safe.c revision 243857
1/*-
2 * Copyright (c) 2003 Sam Leffler, Errno Consulting
3 * Copyright (c) 2003 Global Technology Associates, Inc.
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 *    notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25 * SUCH DAMAGE.
26 */
27
28#include <sys/cdefs.h>
29__FBSDID("$FreeBSD: head/sys/dev/safe/safe.c 243857 2012-12-04 09:32:43Z glebius $");
30
31/*
32 * SafeNet SafeXcel-1141 hardware crypto accelerator
33 */
34#include "opt_safe.h"
35
36#include <sys/param.h>
37#include <sys/systm.h>
38#include <sys/proc.h>
39#include <sys/errno.h>
40#include <sys/malloc.h>
41#include <sys/kernel.h>
42#include <sys/mbuf.h>
43#include <sys/module.h>
44#include <sys/lock.h>
45#include <sys/mutex.h>
46#include <sys/sysctl.h>
47#include <sys/endian.h>
48
49#include <vm/vm.h>
50#include <vm/pmap.h>
51
52#include <machine/bus.h>
53#include <machine/resource.h>
54#include <sys/bus.h>
55#include <sys/rman.h>
56
57#include <crypto/sha1.h>
58#include <opencrypto/cryptodev.h>
59#include <opencrypto/cryptosoft.h>
60#include <sys/md5.h>
61#include <sys/random.h>
62#include <sys/kobj.h>
63
64#include "cryptodev_if.h"
65
66#include <dev/pci/pcivar.h>
67#include <dev/pci/pcireg.h>
68
69#ifdef SAFE_RNDTEST
70#include <dev/rndtest/rndtest.h>
71#endif
72#include <dev/safe/safereg.h>
73#include <dev/safe/safevar.h>
74
75#ifndef bswap32
76#define	bswap32	NTOHL
77#endif
78
79/*
80 * Prototypes and count for the pci_device structure
81 */
82static	int safe_probe(device_t);
83static	int safe_attach(device_t);
84static	int safe_detach(device_t);
85static	int safe_suspend(device_t);
86static	int safe_resume(device_t);
87static	int safe_shutdown(device_t);
88
89static	int safe_newsession(device_t, u_int32_t *, struct cryptoini *);
90static	int safe_freesession(device_t, u_int64_t);
91static	int safe_process(device_t, struct cryptop *, int);
92
93static device_method_t safe_methods[] = {
94	/* Device interface */
95	DEVMETHOD(device_probe,		safe_probe),
96	DEVMETHOD(device_attach,	safe_attach),
97	DEVMETHOD(device_detach,	safe_detach),
98	DEVMETHOD(device_suspend,	safe_suspend),
99	DEVMETHOD(device_resume,	safe_resume),
100	DEVMETHOD(device_shutdown,	safe_shutdown),
101
102	/* crypto device methods */
103	DEVMETHOD(cryptodev_newsession,	safe_newsession),
104	DEVMETHOD(cryptodev_freesession,safe_freesession),
105	DEVMETHOD(cryptodev_process,	safe_process),
106
107	DEVMETHOD_END
108};
109static driver_t safe_driver = {
110	"safe",
111	safe_methods,
112	sizeof (struct safe_softc)
113};
114static devclass_t safe_devclass;
115
116DRIVER_MODULE(safe, pci, safe_driver, safe_devclass, 0, 0);
117MODULE_DEPEND(safe, crypto, 1, 1, 1);
118#ifdef SAFE_RNDTEST
119MODULE_DEPEND(safe, rndtest, 1, 1, 1);
120#endif
121
122static	void safe_intr(void *);
123static	void safe_callback(struct safe_softc *, struct safe_ringentry *);
124static	void safe_feed(struct safe_softc *, struct safe_ringentry *);
125static	void safe_mcopy(struct mbuf *, struct mbuf *, u_int);
126#ifndef SAFE_NO_RNG
127static	void safe_rng_init(struct safe_softc *);
128static	void safe_rng(void *);
129#endif /* SAFE_NO_RNG */
130static	int safe_dma_malloc(struct safe_softc *, bus_size_t,
131	        struct safe_dma_alloc *, int);
132#define	safe_dma_sync(_dma, _flags) \
133	bus_dmamap_sync((_dma)->dma_tag, (_dma)->dma_map, (_flags))
134static	void safe_dma_free(struct safe_softc *, struct safe_dma_alloc *);
135static	int safe_dmamap_aligned(const struct safe_operand *);
136static	int safe_dmamap_uniform(const struct safe_operand *);
137
138static	void safe_reset_board(struct safe_softc *);
139static	void safe_init_board(struct safe_softc *);
140static	void safe_init_pciregs(device_t dev);
141static	void safe_cleanchip(struct safe_softc *);
142static	void safe_totalreset(struct safe_softc *);
143
144static	int safe_free_entry(struct safe_softc *, struct safe_ringentry *);
145
146static SYSCTL_NODE(_hw, OID_AUTO, safe, CTLFLAG_RD, 0,
147    "SafeNet driver parameters");
148
149#ifdef SAFE_DEBUG
150static	void safe_dump_dmastatus(struct safe_softc *, const char *);
151static	void safe_dump_ringstate(struct safe_softc *, const char *);
152static	void safe_dump_intrstate(struct safe_softc *, const char *);
153static	void safe_dump_request(struct safe_softc *, const char *,
154		struct safe_ringentry *);
155
156static	struct safe_softc *safec;		/* for use by hw.safe.dump */
157
158static	int safe_debug = 0;
159SYSCTL_INT(_hw_safe, OID_AUTO, debug, CTLFLAG_RW, &safe_debug,
160	    0, "control debugging msgs");
161#define	DPRINTF(_x)	if (safe_debug) printf _x
162#else
163#define	DPRINTF(_x)
164#endif
165
166#define	READ_REG(sc,r) \
167	bus_space_read_4((sc)->sc_st, (sc)->sc_sh, (r))
168
169#define WRITE_REG(sc,reg,val) \
170	bus_space_write_4((sc)->sc_st, (sc)->sc_sh, reg, val)
171
172struct safe_stats safestats;
173SYSCTL_STRUCT(_hw_safe, OID_AUTO, stats, CTLFLAG_RD, &safestats,
174	    safe_stats, "driver statistics");
175#ifndef SAFE_NO_RNG
176static	int safe_rnginterval = 1;		/* poll once a second */
177SYSCTL_INT(_hw_safe, OID_AUTO, rnginterval, CTLFLAG_RW, &safe_rnginterval,
178	    0, "RNG polling interval (secs)");
179static	int safe_rngbufsize = 16;		/* 64 bytes each poll  */
180SYSCTL_INT(_hw_safe, OID_AUTO, rngbufsize, CTLFLAG_RW, &safe_rngbufsize,
181	    0, "RNG polling buffer size (32-bit words)");
182static	int safe_rngmaxalarm = 8;		/* max alarms before reset */
183SYSCTL_INT(_hw_safe, OID_AUTO, rngmaxalarm, CTLFLAG_RW, &safe_rngmaxalarm,
184	    0, "RNG max alarms before reset");
185#endif /* SAFE_NO_RNG */
186
187static int
188safe_probe(device_t dev)
189{
190	if (pci_get_vendor(dev) == PCI_VENDOR_SAFENET &&
191	    pci_get_device(dev) == PCI_PRODUCT_SAFEXCEL)
192		return (BUS_PROBE_DEFAULT);
193	return (ENXIO);
194}
195
196static const char*
197safe_partname(struct safe_softc *sc)
198{
199	/* XXX sprintf numbers when not decoded */
200	switch (pci_get_vendor(sc->sc_dev)) {
201	case PCI_VENDOR_SAFENET:
202		switch (pci_get_device(sc->sc_dev)) {
203		case PCI_PRODUCT_SAFEXCEL: return "SafeNet SafeXcel-1141";
204		}
205		return "SafeNet unknown-part";
206	}
207	return "Unknown-vendor unknown-part";
208}
209
210#ifndef SAFE_NO_RNG
211static void
212default_harvest(struct rndtest_state *rsp, void *buf, u_int count)
213{
214	random_harvest(buf, count, count*NBBY, 0, RANDOM_PURE);
215}
216#endif /* SAFE_NO_RNG */
217
218static int
219safe_attach(device_t dev)
220{
221	struct safe_softc *sc = device_get_softc(dev);
222	u_int32_t raddr;
223	u_int32_t cmd, i, devinfo;
224	int rid;
225
226	bzero(sc, sizeof (*sc));
227	sc->sc_dev = dev;
228
229	/* XXX handle power management */
230
231	cmd = pci_read_config(dev, PCIR_COMMAND, 4);
232	cmd |= PCIM_CMD_MEMEN | PCIM_CMD_BUSMASTEREN;
233	pci_write_config(dev, PCIR_COMMAND, cmd, 4);
234	cmd = pci_read_config(dev, PCIR_COMMAND, 4);
235
236	if (!(cmd & PCIM_CMD_MEMEN)) {
237		device_printf(dev, "failed to enable memory mapping\n");
238		goto bad;
239	}
240
241	if (!(cmd & PCIM_CMD_BUSMASTEREN)) {
242		device_printf(dev, "failed to enable bus mastering\n");
243		goto bad;
244	}
245
246	/*
247	 * Setup memory-mapping of PCI registers.
248	 */
249	rid = BS_BAR;
250	sc->sc_sr = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
251					   RF_ACTIVE);
252	if (sc->sc_sr == NULL) {
253		device_printf(dev, "cannot map register space\n");
254		goto bad;
255	}
256	sc->sc_st = rman_get_bustag(sc->sc_sr);
257	sc->sc_sh = rman_get_bushandle(sc->sc_sr);
258
259	/*
260	 * Arrange interrupt line.
261	 */
262	rid = 0;
263	sc->sc_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
264					    RF_SHAREABLE|RF_ACTIVE);
265	if (sc->sc_irq == NULL) {
266		device_printf(dev, "could not map interrupt\n");
267		goto bad1;
268	}
269	/*
270	 * NB: Network code assumes we are blocked with splimp()
271	 *     so make sure the IRQ is mapped appropriately.
272	 */
273	if (bus_setup_intr(dev, sc->sc_irq, INTR_TYPE_NET | INTR_MPSAFE,
274			   NULL, safe_intr, sc, &sc->sc_ih)) {
275		device_printf(dev, "could not establish interrupt\n");
276		goto bad2;
277	}
278
279	sc->sc_cid = crypto_get_driverid(dev, CRYPTOCAP_F_HARDWARE);
280	if (sc->sc_cid < 0) {
281		device_printf(dev, "could not get crypto driver id\n");
282		goto bad3;
283	}
284
285	sc->sc_chiprev = READ_REG(sc, SAFE_DEVINFO) &
286		(SAFE_DEVINFO_REV_MAJ | SAFE_DEVINFO_REV_MIN);
287
288	/*
289	 * Setup DMA descriptor area.
290	 */
291	if (bus_dma_tag_create(bus_get_dma_tag(dev),	/* parent */
292			       1,			/* alignment */
293			       SAFE_DMA_BOUNDARY,	/* boundary */
294			       BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
295			       BUS_SPACE_MAXADDR,	/* highaddr */
296			       NULL, NULL,		/* filter, filterarg */
297			       SAFE_MAX_DMA,		/* maxsize */
298			       SAFE_MAX_PART,		/* nsegments */
299			       SAFE_MAX_SSIZE,		/* maxsegsize */
300			       BUS_DMA_ALLOCNOW,	/* flags */
301			       NULL, NULL,		/* locking */
302			       &sc->sc_srcdmat)) {
303		device_printf(dev, "cannot allocate DMA tag\n");
304		goto bad4;
305	}
306	if (bus_dma_tag_create(bus_get_dma_tag(dev),	/* parent */
307			       1,			/* alignment */
308			       SAFE_MAX_DSIZE,		/* boundary */
309			       BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
310			       BUS_SPACE_MAXADDR,	/* highaddr */
311			       NULL, NULL,		/* filter, filterarg */
312			       SAFE_MAX_DMA,		/* maxsize */
313			       SAFE_MAX_PART,		/* nsegments */
314			       SAFE_MAX_DSIZE,		/* maxsegsize */
315			       BUS_DMA_ALLOCNOW,	/* flags */
316			       NULL, NULL,		/* locking */
317			       &sc->sc_dstdmat)) {
318		device_printf(dev, "cannot allocate DMA tag\n");
319		goto bad4;
320	}
321
322	/*
323	 * Allocate packet engine descriptors.
324	 */
325	if (safe_dma_malloc(sc,
326	    SAFE_MAX_NQUEUE * sizeof (struct safe_ringentry),
327	    &sc->sc_ringalloc, 0)) {
328		device_printf(dev, "cannot allocate PE descriptor ring\n");
329		bus_dma_tag_destroy(sc->sc_srcdmat);
330		goto bad4;
331	}
332	/*
333	 * Hookup the static portion of all our data structures.
334	 */
335	sc->sc_ring = (struct safe_ringentry *) sc->sc_ringalloc.dma_vaddr;
336	sc->sc_ringtop = sc->sc_ring + SAFE_MAX_NQUEUE;
337	sc->sc_front = sc->sc_ring;
338	sc->sc_back = sc->sc_ring;
339	raddr = sc->sc_ringalloc.dma_paddr;
340	bzero(sc->sc_ring, SAFE_MAX_NQUEUE * sizeof(struct safe_ringentry));
341	for (i = 0; i < SAFE_MAX_NQUEUE; i++) {
342		struct safe_ringentry *re = &sc->sc_ring[i];
343
344		re->re_desc.d_sa = raddr +
345			offsetof(struct safe_ringentry, re_sa);
346		re->re_sa.sa_staterec = raddr +
347			offsetof(struct safe_ringentry, re_sastate);
348
349		raddr += sizeof (struct safe_ringentry);
350	}
351	mtx_init(&sc->sc_ringmtx, device_get_nameunit(dev),
352		"packet engine ring", MTX_DEF);
353
354	/*
355	 * Allocate scatter and gather particle descriptors.
356	 */
357	if (safe_dma_malloc(sc, SAFE_TOTAL_SPART * sizeof (struct safe_pdesc),
358	    &sc->sc_spalloc, 0)) {
359		device_printf(dev, "cannot allocate source particle "
360			"descriptor ring\n");
361		mtx_destroy(&sc->sc_ringmtx);
362		safe_dma_free(sc, &sc->sc_ringalloc);
363		bus_dma_tag_destroy(sc->sc_srcdmat);
364		goto bad4;
365	}
366	sc->sc_spring = (struct safe_pdesc *) sc->sc_spalloc.dma_vaddr;
367	sc->sc_springtop = sc->sc_spring + SAFE_TOTAL_SPART;
368	sc->sc_spfree = sc->sc_spring;
369	bzero(sc->sc_spring, SAFE_TOTAL_SPART * sizeof(struct safe_pdesc));
370
371	if (safe_dma_malloc(sc, SAFE_TOTAL_DPART * sizeof (struct safe_pdesc),
372	    &sc->sc_dpalloc, 0)) {
373		device_printf(dev, "cannot allocate destination particle "
374			"descriptor ring\n");
375		mtx_destroy(&sc->sc_ringmtx);
376		safe_dma_free(sc, &sc->sc_spalloc);
377		safe_dma_free(sc, &sc->sc_ringalloc);
378		bus_dma_tag_destroy(sc->sc_dstdmat);
379		goto bad4;
380	}
381	sc->sc_dpring = (struct safe_pdesc *) sc->sc_dpalloc.dma_vaddr;
382	sc->sc_dpringtop = sc->sc_dpring + SAFE_TOTAL_DPART;
383	sc->sc_dpfree = sc->sc_dpring;
384	bzero(sc->sc_dpring, SAFE_TOTAL_DPART * sizeof(struct safe_pdesc));
385
386	device_printf(sc->sc_dev, "%s", safe_partname(sc));
387
388	devinfo = READ_REG(sc, SAFE_DEVINFO);
389	if (devinfo & SAFE_DEVINFO_RNG) {
390		sc->sc_flags |= SAFE_FLAGS_RNG;
391		printf(" rng");
392	}
393	if (devinfo & SAFE_DEVINFO_PKEY) {
394#if 0
395		printf(" key");
396		sc->sc_flags |= SAFE_FLAGS_KEY;
397		crypto_kregister(sc->sc_cid, CRK_MOD_EXP, 0);
398		crypto_kregister(sc->sc_cid, CRK_MOD_EXP_CRT, 0);
399#endif
400	}
401	if (devinfo & SAFE_DEVINFO_DES) {
402		printf(" des/3des");
403		crypto_register(sc->sc_cid, CRYPTO_3DES_CBC, 0, 0);
404		crypto_register(sc->sc_cid, CRYPTO_DES_CBC, 0, 0);
405	}
406	if (devinfo & SAFE_DEVINFO_AES) {
407		printf(" aes");
408		crypto_register(sc->sc_cid, CRYPTO_AES_CBC, 0, 0);
409	}
410	if (devinfo & SAFE_DEVINFO_MD5) {
411		printf(" md5");
412		crypto_register(sc->sc_cid, CRYPTO_MD5_HMAC, 0, 0);
413	}
414	if (devinfo & SAFE_DEVINFO_SHA1) {
415		printf(" sha1");
416		crypto_register(sc->sc_cid, CRYPTO_SHA1_HMAC, 0, 0);
417	}
418	printf(" null");
419	crypto_register(sc->sc_cid, CRYPTO_NULL_CBC, 0, 0);
420	crypto_register(sc->sc_cid, CRYPTO_NULL_HMAC, 0, 0);
421	/* XXX other supported algorithms */
422	printf("\n");
423
424	safe_reset_board(sc);		/* reset h/w */
425	safe_init_pciregs(dev);		/* init pci settings */
426	safe_init_board(sc);		/* init h/w */
427
428#ifndef SAFE_NO_RNG
429	if (sc->sc_flags & SAFE_FLAGS_RNG) {
430#ifdef SAFE_RNDTEST
431		sc->sc_rndtest = rndtest_attach(dev);
432		if (sc->sc_rndtest)
433			sc->sc_harvest = rndtest_harvest;
434		else
435			sc->sc_harvest = default_harvest;
436#else
437		sc->sc_harvest = default_harvest;
438#endif
439		safe_rng_init(sc);
440
441		callout_init(&sc->sc_rngto, CALLOUT_MPSAFE);
442		callout_reset(&sc->sc_rngto, hz*safe_rnginterval, safe_rng, sc);
443	}
444#endif /* SAFE_NO_RNG */
445#ifdef SAFE_DEBUG
446	safec = sc;			/* for use by hw.safe.dump */
447#endif
448	return (0);
449bad4:
450	crypto_unregister_all(sc->sc_cid);
451bad3:
452	bus_teardown_intr(dev, sc->sc_irq, sc->sc_ih);
453bad2:
454	bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sc_irq);
455bad1:
456	bus_release_resource(dev, SYS_RES_MEMORY, BS_BAR, sc->sc_sr);
457bad:
458	return (ENXIO);
459}
460
461/*
462 * Detach a device that successfully probed.
463 */
464static int
465safe_detach(device_t dev)
466{
467	struct safe_softc *sc = device_get_softc(dev);
468
469	/* XXX wait/abort active ops */
470
471	WRITE_REG(sc, SAFE_HI_MASK, 0);		/* disable interrupts */
472
473	callout_stop(&sc->sc_rngto);
474
475	crypto_unregister_all(sc->sc_cid);
476
477#ifdef SAFE_RNDTEST
478	if (sc->sc_rndtest)
479		rndtest_detach(sc->sc_rndtest);
480#endif
481
482	safe_cleanchip(sc);
483	safe_dma_free(sc, &sc->sc_dpalloc);
484	safe_dma_free(sc, &sc->sc_spalloc);
485	mtx_destroy(&sc->sc_ringmtx);
486	safe_dma_free(sc, &sc->sc_ringalloc);
487
488	bus_generic_detach(dev);
489	bus_teardown_intr(dev, sc->sc_irq, sc->sc_ih);
490	bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sc_irq);
491
492	bus_dma_tag_destroy(sc->sc_srcdmat);
493	bus_dma_tag_destroy(sc->sc_dstdmat);
494	bus_release_resource(dev, SYS_RES_MEMORY, BS_BAR, sc->sc_sr);
495
496	return (0);
497}
498
499/*
500 * Stop all chip i/o so that the kernel's probe routines don't
501 * get confused by errant DMAs when rebooting.
502 */
503static int
504safe_shutdown(device_t dev)
505{
506#ifdef notyet
507	safe_stop(device_get_softc(dev));
508#endif
509	return (0);
510}
511
512/*
513 * Device suspend routine.
514 */
515static int
516safe_suspend(device_t dev)
517{
518	struct safe_softc *sc = device_get_softc(dev);
519
520#ifdef notyet
521	/* XXX stop the device and save PCI settings */
522#endif
523	sc->sc_suspended = 1;
524
525	return (0);
526}
527
528static int
529safe_resume(device_t dev)
530{
531	struct safe_softc *sc = device_get_softc(dev);
532
533#ifdef notyet
534	/* XXX retore PCI settings and start the device */
535#endif
536	sc->sc_suspended = 0;
537	return (0);
538}
539
540/*
541 * SafeXcel Interrupt routine
542 */
543static void
544safe_intr(void *arg)
545{
546	struct safe_softc *sc = arg;
547	volatile u_int32_t stat;
548
549	stat = READ_REG(sc, SAFE_HM_STAT);
550	if (stat == 0)			/* shared irq, not for us */
551		return;
552
553	WRITE_REG(sc, SAFE_HI_CLR, stat);	/* IACK */
554
555	if ((stat & SAFE_INT_PE_DDONE)) {
556		/*
557		 * Descriptor(s) done; scan the ring and
558		 * process completed operations.
559		 */
560		mtx_lock(&sc->sc_ringmtx);
561		while (sc->sc_back != sc->sc_front) {
562			struct safe_ringentry *re = sc->sc_back;
563#ifdef SAFE_DEBUG
564			if (safe_debug) {
565				safe_dump_ringstate(sc, __func__);
566				safe_dump_request(sc, __func__, re);
567			}
568#endif
569			/*
570			 * safe_process marks ring entries that were allocated
571			 * but not used with a csr of zero.  This insures the
572			 * ring front pointer never needs to be set backwards
573			 * in the event that an entry is allocated but not used
574			 * because of a setup error.
575			 */
576			if (re->re_desc.d_csr != 0) {
577				if (!SAFE_PE_CSR_IS_DONE(re->re_desc.d_csr))
578					break;
579				if (!SAFE_PE_LEN_IS_DONE(re->re_desc.d_len))
580					break;
581				sc->sc_nqchip--;
582				safe_callback(sc, re);
583			}
584			if (++(sc->sc_back) == sc->sc_ringtop)
585				sc->sc_back = sc->sc_ring;
586		}
587		mtx_unlock(&sc->sc_ringmtx);
588	}
589
590	/*
591	 * Check to see if we got any DMA Error
592	 */
593	if (stat & SAFE_INT_PE_ERROR) {
594		DPRINTF(("dmaerr dmastat %08x\n",
595			READ_REG(sc, SAFE_PE_DMASTAT)));
596		safestats.st_dmaerr++;
597		safe_totalreset(sc);
598#if 0
599		safe_feed(sc);
600#endif
601	}
602
603	if (sc->sc_needwakeup) {		/* XXX check high watermark */
604		int wakeup = sc->sc_needwakeup & (CRYPTO_SYMQ|CRYPTO_ASYMQ);
605		DPRINTF(("%s: wakeup crypto %x\n", __func__,
606			sc->sc_needwakeup));
607		sc->sc_needwakeup &= ~wakeup;
608		crypto_unblock(sc->sc_cid, wakeup);
609	}
610}
611
612/*
613 * safe_feed() - post a request to chip
614 */
615static void
616safe_feed(struct safe_softc *sc, struct safe_ringentry *re)
617{
618	bus_dmamap_sync(sc->sc_srcdmat, re->re_src_map, BUS_DMASYNC_PREWRITE);
619	if (re->re_dst_map != NULL)
620		bus_dmamap_sync(sc->sc_dstdmat, re->re_dst_map,
621			BUS_DMASYNC_PREREAD);
622	/* XXX have no smaller granularity */
623	safe_dma_sync(&sc->sc_ringalloc,
624		BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
625	safe_dma_sync(&sc->sc_spalloc, BUS_DMASYNC_PREWRITE);
626	safe_dma_sync(&sc->sc_dpalloc, BUS_DMASYNC_PREWRITE);
627
628#ifdef SAFE_DEBUG
629	if (safe_debug) {
630		safe_dump_ringstate(sc, __func__);
631		safe_dump_request(sc, __func__, re);
632	}
633#endif
634	sc->sc_nqchip++;
635	if (sc->sc_nqchip > safestats.st_maxqchip)
636		safestats.st_maxqchip = sc->sc_nqchip;
637	/* poke h/w to check descriptor ring, any value can be written */
638	WRITE_REG(sc, SAFE_HI_RD_DESCR, 0);
639}
640
641#define	N(a)	(sizeof(a) / sizeof (a[0]))
642static void
643safe_setup_enckey(struct safe_session *ses, caddr_t key)
644{
645	int i;
646
647	bcopy(key, ses->ses_key, ses->ses_klen / 8);
648
649	/* PE is little-endian, insure proper byte order */
650	for (i = 0; i < N(ses->ses_key); i++)
651		ses->ses_key[i] = htole32(ses->ses_key[i]);
652}
653
654static void
655safe_setup_mackey(struct safe_session *ses, int algo, caddr_t key, int klen)
656{
657	MD5_CTX md5ctx;
658	SHA1_CTX sha1ctx;
659	int i;
660
661
662	for (i = 0; i < klen; i++)
663		key[i] ^= HMAC_IPAD_VAL;
664
665	if (algo == CRYPTO_MD5_HMAC) {
666		MD5Init(&md5ctx);
667		MD5Update(&md5ctx, key, klen);
668		MD5Update(&md5ctx, hmac_ipad_buffer, MD5_HMAC_BLOCK_LEN - klen);
669		bcopy(md5ctx.state, ses->ses_hminner, sizeof(md5ctx.state));
670	} else {
671		SHA1Init(&sha1ctx);
672		SHA1Update(&sha1ctx, key, klen);
673		SHA1Update(&sha1ctx, hmac_ipad_buffer,
674		    SHA1_HMAC_BLOCK_LEN - klen);
675		bcopy(sha1ctx.h.b32, ses->ses_hminner, sizeof(sha1ctx.h.b32));
676	}
677
678	for (i = 0; i < klen; i++)
679		key[i] ^= (HMAC_IPAD_VAL ^ HMAC_OPAD_VAL);
680
681	if (algo == CRYPTO_MD5_HMAC) {
682		MD5Init(&md5ctx);
683		MD5Update(&md5ctx, key, klen);
684		MD5Update(&md5ctx, hmac_opad_buffer, MD5_HMAC_BLOCK_LEN - klen);
685		bcopy(md5ctx.state, ses->ses_hmouter, sizeof(md5ctx.state));
686	} else {
687		SHA1Init(&sha1ctx);
688		SHA1Update(&sha1ctx, key, klen);
689		SHA1Update(&sha1ctx, hmac_opad_buffer,
690		    SHA1_HMAC_BLOCK_LEN - klen);
691		bcopy(sha1ctx.h.b32, ses->ses_hmouter, sizeof(sha1ctx.h.b32));
692	}
693
694	for (i = 0; i < klen; i++)
695		key[i] ^= HMAC_OPAD_VAL;
696
697	/* PE is little-endian, insure proper byte order */
698	for (i = 0; i < N(ses->ses_hminner); i++) {
699		ses->ses_hminner[i] = htole32(ses->ses_hminner[i]);
700		ses->ses_hmouter[i] = htole32(ses->ses_hmouter[i]);
701	}
702}
703#undef N
704
705/*
706 * Allocate a new 'session' and return an encoded session id.  'sidp'
707 * contains our registration id, and should contain an encoded session
708 * id on successful allocation.
709 */
710static int
711safe_newsession(device_t dev, u_int32_t *sidp, struct cryptoini *cri)
712{
713	struct safe_softc *sc = device_get_softc(dev);
714	struct cryptoini *c, *encini = NULL, *macini = NULL;
715	struct safe_session *ses = NULL;
716	int sesn;
717
718	if (sidp == NULL || cri == NULL || sc == NULL)
719		return (EINVAL);
720
721	for (c = cri; c != NULL; c = c->cri_next) {
722		if (c->cri_alg == CRYPTO_MD5_HMAC ||
723		    c->cri_alg == CRYPTO_SHA1_HMAC ||
724		    c->cri_alg == CRYPTO_NULL_HMAC) {
725			if (macini)
726				return (EINVAL);
727			macini = c;
728		} else if (c->cri_alg == CRYPTO_DES_CBC ||
729		    c->cri_alg == CRYPTO_3DES_CBC ||
730		    c->cri_alg == CRYPTO_AES_CBC ||
731		    c->cri_alg == CRYPTO_NULL_CBC) {
732			if (encini)
733				return (EINVAL);
734			encini = c;
735		} else
736			return (EINVAL);
737	}
738	if (encini == NULL && macini == NULL)
739		return (EINVAL);
740	if (encini) {			/* validate key length */
741		switch (encini->cri_alg) {
742		case CRYPTO_DES_CBC:
743			if (encini->cri_klen != 64)
744				return (EINVAL);
745			break;
746		case CRYPTO_3DES_CBC:
747			if (encini->cri_klen != 192)
748				return (EINVAL);
749			break;
750		case CRYPTO_AES_CBC:
751			if (encini->cri_klen != 128 &&
752			    encini->cri_klen != 192 &&
753			    encini->cri_klen != 256)
754				return (EINVAL);
755			break;
756		}
757	}
758
759	if (sc->sc_sessions == NULL) {
760		ses = sc->sc_sessions = (struct safe_session *)malloc(
761		    sizeof(struct safe_session), M_DEVBUF, M_NOWAIT);
762		if (ses == NULL)
763			return (ENOMEM);
764		sesn = 0;
765		sc->sc_nsessions = 1;
766	} else {
767		for (sesn = 0; sesn < sc->sc_nsessions; sesn++) {
768			if (sc->sc_sessions[sesn].ses_used == 0) {
769				ses = &sc->sc_sessions[sesn];
770				break;
771			}
772		}
773
774		if (ses == NULL) {
775			sesn = sc->sc_nsessions;
776			ses = (struct safe_session *)malloc((sesn + 1) *
777			    sizeof(struct safe_session), M_DEVBUF, M_NOWAIT);
778			if (ses == NULL)
779				return (ENOMEM);
780			bcopy(sc->sc_sessions, ses, sesn *
781			    sizeof(struct safe_session));
782			bzero(sc->sc_sessions, sesn *
783			    sizeof(struct safe_session));
784			free(sc->sc_sessions, M_DEVBUF);
785			sc->sc_sessions = ses;
786			ses = &sc->sc_sessions[sesn];
787			sc->sc_nsessions++;
788		}
789	}
790
791	bzero(ses, sizeof(struct safe_session));
792	ses->ses_used = 1;
793
794	if (encini) {
795		/* get an IV */
796		/* XXX may read fewer than requested */
797		read_random(ses->ses_iv, sizeof(ses->ses_iv));
798
799		ses->ses_klen = encini->cri_klen;
800		if (encini->cri_key != NULL)
801			safe_setup_enckey(ses, encini->cri_key);
802	}
803
804	if (macini) {
805		ses->ses_mlen = macini->cri_mlen;
806		if (ses->ses_mlen == 0) {
807			if (macini->cri_alg == CRYPTO_MD5_HMAC)
808				ses->ses_mlen = MD5_HASH_LEN;
809			else
810				ses->ses_mlen = SHA1_HASH_LEN;
811		}
812
813		if (macini->cri_key != NULL) {
814			safe_setup_mackey(ses, macini->cri_alg, macini->cri_key,
815			    macini->cri_klen / 8);
816		}
817	}
818
819	*sidp = SAFE_SID(device_get_unit(sc->sc_dev), sesn);
820	return (0);
821}
822
823/*
824 * Deallocate a session.
825 */
826static int
827safe_freesession(device_t dev, u_int64_t tid)
828{
829	struct safe_softc *sc = device_get_softc(dev);
830	int session, ret;
831	u_int32_t sid = ((u_int32_t) tid) & 0xffffffff;
832
833	if (sc == NULL)
834		return (EINVAL);
835
836	session = SAFE_SESSION(sid);
837	if (session < sc->sc_nsessions) {
838		bzero(&sc->sc_sessions[session], sizeof(sc->sc_sessions[session]));
839		ret = 0;
840	} else
841		ret = EINVAL;
842	return (ret);
843}
844
845static void
846safe_op_cb(void *arg, bus_dma_segment_t *seg, int nsegs, bus_size_t mapsize, int error)
847{
848	struct safe_operand *op = arg;
849
850	DPRINTF(("%s: mapsize %u nsegs %d error %d\n", __func__,
851		(u_int) mapsize, nsegs, error));
852	if (error != 0)
853		return;
854	op->mapsize = mapsize;
855	op->nsegs = nsegs;
856	bcopy(seg, op->segs, nsegs * sizeof (seg[0]));
857}
858
859static int
860safe_process(device_t dev, struct cryptop *crp, int hint)
861{
862	struct safe_softc *sc = device_get_softc(dev);
863	int err = 0, i, nicealign, uniform;
864	struct cryptodesc *crd1, *crd2, *maccrd, *enccrd;
865	int bypass, oplen, ivsize;
866	caddr_t iv;
867	int16_t coffset;
868	struct safe_session *ses;
869	struct safe_ringentry *re;
870	struct safe_sarec *sa;
871	struct safe_pdesc *pd;
872	u_int32_t cmd0, cmd1, staterec;
873
874	if (crp == NULL || crp->crp_callback == NULL || sc == NULL) {
875		safestats.st_invalid++;
876		return (EINVAL);
877	}
878	if (SAFE_SESSION(crp->crp_sid) >= sc->sc_nsessions) {
879		safestats.st_badsession++;
880		return (EINVAL);
881	}
882
883	mtx_lock(&sc->sc_ringmtx);
884	if (sc->sc_front == sc->sc_back && sc->sc_nqchip != 0) {
885		safestats.st_ringfull++;
886		sc->sc_needwakeup |= CRYPTO_SYMQ;
887		mtx_unlock(&sc->sc_ringmtx);
888		return (ERESTART);
889	}
890	re = sc->sc_front;
891
892	staterec = re->re_sa.sa_staterec;	/* save */
893	/* NB: zero everything but the PE descriptor */
894	bzero(&re->re_sa, sizeof(struct safe_ringentry) - sizeof(re->re_desc));
895	re->re_sa.sa_staterec = staterec;	/* restore */
896
897	re->re_crp = crp;
898	re->re_sesn = SAFE_SESSION(crp->crp_sid);
899
900	if (crp->crp_flags & CRYPTO_F_IMBUF) {
901		re->re_src_m = (struct mbuf *)crp->crp_buf;
902		re->re_dst_m = (struct mbuf *)crp->crp_buf;
903	} else if (crp->crp_flags & CRYPTO_F_IOV) {
904		re->re_src_io = (struct uio *)crp->crp_buf;
905		re->re_dst_io = (struct uio *)crp->crp_buf;
906	} else {
907		safestats.st_badflags++;
908		err = EINVAL;
909		goto errout;	/* XXX we don't handle contiguous blocks! */
910	}
911
912	sa = &re->re_sa;
913	ses = &sc->sc_sessions[re->re_sesn];
914
915	crd1 = crp->crp_desc;
916	if (crd1 == NULL) {
917		safestats.st_nodesc++;
918		err = EINVAL;
919		goto errout;
920	}
921	crd2 = crd1->crd_next;
922
923	cmd0 = SAFE_SA_CMD0_BASIC;		/* basic group operation */
924	cmd1 = 0;
925	if (crd2 == NULL) {
926		if (crd1->crd_alg == CRYPTO_MD5_HMAC ||
927		    crd1->crd_alg == CRYPTO_SHA1_HMAC ||
928		    crd1->crd_alg == CRYPTO_NULL_HMAC) {
929			maccrd = crd1;
930			enccrd = NULL;
931			cmd0 |= SAFE_SA_CMD0_OP_HASH;
932		} else if (crd1->crd_alg == CRYPTO_DES_CBC ||
933		    crd1->crd_alg == CRYPTO_3DES_CBC ||
934		    crd1->crd_alg == CRYPTO_AES_CBC ||
935		    crd1->crd_alg == CRYPTO_NULL_CBC) {
936			maccrd = NULL;
937			enccrd = crd1;
938			cmd0 |= SAFE_SA_CMD0_OP_CRYPT;
939		} else {
940			safestats.st_badalg++;
941			err = EINVAL;
942			goto errout;
943		}
944	} else {
945		if ((crd1->crd_alg == CRYPTO_MD5_HMAC ||
946		    crd1->crd_alg == CRYPTO_SHA1_HMAC ||
947		    crd1->crd_alg == CRYPTO_NULL_HMAC) &&
948		    (crd2->crd_alg == CRYPTO_DES_CBC ||
949			crd2->crd_alg == CRYPTO_3DES_CBC ||
950		        crd2->crd_alg == CRYPTO_AES_CBC ||
951		        crd2->crd_alg == CRYPTO_NULL_CBC) &&
952		    ((crd2->crd_flags & CRD_F_ENCRYPT) == 0)) {
953			maccrd = crd1;
954			enccrd = crd2;
955		} else if ((crd1->crd_alg == CRYPTO_DES_CBC ||
956		    crd1->crd_alg == CRYPTO_3DES_CBC ||
957		    crd1->crd_alg == CRYPTO_AES_CBC ||
958		    crd1->crd_alg == CRYPTO_NULL_CBC) &&
959		    (crd2->crd_alg == CRYPTO_MD5_HMAC ||
960			crd2->crd_alg == CRYPTO_SHA1_HMAC ||
961			crd2->crd_alg == CRYPTO_NULL_HMAC) &&
962		    (crd1->crd_flags & CRD_F_ENCRYPT)) {
963			enccrd = crd1;
964			maccrd = crd2;
965		} else {
966			safestats.st_badalg++;
967			err = EINVAL;
968			goto errout;
969		}
970		cmd0 |= SAFE_SA_CMD0_OP_BOTH;
971	}
972
973	if (enccrd) {
974		if (enccrd->crd_flags & CRD_F_KEY_EXPLICIT)
975			safe_setup_enckey(ses, enccrd->crd_key);
976
977		if (enccrd->crd_alg == CRYPTO_DES_CBC) {
978			cmd0 |= SAFE_SA_CMD0_DES;
979			cmd1 |= SAFE_SA_CMD1_CBC;
980			ivsize = 2*sizeof(u_int32_t);
981		} else if (enccrd->crd_alg == CRYPTO_3DES_CBC) {
982			cmd0 |= SAFE_SA_CMD0_3DES;
983			cmd1 |= SAFE_SA_CMD1_CBC;
984			ivsize = 2*sizeof(u_int32_t);
985		} else if (enccrd->crd_alg == CRYPTO_AES_CBC) {
986			cmd0 |= SAFE_SA_CMD0_AES;
987			cmd1 |= SAFE_SA_CMD1_CBC;
988			if (ses->ses_klen == 128)
989			     cmd1 |=  SAFE_SA_CMD1_AES128;
990			else if (ses->ses_klen == 192)
991			     cmd1 |=  SAFE_SA_CMD1_AES192;
992			else
993			     cmd1 |=  SAFE_SA_CMD1_AES256;
994			ivsize = 4*sizeof(u_int32_t);
995		} else {
996			cmd0 |= SAFE_SA_CMD0_CRYPT_NULL;
997			ivsize = 0;
998		}
999
1000		/*
1001		 * Setup encrypt/decrypt state.  When using basic ops
1002		 * we can't use an inline IV because hash/crypt offset
1003		 * must be from the end of the IV to the start of the
1004		 * crypt data and this leaves out the preceding header
1005		 * from the hash calculation.  Instead we place the IV
1006		 * in the state record and set the hash/crypt offset to
1007		 * copy both the header+IV.
1008		 */
1009		if (enccrd->crd_flags & CRD_F_ENCRYPT) {
1010			cmd0 |= SAFE_SA_CMD0_OUTBOUND;
1011
1012			if (enccrd->crd_flags & CRD_F_IV_EXPLICIT)
1013				iv = enccrd->crd_iv;
1014			else
1015				iv = (caddr_t) ses->ses_iv;
1016			if ((enccrd->crd_flags & CRD_F_IV_PRESENT) == 0) {
1017				crypto_copyback(crp->crp_flags, crp->crp_buf,
1018				    enccrd->crd_inject, ivsize, iv);
1019			}
1020			bcopy(iv, re->re_sastate.sa_saved_iv, ivsize);
1021			cmd0 |= SAFE_SA_CMD0_IVLD_STATE | SAFE_SA_CMD0_SAVEIV;
1022			re->re_flags |= SAFE_QFLAGS_COPYOUTIV;
1023		} else {
1024			cmd0 |= SAFE_SA_CMD0_INBOUND;
1025
1026			if (enccrd->crd_flags & CRD_F_IV_EXPLICIT) {
1027				bcopy(enccrd->crd_iv,
1028					re->re_sastate.sa_saved_iv, ivsize);
1029			} else {
1030				crypto_copydata(crp->crp_flags, crp->crp_buf,
1031				    enccrd->crd_inject, ivsize,
1032				    (caddr_t)re->re_sastate.sa_saved_iv);
1033			}
1034			cmd0 |= SAFE_SA_CMD0_IVLD_STATE;
1035		}
1036		/*
1037		 * For basic encryption use the zero pad algorithm.
1038		 * This pads results to an 8-byte boundary and
1039		 * suppresses padding verification for inbound (i.e.
1040		 * decrypt) operations.
1041		 *
1042		 * NB: Not sure if the 8-byte pad boundary is a problem.
1043		 */
1044		cmd0 |= SAFE_SA_CMD0_PAD_ZERO;
1045
1046		/* XXX assert key bufs have the same size */
1047		bcopy(ses->ses_key, sa->sa_key, sizeof(sa->sa_key));
1048	}
1049
1050	if (maccrd) {
1051		if (maccrd->crd_flags & CRD_F_KEY_EXPLICIT) {
1052			safe_setup_mackey(ses, maccrd->crd_alg,
1053			    maccrd->crd_key, maccrd->crd_klen / 8);
1054		}
1055
1056		if (maccrd->crd_alg == CRYPTO_MD5_HMAC) {
1057			cmd0 |= SAFE_SA_CMD0_MD5;
1058			cmd1 |= SAFE_SA_CMD1_HMAC;	/* NB: enable HMAC */
1059		} else if (maccrd->crd_alg == CRYPTO_SHA1_HMAC) {
1060			cmd0 |= SAFE_SA_CMD0_SHA1;
1061			cmd1 |= SAFE_SA_CMD1_HMAC;	/* NB: enable HMAC */
1062		} else {
1063			cmd0 |= SAFE_SA_CMD0_HASH_NULL;
1064		}
1065		/*
1066		 * Digest data is loaded from the SA and the hash
1067		 * result is saved to the state block where we
1068		 * retrieve it for return to the caller.
1069		 */
1070		/* XXX assert digest bufs have the same size */
1071		bcopy(ses->ses_hminner, sa->sa_indigest,
1072			sizeof(sa->sa_indigest));
1073		bcopy(ses->ses_hmouter, sa->sa_outdigest,
1074			sizeof(sa->sa_outdigest));
1075
1076		cmd0 |= SAFE_SA_CMD0_HSLD_SA | SAFE_SA_CMD0_SAVEHASH;
1077		re->re_flags |= SAFE_QFLAGS_COPYOUTICV;
1078	}
1079
1080	if (enccrd && maccrd) {
1081		/*
1082		 * The offset from hash data to the start of
1083		 * crypt data is the difference in the skips.
1084		 */
1085		bypass = maccrd->crd_skip;
1086		coffset = enccrd->crd_skip - maccrd->crd_skip;
1087		if (coffset < 0) {
1088			DPRINTF(("%s: hash does not precede crypt; "
1089				"mac skip %u enc skip %u\n",
1090				__func__, maccrd->crd_skip, enccrd->crd_skip));
1091			safestats.st_skipmismatch++;
1092			err = EINVAL;
1093			goto errout;
1094		}
1095		oplen = enccrd->crd_skip + enccrd->crd_len;
1096		if (maccrd->crd_skip + maccrd->crd_len != oplen) {
1097			DPRINTF(("%s: hash amount %u != crypt amount %u\n",
1098				__func__, maccrd->crd_skip + maccrd->crd_len,
1099				oplen));
1100			safestats.st_lenmismatch++;
1101			err = EINVAL;
1102			goto errout;
1103		}
1104#ifdef SAFE_DEBUG
1105		if (safe_debug) {
1106			printf("mac: skip %d, len %d, inject %d\n",
1107			    maccrd->crd_skip, maccrd->crd_len,
1108			    maccrd->crd_inject);
1109			printf("enc: skip %d, len %d, inject %d\n",
1110			    enccrd->crd_skip, enccrd->crd_len,
1111			    enccrd->crd_inject);
1112			printf("bypass %d coffset %d oplen %d\n",
1113				bypass, coffset, oplen);
1114		}
1115#endif
1116		if (coffset & 3) {	/* offset must be 32-bit aligned */
1117			DPRINTF(("%s: coffset %u misaligned\n",
1118				__func__, coffset));
1119			safestats.st_coffmisaligned++;
1120			err = EINVAL;
1121			goto errout;
1122		}
1123		coffset >>= 2;
1124		if (coffset > 255) {	/* offset must be <256 dwords */
1125			DPRINTF(("%s: coffset %u too big\n",
1126				__func__, coffset));
1127			safestats.st_cofftoobig++;
1128			err = EINVAL;
1129			goto errout;
1130		}
1131		/*
1132		 * Tell the hardware to copy the header to the output.
1133		 * The header is defined as the data from the end of
1134		 * the bypass to the start of data to be encrypted.
1135		 * Typically this is the inline IV.  Note that you need
1136		 * to do this even if src+dst are the same; it appears
1137		 * that w/o this bit the crypted data is written
1138		 * immediately after the bypass data.
1139		 */
1140		cmd1 |= SAFE_SA_CMD1_HDRCOPY;
1141		/*
1142		 * Disable IP header mutable bit handling.  This is
1143		 * needed to get correct HMAC calculations.
1144		 */
1145		cmd1 |= SAFE_SA_CMD1_MUTABLE;
1146	} else {
1147		if (enccrd) {
1148			bypass = enccrd->crd_skip;
1149			oplen = bypass + enccrd->crd_len;
1150		} else {
1151			bypass = maccrd->crd_skip;
1152			oplen = bypass + maccrd->crd_len;
1153		}
1154		coffset = 0;
1155	}
1156	/* XXX verify multiple of 4 when using s/g */
1157	if (bypass > 96) {		/* bypass offset must be <= 96 bytes */
1158		DPRINTF(("%s: bypass %u too big\n", __func__, bypass));
1159		safestats.st_bypasstoobig++;
1160		err = EINVAL;
1161		goto errout;
1162	}
1163
1164	if (bus_dmamap_create(sc->sc_srcdmat, BUS_DMA_NOWAIT, &re->re_src_map)) {
1165		safestats.st_nomap++;
1166		err = ENOMEM;
1167		goto errout;
1168	}
1169	if (crp->crp_flags & CRYPTO_F_IMBUF) {
1170		if (bus_dmamap_load_mbuf(sc->sc_srcdmat, re->re_src_map,
1171		    re->re_src_m, safe_op_cb,
1172		    &re->re_src, BUS_DMA_NOWAIT) != 0) {
1173			bus_dmamap_destroy(sc->sc_srcdmat, re->re_src_map);
1174			re->re_src_map = NULL;
1175			safestats.st_noload++;
1176			err = ENOMEM;
1177			goto errout;
1178		}
1179	} else if (crp->crp_flags & CRYPTO_F_IOV) {
1180		if (bus_dmamap_load_uio(sc->sc_srcdmat, re->re_src_map,
1181		    re->re_src_io, safe_op_cb,
1182		    &re->re_src, BUS_DMA_NOWAIT) != 0) {
1183			bus_dmamap_destroy(sc->sc_srcdmat, re->re_src_map);
1184			re->re_src_map = NULL;
1185			safestats.st_noload++;
1186			err = ENOMEM;
1187			goto errout;
1188		}
1189	}
1190	nicealign = safe_dmamap_aligned(&re->re_src);
1191	uniform = safe_dmamap_uniform(&re->re_src);
1192
1193	DPRINTF(("src nicealign %u uniform %u nsegs %u\n",
1194		nicealign, uniform, re->re_src.nsegs));
1195	if (re->re_src.nsegs > 1) {
1196		re->re_desc.d_src = sc->sc_spalloc.dma_paddr +
1197			((caddr_t) sc->sc_spfree - (caddr_t) sc->sc_spring);
1198		for (i = 0; i < re->re_src_nsegs; i++) {
1199			/* NB: no need to check if there's space */
1200			pd = sc->sc_spfree;
1201			if (++(sc->sc_spfree) == sc->sc_springtop)
1202				sc->sc_spfree = sc->sc_spring;
1203
1204			KASSERT((pd->pd_flags&3) == 0 ||
1205				(pd->pd_flags&3) == SAFE_PD_DONE,
1206				("bogus source particle descriptor; flags %x",
1207				pd->pd_flags));
1208			pd->pd_addr = re->re_src_segs[i].ds_addr;
1209			pd->pd_size = re->re_src_segs[i].ds_len;
1210			pd->pd_flags = SAFE_PD_READY;
1211		}
1212		cmd0 |= SAFE_SA_CMD0_IGATHER;
1213	} else {
1214		/*
1215		 * No need for gather, reference the operand directly.
1216		 */
1217		re->re_desc.d_src = re->re_src_segs[0].ds_addr;
1218	}
1219
1220	if (enccrd == NULL && maccrd != NULL) {
1221		/*
1222		 * Hash op; no destination needed.
1223		 */
1224	} else {
1225		if (crp->crp_flags & CRYPTO_F_IOV) {
1226			if (!nicealign) {
1227				safestats.st_iovmisaligned++;
1228				err = EINVAL;
1229				goto errout;
1230			}
1231			if (uniform != 1) {
1232				/*
1233				 * Source is not suitable for direct use as
1234				 * the destination.  Create a new scatter/gather
1235				 * list based on the destination requirements
1236				 * and check if that's ok.
1237				 */
1238				if (bus_dmamap_create(sc->sc_dstdmat,
1239				    BUS_DMA_NOWAIT, &re->re_dst_map)) {
1240					safestats.st_nomap++;
1241					err = ENOMEM;
1242					goto errout;
1243				}
1244				if (bus_dmamap_load_uio(sc->sc_dstdmat,
1245				    re->re_dst_map, re->re_dst_io,
1246				    safe_op_cb, &re->re_dst,
1247				    BUS_DMA_NOWAIT) != 0) {
1248					bus_dmamap_destroy(sc->sc_dstdmat,
1249						re->re_dst_map);
1250					re->re_dst_map = NULL;
1251					safestats.st_noload++;
1252					err = ENOMEM;
1253					goto errout;
1254				}
1255				uniform = safe_dmamap_uniform(&re->re_dst);
1256				if (!uniform) {
1257					/*
1258					 * There's no way to handle the DMA
1259					 * requirements with this uio.  We
1260					 * could create a separate DMA area for
1261					 * the result and then copy it back,
1262					 * but for now we just bail and return
1263					 * an error.  Note that uio requests
1264					 * > SAFE_MAX_DSIZE are handled because
1265					 * the DMA map and segment list for the
1266					 * destination wil result in a
1267					 * destination particle list that does
1268					 * the necessary scatter DMA.
1269					 */
1270					safestats.st_iovnotuniform++;
1271					err = EINVAL;
1272					goto errout;
1273				}
1274			} else
1275				re->re_dst = re->re_src;
1276		} else if (crp->crp_flags & CRYPTO_F_IMBUF) {
1277			if (nicealign && uniform == 1) {
1278				/*
1279				 * Source layout is suitable for direct
1280				 * sharing of the DMA map and segment list.
1281				 */
1282				re->re_dst = re->re_src;
1283			} else if (nicealign && uniform == 2) {
1284				/*
1285				 * The source is properly aligned but requires a
1286				 * different particle list to handle DMA of the
1287				 * result.  Create a new map and do the load to
1288				 * create the segment list.  The particle
1289				 * descriptor setup code below will handle the
1290				 * rest.
1291				 */
1292				if (bus_dmamap_create(sc->sc_dstdmat,
1293				    BUS_DMA_NOWAIT, &re->re_dst_map)) {
1294					safestats.st_nomap++;
1295					err = ENOMEM;
1296					goto errout;
1297				}
1298				if (bus_dmamap_load_mbuf(sc->sc_dstdmat,
1299				    re->re_dst_map, re->re_dst_m,
1300				    safe_op_cb, &re->re_dst,
1301				    BUS_DMA_NOWAIT) != 0) {
1302					bus_dmamap_destroy(sc->sc_dstdmat,
1303						re->re_dst_map);
1304					re->re_dst_map = NULL;
1305					safestats.st_noload++;
1306					err = ENOMEM;
1307					goto errout;
1308				}
1309			} else {		/* !(aligned and/or uniform) */
1310				int totlen, len;
1311				struct mbuf *m, *top, **mp;
1312
1313				/*
1314				 * DMA constraints require that we allocate a
1315				 * new mbuf chain for the destination.  We
1316				 * allocate an entire new set of mbufs of
1317				 * optimal/required size and then tell the
1318				 * hardware to copy any bits that are not
1319				 * created as a byproduct of the operation.
1320				 */
1321				if (!nicealign)
1322					safestats.st_unaligned++;
1323				if (!uniform)
1324					safestats.st_notuniform++;
1325				totlen = re->re_src_mapsize;
1326				if (re->re_src_m->m_flags & M_PKTHDR) {
1327					len = MHLEN;
1328					MGETHDR(m, M_NOWAIT, MT_DATA);
1329					if (m && !m_dup_pkthdr(m, re->re_src_m,
1330					    M_NOWAIT)) {
1331						m_free(m);
1332						m = NULL;
1333					}
1334				} else {
1335					len = MLEN;
1336					MGET(m, M_NOWAIT, MT_DATA);
1337				}
1338				if (m == NULL) {
1339					safestats.st_nombuf++;
1340					err = sc->sc_nqchip ? ERESTART : ENOMEM;
1341					goto errout;
1342				}
1343				if (totlen >= MINCLSIZE) {
1344					MCLGET(m, M_NOWAIT);
1345					if ((m->m_flags & M_EXT) == 0) {
1346						m_free(m);
1347						safestats.st_nomcl++;
1348						err = sc->sc_nqchip ?
1349							ERESTART : ENOMEM;
1350						goto errout;
1351					}
1352					len = MCLBYTES;
1353				}
1354				m->m_len = len;
1355				top = NULL;
1356				mp = &top;
1357
1358				while (totlen > 0) {
1359					if (top) {
1360						MGET(m, M_NOWAIT, MT_DATA);
1361						if (m == NULL) {
1362							m_freem(top);
1363							safestats.st_nombuf++;
1364							err = sc->sc_nqchip ?
1365							    ERESTART : ENOMEM;
1366							goto errout;
1367						}
1368						len = MLEN;
1369					}
1370					if (top && totlen >= MINCLSIZE) {
1371						MCLGET(m, M_NOWAIT);
1372						if ((m->m_flags & M_EXT) == 0) {
1373							*mp = m;
1374							m_freem(top);
1375							safestats.st_nomcl++;
1376							err = sc->sc_nqchip ?
1377							    ERESTART : ENOMEM;
1378							goto errout;
1379						}
1380						len = MCLBYTES;
1381					}
1382					m->m_len = len = min(totlen, len);
1383					totlen -= len;
1384					*mp = m;
1385					mp = &m->m_next;
1386				}
1387				re->re_dst_m = top;
1388				if (bus_dmamap_create(sc->sc_dstdmat,
1389				    BUS_DMA_NOWAIT, &re->re_dst_map) != 0) {
1390					safestats.st_nomap++;
1391					err = ENOMEM;
1392					goto errout;
1393				}
1394				if (bus_dmamap_load_mbuf(sc->sc_dstdmat,
1395				    re->re_dst_map, re->re_dst_m,
1396				    safe_op_cb, &re->re_dst,
1397				    BUS_DMA_NOWAIT) != 0) {
1398					bus_dmamap_destroy(sc->sc_dstdmat,
1399					re->re_dst_map);
1400					re->re_dst_map = NULL;
1401					safestats.st_noload++;
1402					err = ENOMEM;
1403					goto errout;
1404				}
1405				if (re->re_src.mapsize > oplen) {
1406					/*
1407					 * There's data following what the
1408					 * hardware will copy for us.  If this
1409					 * isn't just the ICV (that's going to
1410					 * be written on completion), copy it
1411					 * to the new mbufs
1412					 */
1413					if (!(maccrd &&
1414					    (re->re_src.mapsize-oplen) == 12 &&
1415					    maccrd->crd_inject == oplen))
1416						safe_mcopy(re->re_src_m,
1417							   re->re_dst_m,
1418							   oplen);
1419					else
1420						safestats.st_noicvcopy++;
1421				}
1422			}
1423		} else {
1424			safestats.st_badflags++;
1425			err = EINVAL;
1426			goto errout;
1427		}
1428
1429		if (re->re_dst.nsegs > 1) {
1430			re->re_desc.d_dst = sc->sc_dpalloc.dma_paddr +
1431			    ((caddr_t) sc->sc_dpfree - (caddr_t) sc->sc_dpring);
1432			for (i = 0; i < re->re_dst_nsegs; i++) {
1433				pd = sc->sc_dpfree;
1434				KASSERT((pd->pd_flags&3) == 0 ||
1435					(pd->pd_flags&3) == SAFE_PD_DONE,
1436					("bogus dest particle descriptor; flags %x",
1437						pd->pd_flags));
1438				if (++(sc->sc_dpfree) == sc->sc_dpringtop)
1439					sc->sc_dpfree = sc->sc_dpring;
1440				pd->pd_addr = re->re_dst_segs[i].ds_addr;
1441				pd->pd_flags = SAFE_PD_READY;
1442			}
1443			cmd0 |= SAFE_SA_CMD0_OSCATTER;
1444		} else {
1445			/*
1446			 * No need for scatter, reference the operand directly.
1447			 */
1448			re->re_desc.d_dst = re->re_dst_segs[0].ds_addr;
1449		}
1450	}
1451
1452	/*
1453	 * All done with setup; fillin the SA command words
1454	 * and the packet engine descriptor.  The operation
1455	 * is now ready for submission to the hardware.
1456	 */
1457	sa->sa_cmd0 = cmd0 | SAFE_SA_CMD0_IPCI | SAFE_SA_CMD0_OPCI;
1458	sa->sa_cmd1 = cmd1
1459		    | (coffset << SAFE_SA_CMD1_OFFSET_S)
1460		    | SAFE_SA_CMD1_SAREV1	/* Rev 1 SA data structure */
1461		    | SAFE_SA_CMD1_SRPCI
1462		    ;
1463	/*
1464	 * NB: the order of writes is important here.  In case the
1465	 * chip is scanning the ring because of an outstanding request
1466	 * it might nab this one too.  In that case we need to make
1467	 * sure the setup is complete before we write the length
1468	 * field of the descriptor as it signals the descriptor is
1469	 * ready for processing.
1470	 */
1471	re->re_desc.d_csr = SAFE_PE_CSR_READY | SAFE_PE_CSR_SAPCI;
1472	if (maccrd)
1473		re->re_desc.d_csr |= SAFE_PE_CSR_LOADSA | SAFE_PE_CSR_HASHFINAL;
1474	re->re_desc.d_len = oplen
1475			  | SAFE_PE_LEN_READY
1476			  | (bypass << SAFE_PE_LEN_BYPASS_S)
1477			  ;
1478
1479	safestats.st_ipackets++;
1480	safestats.st_ibytes += oplen;
1481
1482	if (++(sc->sc_front) == sc->sc_ringtop)
1483		sc->sc_front = sc->sc_ring;
1484
1485	/* XXX honor batching */
1486	safe_feed(sc, re);
1487	mtx_unlock(&sc->sc_ringmtx);
1488	return (0);
1489
1490errout:
1491	if ((re->re_dst_m != NULL) && (re->re_src_m != re->re_dst_m))
1492		m_freem(re->re_dst_m);
1493
1494	if (re->re_dst_map != NULL && re->re_dst_map != re->re_src_map) {
1495		bus_dmamap_unload(sc->sc_dstdmat, re->re_dst_map);
1496		bus_dmamap_destroy(sc->sc_dstdmat, re->re_dst_map);
1497	}
1498	if (re->re_src_map != NULL) {
1499		bus_dmamap_unload(sc->sc_srcdmat, re->re_src_map);
1500		bus_dmamap_destroy(sc->sc_srcdmat, re->re_src_map);
1501	}
1502	mtx_unlock(&sc->sc_ringmtx);
1503	if (err != ERESTART) {
1504		crp->crp_etype = err;
1505		crypto_done(crp);
1506	} else {
1507		sc->sc_needwakeup |= CRYPTO_SYMQ;
1508	}
1509	return (err);
1510}
1511
1512static void
1513safe_callback(struct safe_softc *sc, struct safe_ringentry *re)
1514{
1515	struct cryptop *crp = (struct cryptop *)re->re_crp;
1516	struct cryptodesc *crd;
1517
1518	safestats.st_opackets++;
1519	safestats.st_obytes += re->re_dst.mapsize;
1520
1521	safe_dma_sync(&sc->sc_ringalloc,
1522		BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1523	if (re->re_desc.d_csr & SAFE_PE_CSR_STATUS) {
1524		device_printf(sc->sc_dev, "csr 0x%x cmd0 0x%x cmd1 0x%x\n",
1525			re->re_desc.d_csr,
1526			re->re_sa.sa_cmd0, re->re_sa.sa_cmd1);
1527		safestats.st_peoperr++;
1528		crp->crp_etype = EIO;		/* something more meaningful? */
1529	}
1530	if (re->re_dst_map != NULL && re->re_dst_map != re->re_src_map) {
1531		bus_dmamap_sync(sc->sc_dstdmat, re->re_dst_map,
1532		    BUS_DMASYNC_POSTREAD);
1533		bus_dmamap_unload(sc->sc_dstdmat, re->re_dst_map);
1534		bus_dmamap_destroy(sc->sc_dstdmat, re->re_dst_map);
1535	}
1536	bus_dmamap_sync(sc->sc_srcdmat, re->re_src_map, BUS_DMASYNC_POSTWRITE);
1537	bus_dmamap_unload(sc->sc_srcdmat, re->re_src_map);
1538	bus_dmamap_destroy(sc->sc_srcdmat, re->re_src_map);
1539
1540	/*
1541	 * If result was written to a differet mbuf chain, swap
1542	 * it in as the return value and reclaim the original.
1543	 */
1544	if ((crp->crp_flags & CRYPTO_F_IMBUF) && re->re_src_m != re->re_dst_m) {
1545		m_freem(re->re_src_m);
1546		crp->crp_buf = (caddr_t)re->re_dst_m;
1547	}
1548
1549	if (re->re_flags & SAFE_QFLAGS_COPYOUTIV) {
1550		/* copy out IV for future use */
1551		for (crd = crp->crp_desc; crd; crd = crd->crd_next) {
1552			int ivsize;
1553
1554			if (crd->crd_alg == CRYPTO_DES_CBC ||
1555			    crd->crd_alg == CRYPTO_3DES_CBC) {
1556				ivsize = 2*sizeof(u_int32_t);
1557			} else if (crd->crd_alg == CRYPTO_AES_CBC) {
1558				ivsize = 4*sizeof(u_int32_t);
1559			} else
1560				continue;
1561			crypto_copydata(crp->crp_flags, crp->crp_buf,
1562			    crd->crd_skip + crd->crd_len - ivsize, ivsize,
1563			    (caddr_t)sc->sc_sessions[re->re_sesn].ses_iv);
1564			break;
1565		}
1566	}
1567
1568	if (re->re_flags & SAFE_QFLAGS_COPYOUTICV) {
1569		/* copy out ICV result */
1570		for (crd = crp->crp_desc; crd; crd = crd->crd_next) {
1571			if (!(crd->crd_alg == CRYPTO_MD5_HMAC ||
1572			    crd->crd_alg == CRYPTO_SHA1_HMAC ||
1573			    crd->crd_alg == CRYPTO_NULL_HMAC))
1574				continue;
1575			if (crd->crd_alg == CRYPTO_SHA1_HMAC) {
1576				/*
1577				 * SHA-1 ICV's are byte-swapped; fix 'em up
1578				 * before copy them to their destination.
1579				 */
1580				re->re_sastate.sa_saved_indigest[0] =
1581				    bswap32(re->re_sastate.sa_saved_indigest[0]);
1582				re->re_sastate.sa_saved_indigest[1] =
1583				    bswap32(re->re_sastate.sa_saved_indigest[1]);
1584				re->re_sastate.sa_saved_indigest[2] =
1585				    bswap32(re->re_sastate.sa_saved_indigest[2]);
1586			}
1587			crypto_copyback(crp->crp_flags, crp->crp_buf,
1588			    crd->crd_inject,
1589			    sc->sc_sessions[re->re_sesn].ses_mlen,
1590			    (caddr_t)re->re_sastate.sa_saved_indigest);
1591			break;
1592		}
1593	}
1594	crypto_done(crp);
1595}
1596
1597/*
1598 * Copy all data past offset from srcm to dstm.
1599 */
1600static void
1601safe_mcopy(struct mbuf *srcm, struct mbuf *dstm, u_int offset)
1602{
1603	u_int j, dlen, slen;
1604	caddr_t dptr, sptr;
1605
1606	/*
1607	 * Advance src and dst to offset.
1608	 */
1609	j = offset;
1610	while (j >= 0) {
1611		if (srcm->m_len > j)
1612			break;
1613		j -= srcm->m_len;
1614		srcm = srcm->m_next;
1615		if (srcm == NULL)
1616			return;
1617	}
1618	sptr = mtod(srcm, caddr_t) + j;
1619	slen = srcm->m_len - j;
1620
1621	j = offset;
1622	while (j >= 0) {
1623		if (dstm->m_len > j)
1624			break;
1625		j -= dstm->m_len;
1626		dstm = dstm->m_next;
1627		if (dstm == NULL)
1628			return;
1629	}
1630	dptr = mtod(dstm, caddr_t) + j;
1631	dlen = dstm->m_len - j;
1632
1633	/*
1634	 * Copy everything that remains.
1635	 */
1636	for (;;) {
1637		j = min(slen, dlen);
1638		bcopy(sptr, dptr, j);
1639		if (slen == j) {
1640			srcm = srcm->m_next;
1641			if (srcm == NULL)
1642				return;
1643			sptr = srcm->m_data;
1644			slen = srcm->m_len;
1645		} else
1646			sptr += j, slen -= j;
1647		if (dlen == j) {
1648			dstm = dstm->m_next;
1649			if (dstm == NULL)
1650				return;
1651			dptr = dstm->m_data;
1652			dlen = dstm->m_len;
1653		} else
1654			dptr += j, dlen -= j;
1655	}
1656}
1657
1658#ifndef SAFE_NO_RNG
1659#define	SAFE_RNG_MAXWAIT	1000
1660
1661static void
1662safe_rng_init(struct safe_softc *sc)
1663{
1664	u_int32_t w, v;
1665	int i;
1666
1667	WRITE_REG(sc, SAFE_RNG_CTRL, 0);
1668	/* use default value according to the manual */
1669	WRITE_REG(sc, SAFE_RNG_CNFG, 0x834);	/* magic from SafeNet */
1670	WRITE_REG(sc, SAFE_RNG_ALM_CNT, 0);
1671
1672	/*
1673	 * There is a bug in rev 1.0 of the 1140 that when the RNG
1674	 * is brought out of reset the ready status flag does not
1675	 * work until the RNG has finished its internal initialization.
1676	 *
1677	 * So in order to determine the device is through its
1678	 * initialization we must read the data register, using the
1679	 * status reg in the read in case it is initialized.  Then read
1680	 * the data register until it changes from the first read.
1681	 * Once it changes read the data register until it changes
1682	 * again.  At this time the RNG is considered initialized.
1683	 * This could take between 750ms - 1000ms in time.
1684	 */
1685	i = 0;
1686	w = READ_REG(sc, SAFE_RNG_OUT);
1687	do {
1688		v = READ_REG(sc, SAFE_RNG_OUT);
1689		if (v != w) {
1690			w = v;
1691			break;
1692		}
1693		DELAY(10);
1694	} while (++i < SAFE_RNG_MAXWAIT);
1695
1696	/* Wait Until data changes again */
1697	i = 0;
1698	do {
1699		v = READ_REG(sc, SAFE_RNG_OUT);
1700		if (v != w)
1701			break;
1702		DELAY(10);
1703	} while (++i < SAFE_RNG_MAXWAIT);
1704}
1705
1706static __inline void
1707safe_rng_disable_short_cycle(struct safe_softc *sc)
1708{
1709	WRITE_REG(sc, SAFE_RNG_CTRL,
1710		READ_REG(sc, SAFE_RNG_CTRL) &~ SAFE_RNG_CTRL_SHORTEN);
1711}
1712
1713static __inline void
1714safe_rng_enable_short_cycle(struct safe_softc *sc)
1715{
1716	WRITE_REG(sc, SAFE_RNG_CTRL,
1717		READ_REG(sc, SAFE_RNG_CTRL) | SAFE_RNG_CTRL_SHORTEN);
1718}
1719
1720static __inline u_int32_t
1721safe_rng_read(struct safe_softc *sc)
1722{
1723	int i;
1724
1725	i = 0;
1726	while (READ_REG(sc, SAFE_RNG_STAT) != 0 && ++i < SAFE_RNG_MAXWAIT)
1727		;
1728	return READ_REG(sc, SAFE_RNG_OUT);
1729}
1730
1731static void
1732safe_rng(void *arg)
1733{
1734	struct safe_softc *sc = arg;
1735	u_int32_t buf[SAFE_RNG_MAXBUFSIZ];	/* NB: maybe move to softc */
1736	u_int maxwords;
1737	int i;
1738
1739	safestats.st_rng++;
1740	/*
1741	 * Fetch the next block of data.
1742	 */
1743	maxwords = safe_rngbufsize;
1744	if (maxwords > SAFE_RNG_MAXBUFSIZ)
1745		maxwords = SAFE_RNG_MAXBUFSIZ;
1746retry:
1747	for (i = 0; i < maxwords; i++)
1748		buf[i] = safe_rng_read(sc);
1749	/*
1750	 * Check the comparator alarm count and reset the h/w if
1751	 * it exceeds our threshold.  This guards against the
1752	 * hardware oscillators resonating with external signals.
1753	 */
1754	if (READ_REG(sc, SAFE_RNG_ALM_CNT) > safe_rngmaxalarm) {
1755		u_int32_t freq_inc, w;
1756
1757		DPRINTF(("%s: alarm count %u exceeds threshold %u\n", __func__,
1758			READ_REG(sc, SAFE_RNG_ALM_CNT), safe_rngmaxalarm));
1759		safestats.st_rngalarm++;
1760		safe_rng_enable_short_cycle(sc);
1761		freq_inc = 18;
1762		for (i = 0; i < 64; i++) {
1763			w = READ_REG(sc, SAFE_RNG_CNFG);
1764			freq_inc = ((w + freq_inc) & 0x3fL);
1765			w = ((w & ~0x3fL) | freq_inc);
1766			WRITE_REG(sc, SAFE_RNG_CNFG, w);
1767
1768			WRITE_REG(sc, SAFE_RNG_ALM_CNT, 0);
1769
1770			(void) safe_rng_read(sc);
1771			DELAY(25);
1772
1773			if (READ_REG(sc, SAFE_RNG_ALM_CNT) == 0) {
1774				safe_rng_disable_short_cycle(sc);
1775				goto retry;
1776			}
1777			freq_inc = 1;
1778		}
1779		safe_rng_disable_short_cycle(sc);
1780	} else
1781		WRITE_REG(sc, SAFE_RNG_ALM_CNT, 0);
1782
1783	(*sc->sc_harvest)(sc->sc_rndtest, buf, maxwords*sizeof (u_int32_t));
1784	callout_reset(&sc->sc_rngto,
1785		hz * (safe_rnginterval ? safe_rnginterval : 1), safe_rng, sc);
1786}
1787#endif /* SAFE_NO_RNG */
1788
1789static void
1790safe_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1791{
1792	bus_addr_t *paddr = (bus_addr_t*) arg;
1793	*paddr = segs->ds_addr;
1794}
1795
1796static int
1797safe_dma_malloc(
1798	struct safe_softc *sc,
1799	bus_size_t size,
1800	struct safe_dma_alloc *dma,
1801	int mapflags
1802)
1803{
1804	int r;
1805
1806	r = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev),	/* parent */
1807			       sizeof(u_int32_t), 0,	/* alignment, bounds */
1808			       BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
1809			       BUS_SPACE_MAXADDR,	/* highaddr */
1810			       NULL, NULL,		/* filter, filterarg */
1811			       size,			/* maxsize */
1812			       1,			/* nsegments */
1813			       size,			/* maxsegsize */
1814			       BUS_DMA_ALLOCNOW,	/* flags */
1815			       NULL, NULL,		/* locking */
1816			       &dma->dma_tag);
1817	if (r != 0) {
1818		device_printf(sc->sc_dev, "safe_dma_malloc: "
1819			"bus_dma_tag_create failed; error %u\n", r);
1820		goto fail_0;
1821	}
1822
1823	r = bus_dmamap_create(dma->dma_tag, BUS_DMA_NOWAIT, &dma->dma_map);
1824	if (r != 0) {
1825		device_printf(sc->sc_dev, "safe_dma_malloc: "
1826			"bus_dmamap_create failed; error %u\n", r);
1827		goto fail_1;
1828	}
1829
1830	r = bus_dmamem_alloc(dma->dma_tag, (void**) &dma->dma_vaddr,
1831			     BUS_DMA_NOWAIT, &dma->dma_map);
1832	if (r != 0) {
1833		device_printf(sc->sc_dev, "safe_dma_malloc: "
1834			"bus_dmammem_alloc failed; size %zu, error %u\n",
1835			size, r);
1836		goto fail_2;
1837	}
1838
1839	r = bus_dmamap_load(dma->dma_tag, dma->dma_map, dma->dma_vaddr,
1840		            size,
1841			    safe_dmamap_cb,
1842			    &dma->dma_paddr,
1843			    mapflags | BUS_DMA_NOWAIT);
1844	if (r != 0) {
1845		device_printf(sc->sc_dev, "safe_dma_malloc: "
1846			"bus_dmamap_load failed; error %u\n", r);
1847		goto fail_3;
1848	}
1849
1850	dma->dma_size = size;
1851	return (0);
1852
1853fail_3:
1854	bus_dmamap_unload(dma->dma_tag, dma->dma_map);
1855fail_2:
1856	bus_dmamem_free(dma->dma_tag, dma->dma_vaddr, dma->dma_map);
1857fail_1:
1858	bus_dmamap_destroy(dma->dma_tag, dma->dma_map);
1859	bus_dma_tag_destroy(dma->dma_tag);
1860fail_0:
1861	dma->dma_map = NULL;
1862	dma->dma_tag = NULL;
1863	return (r);
1864}
1865
1866static void
1867safe_dma_free(struct safe_softc *sc, struct safe_dma_alloc *dma)
1868{
1869	bus_dmamap_unload(dma->dma_tag, dma->dma_map);
1870	bus_dmamem_free(dma->dma_tag, dma->dma_vaddr, dma->dma_map);
1871	bus_dmamap_destroy(dma->dma_tag, dma->dma_map);
1872	bus_dma_tag_destroy(dma->dma_tag);
1873}
1874
1875/*
1876 * Resets the board.  Values in the regesters are left as is
1877 * from the reset (i.e. initial values are assigned elsewhere).
1878 */
1879static void
1880safe_reset_board(struct safe_softc *sc)
1881{
1882	u_int32_t v;
1883	/*
1884	 * Reset the device.  The manual says no delay
1885	 * is needed between marking and clearing reset.
1886	 */
1887	v = READ_REG(sc, SAFE_PE_DMACFG) &~
1888		(SAFE_PE_DMACFG_PERESET | SAFE_PE_DMACFG_PDRRESET |
1889		 SAFE_PE_DMACFG_SGRESET);
1890	WRITE_REG(sc, SAFE_PE_DMACFG, v
1891				    | SAFE_PE_DMACFG_PERESET
1892				    | SAFE_PE_DMACFG_PDRRESET
1893				    | SAFE_PE_DMACFG_SGRESET);
1894	WRITE_REG(sc, SAFE_PE_DMACFG, v);
1895}
1896
1897/*
1898 * Initialize registers we need to touch only once.
1899 */
1900static void
1901safe_init_board(struct safe_softc *sc)
1902{
1903	u_int32_t v, dwords;
1904
1905	v = READ_REG(sc, SAFE_PE_DMACFG);
1906	v &=~ SAFE_PE_DMACFG_PEMODE;
1907	v |= SAFE_PE_DMACFG_FSENA		/* failsafe enable */
1908	  |  SAFE_PE_DMACFG_GPRPCI		/* gather ring on PCI */
1909	  |  SAFE_PE_DMACFG_SPRPCI		/* scatter ring on PCI */
1910	  |  SAFE_PE_DMACFG_ESDESC		/* endian-swap descriptors */
1911	  |  SAFE_PE_DMACFG_ESSA		/* endian-swap SA's */
1912	  |  SAFE_PE_DMACFG_ESPDESC		/* endian-swap part. desc's */
1913	  ;
1914	WRITE_REG(sc, SAFE_PE_DMACFG, v);
1915#if 0
1916	/* XXX select byte swap based on host byte order */
1917	WRITE_REG(sc, SAFE_ENDIAN, 0x1b);
1918#endif
1919	if (sc->sc_chiprev == SAFE_REV(1,0)) {
1920		/*
1921		 * Avoid large PCI DMA transfers.  Rev 1.0 has a bug where
1922		 * "target mode transfers" done while the chip is DMA'ing
1923		 * >1020 bytes cause the hardware to lockup.  To avoid this
1924		 * we reduce the max PCI transfer size and use small source
1925		 * particle descriptors (<= 256 bytes).
1926		 */
1927		WRITE_REG(sc, SAFE_DMA_CFG, 256);
1928		device_printf(sc->sc_dev,
1929			"Reduce max DMA size to %u words for rev %u.%u WAR\n",
1930			(READ_REG(sc, SAFE_DMA_CFG)>>2) & 0xff,
1931			SAFE_REV_MAJ(sc->sc_chiprev),
1932			SAFE_REV_MIN(sc->sc_chiprev));
1933	}
1934
1935	/* NB: operands+results are overlaid */
1936	WRITE_REG(sc, SAFE_PE_PDRBASE, sc->sc_ringalloc.dma_paddr);
1937	WRITE_REG(sc, SAFE_PE_RDRBASE, sc->sc_ringalloc.dma_paddr);
1938	/*
1939	 * Configure ring entry size and number of items in the ring.
1940	 */
1941	KASSERT((sizeof(struct safe_ringentry) % sizeof(u_int32_t)) == 0,
1942		("PE ring entry not 32-bit aligned!"));
1943	dwords = sizeof(struct safe_ringentry) / sizeof(u_int32_t);
1944	WRITE_REG(sc, SAFE_PE_RINGCFG,
1945		(dwords << SAFE_PE_RINGCFG_OFFSET_S) | SAFE_MAX_NQUEUE);
1946	WRITE_REG(sc, SAFE_PE_RINGPOLL, 0);	/* disable polling */
1947
1948	WRITE_REG(sc, SAFE_PE_GRNGBASE, sc->sc_spalloc.dma_paddr);
1949	WRITE_REG(sc, SAFE_PE_SRNGBASE, sc->sc_dpalloc.dma_paddr);
1950	WRITE_REG(sc, SAFE_PE_PARTSIZE,
1951		(SAFE_TOTAL_DPART<<16) | SAFE_TOTAL_SPART);
1952	/*
1953	 * NB: destination particles are fixed size.  We use
1954	 *     an mbuf cluster and require all results go to
1955	 *     clusters or smaller.
1956	 */
1957	WRITE_REG(sc, SAFE_PE_PARTCFG, SAFE_MAX_DSIZE);
1958
1959	/* it's now safe to enable PE mode, do it */
1960	WRITE_REG(sc, SAFE_PE_DMACFG, v | SAFE_PE_DMACFG_PEMODE);
1961
1962	/*
1963	 * Configure hardware to use level-triggered interrupts and
1964	 * to interrupt after each descriptor is processed.
1965	 */
1966	WRITE_REG(sc, SAFE_HI_CFG, SAFE_HI_CFG_LEVEL);
1967	WRITE_REG(sc, SAFE_HI_DESC_CNT, 1);
1968	WRITE_REG(sc, SAFE_HI_MASK, SAFE_INT_PE_DDONE | SAFE_INT_PE_ERROR);
1969}
1970
1971/*
1972 * Init PCI registers
1973 */
1974static void
1975safe_init_pciregs(device_t dev)
1976{
1977}
1978
1979/*
1980 * Clean up after a chip crash.
1981 * It is assumed that the caller in splimp()
1982 */
1983static void
1984safe_cleanchip(struct safe_softc *sc)
1985{
1986
1987	if (sc->sc_nqchip != 0) {
1988		struct safe_ringentry *re = sc->sc_back;
1989
1990		while (re != sc->sc_front) {
1991			if (re->re_desc.d_csr != 0)
1992				safe_free_entry(sc, re);
1993			if (++re == sc->sc_ringtop)
1994				re = sc->sc_ring;
1995		}
1996		sc->sc_back = re;
1997		sc->sc_nqchip = 0;
1998	}
1999}
2000
2001/*
2002 * free a safe_q
2003 * It is assumed that the caller is within splimp().
2004 */
2005static int
2006safe_free_entry(struct safe_softc *sc, struct safe_ringentry *re)
2007{
2008	struct cryptop *crp;
2009
2010	/*
2011	 * Free header MCR
2012	 */
2013	if ((re->re_dst_m != NULL) && (re->re_src_m != re->re_dst_m))
2014		m_freem(re->re_dst_m);
2015
2016	crp = (struct cryptop *)re->re_crp;
2017
2018	re->re_desc.d_csr = 0;
2019
2020	crp->crp_etype = EFAULT;
2021	crypto_done(crp);
2022	return(0);
2023}
2024
2025/*
2026 * Routine to reset the chip and clean up.
2027 * It is assumed that the caller is in splimp()
2028 */
2029static void
2030safe_totalreset(struct safe_softc *sc)
2031{
2032	safe_reset_board(sc);
2033	safe_init_board(sc);
2034	safe_cleanchip(sc);
2035}
2036
2037/*
2038 * Is the operand suitable aligned for direct DMA.  Each
2039 * segment must be aligned on a 32-bit boundary and all
2040 * but the last segment must be a multiple of 4 bytes.
2041 */
2042static int
2043safe_dmamap_aligned(const struct safe_operand *op)
2044{
2045	int i;
2046
2047	for (i = 0; i < op->nsegs; i++) {
2048		if (op->segs[i].ds_addr & 3)
2049			return (0);
2050		if (i != (op->nsegs - 1) && (op->segs[i].ds_len & 3))
2051			return (0);
2052	}
2053	return (1);
2054}
2055
2056/*
2057 * Is the operand suitable for direct DMA as the destination
2058 * of an operation.  The hardware requires that each ``particle''
2059 * but the last in an operation result have the same size.  We
2060 * fix that size at SAFE_MAX_DSIZE bytes.  This routine returns
2061 * 0 if some segment is not a multiple of of this size, 1 if all
2062 * segments are exactly this size, or 2 if segments are at worst
2063 * a multple of this size.
2064 */
2065static int
2066safe_dmamap_uniform(const struct safe_operand *op)
2067{
2068	int result = 1;
2069
2070	if (op->nsegs > 0) {
2071		int i;
2072
2073		for (i = 0; i < op->nsegs-1; i++) {
2074			if (op->segs[i].ds_len % SAFE_MAX_DSIZE)
2075				return (0);
2076			if (op->segs[i].ds_len != SAFE_MAX_DSIZE)
2077				result = 2;
2078		}
2079	}
2080	return (result);
2081}
2082
2083#ifdef SAFE_DEBUG
2084static void
2085safe_dump_dmastatus(struct safe_softc *sc, const char *tag)
2086{
2087	printf("%s: ENDIAN 0x%x SRC 0x%x DST 0x%x STAT 0x%x\n"
2088		, tag
2089		, READ_REG(sc, SAFE_DMA_ENDIAN)
2090		, READ_REG(sc, SAFE_DMA_SRCADDR)
2091		, READ_REG(sc, SAFE_DMA_DSTADDR)
2092		, READ_REG(sc, SAFE_DMA_STAT)
2093	);
2094}
2095
2096static void
2097safe_dump_intrstate(struct safe_softc *sc, const char *tag)
2098{
2099	printf("%s: HI_CFG 0x%x HI_MASK 0x%x HI_DESC_CNT 0x%x HU_STAT 0x%x HM_STAT 0x%x\n"
2100		, tag
2101		, READ_REG(sc, SAFE_HI_CFG)
2102		, READ_REG(sc, SAFE_HI_MASK)
2103		, READ_REG(sc, SAFE_HI_DESC_CNT)
2104		, READ_REG(sc, SAFE_HU_STAT)
2105		, READ_REG(sc, SAFE_HM_STAT)
2106	);
2107}
2108
2109static void
2110safe_dump_ringstate(struct safe_softc *sc, const char *tag)
2111{
2112	u_int32_t estat = READ_REG(sc, SAFE_PE_ERNGSTAT);
2113
2114	/* NB: assume caller has lock on ring */
2115	printf("%s: ERNGSTAT %x (next %u) back %lu front %lu\n",
2116		tag,
2117		estat, (estat >> SAFE_PE_ERNGSTAT_NEXT_S),
2118		(unsigned long)(sc->sc_back - sc->sc_ring),
2119		(unsigned long)(sc->sc_front - sc->sc_ring));
2120}
2121
2122static void
2123safe_dump_request(struct safe_softc *sc, const char* tag, struct safe_ringentry *re)
2124{
2125	int ix, nsegs;
2126
2127	ix = re - sc->sc_ring;
2128	printf("%s: %p (%u): csr %x src %x dst %x sa %x len %x\n"
2129		, tag
2130		, re, ix
2131		, re->re_desc.d_csr
2132		, re->re_desc.d_src
2133		, re->re_desc.d_dst
2134		, re->re_desc.d_sa
2135		, re->re_desc.d_len
2136	);
2137	if (re->re_src.nsegs > 1) {
2138		ix = (re->re_desc.d_src - sc->sc_spalloc.dma_paddr) /
2139			sizeof(struct safe_pdesc);
2140		for (nsegs = re->re_src.nsegs; nsegs; nsegs--) {
2141			printf(" spd[%u] %p: %p size %u flags %x"
2142				, ix, &sc->sc_spring[ix]
2143				, (caddr_t)(uintptr_t) sc->sc_spring[ix].pd_addr
2144				, sc->sc_spring[ix].pd_size
2145				, sc->sc_spring[ix].pd_flags
2146			);
2147			if (sc->sc_spring[ix].pd_size == 0)
2148				printf(" (zero!)");
2149			printf("\n");
2150			if (++ix == SAFE_TOTAL_SPART)
2151				ix = 0;
2152		}
2153	}
2154	if (re->re_dst.nsegs > 1) {
2155		ix = (re->re_desc.d_dst - sc->sc_dpalloc.dma_paddr) /
2156			sizeof(struct safe_pdesc);
2157		for (nsegs = re->re_dst.nsegs; nsegs; nsegs--) {
2158			printf(" dpd[%u] %p: %p flags %x\n"
2159				, ix, &sc->sc_dpring[ix]
2160				, (caddr_t)(uintptr_t) sc->sc_dpring[ix].pd_addr
2161				, sc->sc_dpring[ix].pd_flags
2162			);
2163			if (++ix == SAFE_TOTAL_DPART)
2164				ix = 0;
2165		}
2166	}
2167	printf("sa: cmd0 %08x cmd1 %08x staterec %x\n",
2168		re->re_sa.sa_cmd0, re->re_sa.sa_cmd1, re->re_sa.sa_staterec);
2169	printf("sa: key %x %x %x %x %x %x %x %x\n"
2170		, re->re_sa.sa_key[0]
2171		, re->re_sa.sa_key[1]
2172		, re->re_sa.sa_key[2]
2173		, re->re_sa.sa_key[3]
2174		, re->re_sa.sa_key[4]
2175		, re->re_sa.sa_key[5]
2176		, re->re_sa.sa_key[6]
2177		, re->re_sa.sa_key[7]
2178	);
2179	printf("sa: indigest %x %x %x %x %x\n"
2180		, re->re_sa.sa_indigest[0]
2181		, re->re_sa.sa_indigest[1]
2182		, re->re_sa.sa_indigest[2]
2183		, re->re_sa.sa_indigest[3]
2184		, re->re_sa.sa_indigest[4]
2185	);
2186	printf("sa: outdigest %x %x %x %x %x\n"
2187		, re->re_sa.sa_outdigest[0]
2188		, re->re_sa.sa_outdigest[1]
2189		, re->re_sa.sa_outdigest[2]
2190		, re->re_sa.sa_outdigest[3]
2191		, re->re_sa.sa_outdigest[4]
2192	);
2193	printf("sr: iv %x %x %x %x\n"
2194		, re->re_sastate.sa_saved_iv[0]
2195		, re->re_sastate.sa_saved_iv[1]
2196		, re->re_sastate.sa_saved_iv[2]
2197		, re->re_sastate.sa_saved_iv[3]
2198	);
2199	printf("sr: hashbc %u indigest %x %x %x %x %x\n"
2200		, re->re_sastate.sa_saved_hashbc
2201		, re->re_sastate.sa_saved_indigest[0]
2202		, re->re_sastate.sa_saved_indigest[1]
2203		, re->re_sastate.sa_saved_indigest[2]
2204		, re->re_sastate.sa_saved_indigest[3]
2205		, re->re_sastate.sa_saved_indigest[4]
2206	);
2207}
2208
2209static void
2210safe_dump_ring(struct safe_softc *sc, const char *tag)
2211{
2212	mtx_lock(&sc->sc_ringmtx);
2213	printf("\nSafeNet Ring State:\n");
2214	safe_dump_intrstate(sc, tag);
2215	safe_dump_dmastatus(sc, tag);
2216	safe_dump_ringstate(sc, tag);
2217	if (sc->sc_nqchip) {
2218		struct safe_ringentry *re = sc->sc_back;
2219		do {
2220			safe_dump_request(sc, tag, re);
2221			if (++re == sc->sc_ringtop)
2222				re = sc->sc_ring;
2223		} while (re != sc->sc_front);
2224	}
2225	mtx_unlock(&sc->sc_ringmtx);
2226}
2227
2228static int
2229sysctl_hw_safe_dump(SYSCTL_HANDLER_ARGS)
2230{
2231	char dmode[64];
2232	int error;
2233
2234	strncpy(dmode, "", sizeof(dmode) - 1);
2235	dmode[sizeof(dmode) - 1] = '\0';
2236	error = sysctl_handle_string(oidp, &dmode[0], sizeof(dmode), req);
2237
2238	if (error == 0 && req->newptr != NULL) {
2239		struct safe_softc *sc = safec;
2240
2241		if (!sc)
2242			return EINVAL;
2243		if (strncmp(dmode, "dma", 3) == 0)
2244			safe_dump_dmastatus(sc, "safe0");
2245		else if (strncmp(dmode, "int", 3) == 0)
2246			safe_dump_intrstate(sc, "safe0");
2247		else if (strncmp(dmode, "ring", 4) == 0)
2248			safe_dump_ring(sc, "safe0");
2249		else
2250			return EINVAL;
2251	}
2252	return error;
2253}
2254SYSCTL_PROC(_hw_safe, OID_AUTO, dump, CTLTYPE_STRING | CTLFLAG_RW,
2255	0, 0, sysctl_hw_safe_dump, "A", "Dump driver state");
2256#endif /* SAFE_DEBUG */
2257