safe.c revision 119137
18012Sjulian/*-
28012Sjulian * Copyright (c) 2003 Sam Leffler, Errno Consulting
38012Sjulian * Copyright (c) 2003 Global Technology Associates, Inc.
48012Sjulian * All rights reserved.
58012Sjulian *
68012Sjulian * Redistribution and use in source and binary forms, with or without
78012Sjulian * modification, are permitted provided that the following conditions
88012Sjulian * are met:
98012Sjulian * 1. Redistributions of source code must retain the above copyright
108012Sjulian *    notice, this list of conditions and the following disclaimer.
118012Sjulian * 2. Redistributions in binary form must reproduce the above copyright
128012Sjulian *    notice, this list of conditions and the following disclaimer in the
138012Sjulian *    documentation and/or other materials provided with the distribution.
148012Sjulian *
158012Sjulian * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
168012Sjulian * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
178012Sjulian * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
188012Sjulian * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
198012Sjulian * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
208012Sjulian * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
218012Sjulian * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
228012Sjulian * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
238012Sjulian * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
248012Sjulian * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
258012Sjulian * SUCH DAMAGE.
268012Sjulian */
278012Sjulian
288012Sjulian#include <sys/cdefs.h>
298012Sjulian__FBSDID("$FreeBSD: head/sys/dev/safe/safe.c 119137 2003-08-19 17:51:11Z sam $");
308012Sjulian
318012Sjulian/*
32 * SafeNet SafeXcel-1141 hardware crypto accelerator
33 */
34#include "opt_safe.h"
35
36#include <sys/param.h>
37#include <sys/systm.h>
38#include <sys/proc.h>
39#include <sys/errno.h>
40#include <sys/malloc.h>
41#include <sys/kernel.h>
42#include <sys/mbuf.h>
43#include <sys/lock.h>
44#include <sys/mutex.h>
45#include <sys/sysctl.h>
46#include <sys/endian.h>
47
48#include <vm/vm.h>
49#include <vm/pmap.h>
50
51#include <machine/clock.h>
52#include <machine/bus.h>
53#include <machine/resource.h>
54#include <sys/bus.h>
55#include <sys/rman.h>
56
57#include <crypto/sha1.h>
58#include <opencrypto/cryptodev.h>
59#include <opencrypto/cryptosoft.h>
60#include <sys/md5.h>
61#include <sys/random.h>
62
63#include <pci/pcivar.h>
64#include <pci/pcireg.h>
65
66#ifdef SAFE_RNDTEST
67#include <dev/rndtest/rndtest.h>
68#endif
69#include <dev/safe/safereg.h>
70#include <dev/safe/safevar.h>
71
72#ifndef bswap32
73#define	bswap32	NTOHL
74#endif
75
76/*
77 * Prototypes and count for the pci_device structure
78 */
79static	int safe_probe(device_t);
80static	int safe_attach(device_t);
81static	int safe_detach(device_t);
82static	int safe_suspend(device_t);
83static	int safe_resume(device_t);
84static	void safe_shutdown(device_t);
85
86static device_method_t safe_methods[] = {
87	/* Device interface */
88	DEVMETHOD(device_probe,		safe_probe),
89	DEVMETHOD(device_attach,	safe_attach),
90	DEVMETHOD(device_detach,	safe_detach),
91	DEVMETHOD(device_suspend,	safe_suspend),
92	DEVMETHOD(device_resume,	safe_resume),
93	DEVMETHOD(device_shutdown,	safe_shutdown),
94
95	/* bus interface */
96	DEVMETHOD(bus_print_child,	bus_generic_print_child),
97	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
98
99	{ 0, 0 }
100};
101static driver_t safe_driver = {
102	"safe",
103	safe_methods,
104	sizeof (struct safe_softc)
105};
106static devclass_t safe_devclass;
107
108DRIVER_MODULE(safe, pci, safe_driver, safe_devclass, 0, 0);
109MODULE_DEPEND(safe, crypto, 1, 1, 1);
110#ifdef SAFE_RNDTEST
111MODULE_DEPEND(safe, rndtest, 1, 1, 1);
112#endif
113
114static	void safe_intr(void *);
115static	int safe_newsession(void *, u_int32_t *, struct cryptoini *);
116static	int safe_freesession(void *, u_int64_t);
117static	int safe_process(void *, struct cryptop *, int);
118static	void safe_callback(struct safe_softc *, struct safe_ringentry *);
119static	void safe_feed(struct safe_softc *, struct safe_ringentry *);
120static	void safe_mcopy(struct mbuf *, struct mbuf *, u_int);
121#ifndef SAFE_NO_RNG
122static	void safe_rng_init(struct safe_softc *);
123static	void safe_rng(void *);
124#endif /* SAFE_NO_RNG */
125static	int safe_dma_malloc(struct safe_softc *, bus_size_t,
126	        struct safe_dma_alloc *, int);
127#define	safe_dma_sync(_dma, _flags) \
128	bus_dmamap_sync((_dma)->dma_tag, (_dma)->dma_map, (_flags))
129static	void safe_dma_free(struct safe_softc *, struct safe_dma_alloc *);
130static	int safe_dmamap_aligned(const struct safe_operand *);
131static	int safe_dmamap_uniform(const struct safe_operand *);
132
133static	void safe_reset_board(struct safe_softc *);
134static	void safe_init_board(struct safe_softc *);
135static	void safe_init_pciregs(device_t dev);
136static	void safe_cleanchip(struct safe_softc *);
137static	void safe_totalreset(struct safe_softc *);
138
139static	int safe_free_entry(struct safe_softc *, struct safe_ringentry *);
140
141SYSCTL_NODE(_hw, OID_AUTO, safe, CTLFLAG_RD, 0, "SafeNet driver parameters");
142
143#ifdef SAFE_DEBUG
144static	void safe_dump_dmastatus(struct safe_softc *, const char *);
145static	void safe_dump_ringstate(struct safe_softc *, const char *);
146static	void safe_dump_intrstate(struct safe_softc *, const char *);
147static	void safe_dump_request(struct safe_softc *, const char *,
148		struct safe_ringentry *);
149
150static	struct safe_softc *safec;		/* for use by hw.safe.dump */
151
152static	int safe_debug = 0;
153SYSCTL_INT(_hw_safe, OID_AUTO, debug, CTLFLAG_RW, &safe_debug,
154	    0, "control debugging msgs");
155#define	DPRINTF(_x)	if (safe_debug) printf _x
156#else
157#define	DPRINTF(_x)
158#endif
159
160#define	READ_REG(sc,r) \
161	bus_space_read_4((sc)->sc_st, (sc)->sc_sh, (r))
162
163#define WRITE_REG(sc,reg,val) \
164	bus_space_write_4((sc)->sc_st, (sc)->sc_sh, reg, val)
165
166struct safe_stats safestats;
167SYSCTL_STRUCT(_hw_safe, OID_AUTO, stats, CTLFLAG_RD, &safestats,
168	    safe_stats, "driver statistics");
169#ifndef SAFE_NO_RNG
170static	int safe_rnginterval = 1;		/* poll once a second */
171SYSCTL_INT(_hw_safe, OID_AUTO, rnginterval, CTLFLAG_RW, &safe_rnginterval,
172	    0, "RNG polling interval (secs)");
173static	int safe_rngbufsize = 16;		/* 64 bytes each poll  */
174SYSCTL_INT(_hw_safe, OID_AUTO, rngbufsize, CTLFLAG_RW, &safe_rngbufsize,
175	    0, "RNG polling buffer size (32-bit words)");
176static	int safe_rngmaxalarm = 8;		/* max alarms before reset */
177SYSCTL_INT(_hw_safe, OID_AUTO, rngmaxalarm, CTLFLAG_RW, &safe_rngmaxalarm,
178	    0, "RNG max alarms before reset");
179#endif /* SAFE_NO_RNG */
180
181static int
182safe_probe(device_t dev)
183{
184	if (pci_get_vendor(dev) == PCI_VENDOR_SAFENET &&
185	    pci_get_device(dev) == PCI_PRODUCT_SAFEXCEL)
186		return (0);
187	return (ENXIO);
188}
189
190static const char*
191safe_partname(struct safe_softc *sc)
192{
193	/* XXX sprintf numbers when not decoded */
194	switch (pci_get_vendor(sc->sc_dev)) {
195	case PCI_VENDOR_SAFENET:
196		switch (pci_get_device(sc->sc_dev)) {
197		case PCI_PRODUCT_SAFEXCEL: return "SafeNet SafeXcel-1141";
198		}
199		return "SafeNet unknown-part";
200	}
201	return "Unknown-vendor unknown-part";
202}
203
204#ifndef SAFE_NO_RNG
205static void
206default_harvest(struct rndtest_state *rsp, void *buf, u_int count)
207{
208	random_harvest(buf, count, count*NBBY, 0, RANDOM_PURE);
209}
210#endif /* SAFE_NO_RNG */
211
212static int
213safe_attach(device_t dev)
214{
215	struct safe_softc *sc = device_get_softc(dev);
216	u_int32_t raddr;
217	u_int32_t cmd, i, devinfo;
218	int rid;
219
220	bzero(sc, sizeof (*sc));
221	sc->sc_dev = dev;
222
223	/* XXX handle power management */
224
225	cmd = pci_read_config(dev, PCIR_COMMAND, 4);
226	cmd |= PCIM_CMD_MEMEN | PCIM_CMD_BUSMASTEREN;
227	pci_write_config(dev, PCIR_COMMAND, cmd, 4);
228	cmd = pci_read_config(dev, PCIR_COMMAND, 4);
229
230	if (!(cmd & PCIM_CMD_MEMEN)) {
231		device_printf(dev, "failed to enable memory mapping\n");
232		goto bad;
233	}
234
235	if (!(cmd & PCIM_CMD_BUSMASTEREN)) {
236		device_printf(dev, "failed to enable bus mastering\n");
237		goto bad;
238	}
239
240	/*
241	 * Setup memory-mapping of PCI registers.
242	 */
243	rid = BS_BAR;
244	sc->sc_sr = bus_alloc_resource(dev, SYS_RES_MEMORY, &rid,
245				       0, ~0, 1, RF_ACTIVE);
246	if (sc->sc_sr == NULL) {
247		device_printf(dev, "cannot map register space\n");
248		goto bad;
249	}
250	sc->sc_st = rman_get_bustag(sc->sc_sr);
251	sc->sc_sh = rman_get_bushandle(sc->sc_sr);
252
253	/*
254	 * Arrange interrupt line.
255	 */
256	rid = 0;
257	sc->sc_irq = bus_alloc_resource(dev, SYS_RES_IRQ, &rid,
258					0, ~0, 1, RF_SHAREABLE|RF_ACTIVE);
259	if (sc->sc_irq == NULL) {
260		device_printf(dev, "could not map interrupt\n");
261		goto bad1;
262	}
263	/*
264	 * NB: Network code assumes we are blocked with splimp()
265	 *     so make sure the IRQ is mapped appropriately.
266	 */
267	if (bus_setup_intr(dev, sc->sc_irq, INTR_TYPE_NET | INTR_MPSAFE,
268			   safe_intr, sc, &sc->sc_ih)) {
269		device_printf(dev, "could not establish interrupt\n");
270		goto bad2;
271	}
272
273	sc->sc_cid = crypto_get_driverid(0);
274	if (sc->sc_cid < 0) {
275		device_printf(dev, "could not get crypto driver id\n");
276		goto bad3;
277	}
278
279	sc->sc_chiprev = READ_REG(sc, SAFE_DEVINFO) &
280		(SAFE_DEVINFO_REV_MAJ | SAFE_DEVINFO_REV_MIN);
281
282	/*
283	 * Setup DMA descriptor area.
284	 */
285	if (bus_dma_tag_create(NULL,			/* parent */
286			       1,			/* alignment */
287			       SAFE_DMA_BOUNDARY,	/* boundary */
288			       BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
289			       BUS_SPACE_MAXADDR,	/* highaddr */
290			       NULL, NULL,		/* filter, filterarg */
291			       SAFE_MAX_DMA,		/* maxsize */
292			       SAFE_MAX_PART,		/* nsegments */
293			       SAFE_MAX_SSIZE,		/* maxsegsize */
294			       BUS_DMA_ALLOCNOW,	/* flags */
295			       NULL, NULL,		/* locking */
296			       &sc->sc_srcdmat)) {
297		device_printf(dev, "cannot allocate DMA tag\n");
298		goto bad4;
299	}
300	if (bus_dma_tag_create(NULL,			/* parent */
301			       sizeof(u_int32_t),	/* alignment */
302			       SAFE_MAX_DSIZE,		/* boundary */
303			       BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
304			       BUS_SPACE_MAXADDR,	/* highaddr */
305			       NULL, NULL,		/* filter, filterarg */
306			       SAFE_MAX_DMA,		/* maxsize */
307			       SAFE_MAX_PART,		/* nsegments */
308			       SAFE_MAX_DSIZE,		/* maxsegsize */
309			       BUS_DMA_ALLOCNOW,	/* flags */
310			       NULL, NULL,		/* locking */
311			       &sc->sc_dstdmat)) {
312		device_printf(dev, "cannot allocate DMA tag\n");
313		goto bad4;
314	}
315
316	/*
317	 * Allocate packet engine descriptors.
318	 */
319	if (safe_dma_malloc(sc,
320	    SAFE_MAX_NQUEUE * sizeof (struct safe_ringentry),
321	    &sc->sc_ringalloc, 0)) {
322		device_printf(dev, "cannot allocate PE descriptor ring\n");
323		bus_dma_tag_destroy(sc->sc_srcdmat);
324		goto bad4;
325	}
326	/*
327	 * Hookup the static portion of all our data structures.
328	 */
329	sc->sc_ring = (struct safe_ringentry *) sc->sc_ringalloc.dma_vaddr;
330	sc->sc_ringtop = sc->sc_ring + SAFE_MAX_NQUEUE;
331	sc->sc_front = sc->sc_ring;
332	sc->sc_back = sc->sc_ring;
333	raddr = sc->sc_ringalloc.dma_paddr;
334	bzero(sc->sc_ring, SAFE_MAX_NQUEUE * sizeof(struct safe_ringentry));
335	for (i = 0; i < SAFE_MAX_NQUEUE; i++) {
336		struct safe_ringentry *re = &sc->sc_ring[i];
337
338		re->re_desc.d_sa = raddr +
339			offsetof(struct safe_ringentry, re_sa);
340		re->re_sa.sa_staterec = raddr +
341			offsetof(struct safe_ringentry, re_sastate);
342
343		raddr += sizeof (struct safe_ringentry);
344	}
345	mtx_init(&sc->sc_ringmtx, device_get_nameunit(dev),
346		"packet engine ring", MTX_DEF);
347
348	/*
349	 * Allocate scatter and gather particle descriptors.
350	 */
351	if (safe_dma_malloc(sc, SAFE_TOTAL_SPART * sizeof (struct safe_pdesc),
352	    &sc->sc_spalloc, 0)) {
353		device_printf(dev, "cannot allocate source particle "
354			"descriptor ring\n");
355		mtx_destroy(&sc->sc_ringmtx);
356		safe_dma_free(sc, &sc->sc_ringalloc);
357		bus_dma_tag_destroy(sc->sc_srcdmat);
358		goto bad4;
359	}
360	sc->sc_spring = (struct safe_pdesc *) sc->sc_spalloc.dma_vaddr;
361	sc->sc_springtop = sc->sc_spring + SAFE_TOTAL_SPART;
362	sc->sc_spfree = sc->sc_spring;
363	bzero(sc->sc_spring, SAFE_TOTAL_SPART * sizeof(struct safe_pdesc));
364
365	if (safe_dma_malloc(sc, SAFE_TOTAL_DPART * sizeof (struct safe_pdesc),
366	    &sc->sc_dpalloc, 0)) {
367		device_printf(dev, "cannot allocate destination particle "
368			"descriptor ring\n");
369		mtx_destroy(&sc->sc_ringmtx);
370		safe_dma_free(sc, &sc->sc_spalloc);
371		safe_dma_free(sc, &sc->sc_ringalloc);
372		bus_dma_tag_destroy(sc->sc_dstdmat);
373		goto bad4;
374	}
375	sc->sc_dpring = (struct safe_pdesc *) sc->sc_dpalloc.dma_vaddr;
376	sc->sc_dpringtop = sc->sc_dpring + SAFE_TOTAL_DPART;
377	sc->sc_dpfree = sc->sc_dpring;
378	bzero(sc->sc_dpring, SAFE_TOTAL_DPART * sizeof(struct safe_pdesc));
379
380	device_printf(sc->sc_dev, "%s", safe_partname(sc));
381
382	devinfo = READ_REG(sc, SAFE_DEVINFO);
383	if (devinfo & SAFE_DEVINFO_RNG) {
384		sc->sc_flags |= SAFE_FLAGS_RNG;
385		printf(" rng");
386	}
387	if (devinfo & SAFE_DEVINFO_PKEY) {
388#if 0
389		printf(" key");
390		sc->sc_flags |= SAFE_FLAGS_KEY;
391		crypto_kregister(sc->sc_cid, CRK_MOD_EXP, 0,
392			safe_kprocess, sc);
393		crypto_kregister(sc->sc_cid, CRK_MOD_EXP_CRT, 0,
394			safe_kprocess, sc);
395#endif
396	}
397	if (devinfo & SAFE_DEVINFO_DES) {
398		printf(" des/3des");
399		crypto_register(sc->sc_cid, CRYPTO_3DES_CBC, 0, 0,
400			safe_newsession, safe_freesession, safe_process, sc);
401		crypto_register(sc->sc_cid, CRYPTO_DES_CBC, 0, 0,
402			safe_newsession, safe_freesession, safe_process, sc);
403	}
404	if (devinfo & SAFE_DEVINFO_AES) {
405		printf(" aes");
406		crypto_register(sc->sc_cid, CRYPTO_AES_CBC, 0, 0,
407			safe_newsession, safe_freesession, safe_process, sc);
408	}
409	if (devinfo & SAFE_DEVINFO_MD5) {
410		printf(" md5");
411		crypto_register(sc->sc_cid, CRYPTO_MD5_HMAC, 0, 0,
412			safe_newsession, safe_freesession, safe_process, sc);
413	}
414	if (devinfo & SAFE_DEVINFO_SHA1) {
415		printf(" sha1");
416		crypto_register(sc->sc_cid, CRYPTO_SHA1_HMAC, 0, 0,
417			safe_newsession, safe_freesession, safe_process, sc);
418	}
419	printf(" null");
420	crypto_register(sc->sc_cid, CRYPTO_NULL_CBC, 0, 0,
421		safe_newsession, safe_freesession, safe_process, sc);
422	crypto_register(sc->sc_cid, CRYPTO_NULL_HMAC, 0, 0,
423		safe_newsession, safe_freesession, safe_process, sc);
424	/* XXX other supported algorithms */
425	printf("\n");
426
427	safe_reset_board(sc);		/* reset h/w */
428	safe_init_pciregs(dev);		/* init pci settings */
429	safe_init_board(sc);		/* init h/w */
430
431#ifndef SAFE_NO_RNG
432	if (sc->sc_flags & SAFE_FLAGS_RNG) {
433#ifdef SAFE_RNDTEST
434		sc->sc_rndtest = rndtest_attach(dev);
435		if (sc->sc_rndtest)
436			sc->sc_harvest = rndtest_harvest;
437		else
438			sc->sc_harvest = default_harvest;
439#else
440		sc->sc_harvest = default_harvest;
441#endif
442		safe_rng_init(sc);
443
444		callout_init(&sc->sc_rngto, CALLOUT_MPSAFE);
445		callout_reset(&sc->sc_rngto, hz*safe_rnginterval, safe_rng, sc);
446	}
447#endif /* SAFE_NO_RNG */
448#ifdef SAFE_DEBUG
449	safec = sc;			/* for use by hw.safe.dump */
450#endif
451	return (0);
452bad4:
453	crypto_unregister_all(sc->sc_cid);
454bad3:
455	bus_teardown_intr(dev, sc->sc_irq, sc->sc_ih);
456bad2:
457	bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sc_irq);
458bad1:
459	bus_release_resource(dev, SYS_RES_MEMORY, BS_BAR, sc->sc_sr);
460bad:
461	return (ENXIO);
462}
463
464/*
465 * Detach a device that successfully probed.
466 */
467static int
468safe_detach(device_t dev)
469{
470	struct safe_softc *sc = device_get_softc(dev);
471
472	/* XXX wait/abort active ops */
473
474	WRITE_REG(sc, SAFE_HI_MASK, 0);		/* disable interrupts */
475
476	callout_stop(&sc->sc_rngto);
477
478	crypto_unregister_all(sc->sc_cid);
479
480#ifdef SAFE_RNDTEST
481	if (sc->sc_rndtest)
482		rndtest_detach(sc->sc_rndtest);
483#endif
484
485	safe_cleanchip(sc);
486	safe_dma_free(sc, &sc->sc_dpalloc);
487	safe_dma_free(sc, &sc->sc_spalloc);
488	mtx_destroy(&sc->sc_ringmtx);
489	safe_dma_free(sc, &sc->sc_ringalloc);
490
491	bus_generic_detach(dev);
492	bus_teardown_intr(dev, sc->sc_irq, sc->sc_ih);
493	bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sc_irq);
494
495	bus_dma_tag_destroy(sc->sc_srcdmat);
496	bus_dma_tag_destroy(sc->sc_dstdmat);
497	bus_release_resource(dev, SYS_RES_MEMORY, BS_BAR, sc->sc_sr);
498
499	return (0);
500}
501
502/*
503 * Stop all chip i/o so that the kernel's probe routines don't
504 * get confused by errant DMAs when rebooting.
505 */
506static void
507safe_shutdown(device_t dev)
508{
509#ifdef notyet
510	safe_stop(device_get_softc(dev));
511#endif
512}
513
514/*
515 * Device suspend routine.
516 */
517static int
518safe_suspend(device_t dev)
519{
520	struct safe_softc *sc = device_get_softc(dev);
521
522#ifdef notyet
523	/* XXX stop the device and save PCI settings */
524#endif
525	sc->sc_suspended = 1;
526
527	return (0);
528}
529
530static int
531safe_resume(device_t dev)
532{
533	struct safe_softc *sc = device_get_softc(dev);
534
535#ifdef notyet
536	/* XXX retore PCI settings and start the device */
537#endif
538	sc->sc_suspended = 0;
539	return (0);
540}
541
542/*
543 * SafeXcel Interrupt routine
544 */
545static void
546safe_intr(void *arg)
547{
548	struct safe_softc *sc = arg;
549	volatile u_int32_t stat;
550
551	stat = READ_REG(sc, SAFE_HM_STAT);
552	if (stat == 0)			/* shared irq, not for us */
553		return;
554
555	WRITE_REG(sc, SAFE_HI_CLR, stat);	/* IACK */
556
557	if ((stat & SAFE_INT_PE_DDONE)) {
558		/*
559		 * Descriptor(s) done; scan the ring and
560		 * process completed operations.
561		 */
562		mtx_lock(&sc->sc_ringmtx);
563		while (sc->sc_back != sc->sc_front) {
564			struct safe_ringentry *re = sc->sc_back;
565#ifdef SAFE_DEBUG
566			if (safe_debug) {
567				safe_dump_ringstate(sc, __func__);
568				safe_dump_request(sc, __func__, re);
569			}
570#endif
571			/*
572			 * safe_process marks ring entries that were allocated
573			 * but not used with a csr of zero.  This insures the
574			 * ring front pointer never needs to be set backwards
575			 * in the event that an entry is allocated but not used
576			 * because of a setup error.
577			 */
578			if (re->re_desc.d_csr != 0) {
579				if (!SAFE_PE_CSR_IS_DONE(re->re_desc.d_csr))
580					break;
581				if (!SAFE_PE_LEN_IS_DONE(re->re_desc.d_len))
582					break;
583				sc->sc_nqchip--;
584				safe_callback(sc, re);
585			}
586			if (++(sc->sc_back) == sc->sc_ringtop)
587				sc->sc_back = sc->sc_ring;
588		}
589		mtx_unlock(&sc->sc_ringmtx);
590	}
591
592	/*
593	 * Check to see if we got any DMA Error
594	 */
595	if (stat & SAFE_INT_PE_ERROR) {
596		DPRINTF(("dmaerr dmastat %08x\n",
597			READ_REG(sc, SAFE_PE_DMASTAT)));
598		safestats.st_dmaerr++;
599		safe_totalreset(sc);
600#if 0
601		safe_feed(sc);
602#endif
603	}
604
605	if (sc->sc_needwakeup) {		/* XXX check high watermark */
606		int wakeup = sc->sc_needwakeup & (CRYPTO_SYMQ|CRYPTO_ASYMQ);
607		DPRINTF(("%s: wakeup crypto %x\n", __func__,
608			sc->sc_needwakeup));
609		sc->sc_needwakeup &= ~wakeup;
610		crypto_unblock(sc->sc_cid, wakeup);
611	}
612}
613
614/*
615 * safe_feed() - post a request to chip
616 */
617static void
618safe_feed(struct safe_softc *sc, struct safe_ringentry *re)
619{
620	bus_dmamap_sync(sc->sc_srcdmat, re->re_src_map, BUS_DMASYNC_PREWRITE);
621	if (re->re_dst_map != NULL)
622		bus_dmamap_sync(sc->sc_dstdmat, re->re_dst_map,
623			BUS_DMASYNC_PREREAD);
624	/* XXX have no smaller granularity */
625	safe_dma_sync(&sc->sc_ringalloc,
626		BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
627	safe_dma_sync(&sc->sc_spalloc, BUS_DMASYNC_PREWRITE);
628	safe_dma_sync(&sc->sc_dpalloc, BUS_DMASYNC_PREWRITE);
629
630#ifdef SAFE_DEBUG
631	if (safe_debug) {
632		safe_dump_ringstate(sc, __func__);
633		safe_dump_request(sc, __func__, re);
634	}
635#endif
636	sc->sc_nqchip++;
637	if (sc->sc_nqchip > safestats.st_maxqchip)
638		safestats.st_maxqchip = sc->sc_nqchip;
639	/* poke h/w to check descriptor ring, any value can be written */
640	WRITE_REG(sc, SAFE_HI_RD_DESCR, 0);
641}
642
643/*
644 * Allocate a new 'session' and return an encoded session id.  'sidp'
645 * contains our registration id, and should contain an encoded session
646 * id on successful allocation.
647 */
648static int
649safe_newsession(void *arg, u_int32_t *sidp, struct cryptoini *cri)
650{
651#define	N(a)	(sizeof(a) / sizeof (a[0]))
652	struct cryptoini *c, *encini = NULL, *macini = NULL;
653	struct safe_softc *sc = arg;
654	struct safe_session *ses = NULL;
655	MD5_CTX md5ctx;
656	SHA1_CTX sha1ctx;
657	int i, sesn;
658
659	if (sidp == NULL || cri == NULL || sc == NULL)
660		return (EINVAL);
661
662	for (c = cri; c != NULL; c = c->cri_next) {
663		if (c->cri_alg == CRYPTO_MD5_HMAC ||
664		    c->cri_alg == CRYPTO_SHA1_HMAC ||
665		    c->cri_alg == CRYPTO_NULL_HMAC) {
666			if (macini)
667				return (EINVAL);
668			macini = c;
669		} else if (c->cri_alg == CRYPTO_DES_CBC ||
670		    c->cri_alg == CRYPTO_3DES_CBC ||
671		    c->cri_alg == CRYPTO_AES_CBC ||
672		    c->cri_alg == CRYPTO_NULL_CBC) {
673			if (encini)
674				return (EINVAL);
675			encini = c;
676		} else
677			return (EINVAL);
678	}
679	if (encini == NULL && macini == NULL)
680		return (EINVAL);
681	if (encini) {			/* validate key length */
682		switch (encini->cri_alg) {
683		case CRYPTO_DES_CBC:
684			if (encini->cri_klen != 64)
685				return (EINVAL);
686			break;
687		case CRYPTO_3DES_CBC:
688			if (encini->cri_klen != 192)
689				return (EINVAL);
690			break;
691		case CRYPTO_AES_CBC:
692			if (encini->cri_klen != 128 &&
693			    encini->cri_klen != 192 &&
694			    encini->cri_klen != 256)
695				return (EINVAL);
696			break;
697		}
698	}
699
700	if (sc->sc_sessions == NULL) {
701		ses = sc->sc_sessions = (struct safe_session *)malloc(
702		    sizeof(struct safe_session), M_DEVBUF, M_NOWAIT);
703		if (ses == NULL)
704			return (ENOMEM);
705		sesn = 0;
706		sc->sc_nsessions = 1;
707	} else {
708		for (sesn = 0; sesn < sc->sc_nsessions; sesn++) {
709			if (sc->sc_sessions[sesn].ses_used == 0) {
710				ses = &sc->sc_sessions[sesn];
711				break;
712			}
713		}
714
715		if (ses == NULL) {
716			sesn = sc->sc_nsessions;
717			ses = (struct safe_session *)malloc((sesn + 1) *
718			    sizeof(struct safe_session), M_DEVBUF, M_NOWAIT);
719			if (ses == NULL)
720				return (ENOMEM);
721			bcopy(sc->sc_sessions, ses, sesn *
722			    sizeof(struct safe_session));
723			bzero(sc->sc_sessions, sesn *
724			    sizeof(struct safe_session));
725			free(sc->sc_sessions, M_DEVBUF);
726			sc->sc_sessions = ses;
727			ses = &sc->sc_sessions[sesn];
728			sc->sc_nsessions++;
729		}
730	}
731
732	bzero(ses, sizeof(struct safe_session));
733	ses->ses_used = 1;
734
735	if (encini) {
736		/* get an IV */
737		/* XXX may read fewer than requested */
738		read_random(ses->ses_iv, sizeof(ses->ses_iv));
739
740		ses->ses_klen = encini->cri_klen;
741		bcopy(encini->cri_key, ses->ses_key, ses->ses_klen / 8);
742
743		/* PE is little-endian, insure proper byte order */
744		for (i = 0; i < N(ses->ses_key); i++)
745			ses->ses_key[i] = htole32(ses->ses_key[i]);
746	}
747
748	if (macini) {
749		for (i = 0; i < macini->cri_klen / 8; i++)
750			macini->cri_key[i] ^= HMAC_IPAD_VAL;
751
752		if (macini->cri_alg == CRYPTO_MD5_HMAC) {
753			MD5Init(&md5ctx);
754			MD5Update(&md5ctx, macini->cri_key,
755			    macini->cri_klen / 8);
756			MD5Update(&md5ctx, hmac_ipad_buffer,
757			    HMAC_BLOCK_LEN - (macini->cri_klen / 8));
758			bcopy(md5ctx.state, ses->ses_hminner,
759			    sizeof(md5ctx.state));
760		} else {
761			SHA1Init(&sha1ctx);
762			SHA1Update(&sha1ctx, macini->cri_key,
763			    macini->cri_klen / 8);
764			SHA1Update(&sha1ctx, hmac_ipad_buffer,
765			    HMAC_BLOCK_LEN - (macini->cri_klen / 8));
766			bcopy(sha1ctx.h.b32, ses->ses_hminner,
767			    sizeof(sha1ctx.h.b32));
768		}
769
770		for (i = 0; i < macini->cri_klen / 8; i++)
771			macini->cri_key[i] ^= (HMAC_IPAD_VAL ^ HMAC_OPAD_VAL);
772
773		if (macini->cri_alg == CRYPTO_MD5_HMAC) {
774			MD5Init(&md5ctx);
775			MD5Update(&md5ctx, macini->cri_key,
776			    macini->cri_klen / 8);
777			MD5Update(&md5ctx, hmac_opad_buffer,
778			    HMAC_BLOCK_LEN - (macini->cri_klen / 8));
779			bcopy(md5ctx.state, ses->ses_hmouter,
780			    sizeof(md5ctx.state));
781		} else {
782			SHA1Init(&sha1ctx);
783			SHA1Update(&sha1ctx, macini->cri_key,
784			    macini->cri_klen / 8);
785			SHA1Update(&sha1ctx, hmac_opad_buffer,
786			    HMAC_BLOCK_LEN - (macini->cri_klen / 8));
787			bcopy(sha1ctx.h.b32, ses->ses_hmouter,
788			    sizeof(sha1ctx.h.b32));
789		}
790
791		for (i = 0; i < macini->cri_klen / 8; i++)
792			macini->cri_key[i] ^= HMAC_OPAD_VAL;
793
794		/* PE is little-endian, insure proper byte order */
795		for (i = 0; i < N(ses->ses_hminner); i++) {
796			ses->ses_hminner[i] = htole32(ses->ses_hminner[i]);
797			ses->ses_hmouter[i] = htole32(ses->ses_hmouter[i]);
798		}
799	}
800
801	*sidp = SAFE_SID(device_get_unit(sc->sc_dev), sesn);
802	return (0);
803#undef N
804}
805
806/*
807 * Deallocate a session.
808 */
809static int
810safe_freesession(void *arg, u_int64_t tid)
811{
812	struct safe_softc *sc = arg;
813	int session, ret;
814	u_int32_t sid = ((u_int32_t) tid) & 0xffffffff;
815
816	if (sc == NULL)
817		return (EINVAL);
818
819	session = SAFE_SESSION(sid);
820	if (session < sc->sc_nsessions) {
821		bzero(&sc->sc_sessions[session], sizeof(sc->sc_sessions[session]));
822		ret = 0;
823	} else
824		ret = EINVAL;
825	return (ret);
826}
827
828static void
829safe_op_cb(void *arg, bus_dma_segment_t *seg, int nsegs, bus_size_t mapsize, int error)
830{
831	struct safe_operand *op = arg;
832
833	DPRINTF(("%s: mapsize %u nsegs %d error %d\n", __func__,
834		(u_int) mapsize, nsegs, error));
835	if (error != 0)
836		return;
837	op->mapsize = mapsize;
838	op->nsegs = nsegs;
839	bcopy(seg, op->segs, nsegs * sizeof (seg[0]));
840}
841
842static int
843safe_process(void *arg, struct cryptop *crp, int hint)
844{
845	int err = 0, i, nicealign, uniform;
846	struct safe_softc *sc = arg;
847	struct cryptodesc *crd1, *crd2, *maccrd, *enccrd;
848	int bypass, oplen, ivsize;
849	caddr_t iv;
850	int16_t coffset;
851	struct safe_session *ses;
852	struct safe_ringentry *re;
853	struct safe_sarec *sa;
854	struct safe_pdesc *pd;
855	u_int32_t cmd0, cmd1, staterec;
856
857	if (crp == NULL || crp->crp_callback == NULL || sc == NULL) {
858		safestats.st_invalid++;
859		return (EINVAL);
860	}
861	if (SAFE_SESSION(crp->crp_sid) >= sc->sc_nsessions) {
862		safestats.st_badsession++;
863		return (EINVAL);
864	}
865
866	mtx_lock(&sc->sc_ringmtx);
867	if (sc->sc_front == sc->sc_back && sc->sc_nqchip != 0) {
868		safestats.st_ringfull++;
869		sc->sc_needwakeup |= CRYPTO_SYMQ;
870		mtx_unlock(&sc->sc_ringmtx);
871		return (ERESTART);
872	}
873	re = sc->sc_front;
874
875	staterec = re->re_sa.sa_staterec;	/* save */
876	/* NB: zero everything but the PE descriptor */
877	bzero(&re->re_sa, sizeof(struct safe_ringentry) - sizeof(re->re_desc));
878	re->re_sa.sa_staterec = staterec;	/* restore */
879
880	re->re_crp = crp;
881	re->re_sesn = SAFE_SESSION(crp->crp_sid);
882
883	if (crp->crp_flags & CRYPTO_F_IMBUF) {
884		re->re_src_m = (struct mbuf *)crp->crp_buf;
885		re->re_dst_m = (struct mbuf *)crp->crp_buf;
886	} else if (crp->crp_flags & CRYPTO_F_IOV) {
887		re->re_src_io = (struct uio *)crp->crp_buf;
888		re->re_dst_io = (struct uio *)crp->crp_buf;
889	} else {
890		safestats.st_badflags++;
891		err = EINVAL;
892		goto errout;	/* XXX we don't handle contiguous blocks! */
893	}
894
895	sa = &re->re_sa;
896	ses = &sc->sc_sessions[re->re_sesn];
897
898	crd1 = crp->crp_desc;
899	if (crd1 == NULL) {
900		safestats.st_nodesc++;
901		err = EINVAL;
902		goto errout;
903	}
904	crd2 = crd1->crd_next;
905
906	cmd0 = SAFE_SA_CMD0_BASIC;		/* basic group operation */
907	cmd1 = 0;
908	if (crd2 == NULL) {
909		if (crd1->crd_alg == CRYPTO_MD5_HMAC ||
910		    crd1->crd_alg == CRYPTO_SHA1_HMAC ||
911		    crd1->crd_alg == CRYPTO_NULL_HMAC) {
912			maccrd = crd1;
913			enccrd = NULL;
914			cmd0 |= SAFE_SA_CMD0_OP_HASH;
915		} else if (crd1->crd_alg == CRYPTO_DES_CBC ||
916		    crd1->crd_alg == CRYPTO_3DES_CBC ||
917		    crd1->crd_alg == CRYPTO_AES_CBC ||
918		    crd1->crd_alg == CRYPTO_NULL_CBC) {
919			maccrd = NULL;
920			enccrd = crd1;
921			cmd0 |= SAFE_SA_CMD0_OP_CRYPT;
922		} else {
923			safestats.st_badalg++;
924			err = EINVAL;
925			goto errout;
926		}
927	} else {
928		if ((crd1->crd_alg == CRYPTO_MD5_HMAC ||
929		    crd1->crd_alg == CRYPTO_SHA1_HMAC ||
930		    crd1->crd_alg == CRYPTO_NULL_HMAC) &&
931		    (crd2->crd_alg == CRYPTO_DES_CBC ||
932			crd2->crd_alg == CRYPTO_3DES_CBC ||
933		        crd2->crd_alg == CRYPTO_AES_CBC ||
934		        crd2->crd_alg == CRYPTO_NULL_CBC) &&
935		    ((crd2->crd_flags & CRD_F_ENCRYPT) == 0)) {
936			maccrd = crd1;
937			enccrd = crd2;
938		} else if ((crd1->crd_alg == CRYPTO_DES_CBC ||
939		    crd1->crd_alg == CRYPTO_3DES_CBC ||
940		    crd1->crd_alg == CRYPTO_AES_CBC ||
941		    crd1->crd_alg == CRYPTO_NULL_CBC) &&
942		    (crd2->crd_alg == CRYPTO_MD5_HMAC ||
943			crd2->crd_alg == CRYPTO_SHA1_HMAC ||
944			crd2->crd_alg == CRYPTO_NULL_HMAC) &&
945		    (crd1->crd_flags & CRD_F_ENCRYPT)) {
946			enccrd = crd1;
947			maccrd = crd2;
948		} else {
949			safestats.st_badalg++;
950			err = EINVAL;
951			goto errout;
952		}
953		cmd0 |= SAFE_SA_CMD0_OP_BOTH;
954	}
955
956	if (enccrd) {
957		if (enccrd->crd_alg == CRYPTO_DES_CBC) {
958			cmd0 |= SAFE_SA_CMD0_DES;
959			cmd1 |= SAFE_SA_CMD1_CBC;
960			ivsize = 2*sizeof(u_int32_t);
961		} else if (enccrd->crd_alg == CRYPTO_3DES_CBC) {
962			cmd0 |= SAFE_SA_CMD0_3DES;
963			cmd1 |= SAFE_SA_CMD1_CBC;
964			ivsize = 2*sizeof(u_int32_t);
965		} else if (enccrd->crd_alg == CRYPTO_AES_CBC) {
966			cmd0 |= SAFE_SA_CMD0_AES;
967			cmd1 |= SAFE_SA_CMD1_CBC;
968			if (ses->ses_klen == 128)
969			     cmd1 |=  SAFE_SA_CMD1_AES128;
970			else if (ses->ses_klen == 192)
971			     cmd1 |=  SAFE_SA_CMD1_AES192;
972			else
973			     cmd1 |=  SAFE_SA_CMD1_AES256;
974			ivsize = 4*sizeof(u_int32_t);
975		} else {
976			cmd0 |= SAFE_SA_CMD0_CRYPT_NULL;
977			ivsize = 0;
978		}
979
980		/*
981		 * Setup encrypt/decrypt state.  When using basic ops
982		 * we can't use an inline IV because hash/crypt offset
983		 * must be from the end of the IV to the start of the
984		 * crypt data and this leaves out the preceding header
985		 * from the hash calculation.  Instead we place the IV
986		 * in the state record and set the hash/crypt offset to
987		 * copy both the header+IV.
988		 */
989		if (enccrd->crd_flags & CRD_F_ENCRYPT) {
990			cmd0 |= SAFE_SA_CMD0_OUTBOUND;
991
992			if (enccrd->crd_flags & CRD_F_IV_EXPLICIT)
993				iv = enccrd->crd_iv;
994			else
995				iv = (caddr_t) ses->ses_iv;
996			if ((enccrd->crd_flags & CRD_F_IV_PRESENT) == 0) {
997				if (crp->crp_flags & CRYPTO_F_IMBUF)
998					m_copyback(re->re_src_m,
999						enccrd->crd_inject, ivsize, iv);
1000				else if (crp->crp_flags & CRYPTO_F_IOV)
1001					cuio_copyback(re->re_src_io,
1002						enccrd->crd_inject, ivsize, iv);
1003			}
1004			bcopy(iv, re->re_sastate.sa_saved_iv, ivsize);
1005			cmd0 |= SAFE_SA_CMD0_IVLD_STATE | SAFE_SA_CMD0_SAVEIV;
1006			re->re_flags |= SAFE_QFLAGS_COPYOUTIV;
1007		} else {
1008			cmd0 |= SAFE_SA_CMD0_INBOUND;
1009
1010			if (enccrd->crd_flags & CRD_F_IV_EXPLICIT)
1011				bcopy(enccrd->crd_iv,
1012					re->re_sastate.sa_saved_iv, ivsize);
1013			else if (crp->crp_flags & CRYPTO_F_IMBUF)
1014				m_copydata(re->re_src_m, enccrd->crd_inject,
1015					ivsize,
1016					(caddr_t)re->re_sastate.sa_saved_iv);
1017			else if (crp->crp_flags & CRYPTO_F_IOV)
1018				cuio_copydata(re->re_src_io, enccrd->crd_inject,
1019					ivsize,
1020					(caddr_t)re->re_sastate.sa_saved_iv);
1021			cmd0 |= SAFE_SA_CMD0_IVLD_STATE;
1022		}
1023		/*
1024		 * For basic encryption use the zero pad algorithm.
1025		 * This pads results to an 8-byte boundary and
1026		 * suppresses padding verification for inbound (i.e.
1027		 * decrypt) operations.
1028		 *
1029		 * NB: Not sure if the 8-byte pad boundary is a problem.
1030		 */
1031		cmd0 |= SAFE_SA_CMD0_PAD_ZERO;
1032
1033		/* XXX assert key bufs have the same size */
1034		bcopy(ses->ses_key, sa->sa_key, sizeof(sa->sa_key));
1035	}
1036
1037	if (maccrd) {
1038		if (maccrd->crd_alg == CRYPTO_MD5_HMAC) {
1039			cmd0 |= SAFE_SA_CMD0_MD5;
1040			cmd1 |= SAFE_SA_CMD1_HMAC;	/* NB: enable HMAC */
1041		} else if (maccrd->crd_alg == CRYPTO_SHA1_HMAC) {
1042			cmd0 |= SAFE_SA_CMD0_SHA1;
1043			cmd1 |= SAFE_SA_CMD1_HMAC;	/* NB: enable HMAC */
1044		} else {
1045			cmd0 |= SAFE_SA_CMD0_HASH_NULL;
1046		}
1047		/*
1048		 * Digest data is loaded from the SA and the hash
1049		 * result is saved to the state block where we
1050		 * retrieve it for return to the caller.
1051		 */
1052		/* XXX assert digest bufs have the same size */
1053		bcopy(ses->ses_hminner, sa->sa_indigest,
1054			sizeof(sa->sa_indigest));
1055		bcopy(ses->ses_hmouter, sa->sa_outdigest,
1056			sizeof(sa->sa_outdigest));
1057
1058		cmd0 |= SAFE_SA_CMD0_HSLD_SA | SAFE_SA_CMD0_SAVEHASH;
1059		re->re_flags |= SAFE_QFLAGS_COPYOUTICV;
1060	}
1061
1062	if (enccrd && maccrd) {
1063		/*
1064		 * The offset from hash data to the start of
1065		 * crypt data is the difference in the skips.
1066		 */
1067		bypass = maccrd->crd_skip;
1068		coffset = enccrd->crd_skip - maccrd->crd_skip;
1069		if (coffset < 0) {
1070			DPRINTF(("%s: hash does not precede crypt; "
1071				"mac skip %u enc skip %u\n",
1072				__func__, maccrd->crd_skip, enccrd->crd_skip));
1073			safestats.st_skipmismatch++;
1074			err = EINVAL;
1075			goto errout;
1076		}
1077		oplen = enccrd->crd_skip + enccrd->crd_len;
1078		if (maccrd->crd_skip + maccrd->crd_len != oplen) {
1079			DPRINTF(("%s: hash amount %u != crypt amount %u\n",
1080				__func__, maccrd->crd_skip + maccrd->crd_len,
1081				oplen));
1082			safestats.st_lenmismatch++;
1083			err = EINVAL;
1084			goto errout;
1085		}
1086#ifdef SAFE_DEBUG
1087		if (safe_debug) {
1088			printf("mac: skip %d, len %d, inject %d\n",
1089			    maccrd->crd_skip, maccrd->crd_len,
1090			    maccrd->crd_inject);
1091			printf("enc: skip %d, len %d, inject %d\n",
1092			    enccrd->crd_skip, enccrd->crd_len,
1093			    enccrd->crd_inject);
1094			printf("bypass %d coffset %d oplen %d\n",
1095				bypass, coffset, oplen);
1096		}
1097#endif
1098		if (coffset & 3) {	/* offset must be 32-bit aligned */
1099			DPRINTF(("%s: coffset %u misaligned\n",
1100				__func__, coffset));
1101			safestats.st_coffmisaligned++;
1102			err = EINVAL;
1103			goto errout;
1104		}
1105		coffset >>= 2;
1106		if (coffset > 255) {	/* offset must be <256 dwords */
1107			DPRINTF(("%s: coffset %u too big\n",
1108				__func__, coffset));
1109			safestats.st_cofftoobig++;
1110			err = EINVAL;
1111			goto errout;
1112		}
1113		/*
1114		 * Tell the hardware to copy the header to the output.
1115		 * The header is defined as the data from the end of
1116		 * the bypass to the start of data to be encrypted.
1117		 * Typically this is the inline IV.  Note that you need
1118		 * to do this even if src+dst are the same; it appears
1119		 * that w/o this bit the crypted data is written
1120		 * immediately after the bypass data.
1121		 */
1122		cmd1 |= SAFE_SA_CMD1_HDRCOPY;
1123		/*
1124		 * Disable IP header mutable bit handling.  This is
1125		 * needed to get correct HMAC calculations.
1126		 */
1127		cmd1 |= SAFE_SA_CMD1_MUTABLE;
1128	} else {
1129		if (enccrd) {
1130			bypass = enccrd->crd_skip;
1131			oplen = bypass + enccrd->crd_len;
1132		} else {
1133			bypass = maccrd->crd_skip;
1134			oplen = bypass + maccrd->crd_len;
1135		}
1136		coffset = 0;
1137	}
1138	/* XXX verify multiple of 4 when using s/g */
1139	if (bypass > 96) {		/* bypass offset must be <= 96 bytes */
1140		DPRINTF(("%s: bypass %u too big\n", __func__, bypass));
1141		safestats.st_bypasstoobig++;
1142		err = EINVAL;
1143		goto errout;
1144	}
1145
1146	if (bus_dmamap_create(sc->sc_srcdmat, BUS_DMA_NOWAIT, &re->re_src_map)) {
1147		safestats.st_nomap++;
1148		err = ENOMEM;
1149		goto errout;
1150	}
1151	if (crp->crp_flags & CRYPTO_F_IMBUF) {
1152		if (bus_dmamap_load_mbuf(sc->sc_srcdmat, re->re_src_map,
1153		    re->re_src_m, safe_op_cb,
1154		    &re->re_src, BUS_DMA_NOWAIT) != 0) {
1155			bus_dmamap_destroy(sc->sc_srcdmat, re->re_src_map);
1156			re->re_src_map = NULL;
1157			safestats.st_noload++;
1158			err = ENOMEM;
1159			goto errout;
1160		}
1161	} else if (crp->crp_flags & CRYPTO_F_IOV) {
1162		if (bus_dmamap_load_uio(sc->sc_srcdmat, re->re_src_map,
1163		    re->re_src_io, safe_op_cb,
1164		    &re->re_src, BUS_DMA_NOWAIT) != 0) {
1165			bus_dmamap_destroy(sc->sc_srcdmat, re->re_src_map);
1166			re->re_src_map = NULL;
1167			safestats.st_noload++;
1168			err = ENOMEM;
1169			goto errout;
1170		}
1171	}
1172	nicealign = safe_dmamap_aligned(&re->re_src);
1173	uniform = safe_dmamap_uniform(&re->re_src);
1174
1175	DPRINTF(("src nicealign %u uniform %u nsegs %u\n",
1176		nicealign, uniform, re->re_src.nsegs));
1177	if (re->re_src.nsegs > 1) {
1178		re->re_desc.d_src = sc->sc_spalloc.dma_paddr +
1179			((caddr_t) sc->sc_spfree - (caddr_t) sc->sc_spring);
1180		for (i = 0; i < re->re_src_nsegs; i++) {
1181			/* NB: no need to check if there's space */
1182			pd = sc->sc_spfree;
1183			if (++(sc->sc_spfree) == sc->sc_springtop)
1184				sc->sc_spfree = sc->sc_spring;
1185
1186			KASSERT((pd->pd_flags&3) == 0 ||
1187				(pd->pd_flags&3) == SAFE_PD_DONE,
1188				("bogus source particle descriptor; flags %x",
1189				pd->pd_flags));
1190			pd->pd_addr = re->re_src_segs[i].ds_addr;
1191			pd->pd_size = re->re_src_segs[i].ds_len;
1192			pd->pd_flags = SAFE_PD_READY;
1193		}
1194		cmd0 |= SAFE_SA_CMD0_IGATHER;
1195	} else {
1196		/*
1197		 * No need for gather, reference the operand directly.
1198		 */
1199		re->re_desc.d_src = re->re_src_segs[0].ds_addr;
1200	}
1201
1202	if (enccrd == NULL && maccrd != NULL) {
1203		/*
1204		 * Hash op; no destination needed.
1205		 */
1206	} else {
1207		if (crp->crp_flags & CRYPTO_F_IOV) {
1208			if (!nicealign) {
1209				safestats.st_iovmisaligned++;
1210				err = EINVAL;
1211				goto errout;
1212			}
1213			if (uniform != 1) {
1214				/*
1215				 * Source is not suitable for direct use as
1216				 * the destination.  Create a new scatter/gather
1217				 * list based on the destination requirements
1218				 * and check if that's ok.
1219				 */
1220				if (bus_dmamap_create(sc->sc_dstdmat,
1221				    BUS_DMA_NOWAIT, &re->re_dst_map)) {
1222					safestats.st_nomap++;
1223					err = ENOMEM;
1224					goto errout;
1225				}
1226				if (bus_dmamap_load_uio(sc->sc_dstdmat,
1227				    re->re_dst_map, re->re_dst_io,
1228				    safe_op_cb, &re->re_dst,
1229				    BUS_DMA_NOWAIT) != 0) {
1230					bus_dmamap_destroy(sc->sc_dstdmat,
1231						re->re_dst_map);
1232					re->re_dst_map = NULL;
1233					safestats.st_noload++;
1234					err = ENOMEM;
1235					goto errout;
1236				}
1237				uniform = safe_dmamap_uniform(&re->re_dst);
1238				if (!uniform) {
1239					/*
1240					 * There's no way to handle the DMA
1241					 * requirements with this uio.  We
1242					 * could create a separate DMA area for
1243					 * the result and then copy it back,
1244					 * but for now we just bail and return
1245					 * an error.  Note that uio requests
1246					 * > SAFE_MAX_DSIZE are handled because
1247					 * the DMA map and segment list for the
1248					 * destination wil result in a
1249					 * destination particle list that does
1250					 * the necessary scatter DMA.
1251					 */
1252					safestats.st_iovnotuniform++;
1253					err = EINVAL;
1254					goto errout;
1255				}
1256			} else
1257				re->re_dst = re->re_src;
1258		} else if (crp->crp_flags & CRYPTO_F_IMBUF) {
1259			if (nicealign && uniform == 1) {
1260				/*
1261				 * Source layout is suitable for direct
1262				 * sharing of the DMA map and segment list.
1263				 */
1264				re->re_dst = re->re_src;
1265			} else if (nicealign && uniform == 2) {
1266				/*
1267				 * The source is properly aligned but requires a
1268				 * different particle list to handle DMA of the
1269				 * result.  Create a new map and do the load to
1270				 * create the segment list.  The particle
1271				 * descriptor setup code below will handle the
1272				 * rest.
1273				 */
1274				if (bus_dmamap_create(sc->sc_dstdmat,
1275				    BUS_DMA_NOWAIT, &re->re_dst_map)) {
1276					safestats.st_nomap++;
1277					err = ENOMEM;
1278					goto errout;
1279				}
1280				if (bus_dmamap_load_mbuf(sc->sc_dstdmat,
1281				    re->re_dst_map, re->re_dst_m,
1282				    safe_op_cb, &re->re_dst,
1283				    BUS_DMA_NOWAIT) != 0) {
1284					bus_dmamap_destroy(sc->sc_dstdmat,
1285						re->re_dst_map);
1286					re->re_dst_map = NULL;
1287					safestats.st_noload++;
1288					err = ENOMEM;
1289					goto errout;
1290				}
1291			} else {		/* !(aligned and/or uniform) */
1292				int totlen, len;
1293				struct mbuf *m, *top, **mp;
1294
1295				/*
1296				 * DMA constraints require that we allocate a
1297				 * new mbuf chain for the destination.  We
1298				 * allocate an entire new set of mbufs of
1299				 * optimal/required size and then tell the
1300				 * hardware to copy any bits that are not
1301				 * created as a byproduct of the operation.
1302				 */
1303				if (!nicealign)
1304					safestats.st_unaligned++;
1305				if (!uniform)
1306					safestats.st_notuniform++;
1307				totlen = re->re_src_mapsize;
1308				if (re->re_src_m->m_flags & M_PKTHDR) {
1309					len = MHLEN;
1310					MGETHDR(m, M_DONTWAIT, MT_DATA);
1311					if (m && !m_dup_pkthdr(m, re->re_src_m,
1312					    M_DONTWAIT)) {
1313						m_free(m);
1314						m = NULL;
1315					}
1316				} else {
1317					len = MLEN;
1318					MGET(m, M_DONTWAIT, MT_DATA);
1319				}
1320				if (m == NULL) {
1321					safestats.st_nombuf++;
1322					err = sc->sc_nqchip ? ERESTART : ENOMEM;
1323					goto errout;
1324				}
1325				if (totlen >= MINCLSIZE) {
1326					MCLGET(m, M_DONTWAIT);
1327					if ((m->m_flags & M_EXT) == 0) {
1328						m_free(m);
1329						safestats.st_nomcl++;
1330						err = sc->sc_nqchip ?
1331							ERESTART : ENOMEM;
1332						goto errout;
1333					}
1334					len = MCLBYTES;
1335				}
1336				m->m_len = len;
1337				top = NULL;
1338				mp = &top;
1339
1340				while (totlen > 0) {
1341					if (top) {
1342						MGET(m, M_DONTWAIT, MT_DATA);
1343						if (m == NULL) {
1344							m_freem(top);
1345							safestats.st_nombuf++;
1346							err = sc->sc_nqchip ?
1347							    ERESTART : ENOMEM;
1348							goto errout;
1349						}
1350						len = MLEN;
1351					}
1352					if (top && totlen >= MINCLSIZE) {
1353						MCLGET(m, M_DONTWAIT);
1354						if ((m->m_flags & M_EXT) == 0) {
1355							*mp = m;
1356							m_freem(top);
1357							safestats.st_nomcl++;
1358							err = sc->sc_nqchip ?
1359							    ERESTART : ENOMEM;
1360							goto errout;
1361						}
1362						len = MCLBYTES;
1363					}
1364					m->m_len = len = min(totlen, len);
1365					totlen -= len;
1366					*mp = m;
1367					mp = &m->m_next;
1368				}
1369				re->re_dst_m = top;
1370				if (bus_dmamap_create(sc->sc_dstdmat,
1371				    BUS_DMA_NOWAIT, &re->re_dst_map) != 0) {
1372					safestats.st_nomap++;
1373					err = ENOMEM;
1374					goto errout;
1375				}
1376				if (bus_dmamap_load_mbuf(sc->sc_dstdmat,
1377				    re->re_dst_map, re->re_dst_m,
1378				    safe_op_cb, &re->re_dst,
1379				    BUS_DMA_NOWAIT) != 0) {
1380					bus_dmamap_destroy(sc->sc_dstdmat,
1381					re->re_dst_map);
1382					re->re_dst_map = NULL;
1383					safestats.st_noload++;
1384					err = ENOMEM;
1385					goto errout;
1386				}
1387				if (re->re_src.mapsize > oplen) {
1388					/*
1389					 * There's data following what the
1390					 * hardware will copy for us.  If this
1391					 * isn't just the ICV (that's going to
1392					 * be written on completion), copy it
1393					 * to the new mbufs
1394					 */
1395					if (!(maccrd &&
1396					    (re->re_src.mapsize-oplen) == 12 &&
1397					    maccrd->crd_inject == oplen))
1398						safe_mcopy(re->re_src_m,
1399							   re->re_dst_m,
1400							   oplen);
1401					else
1402						safestats.st_noicvcopy++;
1403				}
1404			}
1405		} else {
1406			safestats.st_badflags++;
1407			err = EINVAL;
1408			goto errout;
1409		}
1410
1411		if (re->re_dst.nsegs > 1) {
1412			re->re_desc.d_dst = sc->sc_dpalloc.dma_paddr +
1413			    ((caddr_t) sc->sc_dpfree - (caddr_t) sc->sc_dpring);
1414			for (i = 0; i < re->re_dst_nsegs; i++) {
1415				pd = sc->sc_dpfree;
1416				KASSERT((pd->pd_flags&3) == 0 ||
1417					(pd->pd_flags&3) == SAFE_PD_DONE,
1418					("bogus dest particle descriptor; flags %x",
1419						pd->pd_flags));
1420				if (++(sc->sc_dpfree) == sc->sc_dpringtop)
1421					sc->sc_dpfree = sc->sc_dpring;
1422				pd->pd_addr = re->re_dst_segs[i].ds_addr;
1423				pd->pd_flags = SAFE_PD_READY;
1424			}
1425			cmd0 |= SAFE_SA_CMD0_OSCATTER;
1426		} else {
1427			/*
1428			 * No need for scatter, reference the operand directly.
1429			 */
1430			re->re_desc.d_dst = re->re_dst_segs[0].ds_addr;
1431		}
1432	}
1433
1434	/*
1435	 * All done with setup; fillin the SA command words
1436	 * and the packet engine descriptor.  The operation
1437	 * is now ready for submission to the hardware.
1438	 */
1439	sa->sa_cmd0 = cmd0 | SAFE_SA_CMD0_IPCI | SAFE_SA_CMD0_OPCI;
1440	sa->sa_cmd1 = cmd1
1441		    | (coffset << SAFE_SA_CMD1_OFFSET_S)
1442		    | SAFE_SA_CMD1_SAREV1	/* Rev 1 SA data structure */
1443		    | SAFE_SA_CMD1_SRPCI
1444		    ;
1445	/*
1446	 * NB: the order of writes is important here.  In case the
1447	 * chip is scanning the ring because of an outstanding request
1448	 * it might nab this one too.  In that case we need to make
1449	 * sure the setup is complete before we write the length
1450	 * field of the descriptor as it signals the descriptor is
1451	 * ready for processing.
1452	 */
1453	re->re_desc.d_csr = SAFE_PE_CSR_READY | SAFE_PE_CSR_SAPCI;
1454	if (maccrd)
1455		re->re_desc.d_csr |= SAFE_PE_CSR_LOADSA | SAFE_PE_CSR_HASHFINAL;
1456	re->re_desc.d_len = oplen
1457			  | SAFE_PE_LEN_READY
1458			  | (bypass << SAFE_PE_LEN_BYPASS_S)
1459			  ;
1460
1461	safestats.st_ipackets++;
1462	safestats.st_ibytes += oplen;
1463
1464	if (++(sc->sc_front) == sc->sc_ringtop)
1465		sc->sc_front = sc->sc_ring;
1466
1467	/* XXX honor batching */
1468	safe_feed(sc, re);
1469	mtx_unlock(&sc->sc_ringmtx);
1470	return (0);
1471
1472errout:
1473	if ((re->re_dst_m != NULL) && (re->re_src_m != re->re_dst_m))
1474		m_freem(re->re_dst_m);
1475
1476	if (re->re_dst_map != NULL && re->re_dst_map != re->re_src_map) {
1477		bus_dmamap_unload(sc->sc_dstdmat, re->re_dst_map);
1478		bus_dmamap_destroy(sc->sc_dstdmat, re->re_dst_map);
1479	}
1480	if (re->re_src_map != NULL) {
1481		bus_dmamap_unload(sc->sc_srcdmat, re->re_src_map);
1482		bus_dmamap_destroy(sc->sc_srcdmat, re->re_src_map);
1483	}
1484	mtx_unlock(&sc->sc_ringmtx);
1485	if (err != ERESTART) {
1486		crp->crp_etype = err;
1487		crypto_done(crp);
1488	} else {
1489		sc->sc_needwakeup |= CRYPTO_SYMQ;
1490	}
1491	return (err);
1492}
1493
1494static void
1495safe_callback(struct safe_softc *sc, struct safe_ringentry *re)
1496{
1497	struct cryptop *crp = (struct cryptop *)re->re_crp;
1498	struct cryptodesc *crd;
1499
1500	safestats.st_opackets++;
1501	safestats.st_obytes += re->re_dst.mapsize;
1502
1503	safe_dma_sync(&sc->sc_ringalloc,
1504		BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1505	if (re->re_desc.d_csr & SAFE_PE_CSR_STATUS) {
1506		device_printf(sc->sc_dev, "csr 0x%x cmd0 0x%x cmd1 0x%x\n",
1507			re->re_desc.d_csr,
1508			re->re_sa.sa_cmd0, re->re_sa.sa_cmd1);
1509		safestats.st_peoperr++;
1510		crp->crp_etype = EIO;		/* something more meaningful? */
1511	}
1512	if (re->re_dst_map != NULL && re->re_dst_map != re->re_src_map) {
1513		bus_dmamap_sync(sc->sc_dstdmat, re->re_dst_map,
1514		    BUS_DMASYNC_POSTREAD);
1515		bus_dmamap_unload(sc->sc_dstdmat, re->re_dst_map);
1516		bus_dmamap_destroy(sc->sc_dstdmat, re->re_dst_map);
1517	}
1518	bus_dmamap_sync(sc->sc_srcdmat, re->re_src_map, BUS_DMASYNC_POSTWRITE);
1519	bus_dmamap_unload(sc->sc_srcdmat, re->re_src_map);
1520	bus_dmamap_destroy(sc->sc_srcdmat, re->re_src_map);
1521
1522	/*
1523	 * If result was written to a differet mbuf chain, swap
1524	 * it in as the return value and reclaim the original.
1525	 */
1526	if ((crp->crp_flags & CRYPTO_F_IMBUF) && re->re_src_m != re->re_dst_m) {
1527		m_freem(re->re_src_m);
1528		crp->crp_buf = (caddr_t)re->re_dst_m;
1529	}
1530
1531	if (re->re_flags & SAFE_QFLAGS_COPYOUTIV) {
1532		/* copy out IV for future use */
1533		for (crd = crp->crp_desc; crd; crd = crd->crd_next) {
1534			int ivsize;
1535
1536			if (crd->crd_alg == CRYPTO_DES_CBC ||
1537			    crd->crd_alg == CRYPTO_3DES_CBC) {
1538				ivsize = 2*sizeof(u_int32_t);
1539			} else if (crd->crd_alg == CRYPTO_AES_CBC) {
1540				ivsize = 4*sizeof(u_int32_t);
1541			} else
1542				continue;
1543			if (crp->crp_flags & CRYPTO_F_IMBUF) {
1544				m_copydata((struct mbuf *)crp->crp_buf,
1545					crd->crd_skip + crd->crd_len - ivsize,
1546					ivsize,
1547					(caddr_t) sc->sc_sessions[re->re_sesn].ses_iv);
1548			} else if (crp->crp_flags & CRYPTO_F_IOV) {
1549				cuio_copydata((struct uio *)crp->crp_buf,
1550					crd->crd_skip + crd->crd_len - ivsize,
1551					ivsize,
1552					(caddr_t)sc->sc_sessions[re->re_sesn].ses_iv);
1553			}
1554			break;
1555		}
1556	}
1557
1558	if (re->re_flags & SAFE_QFLAGS_COPYOUTICV) {
1559		/* copy out ICV result */
1560		for (crd = crp->crp_desc; crd; crd = crd->crd_next) {
1561			if (!(crd->crd_alg == CRYPTO_MD5_HMAC ||
1562			    crd->crd_alg == CRYPTO_SHA1_HMAC ||
1563			    crd->crd_alg == CRYPTO_NULL_HMAC))
1564				continue;
1565			if (crd->crd_alg == CRYPTO_SHA1_HMAC) {
1566				/*
1567				 * SHA-1 ICV's are byte-swapped; fix 'em up
1568				 * before copy them to their destination.
1569				 */
1570				bswap32(re->re_sastate.sa_saved_indigest[0]);
1571				bswap32(re->re_sastate.sa_saved_indigest[1]);
1572				bswap32(re->re_sastate.sa_saved_indigest[2]);
1573			}
1574			if (crp->crp_flags & CRYPTO_F_IMBUF) {
1575				m_copyback((struct mbuf *)crp->crp_buf,
1576					crd->crd_inject, 12,
1577					(caddr_t)re->re_sastate.sa_saved_indigest);
1578			} else if (crp->crp_flags & CRYPTO_F_IOV && crp->crp_mac) {
1579				bcopy((caddr_t)re->re_sastate.sa_saved_indigest,
1580					crp->crp_mac, 12);
1581			}
1582			break;
1583		}
1584	}
1585	crypto_done(crp);
1586}
1587
1588/*
1589 * Copy all data past offset from srcm to dstm.
1590 */
1591static void
1592safe_mcopy(struct mbuf *srcm, struct mbuf *dstm, u_int offset)
1593{
1594	u_int j, dlen, slen;
1595	caddr_t dptr, sptr;
1596
1597	/*
1598	 * Advance src and dst to offset.
1599	 */
1600	j = offset;
1601	while (j >= 0) {
1602		if (srcm->m_len > j)
1603			break;
1604		j -= srcm->m_len;
1605		srcm = srcm->m_next;
1606		if (srcm == NULL)
1607			return;
1608	}
1609	sptr = mtod(srcm, caddr_t) + j;
1610	slen = srcm->m_len - j;
1611
1612	j = offset;
1613	while (j >= 0) {
1614		if (dstm->m_len > j)
1615			break;
1616		j -= dstm->m_len;
1617		dstm = dstm->m_next;
1618		if (dstm == NULL)
1619			return;
1620	}
1621	dptr = mtod(dstm, caddr_t) + j;
1622	dlen = dstm->m_len - j;
1623
1624	/*
1625	 * Copy everything that remains.
1626	 */
1627	for (;;) {
1628		j = min(slen, dlen);
1629		bcopy(sptr, dptr, j);
1630		if (slen == j) {
1631			srcm = srcm->m_next;
1632			if (srcm == NULL)
1633				return;
1634			sptr = srcm->m_data;
1635			slen = srcm->m_len;
1636		} else
1637			sptr += j, slen -= j;
1638		if (dlen == j) {
1639			dstm = dstm->m_next;
1640			if (dstm == NULL)
1641				return;
1642			dptr = dstm->m_data;
1643			dlen = dstm->m_len;
1644		} else
1645			dptr += j, dlen -= j;
1646	}
1647}
1648
1649#ifndef SAFE_NO_RNG
1650#define	SAFE_RNG_MAXWAIT	1000
1651
1652static void
1653safe_rng_init(struct safe_softc *sc)
1654{
1655	u_int32_t w, v;
1656	int i;
1657
1658	WRITE_REG(sc, SAFE_RNG_CTRL, 0);
1659	/* use default value according to the manual */
1660	WRITE_REG(sc, SAFE_RNG_CNFG, 0x834);	/* magic from SafeNet */
1661	WRITE_REG(sc, SAFE_RNG_ALM_CNT, 0);
1662
1663	/*
1664	 * There is a bug in rev 1.0 of the 1140 that when the RNG
1665	 * is brought out of reset the ready status flag does not
1666	 * work until the RNG has finished its internal initialization.
1667	 *
1668	 * So in order to determine the device is through its
1669	 * initialization we must read the data register, using the
1670	 * status reg in the read in case it is initialized.  Then read
1671	 * the data register until it changes from the first read.
1672	 * Once it changes read the data register until it changes
1673	 * again.  At this time the RNG is considered initialized.
1674	 * This could take between 750ms - 1000ms in time.
1675	 */
1676	i = 0;
1677	w = READ_REG(sc, SAFE_RNG_OUT);
1678	do {
1679		v = READ_REG(sc, SAFE_RNG_OUT);
1680		if (v != w) {
1681			w = v;
1682			break;
1683		}
1684		DELAY(10);
1685	} while (++i < SAFE_RNG_MAXWAIT);
1686
1687	/* Wait Until data changes again */
1688	i = 0;
1689	do {
1690		v = READ_REG(sc, SAFE_RNG_OUT);
1691		if (v != w)
1692			break;
1693		DELAY(10);
1694	} while (++i < SAFE_RNG_MAXWAIT);
1695}
1696
1697static __inline void
1698safe_rng_disable_short_cycle(struct safe_softc *sc)
1699{
1700	WRITE_REG(sc, SAFE_RNG_CTRL,
1701		READ_REG(sc, SAFE_RNG_CTRL) &~ SAFE_RNG_CTRL_SHORTEN);
1702}
1703
1704static __inline void
1705safe_rng_enable_short_cycle(struct safe_softc *sc)
1706{
1707	WRITE_REG(sc, SAFE_RNG_CTRL,
1708		READ_REG(sc, SAFE_RNG_CTRL) | SAFE_RNG_CTRL_SHORTEN);
1709}
1710
1711static __inline u_int32_t
1712safe_rng_read(struct safe_softc *sc)
1713{
1714	int i;
1715
1716	i = 0;
1717	while (READ_REG(sc, SAFE_RNG_STAT) != 0 && ++i < SAFE_RNG_MAXWAIT)
1718		;
1719	return READ_REG(sc, SAFE_RNG_OUT);
1720}
1721
1722static void
1723safe_rng(void *arg)
1724{
1725	struct safe_softc *sc = arg;
1726	u_int32_t buf[SAFE_RNG_MAXBUFSIZ];	/* NB: maybe move to softc */
1727	u_int maxwords;
1728	int i;
1729
1730	safestats.st_rng++;
1731	/*
1732	 * Fetch the next block of data.
1733	 */
1734	maxwords = safe_rngbufsize;
1735	if (maxwords > SAFE_RNG_MAXBUFSIZ)
1736		maxwords = SAFE_RNG_MAXBUFSIZ;
1737retry:
1738	for (i = 0; i < maxwords; i++)
1739		buf[i] = safe_rng_read(sc);
1740	/*
1741	 * Check the comparator alarm count and reset the h/w if
1742	 * it exceeds our threshold.  This guards against the
1743	 * hardware oscillators resonating with external signals.
1744	 */
1745	if (READ_REG(sc, SAFE_RNG_ALM_CNT) > safe_rngmaxalarm) {
1746		u_int32_t freq_inc, w;
1747
1748		DPRINTF(("%s: alarm count %u exceeds threshold %u\n", __func__,
1749			READ_REG(sc, SAFE_RNG_ALM_CNT), safe_rngmaxalarm));
1750		safestats.st_rngalarm++;
1751		safe_rng_enable_short_cycle(sc);
1752		freq_inc = 18;
1753		for (i = 0; i < 64; i++) {
1754			w = READ_REG(sc, SAFE_RNG_CNFG);
1755			freq_inc = ((w + freq_inc) & 0x3fL);
1756			w = ((w & ~0x3fL) | freq_inc);
1757			WRITE_REG(sc, SAFE_RNG_CNFG, w);
1758
1759			WRITE_REG(sc, SAFE_RNG_ALM_CNT, 0);
1760
1761			(void) safe_rng_read(sc);
1762			DELAY(25);
1763
1764			if (READ_REG(sc, SAFE_RNG_ALM_CNT) == 0) {
1765				safe_rng_disable_short_cycle(sc);
1766				goto retry;
1767			}
1768			freq_inc = 1;
1769		}
1770		safe_rng_disable_short_cycle(sc);
1771	} else
1772		WRITE_REG(sc, SAFE_RNG_ALM_CNT, 0);
1773
1774	(*sc->sc_harvest)(sc->sc_rndtest, buf, maxwords*sizeof (u_int32_t));
1775	callout_reset(&sc->sc_rngto,
1776		hz * (safe_rnginterval ? safe_rnginterval : 1), safe_rng, sc);
1777}
1778#endif /* SAFE_NO_RNG */
1779
1780static void
1781safe_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1782{
1783	bus_addr_t *paddr = (bus_addr_t*) arg;
1784	*paddr = segs->ds_addr;
1785}
1786
1787static int
1788safe_dma_malloc(
1789	struct safe_softc *sc,
1790	bus_size_t size,
1791	struct safe_dma_alloc *dma,
1792	int mapflags
1793)
1794{
1795	int r;
1796
1797	r = bus_dma_tag_create(NULL,			/* parent */
1798			       sizeof(u_int32_t), 0,	/* alignment, bounds */
1799			       BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
1800			       BUS_SPACE_MAXADDR,	/* highaddr */
1801			       NULL, NULL,		/* filter, filterarg */
1802			       size,			/* maxsize */
1803			       1,			/* nsegments */
1804			       size,			/* maxsegsize */
1805			       BUS_DMA_ALLOCNOW,	/* flags */
1806			       NULL, NULL,		/* locking */
1807			       &dma->dma_tag);
1808	if (r != 0) {
1809		device_printf(sc->sc_dev, "safe_dma_malloc: "
1810			"bus_dma_tag_create failed; error %u\n", r);
1811		goto fail_0;
1812	}
1813
1814	r = bus_dmamap_create(dma->dma_tag, BUS_DMA_NOWAIT, &dma->dma_map);
1815	if (r != 0) {
1816		device_printf(sc->sc_dev, "safe_dma_malloc: "
1817			"bus_dmamap_create failed; error %u\n", r);
1818		goto fail_1;
1819	}
1820
1821	r = bus_dmamem_alloc(dma->dma_tag, (void**) &dma->dma_vaddr,
1822			     BUS_DMA_NOWAIT, &dma->dma_map);
1823	if (r != 0) {
1824		device_printf(sc->sc_dev, "safe_dma_malloc: "
1825			"bus_dmammem_alloc failed; size %zu, error %u\n",
1826			size, r);
1827		goto fail_2;
1828	}
1829
1830	r = bus_dmamap_load(dma->dma_tag, dma->dma_map, dma->dma_vaddr,
1831		            size,
1832			    safe_dmamap_cb,
1833			    &dma->dma_paddr,
1834			    mapflags | BUS_DMA_NOWAIT);
1835	if (r != 0) {
1836		device_printf(sc->sc_dev, "safe_dma_malloc: "
1837			"bus_dmamap_load failed; error %u\n", r);
1838		goto fail_3;
1839	}
1840
1841	dma->dma_size = size;
1842	return (0);
1843
1844fail_3:
1845	bus_dmamap_unload(dma->dma_tag, dma->dma_map);
1846fail_2:
1847	bus_dmamem_free(dma->dma_tag, dma->dma_vaddr, dma->dma_map);
1848fail_1:
1849	bus_dmamap_destroy(dma->dma_tag, dma->dma_map);
1850	bus_dma_tag_destroy(dma->dma_tag);
1851fail_0:
1852	dma->dma_map = NULL;
1853	dma->dma_tag = NULL;
1854	return (r);
1855}
1856
1857static void
1858safe_dma_free(struct safe_softc *sc, struct safe_dma_alloc *dma)
1859{
1860	bus_dmamap_unload(dma->dma_tag, dma->dma_map);
1861	bus_dmamem_free(dma->dma_tag, dma->dma_vaddr, dma->dma_map);
1862	bus_dmamap_destroy(dma->dma_tag, dma->dma_map);
1863	bus_dma_tag_destroy(dma->dma_tag);
1864}
1865
1866/*
1867 * Resets the board.  Values in the regesters are left as is
1868 * from the reset (i.e. initial values are assigned elsewhere).
1869 */
1870static void
1871safe_reset_board(struct safe_softc *sc)
1872{
1873	u_int32_t v;
1874	/*
1875	 * Reset the device.  The manual says no delay
1876	 * is needed between marking and clearing reset.
1877	 */
1878	v = READ_REG(sc, SAFE_PE_DMACFG) &~
1879		(SAFE_PE_DMACFG_PERESET | SAFE_PE_DMACFG_PDRRESET |
1880		 SAFE_PE_DMACFG_SGRESET);
1881	WRITE_REG(sc, SAFE_PE_DMACFG, v
1882				    | SAFE_PE_DMACFG_PERESET
1883				    | SAFE_PE_DMACFG_PDRRESET
1884				    | SAFE_PE_DMACFG_SGRESET);
1885	WRITE_REG(sc, SAFE_PE_DMACFG, v);
1886}
1887
1888/*
1889 * Initialize registers we need to touch only once.
1890 */
1891static void
1892safe_init_board(struct safe_softc *sc)
1893{
1894	u_int32_t v, dwords;
1895
1896	v = READ_REG(sc, SAFE_PE_DMACFG);;
1897	v &=~ SAFE_PE_DMACFG_PEMODE;
1898	v |= SAFE_PE_DMACFG_FSENA		/* failsafe enable */
1899	  |  SAFE_PE_DMACFG_GPRPCI		/* gather ring on PCI */
1900	  |  SAFE_PE_DMACFG_SPRPCI		/* scatter ring on PCI */
1901	  |  SAFE_PE_DMACFG_ESDESC		/* endian-swap descriptors */
1902	  |  SAFE_PE_DMACFG_ESSA		/* endian-swap SA's */
1903	  |  SAFE_PE_DMACFG_ESPDESC		/* endian-swap part. desc's */
1904	  ;
1905	WRITE_REG(sc, SAFE_PE_DMACFG, v);
1906#if 0
1907	/* XXX select byte swap based on host byte order */
1908	WRITE_REG(sc, SAFE_ENDIAN, 0x1b);
1909#endif
1910	if (sc->sc_chiprev == SAFE_REV(1,0)) {
1911		/*
1912		 * Avoid large PCI DMA transfers.  Rev 1.0 has a bug where
1913		 * "target mode transfers" done while the chip is DMA'ing
1914		 * >1020 bytes cause the hardware to lockup.  To avoid this
1915		 * we reduce the max PCI transfer size and use small source
1916		 * particle descriptors (<= 256 bytes).
1917		 */
1918		WRITE_REG(sc, SAFE_DMA_CFG, 256);
1919		device_printf(sc->sc_dev,
1920			"Reduce max DMA size to %u words for rev %u.%u WAR\n",
1921			(READ_REG(sc, SAFE_DMA_CFG)>>2) & 0xff,
1922			SAFE_REV_MAJ(sc->sc_chiprev),
1923			SAFE_REV_MIN(sc->sc_chiprev));
1924	}
1925
1926	/* NB: operands+results are overlaid */
1927	WRITE_REG(sc, SAFE_PE_PDRBASE, sc->sc_ringalloc.dma_paddr);
1928	WRITE_REG(sc, SAFE_PE_RDRBASE, sc->sc_ringalloc.dma_paddr);
1929	/*
1930	 * Configure ring entry size and number of items in the ring.
1931	 */
1932	KASSERT((sizeof(struct safe_ringentry) % sizeof(u_int32_t)) == 0,
1933		("PE ring entry not 32-bit aligned!"));
1934	dwords = sizeof(struct safe_ringentry) / sizeof(u_int32_t);
1935	WRITE_REG(sc, SAFE_PE_RINGCFG,
1936		(dwords << SAFE_PE_RINGCFG_OFFSET_S) | SAFE_MAX_NQUEUE);
1937	WRITE_REG(sc, SAFE_PE_RINGPOLL, 0);	/* disable polling */
1938
1939	WRITE_REG(sc, SAFE_PE_GRNGBASE, sc->sc_spalloc.dma_paddr);
1940	WRITE_REG(sc, SAFE_PE_SRNGBASE, sc->sc_dpalloc.dma_paddr);
1941	WRITE_REG(sc, SAFE_PE_PARTSIZE,
1942		(SAFE_TOTAL_DPART<<16) | SAFE_TOTAL_SPART);
1943	/*
1944	 * NB: destination particles are fixed size.  We use
1945	 *     an mbuf cluster and require all results go to
1946	 *     clusters or smaller.
1947	 */
1948	WRITE_REG(sc, SAFE_PE_PARTCFG, SAFE_MAX_DSIZE);
1949
1950	/* it's now safe to enable PE mode, do it */
1951	WRITE_REG(sc, SAFE_PE_DMACFG, v | SAFE_PE_DMACFG_PEMODE);
1952
1953	/*
1954	 * Configure hardware to use level-triggered interrupts and
1955	 * to interrupt after each descriptor is processed.
1956	 */
1957	WRITE_REG(sc, SAFE_HI_CFG, SAFE_HI_CFG_LEVEL);
1958	WRITE_REG(sc, SAFE_HI_DESC_CNT, 1);
1959	WRITE_REG(sc, SAFE_HI_MASK, SAFE_INT_PE_DDONE | SAFE_INT_PE_ERROR);
1960}
1961
1962/*
1963 * Init PCI registers
1964 */
1965static void
1966safe_init_pciregs(device_t dev)
1967{
1968}
1969
1970/*
1971 * Clean up after a chip crash.
1972 * It is assumed that the caller in splimp()
1973 */
1974static void
1975safe_cleanchip(struct safe_softc *sc)
1976{
1977
1978	if (sc->sc_nqchip != 0) {
1979		struct safe_ringentry *re = sc->sc_back;
1980
1981		while (re != sc->sc_front) {
1982			if (re->re_desc.d_csr != 0)
1983				safe_free_entry(sc, re);
1984			if (++re == sc->sc_ringtop)
1985				re = sc->sc_ring;
1986		}
1987		sc->sc_back = re;
1988		sc->sc_nqchip = 0;
1989	}
1990}
1991
1992/*
1993 * free a safe_q
1994 * It is assumed that the caller is within splimp().
1995 */
1996static int
1997safe_free_entry(struct safe_softc *sc, struct safe_ringentry *re)
1998{
1999	struct cryptop *crp;
2000
2001	/*
2002	 * Free header MCR
2003	 */
2004	if ((re->re_dst_m != NULL) && (re->re_src_m != re->re_dst_m))
2005		m_freem(re->re_dst_m);
2006
2007	crp = (struct cryptop *)re->re_crp;
2008
2009	re->re_desc.d_csr = 0;
2010
2011	crp->crp_etype = EFAULT;
2012	crypto_done(crp);
2013	return(0);
2014}
2015
2016/*
2017 * Routine to reset the chip and clean up.
2018 * It is assumed that the caller is in splimp()
2019 */
2020static void
2021safe_totalreset(struct safe_softc *sc)
2022{
2023	safe_reset_board(sc);
2024	safe_init_board(sc);
2025	safe_cleanchip(sc);
2026}
2027
2028/*
2029 * Is the operand suitable aligned for direct DMA.  Each
2030 * segment must be aligned on a 32-bit boundary and all
2031 * but the last segment must be a multiple of 4 bytes.
2032 */
2033static int
2034safe_dmamap_aligned(const struct safe_operand *op)
2035{
2036	int i;
2037
2038	for (i = 0; i < op->nsegs; i++) {
2039		if (op->segs[i].ds_addr & 3)
2040			return (0);
2041		if (i != (op->nsegs - 1) && (op->segs[i].ds_len & 3))
2042			return (0);
2043	}
2044	return (1);
2045}
2046
2047/*
2048 * Is the operand suitable for direct DMA as the destination
2049 * of an operation.  The hardware requires that each ``particle''
2050 * but the last in an operation result have the same size.  We
2051 * fix that size at SAFE_MAX_DSIZE bytes.  This routine returns
2052 * 0 if some segment is not a multiple of of this size, 1 if all
2053 * segments are exactly this size, or 2 if segments are at worst
2054 * a multple of this size.
2055 */
2056static int
2057safe_dmamap_uniform(const struct safe_operand *op)
2058{
2059	int result = 1;
2060
2061	if (op->nsegs > 0) {
2062		int i;
2063
2064		for (i = 0; i < op->nsegs-1; i++) {
2065			if (op->segs[i].ds_len % SAFE_MAX_DSIZE)
2066				return (0);
2067			if (op->segs[i].ds_len != SAFE_MAX_DSIZE)
2068				result = 2;
2069		}
2070	}
2071	return (result);
2072}
2073
2074#ifdef SAFE_DEBUG
2075static void
2076safe_dump_dmastatus(struct safe_softc *sc, const char *tag)
2077{
2078	printf("%s: ENDIAN 0x%x SRC 0x%x DST 0x%x STAT 0x%x\n"
2079		, tag
2080		, READ_REG(sc, SAFE_DMA_ENDIAN)
2081		, READ_REG(sc, SAFE_DMA_SRCADDR)
2082		, READ_REG(sc, SAFE_DMA_DSTADDR)
2083		, READ_REG(sc, SAFE_DMA_STAT)
2084	);
2085}
2086
2087static void
2088safe_dump_intrstate(struct safe_softc *sc, const char *tag)
2089{
2090	printf("%s: HI_CFG 0x%x HI_MASK 0x%x HI_DESC_CNT 0x%x HU_STAT 0x%x HM_STAT 0x%x\n"
2091		, tag
2092		, READ_REG(sc, SAFE_HI_CFG)
2093		, READ_REG(sc, SAFE_HI_MASK)
2094		, READ_REG(sc, SAFE_HI_DESC_CNT)
2095		, READ_REG(sc, SAFE_HU_STAT)
2096		, READ_REG(sc, SAFE_HM_STAT)
2097	);
2098}
2099
2100static void
2101safe_dump_ringstate(struct safe_softc *sc, const char *tag)
2102{
2103	u_int32_t estat = READ_REG(sc, SAFE_PE_ERNGSTAT);
2104
2105	/* NB: assume caller has lock on ring */
2106	printf("%s: ERNGSTAT %x (next %u) back %u front %u\n",
2107		tag,
2108		estat, (estat >> SAFE_PE_ERNGSTAT_NEXT_S),
2109		sc->sc_back - sc->sc_ring,
2110		sc->sc_front - sc->sc_ring);
2111}
2112
2113static void
2114safe_dump_request(struct safe_softc *sc, const char* tag, struct safe_ringentry *re)
2115{
2116	int ix, nsegs;
2117
2118	ix = re - sc->sc_ring;
2119	printf("%s: %p (%u): csr %x src %x dst %x sa %x len %x\n"
2120		, tag
2121		, re, ix
2122		, re->re_desc.d_csr
2123		, re->re_desc.d_src
2124		, re->re_desc.d_dst
2125		, re->re_desc.d_sa
2126		, re->re_desc.d_len
2127	);
2128	if (re->re_src.nsegs > 1) {
2129		ix = (re->re_desc.d_src - sc->sc_spalloc.dma_paddr) /
2130			sizeof(struct safe_pdesc);
2131		for (nsegs = re->re_src.nsegs; nsegs; nsegs--) {
2132			printf(" spd[%u] %p: %p size %u flags %x"
2133				, ix, &sc->sc_spring[ix]
2134				, (caddr_t) sc->sc_spring[ix].pd_addr
2135				, sc->sc_spring[ix].pd_size
2136				, sc->sc_spring[ix].pd_flags
2137			);
2138			if (sc->sc_spring[ix].pd_size == 0)
2139				printf(" (zero!)");
2140			printf("\n");
2141			if (++ix == SAFE_TOTAL_SPART)
2142				ix = 0;
2143		}
2144	}
2145	if (re->re_dst.nsegs > 1) {
2146		ix = (re->re_desc.d_dst - sc->sc_dpalloc.dma_paddr) /
2147			sizeof(struct safe_pdesc);
2148		for (nsegs = re->re_dst.nsegs; nsegs; nsegs--) {
2149			printf(" dpd[%u] %p: %p flags %x\n"
2150				, ix, &sc->sc_dpring[ix]
2151				, (caddr_t) sc->sc_dpring[ix].pd_addr
2152				, sc->sc_dpring[ix].pd_flags
2153			);
2154			if (++ix == SAFE_TOTAL_DPART)
2155				ix = 0;
2156		}
2157	}
2158	printf("sa: cmd0 %08x cmd1 %08x staterec %x\n",
2159		re->re_sa.sa_cmd0, re->re_sa.sa_cmd1, re->re_sa.sa_staterec);
2160	printf("sa: key %x %x %x %x %x %x %x %x\n"
2161		, re->re_sa.sa_key[0]
2162		, re->re_sa.sa_key[1]
2163		, re->re_sa.sa_key[2]
2164		, re->re_sa.sa_key[3]
2165		, re->re_sa.sa_key[4]
2166		, re->re_sa.sa_key[5]
2167		, re->re_sa.sa_key[6]
2168		, re->re_sa.sa_key[7]
2169	);
2170	printf("sa: indigest %x %x %x %x %x\n"
2171		, re->re_sa.sa_indigest[0]
2172		, re->re_sa.sa_indigest[1]
2173		, re->re_sa.sa_indigest[2]
2174		, re->re_sa.sa_indigest[3]
2175		, re->re_sa.sa_indigest[4]
2176	);
2177	printf("sa: outdigest %x %x %x %x %x\n"
2178		, re->re_sa.sa_outdigest[0]
2179		, re->re_sa.sa_outdigest[1]
2180		, re->re_sa.sa_outdigest[2]
2181		, re->re_sa.sa_outdigest[3]
2182		, re->re_sa.sa_outdigest[4]
2183	);
2184	printf("sr: iv %x %x %x %x\n"
2185		, re->re_sastate.sa_saved_iv[0]
2186		, re->re_sastate.sa_saved_iv[1]
2187		, re->re_sastate.sa_saved_iv[2]
2188		, re->re_sastate.sa_saved_iv[3]
2189	);
2190	printf("sr: hashbc %u indigest %x %x %x %x %x\n"
2191		, re->re_sastate.sa_saved_hashbc
2192		, re->re_sastate.sa_saved_indigest[0]
2193		, re->re_sastate.sa_saved_indigest[1]
2194		, re->re_sastate.sa_saved_indigest[2]
2195		, re->re_sastate.sa_saved_indigest[3]
2196		, re->re_sastate.sa_saved_indigest[4]
2197	);
2198}
2199
2200static void
2201safe_dump_ring(struct safe_softc *sc, const char *tag)
2202{
2203	mtx_lock(&sc->sc_ringmtx);
2204	printf("\nSafeNet Ring State:\n");
2205	safe_dump_intrstate(sc, tag);
2206	safe_dump_dmastatus(sc, tag);
2207	safe_dump_ringstate(sc, tag);
2208	if (sc->sc_nqchip) {
2209		struct safe_ringentry *re = sc->sc_back;
2210		do {
2211			safe_dump_request(sc, tag, re);
2212			if (++re == sc->sc_ringtop)
2213				re = sc->sc_ring;
2214		} while (re != sc->sc_front);
2215	}
2216	mtx_unlock(&sc->sc_ringmtx);
2217}
2218
2219static int
2220sysctl_hw_safe_dump(SYSCTL_HANDLER_ARGS)
2221{
2222	char dmode[64];
2223	int error;
2224
2225	strncpy(dmode, "", sizeof(dmode) - 1);
2226	dmode[sizeof(dmode) - 1] = '\0';
2227	error = sysctl_handle_string(oidp, &dmode[0], sizeof(dmode), req);
2228
2229	if (error == 0 && req->newptr != NULL) {
2230		struct safe_softc *sc = safec;
2231
2232		if (!sc)
2233			return EINVAL;
2234		if (strncmp(dmode, "dma", 3) == 0)
2235			safe_dump_dmastatus(sc, "safe0");
2236		else if (strncmp(dmode, "int", 3) == 0)
2237			safe_dump_intrstate(sc, "safe0");
2238		else if (strncmp(dmode, "ring", 4) == 0)
2239			safe_dump_ring(sc, "safe0");
2240		else
2241			return EINVAL;
2242	}
2243	return error;
2244}
2245SYSCTL_PROC(_hw_safe, OID_AUTO, dump, CTLTYPE_STRING | CTLFLAG_RW,
2246	0, 0, sysctl_hw_safe_dump, "A", "Dump driver state");
2247#endif /* SAFE_DEBUG */
2248