safe.c revision 158705
1/*-
2 * Copyright (c) 2003 Sam Leffler, Errno Consulting
3 * Copyright (c) 2003 Global Technology Associates, Inc.
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 *    notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25 * SUCH DAMAGE.
26 */
27
28#include <sys/cdefs.h>
29__FBSDID("$FreeBSD: head/sys/dev/safe/safe.c 158705 2006-05-17 18:34:26Z pjd $");
30
31/*
32 * SafeNet SafeXcel-1141 hardware crypto accelerator
33 */
34#include "opt_safe.h"
35
36#include <sys/param.h>
37#include <sys/systm.h>
38#include <sys/proc.h>
39#include <sys/errno.h>
40#include <sys/malloc.h>
41#include <sys/kernel.h>
42#include <sys/mbuf.h>
43#include <sys/module.h>
44#include <sys/lock.h>
45#include <sys/mutex.h>
46#include <sys/sysctl.h>
47#include <sys/endian.h>
48
49#include <vm/vm.h>
50#include <vm/pmap.h>
51
52#include <machine/bus.h>
53#include <machine/resource.h>
54#include <sys/bus.h>
55#include <sys/rman.h>
56
57#include <crypto/sha1.h>
58#include <opencrypto/cryptodev.h>
59#include <opencrypto/cryptosoft.h>
60#include <sys/md5.h>
61#include <sys/random.h>
62
63#include <dev/pci/pcivar.h>
64#include <dev/pci/pcireg.h>
65
66#ifdef SAFE_RNDTEST
67#include <dev/rndtest/rndtest.h>
68#endif
69#include <dev/safe/safereg.h>
70#include <dev/safe/safevar.h>
71
72#ifndef bswap32
73#define	bswap32	NTOHL
74#endif
75
76/*
77 * Prototypes and count for the pci_device structure
78 */
79static	int safe_probe(device_t);
80static	int safe_attach(device_t);
81static	int safe_detach(device_t);
82static	int safe_suspend(device_t);
83static	int safe_resume(device_t);
84static	void safe_shutdown(device_t);
85
86static device_method_t safe_methods[] = {
87	/* Device interface */
88	DEVMETHOD(device_probe,		safe_probe),
89	DEVMETHOD(device_attach,	safe_attach),
90	DEVMETHOD(device_detach,	safe_detach),
91	DEVMETHOD(device_suspend,	safe_suspend),
92	DEVMETHOD(device_resume,	safe_resume),
93	DEVMETHOD(device_shutdown,	safe_shutdown),
94
95	/* bus interface */
96	DEVMETHOD(bus_print_child,	bus_generic_print_child),
97	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
98
99	{ 0, 0 }
100};
101static driver_t safe_driver = {
102	"safe",
103	safe_methods,
104	sizeof (struct safe_softc)
105};
106static devclass_t safe_devclass;
107
108DRIVER_MODULE(safe, pci, safe_driver, safe_devclass, 0, 0);
109MODULE_DEPEND(safe, crypto, 1, 1, 1);
110#ifdef SAFE_RNDTEST
111MODULE_DEPEND(safe, rndtest, 1, 1, 1);
112#endif
113
114static	void safe_intr(void *);
115static	int safe_newsession(void *, u_int32_t *, struct cryptoini *);
116static	int safe_freesession(void *, u_int64_t);
117static	int safe_process(void *, struct cryptop *, int);
118static	void safe_callback(struct safe_softc *, struct safe_ringentry *);
119static	void safe_feed(struct safe_softc *, struct safe_ringentry *);
120static	void safe_mcopy(struct mbuf *, struct mbuf *, u_int);
121#ifndef SAFE_NO_RNG
122static	void safe_rng_init(struct safe_softc *);
123static	void safe_rng(void *);
124#endif /* SAFE_NO_RNG */
125static	int safe_dma_malloc(struct safe_softc *, bus_size_t,
126	        struct safe_dma_alloc *, int);
127#define	safe_dma_sync(_dma, _flags) \
128	bus_dmamap_sync((_dma)->dma_tag, (_dma)->dma_map, (_flags))
129static	void safe_dma_free(struct safe_softc *, struct safe_dma_alloc *);
130static	int safe_dmamap_aligned(const struct safe_operand *);
131static	int safe_dmamap_uniform(const struct safe_operand *);
132
133static	void safe_reset_board(struct safe_softc *);
134static	void safe_init_board(struct safe_softc *);
135static	void safe_init_pciregs(device_t dev);
136static	void safe_cleanchip(struct safe_softc *);
137static	void safe_totalreset(struct safe_softc *);
138
139static	int safe_free_entry(struct safe_softc *, struct safe_ringentry *);
140
141SYSCTL_NODE(_hw, OID_AUTO, safe, CTLFLAG_RD, 0, "SafeNet driver parameters");
142
143#ifdef SAFE_DEBUG
144static	void safe_dump_dmastatus(struct safe_softc *, const char *);
145static	void safe_dump_ringstate(struct safe_softc *, const char *);
146static	void safe_dump_intrstate(struct safe_softc *, const char *);
147static	void safe_dump_request(struct safe_softc *, const char *,
148		struct safe_ringentry *);
149
150static	struct safe_softc *safec;		/* for use by hw.safe.dump */
151
152static	int safe_debug = 0;
153SYSCTL_INT(_hw_safe, OID_AUTO, debug, CTLFLAG_RW, &safe_debug,
154	    0, "control debugging msgs");
155#define	DPRINTF(_x)	if (safe_debug) printf _x
156#else
157#define	DPRINTF(_x)
158#endif
159
160#define	READ_REG(sc,r) \
161	bus_space_read_4((sc)->sc_st, (sc)->sc_sh, (r))
162
163#define WRITE_REG(sc,reg,val) \
164	bus_space_write_4((sc)->sc_st, (sc)->sc_sh, reg, val)
165
166struct safe_stats safestats;
167SYSCTL_STRUCT(_hw_safe, OID_AUTO, stats, CTLFLAG_RD, &safestats,
168	    safe_stats, "driver statistics");
169#ifndef SAFE_NO_RNG
170static	int safe_rnginterval = 1;		/* poll once a second */
171SYSCTL_INT(_hw_safe, OID_AUTO, rnginterval, CTLFLAG_RW, &safe_rnginterval,
172	    0, "RNG polling interval (secs)");
173static	int safe_rngbufsize = 16;		/* 64 bytes each poll  */
174SYSCTL_INT(_hw_safe, OID_AUTO, rngbufsize, CTLFLAG_RW, &safe_rngbufsize,
175	    0, "RNG polling buffer size (32-bit words)");
176static	int safe_rngmaxalarm = 8;		/* max alarms before reset */
177SYSCTL_INT(_hw_safe, OID_AUTO, rngmaxalarm, CTLFLAG_RW, &safe_rngmaxalarm,
178	    0, "RNG max alarms before reset");
179#endif /* SAFE_NO_RNG */
180
181static int
182safe_probe(device_t dev)
183{
184	if (pci_get_vendor(dev) == PCI_VENDOR_SAFENET &&
185	    pci_get_device(dev) == PCI_PRODUCT_SAFEXCEL)
186		return (BUS_PROBE_DEFAULT);
187	return (ENXIO);
188}
189
190static const char*
191safe_partname(struct safe_softc *sc)
192{
193	/* XXX sprintf numbers when not decoded */
194	switch (pci_get_vendor(sc->sc_dev)) {
195	case PCI_VENDOR_SAFENET:
196		switch (pci_get_device(sc->sc_dev)) {
197		case PCI_PRODUCT_SAFEXCEL: return "SafeNet SafeXcel-1141";
198		}
199		return "SafeNet unknown-part";
200	}
201	return "Unknown-vendor unknown-part";
202}
203
204#ifndef SAFE_NO_RNG
205static void
206default_harvest(struct rndtest_state *rsp, void *buf, u_int count)
207{
208	random_harvest(buf, count, count*NBBY, 0, RANDOM_PURE);
209}
210#endif /* SAFE_NO_RNG */
211
212static int
213safe_attach(device_t dev)
214{
215	struct safe_softc *sc = device_get_softc(dev);
216	u_int32_t raddr;
217	u_int32_t cmd, i, devinfo;
218	int rid;
219
220	bzero(sc, sizeof (*sc));
221	sc->sc_dev = dev;
222
223	/* XXX handle power management */
224
225	cmd = pci_read_config(dev, PCIR_COMMAND, 4);
226	cmd |= PCIM_CMD_MEMEN | PCIM_CMD_BUSMASTEREN;
227	pci_write_config(dev, PCIR_COMMAND, cmd, 4);
228	cmd = pci_read_config(dev, PCIR_COMMAND, 4);
229
230	if (!(cmd & PCIM_CMD_MEMEN)) {
231		device_printf(dev, "failed to enable memory mapping\n");
232		goto bad;
233	}
234
235	if (!(cmd & PCIM_CMD_BUSMASTEREN)) {
236		device_printf(dev, "failed to enable bus mastering\n");
237		goto bad;
238	}
239
240	/*
241	 * Setup memory-mapping of PCI registers.
242	 */
243	rid = BS_BAR;
244	sc->sc_sr = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
245					   RF_ACTIVE);
246	if (sc->sc_sr == NULL) {
247		device_printf(dev, "cannot map register space\n");
248		goto bad;
249	}
250	sc->sc_st = rman_get_bustag(sc->sc_sr);
251	sc->sc_sh = rman_get_bushandle(sc->sc_sr);
252
253	/*
254	 * Arrange interrupt line.
255	 */
256	rid = 0;
257	sc->sc_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
258					    RF_SHAREABLE|RF_ACTIVE);
259	if (sc->sc_irq == NULL) {
260		device_printf(dev, "could not map interrupt\n");
261		goto bad1;
262	}
263	/*
264	 * NB: Network code assumes we are blocked with splimp()
265	 *     so make sure the IRQ is mapped appropriately.
266	 */
267	if (bus_setup_intr(dev, sc->sc_irq, INTR_TYPE_NET | INTR_MPSAFE,
268			   safe_intr, sc, &sc->sc_ih)) {
269		device_printf(dev, "could not establish interrupt\n");
270		goto bad2;
271	}
272
273	sc->sc_cid = crypto_get_driverid(0);
274	if (sc->sc_cid < 0) {
275		device_printf(dev, "could not get crypto driver id\n");
276		goto bad3;
277	}
278
279	sc->sc_chiprev = READ_REG(sc, SAFE_DEVINFO) &
280		(SAFE_DEVINFO_REV_MAJ | SAFE_DEVINFO_REV_MIN);
281
282	/*
283	 * Setup DMA descriptor area.
284	 */
285	if (bus_dma_tag_create(NULL,			/* parent */
286			       1,			/* alignment */
287			       SAFE_DMA_BOUNDARY,	/* boundary */
288			       BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
289			       BUS_SPACE_MAXADDR,	/* highaddr */
290			       NULL, NULL,		/* filter, filterarg */
291			       SAFE_MAX_DMA,		/* maxsize */
292			       SAFE_MAX_PART,		/* nsegments */
293			       SAFE_MAX_SSIZE,		/* maxsegsize */
294			       BUS_DMA_ALLOCNOW,	/* flags */
295			       NULL, NULL,		/* locking */
296			       &sc->sc_srcdmat)) {
297		device_printf(dev, "cannot allocate DMA tag\n");
298		goto bad4;
299	}
300	if (bus_dma_tag_create(NULL,			/* parent */
301			       sizeof(u_int32_t),	/* alignment */
302			       SAFE_MAX_DSIZE,		/* boundary */
303			       BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
304			       BUS_SPACE_MAXADDR,	/* highaddr */
305			       NULL, NULL,		/* filter, filterarg */
306			       SAFE_MAX_DMA,		/* maxsize */
307			       SAFE_MAX_PART,		/* nsegments */
308			       SAFE_MAX_DSIZE,		/* maxsegsize */
309			       BUS_DMA_ALLOCNOW,	/* flags */
310			       NULL, NULL,		/* locking */
311			       &sc->sc_dstdmat)) {
312		device_printf(dev, "cannot allocate DMA tag\n");
313		goto bad4;
314	}
315
316	/*
317	 * Allocate packet engine descriptors.
318	 */
319	if (safe_dma_malloc(sc,
320	    SAFE_MAX_NQUEUE * sizeof (struct safe_ringentry),
321	    &sc->sc_ringalloc, 0)) {
322		device_printf(dev, "cannot allocate PE descriptor ring\n");
323		bus_dma_tag_destroy(sc->sc_srcdmat);
324		goto bad4;
325	}
326	/*
327	 * Hookup the static portion of all our data structures.
328	 */
329	sc->sc_ring = (struct safe_ringentry *) sc->sc_ringalloc.dma_vaddr;
330	sc->sc_ringtop = sc->sc_ring + SAFE_MAX_NQUEUE;
331	sc->sc_front = sc->sc_ring;
332	sc->sc_back = sc->sc_ring;
333	raddr = sc->sc_ringalloc.dma_paddr;
334	bzero(sc->sc_ring, SAFE_MAX_NQUEUE * sizeof(struct safe_ringentry));
335	for (i = 0; i < SAFE_MAX_NQUEUE; i++) {
336		struct safe_ringentry *re = &sc->sc_ring[i];
337
338		re->re_desc.d_sa = raddr +
339			offsetof(struct safe_ringentry, re_sa);
340		re->re_sa.sa_staterec = raddr +
341			offsetof(struct safe_ringentry, re_sastate);
342
343		raddr += sizeof (struct safe_ringentry);
344	}
345	mtx_init(&sc->sc_ringmtx, device_get_nameunit(dev),
346		"packet engine ring", MTX_DEF);
347
348	/*
349	 * Allocate scatter and gather particle descriptors.
350	 */
351	if (safe_dma_malloc(sc, SAFE_TOTAL_SPART * sizeof (struct safe_pdesc),
352	    &sc->sc_spalloc, 0)) {
353		device_printf(dev, "cannot allocate source particle "
354			"descriptor ring\n");
355		mtx_destroy(&sc->sc_ringmtx);
356		safe_dma_free(sc, &sc->sc_ringalloc);
357		bus_dma_tag_destroy(sc->sc_srcdmat);
358		goto bad4;
359	}
360	sc->sc_spring = (struct safe_pdesc *) sc->sc_spalloc.dma_vaddr;
361	sc->sc_springtop = sc->sc_spring + SAFE_TOTAL_SPART;
362	sc->sc_spfree = sc->sc_spring;
363	bzero(sc->sc_spring, SAFE_TOTAL_SPART * sizeof(struct safe_pdesc));
364
365	if (safe_dma_malloc(sc, SAFE_TOTAL_DPART * sizeof (struct safe_pdesc),
366	    &sc->sc_dpalloc, 0)) {
367		device_printf(dev, "cannot allocate destination particle "
368			"descriptor ring\n");
369		mtx_destroy(&sc->sc_ringmtx);
370		safe_dma_free(sc, &sc->sc_spalloc);
371		safe_dma_free(sc, &sc->sc_ringalloc);
372		bus_dma_tag_destroy(sc->sc_dstdmat);
373		goto bad4;
374	}
375	sc->sc_dpring = (struct safe_pdesc *) sc->sc_dpalloc.dma_vaddr;
376	sc->sc_dpringtop = sc->sc_dpring + SAFE_TOTAL_DPART;
377	sc->sc_dpfree = sc->sc_dpring;
378	bzero(sc->sc_dpring, SAFE_TOTAL_DPART * sizeof(struct safe_pdesc));
379
380	device_printf(sc->sc_dev, "%s", safe_partname(sc));
381
382	devinfo = READ_REG(sc, SAFE_DEVINFO);
383	if (devinfo & SAFE_DEVINFO_RNG) {
384		sc->sc_flags |= SAFE_FLAGS_RNG;
385		printf(" rng");
386	}
387	if (devinfo & SAFE_DEVINFO_PKEY) {
388#if 0
389		printf(" key");
390		sc->sc_flags |= SAFE_FLAGS_KEY;
391		crypto_kregister(sc->sc_cid, CRK_MOD_EXP, 0,
392			safe_kprocess, sc);
393		crypto_kregister(sc->sc_cid, CRK_MOD_EXP_CRT, 0,
394			safe_kprocess, sc);
395#endif
396	}
397	if (devinfo & SAFE_DEVINFO_DES) {
398		printf(" des/3des");
399		crypto_register(sc->sc_cid, CRYPTO_3DES_CBC, 0, 0,
400			safe_newsession, safe_freesession, safe_process, sc);
401		crypto_register(sc->sc_cid, CRYPTO_DES_CBC, 0, 0,
402			safe_newsession, safe_freesession, safe_process, sc);
403	}
404	if (devinfo & SAFE_DEVINFO_AES) {
405		printf(" aes");
406		crypto_register(sc->sc_cid, CRYPTO_AES_CBC, 0, 0,
407			safe_newsession, safe_freesession, safe_process, sc);
408	}
409	if (devinfo & SAFE_DEVINFO_MD5) {
410		printf(" md5");
411		crypto_register(sc->sc_cid, CRYPTO_MD5_HMAC, 0, 0,
412			safe_newsession, safe_freesession, safe_process, sc);
413	}
414	if (devinfo & SAFE_DEVINFO_SHA1) {
415		printf(" sha1");
416		crypto_register(sc->sc_cid, CRYPTO_SHA1_HMAC, 0, 0,
417			safe_newsession, safe_freesession, safe_process, sc);
418	}
419	printf(" null");
420	crypto_register(sc->sc_cid, CRYPTO_NULL_CBC, 0, 0,
421		safe_newsession, safe_freesession, safe_process, sc);
422	crypto_register(sc->sc_cid, CRYPTO_NULL_HMAC, 0, 0,
423		safe_newsession, safe_freesession, safe_process, sc);
424	/* XXX other supported algorithms */
425	printf("\n");
426
427	safe_reset_board(sc);		/* reset h/w */
428	safe_init_pciregs(dev);		/* init pci settings */
429	safe_init_board(sc);		/* init h/w */
430
431#ifndef SAFE_NO_RNG
432	if (sc->sc_flags & SAFE_FLAGS_RNG) {
433#ifdef SAFE_RNDTEST
434		sc->sc_rndtest = rndtest_attach(dev);
435		if (sc->sc_rndtest)
436			sc->sc_harvest = rndtest_harvest;
437		else
438			sc->sc_harvest = default_harvest;
439#else
440		sc->sc_harvest = default_harvest;
441#endif
442		safe_rng_init(sc);
443
444		callout_init(&sc->sc_rngto, CALLOUT_MPSAFE);
445		callout_reset(&sc->sc_rngto, hz*safe_rnginterval, safe_rng, sc);
446	}
447#endif /* SAFE_NO_RNG */
448#ifdef SAFE_DEBUG
449	safec = sc;			/* for use by hw.safe.dump */
450#endif
451	return (0);
452bad4:
453	crypto_unregister_all(sc->sc_cid);
454bad3:
455	bus_teardown_intr(dev, sc->sc_irq, sc->sc_ih);
456bad2:
457	bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sc_irq);
458bad1:
459	bus_release_resource(dev, SYS_RES_MEMORY, BS_BAR, sc->sc_sr);
460bad:
461	return (ENXIO);
462}
463
464/*
465 * Detach a device that successfully probed.
466 */
467static int
468safe_detach(device_t dev)
469{
470	struct safe_softc *sc = device_get_softc(dev);
471
472	/* XXX wait/abort active ops */
473
474	WRITE_REG(sc, SAFE_HI_MASK, 0);		/* disable interrupts */
475
476	callout_stop(&sc->sc_rngto);
477
478	crypto_unregister_all(sc->sc_cid);
479
480#ifdef SAFE_RNDTEST
481	if (sc->sc_rndtest)
482		rndtest_detach(sc->sc_rndtest);
483#endif
484
485	safe_cleanchip(sc);
486	safe_dma_free(sc, &sc->sc_dpalloc);
487	safe_dma_free(sc, &sc->sc_spalloc);
488	mtx_destroy(&sc->sc_ringmtx);
489	safe_dma_free(sc, &sc->sc_ringalloc);
490
491	bus_generic_detach(dev);
492	bus_teardown_intr(dev, sc->sc_irq, sc->sc_ih);
493	bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sc_irq);
494
495	bus_dma_tag_destroy(sc->sc_srcdmat);
496	bus_dma_tag_destroy(sc->sc_dstdmat);
497	bus_release_resource(dev, SYS_RES_MEMORY, BS_BAR, sc->sc_sr);
498
499	return (0);
500}
501
502/*
503 * Stop all chip i/o so that the kernel's probe routines don't
504 * get confused by errant DMAs when rebooting.
505 */
506static void
507safe_shutdown(device_t dev)
508{
509#ifdef notyet
510	safe_stop(device_get_softc(dev));
511#endif
512}
513
514/*
515 * Device suspend routine.
516 */
517static int
518safe_suspend(device_t dev)
519{
520	struct safe_softc *sc = device_get_softc(dev);
521
522#ifdef notyet
523	/* XXX stop the device and save PCI settings */
524#endif
525	sc->sc_suspended = 1;
526
527	return (0);
528}
529
530static int
531safe_resume(device_t dev)
532{
533	struct safe_softc *sc = device_get_softc(dev);
534
535#ifdef notyet
536	/* XXX retore PCI settings and start the device */
537#endif
538	sc->sc_suspended = 0;
539	return (0);
540}
541
542/*
543 * SafeXcel Interrupt routine
544 */
545static void
546safe_intr(void *arg)
547{
548	struct safe_softc *sc = arg;
549	volatile u_int32_t stat;
550
551	stat = READ_REG(sc, SAFE_HM_STAT);
552	if (stat == 0)			/* shared irq, not for us */
553		return;
554
555	WRITE_REG(sc, SAFE_HI_CLR, stat);	/* IACK */
556
557	if ((stat & SAFE_INT_PE_DDONE)) {
558		/*
559		 * Descriptor(s) done; scan the ring and
560		 * process completed operations.
561		 */
562		mtx_lock(&sc->sc_ringmtx);
563		while (sc->sc_back != sc->sc_front) {
564			struct safe_ringentry *re = sc->sc_back;
565#ifdef SAFE_DEBUG
566			if (safe_debug) {
567				safe_dump_ringstate(sc, __func__);
568				safe_dump_request(sc, __func__, re);
569			}
570#endif
571			/*
572			 * safe_process marks ring entries that were allocated
573			 * but not used with a csr of zero.  This insures the
574			 * ring front pointer never needs to be set backwards
575			 * in the event that an entry is allocated but not used
576			 * because of a setup error.
577			 */
578			if (re->re_desc.d_csr != 0) {
579				if (!SAFE_PE_CSR_IS_DONE(re->re_desc.d_csr))
580					break;
581				if (!SAFE_PE_LEN_IS_DONE(re->re_desc.d_len))
582					break;
583				sc->sc_nqchip--;
584				safe_callback(sc, re);
585			}
586			if (++(sc->sc_back) == sc->sc_ringtop)
587				sc->sc_back = sc->sc_ring;
588		}
589		mtx_unlock(&sc->sc_ringmtx);
590	}
591
592	/*
593	 * Check to see if we got any DMA Error
594	 */
595	if (stat & SAFE_INT_PE_ERROR) {
596		DPRINTF(("dmaerr dmastat %08x\n",
597			READ_REG(sc, SAFE_PE_DMASTAT)));
598		safestats.st_dmaerr++;
599		safe_totalreset(sc);
600#if 0
601		safe_feed(sc);
602#endif
603	}
604
605	if (sc->sc_needwakeup) {		/* XXX check high watermark */
606		int wakeup = sc->sc_needwakeup & (CRYPTO_SYMQ|CRYPTO_ASYMQ);
607		DPRINTF(("%s: wakeup crypto %x\n", __func__,
608			sc->sc_needwakeup));
609		sc->sc_needwakeup &= ~wakeup;
610		crypto_unblock(sc->sc_cid, wakeup);
611	}
612}
613
614/*
615 * safe_feed() - post a request to chip
616 */
617static void
618safe_feed(struct safe_softc *sc, struct safe_ringentry *re)
619{
620	bus_dmamap_sync(sc->sc_srcdmat, re->re_src_map, BUS_DMASYNC_PREWRITE);
621	if (re->re_dst_map != NULL)
622		bus_dmamap_sync(sc->sc_dstdmat, re->re_dst_map,
623			BUS_DMASYNC_PREREAD);
624	/* XXX have no smaller granularity */
625	safe_dma_sync(&sc->sc_ringalloc,
626		BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
627	safe_dma_sync(&sc->sc_spalloc, BUS_DMASYNC_PREWRITE);
628	safe_dma_sync(&sc->sc_dpalloc, BUS_DMASYNC_PREWRITE);
629
630#ifdef SAFE_DEBUG
631	if (safe_debug) {
632		safe_dump_ringstate(sc, __func__);
633		safe_dump_request(sc, __func__, re);
634	}
635#endif
636	sc->sc_nqchip++;
637	if (sc->sc_nqchip > safestats.st_maxqchip)
638		safestats.st_maxqchip = sc->sc_nqchip;
639	/* poke h/w to check descriptor ring, any value can be written */
640	WRITE_REG(sc, SAFE_HI_RD_DESCR, 0);
641}
642
643/*
644 * Allocate a new 'session' and return an encoded session id.  'sidp'
645 * contains our registration id, and should contain an encoded session
646 * id on successful allocation.
647 */
648static int
649safe_newsession(void *arg, u_int32_t *sidp, struct cryptoini *cri)
650{
651#define	N(a)	(sizeof(a) / sizeof (a[0]))
652	struct cryptoini *c, *encini = NULL, *macini = NULL;
653	struct safe_softc *sc = arg;
654	struct safe_session *ses = NULL;
655	MD5_CTX md5ctx;
656	SHA1_CTX sha1ctx;
657	int i, sesn;
658
659	if (sidp == NULL || cri == NULL || sc == NULL)
660		return (EINVAL);
661
662	for (c = cri; c != NULL; c = c->cri_next) {
663		if (c->cri_alg == CRYPTO_MD5_HMAC ||
664		    c->cri_alg == CRYPTO_SHA1_HMAC ||
665		    c->cri_alg == CRYPTO_NULL_HMAC) {
666			if (macini)
667				return (EINVAL);
668			macini = c;
669		} else if (c->cri_alg == CRYPTO_DES_CBC ||
670		    c->cri_alg == CRYPTO_3DES_CBC ||
671		    c->cri_alg == CRYPTO_AES_CBC ||
672		    c->cri_alg == CRYPTO_NULL_CBC) {
673			if (encini)
674				return (EINVAL);
675			encini = c;
676		} else
677			return (EINVAL);
678	}
679	if (encini == NULL && macini == NULL)
680		return (EINVAL);
681	if (encini) {			/* validate key length */
682		switch (encini->cri_alg) {
683		case CRYPTO_DES_CBC:
684			if (encini->cri_klen != 64)
685				return (EINVAL);
686			break;
687		case CRYPTO_3DES_CBC:
688			if (encini->cri_klen != 192)
689				return (EINVAL);
690			break;
691		case CRYPTO_AES_CBC:
692			if (encini->cri_klen != 128 &&
693			    encini->cri_klen != 192 &&
694			    encini->cri_klen != 256)
695				return (EINVAL);
696			break;
697		}
698	}
699
700	if (sc->sc_sessions == NULL) {
701		ses = sc->sc_sessions = (struct safe_session *)malloc(
702		    sizeof(struct safe_session), M_DEVBUF, M_NOWAIT);
703		if (ses == NULL)
704			return (ENOMEM);
705		sesn = 0;
706		sc->sc_nsessions = 1;
707	} else {
708		for (sesn = 0; sesn < sc->sc_nsessions; sesn++) {
709			if (sc->sc_sessions[sesn].ses_used == 0) {
710				ses = &sc->sc_sessions[sesn];
711				break;
712			}
713		}
714
715		if (ses == NULL) {
716			sesn = sc->sc_nsessions;
717			ses = (struct safe_session *)malloc((sesn + 1) *
718			    sizeof(struct safe_session), M_DEVBUF, M_NOWAIT);
719			if (ses == NULL)
720				return (ENOMEM);
721			bcopy(sc->sc_sessions, ses, sesn *
722			    sizeof(struct safe_session));
723			bzero(sc->sc_sessions, sesn *
724			    sizeof(struct safe_session));
725			free(sc->sc_sessions, M_DEVBUF);
726			sc->sc_sessions = ses;
727			ses = &sc->sc_sessions[sesn];
728			sc->sc_nsessions++;
729		}
730	}
731
732	bzero(ses, sizeof(struct safe_session));
733	ses->ses_used = 1;
734
735	if (encini) {
736		/* get an IV */
737		/* XXX may read fewer than requested */
738		read_random(ses->ses_iv, sizeof(ses->ses_iv));
739
740		ses->ses_klen = encini->cri_klen;
741		bcopy(encini->cri_key, ses->ses_key, ses->ses_klen / 8);
742
743		/* PE is little-endian, insure proper byte order */
744		for (i = 0; i < N(ses->ses_key); i++)
745			ses->ses_key[i] = htole32(ses->ses_key[i]);
746	}
747
748	if (macini) {
749		ses->ses_mlen = macini->cri_mlen;
750		if (ses->ses_mlen == 0) {
751			if (macini->cri_alg == CRYPTO_MD5_HMAC)
752				ses->ses_mlen = MD5_DIGEST_LENGTH;
753			else
754				ses->ses_mlen = SHA1_RESULTLEN;
755		}
756
757		for (i = 0; i < macini->cri_klen / 8; i++)
758			macini->cri_key[i] ^= HMAC_IPAD_VAL;
759
760		if (macini->cri_alg == CRYPTO_MD5_HMAC) {
761			MD5Init(&md5ctx);
762			MD5Update(&md5ctx, macini->cri_key,
763			    macini->cri_klen / 8);
764			MD5Update(&md5ctx, hmac_ipad_buffer,
765			    HMAC_BLOCK_LEN - (macini->cri_klen / 8));
766			bcopy(md5ctx.state, ses->ses_hminner,
767			    sizeof(md5ctx.state));
768		} else {
769			SHA1Init(&sha1ctx);
770			SHA1Update(&sha1ctx, macini->cri_key,
771			    macini->cri_klen / 8);
772			SHA1Update(&sha1ctx, hmac_ipad_buffer,
773			    HMAC_BLOCK_LEN - (macini->cri_klen / 8));
774			bcopy(sha1ctx.h.b32, ses->ses_hminner,
775			    sizeof(sha1ctx.h.b32));
776		}
777
778		for (i = 0; i < macini->cri_klen / 8; i++)
779			macini->cri_key[i] ^= (HMAC_IPAD_VAL ^ HMAC_OPAD_VAL);
780
781		if (macini->cri_alg == CRYPTO_MD5_HMAC) {
782			MD5Init(&md5ctx);
783			MD5Update(&md5ctx, macini->cri_key,
784			    macini->cri_klen / 8);
785			MD5Update(&md5ctx, hmac_opad_buffer,
786			    HMAC_BLOCK_LEN - (macini->cri_klen / 8));
787			bcopy(md5ctx.state, ses->ses_hmouter,
788			    sizeof(md5ctx.state));
789		} else {
790			SHA1Init(&sha1ctx);
791			SHA1Update(&sha1ctx, macini->cri_key,
792			    macini->cri_klen / 8);
793			SHA1Update(&sha1ctx, hmac_opad_buffer,
794			    HMAC_BLOCK_LEN - (macini->cri_klen / 8));
795			bcopy(sha1ctx.h.b32, ses->ses_hmouter,
796			    sizeof(sha1ctx.h.b32));
797		}
798
799		for (i = 0; i < macini->cri_klen / 8; i++)
800			macini->cri_key[i] ^= HMAC_OPAD_VAL;
801
802		/* PE is little-endian, insure proper byte order */
803		for (i = 0; i < N(ses->ses_hminner); i++) {
804			ses->ses_hminner[i] = htole32(ses->ses_hminner[i]);
805			ses->ses_hmouter[i] = htole32(ses->ses_hmouter[i]);
806		}
807	}
808
809	*sidp = SAFE_SID(device_get_unit(sc->sc_dev), sesn);
810	return (0);
811#undef N
812}
813
814/*
815 * Deallocate a session.
816 */
817static int
818safe_freesession(void *arg, u_int64_t tid)
819{
820	struct safe_softc *sc = arg;
821	int session, ret;
822	u_int32_t sid = ((u_int32_t) tid) & 0xffffffff;
823
824	if (sc == NULL)
825		return (EINVAL);
826
827	session = SAFE_SESSION(sid);
828	if (session < sc->sc_nsessions) {
829		bzero(&sc->sc_sessions[session], sizeof(sc->sc_sessions[session]));
830		ret = 0;
831	} else
832		ret = EINVAL;
833	return (ret);
834}
835
836static void
837safe_op_cb(void *arg, bus_dma_segment_t *seg, int nsegs, bus_size_t mapsize, int error)
838{
839	struct safe_operand *op = arg;
840
841	DPRINTF(("%s: mapsize %u nsegs %d error %d\n", __func__,
842		(u_int) mapsize, nsegs, error));
843	if (error != 0)
844		return;
845	op->mapsize = mapsize;
846	op->nsegs = nsegs;
847	bcopy(seg, op->segs, nsegs * sizeof (seg[0]));
848}
849
850static int
851safe_process(void *arg, struct cryptop *crp, int hint)
852{
853	int err = 0, i, nicealign, uniform;
854	struct safe_softc *sc = arg;
855	struct cryptodesc *crd1, *crd2, *maccrd, *enccrd;
856	int bypass, oplen, ivsize;
857	caddr_t iv;
858	int16_t coffset;
859	struct safe_session *ses;
860	struct safe_ringentry *re;
861	struct safe_sarec *sa;
862	struct safe_pdesc *pd;
863	u_int32_t cmd0, cmd1, staterec;
864
865	if (crp == NULL || crp->crp_callback == NULL || sc == NULL) {
866		safestats.st_invalid++;
867		return (EINVAL);
868	}
869	if (SAFE_SESSION(crp->crp_sid) >= sc->sc_nsessions) {
870		safestats.st_badsession++;
871		return (EINVAL);
872	}
873
874	mtx_lock(&sc->sc_ringmtx);
875	if (sc->sc_front == sc->sc_back && sc->sc_nqchip != 0) {
876		safestats.st_ringfull++;
877		sc->sc_needwakeup |= CRYPTO_SYMQ;
878		mtx_unlock(&sc->sc_ringmtx);
879		return (ERESTART);
880	}
881	re = sc->sc_front;
882
883	staterec = re->re_sa.sa_staterec;	/* save */
884	/* NB: zero everything but the PE descriptor */
885	bzero(&re->re_sa, sizeof(struct safe_ringentry) - sizeof(re->re_desc));
886	re->re_sa.sa_staterec = staterec;	/* restore */
887
888	re->re_crp = crp;
889	re->re_sesn = SAFE_SESSION(crp->crp_sid);
890
891	if (crp->crp_flags & CRYPTO_F_IMBUF) {
892		re->re_src_m = (struct mbuf *)crp->crp_buf;
893		re->re_dst_m = (struct mbuf *)crp->crp_buf;
894	} else if (crp->crp_flags & CRYPTO_F_IOV) {
895		re->re_src_io = (struct uio *)crp->crp_buf;
896		re->re_dst_io = (struct uio *)crp->crp_buf;
897	} else {
898		safestats.st_badflags++;
899		err = EINVAL;
900		goto errout;	/* XXX we don't handle contiguous blocks! */
901	}
902
903	sa = &re->re_sa;
904	ses = &sc->sc_sessions[re->re_sesn];
905
906	crd1 = crp->crp_desc;
907	if (crd1 == NULL) {
908		safestats.st_nodesc++;
909		err = EINVAL;
910		goto errout;
911	}
912	crd2 = crd1->crd_next;
913
914	if ((crd1->crd_flags & CRD_F_KEY_EXPLICIT) ||
915	    (crd2 != NULL && (crd2->crd_flags & CRD_F_KEY_EXPLICIT))) {
916		safestats.st_badflags++;
917		err = EINVAL;
918		goto errout;
919	}
920
921	cmd0 = SAFE_SA_CMD0_BASIC;		/* basic group operation */
922	cmd1 = 0;
923	if (crd2 == NULL) {
924		if (crd1->crd_alg == CRYPTO_MD5_HMAC ||
925		    crd1->crd_alg == CRYPTO_SHA1_HMAC ||
926		    crd1->crd_alg == CRYPTO_NULL_HMAC) {
927			maccrd = crd1;
928			enccrd = NULL;
929			cmd0 |= SAFE_SA_CMD0_OP_HASH;
930		} else if (crd1->crd_alg == CRYPTO_DES_CBC ||
931		    crd1->crd_alg == CRYPTO_3DES_CBC ||
932		    crd1->crd_alg == CRYPTO_AES_CBC ||
933		    crd1->crd_alg == CRYPTO_NULL_CBC) {
934			maccrd = NULL;
935			enccrd = crd1;
936			cmd0 |= SAFE_SA_CMD0_OP_CRYPT;
937		} else {
938			safestats.st_badalg++;
939			err = EINVAL;
940			goto errout;
941		}
942	} else {
943		if ((crd1->crd_alg == CRYPTO_MD5_HMAC ||
944		    crd1->crd_alg == CRYPTO_SHA1_HMAC ||
945		    crd1->crd_alg == CRYPTO_NULL_HMAC) &&
946		    (crd2->crd_alg == CRYPTO_DES_CBC ||
947			crd2->crd_alg == CRYPTO_3DES_CBC ||
948		        crd2->crd_alg == CRYPTO_AES_CBC ||
949		        crd2->crd_alg == CRYPTO_NULL_CBC) &&
950		    ((crd2->crd_flags & CRD_F_ENCRYPT) == 0)) {
951			maccrd = crd1;
952			enccrd = crd2;
953		} else if ((crd1->crd_alg == CRYPTO_DES_CBC ||
954		    crd1->crd_alg == CRYPTO_3DES_CBC ||
955		    crd1->crd_alg == CRYPTO_AES_CBC ||
956		    crd1->crd_alg == CRYPTO_NULL_CBC) &&
957		    (crd2->crd_alg == CRYPTO_MD5_HMAC ||
958			crd2->crd_alg == CRYPTO_SHA1_HMAC ||
959			crd2->crd_alg == CRYPTO_NULL_HMAC) &&
960		    (crd1->crd_flags & CRD_F_ENCRYPT)) {
961			enccrd = crd1;
962			maccrd = crd2;
963		} else {
964			safestats.st_badalg++;
965			err = EINVAL;
966			goto errout;
967		}
968		cmd0 |= SAFE_SA_CMD0_OP_BOTH;
969	}
970
971	if (enccrd) {
972		if (enccrd->crd_alg == CRYPTO_DES_CBC) {
973			cmd0 |= SAFE_SA_CMD0_DES;
974			cmd1 |= SAFE_SA_CMD1_CBC;
975			ivsize = 2*sizeof(u_int32_t);
976		} else if (enccrd->crd_alg == CRYPTO_3DES_CBC) {
977			cmd0 |= SAFE_SA_CMD0_3DES;
978			cmd1 |= SAFE_SA_CMD1_CBC;
979			ivsize = 2*sizeof(u_int32_t);
980		} else if (enccrd->crd_alg == CRYPTO_AES_CBC) {
981			cmd0 |= SAFE_SA_CMD0_AES;
982			cmd1 |= SAFE_SA_CMD1_CBC;
983			if (ses->ses_klen == 128)
984			     cmd1 |=  SAFE_SA_CMD1_AES128;
985			else if (ses->ses_klen == 192)
986			     cmd1 |=  SAFE_SA_CMD1_AES192;
987			else
988			     cmd1 |=  SAFE_SA_CMD1_AES256;
989			ivsize = 4*sizeof(u_int32_t);
990		} else {
991			cmd0 |= SAFE_SA_CMD0_CRYPT_NULL;
992			ivsize = 0;
993		}
994
995		/*
996		 * Setup encrypt/decrypt state.  When using basic ops
997		 * we can't use an inline IV because hash/crypt offset
998		 * must be from the end of the IV to the start of the
999		 * crypt data and this leaves out the preceding header
1000		 * from the hash calculation.  Instead we place the IV
1001		 * in the state record and set the hash/crypt offset to
1002		 * copy both the header+IV.
1003		 */
1004		if (enccrd->crd_flags & CRD_F_ENCRYPT) {
1005			cmd0 |= SAFE_SA_CMD0_OUTBOUND;
1006
1007			if (enccrd->crd_flags & CRD_F_IV_EXPLICIT)
1008				iv = enccrd->crd_iv;
1009			else
1010				iv = (caddr_t) ses->ses_iv;
1011			if ((enccrd->crd_flags & CRD_F_IV_PRESENT) == 0) {
1012				if (crp->crp_flags & CRYPTO_F_IMBUF)
1013					m_copyback(re->re_src_m,
1014						enccrd->crd_inject, ivsize, iv);
1015				else if (crp->crp_flags & CRYPTO_F_IOV)
1016					cuio_copyback(re->re_src_io,
1017						enccrd->crd_inject, ivsize, iv);
1018			}
1019			bcopy(iv, re->re_sastate.sa_saved_iv, ivsize);
1020			cmd0 |= SAFE_SA_CMD0_IVLD_STATE | SAFE_SA_CMD0_SAVEIV;
1021			re->re_flags |= SAFE_QFLAGS_COPYOUTIV;
1022		} else {
1023			cmd0 |= SAFE_SA_CMD0_INBOUND;
1024
1025			if (enccrd->crd_flags & CRD_F_IV_EXPLICIT)
1026				bcopy(enccrd->crd_iv,
1027					re->re_sastate.sa_saved_iv, ivsize);
1028			else if (crp->crp_flags & CRYPTO_F_IMBUF)
1029				m_copydata(re->re_src_m, enccrd->crd_inject,
1030					ivsize,
1031					(caddr_t)re->re_sastate.sa_saved_iv);
1032			else if (crp->crp_flags & CRYPTO_F_IOV)
1033				cuio_copydata(re->re_src_io, enccrd->crd_inject,
1034					ivsize,
1035					(caddr_t)re->re_sastate.sa_saved_iv);
1036			cmd0 |= SAFE_SA_CMD0_IVLD_STATE;
1037		}
1038		/*
1039		 * For basic encryption use the zero pad algorithm.
1040		 * This pads results to an 8-byte boundary and
1041		 * suppresses padding verification for inbound (i.e.
1042		 * decrypt) operations.
1043		 *
1044		 * NB: Not sure if the 8-byte pad boundary is a problem.
1045		 */
1046		cmd0 |= SAFE_SA_CMD0_PAD_ZERO;
1047
1048		/* XXX assert key bufs have the same size */
1049		bcopy(ses->ses_key, sa->sa_key, sizeof(sa->sa_key));
1050	}
1051
1052	if (maccrd) {
1053		if (maccrd->crd_alg == CRYPTO_MD5_HMAC) {
1054			cmd0 |= SAFE_SA_CMD0_MD5;
1055			cmd1 |= SAFE_SA_CMD1_HMAC;	/* NB: enable HMAC */
1056		} else if (maccrd->crd_alg == CRYPTO_SHA1_HMAC) {
1057			cmd0 |= SAFE_SA_CMD0_SHA1;
1058			cmd1 |= SAFE_SA_CMD1_HMAC;	/* NB: enable HMAC */
1059		} else {
1060			cmd0 |= SAFE_SA_CMD0_HASH_NULL;
1061		}
1062		/*
1063		 * Digest data is loaded from the SA and the hash
1064		 * result is saved to the state block where we
1065		 * retrieve it for return to the caller.
1066		 */
1067		/* XXX assert digest bufs have the same size */
1068		bcopy(ses->ses_hminner, sa->sa_indigest,
1069			sizeof(sa->sa_indigest));
1070		bcopy(ses->ses_hmouter, sa->sa_outdigest,
1071			sizeof(sa->sa_outdigest));
1072
1073		cmd0 |= SAFE_SA_CMD0_HSLD_SA | SAFE_SA_CMD0_SAVEHASH;
1074		re->re_flags |= SAFE_QFLAGS_COPYOUTICV;
1075	}
1076
1077	if (enccrd && maccrd) {
1078		/*
1079		 * The offset from hash data to the start of
1080		 * crypt data is the difference in the skips.
1081		 */
1082		bypass = maccrd->crd_skip;
1083		coffset = enccrd->crd_skip - maccrd->crd_skip;
1084		if (coffset < 0) {
1085			DPRINTF(("%s: hash does not precede crypt; "
1086				"mac skip %u enc skip %u\n",
1087				__func__, maccrd->crd_skip, enccrd->crd_skip));
1088			safestats.st_skipmismatch++;
1089			err = EINVAL;
1090			goto errout;
1091		}
1092		oplen = enccrd->crd_skip + enccrd->crd_len;
1093		if (maccrd->crd_skip + maccrd->crd_len != oplen) {
1094			DPRINTF(("%s: hash amount %u != crypt amount %u\n",
1095				__func__, maccrd->crd_skip + maccrd->crd_len,
1096				oplen));
1097			safestats.st_lenmismatch++;
1098			err = EINVAL;
1099			goto errout;
1100		}
1101#ifdef SAFE_DEBUG
1102		if (safe_debug) {
1103			printf("mac: skip %d, len %d, inject %d\n",
1104			    maccrd->crd_skip, maccrd->crd_len,
1105			    maccrd->crd_inject);
1106			printf("enc: skip %d, len %d, inject %d\n",
1107			    enccrd->crd_skip, enccrd->crd_len,
1108			    enccrd->crd_inject);
1109			printf("bypass %d coffset %d oplen %d\n",
1110				bypass, coffset, oplen);
1111		}
1112#endif
1113		if (coffset & 3) {	/* offset must be 32-bit aligned */
1114			DPRINTF(("%s: coffset %u misaligned\n",
1115				__func__, coffset));
1116			safestats.st_coffmisaligned++;
1117			err = EINVAL;
1118			goto errout;
1119		}
1120		coffset >>= 2;
1121		if (coffset > 255) {	/* offset must be <256 dwords */
1122			DPRINTF(("%s: coffset %u too big\n",
1123				__func__, coffset));
1124			safestats.st_cofftoobig++;
1125			err = EINVAL;
1126			goto errout;
1127		}
1128		/*
1129		 * Tell the hardware to copy the header to the output.
1130		 * The header is defined as the data from the end of
1131		 * the bypass to the start of data to be encrypted.
1132		 * Typically this is the inline IV.  Note that you need
1133		 * to do this even if src+dst are the same; it appears
1134		 * that w/o this bit the crypted data is written
1135		 * immediately after the bypass data.
1136		 */
1137		cmd1 |= SAFE_SA_CMD1_HDRCOPY;
1138		/*
1139		 * Disable IP header mutable bit handling.  This is
1140		 * needed to get correct HMAC calculations.
1141		 */
1142		cmd1 |= SAFE_SA_CMD1_MUTABLE;
1143	} else {
1144		if (enccrd) {
1145			bypass = enccrd->crd_skip;
1146			oplen = bypass + enccrd->crd_len;
1147		} else {
1148			bypass = maccrd->crd_skip;
1149			oplen = bypass + maccrd->crd_len;
1150		}
1151		coffset = 0;
1152	}
1153	/* XXX verify multiple of 4 when using s/g */
1154	if (bypass > 96) {		/* bypass offset must be <= 96 bytes */
1155		DPRINTF(("%s: bypass %u too big\n", __func__, bypass));
1156		safestats.st_bypasstoobig++;
1157		err = EINVAL;
1158		goto errout;
1159	}
1160
1161	if (bus_dmamap_create(sc->sc_srcdmat, BUS_DMA_NOWAIT, &re->re_src_map)) {
1162		safestats.st_nomap++;
1163		err = ENOMEM;
1164		goto errout;
1165	}
1166	if (crp->crp_flags & CRYPTO_F_IMBUF) {
1167		if (bus_dmamap_load_mbuf(sc->sc_srcdmat, re->re_src_map,
1168		    re->re_src_m, safe_op_cb,
1169		    &re->re_src, BUS_DMA_NOWAIT) != 0) {
1170			bus_dmamap_destroy(sc->sc_srcdmat, re->re_src_map);
1171			re->re_src_map = NULL;
1172			safestats.st_noload++;
1173			err = ENOMEM;
1174			goto errout;
1175		}
1176	} else if (crp->crp_flags & CRYPTO_F_IOV) {
1177		if (bus_dmamap_load_uio(sc->sc_srcdmat, re->re_src_map,
1178		    re->re_src_io, safe_op_cb,
1179		    &re->re_src, BUS_DMA_NOWAIT) != 0) {
1180			bus_dmamap_destroy(sc->sc_srcdmat, re->re_src_map);
1181			re->re_src_map = NULL;
1182			safestats.st_noload++;
1183			err = ENOMEM;
1184			goto errout;
1185		}
1186	}
1187	nicealign = safe_dmamap_aligned(&re->re_src);
1188	uniform = safe_dmamap_uniform(&re->re_src);
1189
1190	DPRINTF(("src nicealign %u uniform %u nsegs %u\n",
1191		nicealign, uniform, re->re_src.nsegs));
1192	if (re->re_src.nsegs > 1) {
1193		re->re_desc.d_src = sc->sc_spalloc.dma_paddr +
1194			((caddr_t) sc->sc_spfree - (caddr_t) sc->sc_spring);
1195		for (i = 0; i < re->re_src_nsegs; i++) {
1196			/* NB: no need to check if there's space */
1197			pd = sc->sc_spfree;
1198			if (++(sc->sc_spfree) == sc->sc_springtop)
1199				sc->sc_spfree = sc->sc_spring;
1200
1201			KASSERT((pd->pd_flags&3) == 0 ||
1202				(pd->pd_flags&3) == SAFE_PD_DONE,
1203				("bogus source particle descriptor; flags %x",
1204				pd->pd_flags));
1205			pd->pd_addr = re->re_src_segs[i].ds_addr;
1206			pd->pd_size = re->re_src_segs[i].ds_len;
1207			pd->pd_flags = SAFE_PD_READY;
1208		}
1209		cmd0 |= SAFE_SA_CMD0_IGATHER;
1210	} else {
1211		/*
1212		 * No need for gather, reference the operand directly.
1213		 */
1214		re->re_desc.d_src = re->re_src_segs[0].ds_addr;
1215	}
1216
1217	if (enccrd == NULL && maccrd != NULL) {
1218		/*
1219		 * Hash op; no destination needed.
1220		 */
1221	} else {
1222		if (crp->crp_flags & CRYPTO_F_IOV) {
1223			if (!nicealign) {
1224				safestats.st_iovmisaligned++;
1225				err = EINVAL;
1226				goto errout;
1227			}
1228			if (uniform != 1) {
1229				/*
1230				 * Source is not suitable for direct use as
1231				 * the destination.  Create a new scatter/gather
1232				 * list based on the destination requirements
1233				 * and check if that's ok.
1234				 */
1235				if (bus_dmamap_create(sc->sc_dstdmat,
1236				    BUS_DMA_NOWAIT, &re->re_dst_map)) {
1237					safestats.st_nomap++;
1238					err = ENOMEM;
1239					goto errout;
1240				}
1241				if (bus_dmamap_load_uio(sc->sc_dstdmat,
1242				    re->re_dst_map, re->re_dst_io,
1243				    safe_op_cb, &re->re_dst,
1244				    BUS_DMA_NOWAIT) != 0) {
1245					bus_dmamap_destroy(sc->sc_dstdmat,
1246						re->re_dst_map);
1247					re->re_dst_map = NULL;
1248					safestats.st_noload++;
1249					err = ENOMEM;
1250					goto errout;
1251				}
1252				uniform = safe_dmamap_uniform(&re->re_dst);
1253				if (!uniform) {
1254					/*
1255					 * There's no way to handle the DMA
1256					 * requirements with this uio.  We
1257					 * could create a separate DMA area for
1258					 * the result and then copy it back,
1259					 * but for now we just bail and return
1260					 * an error.  Note that uio requests
1261					 * > SAFE_MAX_DSIZE are handled because
1262					 * the DMA map and segment list for the
1263					 * destination wil result in a
1264					 * destination particle list that does
1265					 * the necessary scatter DMA.
1266					 */
1267					safestats.st_iovnotuniform++;
1268					err = EINVAL;
1269					goto errout;
1270				}
1271			} else
1272				re->re_dst = re->re_src;
1273		} else if (crp->crp_flags & CRYPTO_F_IMBUF) {
1274			if (nicealign && uniform == 1) {
1275				/*
1276				 * Source layout is suitable for direct
1277				 * sharing of the DMA map and segment list.
1278				 */
1279				re->re_dst = re->re_src;
1280			} else if (nicealign && uniform == 2) {
1281				/*
1282				 * The source is properly aligned but requires a
1283				 * different particle list to handle DMA of the
1284				 * result.  Create a new map and do the load to
1285				 * create the segment list.  The particle
1286				 * descriptor setup code below will handle the
1287				 * rest.
1288				 */
1289				if (bus_dmamap_create(sc->sc_dstdmat,
1290				    BUS_DMA_NOWAIT, &re->re_dst_map)) {
1291					safestats.st_nomap++;
1292					err = ENOMEM;
1293					goto errout;
1294				}
1295				if (bus_dmamap_load_mbuf(sc->sc_dstdmat,
1296				    re->re_dst_map, re->re_dst_m,
1297				    safe_op_cb, &re->re_dst,
1298				    BUS_DMA_NOWAIT) != 0) {
1299					bus_dmamap_destroy(sc->sc_dstdmat,
1300						re->re_dst_map);
1301					re->re_dst_map = NULL;
1302					safestats.st_noload++;
1303					err = ENOMEM;
1304					goto errout;
1305				}
1306			} else {		/* !(aligned and/or uniform) */
1307				int totlen, len;
1308				struct mbuf *m, *top, **mp;
1309
1310				/*
1311				 * DMA constraints require that we allocate a
1312				 * new mbuf chain for the destination.  We
1313				 * allocate an entire new set of mbufs of
1314				 * optimal/required size and then tell the
1315				 * hardware to copy any bits that are not
1316				 * created as a byproduct of the operation.
1317				 */
1318				if (!nicealign)
1319					safestats.st_unaligned++;
1320				if (!uniform)
1321					safestats.st_notuniform++;
1322				totlen = re->re_src_mapsize;
1323				if (re->re_src_m->m_flags & M_PKTHDR) {
1324					len = MHLEN;
1325					MGETHDR(m, M_DONTWAIT, MT_DATA);
1326					if (m && !m_dup_pkthdr(m, re->re_src_m,
1327					    M_DONTWAIT)) {
1328						m_free(m);
1329						m = NULL;
1330					}
1331				} else {
1332					len = MLEN;
1333					MGET(m, M_DONTWAIT, MT_DATA);
1334				}
1335				if (m == NULL) {
1336					safestats.st_nombuf++;
1337					err = sc->sc_nqchip ? ERESTART : ENOMEM;
1338					goto errout;
1339				}
1340				if (totlen >= MINCLSIZE) {
1341					MCLGET(m, M_DONTWAIT);
1342					if ((m->m_flags & M_EXT) == 0) {
1343						m_free(m);
1344						safestats.st_nomcl++;
1345						err = sc->sc_nqchip ?
1346							ERESTART : ENOMEM;
1347						goto errout;
1348					}
1349					len = MCLBYTES;
1350				}
1351				m->m_len = len;
1352				top = NULL;
1353				mp = &top;
1354
1355				while (totlen > 0) {
1356					if (top) {
1357						MGET(m, M_DONTWAIT, MT_DATA);
1358						if (m == NULL) {
1359							m_freem(top);
1360							safestats.st_nombuf++;
1361							err = sc->sc_nqchip ?
1362							    ERESTART : ENOMEM;
1363							goto errout;
1364						}
1365						len = MLEN;
1366					}
1367					if (top && totlen >= MINCLSIZE) {
1368						MCLGET(m, M_DONTWAIT);
1369						if ((m->m_flags & M_EXT) == 0) {
1370							*mp = m;
1371							m_freem(top);
1372							safestats.st_nomcl++;
1373							err = sc->sc_nqchip ?
1374							    ERESTART : ENOMEM;
1375							goto errout;
1376						}
1377						len = MCLBYTES;
1378					}
1379					m->m_len = len = min(totlen, len);
1380					totlen -= len;
1381					*mp = m;
1382					mp = &m->m_next;
1383				}
1384				re->re_dst_m = top;
1385				if (bus_dmamap_create(sc->sc_dstdmat,
1386				    BUS_DMA_NOWAIT, &re->re_dst_map) != 0) {
1387					safestats.st_nomap++;
1388					err = ENOMEM;
1389					goto errout;
1390				}
1391				if (bus_dmamap_load_mbuf(sc->sc_dstdmat,
1392				    re->re_dst_map, re->re_dst_m,
1393				    safe_op_cb, &re->re_dst,
1394				    BUS_DMA_NOWAIT) != 0) {
1395					bus_dmamap_destroy(sc->sc_dstdmat,
1396					re->re_dst_map);
1397					re->re_dst_map = NULL;
1398					safestats.st_noload++;
1399					err = ENOMEM;
1400					goto errout;
1401				}
1402				if (re->re_src.mapsize > oplen) {
1403					/*
1404					 * There's data following what the
1405					 * hardware will copy for us.  If this
1406					 * isn't just the ICV (that's going to
1407					 * be written on completion), copy it
1408					 * to the new mbufs
1409					 */
1410					if (!(maccrd &&
1411					    (re->re_src.mapsize-oplen) == 12 &&
1412					    maccrd->crd_inject == oplen))
1413						safe_mcopy(re->re_src_m,
1414							   re->re_dst_m,
1415							   oplen);
1416					else
1417						safestats.st_noicvcopy++;
1418				}
1419			}
1420		} else {
1421			safestats.st_badflags++;
1422			err = EINVAL;
1423			goto errout;
1424		}
1425
1426		if (re->re_dst.nsegs > 1) {
1427			re->re_desc.d_dst = sc->sc_dpalloc.dma_paddr +
1428			    ((caddr_t) sc->sc_dpfree - (caddr_t) sc->sc_dpring);
1429			for (i = 0; i < re->re_dst_nsegs; i++) {
1430				pd = sc->sc_dpfree;
1431				KASSERT((pd->pd_flags&3) == 0 ||
1432					(pd->pd_flags&3) == SAFE_PD_DONE,
1433					("bogus dest particle descriptor; flags %x",
1434						pd->pd_flags));
1435				if (++(sc->sc_dpfree) == sc->sc_dpringtop)
1436					sc->sc_dpfree = sc->sc_dpring;
1437				pd->pd_addr = re->re_dst_segs[i].ds_addr;
1438				pd->pd_flags = SAFE_PD_READY;
1439			}
1440			cmd0 |= SAFE_SA_CMD0_OSCATTER;
1441		} else {
1442			/*
1443			 * No need for scatter, reference the operand directly.
1444			 */
1445			re->re_desc.d_dst = re->re_dst_segs[0].ds_addr;
1446		}
1447	}
1448
1449	/*
1450	 * All done with setup; fillin the SA command words
1451	 * and the packet engine descriptor.  The operation
1452	 * is now ready for submission to the hardware.
1453	 */
1454	sa->sa_cmd0 = cmd0 | SAFE_SA_CMD0_IPCI | SAFE_SA_CMD0_OPCI;
1455	sa->sa_cmd1 = cmd1
1456		    | (coffset << SAFE_SA_CMD1_OFFSET_S)
1457		    | SAFE_SA_CMD1_SAREV1	/* Rev 1 SA data structure */
1458		    | SAFE_SA_CMD1_SRPCI
1459		    ;
1460	/*
1461	 * NB: the order of writes is important here.  In case the
1462	 * chip is scanning the ring because of an outstanding request
1463	 * it might nab this one too.  In that case we need to make
1464	 * sure the setup is complete before we write the length
1465	 * field of the descriptor as it signals the descriptor is
1466	 * ready for processing.
1467	 */
1468	re->re_desc.d_csr = SAFE_PE_CSR_READY | SAFE_PE_CSR_SAPCI;
1469	if (maccrd)
1470		re->re_desc.d_csr |= SAFE_PE_CSR_LOADSA | SAFE_PE_CSR_HASHFINAL;
1471	re->re_desc.d_len = oplen
1472			  | SAFE_PE_LEN_READY
1473			  | (bypass << SAFE_PE_LEN_BYPASS_S)
1474			  ;
1475
1476	safestats.st_ipackets++;
1477	safestats.st_ibytes += oplen;
1478
1479	if (++(sc->sc_front) == sc->sc_ringtop)
1480		sc->sc_front = sc->sc_ring;
1481
1482	/* XXX honor batching */
1483	safe_feed(sc, re);
1484	mtx_unlock(&sc->sc_ringmtx);
1485	return (0);
1486
1487errout:
1488	if ((re->re_dst_m != NULL) && (re->re_src_m != re->re_dst_m))
1489		m_freem(re->re_dst_m);
1490
1491	if (re->re_dst_map != NULL && re->re_dst_map != re->re_src_map) {
1492		bus_dmamap_unload(sc->sc_dstdmat, re->re_dst_map);
1493		bus_dmamap_destroy(sc->sc_dstdmat, re->re_dst_map);
1494	}
1495	if (re->re_src_map != NULL) {
1496		bus_dmamap_unload(sc->sc_srcdmat, re->re_src_map);
1497		bus_dmamap_destroy(sc->sc_srcdmat, re->re_src_map);
1498	}
1499	mtx_unlock(&sc->sc_ringmtx);
1500	if (err != ERESTART) {
1501		crp->crp_etype = err;
1502		crypto_done(crp);
1503	} else {
1504		sc->sc_needwakeup |= CRYPTO_SYMQ;
1505	}
1506	return (err);
1507}
1508
1509static void
1510safe_callback(struct safe_softc *sc, struct safe_ringentry *re)
1511{
1512	struct cryptop *crp = (struct cryptop *)re->re_crp;
1513	struct cryptodesc *crd;
1514
1515	safestats.st_opackets++;
1516	safestats.st_obytes += re->re_dst.mapsize;
1517
1518	safe_dma_sync(&sc->sc_ringalloc,
1519		BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1520	if (re->re_desc.d_csr & SAFE_PE_CSR_STATUS) {
1521		device_printf(sc->sc_dev, "csr 0x%x cmd0 0x%x cmd1 0x%x\n",
1522			re->re_desc.d_csr,
1523			re->re_sa.sa_cmd0, re->re_sa.sa_cmd1);
1524		safestats.st_peoperr++;
1525		crp->crp_etype = EIO;		/* something more meaningful? */
1526	}
1527	if (re->re_dst_map != NULL && re->re_dst_map != re->re_src_map) {
1528		bus_dmamap_sync(sc->sc_dstdmat, re->re_dst_map,
1529		    BUS_DMASYNC_POSTREAD);
1530		bus_dmamap_unload(sc->sc_dstdmat, re->re_dst_map);
1531		bus_dmamap_destroy(sc->sc_dstdmat, re->re_dst_map);
1532	}
1533	bus_dmamap_sync(sc->sc_srcdmat, re->re_src_map, BUS_DMASYNC_POSTWRITE);
1534	bus_dmamap_unload(sc->sc_srcdmat, re->re_src_map);
1535	bus_dmamap_destroy(sc->sc_srcdmat, re->re_src_map);
1536
1537	/*
1538	 * If result was written to a differet mbuf chain, swap
1539	 * it in as the return value and reclaim the original.
1540	 */
1541	if ((crp->crp_flags & CRYPTO_F_IMBUF) && re->re_src_m != re->re_dst_m) {
1542		m_freem(re->re_src_m);
1543		crp->crp_buf = (caddr_t)re->re_dst_m;
1544	}
1545
1546	if (re->re_flags & SAFE_QFLAGS_COPYOUTIV) {
1547		/* copy out IV for future use */
1548		for (crd = crp->crp_desc; crd; crd = crd->crd_next) {
1549			int ivsize;
1550
1551			if (crd->crd_alg == CRYPTO_DES_CBC ||
1552			    crd->crd_alg == CRYPTO_3DES_CBC) {
1553				ivsize = 2*sizeof(u_int32_t);
1554			} else if (crd->crd_alg == CRYPTO_AES_CBC) {
1555				ivsize = 4*sizeof(u_int32_t);
1556			} else
1557				continue;
1558			if (crp->crp_flags & CRYPTO_F_IMBUF) {
1559				m_copydata((struct mbuf *)crp->crp_buf,
1560					crd->crd_skip + crd->crd_len - ivsize,
1561					ivsize,
1562					(caddr_t) sc->sc_sessions[re->re_sesn].ses_iv);
1563			} else if (crp->crp_flags & CRYPTO_F_IOV) {
1564				cuio_copydata((struct uio *)crp->crp_buf,
1565					crd->crd_skip + crd->crd_len - ivsize,
1566					ivsize,
1567					(caddr_t)sc->sc_sessions[re->re_sesn].ses_iv);
1568			}
1569			break;
1570		}
1571	}
1572
1573	if (re->re_flags & SAFE_QFLAGS_COPYOUTICV) {
1574		/* copy out ICV result */
1575		for (crd = crp->crp_desc; crd; crd = crd->crd_next) {
1576			if (!(crd->crd_alg == CRYPTO_MD5_HMAC ||
1577			    crd->crd_alg == CRYPTO_SHA1_HMAC ||
1578			    crd->crd_alg == CRYPTO_NULL_HMAC))
1579				continue;
1580			if (crd->crd_alg == CRYPTO_SHA1_HMAC) {
1581				/*
1582				 * SHA-1 ICV's are byte-swapped; fix 'em up
1583				 * before copy them to their destination.
1584				 */
1585				bswap32(re->re_sastate.sa_saved_indigest[0]);
1586				bswap32(re->re_sastate.sa_saved_indigest[1]);
1587				bswap32(re->re_sastate.sa_saved_indigest[2]);
1588			}
1589			if (crp->crp_flags & CRYPTO_F_IMBUF) {
1590				m_copyback((struct mbuf *)crp->crp_buf,
1591					crd->crd_inject,
1592					sc->sc_sessions[re->re_sesn].ses_mlen,
1593					(caddr_t)re->re_sastate.sa_saved_indigest);
1594			} else if (crp->crp_flags & CRYPTO_F_IOV && crp->crp_mac) {
1595				bcopy((caddr_t)re->re_sastate.sa_saved_indigest,
1596					crp->crp_mac,
1597					sc->sc_sessions[re->re_sesn].ses_mlen);
1598			}
1599			break;
1600		}
1601	}
1602	crypto_done(crp);
1603}
1604
1605/*
1606 * Copy all data past offset from srcm to dstm.
1607 */
1608static void
1609safe_mcopy(struct mbuf *srcm, struct mbuf *dstm, u_int offset)
1610{
1611	u_int j, dlen, slen;
1612	caddr_t dptr, sptr;
1613
1614	/*
1615	 * Advance src and dst to offset.
1616	 */
1617	j = offset;
1618	while (j >= 0) {
1619		if (srcm->m_len > j)
1620			break;
1621		j -= srcm->m_len;
1622		srcm = srcm->m_next;
1623		if (srcm == NULL)
1624			return;
1625	}
1626	sptr = mtod(srcm, caddr_t) + j;
1627	slen = srcm->m_len - j;
1628
1629	j = offset;
1630	while (j >= 0) {
1631		if (dstm->m_len > j)
1632			break;
1633		j -= dstm->m_len;
1634		dstm = dstm->m_next;
1635		if (dstm == NULL)
1636			return;
1637	}
1638	dptr = mtod(dstm, caddr_t) + j;
1639	dlen = dstm->m_len - j;
1640
1641	/*
1642	 * Copy everything that remains.
1643	 */
1644	for (;;) {
1645		j = min(slen, dlen);
1646		bcopy(sptr, dptr, j);
1647		if (slen == j) {
1648			srcm = srcm->m_next;
1649			if (srcm == NULL)
1650				return;
1651			sptr = srcm->m_data;
1652			slen = srcm->m_len;
1653		} else
1654			sptr += j, slen -= j;
1655		if (dlen == j) {
1656			dstm = dstm->m_next;
1657			if (dstm == NULL)
1658				return;
1659			dptr = dstm->m_data;
1660			dlen = dstm->m_len;
1661		} else
1662			dptr += j, dlen -= j;
1663	}
1664}
1665
1666#ifndef SAFE_NO_RNG
1667#define	SAFE_RNG_MAXWAIT	1000
1668
1669static void
1670safe_rng_init(struct safe_softc *sc)
1671{
1672	u_int32_t w, v;
1673	int i;
1674
1675	WRITE_REG(sc, SAFE_RNG_CTRL, 0);
1676	/* use default value according to the manual */
1677	WRITE_REG(sc, SAFE_RNG_CNFG, 0x834);	/* magic from SafeNet */
1678	WRITE_REG(sc, SAFE_RNG_ALM_CNT, 0);
1679
1680	/*
1681	 * There is a bug in rev 1.0 of the 1140 that when the RNG
1682	 * is brought out of reset the ready status flag does not
1683	 * work until the RNG has finished its internal initialization.
1684	 *
1685	 * So in order to determine the device is through its
1686	 * initialization we must read the data register, using the
1687	 * status reg in the read in case it is initialized.  Then read
1688	 * the data register until it changes from the first read.
1689	 * Once it changes read the data register until it changes
1690	 * again.  At this time the RNG is considered initialized.
1691	 * This could take between 750ms - 1000ms in time.
1692	 */
1693	i = 0;
1694	w = READ_REG(sc, SAFE_RNG_OUT);
1695	do {
1696		v = READ_REG(sc, SAFE_RNG_OUT);
1697		if (v != w) {
1698			w = v;
1699			break;
1700		}
1701		DELAY(10);
1702	} while (++i < SAFE_RNG_MAXWAIT);
1703
1704	/* Wait Until data changes again */
1705	i = 0;
1706	do {
1707		v = READ_REG(sc, SAFE_RNG_OUT);
1708		if (v != w)
1709			break;
1710		DELAY(10);
1711	} while (++i < SAFE_RNG_MAXWAIT);
1712}
1713
1714static __inline void
1715safe_rng_disable_short_cycle(struct safe_softc *sc)
1716{
1717	WRITE_REG(sc, SAFE_RNG_CTRL,
1718		READ_REG(sc, SAFE_RNG_CTRL) &~ SAFE_RNG_CTRL_SHORTEN);
1719}
1720
1721static __inline void
1722safe_rng_enable_short_cycle(struct safe_softc *sc)
1723{
1724	WRITE_REG(sc, SAFE_RNG_CTRL,
1725		READ_REG(sc, SAFE_RNG_CTRL) | SAFE_RNG_CTRL_SHORTEN);
1726}
1727
1728static __inline u_int32_t
1729safe_rng_read(struct safe_softc *sc)
1730{
1731	int i;
1732
1733	i = 0;
1734	while (READ_REG(sc, SAFE_RNG_STAT) != 0 && ++i < SAFE_RNG_MAXWAIT)
1735		;
1736	return READ_REG(sc, SAFE_RNG_OUT);
1737}
1738
1739static void
1740safe_rng(void *arg)
1741{
1742	struct safe_softc *sc = arg;
1743	u_int32_t buf[SAFE_RNG_MAXBUFSIZ];	/* NB: maybe move to softc */
1744	u_int maxwords;
1745	int i;
1746
1747	safestats.st_rng++;
1748	/*
1749	 * Fetch the next block of data.
1750	 */
1751	maxwords = safe_rngbufsize;
1752	if (maxwords > SAFE_RNG_MAXBUFSIZ)
1753		maxwords = SAFE_RNG_MAXBUFSIZ;
1754retry:
1755	for (i = 0; i < maxwords; i++)
1756		buf[i] = safe_rng_read(sc);
1757	/*
1758	 * Check the comparator alarm count and reset the h/w if
1759	 * it exceeds our threshold.  This guards against the
1760	 * hardware oscillators resonating with external signals.
1761	 */
1762	if (READ_REG(sc, SAFE_RNG_ALM_CNT) > safe_rngmaxalarm) {
1763		u_int32_t freq_inc, w;
1764
1765		DPRINTF(("%s: alarm count %u exceeds threshold %u\n", __func__,
1766			READ_REG(sc, SAFE_RNG_ALM_CNT), safe_rngmaxalarm));
1767		safestats.st_rngalarm++;
1768		safe_rng_enable_short_cycle(sc);
1769		freq_inc = 18;
1770		for (i = 0; i < 64; i++) {
1771			w = READ_REG(sc, SAFE_RNG_CNFG);
1772			freq_inc = ((w + freq_inc) & 0x3fL);
1773			w = ((w & ~0x3fL) | freq_inc);
1774			WRITE_REG(sc, SAFE_RNG_CNFG, w);
1775
1776			WRITE_REG(sc, SAFE_RNG_ALM_CNT, 0);
1777
1778			(void) safe_rng_read(sc);
1779			DELAY(25);
1780
1781			if (READ_REG(sc, SAFE_RNG_ALM_CNT) == 0) {
1782				safe_rng_disable_short_cycle(sc);
1783				goto retry;
1784			}
1785			freq_inc = 1;
1786		}
1787		safe_rng_disable_short_cycle(sc);
1788	} else
1789		WRITE_REG(sc, SAFE_RNG_ALM_CNT, 0);
1790
1791	(*sc->sc_harvest)(sc->sc_rndtest, buf, maxwords*sizeof (u_int32_t));
1792	callout_reset(&sc->sc_rngto,
1793		hz * (safe_rnginterval ? safe_rnginterval : 1), safe_rng, sc);
1794}
1795#endif /* SAFE_NO_RNG */
1796
1797static void
1798safe_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1799{
1800	bus_addr_t *paddr = (bus_addr_t*) arg;
1801	*paddr = segs->ds_addr;
1802}
1803
1804static int
1805safe_dma_malloc(
1806	struct safe_softc *sc,
1807	bus_size_t size,
1808	struct safe_dma_alloc *dma,
1809	int mapflags
1810)
1811{
1812	int r;
1813
1814	r = bus_dma_tag_create(NULL,			/* parent */
1815			       sizeof(u_int32_t), 0,	/* alignment, bounds */
1816			       BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
1817			       BUS_SPACE_MAXADDR,	/* highaddr */
1818			       NULL, NULL,		/* filter, filterarg */
1819			       size,			/* maxsize */
1820			       1,			/* nsegments */
1821			       size,			/* maxsegsize */
1822			       BUS_DMA_ALLOCNOW,	/* flags */
1823			       NULL, NULL,		/* locking */
1824			       &dma->dma_tag);
1825	if (r != 0) {
1826		device_printf(sc->sc_dev, "safe_dma_malloc: "
1827			"bus_dma_tag_create failed; error %u\n", r);
1828		goto fail_0;
1829	}
1830
1831	r = bus_dmamap_create(dma->dma_tag, BUS_DMA_NOWAIT, &dma->dma_map);
1832	if (r != 0) {
1833		device_printf(sc->sc_dev, "safe_dma_malloc: "
1834			"bus_dmamap_create failed; error %u\n", r);
1835		goto fail_1;
1836	}
1837
1838	r = bus_dmamem_alloc(dma->dma_tag, (void**) &dma->dma_vaddr,
1839			     BUS_DMA_NOWAIT, &dma->dma_map);
1840	if (r != 0) {
1841		device_printf(sc->sc_dev, "safe_dma_malloc: "
1842			"bus_dmammem_alloc failed; size %zu, error %u\n",
1843			size, r);
1844		goto fail_2;
1845	}
1846
1847	r = bus_dmamap_load(dma->dma_tag, dma->dma_map, dma->dma_vaddr,
1848		            size,
1849			    safe_dmamap_cb,
1850			    &dma->dma_paddr,
1851			    mapflags | BUS_DMA_NOWAIT);
1852	if (r != 0) {
1853		device_printf(sc->sc_dev, "safe_dma_malloc: "
1854			"bus_dmamap_load failed; error %u\n", r);
1855		goto fail_3;
1856	}
1857
1858	dma->dma_size = size;
1859	return (0);
1860
1861fail_3:
1862	bus_dmamap_unload(dma->dma_tag, dma->dma_map);
1863fail_2:
1864	bus_dmamem_free(dma->dma_tag, dma->dma_vaddr, dma->dma_map);
1865fail_1:
1866	bus_dmamap_destroy(dma->dma_tag, dma->dma_map);
1867	bus_dma_tag_destroy(dma->dma_tag);
1868fail_0:
1869	dma->dma_map = NULL;
1870	dma->dma_tag = NULL;
1871	return (r);
1872}
1873
1874static void
1875safe_dma_free(struct safe_softc *sc, struct safe_dma_alloc *dma)
1876{
1877	bus_dmamap_unload(dma->dma_tag, dma->dma_map);
1878	bus_dmamem_free(dma->dma_tag, dma->dma_vaddr, dma->dma_map);
1879	bus_dmamap_destroy(dma->dma_tag, dma->dma_map);
1880	bus_dma_tag_destroy(dma->dma_tag);
1881}
1882
1883/*
1884 * Resets the board.  Values in the regesters are left as is
1885 * from the reset (i.e. initial values are assigned elsewhere).
1886 */
1887static void
1888safe_reset_board(struct safe_softc *sc)
1889{
1890	u_int32_t v;
1891	/*
1892	 * Reset the device.  The manual says no delay
1893	 * is needed between marking and clearing reset.
1894	 */
1895	v = READ_REG(sc, SAFE_PE_DMACFG) &~
1896		(SAFE_PE_DMACFG_PERESET | SAFE_PE_DMACFG_PDRRESET |
1897		 SAFE_PE_DMACFG_SGRESET);
1898	WRITE_REG(sc, SAFE_PE_DMACFG, v
1899				    | SAFE_PE_DMACFG_PERESET
1900				    | SAFE_PE_DMACFG_PDRRESET
1901				    | SAFE_PE_DMACFG_SGRESET);
1902	WRITE_REG(sc, SAFE_PE_DMACFG, v);
1903}
1904
1905/*
1906 * Initialize registers we need to touch only once.
1907 */
1908static void
1909safe_init_board(struct safe_softc *sc)
1910{
1911	u_int32_t v, dwords;
1912
1913	v = READ_REG(sc, SAFE_PE_DMACFG);;
1914	v &=~ SAFE_PE_DMACFG_PEMODE;
1915	v |= SAFE_PE_DMACFG_FSENA		/* failsafe enable */
1916	  |  SAFE_PE_DMACFG_GPRPCI		/* gather ring on PCI */
1917	  |  SAFE_PE_DMACFG_SPRPCI		/* scatter ring on PCI */
1918	  |  SAFE_PE_DMACFG_ESDESC		/* endian-swap descriptors */
1919	  |  SAFE_PE_DMACFG_ESSA		/* endian-swap SA's */
1920	  |  SAFE_PE_DMACFG_ESPDESC		/* endian-swap part. desc's */
1921	  ;
1922	WRITE_REG(sc, SAFE_PE_DMACFG, v);
1923#if 0
1924	/* XXX select byte swap based on host byte order */
1925	WRITE_REG(sc, SAFE_ENDIAN, 0x1b);
1926#endif
1927	if (sc->sc_chiprev == SAFE_REV(1,0)) {
1928		/*
1929		 * Avoid large PCI DMA transfers.  Rev 1.0 has a bug where
1930		 * "target mode transfers" done while the chip is DMA'ing
1931		 * >1020 bytes cause the hardware to lockup.  To avoid this
1932		 * we reduce the max PCI transfer size and use small source
1933		 * particle descriptors (<= 256 bytes).
1934		 */
1935		WRITE_REG(sc, SAFE_DMA_CFG, 256);
1936		device_printf(sc->sc_dev,
1937			"Reduce max DMA size to %u words for rev %u.%u WAR\n",
1938			(READ_REG(sc, SAFE_DMA_CFG)>>2) & 0xff,
1939			SAFE_REV_MAJ(sc->sc_chiprev),
1940			SAFE_REV_MIN(sc->sc_chiprev));
1941	}
1942
1943	/* NB: operands+results are overlaid */
1944	WRITE_REG(sc, SAFE_PE_PDRBASE, sc->sc_ringalloc.dma_paddr);
1945	WRITE_REG(sc, SAFE_PE_RDRBASE, sc->sc_ringalloc.dma_paddr);
1946	/*
1947	 * Configure ring entry size and number of items in the ring.
1948	 */
1949	KASSERT((sizeof(struct safe_ringentry) % sizeof(u_int32_t)) == 0,
1950		("PE ring entry not 32-bit aligned!"));
1951	dwords = sizeof(struct safe_ringentry) / sizeof(u_int32_t);
1952	WRITE_REG(sc, SAFE_PE_RINGCFG,
1953		(dwords << SAFE_PE_RINGCFG_OFFSET_S) | SAFE_MAX_NQUEUE);
1954	WRITE_REG(sc, SAFE_PE_RINGPOLL, 0);	/* disable polling */
1955
1956	WRITE_REG(sc, SAFE_PE_GRNGBASE, sc->sc_spalloc.dma_paddr);
1957	WRITE_REG(sc, SAFE_PE_SRNGBASE, sc->sc_dpalloc.dma_paddr);
1958	WRITE_REG(sc, SAFE_PE_PARTSIZE,
1959		(SAFE_TOTAL_DPART<<16) | SAFE_TOTAL_SPART);
1960	/*
1961	 * NB: destination particles are fixed size.  We use
1962	 *     an mbuf cluster and require all results go to
1963	 *     clusters or smaller.
1964	 */
1965	WRITE_REG(sc, SAFE_PE_PARTCFG, SAFE_MAX_DSIZE);
1966
1967	/* it's now safe to enable PE mode, do it */
1968	WRITE_REG(sc, SAFE_PE_DMACFG, v | SAFE_PE_DMACFG_PEMODE);
1969
1970	/*
1971	 * Configure hardware to use level-triggered interrupts and
1972	 * to interrupt after each descriptor is processed.
1973	 */
1974	WRITE_REG(sc, SAFE_HI_CFG, SAFE_HI_CFG_LEVEL);
1975	WRITE_REG(sc, SAFE_HI_DESC_CNT, 1);
1976	WRITE_REG(sc, SAFE_HI_MASK, SAFE_INT_PE_DDONE | SAFE_INT_PE_ERROR);
1977}
1978
1979/*
1980 * Init PCI registers
1981 */
1982static void
1983safe_init_pciregs(device_t dev)
1984{
1985}
1986
1987/*
1988 * Clean up after a chip crash.
1989 * It is assumed that the caller in splimp()
1990 */
1991static void
1992safe_cleanchip(struct safe_softc *sc)
1993{
1994
1995	if (sc->sc_nqchip != 0) {
1996		struct safe_ringentry *re = sc->sc_back;
1997
1998		while (re != sc->sc_front) {
1999			if (re->re_desc.d_csr != 0)
2000				safe_free_entry(sc, re);
2001			if (++re == sc->sc_ringtop)
2002				re = sc->sc_ring;
2003		}
2004		sc->sc_back = re;
2005		sc->sc_nqchip = 0;
2006	}
2007}
2008
2009/*
2010 * free a safe_q
2011 * It is assumed that the caller is within splimp().
2012 */
2013static int
2014safe_free_entry(struct safe_softc *sc, struct safe_ringentry *re)
2015{
2016	struct cryptop *crp;
2017
2018	/*
2019	 * Free header MCR
2020	 */
2021	if ((re->re_dst_m != NULL) && (re->re_src_m != re->re_dst_m))
2022		m_freem(re->re_dst_m);
2023
2024	crp = (struct cryptop *)re->re_crp;
2025
2026	re->re_desc.d_csr = 0;
2027
2028	crp->crp_etype = EFAULT;
2029	crypto_done(crp);
2030	return(0);
2031}
2032
2033/*
2034 * Routine to reset the chip and clean up.
2035 * It is assumed that the caller is in splimp()
2036 */
2037static void
2038safe_totalreset(struct safe_softc *sc)
2039{
2040	safe_reset_board(sc);
2041	safe_init_board(sc);
2042	safe_cleanchip(sc);
2043}
2044
2045/*
2046 * Is the operand suitable aligned for direct DMA.  Each
2047 * segment must be aligned on a 32-bit boundary and all
2048 * but the last segment must be a multiple of 4 bytes.
2049 */
2050static int
2051safe_dmamap_aligned(const struct safe_operand *op)
2052{
2053	int i;
2054
2055	for (i = 0; i < op->nsegs; i++) {
2056		if (op->segs[i].ds_addr & 3)
2057			return (0);
2058		if (i != (op->nsegs - 1) && (op->segs[i].ds_len & 3))
2059			return (0);
2060	}
2061	return (1);
2062}
2063
2064/*
2065 * Is the operand suitable for direct DMA as the destination
2066 * of an operation.  The hardware requires that each ``particle''
2067 * but the last in an operation result have the same size.  We
2068 * fix that size at SAFE_MAX_DSIZE bytes.  This routine returns
2069 * 0 if some segment is not a multiple of of this size, 1 if all
2070 * segments are exactly this size, or 2 if segments are at worst
2071 * a multple of this size.
2072 */
2073static int
2074safe_dmamap_uniform(const struct safe_operand *op)
2075{
2076	int result = 1;
2077
2078	if (op->nsegs > 0) {
2079		int i;
2080
2081		for (i = 0; i < op->nsegs-1; i++) {
2082			if (op->segs[i].ds_len % SAFE_MAX_DSIZE)
2083				return (0);
2084			if (op->segs[i].ds_len != SAFE_MAX_DSIZE)
2085				result = 2;
2086		}
2087	}
2088	return (result);
2089}
2090
2091#ifdef SAFE_DEBUG
2092static void
2093safe_dump_dmastatus(struct safe_softc *sc, const char *tag)
2094{
2095	printf("%s: ENDIAN 0x%x SRC 0x%x DST 0x%x STAT 0x%x\n"
2096		, tag
2097		, READ_REG(sc, SAFE_DMA_ENDIAN)
2098		, READ_REG(sc, SAFE_DMA_SRCADDR)
2099		, READ_REG(sc, SAFE_DMA_DSTADDR)
2100		, READ_REG(sc, SAFE_DMA_STAT)
2101	);
2102}
2103
2104static void
2105safe_dump_intrstate(struct safe_softc *sc, const char *tag)
2106{
2107	printf("%s: HI_CFG 0x%x HI_MASK 0x%x HI_DESC_CNT 0x%x HU_STAT 0x%x HM_STAT 0x%x\n"
2108		, tag
2109		, READ_REG(sc, SAFE_HI_CFG)
2110		, READ_REG(sc, SAFE_HI_MASK)
2111		, READ_REG(sc, SAFE_HI_DESC_CNT)
2112		, READ_REG(sc, SAFE_HU_STAT)
2113		, READ_REG(sc, SAFE_HM_STAT)
2114	);
2115}
2116
2117static void
2118safe_dump_ringstate(struct safe_softc *sc, const char *tag)
2119{
2120	u_int32_t estat = READ_REG(sc, SAFE_PE_ERNGSTAT);
2121
2122	/* NB: assume caller has lock on ring */
2123	printf("%s: ERNGSTAT %x (next %u) back %lu front %lu\n",
2124		tag,
2125		estat, (estat >> SAFE_PE_ERNGSTAT_NEXT_S),
2126		(unsigned long)(sc->sc_back - sc->sc_ring),
2127		(unsigned long)(sc->sc_front - sc->sc_ring));
2128}
2129
2130static void
2131safe_dump_request(struct safe_softc *sc, const char* tag, struct safe_ringentry *re)
2132{
2133	int ix, nsegs;
2134
2135	ix = re - sc->sc_ring;
2136	printf("%s: %p (%u): csr %x src %x dst %x sa %x len %x\n"
2137		, tag
2138		, re, ix
2139		, re->re_desc.d_csr
2140		, re->re_desc.d_src
2141		, re->re_desc.d_dst
2142		, re->re_desc.d_sa
2143		, re->re_desc.d_len
2144	);
2145	if (re->re_src.nsegs > 1) {
2146		ix = (re->re_desc.d_src - sc->sc_spalloc.dma_paddr) /
2147			sizeof(struct safe_pdesc);
2148		for (nsegs = re->re_src.nsegs; nsegs; nsegs--) {
2149			printf(" spd[%u] %p: %p size %u flags %x"
2150				, ix, &sc->sc_spring[ix]
2151				, (caddr_t)(uintptr_t) sc->sc_spring[ix].pd_addr
2152				, sc->sc_spring[ix].pd_size
2153				, sc->sc_spring[ix].pd_flags
2154			);
2155			if (sc->sc_spring[ix].pd_size == 0)
2156				printf(" (zero!)");
2157			printf("\n");
2158			if (++ix == SAFE_TOTAL_SPART)
2159				ix = 0;
2160		}
2161	}
2162	if (re->re_dst.nsegs > 1) {
2163		ix = (re->re_desc.d_dst - sc->sc_dpalloc.dma_paddr) /
2164			sizeof(struct safe_pdesc);
2165		for (nsegs = re->re_dst.nsegs; nsegs; nsegs--) {
2166			printf(" dpd[%u] %p: %p flags %x\n"
2167				, ix, &sc->sc_dpring[ix]
2168				, (caddr_t)(uintptr_t) sc->sc_dpring[ix].pd_addr
2169				, sc->sc_dpring[ix].pd_flags
2170			);
2171			if (++ix == SAFE_TOTAL_DPART)
2172				ix = 0;
2173		}
2174	}
2175	printf("sa: cmd0 %08x cmd1 %08x staterec %x\n",
2176		re->re_sa.sa_cmd0, re->re_sa.sa_cmd1, re->re_sa.sa_staterec);
2177	printf("sa: key %x %x %x %x %x %x %x %x\n"
2178		, re->re_sa.sa_key[0]
2179		, re->re_sa.sa_key[1]
2180		, re->re_sa.sa_key[2]
2181		, re->re_sa.sa_key[3]
2182		, re->re_sa.sa_key[4]
2183		, re->re_sa.sa_key[5]
2184		, re->re_sa.sa_key[6]
2185		, re->re_sa.sa_key[7]
2186	);
2187	printf("sa: indigest %x %x %x %x %x\n"
2188		, re->re_sa.sa_indigest[0]
2189		, re->re_sa.sa_indigest[1]
2190		, re->re_sa.sa_indigest[2]
2191		, re->re_sa.sa_indigest[3]
2192		, re->re_sa.sa_indigest[4]
2193	);
2194	printf("sa: outdigest %x %x %x %x %x\n"
2195		, re->re_sa.sa_outdigest[0]
2196		, re->re_sa.sa_outdigest[1]
2197		, re->re_sa.sa_outdigest[2]
2198		, re->re_sa.sa_outdigest[3]
2199		, re->re_sa.sa_outdigest[4]
2200	);
2201	printf("sr: iv %x %x %x %x\n"
2202		, re->re_sastate.sa_saved_iv[0]
2203		, re->re_sastate.sa_saved_iv[1]
2204		, re->re_sastate.sa_saved_iv[2]
2205		, re->re_sastate.sa_saved_iv[3]
2206	);
2207	printf("sr: hashbc %u indigest %x %x %x %x %x\n"
2208		, re->re_sastate.sa_saved_hashbc
2209		, re->re_sastate.sa_saved_indigest[0]
2210		, re->re_sastate.sa_saved_indigest[1]
2211		, re->re_sastate.sa_saved_indigest[2]
2212		, re->re_sastate.sa_saved_indigest[3]
2213		, re->re_sastate.sa_saved_indigest[4]
2214	);
2215}
2216
2217static void
2218safe_dump_ring(struct safe_softc *sc, const char *tag)
2219{
2220	mtx_lock(&sc->sc_ringmtx);
2221	printf("\nSafeNet Ring State:\n");
2222	safe_dump_intrstate(sc, tag);
2223	safe_dump_dmastatus(sc, tag);
2224	safe_dump_ringstate(sc, tag);
2225	if (sc->sc_nqchip) {
2226		struct safe_ringentry *re = sc->sc_back;
2227		do {
2228			safe_dump_request(sc, tag, re);
2229			if (++re == sc->sc_ringtop)
2230				re = sc->sc_ring;
2231		} while (re != sc->sc_front);
2232	}
2233	mtx_unlock(&sc->sc_ringmtx);
2234}
2235
2236static int
2237sysctl_hw_safe_dump(SYSCTL_HANDLER_ARGS)
2238{
2239	char dmode[64];
2240	int error;
2241
2242	strncpy(dmode, "", sizeof(dmode) - 1);
2243	dmode[sizeof(dmode) - 1] = '\0';
2244	error = sysctl_handle_string(oidp, &dmode[0], sizeof(dmode), req);
2245
2246	if (error == 0 && req->newptr != NULL) {
2247		struct safe_softc *sc = safec;
2248
2249		if (!sc)
2250			return EINVAL;
2251		if (strncmp(dmode, "dma", 3) == 0)
2252			safe_dump_dmastatus(sc, "safe0");
2253		else if (strncmp(dmode, "int", 3) == 0)
2254			safe_dump_intrstate(sc, "safe0");
2255		else if (strncmp(dmode, "ring", 4) == 0)
2256			safe_dump_ring(sc, "safe0");
2257		else
2258			return EINVAL;
2259	}
2260	return error;
2261}
2262SYSCTL_PROC(_hw_safe, OID_AUTO, dump, CTLTYPE_STRING | CTLFLAG_RW,
2263	0, 0, sysctl_hw_safe_dump, "A", "Dump driver state");
2264#endif /* SAFE_DEBUG */
2265