safe.c revision 142890
1/*-
2 * Copyright (c) 2003 Sam Leffler, Errno Consulting
3 * Copyright (c) 2003 Global Technology Associates, Inc.
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 *    notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25 * SUCH DAMAGE.
26 */
27
28#include <sys/cdefs.h>
29__FBSDID("$FreeBSD: head/sys/dev/safe/safe.c 142890 2005-03-01 08:58:06Z imp $");
30
31/*
32 * SafeNet SafeXcel-1141 hardware crypto accelerator
33 */
34#include "opt_safe.h"
35
36#include <sys/param.h>
37#include <sys/systm.h>
38#include <sys/proc.h>
39#include <sys/errno.h>
40#include <sys/malloc.h>
41#include <sys/kernel.h>
42#include <sys/mbuf.h>
43#include <sys/module.h>
44#include <sys/lock.h>
45#include <sys/mutex.h>
46#include <sys/sysctl.h>
47#include <sys/endian.h>
48
49#include <vm/vm.h>
50#include <vm/pmap.h>
51
52#include <machine/clock.h>
53#include <machine/bus.h>
54#include <machine/resource.h>
55#include <sys/bus.h>
56#include <sys/rman.h>
57
58#include <crypto/sha1.h>
59#include <opencrypto/cryptodev.h>
60#include <opencrypto/cryptosoft.h>
61#include <sys/md5.h>
62#include <sys/random.h>
63
64#include <dev/pci/pcivar.h>
65#include <dev/pci/pcireg.h>
66
67#ifdef SAFE_RNDTEST
68#include <dev/rndtest/rndtest.h>
69#endif
70#include <dev/safe/safereg.h>
71#include <dev/safe/safevar.h>
72
73#ifndef bswap32
74#define	bswap32	NTOHL
75#endif
76
77/*
78 * Prototypes and count for the pci_device structure
79 */
80static	int safe_probe(device_t);
81static	int safe_attach(device_t);
82static	int safe_detach(device_t);
83static	int safe_suspend(device_t);
84static	int safe_resume(device_t);
85static	void safe_shutdown(device_t);
86
87static device_method_t safe_methods[] = {
88	/* Device interface */
89	DEVMETHOD(device_probe,		safe_probe),
90	DEVMETHOD(device_attach,	safe_attach),
91	DEVMETHOD(device_detach,	safe_detach),
92	DEVMETHOD(device_suspend,	safe_suspend),
93	DEVMETHOD(device_resume,	safe_resume),
94	DEVMETHOD(device_shutdown,	safe_shutdown),
95
96	/* bus interface */
97	DEVMETHOD(bus_print_child,	bus_generic_print_child),
98	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
99
100	{ 0, 0 }
101};
102static driver_t safe_driver = {
103	"safe",
104	safe_methods,
105	sizeof (struct safe_softc)
106};
107static devclass_t safe_devclass;
108
109DRIVER_MODULE(safe, pci, safe_driver, safe_devclass, 0, 0);
110MODULE_DEPEND(safe, crypto, 1, 1, 1);
111#ifdef SAFE_RNDTEST
112MODULE_DEPEND(safe, rndtest, 1, 1, 1);
113#endif
114
115static	void safe_intr(void *);
116static	int safe_newsession(void *, u_int32_t *, struct cryptoini *);
117static	int safe_freesession(void *, u_int64_t);
118static	int safe_process(void *, struct cryptop *, int);
119static	void safe_callback(struct safe_softc *, struct safe_ringentry *);
120static	void safe_feed(struct safe_softc *, struct safe_ringentry *);
121static	void safe_mcopy(struct mbuf *, struct mbuf *, u_int);
122#ifndef SAFE_NO_RNG
123static	void safe_rng_init(struct safe_softc *);
124static	void safe_rng(void *);
125#endif /* SAFE_NO_RNG */
126static	int safe_dma_malloc(struct safe_softc *, bus_size_t,
127	        struct safe_dma_alloc *, int);
128#define	safe_dma_sync(_dma, _flags) \
129	bus_dmamap_sync((_dma)->dma_tag, (_dma)->dma_map, (_flags))
130static	void safe_dma_free(struct safe_softc *, struct safe_dma_alloc *);
131static	int safe_dmamap_aligned(const struct safe_operand *);
132static	int safe_dmamap_uniform(const struct safe_operand *);
133
134static	void safe_reset_board(struct safe_softc *);
135static	void safe_init_board(struct safe_softc *);
136static	void safe_init_pciregs(device_t dev);
137static	void safe_cleanchip(struct safe_softc *);
138static	void safe_totalreset(struct safe_softc *);
139
140static	int safe_free_entry(struct safe_softc *, struct safe_ringentry *);
141
142SYSCTL_NODE(_hw, OID_AUTO, safe, CTLFLAG_RD, 0, "SafeNet driver parameters");
143
144#ifdef SAFE_DEBUG
145static	void safe_dump_dmastatus(struct safe_softc *, const char *);
146static	void safe_dump_ringstate(struct safe_softc *, const char *);
147static	void safe_dump_intrstate(struct safe_softc *, const char *);
148static	void safe_dump_request(struct safe_softc *, const char *,
149		struct safe_ringentry *);
150
151static	struct safe_softc *safec;		/* for use by hw.safe.dump */
152
153static	int safe_debug = 0;
154SYSCTL_INT(_hw_safe, OID_AUTO, debug, CTLFLAG_RW, &safe_debug,
155	    0, "control debugging msgs");
156#define	DPRINTF(_x)	if (safe_debug) printf _x
157#else
158#define	DPRINTF(_x)
159#endif
160
161#define	READ_REG(sc,r) \
162	bus_space_read_4((sc)->sc_st, (sc)->sc_sh, (r))
163
164#define WRITE_REG(sc,reg,val) \
165	bus_space_write_4((sc)->sc_st, (sc)->sc_sh, reg, val)
166
167struct safe_stats safestats;
168SYSCTL_STRUCT(_hw_safe, OID_AUTO, stats, CTLFLAG_RD, &safestats,
169	    safe_stats, "driver statistics");
170#ifndef SAFE_NO_RNG
171static	int safe_rnginterval = 1;		/* poll once a second */
172SYSCTL_INT(_hw_safe, OID_AUTO, rnginterval, CTLFLAG_RW, &safe_rnginterval,
173	    0, "RNG polling interval (secs)");
174static	int safe_rngbufsize = 16;		/* 64 bytes each poll  */
175SYSCTL_INT(_hw_safe, OID_AUTO, rngbufsize, CTLFLAG_RW, &safe_rngbufsize,
176	    0, "RNG polling buffer size (32-bit words)");
177static	int safe_rngmaxalarm = 8;		/* max alarms before reset */
178SYSCTL_INT(_hw_safe, OID_AUTO, rngmaxalarm, CTLFLAG_RW, &safe_rngmaxalarm,
179	    0, "RNG max alarms before reset");
180#endif /* SAFE_NO_RNG */
181
182static int
183safe_probe(device_t dev)
184{
185	if (pci_get_vendor(dev) == PCI_VENDOR_SAFENET &&
186	    pci_get_device(dev) == PCI_PRODUCT_SAFEXCEL)
187		return (BUS_PROBE_DEFAULT);
188	return (ENXIO);
189}
190
191static const char*
192safe_partname(struct safe_softc *sc)
193{
194	/* XXX sprintf numbers when not decoded */
195	switch (pci_get_vendor(sc->sc_dev)) {
196	case PCI_VENDOR_SAFENET:
197		switch (pci_get_device(sc->sc_dev)) {
198		case PCI_PRODUCT_SAFEXCEL: return "SafeNet SafeXcel-1141";
199		}
200		return "SafeNet unknown-part";
201	}
202	return "Unknown-vendor unknown-part";
203}
204
205#ifndef SAFE_NO_RNG
206static void
207default_harvest(struct rndtest_state *rsp, void *buf, u_int count)
208{
209	random_harvest(buf, count, count*NBBY, 0, RANDOM_PURE);
210}
211#endif /* SAFE_NO_RNG */
212
213static int
214safe_attach(device_t dev)
215{
216	struct safe_softc *sc = device_get_softc(dev);
217	u_int32_t raddr;
218	u_int32_t cmd, i, devinfo;
219	int rid;
220
221	bzero(sc, sizeof (*sc));
222	sc->sc_dev = dev;
223
224	/* XXX handle power management */
225
226	cmd = pci_read_config(dev, PCIR_COMMAND, 4);
227	cmd |= PCIM_CMD_MEMEN | PCIM_CMD_BUSMASTEREN;
228	pci_write_config(dev, PCIR_COMMAND, cmd, 4);
229	cmd = pci_read_config(dev, PCIR_COMMAND, 4);
230
231	if (!(cmd & PCIM_CMD_MEMEN)) {
232		device_printf(dev, "failed to enable memory mapping\n");
233		goto bad;
234	}
235
236	if (!(cmd & PCIM_CMD_BUSMASTEREN)) {
237		device_printf(dev, "failed to enable bus mastering\n");
238		goto bad;
239	}
240
241	/*
242	 * Setup memory-mapping of PCI registers.
243	 */
244	rid = BS_BAR;
245	sc->sc_sr = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
246					   RF_ACTIVE);
247	if (sc->sc_sr == NULL) {
248		device_printf(dev, "cannot map register space\n");
249		goto bad;
250	}
251	sc->sc_st = rman_get_bustag(sc->sc_sr);
252	sc->sc_sh = rman_get_bushandle(sc->sc_sr);
253
254	/*
255	 * Arrange interrupt line.
256	 */
257	rid = 0;
258	sc->sc_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
259					    RF_SHAREABLE|RF_ACTIVE);
260	if (sc->sc_irq == NULL) {
261		device_printf(dev, "could not map interrupt\n");
262		goto bad1;
263	}
264	/*
265	 * NB: Network code assumes we are blocked with splimp()
266	 *     so make sure the IRQ is mapped appropriately.
267	 */
268	if (bus_setup_intr(dev, sc->sc_irq, INTR_TYPE_NET | INTR_MPSAFE,
269			   safe_intr, sc, &sc->sc_ih)) {
270		device_printf(dev, "could not establish interrupt\n");
271		goto bad2;
272	}
273
274	sc->sc_cid = crypto_get_driverid(0);
275	if (sc->sc_cid < 0) {
276		device_printf(dev, "could not get crypto driver id\n");
277		goto bad3;
278	}
279
280	sc->sc_chiprev = READ_REG(sc, SAFE_DEVINFO) &
281		(SAFE_DEVINFO_REV_MAJ | SAFE_DEVINFO_REV_MIN);
282
283	/*
284	 * Setup DMA descriptor area.
285	 */
286	if (bus_dma_tag_create(NULL,			/* parent */
287			       1,			/* alignment */
288			       SAFE_DMA_BOUNDARY,	/* boundary */
289			       BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
290			       BUS_SPACE_MAXADDR,	/* highaddr */
291			       NULL, NULL,		/* filter, filterarg */
292			       SAFE_MAX_DMA,		/* maxsize */
293			       SAFE_MAX_PART,		/* nsegments */
294			       SAFE_MAX_SSIZE,		/* maxsegsize */
295			       BUS_DMA_ALLOCNOW,	/* flags */
296			       NULL, NULL,		/* locking */
297			       &sc->sc_srcdmat)) {
298		device_printf(dev, "cannot allocate DMA tag\n");
299		goto bad4;
300	}
301	if (bus_dma_tag_create(NULL,			/* parent */
302			       sizeof(u_int32_t),	/* alignment */
303			       SAFE_MAX_DSIZE,		/* boundary */
304			       BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
305			       BUS_SPACE_MAXADDR,	/* highaddr */
306			       NULL, NULL,		/* filter, filterarg */
307			       SAFE_MAX_DMA,		/* maxsize */
308			       SAFE_MAX_PART,		/* nsegments */
309			       SAFE_MAX_DSIZE,		/* maxsegsize */
310			       BUS_DMA_ALLOCNOW,	/* flags */
311			       NULL, NULL,		/* locking */
312			       &sc->sc_dstdmat)) {
313		device_printf(dev, "cannot allocate DMA tag\n");
314		goto bad4;
315	}
316
317	/*
318	 * Allocate packet engine descriptors.
319	 */
320	if (safe_dma_malloc(sc,
321	    SAFE_MAX_NQUEUE * sizeof (struct safe_ringentry),
322	    &sc->sc_ringalloc, 0)) {
323		device_printf(dev, "cannot allocate PE descriptor ring\n");
324		bus_dma_tag_destroy(sc->sc_srcdmat);
325		goto bad4;
326	}
327	/*
328	 * Hookup the static portion of all our data structures.
329	 */
330	sc->sc_ring = (struct safe_ringentry *) sc->sc_ringalloc.dma_vaddr;
331	sc->sc_ringtop = sc->sc_ring + SAFE_MAX_NQUEUE;
332	sc->sc_front = sc->sc_ring;
333	sc->sc_back = sc->sc_ring;
334	raddr = sc->sc_ringalloc.dma_paddr;
335	bzero(sc->sc_ring, SAFE_MAX_NQUEUE * sizeof(struct safe_ringentry));
336	for (i = 0; i < SAFE_MAX_NQUEUE; i++) {
337		struct safe_ringentry *re = &sc->sc_ring[i];
338
339		re->re_desc.d_sa = raddr +
340			offsetof(struct safe_ringentry, re_sa);
341		re->re_sa.sa_staterec = raddr +
342			offsetof(struct safe_ringentry, re_sastate);
343
344		raddr += sizeof (struct safe_ringentry);
345	}
346	mtx_init(&sc->sc_ringmtx, device_get_nameunit(dev),
347		"packet engine ring", MTX_DEF);
348
349	/*
350	 * Allocate scatter and gather particle descriptors.
351	 */
352	if (safe_dma_malloc(sc, SAFE_TOTAL_SPART * sizeof (struct safe_pdesc),
353	    &sc->sc_spalloc, 0)) {
354		device_printf(dev, "cannot allocate source particle "
355			"descriptor ring\n");
356		mtx_destroy(&sc->sc_ringmtx);
357		safe_dma_free(sc, &sc->sc_ringalloc);
358		bus_dma_tag_destroy(sc->sc_srcdmat);
359		goto bad4;
360	}
361	sc->sc_spring = (struct safe_pdesc *) sc->sc_spalloc.dma_vaddr;
362	sc->sc_springtop = sc->sc_spring + SAFE_TOTAL_SPART;
363	sc->sc_spfree = sc->sc_spring;
364	bzero(sc->sc_spring, SAFE_TOTAL_SPART * sizeof(struct safe_pdesc));
365
366	if (safe_dma_malloc(sc, SAFE_TOTAL_DPART * sizeof (struct safe_pdesc),
367	    &sc->sc_dpalloc, 0)) {
368		device_printf(dev, "cannot allocate destination particle "
369			"descriptor ring\n");
370		mtx_destroy(&sc->sc_ringmtx);
371		safe_dma_free(sc, &sc->sc_spalloc);
372		safe_dma_free(sc, &sc->sc_ringalloc);
373		bus_dma_tag_destroy(sc->sc_dstdmat);
374		goto bad4;
375	}
376	sc->sc_dpring = (struct safe_pdesc *) sc->sc_dpalloc.dma_vaddr;
377	sc->sc_dpringtop = sc->sc_dpring + SAFE_TOTAL_DPART;
378	sc->sc_dpfree = sc->sc_dpring;
379	bzero(sc->sc_dpring, SAFE_TOTAL_DPART * sizeof(struct safe_pdesc));
380
381	device_printf(sc->sc_dev, "%s", safe_partname(sc));
382
383	devinfo = READ_REG(sc, SAFE_DEVINFO);
384	if (devinfo & SAFE_DEVINFO_RNG) {
385		sc->sc_flags |= SAFE_FLAGS_RNG;
386		printf(" rng");
387	}
388	if (devinfo & SAFE_DEVINFO_PKEY) {
389#if 0
390		printf(" key");
391		sc->sc_flags |= SAFE_FLAGS_KEY;
392		crypto_kregister(sc->sc_cid, CRK_MOD_EXP, 0,
393			safe_kprocess, sc);
394		crypto_kregister(sc->sc_cid, CRK_MOD_EXP_CRT, 0,
395			safe_kprocess, sc);
396#endif
397	}
398	if (devinfo & SAFE_DEVINFO_DES) {
399		printf(" des/3des");
400		crypto_register(sc->sc_cid, CRYPTO_3DES_CBC, 0, 0,
401			safe_newsession, safe_freesession, safe_process, sc);
402		crypto_register(sc->sc_cid, CRYPTO_DES_CBC, 0, 0,
403			safe_newsession, safe_freesession, safe_process, sc);
404	}
405	if (devinfo & SAFE_DEVINFO_AES) {
406		printf(" aes");
407		crypto_register(sc->sc_cid, CRYPTO_AES_CBC, 0, 0,
408			safe_newsession, safe_freesession, safe_process, sc);
409	}
410	if (devinfo & SAFE_DEVINFO_MD5) {
411		printf(" md5");
412		crypto_register(sc->sc_cid, CRYPTO_MD5_HMAC, 0, 0,
413			safe_newsession, safe_freesession, safe_process, sc);
414	}
415	if (devinfo & SAFE_DEVINFO_SHA1) {
416		printf(" sha1");
417		crypto_register(sc->sc_cid, CRYPTO_SHA1_HMAC, 0, 0,
418			safe_newsession, safe_freesession, safe_process, sc);
419	}
420	printf(" null");
421	crypto_register(sc->sc_cid, CRYPTO_NULL_CBC, 0, 0,
422		safe_newsession, safe_freesession, safe_process, sc);
423	crypto_register(sc->sc_cid, CRYPTO_NULL_HMAC, 0, 0,
424		safe_newsession, safe_freesession, safe_process, sc);
425	/* XXX other supported algorithms */
426	printf("\n");
427
428	safe_reset_board(sc);		/* reset h/w */
429	safe_init_pciregs(dev);		/* init pci settings */
430	safe_init_board(sc);		/* init h/w */
431
432#ifndef SAFE_NO_RNG
433	if (sc->sc_flags & SAFE_FLAGS_RNG) {
434#ifdef SAFE_RNDTEST
435		sc->sc_rndtest = rndtest_attach(dev);
436		if (sc->sc_rndtest)
437			sc->sc_harvest = rndtest_harvest;
438		else
439			sc->sc_harvest = default_harvest;
440#else
441		sc->sc_harvest = default_harvest;
442#endif
443		safe_rng_init(sc);
444
445		callout_init(&sc->sc_rngto, CALLOUT_MPSAFE);
446		callout_reset(&sc->sc_rngto, hz*safe_rnginterval, safe_rng, sc);
447	}
448#endif /* SAFE_NO_RNG */
449#ifdef SAFE_DEBUG
450	safec = sc;			/* for use by hw.safe.dump */
451#endif
452	return (0);
453bad4:
454	crypto_unregister_all(sc->sc_cid);
455bad3:
456	bus_teardown_intr(dev, sc->sc_irq, sc->sc_ih);
457bad2:
458	bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sc_irq);
459bad1:
460	bus_release_resource(dev, SYS_RES_MEMORY, BS_BAR, sc->sc_sr);
461bad:
462	return (ENXIO);
463}
464
465/*
466 * Detach a device that successfully probed.
467 */
468static int
469safe_detach(device_t dev)
470{
471	struct safe_softc *sc = device_get_softc(dev);
472
473	/* XXX wait/abort active ops */
474
475	WRITE_REG(sc, SAFE_HI_MASK, 0);		/* disable interrupts */
476
477	callout_stop(&sc->sc_rngto);
478
479	crypto_unregister_all(sc->sc_cid);
480
481#ifdef SAFE_RNDTEST
482	if (sc->sc_rndtest)
483		rndtest_detach(sc->sc_rndtest);
484#endif
485
486	safe_cleanchip(sc);
487	safe_dma_free(sc, &sc->sc_dpalloc);
488	safe_dma_free(sc, &sc->sc_spalloc);
489	mtx_destroy(&sc->sc_ringmtx);
490	safe_dma_free(sc, &sc->sc_ringalloc);
491
492	bus_generic_detach(dev);
493	bus_teardown_intr(dev, sc->sc_irq, sc->sc_ih);
494	bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sc_irq);
495
496	bus_dma_tag_destroy(sc->sc_srcdmat);
497	bus_dma_tag_destroy(sc->sc_dstdmat);
498	bus_release_resource(dev, SYS_RES_MEMORY, BS_BAR, sc->sc_sr);
499
500	return (0);
501}
502
503/*
504 * Stop all chip i/o so that the kernel's probe routines don't
505 * get confused by errant DMAs when rebooting.
506 */
507static void
508safe_shutdown(device_t dev)
509{
510#ifdef notyet
511	safe_stop(device_get_softc(dev));
512#endif
513}
514
515/*
516 * Device suspend routine.
517 */
518static int
519safe_suspend(device_t dev)
520{
521	struct safe_softc *sc = device_get_softc(dev);
522
523#ifdef notyet
524	/* XXX stop the device and save PCI settings */
525#endif
526	sc->sc_suspended = 1;
527
528	return (0);
529}
530
531static int
532safe_resume(device_t dev)
533{
534	struct safe_softc *sc = device_get_softc(dev);
535
536#ifdef notyet
537	/* XXX retore PCI settings and start the device */
538#endif
539	sc->sc_suspended = 0;
540	return (0);
541}
542
543/*
544 * SafeXcel Interrupt routine
545 */
546static void
547safe_intr(void *arg)
548{
549	struct safe_softc *sc = arg;
550	volatile u_int32_t stat;
551
552	stat = READ_REG(sc, SAFE_HM_STAT);
553	if (stat == 0)			/* shared irq, not for us */
554		return;
555
556	WRITE_REG(sc, SAFE_HI_CLR, stat);	/* IACK */
557
558	if ((stat & SAFE_INT_PE_DDONE)) {
559		/*
560		 * Descriptor(s) done; scan the ring and
561		 * process completed operations.
562		 */
563		mtx_lock(&sc->sc_ringmtx);
564		while (sc->sc_back != sc->sc_front) {
565			struct safe_ringentry *re = sc->sc_back;
566#ifdef SAFE_DEBUG
567			if (safe_debug) {
568				safe_dump_ringstate(sc, __func__);
569				safe_dump_request(sc, __func__, re);
570			}
571#endif
572			/*
573			 * safe_process marks ring entries that were allocated
574			 * but not used with a csr of zero.  This insures the
575			 * ring front pointer never needs to be set backwards
576			 * in the event that an entry is allocated but not used
577			 * because of a setup error.
578			 */
579			if (re->re_desc.d_csr != 0) {
580				if (!SAFE_PE_CSR_IS_DONE(re->re_desc.d_csr))
581					break;
582				if (!SAFE_PE_LEN_IS_DONE(re->re_desc.d_len))
583					break;
584				sc->sc_nqchip--;
585				safe_callback(sc, re);
586			}
587			if (++(sc->sc_back) == sc->sc_ringtop)
588				sc->sc_back = sc->sc_ring;
589		}
590		mtx_unlock(&sc->sc_ringmtx);
591	}
592
593	/*
594	 * Check to see if we got any DMA Error
595	 */
596	if (stat & SAFE_INT_PE_ERROR) {
597		DPRINTF(("dmaerr dmastat %08x\n",
598			READ_REG(sc, SAFE_PE_DMASTAT)));
599		safestats.st_dmaerr++;
600		safe_totalreset(sc);
601#if 0
602		safe_feed(sc);
603#endif
604	}
605
606	if (sc->sc_needwakeup) {		/* XXX check high watermark */
607		int wakeup = sc->sc_needwakeup & (CRYPTO_SYMQ|CRYPTO_ASYMQ);
608		DPRINTF(("%s: wakeup crypto %x\n", __func__,
609			sc->sc_needwakeup));
610		sc->sc_needwakeup &= ~wakeup;
611		crypto_unblock(sc->sc_cid, wakeup);
612	}
613}
614
615/*
616 * safe_feed() - post a request to chip
617 */
618static void
619safe_feed(struct safe_softc *sc, struct safe_ringentry *re)
620{
621	bus_dmamap_sync(sc->sc_srcdmat, re->re_src_map, BUS_DMASYNC_PREWRITE);
622	if (re->re_dst_map != NULL)
623		bus_dmamap_sync(sc->sc_dstdmat, re->re_dst_map,
624			BUS_DMASYNC_PREREAD);
625	/* XXX have no smaller granularity */
626	safe_dma_sync(&sc->sc_ringalloc,
627		BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
628	safe_dma_sync(&sc->sc_spalloc, BUS_DMASYNC_PREWRITE);
629	safe_dma_sync(&sc->sc_dpalloc, BUS_DMASYNC_PREWRITE);
630
631#ifdef SAFE_DEBUG
632	if (safe_debug) {
633		safe_dump_ringstate(sc, __func__);
634		safe_dump_request(sc, __func__, re);
635	}
636#endif
637	sc->sc_nqchip++;
638	if (sc->sc_nqchip > safestats.st_maxqchip)
639		safestats.st_maxqchip = sc->sc_nqchip;
640	/* poke h/w to check descriptor ring, any value can be written */
641	WRITE_REG(sc, SAFE_HI_RD_DESCR, 0);
642}
643
644/*
645 * Allocate a new 'session' and return an encoded session id.  'sidp'
646 * contains our registration id, and should contain an encoded session
647 * id on successful allocation.
648 */
649static int
650safe_newsession(void *arg, u_int32_t *sidp, struct cryptoini *cri)
651{
652#define	N(a)	(sizeof(a) / sizeof (a[0]))
653	struct cryptoini *c, *encini = NULL, *macini = NULL;
654	struct safe_softc *sc = arg;
655	struct safe_session *ses = NULL;
656	MD5_CTX md5ctx;
657	SHA1_CTX sha1ctx;
658	int i, sesn;
659
660	if (sidp == NULL || cri == NULL || sc == NULL)
661		return (EINVAL);
662
663	for (c = cri; c != NULL; c = c->cri_next) {
664		if (c->cri_alg == CRYPTO_MD5_HMAC ||
665		    c->cri_alg == CRYPTO_SHA1_HMAC ||
666		    c->cri_alg == CRYPTO_NULL_HMAC) {
667			if (macini)
668				return (EINVAL);
669			macini = c;
670		} else if (c->cri_alg == CRYPTO_DES_CBC ||
671		    c->cri_alg == CRYPTO_3DES_CBC ||
672		    c->cri_alg == CRYPTO_AES_CBC ||
673		    c->cri_alg == CRYPTO_NULL_CBC) {
674			if (encini)
675				return (EINVAL);
676			encini = c;
677		} else
678			return (EINVAL);
679	}
680	if (encini == NULL && macini == NULL)
681		return (EINVAL);
682	if (encini) {			/* validate key length */
683		switch (encini->cri_alg) {
684		case CRYPTO_DES_CBC:
685			if (encini->cri_klen != 64)
686				return (EINVAL);
687			break;
688		case CRYPTO_3DES_CBC:
689			if (encini->cri_klen != 192)
690				return (EINVAL);
691			break;
692		case CRYPTO_AES_CBC:
693			if (encini->cri_klen != 128 &&
694			    encini->cri_klen != 192 &&
695			    encini->cri_klen != 256)
696				return (EINVAL);
697			break;
698		}
699	}
700
701	if (sc->sc_sessions == NULL) {
702		ses = sc->sc_sessions = (struct safe_session *)malloc(
703		    sizeof(struct safe_session), M_DEVBUF, M_NOWAIT);
704		if (ses == NULL)
705			return (ENOMEM);
706		sesn = 0;
707		sc->sc_nsessions = 1;
708	} else {
709		for (sesn = 0; sesn < sc->sc_nsessions; sesn++) {
710			if (sc->sc_sessions[sesn].ses_used == 0) {
711				ses = &sc->sc_sessions[sesn];
712				break;
713			}
714		}
715
716		if (ses == NULL) {
717			sesn = sc->sc_nsessions;
718			ses = (struct safe_session *)malloc((sesn + 1) *
719			    sizeof(struct safe_session), M_DEVBUF, M_NOWAIT);
720			if (ses == NULL)
721				return (ENOMEM);
722			bcopy(sc->sc_sessions, ses, sesn *
723			    sizeof(struct safe_session));
724			bzero(sc->sc_sessions, sesn *
725			    sizeof(struct safe_session));
726			free(sc->sc_sessions, M_DEVBUF);
727			sc->sc_sessions = ses;
728			ses = &sc->sc_sessions[sesn];
729			sc->sc_nsessions++;
730		}
731	}
732
733	bzero(ses, sizeof(struct safe_session));
734	ses->ses_used = 1;
735
736	if (encini) {
737		/* get an IV */
738		/* XXX may read fewer than requested */
739		read_random(ses->ses_iv, sizeof(ses->ses_iv));
740
741		ses->ses_klen = encini->cri_klen;
742		bcopy(encini->cri_key, ses->ses_key, ses->ses_klen / 8);
743
744		/* PE is little-endian, insure proper byte order */
745		for (i = 0; i < N(ses->ses_key); i++)
746			ses->ses_key[i] = htole32(ses->ses_key[i]);
747	}
748
749	if (macini) {
750		for (i = 0; i < macini->cri_klen / 8; i++)
751			macini->cri_key[i] ^= HMAC_IPAD_VAL;
752
753		if (macini->cri_alg == CRYPTO_MD5_HMAC) {
754			MD5Init(&md5ctx);
755			MD5Update(&md5ctx, macini->cri_key,
756			    macini->cri_klen / 8);
757			MD5Update(&md5ctx, hmac_ipad_buffer,
758			    HMAC_BLOCK_LEN - (macini->cri_klen / 8));
759			bcopy(md5ctx.state, ses->ses_hminner,
760			    sizeof(md5ctx.state));
761		} else {
762			SHA1Init(&sha1ctx);
763			SHA1Update(&sha1ctx, macini->cri_key,
764			    macini->cri_klen / 8);
765			SHA1Update(&sha1ctx, hmac_ipad_buffer,
766			    HMAC_BLOCK_LEN - (macini->cri_klen / 8));
767			bcopy(sha1ctx.h.b32, ses->ses_hminner,
768			    sizeof(sha1ctx.h.b32));
769		}
770
771		for (i = 0; i < macini->cri_klen / 8; i++)
772			macini->cri_key[i] ^= (HMAC_IPAD_VAL ^ HMAC_OPAD_VAL);
773
774		if (macini->cri_alg == CRYPTO_MD5_HMAC) {
775			MD5Init(&md5ctx);
776			MD5Update(&md5ctx, macini->cri_key,
777			    macini->cri_klen / 8);
778			MD5Update(&md5ctx, hmac_opad_buffer,
779			    HMAC_BLOCK_LEN - (macini->cri_klen / 8));
780			bcopy(md5ctx.state, ses->ses_hmouter,
781			    sizeof(md5ctx.state));
782		} else {
783			SHA1Init(&sha1ctx);
784			SHA1Update(&sha1ctx, macini->cri_key,
785			    macini->cri_klen / 8);
786			SHA1Update(&sha1ctx, hmac_opad_buffer,
787			    HMAC_BLOCK_LEN - (macini->cri_klen / 8));
788			bcopy(sha1ctx.h.b32, ses->ses_hmouter,
789			    sizeof(sha1ctx.h.b32));
790		}
791
792		for (i = 0; i < macini->cri_klen / 8; i++)
793			macini->cri_key[i] ^= HMAC_OPAD_VAL;
794
795		/* PE is little-endian, insure proper byte order */
796		for (i = 0; i < N(ses->ses_hminner); i++) {
797			ses->ses_hminner[i] = htole32(ses->ses_hminner[i]);
798			ses->ses_hmouter[i] = htole32(ses->ses_hmouter[i]);
799		}
800	}
801
802	*sidp = SAFE_SID(device_get_unit(sc->sc_dev), sesn);
803	return (0);
804#undef N
805}
806
807/*
808 * Deallocate a session.
809 */
810static int
811safe_freesession(void *arg, u_int64_t tid)
812{
813	struct safe_softc *sc = arg;
814	int session, ret;
815	u_int32_t sid = ((u_int32_t) tid) & 0xffffffff;
816
817	if (sc == NULL)
818		return (EINVAL);
819
820	session = SAFE_SESSION(sid);
821	if (session < sc->sc_nsessions) {
822		bzero(&sc->sc_sessions[session], sizeof(sc->sc_sessions[session]));
823		ret = 0;
824	} else
825		ret = EINVAL;
826	return (ret);
827}
828
829static void
830safe_op_cb(void *arg, bus_dma_segment_t *seg, int nsegs, bus_size_t mapsize, int error)
831{
832	struct safe_operand *op = arg;
833
834	DPRINTF(("%s: mapsize %u nsegs %d error %d\n", __func__,
835		(u_int) mapsize, nsegs, error));
836	if (error != 0)
837		return;
838	op->mapsize = mapsize;
839	op->nsegs = nsegs;
840	bcopy(seg, op->segs, nsegs * sizeof (seg[0]));
841}
842
843static int
844safe_process(void *arg, struct cryptop *crp, int hint)
845{
846	int err = 0, i, nicealign, uniform;
847	struct safe_softc *sc = arg;
848	struct cryptodesc *crd1, *crd2, *maccrd, *enccrd;
849	int bypass, oplen, ivsize;
850	caddr_t iv;
851	int16_t coffset;
852	struct safe_session *ses;
853	struct safe_ringentry *re;
854	struct safe_sarec *sa;
855	struct safe_pdesc *pd;
856	u_int32_t cmd0, cmd1, staterec;
857
858	if (crp == NULL || crp->crp_callback == NULL || sc == NULL) {
859		safestats.st_invalid++;
860		return (EINVAL);
861	}
862	if (SAFE_SESSION(crp->crp_sid) >= sc->sc_nsessions) {
863		safestats.st_badsession++;
864		return (EINVAL);
865	}
866
867	mtx_lock(&sc->sc_ringmtx);
868	if (sc->sc_front == sc->sc_back && sc->sc_nqchip != 0) {
869		safestats.st_ringfull++;
870		sc->sc_needwakeup |= CRYPTO_SYMQ;
871		mtx_unlock(&sc->sc_ringmtx);
872		return (ERESTART);
873	}
874	re = sc->sc_front;
875
876	staterec = re->re_sa.sa_staterec;	/* save */
877	/* NB: zero everything but the PE descriptor */
878	bzero(&re->re_sa, sizeof(struct safe_ringentry) - sizeof(re->re_desc));
879	re->re_sa.sa_staterec = staterec;	/* restore */
880
881	re->re_crp = crp;
882	re->re_sesn = SAFE_SESSION(crp->crp_sid);
883
884	if (crp->crp_flags & CRYPTO_F_IMBUF) {
885		re->re_src_m = (struct mbuf *)crp->crp_buf;
886		re->re_dst_m = (struct mbuf *)crp->crp_buf;
887	} else if (crp->crp_flags & CRYPTO_F_IOV) {
888		re->re_src_io = (struct uio *)crp->crp_buf;
889		re->re_dst_io = (struct uio *)crp->crp_buf;
890	} else {
891		safestats.st_badflags++;
892		err = EINVAL;
893		goto errout;	/* XXX we don't handle contiguous blocks! */
894	}
895
896	sa = &re->re_sa;
897	ses = &sc->sc_sessions[re->re_sesn];
898
899	crd1 = crp->crp_desc;
900	if (crd1 == NULL) {
901		safestats.st_nodesc++;
902		err = EINVAL;
903		goto errout;
904	}
905	crd2 = crd1->crd_next;
906
907	cmd0 = SAFE_SA_CMD0_BASIC;		/* basic group operation */
908	cmd1 = 0;
909	if (crd2 == NULL) {
910		if (crd1->crd_alg == CRYPTO_MD5_HMAC ||
911		    crd1->crd_alg == CRYPTO_SHA1_HMAC ||
912		    crd1->crd_alg == CRYPTO_NULL_HMAC) {
913			maccrd = crd1;
914			enccrd = NULL;
915			cmd0 |= SAFE_SA_CMD0_OP_HASH;
916		} else if (crd1->crd_alg == CRYPTO_DES_CBC ||
917		    crd1->crd_alg == CRYPTO_3DES_CBC ||
918		    crd1->crd_alg == CRYPTO_AES_CBC ||
919		    crd1->crd_alg == CRYPTO_NULL_CBC) {
920			maccrd = NULL;
921			enccrd = crd1;
922			cmd0 |= SAFE_SA_CMD0_OP_CRYPT;
923		} else {
924			safestats.st_badalg++;
925			err = EINVAL;
926			goto errout;
927		}
928	} else {
929		if ((crd1->crd_alg == CRYPTO_MD5_HMAC ||
930		    crd1->crd_alg == CRYPTO_SHA1_HMAC ||
931		    crd1->crd_alg == CRYPTO_NULL_HMAC) &&
932		    (crd2->crd_alg == CRYPTO_DES_CBC ||
933			crd2->crd_alg == CRYPTO_3DES_CBC ||
934		        crd2->crd_alg == CRYPTO_AES_CBC ||
935		        crd2->crd_alg == CRYPTO_NULL_CBC) &&
936		    ((crd2->crd_flags & CRD_F_ENCRYPT) == 0)) {
937			maccrd = crd1;
938			enccrd = crd2;
939		} else if ((crd1->crd_alg == CRYPTO_DES_CBC ||
940		    crd1->crd_alg == CRYPTO_3DES_CBC ||
941		    crd1->crd_alg == CRYPTO_AES_CBC ||
942		    crd1->crd_alg == CRYPTO_NULL_CBC) &&
943		    (crd2->crd_alg == CRYPTO_MD5_HMAC ||
944			crd2->crd_alg == CRYPTO_SHA1_HMAC ||
945			crd2->crd_alg == CRYPTO_NULL_HMAC) &&
946		    (crd1->crd_flags & CRD_F_ENCRYPT)) {
947			enccrd = crd1;
948			maccrd = crd2;
949		} else {
950			safestats.st_badalg++;
951			err = EINVAL;
952			goto errout;
953		}
954		cmd0 |= SAFE_SA_CMD0_OP_BOTH;
955	}
956
957	if (enccrd) {
958		if (enccrd->crd_alg == CRYPTO_DES_CBC) {
959			cmd0 |= SAFE_SA_CMD0_DES;
960			cmd1 |= SAFE_SA_CMD1_CBC;
961			ivsize = 2*sizeof(u_int32_t);
962		} else if (enccrd->crd_alg == CRYPTO_3DES_CBC) {
963			cmd0 |= SAFE_SA_CMD0_3DES;
964			cmd1 |= SAFE_SA_CMD1_CBC;
965			ivsize = 2*sizeof(u_int32_t);
966		} else if (enccrd->crd_alg == CRYPTO_AES_CBC) {
967			cmd0 |= SAFE_SA_CMD0_AES;
968			cmd1 |= SAFE_SA_CMD1_CBC;
969			if (ses->ses_klen == 128)
970			     cmd1 |=  SAFE_SA_CMD1_AES128;
971			else if (ses->ses_klen == 192)
972			     cmd1 |=  SAFE_SA_CMD1_AES192;
973			else
974			     cmd1 |=  SAFE_SA_CMD1_AES256;
975			ivsize = 4*sizeof(u_int32_t);
976		} else {
977			cmd0 |= SAFE_SA_CMD0_CRYPT_NULL;
978			ivsize = 0;
979		}
980
981		/*
982		 * Setup encrypt/decrypt state.  When using basic ops
983		 * we can't use an inline IV because hash/crypt offset
984		 * must be from the end of the IV to the start of the
985		 * crypt data and this leaves out the preceding header
986		 * from the hash calculation.  Instead we place the IV
987		 * in the state record and set the hash/crypt offset to
988		 * copy both the header+IV.
989		 */
990		if (enccrd->crd_flags & CRD_F_ENCRYPT) {
991			cmd0 |= SAFE_SA_CMD0_OUTBOUND;
992
993			if (enccrd->crd_flags & CRD_F_IV_EXPLICIT)
994				iv = enccrd->crd_iv;
995			else
996				iv = (caddr_t) ses->ses_iv;
997			if ((enccrd->crd_flags & CRD_F_IV_PRESENT) == 0) {
998				if (crp->crp_flags & CRYPTO_F_IMBUF)
999					m_copyback(re->re_src_m,
1000						enccrd->crd_inject, ivsize, iv);
1001				else if (crp->crp_flags & CRYPTO_F_IOV)
1002					cuio_copyback(re->re_src_io,
1003						enccrd->crd_inject, ivsize, iv);
1004			}
1005			bcopy(iv, re->re_sastate.sa_saved_iv, ivsize);
1006			cmd0 |= SAFE_SA_CMD0_IVLD_STATE | SAFE_SA_CMD0_SAVEIV;
1007			re->re_flags |= SAFE_QFLAGS_COPYOUTIV;
1008		} else {
1009			cmd0 |= SAFE_SA_CMD0_INBOUND;
1010
1011			if (enccrd->crd_flags & CRD_F_IV_EXPLICIT)
1012				bcopy(enccrd->crd_iv,
1013					re->re_sastate.sa_saved_iv, ivsize);
1014			else if (crp->crp_flags & CRYPTO_F_IMBUF)
1015				m_copydata(re->re_src_m, enccrd->crd_inject,
1016					ivsize,
1017					(caddr_t)re->re_sastate.sa_saved_iv);
1018			else if (crp->crp_flags & CRYPTO_F_IOV)
1019				cuio_copydata(re->re_src_io, enccrd->crd_inject,
1020					ivsize,
1021					(caddr_t)re->re_sastate.sa_saved_iv);
1022			cmd0 |= SAFE_SA_CMD0_IVLD_STATE;
1023		}
1024		/*
1025		 * For basic encryption use the zero pad algorithm.
1026		 * This pads results to an 8-byte boundary and
1027		 * suppresses padding verification for inbound (i.e.
1028		 * decrypt) operations.
1029		 *
1030		 * NB: Not sure if the 8-byte pad boundary is a problem.
1031		 */
1032		cmd0 |= SAFE_SA_CMD0_PAD_ZERO;
1033
1034		/* XXX assert key bufs have the same size */
1035		bcopy(ses->ses_key, sa->sa_key, sizeof(sa->sa_key));
1036	}
1037
1038	if (maccrd) {
1039		if (maccrd->crd_alg == CRYPTO_MD5_HMAC) {
1040			cmd0 |= SAFE_SA_CMD0_MD5;
1041			cmd1 |= SAFE_SA_CMD1_HMAC;	/* NB: enable HMAC */
1042		} else if (maccrd->crd_alg == CRYPTO_SHA1_HMAC) {
1043			cmd0 |= SAFE_SA_CMD0_SHA1;
1044			cmd1 |= SAFE_SA_CMD1_HMAC;	/* NB: enable HMAC */
1045		} else {
1046			cmd0 |= SAFE_SA_CMD0_HASH_NULL;
1047		}
1048		/*
1049		 * Digest data is loaded from the SA and the hash
1050		 * result is saved to the state block where we
1051		 * retrieve it for return to the caller.
1052		 */
1053		/* XXX assert digest bufs have the same size */
1054		bcopy(ses->ses_hminner, sa->sa_indigest,
1055			sizeof(sa->sa_indigest));
1056		bcopy(ses->ses_hmouter, sa->sa_outdigest,
1057			sizeof(sa->sa_outdigest));
1058
1059		cmd0 |= SAFE_SA_CMD0_HSLD_SA | SAFE_SA_CMD0_SAVEHASH;
1060		re->re_flags |= SAFE_QFLAGS_COPYOUTICV;
1061	}
1062
1063	if (enccrd && maccrd) {
1064		/*
1065		 * The offset from hash data to the start of
1066		 * crypt data is the difference in the skips.
1067		 */
1068		bypass = maccrd->crd_skip;
1069		coffset = enccrd->crd_skip - maccrd->crd_skip;
1070		if (coffset < 0) {
1071			DPRINTF(("%s: hash does not precede crypt; "
1072				"mac skip %u enc skip %u\n",
1073				__func__, maccrd->crd_skip, enccrd->crd_skip));
1074			safestats.st_skipmismatch++;
1075			err = EINVAL;
1076			goto errout;
1077		}
1078		oplen = enccrd->crd_skip + enccrd->crd_len;
1079		if (maccrd->crd_skip + maccrd->crd_len != oplen) {
1080			DPRINTF(("%s: hash amount %u != crypt amount %u\n",
1081				__func__, maccrd->crd_skip + maccrd->crd_len,
1082				oplen));
1083			safestats.st_lenmismatch++;
1084			err = EINVAL;
1085			goto errout;
1086		}
1087#ifdef SAFE_DEBUG
1088		if (safe_debug) {
1089			printf("mac: skip %d, len %d, inject %d\n",
1090			    maccrd->crd_skip, maccrd->crd_len,
1091			    maccrd->crd_inject);
1092			printf("enc: skip %d, len %d, inject %d\n",
1093			    enccrd->crd_skip, enccrd->crd_len,
1094			    enccrd->crd_inject);
1095			printf("bypass %d coffset %d oplen %d\n",
1096				bypass, coffset, oplen);
1097		}
1098#endif
1099		if (coffset & 3) {	/* offset must be 32-bit aligned */
1100			DPRINTF(("%s: coffset %u misaligned\n",
1101				__func__, coffset));
1102			safestats.st_coffmisaligned++;
1103			err = EINVAL;
1104			goto errout;
1105		}
1106		coffset >>= 2;
1107		if (coffset > 255) {	/* offset must be <256 dwords */
1108			DPRINTF(("%s: coffset %u too big\n",
1109				__func__, coffset));
1110			safestats.st_cofftoobig++;
1111			err = EINVAL;
1112			goto errout;
1113		}
1114		/*
1115		 * Tell the hardware to copy the header to the output.
1116		 * The header is defined as the data from the end of
1117		 * the bypass to the start of data to be encrypted.
1118		 * Typically this is the inline IV.  Note that you need
1119		 * to do this even if src+dst are the same; it appears
1120		 * that w/o this bit the crypted data is written
1121		 * immediately after the bypass data.
1122		 */
1123		cmd1 |= SAFE_SA_CMD1_HDRCOPY;
1124		/*
1125		 * Disable IP header mutable bit handling.  This is
1126		 * needed to get correct HMAC calculations.
1127		 */
1128		cmd1 |= SAFE_SA_CMD1_MUTABLE;
1129	} else {
1130		if (enccrd) {
1131			bypass = enccrd->crd_skip;
1132			oplen = bypass + enccrd->crd_len;
1133		} else {
1134			bypass = maccrd->crd_skip;
1135			oplen = bypass + maccrd->crd_len;
1136		}
1137		coffset = 0;
1138	}
1139	/* XXX verify multiple of 4 when using s/g */
1140	if (bypass > 96) {		/* bypass offset must be <= 96 bytes */
1141		DPRINTF(("%s: bypass %u too big\n", __func__, bypass));
1142		safestats.st_bypasstoobig++;
1143		err = EINVAL;
1144		goto errout;
1145	}
1146
1147	if (bus_dmamap_create(sc->sc_srcdmat, BUS_DMA_NOWAIT, &re->re_src_map)) {
1148		safestats.st_nomap++;
1149		err = ENOMEM;
1150		goto errout;
1151	}
1152	if (crp->crp_flags & CRYPTO_F_IMBUF) {
1153		if (bus_dmamap_load_mbuf(sc->sc_srcdmat, re->re_src_map,
1154		    re->re_src_m, safe_op_cb,
1155		    &re->re_src, BUS_DMA_NOWAIT) != 0) {
1156			bus_dmamap_destroy(sc->sc_srcdmat, re->re_src_map);
1157			re->re_src_map = NULL;
1158			safestats.st_noload++;
1159			err = ENOMEM;
1160			goto errout;
1161		}
1162	} else if (crp->crp_flags & CRYPTO_F_IOV) {
1163		if (bus_dmamap_load_uio(sc->sc_srcdmat, re->re_src_map,
1164		    re->re_src_io, safe_op_cb,
1165		    &re->re_src, BUS_DMA_NOWAIT) != 0) {
1166			bus_dmamap_destroy(sc->sc_srcdmat, re->re_src_map);
1167			re->re_src_map = NULL;
1168			safestats.st_noload++;
1169			err = ENOMEM;
1170			goto errout;
1171		}
1172	}
1173	nicealign = safe_dmamap_aligned(&re->re_src);
1174	uniform = safe_dmamap_uniform(&re->re_src);
1175
1176	DPRINTF(("src nicealign %u uniform %u nsegs %u\n",
1177		nicealign, uniform, re->re_src.nsegs));
1178	if (re->re_src.nsegs > 1) {
1179		re->re_desc.d_src = sc->sc_spalloc.dma_paddr +
1180			((caddr_t) sc->sc_spfree - (caddr_t) sc->sc_spring);
1181		for (i = 0; i < re->re_src_nsegs; i++) {
1182			/* NB: no need to check if there's space */
1183			pd = sc->sc_spfree;
1184			if (++(sc->sc_spfree) == sc->sc_springtop)
1185				sc->sc_spfree = sc->sc_spring;
1186
1187			KASSERT((pd->pd_flags&3) == 0 ||
1188				(pd->pd_flags&3) == SAFE_PD_DONE,
1189				("bogus source particle descriptor; flags %x",
1190				pd->pd_flags));
1191			pd->pd_addr = re->re_src_segs[i].ds_addr;
1192			pd->pd_size = re->re_src_segs[i].ds_len;
1193			pd->pd_flags = SAFE_PD_READY;
1194		}
1195		cmd0 |= SAFE_SA_CMD0_IGATHER;
1196	} else {
1197		/*
1198		 * No need for gather, reference the operand directly.
1199		 */
1200		re->re_desc.d_src = re->re_src_segs[0].ds_addr;
1201	}
1202
1203	if (enccrd == NULL && maccrd != NULL) {
1204		/*
1205		 * Hash op; no destination needed.
1206		 */
1207	} else {
1208		if (crp->crp_flags & CRYPTO_F_IOV) {
1209			if (!nicealign) {
1210				safestats.st_iovmisaligned++;
1211				err = EINVAL;
1212				goto errout;
1213			}
1214			if (uniform != 1) {
1215				/*
1216				 * Source is not suitable for direct use as
1217				 * the destination.  Create a new scatter/gather
1218				 * list based on the destination requirements
1219				 * and check if that's ok.
1220				 */
1221				if (bus_dmamap_create(sc->sc_dstdmat,
1222				    BUS_DMA_NOWAIT, &re->re_dst_map)) {
1223					safestats.st_nomap++;
1224					err = ENOMEM;
1225					goto errout;
1226				}
1227				if (bus_dmamap_load_uio(sc->sc_dstdmat,
1228				    re->re_dst_map, re->re_dst_io,
1229				    safe_op_cb, &re->re_dst,
1230				    BUS_DMA_NOWAIT) != 0) {
1231					bus_dmamap_destroy(sc->sc_dstdmat,
1232						re->re_dst_map);
1233					re->re_dst_map = NULL;
1234					safestats.st_noload++;
1235					err = ENOMEM;
1236					goto errout;
1237				}
1238				uniform = safe_dmamap_uniform(&re->re_dst);
1239				if (!uniform) {
1240					/*
1241					 * There's no way to handle the DMA
1242					 * requirements with this uio.  We
1243					 * could create a separate DMA area for
1244					 * the result and then copy it back,
1245					 * but for now we just bail and return
1246					 * an error.  Note that uio requests
1247					 * > SAFE_MAX_DSIZE are handled because
1248					 * the DMA map and segment list for the
1249					 * destination wil result in a
1250					 * destination particle list that does
1251					 * the necessary scatter DMA.
1252					 */
1253					safestats.st_iovnotuniform++;
1254					err = EINVAL;
1255					goto errout;
1256				}
1257			} else
1258				re->re_dst = re->re_src;
1259		} else if (crp->crp_flags & CRYPTO_F_IMBUF) {
1260			if (nicealign && uniform == 1) {
1261				/*
1262				 * Source layout is suitable for direct
1263				 * sharing of the DMA map and segment list.
1264				 */
1265				re->re_dst = re->re_src;
1266			} else if (nicealign && uniform == 2) {
1267				/*
1268				 * The source is properly aligned but requires a
1269				 * different particle list to handle DMA of the
1270				 * result.  Create a new map and do the load to
1271				 * create the segment list.  The particle
1272				 * descriptor setup code below will handle the
1273				 * rest.
1274				 */
1275				if (bus_dmamap_create(sc->sc_dstdmat,
1276				    BUS_DMA_NOWAIT, &re->re_dst_map)) {
1277					safestats.st_nomap++;
1278					err = ENOMEM;
1279					goto errout;
1280				}
1281				if (bus_dmamap_load_mbuf(sc->sc_dstdmat,
1282				    re->re_dst_map, re->re_dst_m,
1283				    safe_op_cb, &re->re_dst,
1284				    BUS_DMA_NOWAIT) != 0) {
1285					bus_dmamap_destroy(sc->sc_dstdmat,
1286						re->re_dst_map);
1287					re->re_dst_map = NULL;
1288					safestats.st_noload++;
1289					err = ENOMEM;
1290					goto errout;
1291				}
1292			} else {		/* !(aligned and/or uniform) */
1293				int totlen, len;
1294				struct mbuf *m, *top, **mp;
1295
1296				/*
1297				 * DMA constraints require that we allocate a
1298				 * new mbuf chain for the destination.  We
1299				 * allocate an entire new set of mbufs of
1300				 * optimal/required size and then tell the
1301				 * hardware to copy any bits that are not
1302				 * created as a byproduct of the operation.
1303				 */
1304				if (!nicealign)
1305					safestats.st_unaligned++;
1306				if (!uniform)
1307					safestats.st_notuniform++;
1308				totlen = re->re_src_mapsize;
1309				if (re->re_src_m->m_flags & M_PKTHDR) {
1310					len = MHLEN;
1311					MGETHDR(m, M_DONTWAIT, MT_DATA);
1312					if (m && !m_dup_pkthdr(m, re->re_src_m,
1313					    M_DONTWAIT)) {
1314						m_free(m);
1315						m = NULL;
1316					}
1317				} else {
1318					len = MLEN;
1319					MGET(m, M_DONTWAIT, MT_DATA);
1320				}
1321				if (m == NULL) {
1322					safestats.st_nombuf++;
1323					err = sc->sc_nqchip ? ERESTART : ENOMEM;
1324					goto errout;
1325				}
1326				if (totlen >= MINCLSIZE) {
1327					MCLGET(m, M_DONTWAIT);
1328					if ((m->m_flags & M_EXT) == 0) {
1329						m_free(m);
1330						safestats.st_nomcl++;
1331						err = sc->sc_nqchip ?
1332							ERESTART : ENOMEM;
1333						goto errout;
1334					}
1335					len = MCLBYTES;
1336				}
1337				m->m_len = len;
1338				top = NULL;
1339				mp = &top;
1340
1341				while (totlen > 0) {
1342					if (top) {
1343						MGET(m, M_DONTWAIT, MT_DATA);
1344						if (m == NULL) {
1345							m_freem(top);
1346							safestats.st_nombuf++;
1347							err = sc->sc_nqchip ?
1348							    ERESTART : ENOMEM;
1349							goto errout;
1350						}
1351						len = MLEN;
1352					}
1353					if (top && totlen >= MINCLSIZE) {
1354						MCLGET(m, M_DONTWAIT);
1355						if ((m->m_flags & M_EXT) == 0) {
1356							*mp = m;
1357							m_freem(top);
1358							safestats.st_nomcl++;
1359							err = sc->sc_nqchip ?
1360							    ERESTART : ENOMEM;
1361							goto errout;
1362						}
1363						len = MCLBYTES;
1364					}
1365					m->m_len = len = min(totlen, len);
1366					totlen -= len;
1367					*mp = m;
1368					mp = &m->m_next;
1369				}
1370				re->re_dst_m = top;
1371				if (bus_dmamap_create(sc->sc_dstdmat,
1372				    BUS_DMA_NOWAIT, &re->re_dst_map) != 0) {
1373					safestats.st_nomap++;
1374					err = ENOMEM;
1375					goto errout;
1376				}
1377				if (bus_dmamap_load_mbuf(sc->sc_dstdmat,
1378				    re->re_dst_map, re->re_dst_m,
1379				    safe_op_cb, &re->re_dst,
1380				    BUS_DMA_NOWAIT) != 0) {
1381					bus_dmamap_destroy(sc->sc_dstdmat,
1382					re->re_dst_map);
1383					re->re_dst_map = NULL;
1384					safestats.st_noload++;
1385					err = ENOMEM;
1386					goto errout;
1387				}
1388				if (re->re_src.mapsize > oplen) {
1389					/*
1390					 * There's data following what the
1391					 * hardware will copy for us.  If this
1392					 * isn't just the ICV (that's going to
1393					 * be written on completion), copy it
1394					 * to the new mbufs
1395					 */
1396					if (!(maccrd &&
1397					    (re->re_src.mapsize-oplen) == 12 &&
1398					    maccrd->crd_inject == oplen))
1399						safe_mcopy(re->re_src_m,
1400							   re->re_dst_m,
1401							   oplen);
1402					else
1403						safestats.st_noicvcopy++;
1404				}
1405			}
1406		} else {
1407			safestats.st_badflags++;
1408			err = EINVAL;
1409			goto errout;
1410		}
1411
1412		if (re->re_dst.nsegs > 1) {
1413			re->re_desc.d_dst = sc->sc_dpalloc.dma_paddr +
1414			    ((caddr_t) sc->sc_dpfree - (caddr_t) sc->sc_dpring);
1415			for (i = 0; i < re->re_dst_nsegs; i++) {
1416				pd = sc->sc_dpfree;
1417				KASSERT((pd->pd_flags&3) == 0 ||
1418					(pd->pd_flags&3) == SAFE_PD_DONE,
1419					("bogus dest particle descriptor; flags %x",
1420						pd->pd_flags));
1421				if (++(sc->sc_dpfree) == sc->sc_dpringtop)
1422					sc->sc_dpfree = sc->sc_dpring;
1423				pd->pd_addr = re->re_dst_segs[i].ds_addr;
1424				pd->pd_flags = SAFE_PD_READY;
1425			}
1426			cmd0 |= SAFE_SA_CMD0_OSCATTER;
1427		} else {
1428			/*
1429			 * No need for scatter, reference the operand directly.
1430			 */
1431			re->re_desc.d_dst = re->re_dst_segs[0].ds_addr;
1432		}
1433	}
1434
1435	/*
1436	 * All done with setup; fillin the SA command words
1437	 * and the packet engine descriptor.  The operation
1438	 * is now ready for submission to the hardware.
1439	 */
1440	sa->sa_cmd0 = cmd0 | SAFE_SA_CMD0_IPCI | SAFE_SA_CMD0_OPCI;
1441	sa->sa_cmd1 = cmd1
1442		    | (coffset << SAFE_SA_CMD1_OFFSET_S)
1443		    | SAFE_SA_CMD1_SAREV1	/* Rev 1 SA data structure */
1444		    | SAFE_SA_CMD1_SRPCI
1445		    ;
1446	/*
1447	 * NB: the order of writes is important here.  In case the
1448	 * chip is scanning the ring because of an outstanding request
1449	 * it might nab this one too.  In that case we need to make
1450	 * sure the setup is complete before we write the length
1451	 * field of the descriptor as it signals the descriptor is
1452	 * ready for processing.
1453	 */
1454	re->re_desc.d_csr = SAFE_PE_CSR_READY | SAFE_PE_CSR_SAPCI;
1455	if (maccrd)
1456		re->re_desc.d_csr |= SAFE_PE_CSR_LOADSA | SAFE_PE_CSR_HASHFINAL;
1457	re->re_desc.d_len = oplen
1458			  | SAFE_PE_LEN_READY
1459			  | (bypass << SAFE_PE_LEN_BYPASS_S)
1460			  ;
1461
1462	safestats.st_ipackets++;
1463	safestats.st_ibytes += oplen;
1464
1465	if (++(sc->sc_front) == sc->sc_ringtop)
1466		sc->sc_front = sc->sc_ring;
1467
1468	/* XXX honor batching */
1469	safe_feed(sc, re);
1470	mtx_unlock(&sc->sc_ringmtx);
1471	return (0);
1472
1473errout:
1474	if ((re->re_dst_m != NULL) && (re->re_src_m != re->re_dst_m))
1475		m_freem(re->re_dst_m);
1476
1477	if (re->re_dst_map != NULL && re->re_dst_map != re->re_src_map) {
1478		bus_dmamap_unload(sc->sc_dstdmat, re->re_dst_map);
1479		bus_dmamap_destroy(sc->sc_dstdmat, re->re_dst_map);
1480	}
1481	if (re->re_src_map != NULL) {
1482		bus_dmamap_unload(sc->sc_srcdmat, re->re_src_map);
1483		bus_dmamap_destroy(sc->sc_srcdmat, re->re_src_map);
1484	}
1485	mtx_unlock(&sc->sc_ringmtx);
1486	if (err != ERESTART) {
1487		crp->crp_etype = err;
1488		crypto_done(crp);
1489	} else {
1490		sc->sc_needwakeup |= CRYPTO_SYMQ;
1491	}
1492	return (err);
1493}
1494
1495static void
1496safe_callback(struct safe_softc *sc, struct safe_ringentry *re)
1497{
1498	struct cryptop *crp = (struct cryptop *)re->re_crp;
1499	struct cryptodesc *crd;
1500
1501	safestats.st_opackets++;
1502	safestats.st_obytes += re->re_dst.mapsize;
1503
1504	safe_dma_sync(&sc->sc_ringalloc,
1505		BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1506	if (re->re_desc.d_csr & SAFE_PE_CSR_STATUS) {
1507		device_printf(sc->sc_dev, "csr 0x%x cmd0 0x%x cmd1 0x%x\n",
1508			re->re_desc.d_csr,
1509			re->re_sa.sa_cmd0, re->re_sa.sa_cmd1);
1510		safestats.st_peoperr++;
1511		crp->crp_etype = EIO;		/* something more meaningful? */
1512	}
1513	if (re->re_dst_map != NULL && re->re_dst_map != re->re_src_map) {
1514		bus_dmamap_sync(sc->sc_dstdmat, re->re_dst_map,
1515		    BUS_DMASYNC_POSTREAD);
1516		bus_dmamap_unload(sc->sc_dstdmat, re->re_dst_map);
1517		bus_dmamap_destroy(sc->sc_dstdmat, re->re_dst_map);
1518	}
1519	bus_dmamap_sync(sc->sc_srcdmat, re->re_src_map, BUS_DMASYNC_POSTWRITE);
1520	bus_dmamap_unload(sc->sc_srcdmat, re->re_src_map);
1521	bus_dmamap_destroy(sc->sc_srcdmat, re->re_src_map);
1522
1523	/*
1524	 * If result was written to a differet mbuf chain, swap
1525	 * it in as the return value and reclaim the original.
1526	 */
1527	if ((crp->crp_flags & CRYPTO_F_IMBUF) && re->re_src_m != re->re_dst_m) {
1528		m_freem(re->re_src_m);
1529		crp->crp_buf = (caddr_t)re->re_dst_m;
1530	}
1531
1532	if (re->re_flags & SAFE_QFLAGS_COPYOUTIV) {
1533		/* copy out IV for future use */
1534		for (crd = crp->crp_desc; crd; crd = crd->crd_next) {
1535			int ivsize;
1536
1537			if (crd->crd_alg == CRYPTO_DES_CBC ||
1538			    crd->crd_alg == CRYPTO_3DES_CBC) {
1539				ivsize = 2*sizeof(u_int32_t);
1540			} else if (crd->crd_alg == CRYPTO_AES_CBC) {
1541				ivsize = 4*sizeof(u_int32_t);
1542			} else
1543				continue;
1544			if (crp->crp_flags & CRYPTO_F_IMBUF) {
1545				m_copydata((struct mbuf *)crp->crp_buf,
1546					crd->crd_skip + crd->crd_len - ivsize,
1547					ivsize,
1548					(caddr_t) sc->sc_sessions[re->re_sesn].ses_iv);
1549			} else if (crp->crp_flags & CRYPTO_F_IOV) {
1550				cuio_copydata((struct uio *)crp->crp_buf,
1551					crd->crd_skip + crd->crd_len - ivsize,
1552					ivsize,
1553					(caddr_t)sc->sc_sessions[re->re_sesn].ses_iv);
1554			}
1555			break;
1556		}
1557	}
1558
1559	if (re->re_flags & SAFE_QFLAGS_COPYOUTICV) {
1560		/* copy out ICV result */
1561		for (crd = crp->crp_desc; crd; crd = crd->crd_next) {
1562			if (!(crd->crd_alg == CRYPTO_MD5_HMAC ||
1563			    crd->crd_alg == CRYPTO_SHA1_HMAC ||
1564			    crd->crd_alg == CRYPTO_NULL_HMAC))
1565				continue;
1566			if (crd->crd_alg == CRYPTO_SHA1_HMAC) {
1567				/*
1568				 * SHA-1 ICV's are byte-swapped; fix 'em up
1569				 * before copy them to their destination.
1570				 */
1571				bswap32(re->re_sastate.sa_saved_indigest[0]);
1572				bswap32(re->re_sastate.sa_saved_indigest[1]);
1573				bswap32(re->re_sastate.sa_saved_indigest[2]);
1574			}
1575			if (crp->crp_flags & CRYPTO_F_IMBUF) {
1576				m_copyback((struct mbuf *)crp->crp_buf,
1577					crd->crd_inject, 12,
1578					(caddr_t)re->re_sastate.sa_saved_indigest);
1579			} else if (crp->crp_flags & CRYPTO_F_IOV && crp->crp_mac) {
1580				bcopy((caddr_t)re->re_sastate.sa_saved_indigest,
1581					crp->crp_mac, 12);
1582			}
1583			break;
1584		}
1585	}
1586	crypto_done(crp);
1587}
1588
1589/*
1590 * Copy all data past offset from srcm to dstm.
1591 */
1592static void
1593safe_mcopy(struct mbuf *srcm, struct mbuf *dstm, u_int offset)
1594{
1595	u_int j, dlen, slen;
1596	caddr_t dptr, sptr;
1597
1598	/*
1599	 * Advance src and dst to offset.
1600	 */
1601	j = offset;
1602	while (j >= 0) {
1603		if (srcm->m_len > j)
1604			break;
1605		j -= srcm->m_len;
1606		srcm = srcm->m_next;
1607		if (srcm == NULL)
1608			return;
1609	}
1610	sptr = mtod(srcm, caddr_t) + j;
1611	slen = srcm->m_len - j;
1612
1613	j = offset;
1614	while (j >= 0) {
1615		if (dstm->m_len > j)
1616			break;
1617		j -= dstm->m_len;
1618		dstm = dstm->m_next;
1619		if (dstm == NULL)
1620			return;
1621	}
1622	dptr = mtod(dstm, caddr_t) + j;
1623	dlen = dstm->m_len - j;
1624
1625	/*
1626	 * Copy everything that remains.
1627	 */
1628	for (;;) {
1629		j = min(slen, dlen);
1630		bcopy(sptr, dptr, j);
1631		if (slen == j) {
1632			srcm = srcm->m_next;
1633			if (srcm == NULL)
1634				return;
1635			sptr = srcm->m_data;
1636			slen = srcm->m_len;
1637		} else
1638			sptr += j, slen -= j;
1639		if (dlen == j) {
1640			dstm = dstm->m_next;
1641			if (dstm == NULL)
1642				return;
1643			dptr = dstm->m_data;
1644			dlen = dstm->m_len;
1645		} else
1646			dptr += j, dlen -= j;
1647	}
1648}
1649
1650#ifndef SAFE_NO_RNG
1651#define	SAFE_RNG_MAXWAIT	1000
1652
1653static void
1654safe_rng_init(struct safe_softc *sc)
1655{
1656	u_int32_t w, v;
1657	int i;
1658
1659	WRITE_REG(sc, SAFE_RNG_CTRL, 0);
1660	/* use default value according to the manual */
1661	WRITE_REG(sc, SAFE_RNG_CNFG, 0x834);	/* magic from SafeNet */
1662	WRITE_REG(sc, SAFE_RNG_ALM_CNT, 0);
1663
1664	/*
1665	 * There is a bug in rev 1.0 of the 1140 that when the RNG
1666	 * is brought out of reset the ready status flag does not
1667	 * work until the RNG has finished its internal initialization.
1668	 *
1669	 * So in order to determine the device is through its
1670	 * initialization we must read the data register, using the
1671	 * status reg in the read in case it is initialized.  Then read
1672	 * the data register until it changes from the first read.
1673	 * Once it changes read the data register until it changes
1674	 * again.  At this time the RNG is considered initialized.
1675	 * This could take between 750ms - 1000ms in time.
1676	 */
1677	i = 0;
1678	w = READ_REG(sc, SAFE_RNG_OUT);
1679	do {
1680		v = READ_REG(sc, SAFE_RNG_OUT);
1681		if (v != w) {
1682			w = v;
1683			break;
1684		}
1685		DELAY(10);
1686	} while (++i < SAFE_RNG_MAXWAIT);
1687
1688	/* Wait Until data changes again */
1689	i = 0;
1690	do {
1691		v = READ_REG(sc, SAFE_RNG_OUT);
1692		if (v != w)
1693			break;
1694		DELAY(10);
1695	} while (++i < SAFE_RNG_MAXWAIT);
1696}
1697
1698static __inline void
1699safe_rng_disable_short_cycle(struct safe_softc *sc)
1700{
1701	WRITE_REG(sc, SAFE_RNG_CTRL,
1702		READ_REG(sc, SAFE_RNG_CTRL) &~ SAFE_RNG_CTRL_SHORTEN);
1703}
1704
1705static __inline void
1706safe_rng_enable_short_cycle(struct safe_softc *sc)
1707{
1708	WRITE_REG(sc, SAFE_RNG_CTRL,
1709		READ_REG(sc, SAFE_RNG_CTRL) | SAFE_RNG_CTRL_SHORTEN);
1710}
1711
1712static __inline u_int32_t
1713safe_rng_read(struct safe_softc *sc)
1714{
1715	int i;
1716
1717	i = 0;
1718	while (READ_REG(sc, SAFE_RNG_STAT) != 0 && ++i < SAFE_RNG_MAXWAIT)
1719		;
1720	return READ_REG(sc, SAFE_RNG_OUT);
1721}
1722
1723static void
1724safe_rng(void *arg)
1725{
1726	struct safe_softc *sc = arg;
1727	u_int32_t buf[SAFE_RNG_MAXBUFSIZ];	/* NB: maybe move to softc */
1728	u_int maxwords;
1729	int i;
1730
1731	safestats.st_rng++;
1732	/*
1733	 * Fetch the next block of data.
1734	 */
1735	maxwords = safe_rngbufsize;
1736	if (maxwords > SAFE_RNG_MAXBUFSIZ)
1737		maxwords = SAFE_RNG_MAXBUFSIZ;
1738retry:
1739	for (i = 0; i < maxwords; i++)
1740		buf[i] = safe_rng_read(sc);
1741	/*
1742	 * Check the comparator alarm count and reset the h/w if
1743	 * it exceeds our threshold.  This guards against the
1744	 * hardware oscillators resonating with external signals.
1745	 */
1746	if (READ_REG(sc, SAFE_RNG_ALM_CNT) > safe_rngmaxalarm) {
1747		u_int32_t freq_inc, w;
1748
1749		DPRINTF(("%s: alarm count %u exceeds threshold %u\n", __func__,
1750			READ_REG(sc, SAFE_RNG_ALM_CNT), safe_rngmaxalarm));
1751		safestats.st_rngalarm++;
1752		safe_rng_enable_short_cycle(sc);
1753		freq_inc = 18;
1754		for (i = 0; i < 64; i++) {
1755			w = READ_REG(sc, SAFE_RNG_CNFG);
1756			freq_inc = ((w + freq_inc) & 0x3fL);
1757			w = ((w & ~0x3fL) | freq_inc);
1758			WRITE_REG(sc, SAFE_RNG_CNFG, w);
1759
1760			WRITE_REG(sc, SAFE_RNG_ALM_CNT, 0);
1761
1762			(void) safe_rng_read(sc);
1763			DELAY(25);
1764
1765			if (READ_REG(sc, SAFE_RNG_ALM_CNT) == 0) {
1766				safe_rng_disable_short_cycle(sc);
1767				goto retry;
1768			}
1769			freq_inc = 1;
1770		}
1771		safe_rng_disable_short_cycle(sc);
1772	} else
1773		WRITE_REG(sc, SAFE_RNG_ALM_CNT, 0);
1774
1775	(*sc->sc_harvest)(sc->sc_rndtest, buf, maxwords*sizeof (u_int32_t));
1776	callout_reset(&sc->sc_rngto,
1777		hz * (safe_rnginterval ? safe_rnginterval : 1), safe_rng, sc);
1778}
1779#endif /* SAFE_NO_RNG */
1780
1781static void
1782safe_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1783{
1784	bus_addr_t *paddr = (bus_addr_t*) arg;
1785	*paddr = segs->ds_addr;
1786}
1787
1788static int
1789safe_dma_malloc(
1790	struct safe_softc *sc,
1791	bus_size_t size,
1792	struct safe_dma_alloc *dma,
1793	int mapflags
1794)
1795{
1796	int r;
1797
1798	r = bus_dma_tag_create(NULL,			/* parent */
1799			       sizeof(u_int32_t), 0,	/* alignment, bounds */
1800			       BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
1801			       BUS_SPACE_MAXADDR,	/* highaddr */
1802			       NULL, NULL,		/* filter, filterarg */
1803			       size,			/* maxsize */
1804			       1,			/* nsegments */
1805			       size,			/* maxsegsize */
1806			       BUS_DMA_ALLOCNOW,	/* flags */
1807			       NULL, NULL,		/* locking */
1808			       &dma->dma_tag);
1809	if (r != 0) {
1810		device_printf(sc->sc_dev, "safe_dma_malloc: "
1811			"bus_dma_tag_create failed; error %u\n", r);
1812		goto fail_0;
1813	}
1814
1815	r = bus_dmamap_create(dma->dma_tag, BUS_DMA_NOWAIT, &dma->dma_map);
1816	if (r != 0) {
1817		device_printf(sc->sc_dev, "safe_dma_malloc: "
1818			"bus_dmamap_create failed; error %u\n", r);
1819		goto fail_1;
1820	}
1821
1822	r = bus_dmamem_alloc(dma->dma_tag, (void**) &dma->dma_vaddr,
1823			     BUS_DMA_NOWAIT, &dma->dma_map);
1824	if (r != 0) {
1825		device_printf(sc->sc_dev, "safe_dma_malloc: "
1826			"bus_dmammem_alloc failed; size %zu, error %u\n",
1827			size, r);
1828		goto fail_2;
1829	}
1830
1831	r = bus_dmamap_load(dma->dma_tag, dma->dma_map, dma->dma_vaddr,
1832		            size,
1833			    safe_dmamap_cb,
1834			    &dma->dma_paddr,
1835			    mapflags | BUS_DMA_NOWAIT);
1836	if (r != 0) {
1837		device_printf(sc->sc_dev, "safe_dma_malloc: "
1838			"bus_dmamap_load failed; error %u\n", r);
1839		goto fail_3;
1840	}
1841
1842	dma->dma_size = size;
1843	return (0);
1844
1845fail_3:
1846	bus_dmamap_unload(dma->dma_tag, dma->dma_map);
1847fail_2:
1848	bus_dmamem_free(dma->dma_tag, dma->dma_vaddr, dma->dma_map);
1849fail_1:
1850	bus_dmamap_destroy(dma->dma_tag, dma->dma_map);
1851	bus_dma_tag_destroy(dma->dma_tag);
1852fail_0:
1853	dma->dma_map = NULL;
1854	dma->dma_tag = NULL;
1855	return (r);
1856}
1857
1858static void
1859safe_dma_free(struct safe_softc *sc, struct safe_dma_alloc *dma)
1860{
1861	bus_dmamap_unload(dma->dma_tag, dma->dma_map);
1862	bus_dmamem_free(dma->dma_tag, dma->dma_vaddr, dma->dma_map);
1863	bus_dmamap_destroy(dma->dma_tag, dma->dma_map);
1864	bus_dma_tag_destroy(dma->dma_tag);
1865}
1866
1867/*
1868 * Resets the board.  Values in the regesters are left as is
1869 * from the reset (i.e. initial values are assigned elsewhere).
1870 */
1871static void
1872safe_reset_board(struct safe_softc *sc)
1873{
1874	u_int32_t v;
1875	/*
1876	 * Reset the device.  The manual says no delay
1877	 * is needed between marking and clearing reset.
1878	 */
1879	v = READ_REG(sc, SAFE_PE_DMACFG) &~
1880		(SAFE_PE_DMACFG_PERESET | SAFE_PE_DMACFG_PDRRESET |
1881		 SAFE_PE_DMACFG_SGRESET);
1882	WRITE_REG(sc, SAFE_PE_DMACFG, v
1883				    | SAFE_PE_DMACFG_PERESET
1884				    | SAFE_PE_DMACFG_PDRRESET
1885				    | SAFE_PE_DMACFG_SGRESET);
1886	WRITE_REG(sc, SAFE_PE_DMACFG, v);
1887}
1888
1889/*
1890 * Initialize registers we need to touch only once.
1891 */
1892static void
1893safe_init_board(struct safe_softc *sc)
1894{
1895	u_int32_t v, dwords;
1896
1897	v = READ_REG(sc, SAFE_PE_DMACFG);;
1898	v &=~ SAFE_PE_DMACFG_PEMODE;
1899	v |= SAFE_PE_DMACFG_FSENA		/* failsafe enable */
1900	  |  SAFE_PE_DMACFG_GPRPCI		/* gather ring on PCI */
1901	  |  SAFE_PE_DMACFG_SPRPCI		/* scatter ring on PCI */
1902	  |  SAFE_PE_DMACFG_ESDESC		/* endian-swap descriptors */
1903	  |  SAFE_PE_DMACFG_ESSA		/* endian-swap SA's */
1904	  |  SAFE_PE_DMACFG_ESPDESC		/* endian-swap part. desc's */
1905	  ;
1906	WRITE_REG(sc, SAFE_PE_DMACFG, v);
1907#if 0
1908	/* XXX select byte swap based on host byte order */
1909	WRITE_REG(sc, SAFE_ENDIAN, 0x1b);
1910#endif
1911	if (sc->sc_chiprev == SAFE_REV(1,0)) {
1912		/*
1913		 * Avoid large PCI DMA transfers.  Rev 1.0 has a bug where
1914		 * "target mode transfers" done while the chip is DMA'ing
1915		 * >1020 bytes cause the hardware to lockup.  To avoid this
1916		 * we reduce the max PCI transfer size and use small source
1917		 * particle descriptors (<= 256 bytes).
1918		 */
1919		WRITE_REG(sc, SAFE_DMA_CFG, 256);
1920		device_printf(sc->sc_dev,
1921			"Reduce max DMA size to %u words for rev %u.%u WAR\n",
1922			(READ_REG(sc, SAFE_DMA_CFG)>>2) & 0xff,
1923			SAFE_REV_MAJ(sc->sc_chiprev),
1924			SAFE_REV_MIN(sc->sc_chiprev));
1925	}
1926
1927	/* NB: operands+results are overlaid */
1928	WRITE_REG(sc, SAFE_PE_PDRBASE, sc->sc_ringalloc.dma_paddr);
1929	WRITE_REG(sc, SAFE_PE_RDRBASE, sc->sc_ringalloc.dma_paddr);
1930	/*
1931	 * Configure ring entry size and number of items in the ring.
1932	 */
1933	KASSERT((sizeof(struct safe_ringentry) % sizeof(u_int32_t)) == 0,
1934		("PE ring entry not 32-bit aligned!"));
1935	dwords = sizeof(struct safe_ringentry) / sizeof(u_int32_t);
1936	WRITE_REG(sc, SAFE_PE_RINGCFG,
1937		(dwords << SAFE_PE_RINGCFG_OFFSET_S) | SAFE_MAX_NQUEUE);
1938	WRITE_REG(sc, SAFE_PE_RINGPOLL, 0);	/* disable polling */
1939
1940	WRITE_REG(sc, SAFE_PE_GRNGBASE, sc->sc_spalloc.dma_paddr);
1941	WRITE_REG(sc, SAFE_PE_SRNGBASE, sc->sc_dpalloc.dma_paddr);
1942	WRITE_REG(sc, SAFE_PE_PARTSIZE,
1943		(SAFE_TOTAL_DPART<<16) | SAFE_TOTAL_SPART);
1944	/*
1945	 * NB: destination particles are fixed size.  We use
1946	 *     an mbuf cluster and require all results go to
1947	 *     clusters or smaller.
1948	 */
1949	WRITE_REG(sc, SAFE_PE_PARTCFG, SAFE_MAX_DSIZE);
1950
1951	/* it's now safe to enable PE mode, do it */
1952	WRITE_REG(sc, SAFE_PE_DMACFG, v | SAFE_PE_DMACFG_PEMODE);
1953
1954	/*
1955	 * Configure hardware to use level-triggered interrupts and
1956	 * to interrupt after each descriptor is processed.
1957	 */
1958	WRITE_REG(sc, SAFE_HI_CFG, SAFE_HI_CFG_LEVEL);
1959	WRITE_REG(sc, SAFE_HI_DESC_CNT, 1);
1960	WRITE_REG(sc, SAFE_HI_MASK, SAFE_INT_PE_DDONE | SAFE_INT_PE_ERROR);
1961}
1962
1963/*
1964 * Init PCI registers
1965 */
1966static void
1967safe_init_pciregs(device_t dev)
1968{
1969}
1970
1971/*
1972 * Clean up after a chip crash.
1973 * It is assumed that the caller in splimp()
1974 */
1975static void
1976safe_cleanchip(struct safe_softc *sc)
1977{
1978
1979	if (sc->sc_nqchip != 0) {
1980		struct safe_ringentry *re = sc->sc_back;
1981
1982		while (re != sc->sc_front) {
1983			if (re->re_desc.d_csr != 0)
1984				safe_free_entry(sc, re);
1985			if (++re == sc->sc_ringtop)
1986				re = sc->sc_ring;
1987		}
1988		sc->sc_back = re;
1989		sc->sc_nqchip = 0;
1990	}
1991}
1992
1993/*
1994 * free a safe_q
1995 * It is assumed that the caller is within splimp().
1996 */
1997static int
1998safe_free_entry(struct safe_softc *sc, struct safe_ringentry *re)
1999{
2000	struct cryptop *crp;
2001
2002	/*
2003	 * Free header MCR
2004	 */
2005	if ((re->re_dst_m != NULL) && (re->re_src_m != re->re_dst_m))
2006		m_freem(re->re_dst_m);
2007
2008	crp = (struct cryptop *)re->re_crp;
2009
2010	re->re_desc.d_csr = 0;
2011
2012	crp->crp_etype = EFAULT;
2013	crypto_done(crp);
2014	return(0);
2015}
2016
2017/*
2018 * Routine to reset the chip and clean up.
2019 * It is assumed that the caller is in splimp()
2020 */
2021static void
2022safe_totalreset(struct safe_softc *sc)
2023{
2024	safe_reset_board(sc);
2025	safe_init_board(sc);
2026	safe_cleanchip(sc);
2027}
2028
2029/*
2030 * Is the operand suitable aligned for direct DMA.  Each
2031 * segment must be aligned on a 32-bit boundary and all
2032 * but the last segment must be a multiple of 4 bytes.
2033 */
2034static int
2035safe_dmamap_aligned(const struct safe_operand *op)
2036{
2037	int i;
2038
2039	for (i = 0; i < op->nsegs; i++) {
2040		if (op->segs[i].ds_addr & 3)
2041			return (0);
2042		if (i != (op->nsegs - 1) && (op->segs[i].ds_len & 3))
2043			return (0);
2044	}
2045	return (1);
2046}
2047
2048/*
2049 * Is the operand suitable for direct DMA as the destination
2050 * of an operation.  The hardware requires that each ``particle''
2051 * but the last in an operation result have the same size.  We
2052 * fix that size at SAFE_MAX_DSIZE bytes.  This routine returns
2053 * 0 if some segment is not a multiple of of this size, 1 if all
2054 * segments are exactly this size, or 2 if segments are at worst
2055 * a multple of this size.
2056 */
2057static int
2058safe_dmamap_uniform(const struct safe_operand *op)
2059{
2060	int result = 1;
2061
2062	if (op->nsegs > 0) {
2063		int i;
2064
2065		for (i = 0; i < op->nsegs-1; i++) {
2066			if (op->segs[i].ds_len % SAFE_MAX_DSIZE)
2067				return (0);
2068			if (op->segs[i].ds_len != SAFE_MAX_DSIZE)
2069				result = 2;
2070		}
2071	}
2072	return (result);
2073}
2074
2075#ifdef SAFE_DEBUG
2076static void
2077safe_dump_dmastatus(struct safe_softc *sc, const char *tag)
2078{
2079	printf("%s: ENDIAN 0x%x SRC 0x%x DST 0x%x STAT 0x%x\n"
2080		, tag
2081		, READ_REG(sc, SAFE_DMA_ENDIAN)
2082		, READ_REG(sc, SAFE_DMA_SRCADDR)
2083		, READ_REG(sc, SAFE_DMA_DSTADDR)
2084		, READ_REG(sc, SAFE_DMA_STAT)
2085	);
2086}
2087
2088static void
2089safe_dump_intrstate(struct safe_softc *sc, const char *tag)
2090{
2091	printf("%s: HI_CFG 0x%x HI_MASK 0x%x HI_DESC_CNT 0x%x HU_STAT 0x%x HM_STAT 0x%x\n"
2092		, tag
2093		, READ_REG(sc, SAFE_HI_CFG)
2094		, READ_REG(sc, SAFE_HI_MASK)
2095		, READ_REG(sc, SAFE_HI_DESC_CNT)
2096		, READ_REG(sc, SAFE_HU_STAT)
2097		, READ_REG(sc, SAFE_HM_STAT)
2098	);
2099}
2100
2101static void
2102safe_dump_ringstate(struct safe_softc *sc, const char *tag)
2103{
2104	u_int32_t estat = READ_REG(sc, SAFE_PE_ERNGSTAT);
2105
2106	/* NB: assume caller has lock on ring */
2107	printf("%s: ERNGSTAT %x (next %u) back %lu front %lu\n",
2108		tag,
2109		estat, (estat >> SAFE_PE_ERNGSTAT_NEXT_S),
2110		(unsigned long)(sc->sc_back - sc->sc_ring),
2111		(unsigned long)(sc->sc_front - sc->sc_ring));
2112}
2113
2114static void
2115safe_dump_request(struct safe_softc *sc, const char* tag, struct safe_ringentry *re)
2116{
2117	int ix, nsegs;
2118
2119	ix = re - sc->sc_ring;
2120	printf("%s: %p (%u): csr %x src %x dst %x sa %x len %x\n"
2121		, tag
2122		, re, ix
2123		, re->re_desc.d_csr
2124		, re->re_desc.d_src
2125		, re->re_desc.d_dst
2126		, re->re_desc.d_sa
2127		, re->re_desc.d_len
2128	);
2129	if (re->re_src.nsegs > 1) {
2130		ix = (re->re_desc.d_src - sc->sc_spalloc.dma_paddr) /
2131			sizeof(struct safe_pdesc);
2132		for (nsegs = re->re_src.nsegs; nsegs; nsegs--) {
2133			printf(" spd[%u] %p: %p size %u flags %x"
2134				, ix, &sc->sc_spring[ix]
2135				, (caddr_t)(uintptr_t) sc->sc_spring[ix].pd_addr
2136				, sc->sc_spring[ix].pd_size
2137				, sc->sc_spring[ix].pd_flags
2138			);
2139			if (sc->sc_spring[ix].pd_size == 0)
2140				printf(" (zero!)");
2141			printf("\n");
2142			if (++ix == SAFE_TOTAL_SPART)
2143				ix = 0;
2144		}
2145	}
2146	if (re->re_dst.nsegs > 1) {
2147		ix = (re->re_desc.d_dst - sc->sc_dpalloc.dma_paddr) /
2148			sizeof(struct safe_pdesc);
2149		for (nsegs = re->re_dst.nsegs; nsegs; nsegs--) {
2150			printf(" dpd[%u] %p: %p flags %x\n"
2151				, ix, &sc->sc_dpring[ix]
2152				, (caddr_t)(uintptr_t) sc->sc_dpring[ix].pd_addr
2153				, sc->sc_dpring[ix].pd_flags
2154			);
2155			if (++ix == SAFE_TOTAL_DPART)
2156				ix = 0;
2157		}
2158	}
2159	printf("sa: cmd0 %08x cmd1 %08x staterec %x\n",
2160		re->re_sa.sa_cmd0, re->re_sa.sa_cmd1, re->re_sa.sa_staterec);
2161	printf("sa: key %x %x %x %x %x %x %x %x\n"
2162		, re->re_sa.sa_key[0]
2163		, re->re_sa.sa_key[1]
2164		, re->re_sa.sa_key[2]
2165		, re->re_sa.sa_key[3]
2166		, re->re_sa.sa_key[4]
2167		, re->re_sa.sa_key[5]
2168		, re->re_sa.sa_key[6]
2169		, re->re_sa.sa_key[7]
2170	);
2171	printf("sa: indigest %x %x %x %x %x\n"
2172		, re->re_sa.sa_indigest[0]
2173		, re->re_sa.sa_indigest[1]
2174		, re->re_sa.sa_indigest[2]
2175		, re->re_sa.sa_indigest[3]
2176		, re->re_sa.sa_indigest[4]
2177	);
2178	printf("sa: outdigest %x %x %x %x %x\n"
2179		, re->re_sa.sa_outdigest[0]
2180		, re->re_sa.sa_outdigest[1]
2181		, re->re_sa.sa_outdigest[2]
2182		, re->re_sa.sa_outdigest[3]
2183		, re->re_sa.sa_outdigest[4]
2184	);
2185	printf("sr: iv %x %x %x %x\n"
2186		, re->re_sastate.sa_saved_iv[0]
2187		, re->re_sastate.sa_saved_iv[1]
2188		, re->re_sastate.sa_saved_iv[2]
2189		, re->re_sastate.sa_saved_iv[3]
2190	);
2191	printf("sr: hashbc %u indigest %x %x %x %x %x\n"
2192		, re->re_sastate.sa_saved_hashbc
2193		, re->re_sastate.sa_saved_indigest[0]
2194		, re->re_sastate.sa_saved_indigest[1]
2195		, re->re_sastate.sa_saved_indigest[2]
2196		, re->re_sastate.sa_saved_indigest[3]
2197		, re->re_sastate.sa_saved_indigest[4]
2198	);
2199}
2200
2201static void
2202safe_dump_ring(struct safe_softc *sc, const char *tag)
2203{
2204	mtx_lock(&sc->sc_ringmtx);
2205	printf("\nSafeNet Ring State:\n");
2206	safe_dump_intrstate(sc, tag);
2207	safe_dump_dmastatus(sc, tag);
2208	safe_dump_ringstate(sc, tag);
2209	if (sc->sc_nqchip) {
2210		struct safe_ringentry *re = sc->sc_back;
2211		do {
2212			safe_dump_request(sc, tag, re);
2213			if (++re == sc->sc_ringtop)
2214				re = sc->sc_ring;
2215		} while (re != sc->sc_front);
2216	}
2217	mtx_unlock(&sc->sc_ringmtx);
2218}
2219
2220static int
2221sysctl_hw_safe_dump(SYSCTL_HANDLER_ARGS)
2222{
2223	char dmode[64];
2224	int error;
2225
2226	strncpy(dmode, "", sizeof(dmode) - 1);
2227	dmode[sizeof(dmode) - 1] = '\0';
2228	error = sysctl_handle_string(oidp, &dmode[0], sizeof(dmode), req);
2229
2230	if (error == 0 && req->newptr != NULL) {
2231		struct safe_softc *sc = safec;
2232
2233		if (!sc)
2234			return EINVAL;
2235		if (strncmp(dmode, "dma", 3) == 0)
2236			safe_dump_dmastatus(sc, "safe0");
2237		else if (strncmp(dmode, "int", 3) == 0)
2238			safe_dump_intrstate(sc, "safe0");
2239		else if (strncmp(dmode, "ring", 4) == 0)
2240			safe_dump_ring(sc, "safe0");
2241		else
2242			return EINVAL;
2243	}
2244	return error;
2245}
2246SYSCTL_PROC(_hw_safe, OID_AUTO, dump, CTLTYPE_STRING | CTLFLAG_RW,
2247	0, 0, sysctl_hw_safe_dump, "A", "Dump driver state");
2248#endif /* SAFE_DEBUG */
2249