safe.c revision 173307
1/*-
2 * Copyright (c) 2003 Sam Leffler, Errno Consulting
3 * Copyright (c) 2003 Global Technology Associates, Inc.
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 *    notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25 * SUCH DAMAGE.
26 */
27
28#include <sys/cdefs.h>
29__FBSDID("$FreeBSD: head/sys/dev/safe/safe.c 173307 2007-11-03 19:10:14Z sam $");
30
31/*
32 * SafeNet SafeXcel-1141 hardware crypto accelerator
33 */
34#include "opt_safe.h"
35
36#include <sys/param.h>
37#include <sys/systm.h>
38#include <sys/proc.h>
39#include <sys/errno.h>
40#include <sys/malloc.h>
41#include <sys/kernel.h>
42#include <sys/mbuf.h>
43#include <sys/module.h>
44#include <sys/lock.h>
45#include <sys/mutex.h>
46#include <sys/sysctl.h>
47#include <sys/endian.h>
48
49#include <vm/vm.h>
50#include <vm/pmap.h>
51
52#include <machine/bus.h>
53#include <machine/resource.h>
54#include <sys/bus.h>
55#include <sys/rman.h>
56
57#include <crypto/sha1.h>
58#include <opencrypto/cryptodev.h>
59#include <opencrypto/cryptosoft.h>
60#include <sys/md5.h>
61#include <sys/random.h>
62#include <sys/kobj.h>
63
64#include "cryptodev_if.h"
65
66#include <dev/pci/pcivar.h>
67#include <dev/pci/pcireg.h>
68
69#ifdef SAFE_RNDTEST
70#include <dev/rndtest/rndtest.h>
71#endif
72#include <dev/safe/safereg.h>
73#include <dev/safe/safevar.h>
74
75#ifndef bswap32
76#define	bswap32	NTOHL
77#endif
78
79/*
80 * Prototypes and count for the pci_device structure
81 */
82static	int safe_probe(device_t);
83static	int safe_attach(device_t);
84static	int safe_detach(device_t);
85static	int safe_suspend(device_t);
86static	int safe_resume(device_t);
87static	void safe_shutdown(device_t);
88
89static	int safe_newsession(device_t, u_int32_t *, struct cryptoini *);
90static	int safe_freesession(device_t, u_int64_t);
91static	int safe_process(device_t, struct cryptop *, int);
92
93static device_method_t safe_methods[] = {
94	/* Device interface */
95	DEVMETHOD(device_probe,		safe_probe),
96	DEVMETHOD(device_attach,	safe_attach),
97	DEVMETHOD(device_detach,	safe_detach),
98	DEVMETHOD(device_suspend,	safe_suspend),
99	DEVMETHOD(device_resume,	safe_resume),
100	DEVMETHOD(device_shutdown,	safe_shutdown),
101
102	/* bus interface */
103	DEVMETHOD(bus_print_child,	bus_generic_print_child),
104	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
105
106	/* crypto device methods */
107	DEVMETHOD(cryptodev_newsession,	safe_newsession),
108	DEVMETHOD(cryptodev_freesession,safe_freesession),
109	DEVMETHOD(cryptodev_process,	safe_process),
110
111	{ 0, 0 }
112};
113static driver_t safe_driver = {
114	"safe",
115	safe_methods,
116	sizeof (struct safe_softc)
117};
118static devclass_t safe_devclass;
119
120DRIVER_MODULE(safe, pci, safe_driver, safe_devclass, 0, 0);
121MODULE_DEPEND(safe, crypto, 1, 1, 1);
122#ifdef SAFE_RNDTEST
123MODULE_DEPEND(safe, rndtest, 1, 1, 1);
124#endif
125
126static	void safe_intr(void *);
127static	void safe_callback(struct safe_softc *, struct safe_ringentry *);
128static	void safe_feed(struct safe_softc *, struct safe_ringentry *);
129static	void safe_mcopy(struct mbuf *, struct mbuf *, u_int);
130#ifndef SAFE_NO_RNG
131static	void safe_rng_init(struct safe_softc *);
132static	void safe_rng(void *);
133#endif /* SAFE_NO_RNG */
134static	int safe_dma_malloc(struct safe_softc *, bus_size_t,
135	        struct safe_dma_alloc *, int);
136#define	safe_dma_sync(_dma, _flags) \
137	bus_dmamap_sync((_dma)->dma_tag, (_dma)->dma_map, (_flags))
138static	void safe_dma_free(struct safe_softc *, struct safe_dma_alloc *);
139static	int safe_dmamap_aligned(const struct safe_operand *);
140static	int safe_dmamap_uniform(const struct safe_operand *);
141
142static	void safe_reset_board(struct safe_softc *);
143static	void safe_init_board(struct safe_softc *);
144static	void safe_init_pciregs(device_t dev);
145static	void safe_cleanchip(struct safe_softc *);
146static	void safe_totalreset(struct safe_softc *);
147
148static	int safe_free_entry(struct safe_softc *, struct safe_ringentry *);
149
150SYSCTL_NODE(_hw, OID_AUTO, safe, CTLFLAG_RD, 0, "SafeNet driver parameters");
151
152#ifdef SAFE_DEBUG
153static	void safe_dump_dmastatus(struct safe_softc *, const char *);
154static	void safe_dump_ringstate(struct safe_softc *, const char *);
155static	void safe_dump_intrstate(struct safe_softc *, const char *);
156static	void safe_dump_request(struct safe_softc *, const char *,
157		struct safe_ringentry *);
158
159static	struct safe_softc *safec;		/* for use by hw.safe.dump */
160
161static	int safe_debug = 0;
162SYSCTL_INT(_hw_safe, OID_AUTO, debug, CTLFLAG_RW, &safe_debug,
163	    0, "control debugging msgs");
164#define	DPRINTF(_x)	if (safe_debug) printf _x
165#else
166#define	DPRINTF(_x)
167#endif
168
169#define	READ_REG(sc,r) \
170	bus_space_read_4((sc)->sc_st, (sc)->sc_sh, (r))
171
172#define WRITE_REG(sc,reg,val) \
173	bus_space_write_4((sc)->sc_st, (sc)->sc_sh, reg, val)
174
175struct safe_stats safestats;
176SYSCTL_STRUCT(_hw_safe, OID_AUTO, stats, CTLFLAG_RD, &safestats,
177	    safe_stats, "driver statistics");
178#ifndef SAFE_NO_RNG
179static	int safe_rnginterval = 1;		/* poll once a second */
180SYSCTL_INT(_hw_safe, OID_AUTO, rnginterval, CTLFLAG_RW, &safe_rnginterval,
181	    0, "RNG polling interval (secs)");
182static	int safe_rngbufsize = 16;		/* 64 bytes each poll  */
183SYSCTL_INT(_hw_safe, OID_AUTO, rngbufsize, CTLFLAG_RW, &safe_rngbufsize,
184	    0, "RNG polling buffer size (32-bit words)");
185static	int safe_rngmaxalarm = 8;		/* max alarms before reset */
186SYSCTL_INT(_hw_safe, OID_AUTO, rngmaxalarm, CTLFLAG_RW, &safe_rngmaxalarm,
187	    0, "RNG max alarms before reset");
188#endif /* SAFE_NO_RNG */
189
190static int
191safe_probe(device_t dev)
192{
193	if (pci_get_vendor(dev) == PCI_VENDOR_SAFENET &&
194	    pci_get_device(dev) == PCI_PRODUCT_SAFEXCEL)
195		return (BUS_PROBE_DEFAULT);
196	return (ENXIO);
197}
198
199static const char*
200safe_partname(struct safe_softc *sc)
201{
202	/* XXX sprintf numbers when not decoded */
203	switch (pci_get_vendor(sc->sc_dev)) {
204	case PCI_VENDOR_SAFENET:
205		switch (pci_get_device(sc->sc_dev)) {
206		case PCI_PRODUCT_SAFEXCEL: return "SafeNet SafeXcel-1141";
207		}
208		return "SafeNet unknown-part";
209	}
210	return "Unknown-vendor unknown-part";
211}
212
213#ifndef SAFE_NO_RNG
214static void
215default_harvest(struct rndtest_state *rsp, void *buf, u_int count)
216{
217	random_harvest(buf, count, count*NBBY, 0, RANDOM_PURE);
218}
219#endif /* SAFE_NO_RNG */
220
221static int
222safe_attach(device_t dev)
223{
224	struct safe_softc *sc = device_get_softc(dev);
225	u_int32_t raddr;
226	u_int32_t cmd, i, devinfo;
227	int rid;
228
229	bzero(sc, sizeof (*sc));
230	sc->sc_dev = dev;
231
232	/* XXX handle power management */
233
234	cmd = pci_read_config(dev, PCIR_COMMAND, 4);
235	cmd |= PCIM_CMD_MEMEN | PCIM_CMD_BUSMASTEREN;
236	pci_write_config(dev, PCIR_COMMAND, cmd, 4);
237	cmd = pci_read_config(dev, PCIR_COMMAND, 4);
238
239	if (!(cmd & PCIM_CMD_MEMEN)) {
240		device_printf(dev, "failed to enable memory mapping\n");
241		goto bad;
242	}
243
244	if (!(cmd & PCIM_CMD_BUSMASTEREN)) {
245		device_printf(dev, "failed to enable bus mastering\n");
246		goto bad;
247	}
248
249	/*
250	 * Setup memory-mapping of PCI registers.
251	 */
252	rid = BS_BAR;
253	sc->sc_sr = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
254					   RF_ACTIVE);
255	if (sc->sc_sr == NULL) {
256		device_printf(dev, "cannot map register space\n");
257		goto bad;
258	}
259	sc->sc_st = rman_get_bustag(sc->sc_sr);
260	sc->sc_sh = rman_get_bushandle(sc->sc_sr);
261
262	/*
263	 * Arrange interrupt line.
264	 */
265	rid = 0;
266	sc->sc_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
267					    RF_SHAREABLE|RF_ACTIVE);
268	if (sc->sc_irq == NULL) {
269		device_printf(dev, "could not map interrupt\n");
270		goto bad1;
271	}
272	/*
273	 * NB: Network code assumes we are blocked with splimp()
274	 *     so make sure the IRQ is mapped appropriately.
275	 */
276	if (bus_setup_intr(dev, sc->sc_irq, INTR_TYPE_NET | INTR_MPSAFE,
277			   NULL, safe_intr, sc, &sc->sc_ih)) {
278		device_printf(dev, "could not establish interrupt\n");
279		goto bad2;
280	}
281
282	sc->sc_cid = crypto_get_driverid(dev, CRYPTOCAP_F_HARDWARE);
283	if (sc->sc_cid < 0) {
284		device_printf(dev, "could not get crypto driver id\n");
285		goto bad3;
286	}
287
288	sc->sc_chiprev = READ_REG(sc, SAFE_DEVINFO) &
289		(SAFE_DEVINFO_REV_MAJ | SAFE_DEVINFO_REV_MIN);
290
291	/*
292	 * Setup DMA descriptor area.
293	 */
294	if (bus_dma_tag_create(NULL,			/* parent */
295			       1,			/* alignment */
296			       SAFE_DMA_BOUNDARY,	/* boundary */
297			       BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
298			       BUS_SPACE_MAXADDR,	/* highaddr */
299			       NULL, NULL,		/* filter, filterarg */
300			       SAFE_MAX_DMA,		/* maxsize */
301			       SAFE_MAX_PART,		/* nsegments */
302			       SAFE_MAX_SSIZE,		/* maxsegsize */
303			       BUS_DMA_ALLOCNOW,	/* flags */
304			       NULL, NULL,		/* locking */
305			       &sc->sc_srcdmat)) {
306		device_printf(dev, "cannot allocate DMA tag\n");
307		goto bad4;
308	}
309	if (bus_dma_tag_create(NULL,			/* parent */
310			       1,			/* alignment */
311			       SAFE_MAX_DSIZE,		/* boundary */
312			       BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
313			       BUS_SPACE_MAXADDR,	/* highaddr */
314			       NULL, NULL,		/* filter, filterarg */
315			       SAFE_MAX_DMA,		/* maxsize */
316			       SAFE_MAX_PART,		/* nsegments */
317			       SAFE_MAX_DSIZE,		/* maxsegsize */
318			       BUS_DMA_ALLOCNOW,	/* flags */
319			       NULL, NULL,		/* locking */
320			       &sc->sc_dstdmat)) {
321		device_printf(dev, "cannot allocate DMA tag\n");
322		goto bad4;
323	}
324
325	/*
326	 * Allocate packet engine descriptors.
327	 */
328	if (safe_dma_malloc(sc,
329	    SAFE_MAX_NQUEUE * sizeof (struct safe_ringentry),
330	    &sc->sc_ringalloc, 0)) {
331		device_printf(dev, "cannot allocate PE descriptor ring\n");
332		bus_dma_tag_destroy(sc->sc_srcdmat);
333		goto bad4;
334	}
335	/*
336	 * Hookup the static portion of all our data structures.
337	 */
338	sc->sc_ring = (struct safe_ringentry *) sc->sc_ringalloc.dma_vaddr;
339	sc->sc_ringtop = sc->sc_ring + SAFE_MAX_NQUEUE;
340	sc->sc_front = sc->sc_ring;
341	sc->sc_back = sc->sc_ring;
342	raddr = sc->sc_ringalloc.dma_paddr;
343	bzero(sc->sc_ring, SAFE_MAX_NQUEUE * sizeof(struct safe_ringentry));
344	for (i = 0; i < SAFE_MAX_NQUEUE; i++) {
345		struct safe_ringentry *re = &sc->sc_ring[i];
346
347		re->re_desc.d_sa = raddr +
348			offsetof(struct safe_ringentry, re_sa);
349		re->re_sa.sa_staterec = raddr +
350			offsetof(struct safe_ringentry, re_sastate);
351
352		raddr += sizeof (struct safe_ringentry);
353	}
354	mtx_init(&sc->sc_ringmtx, device_get_nameunit(dev),
355		"packet engine ring", MTX_DEF);
356
357	/*
358	 * Allocate scatter and gather particle descriptors.
359	 */
360	if (safe_dma_malloc(sc, SAFE_TOTAL_SPART * sizeof (struct safe_pdesc),
361	    &sc->sc_spalloc, 0)) {
362		device_printf(dev, "cannot allocate source particle "
363			"descriptor ring\n");
364		mtx_destroy(&sc->sc_ringmtx);
365		safe_dma_free(sc, &sc->sc_ringalloc);
366		bus_dma_tag_destroy(sc->sc_srcdmat);
367		goto bad4;
368	}
369	sc->sc_spring = (struct safe_pdesc *) sc->sc_spalloc.dma_vaddr;
370	sc->sc_springtop = sc->sc_spring + SAFE_TOTAL_SPART;
371	sc->sc_spfree = sc->sc_spring;
372	bzero(sc->sc_spring, SAFE_TOTAL_SPART * sizeof(struct safe_pdesc));
373
374	if (safe_dma_malloc(sc, SAFE_TOTAL_DPART * sizeof (struct safe_pdesc),
375	    &sc->sc_dpalloc, 0)) {
376		device_printf(dev, "cannot allocate destination particle "
377			"descriptor ring\n");
378		mtx_destroy(&sc->sc_ringmtx);
379		safe_dma_free(sc, &sc->sc_spalloc);
380		safe_dma_free(sc, &sc->sc_ringalloc);
381		bus_dma_tag_destroy(sc->sc_dstdmat);
382		goto bad4;
383	}
384	sc->sc_dpring = (struct safe_pdesc *) sc->sc_dpalloc.dma_vaddr;
385	sc->sc_dpringtop = sc->sc_dpring + SAFE_TOTAL_DPART;
386	sc->sc_dpfree = sc->sc_dpring;
387	bzero(sc->sc_dpring, SAFE_TOTAL_DPART * sizeof(struct safe_pdesc));
388
389	device_printf(sc->sc_dev, "%s", safe_partname(sc));
390
391	devinfo = READ_REG(sc, SAFE_DEVINFO);
392	if (devinfo & SAFE_DEVINFO_RNG) {
393		sc->sc_flags |= SAFE_FLAGS_RNG;
394		printf(" rng");
395	}
396	if (devinfo & SAFE_DEVINFO_PKEY) {
397#if 0
398		printf(" key");
399		sc->sc_flags |= SAFE_FLAGS_KEY;
400		crypto_kregister(sc->sc_cid, CRK_MOD_EXP, 0);
401		crypto_kregister(sc->sc_cid, CRK_MOD_EXP_CRT, 0);
402#endif
403	}
404	if (devinfo & SAFE_DEVINFO_DES) {
405		printf(" des/3des");
406		crypto_register(sc->sc_cid, CRYPTO_3DES_CBC, 0, 0);
407		crypto_register(sc->sc_cid, CRYPTO_DES_CBC, 0, 0);
408	}
409	if (devinfo & SAFE_DEVINFO_AES) {
410		printf(" aes");
411		crypto_register(sc->sc_cid, CRYPTO_AES_CBC, 0, 0);
412	}
413	if (devinfo & SAFE_DEVINFO_MD5) {
414		printf(" md5");
415		crypto_register(sc->sc_cid, CRYPTO_MD5_HMAC, 0, 0);
416	}
417	if (devinfo & SAFE_DEVINFO_SHA1) {
418		printf(" sha1");
419		crypto_register(sc->sc_cid, CRYPTO_SHA1_HMAC, 0, 0);
420	}
421	printf(" null");
422	crypto_register(sc->sc_cid, CRYPTO_NULL_CBC, 0, 0);
423	crypto_register(sc->sc_cid, CRYPTO_NULL_HMAC, 0, 0);
424	/* XXX other supported algorithms */
425	printf("\n");
426
427	safe_reset_board(sc);		/* reset h/w */
428	safe_init_pciregs(dev);		/* init pci settings */
429	safe_init_board(sc);		/* init h/w */
430
431#ifndef SAFE_NO_RNG
432	if (sc->sc_flags & SAFE_FLAGS_RNG) {
433#ifdef SAFE_RNDTEST
434		sc->sc_rndtest = rndtest_attach(dev);
435		if (sc->sc_rndtest)
436			sc->sc_harvest = rndtest_harvest;
437		else
438			sc->sc_harvest = default_harvest;
439#else
440		sc->sc_harvest = default_harvest;
441#endif
442		safe_rng_init(sc);
443
444		callout_init(&sc->sc_rngto, CALLOUT_MPSAFE);
445		callout_reset(&sc->sc_rngto, hz*safe_rnginterval, safe_rng, sc);
446	}
447#endif /* SAFE_NO_RNG */
448#ifdef SAFE_DEBUG
449	safec = sc;			/* for use by hw.safe.dump */
450#endif
451	return (0);
452bad4:
453	crypto_unregister_all(sc->sc_cid);
454bad3:
455	bus_teardown_intr(dev, sc->sc_irq, sc->sc_ih);
456bad2:
457	bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sc_irq);
458bad1:
459	bus_release_resource(dev, SYS_RES_MEMORY, BS_BAR, sc->sc_sr);
460bad:
461	return (ENXIO);
462}
463
464/*
465 * Detach a device that successfully probed.
466 */
467static int
468safe_detach(device_t dev)
469{
470	struct safe_softc *sc = device_get_softc(dev);
471
472	/* XXX wait/abort active ops */
473
474	WRITE_REG(sc, SAFE_HI_MASK, 0);		/* disable interrupts */
475
476	callout_stop(&sc->sc_rngto);
477
478	crypto_unregister_all(sc->sc_cid);
479
480#ifdef SAFE_RNDTEST
481	if (sc->sc_rndtest)
482		rndtest_detach(sc->sc_rndtest);
483#endif
484
485	safe_cleanchip(sc);
486	safe_dma_free(sc, &sc->sc_dpalloc);
487	safe_dma_free(sc, &sc->sc_spalloc);
488	mtx_destroy(&sc->sc_ringmtx);
489	safe_dma_free(sc, &sc->sc_ringalloc);
490
491	bus_generic_detach(dev);
492	bus_teardown_intr(dev, sc->sc_irq, sc->sc_ih);
493	bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sc_irq);
494
495	bus_dma_tag_destroy(sc->sc_srcdmat);
496	bus_dma_tag_destroy(sc->sc_dstdmat);
497	bus_release_resource(dev, SYS_RES_MEMORY, BS_BAR, sc->sc_sr);
498
499	return (0);
500}
501
502/*
503 * Stop all chip i/o so that the kernel's probe routines don't
504 * get confused by errant DMAs when rebooting.
505 */
506static void
507safe_shutdown(device_t dev)
508{
509#ifdef notyet
510	safe_stop(device_get_softc(dev));
511#endif
512}
513
514/*
515 * Device suspend routine.
516 */
517static int
518safe_suspend(device_t dev)
519{
520	struct safe_softc *sc = device_get_softc(dev);
521
522#ifdef notyet
523	/* XXX stop the device and save PCI settings */
524#endif
525	sc->sc_suspended = 1;
526
527	return (0);
528}
529
530static int
531safe_resume(device_t dev)
532{
533	struct safe_softc *sc = device_get_softc(dev);
534
535#ifdef notyet
536	/* XXX retore PCI settings and start the device */
537#endif
538	sc->sc_suspended = 0;
539	return (0);
540}
541
542/*
543 * SafeXcel Interrupt routine
544 */
545static void
546safe_intr(void *arg)
547{
548	struct safe_softc *sc = arg;
549	volatile u_int32_t stat;
550
551	stat = READ_REG(sc, SAFE_HM_STAT);
552	if (stat == 0)			/* shared irq, not for us */
553		return;
554
555	WRITE_REG(sc, SAFE_HI_CLR, stat);	/* IACK */
556
557	if ((stat & SAFE_INT_PE_DDONE)) {
558		/*
559		 * Descriptor(s) done; scan the ring and
560		 * process completed operations.
561		 */
562		mtx_lock(&sc->sc_ringmtx);
563		while (sc->sc_back != sc->sc_front) {
564			struct safe_ringentry *re = sc->sc_back;
565#ifdef SAFE_DEBUG
566			if (safe_debug) {
567				safe_dump_ringstate(sc, __func__);
568				safe_dump_request(sc, __func__, re);
569			}
570#endif
571			/*
572			 * safe_process marks ring entries that were allocated
573			 * but not used with a csr of zero.  This insures the
574			 * ring front pointer never needs to be set backwards
575			 * in the event that an entry is allocated but not used
576			 * because of a setup error.
577			 */
578			if (re->re_desc.d_csr != 0) {
579				if (!SAFE_PE_CSR_IS_DONE(re->re_desc.d_csr))
580					break;
581				if (!SAFE_PE_LEN_IS_DONE(re->re_desc.d_len))
582					break;
583				sc->sc_nqchip--;
584				safe_callback(sc, re);
585			}
586			if (++(sc->sc_back) == sc->sc_ringtop)
587				sc->sc_back = sc->sc_ring;
588		}
589		mtx_unlock(&sc->sc_ringmtx);
590	}
591
592	/*
593	 * Check to see if we got any DMA Error
594	 */
595	if (stat & SAFE_INT_PE_ERROR) {
596		DPRINTF(("dmaerr dmastat %08x\n",
597			READ_REG(sc, SAFE_PE_DMASTAT)));
598		safestats.st_dmaerr++;
599		safe_totalreset(sc);
600#if 0
601		safe_feed(sc);
602#endif
603	}
604
605	if (sc->sc_needwakeup) {		/* XXX check high watermark */
606		int wakeup = sc->sc_needwakeup & (CRYPTO_SYMQ|CRYPTO_ASYMQ);
607		DPRINTF(("%s: wakeup crypto %x\n", __func__,
608			sc->sc_needwakeup));
609		sc->sc_needwakeup &= ~wakeup;
610		crypto_unblock(sc->sc_cid, wakeup);
611	}
612}
613
614/*
615 * safe_feed() - post a request to chip
616 */
617static void
618safe_feed(struct safe_softc *sc, struct safe_ringentry *re)
619{
620	bus_dmamap_sync(sc->sc_srcdmat, re->re_src_map, BUS_DMASYNC_PREWRITE);
621	if (re->re_dst_map != NULL)
622		bus_dmamap_sync(sc->sc_dstdmat, re->re_dst_map,
623			BUS_DMASYNC_PREREAD);
624	/* XXX have no smaller granularity */
625	safe_dma_sync(&sc->sc_ringalloc,
626		BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
627	safe_dma_sync(&sc->sc_spalloc, BUS_DMASYNC_PREWRITE);
628	safe_dma_sync(&sc->sc_dpalloc, BUS_DMASYNC_PREWRITE);
629
630#ifdef SAFE_DEBUG
631	if (safe_debug) {
632		safe_dump_ringstate(sc, __func__);
633		safe_dump_request(sc, __func__, re);
634	}
635#endif
636	sc->sc_nqchip++;
637	if (sc->sc_nqchip > safestats.st_maxqchip)
638		safestats.st_maxqchip = sc->sc_nqchip;
639	/* poke h/w to check descriptor ring, any value can be written */
640	WRITE_REG(sc, SAFE_HI_RD_DESCR, 0);
641}
642
643#define	N(a)	(sizeof(a) / sizeof (a[0]))
644static void
645safe_setup_enckey(struct safe_session *ses, caddr_t key)
646{
647	int i;
648
649	bcopy(key, ses->ses_key, ses->ses_klen / 8);
650
651	/* PE is little-endian, insure proper byte order */
652	for (i = 0; i < N(ses->ses_key); i++)
653		ses->ses_key[i] = htole32(ses->ses_key[i]);
654}
655
656static void
657safe_setup_mackey(struct safe_session *ses, int algo, caddr_t key, int klen)
658{
659	MD5_CTX md5ctx;
660	SHA1_CTX sha1ctx;
661	int i;
662
663
664	for (i = 0; i < klen; i++)
665		key[i] ^= HMAC_IPAD_VAL;
666
667	if (algo == CRYPTO_MD5_HMAC) {
668		MD5Init(&md5ctx);
669		MD5Update(&md5ctx, key, klen);
670		MD5Update(&md5ctx, hmac_ipad_buffer, MD5_HMAC_BLOCK_LEN - klen);
671		bcopy(md5ctx.state, ses->ses_hminner, sizeof(md5ctx.state));
672	} else {
673		SHA1Init(&sha1ctx);
674		SHA1Update(&sha1ctx, key, klen);
675		SHA1Update(&sha1ctx, hmac_ipad_buffer,
676		    SHA1_HMAC_BLOCK_LEN - klen);
677		bcopy(sha1ctx.h.b32, ses->ses_hminner, sizeof(sha1ctx.h.b32));
678	}
679
680	for (i = 0; i < klen; i++)
681		key[i] ^= (HMAC_IPAD_VAL ^ HMAC_OPAD_VAL);
682
683	if (algo == CRYPTO_MD5_HMAC) {
684		MD5Init(&md5ctx);
685		MD5Update(&md5ctx, key, klen);
686		MD5Update(&md5ctx, hmac_opad_buffer, MD5_HMAC_BLOCK_LEN - klen);
687		bcopy(md5ctx.state, ses->ses_hmouter, sizeof(md5ctx.state));
688	} else {
689		SHA1Init(&sha1ctx);
690		SHA1Update(&sha1ctx, key, klen);
691		SHA1Update(&sha1ctx, hmac_opad_buffer,
692		    SHA1_HMAC_BLOCK_LEN - klen);
693		bcopy(sha1ctx.h.b32, ses->ses_hmouter, sizeof(sha1ctx.h.b32));
694	}
695
696	for (i = 0; i < klen; i++)
697		key[i] ^= HMAC_OPAD_VAL;
698
699	/* PE is little-endian, insure proper byte order */
700	for (i = 0; i < N(ses->ses_hminner); i++) {
701		ses->ses_hminner[i] = htole32(ses->ses_hminner[i]);
702		ses->ses_hmouter[i] = htole32(ses->ses_hmouter[i]);
703	}
704}
705#undef N
706
707/*
708 * Allocate a new 'session' and return an encoded session id.  'sidp'
709 * contains our registration id, and should contain an encoded session
710 * id on successful allocation.
711 */
712static int
713safe_newsession(device_t dev, u_int32_t *sidp, struct cryptoini *cri)
714{
715	struct safe_softc *sc = device_get_softc(dev);
716	struct cryptoini *c, *encini = NULL, *macini = NULL;
717	struct safe_session *ses = NULL;
718	int sesn;
719
720	if (sidp == NULL || cri == NULL || sc == NULL)
721		return (EINVAL);
722
723	for (c = cri; c != NULL; c = c->cri_next) {
724		if (c->cri_alg == CRYPTO_MD5_HMAC ||
725		    c->cri_alg == CRYPTO_SHA1_HMAC ||
726		    c->cri_alg == CRYPTO_NULL_HMAC) {
727			if (macini)
728				return (EINVAL);
729			macini = c;
730		} else if (c->cri_alg == CRYPTO_DES_CBC ||
731		    c->cri_alg == CRYPTO_3DES_CBC ||
732		    c->cri_alg == CRYPTO_AES_CBC ||
733		    c->cri_alg == CRYPTO_NULL_CBC) {
734			if (encini)
735				return (EINVAL);
736			encini = c;
737		} else
738			return (EINVAL);
739	}
740	if (encini == NULL && macini == NULL)
741		return (EINVAL);
742	if (encini) {			/* validate key length */
743		switch (encini->cri_alg) {
744		case CRYPTO_DES_CBC:
745			if (encini->cri_klen != 64)
746				return (EINVAL);
747			break;
748		case CRYPTO_3DES_CBC:
749			if (encini->cri_klen != 192)
750				return (EINVAL);
751			break;
752		case CRYPTO_AES_CBC:
753			if (encini->cri_klen != 128 &&
754			    encini->cri_klen != 192 &&
755			    encini->cri_klen != 256)
756				return (EINVAL);
757			break;
758		}
759	}
760
761	if (sc->sc_sessions == NULL) {
762		ses = sc->sc_sessions = (struct safe_session *)malloc(
763		    sizeof(struct safe_session), M_DEVBUF, M_NOWAIT);
764		if (ses == NULL)
765			return (ENOMEM);
766		sesn = 0;
767		sc->sc_nsessions = 1;
768	} else {
769		for (sesn = 0; sesn < sc->sc_nsessions; sesn++) {
770			if (sc->sc_sessions[sesn].ses_used == 0) {
771				ses = &sc->sc_sessions[sesn];
772				break;
773			}
774		}
775
776		if (ses == NULL) {
777			sesn = sc->sc_nsessions;
778			ses = (struct safe_session *)malloc((sesn + 1) *
779			    sizeof(struct safe_session), M_DEVBUF, M_NOWAIT);
780			if (ses == NULL)
781				return (ENOMEM);
782			bcopy(sc->sc_sessions, ses, sesn *
783			    sizeof(struct safe_session));
784			bzero(sc->sc_sessions, sesn *
785			    sizeof(struct safe_session));
786			free(sc->sc_sessions, M_DEVBUF);
787			sc->sc_sessions = ses;
788			ses = &sc->sc_sessions[sesn];
789			sc->sc_nsessions++;
790		}
791	}
792
793	bzero(ses, sizeof(struct safe_session));
794	ses->ses_used = 1;
795
796	if (encini) {
797		/* get an IV */
798		/* XXX may read fewer than requested */
799		read_random(ses->ses_iv, sizeof(ses->ses_iv));
800
801		ses->ses_klen = encini->cri_klen;
802		if (encini->cri_key != NULL)
803			safe_setup_enckey(ses, encini->cri_key);
804	}
805
806	if (macini) {
807		ses->ses_mlen = macini->cri_mlen;
808		if (ses->ses_mlen == 0) {
809			if (macini->cri_alg == CRYPTO_MD5_HMAC)
810				ses->ses_mlen = MD5_HASH_LEN;
811			else
812				ses->ses_mlen = SHA1_HASH_LEN;
813		}
814
815		if (macini->cri_key != NULL) {
816			safe_setup_mackey(ses, macini->cri_alg, macini->cri_key,
817			    macini->cri_klen / 8);
818		}
819	}
820
821	*sidp = SAFE_SID(device_get_unit(sc->sc_dev), sesn);
822	return (0);
823}
824
825/*
826 * Deallocate a session.
827 */
828static int
829safe_freesession(device_t dev, u_int64_t tid)
830{
831	struct safe_softc *sc = device_get_softc(dev);
832	int session, ret;
833	u_int32_t sid = ((u_int32_t) tid) & 0xffffffff;
834
835	if (sc == NULL)
836		return (EINVAL);
837
838	session = SAFE_SESSION(sid);
839	if (session < sc->sc_nsessions) {
840		bzero(&sc->sc_sessions[session], sizeof(sc->sc_sessions[session]));
841		ret = 0;
842	} else
843		ret = EINVAL;
844	return (ret);
845}
846
847static void
848safe_op_cb(void *arg, bus_dma_segment_t *seg, int nsegs, bus_size_t mapsize, int error)
849{
850	struct safe_operand *op = arg;
851
852	DPRINTF(("%s: mapsize %u nsegs %d error %d\n", __func__,
853		(u_int) mapsize, nsegs, error));
854	if (error != 0)
855		return;
856	op->mapsize = mapsize;
857	op->nsegs = nsegs;
858	bcopy(seg, op->segs, nsegs * sizeof (seg[0]));
859}
860
861static int
862safe_process(device_t dev, struct cryptop *crp, int hint)
863{
864	struct safe_softc *sc = device_get_softc(dev);
865	int err = 0, i, nicealign, uniform;
866	struct cryptodesc *crd1, *crd2, *maccrd, *enccrd;
867	int bypass, oplen, ivsize;
868	caddr_t iv;
869	int16_t coffset;
870	struct safe_session *ses;
871	struct safe_ringentry *re;
872	struct safe_sarec *sa;
873	struct safe_pdesc *pd;
874	u_int32_t cmd0, cmd1, staterec;
875
876	if (crp == NULL || crp->crp_callback == NULL || sc == NULL) {
877		safestats.st_invalid++;
878		return (EINVAL);
879	}
880	if (SAFE_SESSION(crp->crp_sid) >= sc->sc_nsessions) {
881		safestats.st_badsession++;
882		return (EINVAL);
883	}
884
885	mtx_lock(&sc->sc_ringmtx);
886	if (sc->sc_front == sc->sc_back && sc->sc_nqchip != 0) {
887		safestats.st_ringfull++;
888		sc->sc_needwakeup |= CRYPTO_SYMQ;
889		mtx_unlock(&sc->sc_ringmtx);
890		return (ERESTART);
891	}
892	re = sc->sc_front;
893
894	staterec = re->re_sa.sa_staterec;	/* save */
895	/* NB: zero everything but the PE descriptor */
896	bzero(&re->re_sa, sizeof(struct safe_ringentry) - sizeof(re->re_desc));
897	re->re_sa.sa_staterec = staterec;	/* restore */
898
899	re->re_crp = crp;
900	re->re_sesn = SAFE_SESSION(crp->crp_sid);
901
902	if (crp->crp_flags & CRYPTO_F_IMBUF) {
903		re->re_src_m = (struct mbuf *)crp->crp_buf;
904		re->re_dst_m = (struct mbuf *)crp->crp_buf;
905	} else if (crp->crp_flags & CRYPTO_F_IOV) {
906		re->re_src_io = (struct uio *)crp->crp_buf;
907		re->re_dst_io = (struct uio *)crp->crp_buf;
908	} else {
909		safestats.st_badflags++;
910		err = EINVAL;
911		goto errout;	/* XXX we don't handle contiguous blocks! */
912	}
913
914	sa = &re->re_sa;
915	ses = &sc->sc_sessions[re->re_sesn];
916
917	crd1 = crp->crp_desc;
918	if (crd1 == NULL) {
919		safestats.st_nodesc++;
920		err = EINVAL;
921		goto errout;
922	}
923	crd2 = crd1->crd_next;
924
925	cmd0 = SAFE_SA_CMD0_BASIC;		/* basic group operation */
926	cmd1 = 0;
927	if (crd2 == NULL) {
928		if (crd1->crd_alg == CRYPTO_MD5_HMAC ||
929		    crd1->crd_alg == CRYPTO_SHA1_HMAC ||
930		    crd1->crd_alg == CRYPTO_NULL_HMAC) {
931			maccrd = crd1;
932			enccrd = NULL;
933			cmd0 |= SAFE_SA_CMD0_OP_HASH;
934		} else if (crd1->crd_alg == CRYPTO_DES_CBC ||
935		    crd1->crd_alg == CRYPTO_3DES_CBC ||
936		    crd1->crd_alg == CRYPTO_AES_CBC ||
937		    crd1->crd_alg == CRYPTO_NULL_CBC) {
938			maccrd = NULL;
939			enccrd = crd1;
940			cmd0 |= SAFE_SA_CMD0_OP_CRYPT;
941		} else {
942			safestats.st_badalg++;
943			err = EINVAL;
944			goto errout;
945		}
946	} else {
947		if ((crd1->crd_alg == CRYPTO_MD5_HMAC ||
948		    crd1->crd_alg == CRYPTO_SHA1_HMAC ||
949		    crd1->crd_alg == CRYPTO_NULL_HMAC) &&
950		    (crd2->crd_alg == CRYPTO_DES_CBC ||
951			crd2->crd_alg == CRYPTO_3DES_CBC ||
952		        crd2->crd_alg == CRYPTO_AES_CBC ||
953		        crd2->crd_alg == CRYPTO_NULL_CBC) &&
954		    ((crd2->crd_flags & CRD_F_ENCRYPT) == 0)) {
955			maccrd = crd1;
956			enccrd = crd2;
957		} else if ((crd1->crd_alg == CRYPTO_DES_CBC ||
958		    crd1->crd_alg == CRYPTO_3DES_CBC ||
959		    crd1->crd_alg == CRYPTO_AES_CBC ||
960		    crd1->crd_alg == CRYPTO_NULL_CBC) &&
961		    (crd2->crd_alg == CRYPTO_MD5_HMAC ||
962			crd2->crd_alg == CRYPTO_SHA1_HMAC ||
963			crd2->crd_alg == CRYPTO_NULL_HMAC) &&
964		    (crd1->crd_flags & CRD_F_ENCRYPT)) {
965			enccrd = crd1;
966			maccrd = crd2;
967		} else {
968			safestats.st_badalg++;
969			err = EINVAL;
970			goto errout;
971		}
972		cmd0 |= SAFE_SA_CMD0_OP_BOTH;
973	}
974
975	if (enccrd) {
976		if (enccrd->crd_flags & CRD_F_KEY_EXPLICIT)
977			safe_setup_enckey(ses, enccrd->crd_key);
978
979		if (enccrd->crd_alg == CRYPTO_DES_CBC) {
980			cmd0 |= SAFE_SA_CMD0_DES;
981			cmd1 |= SAFE_SA_CMD1_CBC;
982			ivsize = 2*sizeof(u_int32_t);
983		} else if (enccrd->crd_alg == CRYPTO_3DES_CBC) {
984			cmd0 |= SAFE_SA_CMD0_3DES;
985			cmd1 |= SAFE_SA_CMD1_CBC;
986			ivsize = 2*sizeof(u_int32_t);
987		} else if (enccrd->crd_alg == CRYPTO_AES_CBC) {
988			cmd0 |= SAFE_SA_CMD0_AES;
989			cmd1 |= SAFE_SA_CMD1_CBC;
990			if (ses->ses_klen == 128)
991			     cmd1 |=  SAFE_SA_CMD1_AES128;
992			else if (ses->ses_klen == 192)
993			     cmd1 |=  SAFE_SA_CMD1_AES192;
994			else
995			     cmd1 |=  SAFE_SA_CMD1_AES256;
996			ivsize = 4*sizeof(u_int32_t);
997		} else {
998			cmd0 |= SAFE_SA_CMD0_CRYPT_NULL;
999			ivsize = 0;
1000		}
1001
1002		/*
1003		 * Setup encrypt/decrypt state.  When using basic ops
1004		 * we can't use an inline IV because hash/crypt offset
1005		 * must be from the end of the IV to the start of the
1006		 * crypt data and this leaves out the preceding header
1007		 * from the hash calculation.  Instead we place the IV
1008		 * in the state record and set the hash/crypt offset to
1009		 * copy both the header+IV.
1010		 */
1011		if (enccrd->crd_flags & CRD_F_ENCRYPT) {
1012			cmd0 |= SAFE_SA_CMD0_OUTBOUND;
1013
1014			if (enccrd->crd_flags & CRD_F_IV_EXPLICIT)
1015				iv = enccrd->crd_iv;
1016			else
1017				iv = (caddr_t) ses->ses_iv;
1018			if ((enccrd->crd_flags & CRD_F_IV_PRESENT) == 0) {
1019				crypto_copyback(crp->crp_flags, crp->crp_buf,
1020				    enccrd->crd_inject, ivsize, iv);
1021			}
1022			bcopy(iv, re->re_sastate.sa_saved_iv, ivsize);
1023			cmd0 |= SAFE_SA_CMD0_IVLD_STATE | SAFE_SA_CMD0_SAVEIV;
1024			re->re_flags |= SAFE_QFLAGS_COPYOUTIV;
1025		} else {
1026			cmd0 |= SAFE_SA_CMD0_INBOUND;
1027
1028			if (enccrd->crd_flags & CRD_F_IV_EXPLICIT) {
1029				bcopy(enccrd->crd_iv,
1030					re->re_sastate.sa_saved_iv, ivsize);
1031			} else {
1032				crypto_copydata(crp->crp_flags, crp->crp_buf,
1033				    enccrd->crd_inject, ivsize,
1034				    (caddr_t)re->re_sastate.sa_saved_iv);
1035			}
1036			cmd0 |= SAFE_SA_CMD0_IVLD_STATE;
1037		}
1038		/*
1039		 * For basic encryption use the zero pad algorithm.
1040		 * This pads results to an 8-byte boundary and
1041		 * suppresses padding verification for inbound (i.e.
1042		 * decrypt) operations.
1043		 *
1044		 * NB: Not sure if the 8-byte pad boundary is a problem.
1045		 */
1046		cmd0 |= SAFE_SA_CMD0_PAD_ZERO;
1047
1048		/* XXX assert key bufs have the same size */
1049		bcopy(ses->ses_key, sa->sa_key, sizeof(sa->sa_key));
1050	}
1051
1052	if (maccrd) {
1053		if (maccrd->crd_flags & CRD_F_KEY_EXPLICIT) {
1054			safe_setup_mackey(ses, maccrd->crd_alg,
1055			    maccrd->crd_key, maccrd->crd_klen / 8);
1056		}
1057
1058		if (maccrd->crd_alg == CRYPTO_MD5_HMAC) {
1059			cmd0 |= SAFE_SA_CMD0_MD5;
1060			cmd1 |= SAFE_SA_CMD1_HMAC;	/* NB: enable HMAC */
1061		} else if (maccrd->crd_alg == CRYPTO_SHA1_HMAC) {
1062			cmd0 |= SAFE_SA_CMD0_SHA1;
1063			cmd1 |= SAFE_SA_CMD1_HMAC;	/* NB: enable HMAC */
1064		} else {
1065			cmd0 |= SAFE_SA_CMD0_HASH_NULL;
1066		}
1067		/*
1068		 * Digest data is loaded from the SA and the hash
1069		 * result is saved to the state block where we
1070		 * retrieve it for return to the caller.
1071		 */
1072		/* XXX assert digest bufs have the same size */
1073		bcopy(ses->ses_hminner, sa->sa_indigest,
1074			sizeof(sa->sa_indigest));
1075		bcopy(ses->ses_hmouter, sa->sa_outdigest,
1076			sizeof(sa->sa_outdigest));
1077
1078		cmd0 |= SAFE_SA_CMD0_HSLD_SA | SAFE_SA_CMD0_SAVEHASH;
1079		re->re_flags |= SAFE_QFLAGS_COPYOUTICV;
1080	}
1081
1082	if (enccrd && maccrd) {
1083		/*
1084		 * The offset from hash data to the start of
1085		 * crypt data is the difference in the skips.
1086		 */
1087		bypass = maccrd->crd_skip;
1088		coffset = enccrd->crd_skip - maccrd->crd_skip;
1089		if (coffset < 0) {
1090			DPRINTF(("%s: hash does not precede crypt; "
1091				"mac skip %u enc skip %u\n",
1092				__func__, maccrd->crd_skip, enccrd->crd_skip));
1093			safestats.st_skipmismatch++;
1094			err = EINVAL;
1095			goto errout;
1096		}
1097		oplen = enccrd->crd_skip + enccrd->crd_len;
1098		if (maccrd->crd_skip + maccrd->crd_len != oplen) {
1099			DPRINTF(("%s: hash amount %u != crypt amount %u\n",
1100				__func__, maccrd->crd_skip + maccrd->crd_len,
1101				oplen));
1102			safestats.st_lenmismatch++;
1103			err = EINVAL;
1104			goto errout;
1105		}
1106#ifdef SAFE_DEBUG
1107		if (safe_debug) {
1108			printf("mac: skip %d, len %d, inject %d\n",
1109			    maccrd->crd_skip, maccrd->crd_len,
1110			    maccrd->crd_inject);
1111			printf("enc: skip %d, len %d, inject %d\n",
1112			    enccrd->crd_skip, enccrd->crd_len,
1113			    enccrd->crd_inject);
1114			printf("bypass %d coffset %d oplen %d\n",
1115				bypass, coffset, oplen);
1116		}
1117#endif
1118		if (coffset & 3) {	/* offset must be 32-bit aligned */
1119			DPRINTF(("%s: coffset %u misaligned\n",
1120				__func__, coffset));
1121			safestats.st_coffmisaligned++;
1122			err = EINVAL;
1123			goto errout;
1124		}
1125		coffset >>= 2;
1126		if (coffset > 255) {	/* offset must be <256 dwords */
1127			DPRINTF(("%s: coffset %u too big\n",
1128				__func__, coffset));
1129			safestats.st_cofftoobig++;
1130			err = EINVAL;
1131			goto errout;
1132		}
1133		/*
1134		 * Tell the hardware to copy the header to the output.
1135		 * The header is defined as the data from the end of
1136		 * the bypass to the start of data to be encrypted.
1137		 * Typically this is the inline IV.  Note that you need
1138		 * to do this even if src+dst are the same; it appears
1139		 * that w/o this bit the crypted data is written
1140		 * immediately after the bypass data.
1141		 */
1142		cmd1 |= SAFE_SA_CMD1_HDRCOPY;
1143		/*
1144		 * Disable IP header mutable bit handling.  This is
1145		 * needed to get correct HMAC calculations.
1146		 */
1147		cmd1 |= SAFE_SA_CMD1_MUTABLE;
1148	} else {
1149		if (enccrd) {
1150			bypass = enccrd->crd_skip;
1151			oplen = bypass + enccrd->crd_len;
1152		} else {
1153			bypass = maccrd->crd_skip;
1154			oplen = bypass + maccrd->crd_len;
1155		}
1156		coffset = 0;
1157	}
1158	/* XXX verify multiple of 4 when using s/g */
1159	if (bypass > 96) {		/* bypass offset must be <= 96 bytes */
1160		DPRINTF(("%s: bypass %u too big\n", __func__, bypass));
1161		safestats.st_bypasstoobig++;
1162		err = EINVAL;
1163		goto errout;
1164	}
1165
1166	if (bus_dmamap_create(sc->sc_srcdmat, BUS_DMA_NOWAIT, &re->re_src_map)) {
1167		safestats.st_nomap++;
1168		err = ENOMEM;
1169		goto errout;
1170	}
1171	if (crp->crp_flags & CRYPTO_F_IMBUF) {
1172		if (bus_dmamap_load_mbuf(sc->sc_srcdmat, re->re_src_map,
1173		    re->re_src_m, safe_op_cb,
1174		    &re->re_src, BUS_DMA_NOWAIT) != 0) {
1175			bus_dmamap_destroy(sc->sc_srcdmat, re->re_src_map);
1176			re->re_src_map = NULL;
1177			safestats.st_noload++;
1178			err = ENOMEM;
1179			goto errout;
1180		}
1181	} else if (crp->crp_flags & CRYPTO_F_IOV) {
1182		if (bus_dmamap_load_uio(sc->sc_srcdmat, re->re_src_map,
1183		    re->re_src_io, safe_op_cb,
1184		    &re->re_src, BUS_DMA_NOWAIT) != 0) {
1185			bus_dmamap_destroy(sc->sc_srcdmat, re->re_src_map);
1186			re->re_src_map = NULL;
1187			safestats.st_noload++;
1188			err = ENOMEM;
1189			goto errout;
1190		}
1191	}
1192	nicealign = safe_dmamap_aligned(&re->re_src);
1193	uniform = safe_dmamap_uniform(&re->re_src);
1194
1195	DPRINTF(("src nicealign %u uniform %u nsegs %u\n",
1196		nicealign, uniform, re->re_src.nsegs));
1197	if (re->re_src.nsegs > 1) {
1198		re->re_desc.d_src = sc->sc_spalloc.dma_paddr +
1199			((caddr_t) sc->sc_spfree - (caddr_t) sc->sc_spring);
1200		for (i = 0; i < re->re_src_nsegs; i++) {
1201			/* NB: no need to check if there's space */
1202			pd = sc->sc_spfree;
1203			if (++(sc->sc_spfree) == sc->sc_springtop)
1204				sc->sc_spfree = sc->sc_spring;
1205
1206			KASSERT((pd->pd_flags&3) == 0 ||
1207				(pd->pd_flags&3) == SAFE_PD_DONE,
1208				("bogus source particle descriptor; flags %x",
1209				pd->pd_flags));
1210			pd->pd_addr = re->re_src_segs[i].ds_addr;
1211			pd->pd_size = re->re_src_segs[i].ds_len;
1212			pd->pd_flags = SAFE_PD_READY;
1213		}
1214		cmd0 |= SAFE_SA_CMD0_IGATHER;
1215	} else {
1216		/*
1217		 * No need for gather, reference the operand directly.
1218		 */
1219		re->re_desc.d_src = re->re_src_segs[0].ds_addr;
1220	}
1221
1222	if (enccrd == NULL && maccrd != NULL) {
1223		/*
1224		 * Hash op; no destination needed.
1225		 */
1226	} else {
1227		if (crp->crp_flags & CRYPTO_F_IOV) {
1228			if (!nicealign) {
1229				safestats.st_iovmisaligned++;
1230				err = EINVAL;
1231				goto errout;
1232			}
1233			if (uniform != 1) {
1234				/*
1235				 * Source is not suitable for direct use as
1236				 * the destination.  Create a new scatter/gather
1237				 * list based on the destination requirements
1238				 * and check if that's ok.
1239				 */
1240				if (bus_dmamap_create(sc->sc_dstdmat,
1241				    BUS_DMA_NOWAIT, &re->re_dst_map)) {
1242					safestats.st_nomap++;
1243					err = ENOMEM;
1244					goto errout;
1245				}
1246				if (bus_dmamap_load_uio(sc->sc_dstdmat,
1247				    re->re_dst_map, re->re_dst_io,
1248				    safe_op_cb, &re->re_dst,
1249				    BUS_DMA_NOWAIT) != 0) {
1250					bus_dmamap_destroy(sc->sc_dstdmat,
1251						re->re_dst_map);
1252					re->re_dst_map = NULL;
1253					safestats.st_noload++;
1254					err = ENOMEM;
1255					goto errout;
1256				}
1257				uniform = safe_dmamap_uniform(&re->re_dst);
1258				if (!uniform) {
1259					/*
1260					 * There's no way to handle the DMA
1261					 * requirements with this uio.  We
1262					 * could create a separate DMA area for
1263					 * the result and then copy it back,
1264					 * but for now we just bail and return
1265					 * an error.  Note that uio requests
1266					 * > SAFE_MAX_DSIZE are handled because
1267					 * the DMA map and segment list for the
1268					 * destination wil result in a
1269					 * destination particle list that does
1270					 * the necessary scatter DMA.
1271					 */
1272					safestats.st_iovnotuniform++;
1273					err = EINVAL;
1274					goto errout;
1275				}
1276			} else
1277				re->re_dst = re->re_src;
1278		} else if (crp->crp_flags & CRYPTO_F_IMBUF) {
1279			if (nicealign && uniform == 1) {
1280				/*
1281				 * Source layout is suitable for direct
1282				 * sharing of the DMA map and segment list.
1283				 */
1284				re->re_dst = re->re_src;
1285			} else if (nicealign && uniform == 2) {
1286				/*
1287				 * The source is properly aligned but requires a
1288				 * different particle list to handle DMA of the
1289				 * result.  Create a new map and do the load to
1290				 * create the segment list.  The particle
1291				 * descriptor setup code below will handle the
1292				 * rest.
1293				 */
1294				if (bus_dmamap_create(sc->sc_dstdmat,
1295				    BUS_DMA_NOWAIT, &re->re_dst_map)) {
1296					safestats.st_nomap++;
1297					err = ENOMEM;
1298					goto errout;
1299				}
1300				if (bus_dmamap_load_mbuf(sc->sc_dstdmat,
1301				    re->re_dst_map, re->re_dst_m,
1302				    safe_op_cb, &re->re_dst,
1303				    BUS_DMA_NOWAIT) != 0) {
1304					bus_dmamap_destroy(sc->sc_dstdmat,
1305						re->re_dst_map);
1306					re->re_dst_map = NULL;
1307					safestats.st_noload++;
1308					err = ENOMEM;
1309					goto errout;
1310				}
1311			} else {		/* !(aligned and/or uniform) */
1312				int totlen, len;
1313				struct mbuf *m, *top, **mp;
1314
1315				/*
1316				 * DMA constraints require that we allocate a
1317				 * new mbuf chain for the destination.  We
1318				 * allocate an entire new set of mbufs of
1319				 * optimal/required size and then tell the
1320				 * hardware to copy any bits that are not
1321				 * created as a byproduct of the operation.
1322				 */
1323				if (!nicealign)
1324					safestats.st_unaligned++;
1325				if (!uniform)
1326					safestats.st_notuniform++;
1327				totlen = re->re_src_mapsize;
1328				if (re->re_src_m->m_flags & M_PKTHDR) {
1329					len = MHLEN;
1330					MGETHDR(m, M_DONTWAIT, MT_DATA);
1331					if (m && !m_dup_pkthdr(m, re->re_src_m,
1332					    M_DONTWAIT)) {
1333						m_free(m);
1334						m = NULL;
1335					}
1336				} else {
1337					len = MLEN;
1338					MGET(m, M_DONTWAIT, MT_DATA);
1339				}
1340				if (m == NULL) {
1341					safestats.st_nombuf++;
1342					err = sc->sc_nqchip ? ERESTART : ENOMEM;
1343					goto errout;
1344				}
1345				if (totlen >= MINCLSIZE) {
1346					MCLGET(m, M_DONTWAIT);
1347					if ((m->m_flags & M_EXT) == 0) {
1348						m_free(m);
1349						safestats.st_nomcl++;
1350						err = sc->sc_nqchip ?
1351							ERESTART : ENOMEM;
1352						goto errout;
1353					}
1354					len = MCLBYTES;
1355				}
1356				m->m_len = len;
1357				top = NULL;
1358				mp = &top;
1359
1360				while (totlen > 0) {
1361					if (top) {
1362						MGET(m, M_DONTWAIT, MT_DATA);
1363						if (m == NULL) {
1364							m_freem(top);
1365							safestats.st_nombuf++;
1366							err = sc->sc_nqchip ?
1367							    ERESTART : ENOMEM;
1368							goto errout;
1369						}
1370						len = MLEN;
1371					}
1372					if (top && totlen >= MINCLSIZE) {
1373						MCLGET(m, M_DONTWAIT);
1374						if ((m->m_flags & M_EXT) == 0) {
1375							*mp = m;
1376							m_freem(top);
1377							safestats.st_nomcl++;
1378							err = sc->sc_nqchip ?
1379							    ERESTART : ENOMEM;
1380							goto errout;
1381						}
1382						len = MCLBYTES;
1383					}
1384					m->m_len = len = min(totlen, len);
1385					totlen -= len;
1386					*mp = m;
1387					mp = &m->m_next;
1388				}
1389				re->re_dst_m = top;
1390				if (bus_dmamap_create(sc->sc_dstdmat,
1391				    BUS_DMA_NOWAIT, &re->re_dst_map) != 0) {
1392					safestats.st_nomap++;
1393					err = ENOMEM;
1394					goto errout;
1395				}
1396				if (bus_dmamap_load_mbuf(sc->sc_dstdmat,
1397				    re->re_dst_map, re->re_dst_m,
1398				    safe_op_cb, &re->re_dst,
1399				    BUS_DMA_NOWAIT) != 0) {
1400					bus_dmamap_destroy(sc->sc_dstdmat,
1401					re->re_dst_map);
1402					re->re_dst_map = NULL;
1403					safestats.st_noload++;
1404					err = ENOMEM;
1405					goto errout;
1406				}
1407				if (re->re_src.mapsize > oplen) {
1408					/*
1409					 * There's data following what the
1410					 * hardware will copy for us.  If this
1411					 * isn't just the ICV (that's going to
1412					 * be written on completion), copy it
1413					 * to the new mbufs
1414					 */
1415					if (!(maccrd &&
1416					    (re->re_src.mapsize-oplen) == 12 &&
1417					    maccrd->crd_inject == oplen))
1418						safe_mcopy(re->re_src_m,
1419							   re->re_dst_m,
1420							   oplen);
1421					else
1422						safestats.st_noicvcopy++;
1423				}
1424			}
1425		} else {
1426			safestats.st_badflags++;
1427			err = EINVAL;
1428			goto errout;
1429		}
1430
1431		if (re->re_dst.nsegs > 1) {
1432			re->re_desc.d_dst = sc->sc_dpalloc.dma_paddr +
1433			    ((caddr_t) sc->sc_dpfree - (caddr_t) sc->sc_dpring);
1434			for (i = 0; i < re->re_dst_nsegs; i++) {
1435				pd = sc->sc_dpfree;
1436				KASSERT((pd->pd_flags&3) == 0 ||
1437					(pd->pd_flags&3) == SAFE_PD_DONE,
1438					("bogus dest particle descriptor; flags %x",
1439						pd->pd_flags));
1440				if (++(sc->sc_dpfree) == sc->sc_dpringtop)
1441					sc->sc_dpfree = sc->sc_dpring;
1442				pd->pd_addr = re->re_dst_segs[i].ds_addr;
1443				pd->pd_flags = SAFE_PD_READY;
1444			}
1445			cmd0 |= SAFE_SA_CMD0_OSCATTER;
1446		} else {
1447			/*
1448			 * No need for scatter, reference the operand directly.
1449			 */
1450			re->re_desc.d_dst = re->re_dst_segs[0].ds_addr;
1451		}
1452	}
1453
1454	/*
1455	 * All done with setup; fillin the SA command words
1456	 * and the packet engine descriptor.  The operation
1457	 * is now ready for submission to the hardware.
1458	 */
1459	sa->sa_cmd0 = cmd0 | SAFE_SA_CMD0_IPCI | SAFE_SA_CMD0_OPCI;
1460	sa->sa_cmd1 = cmd1
1461		    | (coffset << SAFE_SA_CMD1_OFFSET_S)
1462		    | SAFE_SA_CMD1_SAREV1	/* Rev 1 SA data structure */
1463		    | SAFE_SA_CMD1_SRPCI
1464		    ;
1465	/*
1466	 * NB: the order of writes is important here.  In case the
1467	 * chip is scanning the ring because of an outstanding request
1468	 * it might nab this one too.  In that case we need to make
1469	 * sure the setup is complete before we write the length
1470	 * field of the descriptor as it signals the descriptor is
1471	 * ready for processing.
1472	 */
1473	re->re_desc.d_csr = SAFE_PE_CSR_READY | SAFE_PE_CSR_SAPCI;
1474	if (maccrd)
1475		re->re_desc.d_csr |= SAFE_PE_CSR_LOADSA | SAFE_PE_CSR_HASHFINAL;
1476	re->re_desc.d_len = oplen
1477			  | SAFE_PE_LEN_READY
1478			  | (bypass << SAFE_PE_LEN_BYPASS_S)
1479			  ;
1480
1481	safestats.st_ipackets++;
1482	safestats.st_ibytes += oplen;
1483
1484	if (++(sc->sc_front) == sc->sc_ringtop)
1485		sc->sc_front = sc->sc_ring;
1486
1487	/* XXX honor batching */
1488	safe_feed(sc, re);
1489	mtx_unlock(&sc->sc_ringmtx);
1490	return (0);
1491
1492errout:
1493	if ((re->re_dst_m != NULL) && (re->re_src_m != re->re_dst_m))
1494		m_freem(re->re_dst_m);
1495
1496	if (re->re_dst_map != NULL && re->re_dst_map != re->re_src_map) {
1497		bus_dmamap_unload(sc->sc_dstdmat, re->re_dst_map);
1498		bus_dmamap_destroy(sc->sc_dstdmat, re->re_dst_map);
1499	}
1500	if (re->re_src_map != NULL) {
1501		bus_dmamap_unload(sc->sc_srcdmat, re->re_src_map);
1502		bus_dmamap_destroy(sc->sc_srcdmat, re->re_src_map);
1503	}
1504	mtx_unlock(&sc->sc_ringmtx);
1505	if (err != ERESTART) {
1506		crp->crp_etype = err;
1507		crypto_done(crp);
1508	} else {
1509		sc->sc_needwakeup |= CRYPTO_SYMQ;
1510	}
1511	return (err);
1512}
1513
1514static void
1515safe_callback(struct safe_softc *sc, struct safe_ringentry *re)
1516{
1517	struct cryptop *crp = (struct cryptop *)re->re_crp;
1518	struct cryptodesc *crd;
1519
1520	safestats.st_opackets++;
1521	safestats.st_obytes += re->re_dst.mapsize;
1522
1523	safe_dma_sync(&sc->sc_ringalloc,
1524		BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1525	if (re->re_desc.d_csr & SAFE_PE_CSR_STATUS) {
1526		device_printf(sc->sc_dev, "csr 0x%x cmd0 0x%x cmd1 0x%x\n",
1527			re->re_desc.d_csr,
1528			re->re_sa.sa_cmd0, re->re_sa.sa_cmd1);
1529		safestats.st_peoperr++;
1530		crp->crp_etype = EIO;		/* something more meaningful? */
1531	}
1532	if (re->re_dst_map != NULL && re->re_dst_map != re->re_src_map) {
1533		bus_dmamap_sync(sc->sc_dstdmat, re->re_dst_map,
1534		    BUS_DMASYNC_POSTREAD);
1535		bus_dmamap_unload(sc->sc_dstdmat, re->re_dst_map);
1536		bus_dmamap_destroy(sc->sc_dstdmat, re->re_dst_map);
1537	}
1538	bus_dmamap_sync(sc->sc_srcdmat, re->re_src_map, BUS_DMASYNC_POSTWRITE);
1539	bus_dmamap_unload(sc->sc_srcdmat, re->re_src_map);
1540	bus_dmamap_destroy(sc->sc_srcdmat, re->re_src_map);
1541
1542	/*
1543	 * If result was written to a differet mbuf chain, swap
1544	 * it in as the return value and reclaim the original.
1545	 */
1546	if ((crp->crp_flags & CRYPTO_F_IMBUF) && re->re_src_m != re->re_dst_m) {
1547		m_freem(re->re_src_m);
1548		crp->crp_buf = (caddr_t)re->re_dst_m;
1549	}
1550
1551	if (re->re_flags & SAFE_QFLAGS_COPYOUTIV) {
1552		/* copy out IV for future use */
1553		for (crd = crp->crp_desc; crd; crd = crd->crd_next) {
1554			int ivsize;
1555
1556			if (crd->crd_alg == CRYPTO_DES_CBC ||
1557			    crd->crd_alg == CRYPTO_3DES_CBC) {
1558				ivsize = 2*sizeof(u_int32_t);
1559			} else if (crd->crd_alg == CRYPTO_AES_CBC) {
1560				ivsize = 4*sizeof(u_int32_t);
1561			} else
1562				continue;
1563			crypto_copydata(crp->crp_flags, crp->crp_buf,
1564			    crd->crd_skip + crd->crd_len - ivsize, ivsize,
1565			    (caddr_t)sc->sc_sessions[re->re_sesn].ses_iv);
1566			break;
1567		}
1568	}
1569
1570	if (re->re_flags & SAFE_QFLAGS_COPYOUTICV) {
1571		/* copy out ICV result */
1572		for (crd = crp->crp_desc; crd; crd = crd->crd_next) {
1573			if (!(crd->crd_alg == CRYPTO_MD5_HMAC ||
1574			    crd->crd_alg == CRYPTO_SHA1_HMAC ||
1575			    crd->crd_alg == CRYPTO_NULL_HMAC))
1576				continue;
1577			if (crd->crd_alg == CRYPTO_SHA1_HMAC) {
1578				/*
1579				 * SHA-1 ICV's are byte-swapped; fix 'em up
1580				 * before copy them to their destination.
1581				 */
1582				bswap32(re->re_sastate.sa_saved_indigest[0]);
1583				bswap32(re->re_sastate.sa_saved_indigest[1]);
1584				bswap32(re->re_sastate.sa_saved_indigest[2]);
1585			}
1586			crypto_copyback(crp->crp_flags, crp->crp_buf,
1587			    crd->crd_inject,
1588			    sc->sc_sessions[re->re_sesn].ses_mlen,
1589			    (caddr_t)re->re_sastate.sa_saved_indigest);
1590			break;
1591		}
1592	}
1593	crypto_done(crp);
1594}
1595
1596/*
1597 * Copy all data past offset from srcm to dstm.
1598 */
1599static void
1600safe_mcopy(struct mbuf *srcm, struct mbuf *dstm, u_int offset)
1601{
1602	u_int j, dlen, slen;
1603	caddr_t dptr, sptr;
1604
1605	/*
1606	 * Advance src and dst to offset.
1607	 */
1608	j = offset;
1609	while (j >= 0) {
1610		if (srcm->m_len > j)
1611			break;
1612		j -= srcm->m_len;
1613		srcm = srcm->m_next;
1614		if (srcm == NULL)
1615			return;
1616	}
1617	sptr = mtod(srcm, caddr_t) + j;
1618	slen = srcm->m_len - j;
1619
1620	j = offset;
1621	while (j >= 0) {
1622		if (dstm->m_len > j)
1623			break;
1624		j -= dstm->m_len;
1625		dstm = dstm->m_next;
1626		if (dstm == NULL)
1627			return;
1628	}
1629	dptr = mtod(dstm, caddr_t) + j;
1630	dlen = dstm->m_len - j;
1631
1632	/*
1633	 * Copy everything that remains.
1634	 */
1635	for (;;) {
1636		j = min(slen, dlen);
1637		bcopy(sptr, dptr, j);
1638		if (slen == j) {
1639			srcm = srcm->m_next;
1640			if (srcm == NULL)
1641				return;
1642			sptr = srcm->m_data;
1643			slen = srcm->m_len;
1644		} else
1645			sptr += j, slen -= j;
1646		if (dlen == j) {
1647			dstm = dstm->m_next;
1648			if (dstm == NULL)
1649				return;
1650			dptr = dstm->m_data;
1651			dlen = dstm->m_len;
1652		} else
1653			dptr += j, dlen -= j;
1654	}
1655}
1656
1657#ifndef SAFE_NO_RNG
1658#define	SAFE_RNG_MAXWAIT	1000
1659
1660static void
1661safe_rng_init(struct safe_softc *sc)
1662{
1663	u_int32_t w, v;
1664	int i;
1665
1666	WRITE_REG(sc, SAFE_RNG_CTRL, 0);
1667	/* use default value according to the manual */
1668	WRITE_REG(sc, SAFE_RNG_CNFG, 0x834);	/* magic from SafeNet */
1669	WRITE_REG(sc, SAFE_RNG_ALM_CNT, 0);
1670
1671	/*
1672	 * There is a bug in rev 1.0 of the 1140 that when the RNG
1673	 * is brought out of reset the ready status flag does not
1674	 * work until the RNG has finished its internal initialization.
1675	 *
1676	 * So in order to determine the device is through its
1677	 * initialization we must read the data register, using the
1678	 * status reg in the read in case it is initialized.  Then read
1679	 * the data register until it changes from the first read.
1680	 * Once it changes read the data register until it changes
1681	 * again.  At this time the RNG is considered initialized.
1682	 * This could take between 750ms - 1000ms in time.
1683	 */
1684	i = 0;
1685	w = READ_REG(sc, SAFE_RNG_OUT);
1686	do {
1687		v = READ_REG(sc, SAFE_RNG_OUT);
1688		if (v != w) {
1689			w = v;
1690			break;
1691		}
1692		DELAY(10);
1693	} while (++i < SAFE_RNG_MAXWAIT);
1694
1695	/* Wait Until data changes again */
1696	i = 0;
1697	do {
1698		v = READ_REG(sc, SAFE_RNG_OUT);
1699		if (v != w)
1700			break;
1701		DELAY(10);
1702	} while (++i < SAFE_RNG_MAXWAIT);
1703}
1704
1705static __inline void
1706safe_rng_disable_short_cycle(struct safe_softc *sc)
1707{
1708	WRITE_REG(sc, SAFE_RNG_CTRL,
1709		READ_REG(sc, SAFE_RNG_CTRL) &~ SAFE_RNG_CTRL_SHORTEN);
1710}
1711
1712static __inline void
1713safe_rng_enable_short_cycle(struct safe_softc *sc)
1714{
1715	WRITE_REG(sc, SAFE_RNG_CTRL,
1716		READ_REG(sc, SAFE_RNG_CTRL) | SAFE_RNG_CTRL_SHORTEN);
1717}
1718
1719static __inline u_int32_t
1720safe_rng_read(struct safe_softc *sc)
1721{
1722	int i;
1723
1724	i = 0;
1725	while (READ_REG(sc, SAFE_RNG_STAT) != 0 && ++i < SAFE_RNG_MAXWAIT)
1726		;
1727	return READ_REG(sc, SAFE_RNG_OUT);
1728}
1729
1730static void
1731safe_rng(void *arg)
1732{
1733	struct safe_softc *sc = arg;
1734	u_int32_t buf[SAFE_RNG_MAXBUFSIZ];	/* NB: maybe move to softc */
1735	u_int maxwords;
1736	int i;
1737
1738	safestats.st_rng++;
1739	/*
1740	 * Fetch the next block of data.
1741	 */
1742	maxwords = safe_rngbufsize;
1743	if (maxwords > SAFE_RNG_MAXBUFSIZ)
1744		maxwords = SAFE_RNG_MAXBUFSIZ;
1745retry:
1746	for (i = 0; i < maxwords; i++)
1747		buf[i] = safe_rng_read(sc);
1748	/*
1749	 * Check the comparator alarm count and reset the h/w if
1750	 * it exceeds our threshold.  This guards against the
1751	 * hardware oscillators resonating with external signals.
1752	 */
1753	if (READ_REG(sc, SAFE_RNG_ALM_CNT) > safe_rngmaxalarm) {
1754		u_int32_t freq_inc, w;
1755
1756		DPRINTF(("%s: alarm count %u exceeds threshold %u\n", __func__,
1757			READ_REG(sc, SAFE_RNG_ALM_CNT), safe_rngmaxalarm));
1758		safestats.st_rngalarm++;
1759		safe_rng_enable_short_cycle(sc);
1760		freq_inc = 18;
1761		for (i = 0; i < 64; i++) {
1762			w = READ_REG(sc, SAFE_RNG_CNFG);
1763			freq_inc = ((w + freq_inc) & 0x3fL);
1764			w = ((w & ~0x3fL) | freq_inc);
1765			WRITE_REG(sc, SAFE_RNG_CNFG, w);
1766
1767			WRITE_REG(sc, SAFE_RNG_ALM_CNT, 0);
1768
1769			(void) safe_rng_read(sc);
1770			DELAY(25);
1771
1772			if (READ_REG(sc, SAFE_RNG_ALM_CNT) == 0) {
1773				safe_rng_disable_short_cycle(sc);
1774				goto retry;
1775			}
1776			freq_inc = 1;
1777		}
1778		safe_rng_disable_short_cycle(sc);
1779	} else
1780		WRITE_REG(sc, SAFE_RNG_ALM_CNT, 0);
1781
1782	(*sc->sc_harvest)(sc->sc_rndtest, buf, maxwords*sizeof (u_int32_t));
1783	callout_reset(&sc->sc_rngto,
1784		hz * (safe_rnginterval ? safe_rnginterval : 1), safe_rng, sc);
1785}
1786#endif /* SAFE_NO_RNG */
1787
1788static void
1789safe_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1790{
1791	bus_addr_t *paddr = (bus_addr_t*) arg;
1792	*paddr = segs->ds_addr;
1793}
1794
1795static int
1796safe_dma_malloc(
1797	struct safe_softc *sc,
1798	bus_size_t size,
1799	struct safe_dma_alloc *dma,
1800	int mapflags
1801)
1802{
1803	int r;
1804
1805	r = bus_dma_tag_create(NULL,			/* parent */
1806			       sizeof(u_int32_t), 0,	/* alignment, bounds */
1807			       BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
1808			       BUS_SPACE_MAXADDR,	/* highaddr */
1809			       NULL, NULL,		/* filter, filterarg */
1810			       size,			/* maxsize */
1811			       1,			/* nsegments */
1812			       size,			/* maxsegsize */
1813			       BUS_DMA_ALLOCNOW,	/* flags */
1814			       NULL, NULL,		/* locking */
1815			       &dma->dma_tag);
1816	if (r != 0) {
1817		device_printf(sc->sc_dev, "safe_dma_malloc: "
1818			"bus_dma_tag_create failed; error %u\n", r);
1819		goto fail_0;
1820	}
1821
1822	r = bus_dmamap_create(dma->dma_tag, BUS_DMA_NOWAIT, &dma->dma_map);
1823	if (r != 0) {
1824		device_printf(sc->sc_dev, "safe_dma_malloc: "
1825			"bus_dmamap_create failed; error %u\n", r);
1826		goto fail_1;
1827	}
1828
1829	r = bus_dmamem_alloc(dma->dma_tag, (void**) &dma->dma_vaddr,
1830			     BUS_DMA_NOWAIT, &dma->dma_map);
1831	if (r != 0) {
1832		device_printf(sc->sc_dev, "safe_dma_malloc: "
1833			"bus_dmammem_alloc failed; size %zu, error %u\n",
1834			size, r);
1835		goto fail_2;
1836	}
1837
1838	r = bus_dmamap_load(dma->dma_tag, dma->dma_map, dma->dma_vaddr,
1839		            size,
1840			    safe_dmamap_cb,
1841			    &dma->dma_paddr,
1842			    mapflags | BUS_DMA_NOWAIT);
1843	if (r != 0) {
1844		device_printf(sc->sc_dev, "safe_dma_malloc: "
1845			"bus_dmamap_load failed; error %u\n", r);
1846		goto fail_3;
1847	}
1848
1849	dma->dma_size = size;
1850	return (0);
1851
1852fail_3:
1853	bus_dmamap_unload(dma->dma_tag, dma->dma_map);
1854fail_2:
1855	bus_dmamem_free(dma->dma_tag, dma->dma_vaddr, dma->dma_map);
1856fail_1:
1857	bus_dmamap_destroy(dma->dma_tag, dma->dma_map);
1858	bus_dma_tag_destroy(dma->dma_tag);
1859fail_0:
1860	dma->dma_map = NULL;
1861	dma->dma_tag = NULL;
1862	return (r);
1863}
1864
1865static void
1866safe_dma_free(struct safe_softc *sc, struct safe_dma_alloc *dma)
1867{
1868	bus_dmamap_unload(dma->dma_tag, dma->dma_map);
1869	bus_dmamem_free(dma->dma_tag, dma->dma_vaddr, dma->dma_map);
1870	bus_dmamap_destroy(dma->dma_tag, dma->dma_map);
1871	bus_dma_tag_destroy(dma->dma_tag);
1872}
1873
1874/*
1875 * Resets the board.  Values in the regesters are left as is
1876 * from the reset (i.e. initial values are assigned elsewhere).
1877 */
1878static void
1879safe_reset_board(struct safe_softc *sc)
1880{
1881	u_int32_t v;
1882	/*
1883	 * Reset the device.  The manual says no delay
1884	 * is needed between marking and clearing reset.
1885	 */
1886	v = READ_REG(sc, SAFE_PE_DMACFG) &~
1887		(SAFE_PE_DMACFG_PERESET | SAFE_PE_DMACFG_PDRRESET |
1888		 SAFE_PE_DMACFG_SGRESET);
1889	WRITE_REG(sc, SAFE_PE_DMACFG, v
1890				    | SAFE_PE_DMACFG_PERESET
1891				    | SAFE_PE_DMACFG_PDRRESET
1892				    | SAFE_PE_DMACFG_SGRESET);
1893	WRITE_REG(sc, SAFE_PE_DMACFG, v);
1894}
1895
1896/*
1897 * Initialize registers we need to touch only once.
1898 */
1899static void
1900safe_init_board(struct safe_softc *sc)
1901{
1902	u_int32_t v, dwords;
1903
1904	v = READ_REG(sc, SAFE_PE_DMACFG);;
1905	v &=~ SAFE_PE_DMACFG_PEMODE;
1906	v |= SAFE_PE_DMACFG_FSENA		/* failsafe enable */
1907	  |  SAFE_PE_DMACFG_GPRPCI		/* gather ring on PCI */
1908	  |  SAFE_PE_DMACFG_SPRPCI		/* scatter ring on PCI */
1909	  |  SAFE_PE_DMACFG_ESDESC		/* endian-swap descriptors */
1910	  |  SAFE_PE_DMACFG_ESSA		/* endian-swap SA's */
1911	  |  SAFE_PE_DMACFG_ESPDESC		/* endian-swap part. desc's */
1912	  ;
1913	WRITE_REG(sc, SAFE_PE_DMACFG, v);
1914#if 0
1915	/* XXX select byte swap based on host byte order */
1916	WRITE_REG(sc, SAFE_ENDIAN, 0x1b);
1917#endif
1918	if (sc->sc_chiprev == SAFE_REV(1,0)) {
1919		/*
1920		 * Avoid large PCI DMA transfers.  Rev 1.0 has a bug where
1921		 * "target mode transfers" done while the chip is DMA'ing
1922		 * >1020 bytes cause the hardware to lockup.  To avoid this
1923		 * we reduce the max PCI transfer size and use small source
1924		 * particle descriptors (<= 256 bytes).
1925		 */
1926		WRITE_REG(sc, SAFE_DMA_CFG, 256);
1927		device_printf(sc->sc_dev,
1928			"Reduce max DMA size to %u words for rev %u.%u WAR\n",
1929			(READ_REG(sc, SAFE_DMA_CFG)>>2) & 0xff,
1930			SAFE_REV_MAJ(sc->sc_chiprev),
1931			SAFE_REV_MIN(sc->sc_chiprev));
1932	}
1933
1934	/* NB: operands+results are overlaid */
1935	WRITE_REG(sc, SAFE_PE_PDRBASE, sc->sc_ringalloc.dma_paddr);
1936	WRITE_REG(sc, SAFE_PE_RDRBASE, sc->sc_ringalloc.dma_paddr);
1937	/*
1938	 * Configure ring entry size and number of items in the ring.
1939	 */
1940	KASSERT((sizeof(struct safe_ringentry) % sizeof(u_int32_t)) == 0,
1941		("PE ring entry not 32-bit aligned!"));
1942	dwords = sizeof(struct safe_ringentry) / sizeof(u_int32_t);
1943	WRITE_REG(sc, SAFE_PE_RINGCFG,
1944		(dwords << SAFE_PE_RINGCFG_OFFSET_S) | SAFE_MAX_NQUEUE);
1945	WRITE_REG(sc, SAFE_PE_RINGPOLL, 0);	/* disable polling */
1946
1947	WRITE_REG(sc, SAFE_PE_GRNGBASE, sc->sc_spalloc.dma_paddr);
1948	WRITE_REG(sc, SAFE_PE_SRNGBASE, sc->sc_dpalloc.dma_paddr);
1949	WRITE_REG(sc, SAFE_PE_PARTSIZE,
1950		(SAFE_TOTAL_DPART<<16) | SAFE_TOTAL_SPART);
1951	/*
1952	 * NB: destination particles are fixed size.  We use
1953	 *     an mbuf cluster and require all results go to
1954	 *     clusters or smaller.
1955	 */
1956	WRITE_REG(sc, SAFE_PE_PARTCFG, SAFE_MAX_DSIZE);
1957
1958	/* it's now safe to enable PE mode, do it */
1959	WRITE_REG(sc, SAFE_PE_DMACFG, v | SAFE_PE_DMACFG_PEMODE);
1960
1961	/*
1962	 * Configure hardware to use level-triggered interrupts and
1963	 * to interrupt after each descriptor is processed.
1964	 */
1965	WRITE_REG(sc, SAFE_HI_CFG, SAFE_HI_CFG_LEVEL);
1966	WRITE_REG(sc, SAFE_HI_DESC_CNT, 1);
1967	WRITE_REG(sc, SAFE_HI_MASK, SAFE_INT_PE_DDONE | SAFE_INT_PE_ERROR);
1968}
1969
1970/*
1971 * Init PCI registers
1972 */
1973static void
1974safe_init_pciregs(device_t dev)
1975{
1976}
1977
1978/*
1979 * Clean up after a chip crash.
1980 * It is assumed that the caller in splimp()
1981 */
1982static void
1983safe_cleanchip(struct safe_softc *sc)
1984{
1985
1986	if (sc->sc_nqchip != 0) {
1987		struct safe_ringentry *re = sc->sc_back;
1988
1989		while (re != sc->sc_front) {
1990			if (re->re_desc.d_csr != 0)
1991				safe_free_entry(sc, re);
1992			if (++re == sc->sc_ringtop)
1993				re = sc->sc_ring;
1994		}
1995		sc->sc_back = re;
1996		sc->sc_nqchip = 0;
1997	}
1998}
1999
2000/*
2001 * free a safe_q
2002 * It is assumed that the caller is within splimp().
2003 */
2004static int
2005safe_free_entry(struct safe_softc *sc, struct safe_ringentry *re)
2006{
2007	struct cryptop *crp;
2008
2009	/*
2010	 * Free header MCR
2011	 */
2012	if ((re->re_dst_m != NULL) && (re->re_src_m != re->re_dst_m))
2013		m_freem(re->re_dst_m);
2014
2015	crp = (struct cryptop *)re->re_crp;
2016
2017	re->re_desc.d_csr = 0;
2018
2019	crp->crp_etype = EFAULT;
2020	crypto_done(crp);
2021	return(0);
2022}
2023
2024/*
2025 * Routine to reset the chip and clean up.
2026 * It is assumed that the caller is in splimp()
2027 */
2028static void
2029safe_totalreset(struct safe_softc *sc)
2030{
2031	safe_reset_board(sc);
2032	safe_init_board(sc);
2033	safe_cleanchip(sc);
2034}
2035
2036/*
2037 * Is the operand suitable aligned for direct DMA.  Each
2038 * segment must be aligned on a 32-bit boundary and all
2039 * but the last segment must be a multiple of 4 bytes.
2040 */
2041static int
2042safe_dmamap_aligned(const struct safe_operand *op)
2043{
2044	int i;
2045
2046	for (i = 0; i < op->nsegs; i++) {
2047		if (op->segs[i].ds_addr & 3)
2048			return (0);
2049		if (i != (op->nsegs - 1) && (op->segs[i].ds_len & 3))
2050			return (0);
2051	}
2052	return (1);
2053}
2054
2055/*
2056 * Is the operand suitable for direct DMA as the destination
2057 * of an operation.  The hardware requires that each ``particle''
2058 * but the last in an operation result have the same size.  We
2059 * fix that size at SAFE_MAX_DSIZE bytes.  This routine returns
2060 * 0 if some segment is not a multiple of of this size, 1 if all
2061 * segments are exactly this size, or 2 if segments are at worst
2062 * a multple of this size.
2063 */
2064static int
2065safe_dmamap_uniform(const struct safe_operand *op)
2066{
2067	int result = 1;
2068
2069	if (op->nsegs > 0) {
2070		int i;
2071
2072		for (i = 0; i < op->nsegs-1; i++) {
2073			if (op->segs[i].ds_len % SAFE_MAX_DSIZE)
2074				return (0);
2075			if (op->segs[i].ds_len != SAFE_MAX_DSIZE)
2076				result = 2;
2077		}
2078	}
2079	return (result);
2080}
2081
2082#ifdef SAFE_DEBUG
2083static void
2084safe_dump_dmastatus(struct safe_softc *sc, const char *tag)
2085{
2086	printf("%s: ENDIAN 0x%x SRC 0x%x DST 0x%x STAT 0x%x\n"
2087		, tag
2088		, READ_REG(sc, SAFE_DMA_ENDIAN)
2089		, READ_REG(sc, SAFE_DMA_SRCADDR)
2090		, READ_REG(sc, SAFE_DMA_DSTADDR)
2091		, READ_REG(sc, SAFE_DMA_STAT)
2092	);
2093}
2094
2095static void
2096safe_dump_intrstate(struct safe_softc *sc, const char *tag)
2097{
2098	printf("%s: HI_CFG 0x%x HI_MASK 0x%x HI_DESC_CNT 0x%x HU_STAT 0x%x HM_STAT 0x%x\n"
2099		, tag
2100		, READ_REG(sc, SAFE_HI_CFG)
2101		, READ_REG(sc, SAFE_HI_MASK)
2102		, READ_REG(sc, SAFE_HI_DESC_CNT)
2103		, READ_REG(sc, SAFE_HU_STAT)
2104		, READ_REG(sc, SAFE_HM_STAT)
2105	);
2106}
2107
2108static void
2109safe_dump_ringstate(struct safe_softc *sc, const char *tag)
2110{
2111	u_int32_t estat = READ_REG(sc, SAFE_PE_ERNGSTAT);
2112
2113	/* NB: assume caller has lock on ring */
2114	printf("%s: ERNGSTAT %x (next %u) back %lu front %lu\n",
2115		tag,
2116		estat, (estat >> SAFE_PE_ERNGSTAT_NEXT_S),
2117		(unsigned long)(sc->sc_back - sc->sc_ring),
2118		(unsigned long)(sc->sc_front - sc->sc_ring));
2119}
2120
2121static void
2122safe_dump_request(struct safe_softc *sc, const char* tag, struct safe_ringentry *re)
2123{
2124	int ix, nsegs;
2125
2126	ix = re - sc->sc_ring;
2127	printf("%s: %p (%u): csr %x src %x dst %x sa %x len %x\n"
2128		, tag
2129		, re, ix
2130		, re->re_desc.d_csr
2131		, re->re_desc.d_src
2132		, re->re_desc.d_dst
2133		, re->re_desc.d_sa
2134		, re->re_desc.d_len
2135	);
2136	if (re->re_src.nsegs > 1) {
2137		ix = (re->re_desc.d_src - sc->sc_spalloc.dma_paddr) /
2138			sizeof(struct safe_pdesc);
2139		for (nsegs = re->re_src.nsegs; nsegs; nsegs--) {
2140			printf(" spd[%u] %p: %p size %u flags %x"
2141				, ix, &sc->sc_spring[ix]
2142				, (caddr_t)(uintptr_t) sc->sc_spring[ix].pd_addr
2143				, sc->sc_spring[ix].pd_size
2144				, sc->sc_spring[ix].pd_flags
2145			);
2146			if (sc->sc_spring[ix].pd_size == 0)
2147				printf(" (zero!)");
2148			printf("\n");
2149			if (++ix == SAFE_TOTAL_SPART)
2150				ix = 0;
2151		}
2152	}
2153	if (re->re_dst.nsegs > 1) {
2154		ix = (re->re_desc.d_dst - sc->sc_dpalloc.dma_paddr) /
2155			sizeof(struct safe_pdesc);
2156		for (nsegs = re->re_dst.nsegs; nsegs; nsegs--) {
2157			printf(" dpd[%u] %p: %p flags %x\n"
2158				, ix, &sc->sc_dpring[ix]
2159				, (caddr_t)(uintptr_t) sc->sc_dpring[ix].pd_addr
2160				, sc->sc_dpring[ix].pd_flags
2161			);
2162			if (++ix == SAFE_TOTAL_DPART)
2163				ix = 0;
2164		}
2165	}
2166	printf("sa: cmd0 %08x cmd1 %08x staterec %x\n",
2167		re->re_sa.sa_cmd0, re->re_sa.sa_cmd1, re->re_sa.sa_staterec);
2168	printf("sa: key %x %x %x %x %x %x %x %x\n"
2169		, re->re_sa.sa_key[0]
2170		, re->re_sa.sa_key[1]
2171		, re->re_sa.sa_key[2]
2172		, re->re_sa.sa_key[3]
2173		, re->re_sa.sa_key[4]
2174		, re->re_sa.sa_key[5]
2175		, re->re_sa.sa_key[6]
2176		, re->re_sa.sa_key[7]
2177	);
2178	printf("sa: indigest %x %x %x %x %x\n"
2179		, re->re_sa.sa_indigest[0]
2180		, re->re_sa.sa_indigest[1]
2181		, re->re_sa.sa_indigest[2]
2182		, re->re_sa.sa_indigest[3]
2183		, re->re_sa.sa_indigest[4]
2184	);
2185	printf("sa: outdigest %x %x %x %x %x\n"
2186		, re->re_sa.sa_outdigest[0]
2187		, re->re_sa.sa_outdigest[1]
2188		, re->re_sa.sa_outdigest[2]
2189		, re->re_sa.sa_outdigest[3]
2190		, re->re_sa.sa_outdigest[4]
2191	);
2192	printf("sr: iv %x %x %x %x\n"
2193		, re->re_sastate.sa_saved_iv[0]
2194		, re->re_sastate.sa_saved_iv[1]
2195		, re->re_sastate.sa_saved_iv[2]
2196		, re->re_sastate.sa_saved_iv[3]
2197	);
2198	printf("sr: hashbc %u indigest %x %x %x %x %x\n"
2199		, re->re_sastate.sa_saved_hashbc
2200		, re->re_sastate.sa_saved_indigest[0]
2201		, re->re_sastate.sa_saved_indigest[1]
2202		, re->re_sastate.sa_saved_indigest[2]
2203		, re->re_sastate.sa_saved_indigest[3]
2204		, re->re_sastate.sa_saved_indigest[4]
2205	);
2206}
2207
2208static void
2209safe_dump_ring(struct safe_softc *sc, const char *tag)
2210{
2211	mtx_lock(&sc->sc_ringmtx);
2212	printf("\nSafeNet Ring State:\n");
2213	safe_dump_intrstate(sc, tag);
2214	safe_dump_dmastatus(sc, tag);
2215	safe_dump_ringstate(sc, tag);
2216	if (sc->sc_nqchip) {
2217		struct safe_ringentry *re = sc->sc_back;
2218		do {
2219			safe_dump_request(sc, tag, re);
2220			if (++re == sc->sc_ringtop)
2221				re = sc->sc_ring;
2222		} while (re != sc->sc_front);
2223	}
2224	mtx_unlock(&sc->sc_ringmtx);
2225}
2226
2227static int
2228sysctl_hw_safe_dump(SYSCTL_HANDLER_ARGS)
2229{
2230	char dmode[64];
2231	int error;
2232
2233	strncpy(dmode, "", sizeof(dmode) - 1);
2234	dmode[sizeof(dmode) - 1] = '\0';
2235	error = sysctl_handle_string(oidp, &dmode[0], sizeof(dmode), req);
2236
2237	if (error == 0 && req->newptr != NULL) {
2238		struct safe_softc *sc = safec;
2239
2240		if (!sc)
2241			return EINVAL;
2242		if (strncmp(dmode, "dma", 3) == 0)
2243			safe_dump_dmastatus(sc, "safe0");
2244		else if (strncmp(dmode, "int", 3) == 0)
2245			safe_dump_intrstate(sc, "safe0");
2246		else if (strncmp(dmode, "ring", 4) == 0)
2247			safe_dump_ring(sc, "safe0");
2248		else
2249			return EINVAL;
2250	}
2251	return error;
2252}
2253SYSCTL_PROC(_hw_safe, OID_AUTO, dump, CTLTYPE_STRING | CTLFLAG_RW,
2254	0, 0, sysctl_hw_safe_dump, "A", "Dump driver state");
2255#endif /* SAFE_DEBUG */
2256