we allocate a
1303				 * new mbuf chain for the destination.  We
1304				 * allocate an entire new set of mbufs of
1305				 * optimal/required size and then tell the
1306				 * hardware to copy any bits that are not
1307				 * created as a byproduct of the operation.
1308				 */
1309				if (!nicealign)
1310					safestats.st_unaligned++;
1311				if (!uniform)
1312					safestats.st_notuniform++;
1313				totlen = re->re_src_mapsize;
1314				if (re->re_src_m->m_flags & M_PKTHDR) {
1315					len = MHLEN;
1316					MGETHDR(m, M_NOWAIT, MT_DATA);
1317					if (m && !m_dup_pkthdr(m, re->re_src_m,
1318					    M_NOWAIT)) {
1319						m_free(m);
1320						m = NULL;
1321					}
1322				} else {
1323					len = MLEN;
1324					MGET(m, M_NOWAIT, MT_DATA);
1325				}
1326				if (m == NULL) {
1327					safestats.st_nombuf++;
1328					err = sc->sc_nqchip ? ERESTART : ENOMEM;
1329					goto errout;
1330				}
1331				if (totlen >= MINCLSIZE) {
1332					if (!(MCLGET(m, M_NOWAIT))) {
1333						m_free(m);
1334						safestats.st_nomcl++;
1335						err = sc->sc_nqchip ?
1336							ERESTART : ENOMEM;
1337						goto errout;
1338					}
1339					len = MCLBYTES;
1340				}
1341				m->m_len = len;
1342				top = NULL;
1343				mp = &top;
1344
1345				while (totlen > 0) {
1346					if (top) {
1347						MGET(m, M_NOWAIT, MT_DATA);
1348						if (m == NULL) {
1349							m_freem(top);
1350							safestats.st_nombuf++;
1351							err = sc->sc_nqchip ?
1352							    ERESTART : ENOMEM;
1353							goto errout;
1354						}
1355						len = MLEN;
1356					}
1357					if (top && totlen >= MINCLSIZE) {
1358						if (!(MCLGET(m, M_NOWAIT))) {
1359							*mp = m;
1360							m_freem(top);
1361							safestats.st_nomcl++;
1362							err = sc->sc_nqchip ?
1363							    ERESTART : ENOMEM;
1364							goto errout;
1365						}
1366						len = MCLBYTES;
1367					}
1368					m->m_len = len = min(totlen, len);
1369					totlen -= len;
1370					*mp = m;
1371					mp = &m->m_next;
1372				}
1373				re->re_dst_m = top;
1374				if (bus_dmamap_create(sc->sc_dstdmat,
1375				    BUS_DMA_NOWAIT, &re->re_dst_map) != 0) {
1376					safestats.st_nomap++;
1377					err = ENOMEM;
1378					goto errout;
1379				}
1380				if (bus_dmamap_load_mbuf(sc->sc_dstdmat,
1381				    re->re_dst_map, re->re_dst_m,
1382				    safe_op_cb, &re->re_dst,
1383				    BUS_DMA_NOWAIT) != 0) {
1384					bus_dmamap_destroy(sc->sc_dstdmat,
1385					re->re_dst_map);
1386					re->re_dst_map = NULL;
1387					safestats.st_noload++;
1388					err = ENOMEM;
1389					goto errout;
1390				}
1391				if (re->re_src.mapsize > oplen) {
1392					/*
1393					 * There's data following what the
1394					 * hardware will copy for us.  If this
1395					 * isn't just the ICV (that's going to
1396					 * be written on completion), copy it
1397					 * to the new mbufs
1398					 */
1399					if (!(maccrd &&
1400					    (re->re_src.mapsize-oplen) == 12 &&
1401					    maccrd->crd_inject == oplen))
1402						safe_mcopy(re->re_src_m,
1403							   re->re_dst_m,
1404							   oplen);
1405					else
1406						safestats.st_noicvcopy++;
1407				}
1408			}
1409		} else {
1410			safestats.st_badflags++;
1411			err = EINVAL;
1412			goto errout;
1413		}
1414
1415		if (re->re_dst.nsegs > 1) {
1416			re->re_desc.d_dst = sc->sc_dpalloc.dma_paddr +
1417			    ((caddr_t) sc->sc_dpfree - (caddr_t) sc->sc_dpring);
1418			for (i = 0; i < re->re_dst_nsegs; i++) {
1419				pd = sc->sc_dpfree;
1420				KASSERT((pd->pd_flags&3) == 0 ||
1421					(pd->pd_flags&3) == SAFE_PD_DONE,
1422					("bogus dest particle descriptor; flags %x",
1423						pd->pd_flags));
1424				if (++(sc->sc_dpfree) == sc->sc_dpringtop)
1425					sc->sc_dpfree = sc->sc_dpring;
1426				pd->pd_addr = re->re_dst_segs[i].ds_addr;
1427				pd->pd_flags = SAFE_PD_READY;
1428			}
1429			cmd0 |= SAFE_SA_CMD0_OSCATTER;
1430		} else {
1431			/*
1432			 * No need for scatter, reference the operand directly.
1433			 */
1434			re->re_desc.d_dst = re->re_dst_segs[0].ds_addr;
1435		}
1436	}
1437
1438	/*
1439	 * All done with setup; fillin the SA command words
1440	 * and the packet engine descriptor.  The operation
1441	 * is now ready for submission to the hardware.
1442	 */
1443	sa->sa_cmd0 = cmd0 | SAFE_SA_CMD0_IPCI | SAFE_SA_CMD0_OPCI;
1444	sa->sa_cmd1 = cmd1
1445		    | (coffset << SAFE_SA_CMD1_OFFSET_S)
1446		    | SAFE_SA_CMD1_SAREV1	/* Rev 1 SA data structure */
1447		    | SAFE_SA_CMD1_SRPCI
1448		    ;
1449	/*
1450	 * NB: the order of writes is important here.  In case the
1451	 * chip is scanning the ring because of an outstanding request
1452	 * it might nab this one too.  In that case we need to make
1453	 * sure the setup is complete before we write the length
1454	 * field of the descriptor as it signals the descriptor is
1455	 * ready for processing.
1456	 */
1457	re->re_desc.d_csr = SAFE_PE_CSR_READY | SAFE_PE_CSR_SAPCI;
1458	if (maccrd)
1459		re->re_desc.d_csr |= SAFE_PE_CSR_LOADSA | SAFE_PE_CSR_HASHFINAL;
1460	re->re_desc.d_len = oplen
1461			  | SAFE_PE_LEN_READY
1462			  | (bypass << SAFE_PE_LEN_BYPASS_S)
1463			  ;
1464
1465	safestats.st_ipackets++;
1466	safestats.st_ibytes += oplen;
1467
1468	if (++(sc->sc_front) == sc->sc_ringtop)
1469		sc->sc_front = sc->sc_ring;
1470
1471	/* XXX honor batching */
1472	safe_feed(sc, re);
1473	mtx_unlock(&sc->sc_ringmtx);
1474	return (0);
1475
1476errout:
1477	if ((re->re_dst_m != NULL) && (re->re_src_m != re->re_dst_m))
1478		m_freem(re->re_dst_m);
1479
1480	if (re->re_dst_map != NULL && re->re_dst_map != re->re_src_map) {
1481		bus_dmamap_unload(sc->sc_dstdmat, re->re_dst_map);
1482		bus_dmamap_destroy(sc->sc_dstdmat, re->re_dst_map);
1483	}
1484	if (re->re_src_map != NULL) {
1485		bus_dmamap_unload(sc->sc_srcdmat, re->re_src_map);
1486		bus_dmamap_destroy(sc->sc_srcdmat, re->re_src_map);
1487	}
1488	mtx_unlock(&sc->sc_ringmtx);
1489	if (err != ERESTART) {
1490		crp->crp_etype = err;
1491		crypto_done(crp);
1492	} else {
1493		sc->sc_needwakeup |= CRYPTO_SYMQ;
1494	}
1495	return (err);
1496}
1497
1498static void
1499safe_callback(struct safe_softc *sc, struct safe_ringentry *re)
1500{
1501	struct cryptop *crp = (struct cryptop *)re->re_crp;
1502	struct cryptodesc *crd;
1503
1504	safestats.st_opackets++;
1505	safestats.st_obytes += re->re_dst.mapsize;
1506
1507	safe_dma_sync(&sc->sc_ringalloc,
1508		BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1509	if (re->re_desc.d_csr & SAFE_PE_CSR_STATUS) {
1510		device_printf(sc->sc_dev, "csr 0x%x cmd0 0x%x cmd1 0x%x\n",
1511			re->re_desc.d_csr,
1512			re->re_sa.sa_cmd0, re->re_sa.sa_cmd1);
1513		safestats.st_peoperr++;
1514		crp->crp_etype = EIO;		/* something more meaningful? */
1515	}
1516	if (re->re_dst_map != NULL && re->re_dst_map != re->re_src_map) {
1517		bus_dmamap_sync(sc->sc_dstdmat, re->re_dst_map,
1518		    BUS_DMASYNC_POSTREAD);
1519		bus_dmamap_unload(sc->sc_dstdmat, re->re_dst_map);
1520		bus_dmamap_destroy(sc->sc_dstdmat, re->re_dst_map);
1521	}
1522	bus_dmamap_sync(sc->sc_srcdmat, re->re_src_map, BUS_DMASYNC_POSTWRITE);
1523	bus_dmamap_unload(sc->sc_srcdmat, re->re_src_map);
1524	bus_dmamap_destroy(sc->sc_srcdmat, re->re_src_map);
1525
1526	/*
1527	 * If result was written to a differet mbuf chain, swap
1528	 * it in as the return value and reclaim the original.
1529	 */
1530	if ((crp->crp_flags & CRYPTO_F_IMBUF) && re->re_src_m != re->re_dst_m) {
1531		m_freem(re->re_src_m);
1532		crp->crp_buf = (caddr_t)re->re_dst_m;
1533	}
1534
1535	if (re->re_flags & SAFE_QFLAGS_COPYOUTIV) {
1536		/* copy out IV for future use */
1537		for (crd = crp->crp_desc; crd; crd = crd->crd_next) {
1538			int ivsize;
1539
1540			if (crd->crd_alg == CRYPTO_DES_CBC ||
1541			    crd->crd_alg == CRYPTO_3DES_CBC) {
1542				ivsize = 2*sizeof(u_int32_t);
1543			} else if (crd->crd_alg == CRYPTO_AES_CBC) {
1544				ivsize = 4*sizeof(u_int32_t);
1545			} else
1546				continue;
1547			crypto_copydata(crp->crp_flags, crp->crp_buf,
1548			    crd->crd_skip + crd->crd_len - ivsize, ivsize,
1549			    (caddr_t)sc->sc_sessions[re->re_sesn].ses_iv);
1550			break;
1551		}
1552	}
1553
1554	if (re->re_flags & SAFE_QFLAGS_COPYOUTICV) {
1555		/* copy out ICV result */
1556		for (crd = crp->crp_desc; crd; crd = crd->crd_next) {
1557			if (!(crd->crd_alg == CRYPTO_MD5_HMAC ||
1558			    crd->crd_alg == CRYPTO_SHA1_HMAC ||
1559			    crd->crd_alg == CRYPTO_NULL_HMAC))
1560				continue;
1561			if (crd->crd_alg == CRYPTO_SHA1_HMAC) {
1562				/*
1563				 * SHA-1 ICV's are byte-swapped; fix 'em up
1564				 * before copy them to their destination.
1565				 */
1566				re->re_sastate.sa_saved_indigest[0] =
1567				    bswap32(re->re_sastate.sa_saved_indigest[0]);
1568				re->re_sastate.sa_saved_indigest[1] =
1569				    bswap32(re->re_sastate.sa_saved_indigest[1]);
1570				re->re_sastate.sa_saved_indigest[2] =
1571				    bswap32(re->re_sastate.sa_saved_indigest[2]);
1572			}
1573			crypto_copyback(crp->crp_flags, crp->crp_buf,
1574			    crd->crd_inject,
1575			    sc->sc_sessions[re->re_sesn].ses_mlen,
1576			    (caddr_t)re->re_sastate.sa_saved_indigest);
1577			break;
1578		}
1579	}
1580	crypto_done(crp);
1581}
1582
1583/*
1584 * Copy all data past offset from srcm to dstm.
1585 */
1586static void
1587safe_mcopy(struct mbuf *srcm, struct mbuf *dstm, u_int offset)
1588{
1589	u_int j, dlen, slen;
1590	caddr_t dptr, sptr;
1591
1592	/*
1593	 * Advance src and dst to offset.
1594	 */
1595	j = offset;
1596	while (j >= 0) {
1597		if (srcm->m_len > j)
1598			break;
1599		j -= srcm->m_len;
1600		srcm = srcm->m_next;
1601		if (srcm == NULL)
1602			return;
1603	}
1604	sptr = mtod(srcm, caddr_t) + j;
1605	slen = srcm->m_len - j;
1606
1607	j = offset;
1608	while (j >= 0) {
1609		if (dstm->m_len > j)
1610			break;
1611		j -= dstm->m_len;
1612		dstm = dstm->m_next;
1613		if (dstm == NULL)
1614			return;
1615	}
1616	dptr = mtod(dstm, caddr_t) + j;
1617	dlen = dstm->m_len - j;
1618
1619	/*
1620	 * Copy everything that remains.
1621	 */
1622	for (;;) {
1623		j = min(slen, dlen);
1624		bcopy(sptr, dptr, j);
1625		if (slen == j) {
1626			srcm = srcm->m_next;
1627			if (srcm == NULL)
1628				return;
1629			sptr = srcm->m_data;
1630			slen = srcm->m_len;
1631		} else
1632			sptr += j, slen -= j;
1633		if (dlen == j) {
1634			dstm = dstm->m_next;
1635			if (dstm == NULL)
1636				return;
1637			dptr = dstm->m_data;
1638			dlen = dstm->m_len;
1639		} else
1640			dptr += j, dlen -= j;
1641	}
1642}
1643
1644#ifndef SAFE_NO_RNG
1645#define	SAFE_RNG_MAXWAIT	1000
1646
1647static void
1648safe_rng_init(struct safe_softc *sc)
1649{
1650	u_int32_t w, v;
1651	int i;
1652
1653	WRITE_REG(sc, SAFE_RNG_CTRL, 0);
1654	/* use default value according to the manual */
1655	WRITE_REG(sc, SAFE_RNG_CNFG, 0x834);	/* magic from SafeNet */
1656	WRITE_REG(sc, SAFE_RNG_ALM_CNT, 0);
1657
1658	/*
1659	 * There is a bug in rev 1.0 of the 1140 that when the RNG
1660	 * is brought out of reset the ready status flag does not
1661	 * work until the RNG has finished its internal initialization.
1662	 *
1663	 * So in order to determine the device is through its
1664	 * initialization we must read the data register, using the
1665	 * status reg in the read in case it is initialized.  Then read
1666	 * the data register until it changes from the first read.
1667	 * Once it changes read the data register until it changes
1668	 * again.  At this time the RNG is considered initialized.
1669	 * This could take between 750ms - 1000ms in time.
1670	 */
1671	i = 0;
1672	w = READ_REG(sc, SAFE_RNG_OUT);
1673	do {
1674		v = READ_REG(sc, SAFE_RNG_OUT);
1675		if (v != w) {
1676			w = v;
1677			break;
1678		}
1679		DELAY(10);
1680	} while (++i < SAFE_RNG_MAXWAIT);
1681
1682	/* Wait Until data changes again */
1683	i = 0;
1684	do {
1685		v = READ_REG(sc, SAFE_RNG_OUT);
1686		if (v != w)
1687			break;
1688		DELAY(10);
1689	} while (++i < SAFE_RNG_MAXWAIT);
1690}
1691
1692static __inline void
1693safe_rng_disable_short_cycle(struct safe_softc *sc)
1694{
1695	WRITE_REG(sc, SAFE_RNG_CTRL,
1696		READ_REG(sc, SAFE_RNG_CTRL) &~ SAFE_RNG_CTRL_SHORTEN);
1697}
1698
1699static __inline void
1700safe_rng_enable_short_cycle(struct safe_softc *sc)
1701{
1702	WRITE_REG(sc, SAFE_RNG_CTRL,
1703		READ_REG(sc, SAFE_RNG_CTRL) | SAFE_RNG_CTRL_SHORTEN);
1704}
1705
1706static __inline u_int32_t
1707safe_rng_read(struct safe_softc *sc)
1708{
1709	int i;
1710
1711	i = 0;
1712	while (READ_REG(sc, SAFE_RNG_STAT) != 0 && ++i < SAFE_RNG_MAXWAIT)
1713		;
1714	return READ_REG(sc, SAFE_RNG_OUT);
1715}
1716
1717static void
1718safe_rng(void *arg)
1719{
1720	struct safe_softc *sc = arg;
1721	u_int32_t buf[SAFE_RNG_MAXBUFSIZ];	/* NB: maybe move to softc */
1722	u_int maxwords;
1723	int i;
1724
1725	safestats.st_rng++;
1726	/*
1727	 * Fetch the next block of data.
1728	 */
1729	maxwords = safe_rngbufsize;
1730	if (maxwords > SAFE_RNG_MAXBUFSIZ)
1731		maxwords = SAFE_RNG_MAXBUFSIZ;
1732retry:
1733	for (i = 0; i < maxwords; i++)
1734		buf[i] = safe_rng_read(sc);
1735	/*
1736	 * Check the comparator alarm count and reset the h/w if
1737	 * it exceeds our threshold.  This guards against the
1738	 * hardware oscillators resonating with external signals.
1739	 */
1740	if (READ_REG(sc, SAFE_RNG_ALM_CNT) > safe_rngmaxalarm) {
1741		u_int32_t freq_inc, w;
1742
1743		DPRINTF(("%s: alarm count %u exceeds threshold %u\n", __func__,
1744			READ_REG(sc, SAFE_RNG_ALM_CNT), safe_rngmaxalarm));
1745		safestats.st_rngalarm++;
1746		safe_rng_enable_short_cycle(sc);
1747		freq_inc = 18;
1748		for (i = 0; i < 64; i++) {
1749			w = READ_REG(sc, SAFE_RNG_CNFG);
1750			freq_inc = ((w + freq_inc) & 0x3fL);
1751			w = ((w & ~0x3fL) | freq_inc);
1752			WRITE_REG(sc, SAFE_RNG_CNFG, w);
1753
1754			WRITE_REG(sc, SAFE_RNG_ALM_CNT, 0);
1755
1756			(void) safe_rng_read(sc);
1757			DELAY(25);
1758
1759			if (READ_REG(sc, SAFE_RNG_ALM_CNT) == 0) {
1760				safe_rng_disable_short_cycle(sc);
1761				goto retry;
1762			}
1763			freq_inc = 1;
1764		}
1765		safe_rng_disable_short_cycle(sc);
1766	} else
1767		WRITE_REG(sc, SAFE_RNG_ALM_CNT, 0);
1768
1769	(*sc->sc_harvest)(sc->sc_rndtest, buf, maxwords*sizeof (u_int32_t));
1770	callout_reset(&sc->sc_rngto,
1771		hz * (safe_rnginterval ? safe_rnginterval : 1), safe_rng, sc);
1772}
1773#endif /* SAFE_NO_RNG */
1774
1775static void
1776safe_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1777{
1778	bus_addr_t *paddr = (bus_addr_t*) arg;
1779	*paddr = segs->ds_addr;
1780}
1781
1782static int
1783safe_dma_malloc(
1784	struct safe_softc *sc,
1785	bus_size_t size,
1786	struct safe_dma_alloc *dma,
1787	int mapflags
1788)
1789{
1790	int r;
1791
1792	r = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev),	/* parent */
1793			       sizeof(u_int32_t), 0,	/* alignment, bounds */
1794			       BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
1795			       BUS_SPACE_MAXADDR,	/* highaddr */
1796			       NULL, NULL,		/* filter, filterarg */
1797			       size,			/* maxsize */
1798			       1,			/* nsegments */
1799			       size,			/* maxsegsize */
1800			       BUS_DMA_ALLOCNOW,	/* flags */
1801			       NULL, NULL,		/* locking */
1802			       &dma->dma_tag);
1803	if (r != 0) {
1804		device_printf(sc->sc_dev, "safe_dma_malloc: "
1805			"bus_dma_tag_create failed; error %u\n", r);
1806		goto fail_0;
1807	}
1808
1809	r = bus_dmamem_alloc(dma->dma_tag, (void**) &dma->dma_vaddr,
1810			     BUS_DMA_NOWAIT, &dma->dma_map);
1811	if (r != 0) {
1812		device_printf(sc->sc_dev, "safe_dma_malloc: "
1813			"bus_dmammem_alloc failed; size %ju, error %u\n",
1814			(uintmax_t)size, r);
1815		goto fail_1;
1816	}
1817
1818	r = bus_dmamap_load(dma->dma_tag, dma->dma_map, dma->dma_vaddr,
1819		            size,
1820			    safe_dmamap_cb,
1821			    &dma->dma_paddr,
1822			    mapflags | BUS_DMA_NOWAIT);
1823	if (r != 0) {
1824		device_printf(sc->sc_dev, "safe_dma_malloc: "
1825			"bus_dmamap_load failed; error %u\n", r);
1826		goto fail_2;
1827	}
1828
1829	dma->dma_size = size;
1830	return (0);
1831
1832	bus_dmamap_unload(dma->dma_tag, dma->dma_map);
1833fail_2:
1834	bus_dmamem_free(dma->dma_tag, dma->dma_vaddr, dma->dma_map);
1835fail_1:
1836	bus_dma_tag_destroy(dma->dma_tag);
1837fail_0:
1838	dma->dma_tag = NULL;
1839	return (r);
1840}
1841
1842static void
1843safe_dma_free(struct safe_softc *sc, struct safe_dma_alloc *dma)
1844{
1845	bus_dmamap_unload(dma->dma_tag, dma->dma_map);
1846	bus_dmamem_free(dma->dma_tag, dma->dma_vaddr, dma->dma_map);
1847	bus_dma_tag_destroy(dma->dma_tag);
1848}
1849
1850/*
1851 * Resets the board.  Values in the regesters are left as is
1852 * from the reset (i.e. initial values are assigned elsewhere).
1853 */
1854static void
1855safe_reset_board(struct safe_softc *sc)
1856{
1857	u_int32_t v;
1858	/*
1859	 * Reset the device.  The manual says no delay
1860	 * is needed between marking and clearing reset.
1861	 */
1862	v = READ_REG(sc, SAFE_PE_DMACFG) &~
1863		(SAFE_PE_DMACFG_PERESET | SAFE_PE_DMACFG_PDRRESET |
1864		 SAFE_PE_DMACFG_SGRESET);
1865	WRITE_REG(sc, SAFE_PE_DMACFG, v
1866				    | SAFE_PE_DMACFG_PERESET
1867				    | SAFE_PE_DMACFG_PDRRESET
1868				    | SAFE_PE_DMACFG_SGRESET);
1869	WRITE_REG(sc, SAFE_PE_DMACFG, v);
1870}
1871
1872/*
1873 * Initialize registers we need to touch only once.
1874 */
1875static void
1876safe_init_board(struct safe_softc *sc)
1877{
1878	u_int32_t v, dwords;
1879
1880	v = READ_REG(sc, SAFE_PE_DMACFG);
1881	v &=~ SAFE_PE_DMACFG_PEMODE;
1882	v |= SAFE_PE_DMACFG_FSENA		/* failsafe enable */
1883	  |  SAFE_PE_DMACFG_GPRPCI		/* gather ring on PCI */
1884	  |  SAFE_PE_DMACFG_SPRPCI		/* scatter ring on PCI */
1885	  |  SAFE_PE_DMACFG_ESDESC		/* endian-swap descriptors */
1886	  |  SAFE_PE_DMACFG_ESSA		/* endian-swap SA's */
1887	  |  SAFE_PE_DMACFG_ESPDESC		/* endian-swap part. desc's */
1888	  ;
1889	WRITE_REG(sc, SAFE_PE_DMACFG, v);
1890#if 0
1891	/* XXX select byte swap based on host byte order */
1892	WRITE_REG(sc, SAFE_ENDIAN, 0x1b);
1893#endif
1894	if (sc->sc_chiprev == SAFE_REV(1,0)) {
1895		/*
1896		 * Avoid large PCI DMA transfers.  Rev 1.0 has a bug where
1897		 * "target mode transfers" done while the chip is DMA'ing
1898		 * >1020 bytes cause the hardware to lockup.  To avoid this
1899		 * we reduce the max PCI transfer size and use small source
1900		 * particle descriptors (<= 256 bytes).
1901		 */
1902		WRITE_REG(sc, SAFE_DMA_CFG, 256);
1903		device_printf(sc->sc_dev,
1904			"Reduce max DMA size to %u words for rev %u.%u WAR\n",
1905			(READ_REG(sc, SAFE_DMA_CFG)>>2) & 0xff,
1906			SAFE_REV_MAJ(sc->sc_chiprev),
1907			SAFE_REV_MIN(sc->sc_chiprev));
1908	}
1909
1910	/* NB: operands+results are overlaid */
1911	WRITE_REG(sc, SAFE_PE_PDRBASE, sc->sc_ringalloc.dma_paddr);
1912	WRITE_REG(sc, SAFE_PE_RDRBASE, sc->sc_ringalloc.dma_paddr);
1913	/*
1914	 * Configure ring entry size and number of items in the ring.
1915	 */
1916	KASSERT((sizeof(struct safe_ringentry) % sizeof(u_int32_t)) == 0,
1917		("PE ring entry not 32-bit aligned!"));
1918	dwords = sizeof(struct safe_ringentry) / sizeof(u_int32_t);
1919	WRITE_REG(sc, SAFE_PE_RINGCFG,
1920		(dwords << SAFE_PE_RINGCFG_OFFSET_S) | SAFE_MAX_NQUEUE);
1921	WRITE_REG(sc, SAFE_PE_RINGPOLL, 0);	/* disable polling */
1922
1923	WRITE_REG(sc, SAFE_PE_GRNGBASE, sc->sc_spalloc.dma_paddr);
1924	WRITE_REG(sc, SAFE_PE_SRNGBASE, sc->sc_dpalloc.dma_paddr);
1925	WRITE_REG(sc, SAFE_PE_PARTSIZE,
1926		(SAFE_TOTAL_DPART<<16) | SAFE_TOTAL_SPART);
1927	/*
1928	 * NB: destination particles are fixed size.  We use
1929	 *     an mbuf cluster and require all results go to
1930	 *     clusters or smaller.
1931	 */
1932	WRITE_REG(sc, SAFE_PE_PARTCFG, SAFE_MAX_DSIZE);
1933
1934	/* it's now safe to enable PE mode, do it */
1935	WRITE_REG(sc, SAFE_PE_DMACFG, v | SAFE_PE_DMACFG_PEMODE);
1936
1937	/*
1938	 * Configure hardware to use level-triggered interrupts and
1939	 * to interrupt after each descriptor is processed.
1940	 */
1941	WRITE_REG(sc, SAFE_HI_CFG, SAFE_HI_CFG_LEVEL);
1942	WRITE_REG(sc, SAFE_HI_DESC_CNT, 1);
1943	WRITE_REG(sc, SAFE_HI_MASK, SAFE_INT_PE_DDONE | SAFE_INT_PE_ERROR);
1944}
1945
1946/*
1947 * Init PCI registers
1948 */
1949static void
1950safe_init_pciregs(device_t dev)
1951{
1952}
1953
1954/*
1955 * Clean up after a chip crash.
1956 * It is assumed that the caller in splimp()
1957 */
1958static void
1959safe_cleanchip(struct safe_softc *sc)
1960{
1961
1962	if (sc->sc_nqchip != 0) {
1963		struct safe_ringentry *re = sc->sc_back;
1964
1965		while (re != sc->sc_front) {
1966			if (re->re_desc.d_csr != 0)
1967				safe_free_entry(sc, re);
1968			if (++re == sc->sc_ringtop)
1969				re = sc->sc_ring;
1970		}
1971		sc->sc_back = re;
1972		sc->sc_nqchip = 0;
1973	}
1974}
1975
1976/*
1977 * free a safe_q
1978 * It is assumed that the caller is within splimp().
1979 */
1980static int
1981safe_free_entry(struct safe_softc *sc, struct safe_ringentry *re)
1982{
1983	struct cryptop *crp;
1984
1985	/*
1986	 * Free header MCR
1987	 */
1988	if ((re->re_dst_m != NULL) && (re->re_src_m != re->re_dst_m))
1989		m_freem(re->re_dst_m);
1990
1991	crp = (struct cryptop *)re->re_crp;
1992
1993	re->re_desc.d_csr = 0;
1994
1995	crp->crp_etype = EFAULT;
1996	crypto_done(crp);
1997	return(0);
1998}
1999
2000/*
2001 * Routine to reset the chip and clean up.
2002 * It is assumed that the caller is in splimp()
2003 */
2004static void
2005safe_totalreset(struct safe_softc *sc)
2006{
2007	safe_reset_board(sc);
2008	safe_init_board(sc);
2009	safe_cleanchip(sc);
2010}
2011
2012/*
2013 * Is the operand suitable aligned for direct DMA.  Each
2014 * segment must be aligned on a 32-bit boundary and all
2015 * but the last segment must be a multiple of 4 bytes.
2016 */
2017static int
2018safe_dmamap_aligned(const struct safe_operand *op)
2019{
2020	int i;
2021
2022	for (i = 0; i < op->nsegs; i++) {
2023		if (op->segs[i].ds_addr & 3)
2024			return (0);
2025		if (i != (op->nsegs - 1) && (op->segs[i].ds_len & 3))
2026			return (0);
2027	}
2028	return (1);
2029}
2030
2031/*
2032 * Is the operand suitable for direct DMA as the destination
2033 * of an operation.  The hardware requires that each ``particle''
2034 * but the last in an operation result have the same size.  We
2035 * fix that size at SAFE_MAX_DSIZE bytes.  This routine returns
2036 * 0 if some segment is not a multiple of of this size, 1 if all
2037 * segments are exactly this size, or 2 if segments are at worst
2038 * a multple of this size.
2039 */
2040static int
2041safe_dmamap_uniform(const struct safe_operand *op)
2042{
2043	int result = 1;
2044
2045	if (op->nsegs > 0) {
2046		int i;
2047
2048		for (i = 0; i < op->nsegs-1; i++) {
2049			if (op->segs[i].ds_len % SAFE_MAX_DSIZE)
2050				return (0);
2051			if (op->segs[i].ds_len != SAFE_MAX_DSIZE)
2052				result = 2;
2053		}
2054	}
2055	return (result);
2056}
2057
2058#ifdef SAFE_DEBUG
2059static void
2060safe_dump_dmastatus(struct safe_softc *sc, const char *tag)
2061{
2062	printf("%s: ENDIAN 0x%x SRC 0x%x DST 0x%x STAT 0x%x\n"
2063		, tag
2064		, READ_REG(sc, SAFE_DMA_ENDIAN)
2065		, READ_REG(sc, SAFE_DMA_SRCADDR)
2066		, READ_REG(sc, SAFE_DMA_DSTADDR)
2067		, READ_REG(sc, SAFE_DMA_STAT)
2068	);
2069}
2070
2071static void
2072safe_dump_intrstate(struct safe_softc *sc, const char *tag)
2073{
2074	printf("%s: HI_CFG 0x%x HI_MASK 0x%x HI_DESC_CNT 0x%x HU_STAT 0x%x HM_STAT 0x%x\n"
2075		, tag
2076		, READ_REG(sc, SAFE_HI_CFG)
2077		, READ_REG(sc, SAFE_HI_MASK)
2078		, READ_REG(sc, SAFE_HI_DESC_CNT)
2079		, READ_REG(sc, SAFE_HU_STAT)
2080		, READ_REG(sc, SAFE_HM_STAT)
2081	);
2082}
2083
2084static void
2085safe_dump_ringstate(struct safe_softc *sc, const char *tag)
2086{
2087	u_int32_t estat = READ_REG(sc, SAFE_PE_ERNGSTAT);
2088
2089	/* NB: assume caller has lock on ring */
2090	printf("%s: ERNGSTAT %x (next %u) back %lu front %lu\n",
2091		tag,
2092		estat, (estat >> SAFE_PE_ERNGSTAT_NEXT_S),
2093		(unsigned long)(sc->sc_back - sc->sc_ring),
2094		(unsigned long)(sc->sc_front - sc->sc_ring));
2095}
2096
2097static void
2098safe_dump_request(struct safe_softc *sc, const char* tag, struct safe_ringentry *re)
2099{
2100	int ix, nsegs;
2101
2102	ix = re - sc->sc_ring;
2103	printf("%s: %p (%u): csr %x src %x dst %x sa %x len %x\n"
2104		, tag
2105		, re, ix
2106		, re->re_desc.d_csr
2107		, re->re_desc.d_src
2108		, re->re_desc.d_dst
2109		, re->re_desc.d_sa
2110		, re->re_desc.d_len
2111	);
2112	if (re->re_src.nsegs > 1) {
2113		ix = (re->re_desc.d_src - sc->sc_spalloc.dma_paddr) /
2114			sizeof(struct safe_pdesc);
2115		for (nsegs = re->re_src.nsegs; nsegs; nsegs--) {
2116			printf(" spd[%u] %p: %p size %u flags %x"
2117				, ix, &sc->sc_spring[ix]
2118				, (caddr_t)(uintptr_t) sc->sc_spring[ix].pd_addr
2119				, sc->sc_spring[ix].pd_size
2120				, sc->sc_spring[ix].pd_flags
2121			);
2122			if (sc->sc_spring[ix].pd_size == 0)
2123				printf(" (zero!)");
2124			printf("\n");
2125			if (++ix == SAFE_TOTAL_SPART)
2126				ix = 0;
2127		}
2128	}
2129	if (re->re_dst.nsegs > 1) {
2130		ix = (re->re_desc.d_dst - sc->sc_dpalloc.dma_paddr) /
2131			sizeof(struct safe_pdesc);
2132		for (nsegs = re->re_dst.nsegs; nsegs; nsegs--) {
2133			printf(" dpd[%u] %p: %p flags %x\n"
2134				, ix, &sc->sc_dpring[ix]
2135				, (caddr_t)(uintptr_t) sc->sc_dpring[ix].pd_addr
2136				, sc->sc_dpring[ix].pd_flags
2137			);
2138			if (++ix == SAFE_TOTAL_DPART)
2139				ix = 0;
2140		}
2141	}
2142	printf("sa: cmd0 %08x cmd1 %08x staterec %x\n",
2143		re->re_sa.sa_cmd0, re->re_sa.sa_cmd1, re->re_sa.sa_staterec);
2144	printf("sa: key %x %x %x %x %x %x %x %x\n"
2145		, re->re_sa.sa_key[0]
2146		, re->re_sa.sa_key[1]
2147		, re->re_sa.sa_key[2]
2148		, re->re_sa.sa_key[3]
2149		, re->re_sa.sa_key[4]
2150		, re->re_sa.sa_key[5]
2151		, re->re_sa.sa_key[6]
2152		, re->re_sa.sa_key[7]
2153	);
2154	printf("sa: indigest %x %x %x %x %x\n"
2155		, re->re_sa.sa_indigest[0]
2156		, re->re_sa.sa_indigest[1]
2157		, re->re_sa.sa_indigest[2]
2158		, re->re_sa.sa_indigest[3]
2159		, re->re_sa.sa_indigest[4]
2160	);
2161	printf("sa: outdigest %x %x %x %x %x\n"
2162		, re->re_sa.sa_outdigest[0]
2163		, re->re_sa.sa_outdigest[1]
2164		, re->re_sa.sa_outdigest[2]
2165		, re->re_sa.sa_outdigest[3]
2166		, re->re_sa.sa_outdigest[4]
2167	);
2168	printf("sr: iv %x %x %x %x\n"
2169		, re->re_sastate.sa_saved_iv[0]
2170		, re->re_sastate.sa_saved_iv[1]
2171		, re->re_sastate.sa_saved_iv[2]
2172		, re->re_sastate.sa_saved_iv[3]
2173	);
2174	printf("sr: hashbc %u indigest %x %x %x %x %x\n"
2175		, re->re_sastate.sa_saved_hashbc
2176		, re->re_sastate.sa_saved_indigest[0]
2177		, re->re_sastate.sa_saved_indigest[1]
2178		, re->re_sastate.sa_saved_indigest[2]
2179		, re->re_sastate.sa_saved_indigest[3]
2180		, re->re_sastate.sa_saved_indigest[4]
2181	);
2182}
2183
2184static void
2185safe_dump_ring(struct safe_softc *sc, const char *tag)
2186{
2187	mtx_lock(&sc->sc_ringmtx);
2188	printf("\nSafeNet Ring State:\n");
2189	safe_dump_intrstate(sc, tag);
2190	safe_dump_dmastatus(sc, tag);
2191	safe_dump_ringstate(sc, tag);
2192	if (sc->sc_nqchip) {
2193		struct safe_ringentry *re = sc->sc_back;
2194		do {
2195			safe_dump_request(sc, tag, re);
2196			if (++re == sc->sc_ringtop)
2197				re = sc->sc_ring;
2198		} while (re != sc->sc_front);
2199	}
2200	mtx_unlock(&sc->sc_ringmtx);
2201}
2202
2203static int
2204sysctl_hw_safe_dump(SYSCTL_HANDLER_ARGS)
2205{
2206	char dmode[64];
2207	int error;
2208
2209	strncpy(dmode, "", sizeof(dmode) - 1);
2210	dmode[sizeof(dmode) - 1] = '\0';
2211	error = sysctl_handle_string(oidp, &dmode[0], sizeof(dmode), req);
2212
2213	if (error == 0 && req->newptr != NULL) {
2214		struct safe_softc *sc = safec;
2215
2216		if (!sc)
2217			return EINVAL;
2218		if (strncmp(dmode, "dma", 3) == 0)
2219			safe_dump_dmastatus(sc, "safe0");
2220		else if (strncmp(dmode, "int", 3) == 0)
2221			safe_dump_intrstate(sc, "safe0");
2222		else if (strncmp(dmode, "ring", 4) == 0)
2223			safe_dump_ring(sc, "safe0");
2224		else
2225			return EINVAL;
2226	}
2227	return error;
2228}
2229SYSCTL_PROC(_hw_safe, OID_AUTO, dump, CTLTYPE_STRING | CTLFLAG_RW,
2230	0, 0, sysctl_hw_safe_dump, "A", "Dump driver state");
2231#endif /* SAFE_DEBUG */
2232