1/*-
2 * Copyright (c) 1997, 1998
3 *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 *    must display the following acknowledgement:
15 *	This product includes software developed by Bill Paul.
16 * 4. Neither the name of the author nor the names of any co-contributors
17 *    may be used to endorse or promote products derived from this software
18 *    without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30 * THE POSSIBILITY OF SUCH DAMAGE.
31 */
32
33#include <sys/cdefs.h>
34__FBSDID("$FreeBSD: stable/11/sys/dev/rl/if_rl.c 331643 2018-03-27 18:52:27Z dim $");
35
36/*
37 * RealTek 8129/8139 PCI NIC driver
38 *
39 * Supports several extremely cheap PCI 10/100 adapters based on
40 * the RealTek chipset. Datasheets can be obtained from
41 * www.realtek.com.tw.
42 *
43 * Written by Bill Paul <wpaul@ctr.columbia.edu>
44 * Electrical Engineering Department
45 * Columbia University, New York City
46 */
47/*
48 * The RealTek 8139 PCI NIC redefines the meaning of 'low end.' This is
49 * probably the worst PCI ethernet controller ever made, with the possible
50 * exception of the FEAST chip made by SMC. The 8139 supports bus-master
51 * DMA, but it has a terrible interface that nullifies any performance
52 * gains that bus-master DMA usually offers.
53 *
54 * For transmission, the chip offers a series of four TX descriptor
55 * registers. Each transmit frame must be in a contiguous buffer, aligned
56 * on a longword (32-bit) boundary. This means we almost always have to
57 * do mbuf copies in order to transmit a frame, except in the unlikely
58 * case where a) the packet fits into a single mbuf, and b) the packet
59 * is 32-bit aligned within the mbuf's data area. The presence of only
60 * four descriptor registers means that we can never have more than four
61 * packets queued for transmission at any one time.
62 *
63 * Reception is not much better. The driver has to allocate a single large
64 * buffer area (up to 64K in size) into which the chip will DMA received
65 * frames. Because we don't know where within this region received packets
66 * will begin or end, we have no choice but to copy data from the buffer
67 * area into mbufs in order to pass the packets up to the higher protocol
68 * levels.
69 *
70 * It's impossible given this rotten design to really achieve decent
71 * performance at 100Mbps, unless you happen to have a 400Mhz PII or
72 * some equally overmuscled CPU to drive it.
73 *
74 * On the bright side, the 8139 does have a built-in PHY, although
75 * rather than using an MDIO serial interface like most other NICs, the
76 * PHY registers are directly accessible through the 8139's register
77 * space. The 8139 supports autonegotiation, as well as a 64-bit multicast
78 * filter.
79 *
80 * The 8129 chip is an older version of the 8139 that uses an external PHY
81 * chip. The 8129 has a serial MDIO interface for accessing the MII where
82 * the 8139 lets you directly access the on-board PHY registers. We need
83 * to select which interface to use depending on the chip type.
84 */
85
86#ifdef HAVE_KERNEL_OPTION_HEADERS
87#include "opt_device_polling.h"
88#endif
89
90#include <sys/param.h>
91#include <sys/endian.h>
92#include <sys/systm.h>
93#include <sys/sockio.h>
94#include <sys/mbuf.h>
95#include <sys/malloc.h>
96#include <sys/kernel.h>
97#include <sys/module.h>
98#include <sys/socket.h>
99#include <sys/sysctl.h>
100
101#include <net/if.h>
102#include <net/if_var.h>
103#include <net/if_arp.h>
104#include <net/ethernet.h>
105#include <net/if_dl.h>
106#include <net/if_media.h>
107#include <net/if_types.h>
108
109#include <net/bpf.h>
110
111#include <machine/bus.h>
112#include <machine/resource.h>
113#include <sys/bus.h>
114#include <sys/rman.h>
115
116#include <dev/mii/mii.h>
117#include <dev/mii/mii_bitbang.h>
118#include <dev/mii/miivar.h>
119
120#include <dev/pci/pcireg.h>
121#include <dev/pci/pcivar.h>
122
123MODULE_DEPEND(rl, pci, 1, 1, 1);
124MODULE_DEPEND(rl, ether, 1, 1, 1);
125MODULE_DEPEND(rl, miibus, 1, 1, 1);
126
127/* "device miibus" required.  See GENERIC if you get errors here. */
128#include "miibus_if.h"
129
130#include <dev/rl/if_rlreg.h>
131
132/*
133 * Various supported device vendors/types and their names.
134 */
135static const struct rl_type rl_devs[] = {
136	{ RT_VENDORID, RT_DEVICEID_8129, RL_8129,
137		"RealTek 8129 10/100BaseTX" },
138	{ RT_VENDORID, RT_DEVICEID_8139, RL_8139,
139		"RealTek 8139 10/100BaseTX" },
140	{ RT_VENDORID, RT_DEVICEID_8139D, RL_8139,
141		"RealTek 8139 10/100BaseTX" },
142	{ RT_VENDORID, RT_DEVICEID_8138, RL_8139,
143		"RealTek 8139 10/100BaseTX CardBus" },
144	{ RT_VENDORID, RT_DEVICEID_8100, RL_8139,
145		"RealTek 8100 10/100BaseTX" },
146	{ ACCTON_VENDORID, ACCTON_DEVICEID_5030, RL_8139,
147		"Accton MPX 5030/5038 10/100BaseTX" },
148	{ DELTA_VENDORID, DELTA_DEVICEID_8139, RL_8139,
149		"Delta Electronics 8139 10/100BaseTX" },
150	{ ADDTRON_VENDORID, ADDTRON_DEVICEID_8139, RL_8139,
151		"Addtron Technology 8139 10/100BaseTX" },
152	{ DLINK_VENDORID, DLINK_DEVICEID_520TX_REVC1, RL_8139,
153		"D-Link DFE-520TX (rev. C1) 10/100BaseTX" },
154	{ DLINK_VENDORID, DLINK_DEVICEID_530TXPLUS, RL_8139,
155		"D-Link DFE-530TX+ 10/100BaseTX" },
156	{ DLINK_VENDORID, DLINK_DEVICEID_690TXD, RL_8139,
157		"D-Link DFE-690TXD 10/100BaseTX" },
158	{ NORTEL_VENDORID, ACCTON_DEVICEID_5030, RL_8139,
159		"Nortel Networks 10/100BaseTX" },
160	{ COREGA_VENDORID, COREGA_DEVICEID_FETHERCBTXD, RL_8139,
161		"Corega FEther CB-TXD" },
162	{ COREGA_VENDORID, COREGA_DEVICEID_FETHERIICBTXD, RL_8139,
163		"Corega FEtherII CB-TXD" },
164	{ PEPPERCON_VENDORID, PEPPERCON_DEVICEID_ROLF, RL_8139,
165		"Peppercon AG ROL-F" },
166	{ PLANEX_VENDORID, PLANEX_DEVICEID_FNW3603TX, RL_8139,
167		"Planex FNW-3603-TX" },
168	{ PLANEX_VENDORID, PLANEX_DEVICEID_FNW3800TX, RL_8139,
169		"Planex FNW-3800-TX" },
170	{ CP_VENDORID, RT_DEVICEID_8139, RL_8139,
171		"Compaq HNE-300" },
172	{ LEVEL1_VENDORID, LEVEL1_DEVICEID_FPC0106TX, RL_8139,
173		"LevelOne FPC-0106TX" },
174	{ EDIMAX_VENDORID, EDIMAX_DEVICEID_EP4103DL, RL_8139,
175		"Edimax EP-4103DL CardBus" }
176};
177
178static int rl_attach(device_t);
179static int rl_detach(device_t);
180static void rl_dmamap_cb(void *, bus_dma_segment_t *, int, int);
181static int rl_dma_alloc(struct rl_softc *);
182static void rl_dma_free(struct rl_softc *);
183static void rl_eeprom_putbyte(struct rl_softc *, int);
184static void rl_eeprom_getword(struct rl_softc *, int, uint16_t *);
185static int rl_encap(struct rl_softc *, struct mbuf **);
186static int rl_list_tx_init(struct rl_softc *);
187static int rl_list_rx_init(struct rl_softc *);
188static int rl_ifmedia_upd(struct ifnet *);
189static void rl_ifmedia_sts(struct ifnet *, struct ifmediareq *);
190static int rl_ioctl(struct ifnet *, u_long, caddr_t);
191static void rl_intr(void *);
192static void rl_init(void *);
193static void rl_init_locked(struct rl_softc *sc);
194static int rl_miibus_readreg(device_t, int, int);
195static void rl_miibus_statchg(device_t);
196static int rl_miibus_writereg(device_t, int, int, int);
197#ifdef DEVICE_POLLING
198static int rl_poll(struct ifnet *ifp, enum poll_cmd cmd, int count);
199static int rl_poll_locked(struct ifnet *ifp, enum poll_cmd cmd, int count);
200#endif
201static int rl_probe(device_t);
202static void rl_read_eeprom(struct rl_softc *, uint8_t *, int, int, int);
203static void rl_reset(struct rl_softc *);
204static int rl_resume(device_t);
205static int rl_rxeof(struct rl_softc *);
206static void rl_rxfilter(struct rl_softc *);
207static int rl_shutdown(device_t);
208static void rl_start(struct ifnet *);
209static void rl_start_locked(struct ifnet *);
210static void rl_stop(struct rl_softc *);
211static int rl_suspend(device_t);
212static void rl_tick(void *);
213static void rl_txeof(struct rl_softc *);
214static void rl_watchdog(struct rl_softc *);
215static void rl_setwol(struct rl_softc *);
216static void rl_clrwol(struct rl_softc *);
217
218/*
219 * MII bit-bang glue
220 */
221static uint32_t rl_mii_bitbang_read(device_t);
222static void rl_mii_bitbang_write(device_t, uint32_t);
223
224static const struct mii_bitbang_ops rl_mii_bitbang_ops = {
225	rl_mii_bitbang_read,
226	rl_mii_bitbang_write,
227	{
228		RL_MII_DATAOUT,	/* MII_BIT_MDO */
229		RL_MII_DATAIN,	/* MII_BIT_MDI */
230		RL_MII_CLK,	/* MII_BIT_MDC */
231		RL_MII_DIR,	/* MII_BIT_DIR_HOST_PHY */
232		0,		/* MII_BIT_DIR_PHY_HOST */
233	}
234};
235
236static device_method_t rl_methods[] = {
237	/* Device interface */
238	DEVMETHOD(device_probe,		rl_probe),
239	DEVMETHOD(device_attach,	rl_attach),
240	DEVMETHOD(device_detach,	rl_detach),
241	DEVMETHOD(device_suspend,	rl_suspend),
242	DEVMETHOD(device_resume,	rl_resume),
243	DEVMETHOD(device_shutdown,	rl_shutdown),
244
245	/* MII interface */
246	DEVMETHOD(miibus_readreg,	rl_miibus_readreg),
247	DEVMETHOD(miibus_writereg,	rl_miibus_writereg),
248	DEVMETHOD(miibus_statchg,	rl_miibus_statchg),
249
250	DEVMETHOD_END
251};
252
253static driver_t rl_driver = {
254	"rl",
255	rl_methods,
256	sizeof(struct rl_softc)
257};
258
259static devclass_t rl_devclass;
260
261DRIVER_MODULE(rl, pci, rl_driver, rl_devclass, 0, 0);
262DRIVER_MODULE(rl, cardbus, rl_driver, rl_devclass, 0, 0);
263DRIVER_MODULE(miibus, rl, miibus_driver, miibus_devclass, 0, 0);
264
265#define EE_SET(x)					\
266	CSR_WRITE_1(sc, RL_EECMD,			\
267		CSR_READ_1(sc, RL_EECMD) | x)
268
269#define EE_CLR(x)					\
270	CSR_WRITE_1(sc, RL_EECMD,			\
271		CSR_READ_1(sc, RL_EECMD) & ~x)
272
273/*
274 * Send a read command and address to the EEPROM, check for ACK.
275 */
276static void
277rl_eeprom_putbyte(struct rl_softc *sc, int addr)
278{
279	int			d, i;
280
281	d = addr | sc->rl_eecmd_read;
282
283	/*
284	 * Feed in each bit and strobe the clock.
285	 */
286	for (i = 0x400; i; i >>= 1) {
287		if (d & i) {
288			EE_SET(RL_EE_DATAIN);
289		} else {
290			EE_CLR(RL_EE_DATAIN);
291		}
292		DELAY(100);
293		EE_SET(RL_EE_CLK);
294		DELAY(150);
295		EE_CLR(RL_EE_CLK);
296		DELAY(100);
297	}
298}
299
300/*
301 * Read a word of data stored in the EEPROM at address 'addr.'
302 */
303static void
304rl_eeprom_getword(struct rl_softc *sc, int addr, uint16_t *dest)
305{
306	int			i;
307	uint16_t		word = 0;
308
309	/* Enter EEPROM access mode. */
310	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_PROGRAM|RL_EE_SEL);
311
312	/*
313	 * Send address of word we want to read.
314	 */
315	rl_eeprom_putbyte(sc, addr);
316
317	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_PROGRAM|RL_EE_SEL);
318
319	/*
320	 * Start reading bits from EEPROM.
321	 */
322	for (i = 0x8000; i; i >>= 1) {
323		EE_SET(RL_EE_CLK);
324		DELAY(100);
325		if (CSR_READ_1(sc, RL_EECMD) & RL_EE_DATAOUT)
326			word |= i;
327		EE_CLR(RL_EE_CLK);
328		DELAY(100);
329	}
330
331	/* Turn off EEPROM access mode. */
332	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);
333
334	*dest = word;
335}
336
337/*
338 * Read a sequence of words from the EEPROM.
339 */
340static void
341rl_read_eeprom(struct rl_softc *sc, uint8_t *dest, int off, int cnt, int swap)
342{
343	int			i;
344	uint16_t		word = 0, *ptr;
345
346	for (i = 0; i < cnt; i++) {
347		rl_eeprom_getword(sc, off + i, &word);
348		ptr = (uint16_t *)(dest + (i * 2));
349		if (swap)
350			*ptr = ntohs(word);
351		else
352			*ptr = word;
353	}
354}
355
356/*
357 * Read the MII serial port for the MII bit-bang module.
358 */
359static uint32_t
360rl_mii_bitbang_read(device_t dev)
361{
362	struct rl_softc *sc;
363	uint32_t val;
364
365	sc = device_get_softc(dev);
366
367	val = CSR_READ_1(sc, RL_MII);
368	CSR_BARRIER(sc, RL_MII, 1,
369	    BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
370
371	return (val);
372}
373
374/*
375 * Write the MII serial port for the MII bit-bang module.
376 */
377static void
378rl_mii_bitbang_write(device_t dev, uint32_t val)
379{
380	struct rl_softc *sc;
381
382	sc = device_get_softc(dev);
383
384	CSR_WRITE_1(sc, RL_MII, val);
385	CSR_BARRIER(sc, RL_MII, 1,
386	    BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
387}
388
389static int
390rl_miibus_readreg(device_t dev, int phy, int reg)
391{
392	struct rl_softc		*sc;
393	uint16_t		rl8139_reg;
394
395	sc = device_get_softc(dev);
396
397	if (sc->rl_type == RL_8139) {
398		switch (reg) {
399		case MII_BMCR:
400			rl8139_reg = RL_BMCR;
401			break;
402		case MII_BMSR:
403			rl8139_reg = RL_BMSR;
404			break;
405		case MII_ANAR:
406			rl8139_reg = RL_ANAR;
407			break;
408		case MII_ANER:
409			rl8139_reg = RL_ANER;
410			break;
411		case MII_ANLPAR:
412			rl8139_reg = RL_LPAR;
413			break;
414		case MII_PHYIDR1:
415		case MII_PHYIDR2:
416			return (0);
417		/*
418		 * Allow the rlphy driver to read the media status
419		 * register. If we have a link partner which does not
420		 * support NWAY, this is the register which will tell
421		 * us the results of parallel detection.
422		 */
423		case RL_MEDIASTAT:
424			return (CSR_READ_1(sc, RL_MEDIASTAT));
425		default:
426			device_printf(sc->rl_dev, "bad phy register\n");
427			return (0);
428		}
429		return (CSR_READ_2(sc, rl8139_reg));
430	}
431
432	return (mii_bitbang_readreg(dev, &rl_mii_bitbang_ops, phy, reg));
433}
434
435static int
436rl_miibus_writereg(device_t dev, int phy, int reg, int data)
437{
438	struct rl_softc		*sc;
439	uint16_t		rl8139_reg;
440
441	sc = device_get_softc(dev);
442
443	if (sc->rl_type == RL_8139) {
444		switch (reg) {
445		case MII_BMCR:
446			rl8139_reg = RL_BMCR;
447			break;
448		case MII_BMSR:
449			rl8139_reg = RL_BMSR;
450			break;
451		case MII_ANAR:
452			rl8139_reg = RL_ANAR;
453			break;
454		case MII_ANER:
455			rl8139_reg = RL_ANER;
456			break;
457		case MII_ANLPAR:
458			rl8139_reg = RL_LPAR;
459			break;
460		case MII_PHYIDR1:
461		case MII_PHYIDR2:
462			return (0);
463			break;
464		default:
465			device_printf(sc->rl_dev, "bad phy register\n");
466			return (0);
467		}
468		CSR_WRITE_2(sc, rl8139_reg, data);
469		return (0);
470	}
471
472	mii_bitbang_writereg(dev, &rl_mii_bitbang_ops, phy, reg, data);
473
474	return (0);
475}
476
477static void
478rl_miibus_statchg(device_t dev)
479{
480	struct rl_softc		*sc;
481	struct ifnet		*ifp;
482	struct mii_data		*mii;
483
484	sc = device_get_softc(dev);
485	mii = device_get_softc(sc->rl_miibus);
486	ifp = sc->rl_ifp;
487	if (mii == NULL || ifp == NULL ||
488	    (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
489		return;
490
491	sc->rl_flags &= ~RL_FLAG_LINK;
492	if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
493	    (IFM_ACTIVE | IFM_AVALID)) {
494		switch (IFM_SUBTYPE(mii->mii_media_active)) {
495		case IFM_10_T:
496		case IFM_100_TX:
497			sc->rl_flags |= RL_FLAG_LINK;
498			break;
499		default:
500			break;
501		}
502	}
503	/*
504	 * RealTek controllers do not provide any interface to
505	 * Tx/Rx MACs for resolved speed, duplex and flow-control
506	 * parameters.
507	 */
508}
509
510/*
511 * Program the 64-bit multicast hash filter.
512 */
513static void
514rl_rxfilter(struct rl_softc *sc)
515{
516	struct ifnet		*ifp = sc->rl_ifp;
517	int			h = 0;
518	uint32_t		hashes[2] = { 0, 0 };
519	struct ifmultiaddr	*ifma;
520	uint32_t		rxfilt;
521
522	RL_LOCK_ASSERT(sc);
523
524	rxfilt = CSR_READ_4(sc, RL_RXCFG);
525	rxfilt &= ~(RL_RXCFG_RX_ALLPHYS | RL_RXCFG_RX_BROAD |
526	    RL_RXCFG_RX_MULTI);
527	/* Always accept frames destined for this host. */
528	rxfilt |= RL_RXCFG_RX_INDIV;
529	/* Set capture broadcast bit to capture broadcast frames. */
530	if (ifp->if_flags & IFF_BROADCAST)
531		rxfilt |= RL_RXCFG_RX_BROAD;
532	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
533		rxfilt |= RL_RXCFG_RX_MULTI;
534		if (ifp->if_flags & IFF_PROMISC)
535			rxfilt |= RL_RXCFG_RX_ALLPHYS;
536		hashes[0] = 0xFFFFFFFF;
537		hashes[1] = 0xFFFFFFFF;
538	} else {
539		/* Now program new ones. */
540		if_maddr_rlock(ifp);
541		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
542			if (ifma->ifma_addr->sa_family != AF_LINK)
543				continue;
544			h = ether_crc32_be(LLADDR((struct sockaddr_dl *)
545			    ifma->ifma_addr), ETHER_ADDR_LEN) >> 26;
546			if (h < 32)
547				hashes[0] |= (1 << h);
548			else
549				hashes[1] |= (1 << (h - 32));
550		}
551		if_maddr_runlock(ifp);
552		if (hashes[0] != 0 || hashes[1] != 0)
553			rxfilt |= RL_RXCFG_RX_MULTI;
554	}
555
556	CSR_WRITE_4(sc, RL_MAR0, hashes[0]);
557	CSR_WRITE_4(sc, RL_MAR4, hashes[1]);
558	CSR_WRITE_4(sc, RL_RXCFG, rxfilt);
559}
560
561static void
562rl_reset(struct rl_softc *sc)
563{
564	int			i;
565
566	RL_LOCK_ASSERT(sc);
567
568	CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_RESET);
569
570	for (i = 0; i < RL_TIMEOUT; i++) {
571		DELAY(10);
572		if (!(CSR_READ_1(sc, RL_COMMAND) & RL_CMD_RESET))
573			break;
574	}
575	if (i == RL_TIMEOUT)
576		device_printf(sc->rl_dev, "reset never completed!\n");
577}
578
579/*
580 * Probe for a RealTek 8129/8139 chip. Check the PCI vendor and device
581 * IDs against our list and return a device name if we find a match.
582 */
583static int
584rl_probe(device_t dev)
585{
586	const struct rl_type	*t;
587	uint16_t		devid, revid, vendor;
588	int			i;
589
590	vendor = pci_get_vendor(dev);
591	devid = pci_get_device(dev);
592	revid = pci_get_revid(dev);
593
594	if (vendor == RT_VENDORID && devid == RT_DEVICEID_8139) {
595		if (revid == 0x20) {
596			/* 8139C+, let re(4) take care of this device. */
597			return (ENXIO);
598		}
599	}
600	t = rl_devs;
601	for (i = 0; i < nitems(rl_devs); i++, t++) {
602		if (vendor == t->rl_vid && devid == t->rl_did) {
603			device_set_desc(dev, t->rl_name);
604			return (BUS_PROBE_DEFAULT);
605		}
606	}
607
608	return (ENXIO);
609}
610
611struct rl_dmamap_arg {
612	bus_addr_t	rl_busaddr;
613};
614
615static void
616rl_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
617{
618	struct rl_dmamap_arg	*ctx;
619
620	if (error != 0)
621		return;
622
623	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
624
625        ctx = (struct rl_dmamap_arg *)arg;
626        ctx->rl_busaddr = segs[0].ds_addr;
627}
628
629/*
630 * Attach the interface. Allocate softc structures, do ifmedia
631 * setup and ethernet/BPF attach.
632 */
633static int
634rl_attach(device_t dev)
635{
636	uint8_t			eaddr[ETHER_ADDR_LEN];
637	uint16_t		as[3];
638	struct ifnet		*ifp;
639	struct rl_softc		*sc;
640	const struct rl_type	*t;
641	struct sysctl_ctx_list	*ctx;
642	struct sysctl_oid_list	*children;
643	int			error = 0, hwrev, i, phy, pmc, rid;
644	int			prefer_iomap, unit;
645	uint16_t		rl_did = 0;
646	char			tn[32];
647
648	sc = device_get_softc(dev);
649	unit = device_get_unit(dev);
650	sc->rl_dev = dev;
651
652	sc->rl_twister_enable = 0;
653	snprintf(tn, sizeof(tn), "dev.rl.%d.twister_enable", unit);
654	TUNABLE_INT_FETCH(tn, &sc->rl_twister_enable);
655	ctx = device_get_sysctl_ctx(sc->rl_dev);
656	children = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->rl_dev));
657	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "twister_enable", CTLFLAG_RD,
658	   &sc->rl_twister_enable, 0, "");
659
660	mtx_init(&sc->rl_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
661	    MTX_DEF);
662	callout_init_mtx(&sc->rl_stat_callout, &sc->rl_mtx, 0);
663
664	pci_enable_busmaster(dev);
665
666
667	/*
668	 * Map control/status registers.
669	 * Default to using PIO access for this driver. On SMP systems,
670	 * there appear to be problems with memory mapped mode: it looks
671	 * like doing too many memory mapped access back to back in rapid
672	 * succession can hang the bus. I'm inclined to blame this on
673	 * crummy design/construction on the part of RealTek. Memory
674	 * mapped mode does appear to work on uniprocessor systems though.
675	 */
676	prefer_iomap = 1;
677	snprintf(tn, sizeof(tn), "dev.rl.%d.prefer_iomap", unit);
678	TUNABLE_INT_FETCH(tn, &prefer_iomap);
679	if (prefer_iomap) {
680		sc->rl_res_id = PCIR_BAR(0);
681		sc->rl_res_type = SYS_RES_IOPORT;
682		sc->rl_res = bus_alloc_resource_any(dev, sc->rl_res_type,
683		    &sc->rl_res_id, RF_ACTIVE);
684	}
685	if (prefer_iomap == 0 || sc->rl_res == NULL) {
686		sc->rl_res_id = PCIR_BAR(1);
687		sc->rl_res_type = SYS_RES_MEMORY;
688		sc->rl_res = bus_alloc_resource_any(dev, sc->rl_res_type,
689		    &sc->rl_res_id, RF_ACTIVE);
690	}
691	if (sc->rl_res == NULL) {
692		device_printf(dev, "couldn't map ports/memory\n");
693		error = ENXIO;
694		goto fail;
695	}
696
697#ifdef notdef
698	/*
699	 * Detect the Realtek 8139B. For some reason, this chip is very
700	 * unstable when left to autoselect the media
701	 * The best workaround is to set the device to the required
702	 * media type or to set it to the 10 Meg speed.
703	 */
704	if ((rman_get_end(sc->rl_res) - rman_get_start(sc->rl_res)) == 0xFF)
705		device_printf(dev,
706"Realtek 8139B detected. Warning, this may be unstable in autoselect mode\n");
707#endif
708
709	sc->rl_btag = rman_get_bustag(sc->rl_res);
710	sc->rl_bhandle = rman_get_bushandle(sc->rl_res);
711
712	/* Allocate interrupt */
713	rid = 0;
714	sc->rl_irq[0] = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
715	    RF_SHAREABLE | RF_ACTIVE);
716
717	if (sc->rl_irq[0] == NULL) {
718		device_printf(dev, "couldn't map interrupt\n");
719		error = ENXIO;
720		goto fail;
721	}
722
723	sc->rl_cfg0 = RL_8139_CFG0;
724	sc->rl_cfg1 = RL_8139_CFG1;
725	sc->rl_cfg2 = 0;
726	sc->rl_cfg3 = RL_8139_CFG3;
727	sc->rl_cfg4 = RL_8139_CFG4;
728	sc->rl_cfg5 = RL_8139_CFG5;
729
730	/*
731	 * Reset the adapter. Only take the lock here as it's needed in
732	 * order to call rl_reset().
733	 */
734	RL_LOCK(sc);
735	rl_reset(sc);
736	RL_UNLOCK(sc);
737
738	sc->rl_eecmd_read = RL_EECMD_READ_6BIT;
739	rl_read_eeprom(sc, (uint8_t *)&rl_did, 0, 1, 0);
740	if (rl_did != 0x8129)
741		sc->rl_eecmd_read = RL_EECMD_READ_8BIT;
742
743	/*
744	 * Get station address from the EEPROM.
745	 */
746	rl_read_eeprom(sc, (uint8_t *)as, RL_EE_EADDR, 3, 0);
747	for (i = 0; i < 3; i++) {
748		eaddr[(i * 2) + 0] = as[i] & 0xff;
749		eaddr[(i * 2) + 1] = as[i] >> 8;
750	}
751
752	/*
753	 * Now read the exact device type from the EEPROM to find
754	 * out if it's an 8129 or 8139.
755	 */
756	rl_read_eeprom(sc, (uint8_t *)&rl_did, RL_EE_PCI_DID, 1, 0);
757
758	t = rl_devs;
759	sc->rl_type = 0;
760	while(t->rl_name != NULL) {
761		if (rl_did == t->rl_did) {
762			sc->rl_type = t->rl_basetype;
763			break;
764		}
765		t++;
766	}
767
768	if (sc->rl_type == 0) {
769		device_printf(dev, "unknown device ID: %x assuming 8139\n",
770		    rl_did);
771		sc->rl_type = RL_8139;
772		/*
773		 * Read RL_IDR register to get ethernet address as accessing
774		 * EEPROM may not extract correct address.
775		 */
776		for (i = 0; i < ETHER_ADDR_LEN; i++)
777			eaddr[i] = CSR_READ_1(sc, RL_IDR0 + i);
778	}
779
780	if ((error = rl_dma_alloc(sc)) != 0)
781		goto fail;
782
783	ifp = sc->rl_ifp = if_alloc(IFT_ETHER);
784	if (ifp == NULL) {
785		device_printf(dev, "can not if_alloc()\n");
786		error = ENOSPC;
787		goto fail;
788	}
789
790#define	RL_PHYAD_INTERNAL	0
791
792	/* Do MII setup */
793	phy = MII_PHY_ANY;
794	if (sc->rl_type == RL_8139)
795		phy = RL_PHYAD_INTERNAL;
796	error = mii_attach(dev, &sc->rl_miibus, ifp, rl_ifmedia_upd,
797	    rl_ifmedia_sts, BMSR_DEFCAPMASK, phy, MII_OFFSET_ANY, 0);
798	if (error != 0) {
799		device_printf(dev, "attaching PHYs failed\n");
800		goto fail;
801	}
802
803	ifp->if_softc = sc;
804	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
805	ifp->if_mtu = ETHERMTU;
806	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
807	ifp->if_ioctl = rl_ioctl;
808	ifp->if_start = rl_start;
809	ifp->if_init = rl_init;
810	ifp->if_capabilities = IFCAP_VLAN_MTU;
811	/* Check WOL for RTL8139B or newer controllers. */
812	if (sc->rl_type == RL_8139 &&
813	    pci_find_cap(sc->rl_dev, PCIY_PMG, &pmc) == 0) {
814		hwrev = CSR_READ_4(sc, RL_TXCFG) & RL_TXCFG_HWREV;
815		switch (hwrev) {
816		case RL_HWREV_8139B:
817		case RL_HWREV_8130:
818		case RL_HWREV_8139C:
819		case RL_HWREV_8139D:
820		case RL_HWREV_8101:
821		case RL_HWREV_8100:
822			ifp->if_capabilities |= IFCAP_WOL;
823			/* Disable WOL. */
824			rl_clrwol(sc);
825			break;
826		default:
827			break;
828		}
829	}
830	ifp->if_capenable = ifp->if_capabilities;
831	ifp->if_capenable &= ~(IFCAP_WOL_UCAST | IFCAP_WOL_MCAST);
832#ifdef DEVICE_POLLING
833	ifp->if_capabilities |= IFCAP_POLLING;
834#endif
835	IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen);
836	ifp->if_snd.ifq_drv_maxlen = ifqmaxlen;
837	IFQ_SET_READY(&ifp->if_snd);
838
839	/*
840	 * Call MI attach routine.
841	 */
842	ether_ifattach(ifp, eaddr);
843
844	/* Hook interrupt last to avoid having to lock softc */
845	error = bus_setup_intr(dev, sc->rl_irq[0], INTR_TYPE_NET | INTR_MPSAFE,
846	    NULL, rl_intr, sc, &sc->rl_intrhand[0]);
847	if (error) {
848		device_printf(sc->rl_dev, "couldn't set up irq\n");
849		ether_ifdetach(ifp);
850	}
851
852fail:
853	if (error)
854		rl_detach(dev);
855
856	return (error);
857}
858
859/*
860 * Shutdown hardware and free up resources. This can be called any
861 * time after the mutex has been initialized. It is called in both
862 * the error case in attach and the normal detach case so it needs
863 * to be careful about only freeing resources that have actually been
864 * allocated.
865 */
866static int
867rl_detach(device_t dev)
868{
869	struct rl_softc		*sc;
870	struct ifnet		*ifp;
871
872	sc = device_get_softc(dev);
873	ifp = sc->rl_ifp;
874
875	KASSERT(mtx_initialized(&sc->rl_mtx), ("rl mutex not initialized"));
876
877#ifdef DEVICE_POLLING
878	if (ifp->if_capenable & IFCAP_POLLING)
879		ether_poll_deregister(ifp);
880#endif
881	/* These should only be active if attach succeeded */
882	if (device_is_attached(dev)) {
883		RL_LOCK(sc);
884		rl_stop(sc);
885		RL_UNLOCK(sc);
886		callout_drain(&sc->rl_stat_callout);
887		ether_ifdetach(ifp);
888	}
889#if 0
890	sc->suspended = 1;
891#endif
892	if (sc->rl_miibus)
893		device_delete_child(dev, sc->rl_miibus);
894	bus_generic_detach(dev);
895
896	if (sc->rl_intrhand[0])
897		bus_teardown_intr(dev, sc->rl_irq[0], sc->rl_intrhand[0]);
898	if (sc->rl_irq[0])
899		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->rl_irq[0]);
900	if (sc->rl_res)
901		bus_release_resource(dev, sc->rl_res_type, sc->rl_res_id,
902		    sc->rl_res);
903
904	if (ifp)
905		if_free(ifp);
906
907	rl_dma_free(sc);
908
909	mtx_destroy(&sc->rl_mtx);
910
911	return (0);
912}
913
914static int
915rl_dma_alloc(struct rl_softc *sc)
916{
917	struct rl_dmamap_arg	ctx;
918	int			error, i;
919
920	/*
921	 * Allocate the parent bus DMA tag appropriate for PCI.
922	 */
923	error = bus_dma_tag_create(bus_get_dma_tag(sc->rl_dev),	/* parent */
924	    1, 0,			/* alignment, boundary */
925	    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
926	    BUS_SPACE_MAXADDR,		/* highaddr */
927	    NULL, NULL,			/* filter, filterarg */
928	    BUS_SPACE_MAXSIZE_32BIT, 0,	/* maxsize, nsegments */
929	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
930	    0,				/* flags */
931	    NULL, NULL,			/* lockfunc, lockarg */
932	    &sc->rl_parent_tag);
933	if (error) {
934                device_printf(sc->rl_dev,
935		    "failed to create parent DMA tag.\n");
936		goto fail;
937	}
938	/* Create DMA tag for Rx memory block. */
939	error = bus_dma_tag_create(sc->rl_parent_tag,	/* parent */
940	    RL_RX_8139_BUF_ALIGN, 0,	/* alignment, boundary */
941	    BUS_SPACE_MAXADDR,		/* lowaddr */
942	    BUS_SPACE_MAXADDR,		/* highaddr */
943	    NULL, NULL,			/* filter, filterarg */
944	    RL_RXBUFLEN + RL_RX_8139_BUF_GUARD_SZ, 1,	/* maxsize,nsegments */
945	    RL_RXBUFLEN + RL_RX_8139_BUF_GUARD_SZ,	/* maxsegsize */
946	    0,				/* flags */
947	    NULL, NULL,			/* lockfunc, lockarg */
948	    &sc->rl_cdata.rl_rx_tag);
949	if (error) {
950                device_printf(sc->rl_dev,
951		    "failed to create Rx memory block DMA tag.\n");
952		goto fail;
953	}
954	/* Create DMA tag for Tx buffer. */
955	error = bus_dma_tag_create(sc->rl_parent_tag,	/* parent */
956	    RL_TX_8139_BUF_ALIGN, 0,	/* alignment, boundary */
957	    BUS_SPACE_MAXADDR,		/* lowaddr */
958	    BUS_SPACE_MAXADDR,		/* highaddr */
959	    NULL, NULL,			/* filter, filterarg */
960	    MCLBYTES, 1,		/* maxsize, nsegments */
961	    MCLBYTES,			/* maxsegsize */
962	    0,				/* flags */
963	    NULL, NULL,			/* lockfunc, lockarg */
964	    &sc->rl_cdata.rl_tx_tag);
965	if (error) {
966                device_printf(sc->rl_dev, "failed to create Tx DMA tag.\n");
967		goto fail;
968	}
969
970	/*
971	 * Allocate DMA'able memory and load DMA map for Rx memory block.
972	 */
973	error = bus_dmamem_alloc(sc->rl_cdata.rl_rx_tag,
974	    (void **)&sc->rl_cdata.rl_rx_buf, BUS_DMA_WAITOK |
975	    BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc->rl_cdata.rl_rx_dmamap);
976	if (error != 0) {
977		device_printf(sc->rl_dev,
978		    "failed to allocate Rx DMA memory block.\n");
979		goto fail;
980	}
981	ctx.rl_busaddr = 0;
982	error = bus_dmamap_load(sc->rl_cdata.rl_rx_tag,
983	    sc->rl_cdata.rl_rx_dmamap, sc->rl_cdata.rl_rx_buf,
984	    RL_RXBUFLEN + RL_RX_8139_BUF_GUARD_SZ, rl_dmamap_cb, &ctx,
985	    BUS_DMA_NOWAIT);
986	if (error != 0 || ctx.rl_busaddr == 0) {
987		device_printf(sc->rl_dev,
988		    "could not load Rx DMA memory block.\n");
989		goto fail;
990	}
991	sc->rl_cdata.rl_rx_buf_paddr = ctx.rl_busaddr;
992
993	/* Create DMA maps for Tx buffers. */
994	for (i = 0; i < RL_TX_LIST_CNT; i++) {
995		sc->rl_cdata.rl_tx_chain[i] = NULL;
996		sc->rl_cdata.rl_tx_dmamap[i] = NULL;
997		error = bus_dmamap_create(sc->rl_cdata.rl_tx_tag, 0,
998		    &sc->rl_cdata.rl_tx_dmamap[i]);
999		if (error != 0) {
1000			device_printf(sc->rl_dev,
1001			    "could not create Tx dmamap.\n");
1002			goto fail;
1003		}
1004	}
1005
1006	/* Leave a few bytes before the start of the RX ring buffer. */
1007	sc->rl_cdata.rl_rx_buf_ptr = sc->rl_cdata.rl_rx_buf;
1008	sc->rl_cdata.rl_rx_buf += RL_RX_8139_BUF_RESERVE;
1009
1010fail:
1011	return (error);
1012}
1013
1014static void
1015rl_dma_free(struct rl_softc *sc)
1016{
1017	int			i;
1018
1019	/* Rx memory block. */
1020	if (sc->rl_cdata.rl_rx_tag != NULL) {
1021		if (sc->rl_cdata.rl_rx_buf_paddr != 0)
1022			bus_dmamap_unload(sc->rl_cdata.rl_rx_tag,
1023			    sc->rl_cdata.rl_rx_dmamap);
1024		if (sc->rl_cdata.rl_rx_buf_ptr != NULL)
1025			bus_dmamem_free(sc->rl_cdata.rl_rx_tag,
1026			    sc->rl_cdata.rl_rx_buf_ptr,
1027			    sc->rl_cdata.rl_rx_dmamap);
1028		sc->rl_cdata.rl_rx_buf_ptr = NULL;
1029		sc->rl_cdata.rl_rx_buf = NULL;
1030		sc->rl_cdata.rl_rx_buf_paddr = 0;
1031		bus_dma_tag_destroy(sc->rl_cdata.rl_rx_tag);
1032		sc->rl_cdata.rl_tx_tag = NULL;
1033	}
1034
1035	/* Tx buffers. */
1036	if (sc->rl_cdata.rl_tx_tag != NULL) {
1037		for (i = 0; i < RL_TX_LIST_CNT; i++) {
1038			if (sc->rl_cdata.rl_tx_dmamap[i] != NULL) {
1039				bus_dmamap_destroy(
1040				    sc->rl_cdata.rl_tx_tag,
1041				    sc->rl_cdata.rl_tx_dmamap[i]);
1042				sc->rl_cdata.rl_tx_dmamap[i] = NULL;
1043			}
1044		}
1045		bus_dma_tag_destroy(sc->rl_cdata.rl_tx_tag);
1046		sc->rl_cdata.rl_tx_tag = NULL;
1047	}
1048
1049	if (sc->rl_parent_tag != NULL) {
1050		bus_dma_tag_destroy(sc->rl_parent_tag);
1051		sc->rl_parent_tag = NULL;
1052	}
1053}
1054
1055/*
1056 * Initialize the transmit descriptors.
1057 */
1058static int
1059rl_list_tx_init(struct rl_softc *sc)
1060{
1061	struct rl_chain_data	*cd;
1062	int			i;
1063
1064	RL_LOCK_ASSERT(sc);
1065
1066	cd = &sc->rl_cdata;
1067	for (i = 0; i < RL_TX_LIST_CNT; i++) {
1068		cd->rl_tx_chain[i] = NULL;
1069		CSR_WRITE_4(sc,
1070		    RL_TXADDR0 + (i * sizeof(uint32_t)), 0x0000000);
1071	}
1072
1073	sc->rl_cdata.cur_tx = 0;
1074	sc->rl_cdata.last_tx = 0;
1075
1076	return (0);
1077}
1078
1079static int
1080rl_list_rx_init(struct rl_softc *sc)
1081{
1082
1083	RL_LOCK_ASSERT(sc);
1084
1085	bzero(sc->rl_cdata.rl_rx_buf_ptr,
1086	    RL_RXBUFLEN + RL_RX_8139_BUF_GUARD_SZ);
1087	bus_dmamap_sync(sc->rl_cdata.rl_tx_tag, sc->rl_cdata.rl_rx_dmamap,
1088	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1089
1090	return (0);
1091}
1092
1093/*
1094 * A frame has been uploaded: pass the resulting mbuf chain up to
1095 * the higher level protocols.
1096 *
1097 * You know there's something wrong with a PCI bus-master chip design
1098 * when you have to use m_devget().
1099 *
1100 * The receive operation is badly documented in the datasheet, so I'll
1101 * attempt to document it here. The driver provides a buffer area and
1102 * places its base address in the RX buffer start address register.
1103 * The chip then begins copying frames into the RX buffer. Each frame
1104 * is preceded by a 32-bit RX status word which specifies the length
1105 * of the frame and certain other status bits. Each frame (starting with
1106 * the status word) is also 32-bit aligned. The frame length is in the
1107 * first 16 bits of the status word; the lower 15 bits correspond with
1108 * the 'rx status register' mentioned in the datasheet.
1109 *
1110 * Note: to make the Alpha happy, the frame payload needs to be aligned
1111 * on a 32-bit boundary. To achieve this, we pass RL_ETHER_ALIGN (2 bytes)
1112 * as the offset argument to m_devget().
1113 */
1114static int
1115rl_rxeof(struct rl_softc *sc)
1116{
1117	struct mbuf		*m;
1118	struct ifnet		*ifp = sc->rl_ifp;
1119	uint8_t			*rxbufpos;
1120	int			total_len = 0;
1121	int			wrap = 0;
1122	int			rx_npkts = 0;
1123	uint32_t		rxstat;
1124	uint16_t		cur_rx;
1125	uint16_t		limit;
1126	uint16_t		max_bytes, rx_bytes = 0;
1127
1128	RL_LOCK_ASSERT(sc);
1129
1130	bus_dmamap_sync(sc->rl_cdata.rl_rx_tag, sc->rl_cdata.rl_rx_dmamap,
1131	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1132
1133	cur_rx = (CSR_READ_2(sc, RL_CURRXADDR) + 16) % RL_RXBUFLEN;
1134
1135	/* Do not try to read past this point. */
1136	limit = CSR_READ_2(sc, RL_CURRXBUF) % RL_RXBUFLEN;
1137
1138	if (limit < cur_rx)
1139		max_bytes = (RL_RXBUFLEN - cur_rx) + limit;
1140	else
1141		max_bytes = limit - cur_rx;
1142
1143	while((CSR_READ_1(sc, RL_COMMAND) & RL_CMD_EMPTY_RXBUF) == 0) {
1144#ifdef DEVICE_POLLING
1145		if (ifp->if_capenable & IFCAP_POLLING) {
1146			if (sc->rxcycles <= 0)
1147				break;
1148			sc->rxcycles--;
1149		}
1150#endif
1151		rxbufpos = sc->rl_cdata.rl_rx_buf + cur_rx;
1152		rxstat = le32toh(*(uint32_t *)rxbufpos);
1153
1154		/*
1155		 * Here's a totally undocumented fact for you. When the
1156		 * RealTek chip is in the process of copying a packet into
1157		 * RAM for you, the length will be 0xfff0. If you spot a
1158		 * packet header with this value, you need to stop. The
1159		 * datasheet makes absolutely no mention of this and
1160		 * RealTek should be shot for this.
1161		 */
1162		total_len = rxstat >> 16;
1163		if (total_len == RL_RXSTAT_UNFINISHED)
1164			break;
1165
1166		if (!(rxstat & RL_RXSTAT_RXOK) ||
1167		    total_len < ETHER_MIN_LEN ||
1168		    total_len > ETHER_MAX_LEN + ETHER_VLAN_ENCAP_LEN) {
1169			if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
1170			ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1171			rl_init_locked(sc);
1172			return (rx_npkts);
1173		}
1174
1175		/* No errors; receive the packet. */
1176		rx_bytes += total_len + 4;
1177
1178		/*
1179		 * XXX The RealTek chip includes the CRC with every
1180		 * received frame, and there's no way to turn this
1181		 * behavior off (at least, I can't find anything in
1182		 * the manual that explains how to do it) so we have
1183		 * to trim off the CRC manually.
1184		 */
1185		total_len -= ETHER_CRC_LEN;
1186
1187		/*
1188		 * Avoid trying to read more bytes than we know
1189		 * the chip has prepared for us.
1190		 */
1191		if (rx_bytes > max_bytes)
1192			break;
1193
1194		rxbufpos = sc->rl_cdata.rl_rx_buf +
1195			((cur_rx + sizeof(uint32_t)) % RL_RXBUFLEN);
1196		if (rxbufpos == (sc->rl_cdata.rl_rx_buf + RL_RXBUFLEN))
1197			rxbufpos = sc->rl_cdata.rl_rx_buf;
1198
1199		wrap = (sc->rl_cdata.rl_rx_buf + RL_RXBUFLEN) - rxbufpos;
1200		if (total_len > wrap) {
1201			m = m_devget(rxbufpos, total_len, RL_ETHER_ALIGN, ifp,
1202			    NULL);
1203			if (m != NULL)
1204				m_copyback(m, wrap, total_len - wrap,
1205					sc->rl_cdata.rl_rx_buf);
1206			cur_rx = (total_len - wrap + ETHER_CRC_LEN);
1207		} else {
1208			m = m_devget(rxbufpos, total_len, RL_ETHER_ALIGN, ifp,
1209			    NULL);
1210			cur_rx += total_len + 4 + ETHER_CRC_LEN;
1211		}
1212
1213		/* Round up to 32-bit boundary. */
1214		cur_rx = (cur_rx + 3) & ~3;
1215		CSR_WRITE_2(sc, RL_CURRXADDR, cur_rx - 16);
1216
1217		if (m == NULL) {
1218			if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
1219			continue;
1220		}
1221
1222		if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
1223		RL_UNLOCK(sc);
1224		(*ifp->if_input)(ifp, m);
1225		RL_LOCK(sc);
1226		rx_npkts++;
1227	}
1228
1229	/* No need to sync Rx memory block as we didn't modify it. */
1230	return (rx_npkts);
1231}
1232
1233/*
1234 * A frame was downloaded to the chip. It's safe for us to clean up
1235 * the list buffers.
1236 */
1237static void
1238rl_txeof(struct rl_softc *sc)
1239{
1240	struct ifnet		*ifp = sc->rl_ifp;
1241	uint32_t		txstat;
1242
1243	RL_LOCK_ASSERT(sc);
1244
1245	/*
1246	 * Go through our tx list and free mbufs for those
1247	 * frames that have been uploaded.
1248	 */
1249	do {
1250		if (RL_LAST_TXMBUF(sc) == NULL)
1251			break;
1252		txstat = CSR_READ_4(sc, RL_LAST_TXSTAT(sc));
1253		if (!(txstat & (RL_TXSTAT_TX_OK|
1254		    RL_TXSTAT_TX_UNDERRUN|RL_TXSTAT_TXABRT)))
1255			break;
1256
1257		if_inc_counter(ifp, IFCOUNTER_COLLISIONS, (txstat & RL_TXSTAT_COLLCNT) >> 24);
1258
1259		bus_dmamap_sync(sc->rl_cdata.rl_tx_tag, RL_LAST_DMAMAP(sc),
1260		    BUS_DMASYNC_POSTWRITE);
1261		bus_dmamap_unload(sc->rl_cdata.rl_tx_tag, RL_LAST_DMAMAP(sc));
1262		m_freem(RL_LAST_TXMBUF(sc));
1263		RL_LAST_TXMBUF(sc) = NULL;
1264		/*
1265		 * If there was a transmit underrun, bump the TX threshold.
1266		 * Make sure not to overflow the 63 * 32byte we can address
1267		 * with the 6 available bit.
1268		 */
1269		if ((txstat & RL_TXSTAT_TX_UNDERRUN) &&
1270		    (sc->rl_txthresh < 2016))
1271			sc->rl_txthresh += 32;
1272		if (txstat & RL_TXSTAT_TX_OK)
1273			if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
1274		else {
1275			int			oldthresh;
1276			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1277			if ((txstat & RL_TXSTAT_TXABRT) ||
1278			    (txstat & RL_TXSTAT_OUTOFWIN))
1279				CSR_WRITE_4(sc, RL_TXCFG, RL_TXCFG_CONFIG);
1280			oldthresh = sc->rl_txthresh;
1281			/* error recovery */
1282			ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1283			rl_init_locked(sc);
1284			/* restore original threshold */
1285			sc->rl_txthresh = oldthresh;
1286			return;
1287		}
1288		RL_INC(sc->rl_cdata.last_tx);
1289		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1290	} while (sc->rl_cdata.last_tx != sc->rl_cdata.cur_tx);
1291
1292	if (RL_LAST_TXMBUF(sc) == NULL)
1293		sc->rl_watchdog_timer = 0;
1294}
1295
1296static void
1297rl_twister_update(struct rl_softc *sc)
1298{
1299	uint16_t linktest;
1300	/*
1301	 * Table provided by RealTek (Kinston <shangh@realtek.com.tw>) for
1302	 * Linux driver.  Values undocumented otherwise.
1303	 */
1304	static const uint32_t param[4][4] = {
1305		{0xcb39de43, 0xcb39ce43, 0xfb38de03, 0xcb38de43},
1306		{0xcb39de43, 0xcb39ce43, 0xcb39ce83, 0xcb39ce83},
1307		{0xcb39de43, 0xcb39ce43, 0xcb39ce83, 0xcb39ce83},
1308		{0xbb39de43, 0xbb39ce43, 0xbb39ce83, 0xbb39ce83}
1309	};
1310
1311	/*
1312	 * Tune the so-called twister registers of the RTL8139.  These
1313	 * are used to compensate for impedance mismatches.  The
1314	 * method for tuning these registers is undocumented and the
1315	 * following procedure is collected from public sources.
1316	 */
1317	switch (sc->rl_twister)
1318	{
1319	case CHK_LINK:
1320		/*
1321		 * If we have a sufficient link, then we can proceed in
1322		 * the state machine to the next stage.  If not, then
1323		 * disable further tuning after writing sane defaults.
1324		 */
1325		if (CSR_READ_2(sc, RL_CSCFG) & RL_CSCFG_LINK_OK) {
1326			CSR_WRITE_2(sc, RL_CSCFG, RL_CSCFG_LINK_DOWN_OFF_CMD);
1327			sc->rl_twister = FIND_ROW;
1328		} else {
1329			CSR_WRITE_2(sc, RL_CSCFG, RL_CSCFG_LINK_DOWN_CMD);
1330			CSR_WRITE_4(sc, RL_NWAYTST, RL_NWAYTST_CBL_TEST);
1331			CSR_WRITE_4(sc, RL_PARA78, RL_PARA78_DEF);
1332			CSR_WRITE_4(sc, RL_PARA7C, RL_PARA7C_DEF);
1333			sc->rl_twister = DONE;
1334		}
1335		break;
1336	case FIND_ROW:
1337		/*
1338		 * Read how long it took to see the echo to find the tuning
1339		 * row to use.
1340		 */
1341		linktest = CSR_READ_2(sc, RL_CSCFG) & RL_CSCFG_STATUS;
1342		if (linktest == RL_CSCFG_ROW3)
1343			sc->rl_twist_row = 3;
1344		else if (linktest == RL_CSCFG_ROW2)
1345			sc->rl_twist_row = 2;
1346		else if (linktest == RL_CSCFG_ROW1)
1347			sc->rl_twist_row = 1;
1348		else
1349			sc->rl_twist_row = 0;
1350		sc->rl_twist_col = 0;
1351		sc->rl_twister = SET_PARAM;
1352		break;
1353	case SET_PARAM:
1354		if (sc->rl_twist_col == 0)
1355			CSR_WRITE_4(sc, RL_NWAYTST, RL_NWAYTST_RESET);
1356		CSR_WRITE_4(sc, RL_PARA7C,
1357		    param[sc->rl_twist_row][sc->rl_twist_col]);
1358		if (++sc->rl_twist_col == 4) {
1359			if (sc->rl_twist_row == 3)
1360				sc->rl_twister = RECHK_LONG;
1361			else
1362				sc->rl_twister = DONE;
1363		}
1364		break;
1365	case RECHK_LONG:
1366		/*
1367		 * For long cables, we have to double check to make sure we
1368		 * don't mistune.
1369		 */
1370		linktest = CSR_READ_2(sc, RL_CSCFG) & RL_CSCFG_STATUS;
1371		if (linktest == RL_CSCFG_ROW3)
1372			sc->rl_twister = DONE;
1373		else {
1374			CSR_WRITE_4(sc, RL_PARA7C, RL_PARA7C_RETUNE);
1375			sc->rl_twister = RETUNE;
1376		}
1377		break;
1378	case RETUNE:
1379		/* Retune for a shorter cable (try column 2) */
1380		CSR_WRITE_4(sc, RL_NWAYTST, RL_NWAYTST_CBL_TEST);
1381		CSR_WRITE_4(sc, RL_PARA78, RL_PARA78_DEF);
1382		CSR_WRITE_4(sc, RL_PARA7C, RL_PARA7C_DEF);
1383		CSR_WRITE_4(sc, RL_NWAYTST, RL_NWAYTST_RESET);
1384		sc->rl_twist_row--;
1385		sc->rl_twist_col = 0;
1386		sc->rl_twister = SET_PARAM;
1387		break;
1388
1389	case DONE:
1390		break;
1391	}
1392
1393}
1394
1395static void
1396rl_tick(void *xsc)
1397{
1398	struct rl_softc		*sc = xsc;
1399	struct mii_data		*mii;
1400	int ticks;
1401
1402	RL_LOCK_ASSERT(sc);
1403	/*
1404	 * If we're doing the twister cable calibration, then we need to defer
1405	 * watchdog timeouts.  This is a no-op in normal operations, but
1406	 * can falsely trigger when the cable calibration takes a while and
1407	 * there was traffic ready to go when rl was started.
1408	 *
1409	 * We don't defer mii_tick since that updates the mii status, which
1410	 * helps the twister process, at least according to similar patches
1411	 * for the Linux driver I found online while doing the fixes.  Worst
1412	 * case is a few extra mii reads during calibration.
1413	 */
1414	mii = device_get_softc(sc->rl_miibus);
1415	mii_tick(mii);
1416	if ((sc->rl_flags & RL_FLAG_LINK) == 0)
1417		rl_miibus_statchg(sc->rl_dev);
1418	if (sc->rl_twister_enable) {
1419		if (sc->rl_twister == DONE)
1420			rl_watchdog(sc);
1421		else
1422			rl_twister_update(sc);
1423		if (sc->rl_twister == DONE)
1424			ticks = hz;
1425		else
1426			ticks = hz / 10;
1427	} else {
1428		rl_watchdog(sc);
1429		ticks = hz;
1430	}
1431
1432	callout_reset(&sc->rl_stat_callout, ticks, rl_tick, sc);
1433}
1434
1435#ifdef DEVICE_POLLING
1436static int
1437rl_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1438{
1439	struct rl_softc *sc = ifp->if_softc;
1440	int rx_npkts = 0;
1441
1442	RL_LOCK(sc);
1443	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
1444		rx_npkts = rl_poll_locked(ifp, cmd, count);
1445	RL_UNLOCK(sc);
1446	return (rx_npkts);
1447}
1448
1449static int
1450rl_poll_locked(struct ifnet *ifp, enum poll_cmd cmd, int count)
1451{
1452	struct rl_softc *sc = ifp->if_softc;
1453	int rx_npkts;
1454
1455	RL_LOCK_ASSERT(sc);
1456
1457	sc->rxcycles = count;
1458	rx_npkts = rl_rxeof(sc);
1459	rl_txeof(sc);
1460
1461	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1462		rl_start_locked(ifp);
1463
1464	if (cmd == POLL_AND_CHECK_STATUS) {
1465		uint16_t	status;
1466
1467		/* We should also check the status register. */
1468		status = CSR_READ_2(sc, RL_ISR);
1469		if (status == 0xffff)
1470			return (rx_npkts);
1471		if (status != 0)
1472			CSR_WRITE_2(sc, RL_ISR, status);
1473
1474		/* XXX We should check behaviour on receiver stalls. */
1475
1476		if (status & RL_ISR_SYSTEM_ERR) {
1477			ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1478			rl_init_locked(sc);
1479		}
1480	}
1481	return (rx_npkts);
1482}
1483#endif /* DEVICE_POLLING */
1484
1485static void
1486rl_intr(void *arg)
1487{
1488	struct rl_softc		*sc = arg;
1489	struct ifnet		*ifp = sc->rl_ifp;
1490	uint16_t		status;
1491	int			count;
1492
1493	RL_LOCK(sc);
1494
1495	if (sc->suspended)
1496		goto done_locked;
1497
1498#ifdef DEVICE_POLLING
1499	if  (ifp->if_capenable & IFCAP_POLLING)
1500		goto done_locked;
1501#endif
1502
1503	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
1504		goto done_locked2;
1505	status = CSR_READ_2(sc, RL_ISR);
1506	if (status == 0xffff || (status & RL_INTRS) == 0)
1507		goto done_locked;
1508	/*
1509	 * Ours, disable further interrupts.
1510	 */
1511	CSR_WRITE_2(sc, RL_IMR, 0);
1512	for (count = 16; count > 0; count--) {
1513		CSR_WRITE_2(sc, RL_ISR, status);
1514		if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1515			if (status & (RL_ISR_RX_OK | RL_ISR_RX_ERR))
1516				rl_rxeof(sc);
1517			if (status & (RL_ISR_TX_OK | RL_ISR_TX_ERR))
1518				rl_txeof(sc);
1519			if (status & RL_ISR_SYSTEM_ERR) {
1520				ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1521				rl_init_locked(sc);
1522				RL_UNLOCK(sc);
1523				return;
1524			}
1525		}
1526		status = CSR_READ_2(sc, RL_ISR);
1527		/* If the card has gone away, the read returns 0xffff. */
1528		if (status == 0xffff || (status & RL_INTRS) == 0)
1529			break;
1530	}
1531
1532	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1533		rl_start_locked(ifp);
1534
1535done_locked2:
1536	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
1537		CSR_WRITE_2(sc, RL_IMR, RL_INTRS);
1538done_locked:
1539	RL_UNLOCK(sc);
1540}
1541
1542/*
1543 * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
1544 * pointers to the fragment pointers.
1545 */
1546static int
1547rl_encap(struct rl_softc *sc, struct mbuf **m_head)
1548{
1549	struct mbuf		*m;
1550	bus_dma_segment_t	txsegs[1];
1551	int			error, nsegs, padlen;
1552
1553	RL_LOCK_ASSERT(sc);
1554
1555	m = *m_head;
1556	padlen = 0;
1557	/*
1558	 * Hardware doesn't auto-pad, so we have to make sure
1559	 * pad short frames out to the minimum frame length.
1560	 */
1561	if (m->m_pkthdr.len < RL_MIN_FRAMELEN)
1562		padlen = RL_MIN_FRAMELEN - m->m_pkthdr.len;
1563	/*
1564	 * The RealTek is brain damaged and wants longword-aligned
1565	 * TX buffers, plus we can only have one fragment buffer
1566	 * per packet. We have to copy pretty much all the time.
1567	 */
1568	if (m->m_next != NULL || (mtod(m, uintptr_t) & 3) != 0 ||
1569	    (padlen > 0 && M_TRAILINGSPACE(m) < padlen)) {
1570		m = m_defrag(*m_head, M_NOWAIT);
1571		if (m == NULL) {
1572			m_freem(*m_head);
1573			*m_head = NULL;
1574			return (ENOMEM);
1575		}
1576	}
1577	*m_head = m;
1578
1579	if (padlen > 0) {
1580		/*
1581		 * Make security-conscious people happy: zero out the
1582		 * bytes in the pad area, since we don't know what
1583		 * this mbuf cluster buffer's previous user might
1584		 * have left in it.
1585		 */
1586		bzero(mtod(m, char *) + m->m_pkthdr.len, padlen);
1587		m->m_pkthdr.len += padlen;
1588		m->m_len = m->m_pkthdr.len;
1589	}
1590
1591	error = bus_dmamap_load_mbuf_sg(sc->rl_cdata.rl_tx_tag,
1592	    RL_CUR_DMAMAP(sc), m, txsegs, &nsegs, 0);
1593	if (error != 0)
1594		return (error);
1595	if (nsegs == 0) {
1596		m_freem(*m_head);
1597		*m_head = NULL;
1598		return (EIO);
1599	}
1600
1601	RL_CUR_TXMBUF(sc) = m;
1602	bus_dmamap_sync(sc->rl_cdata.rl_tx_tag, RL_CUR_DMAMAP(sc),
1603	    BUS_DMASYNC_PREWRITE);
1604	CSR_WRITE_4(sc, RL_CUR_TXADDR(sc), RL_ADDR_LO(txsegs[0].ds_addr));
1605
1606	return (0);
1607}
1608
1609/*
1610 * Main transmit routine.
1611 */
1612static void
1613rl_start(struct ifnet *ifp)
1614{
1615	struct rl_softc		*sc = ifp->if_softc;
1616
1617	RL_LOCK(sc);
1618	rl_start_locked(ifp);
1619	RL_UNLOCK(sc);
1620}
1621
1622static void
1623rl_start_locked(struct ifnet *ifp)
1624{
1625	struct rl_softc		*sc = ifp->if_softc;
1626	struct mbuf		*m_head = NULL;
1627
1628	RL_LOCK_ASSERT(sc);
1629
1630	if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
1631	    IFF_DRV_RUNNING || (sc->rl_flags & RL_FLAG_LINK) == 0)
1632		return;
1633
1634	while (RL_CUR_TXMBUF(sc) == NULL) {
1635
1636		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
1637
1638		if (m_head == NULL)
1639			break;
1640
1641		if (rl_encap(sc, &m_head)) {
1642			if (m_head == NULL)
1643				break;
1644			IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
1645			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1646			break;
1647		}
1648
1649		/* Pass a copy of this mbuf chain to the bpf subsystem. */
1650		BPF_MTAP(ifp, RL_CUR_TXMBUF(sc));
1651
1652		/* Transmit the frame. */
1653		CSR_WRITE_4(sc, RL_CUR_TXSTAT(sc),
1654		    RL_TXTHRESH(sc->rl_txthresh) |
1655		    RL_CUR_TXMBUF(sc)->m_pkthdr.len);
1656
1657		RL_INC(sc->rl_cdata.cur_tx);
1658
1659		/* Set a timeout in case the chip goes out to lunch. */
1660		sc->rl_watchdog_timer = 5;
1661	}
1662
1663	/*
1664	 * We broke out of the loop because all our TX slots are
1665	 * full. Mark the NIC as busy until it drains some of the
1666	 * packets from the queue.
1667	 */
1668	if (RL_CUR_TXMBUF(sc) != NULL)
1669		ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1670}
1671
1672static void
1673rl_init(void *xsc)
1674{
1675	struct rl_softc		*sc = xsc;
1676
1677	RL_LOCK(sc);
1678	rl_init_locked(sc);
1679	RL_UNLOCK(sc);
1680}
1681
1682static void
1683rl_init_locked(struct rl_softc *sc)
1684{
1685	struct ifnet		*ifp = sc->rl_ifp;
1686	struct mii_data		*mii;
1687	uint32_t		eaddr[2];
1688
1689	RL_LOCK_ASSERT(sc);
1690
1691	mii = device_get_softc(sc->rl_miibus);
1692
1693	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
1694		return;
1695
1696	/*
1697	 * Cancel pending I/O and free all RX/TX buffers.
1698	 */
1699	rl_stop(sc);
1700
1701	rl_reset(sc);
1702	if (sc->rl_twister_enable) {
1703		/*
1704		 * Reset twister register tuning state.  The twister
1705		 * registers and their tuning are undocumented, but
1706		 * are necessary to cope with bad links.  rl_twister =
1707		 * DONE here will disable this entirely.
1708		 */
1709		sc->rl_twister = CHK_LINK;
1710	}
1711
1712	/*
1713	 * Init our MAC address.  Even though the chipset
1714	 * documentation doesn't mention it, we need to enter "Config
1715	 * register write enable" mode to modify the ID registers.
1716	 */
1717	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_WRITECFG);
1718	bzero(eaddr, sizeof(eaddr));
1719	bcopy(IF_LLADDR(sc->rl_ifp), eaddr, ETHER_ADDR_LEN);
1720	CSR_WRITE_STREAM_4(sc, RL_IDR0, eaddr[0]);
1721	CSR_WRITE_STREAM_4(sc, RL_IDR4, eaddr[1]);
1722	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);
1723
1724	/* Init the RX memory block pointer register. */
1725	CSR_WRITE_4(sc, RL_RXADDR, sc->rl_cdata.rl_rx_buf_paddr +
1726	    RL_RX_8139_BUF_RESERVE);
1727	/* Init TX descriptors. */
1728	rl_list_tx_init(sc);
1729	/* Init Rx memory block. */
1730	rl_list_rx_init(sc);
1731
1732	/*
1733	 * Enable transmit and receive.
1734	 */
1735	CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_TX_ENB|RL_CMD_RX_ENB);
1736
1737	/*
1738	 * Set the initial TX and RX configuration.
1739	 */
1740	CSR_WRITE_4(sc, RL_TXCFG, RL_TXCFG_CONFIG);
1741	CSR_WRITE_4(sc, RL_RXCFG, RL_RXCFG_CONFIG);
1742
1743	/* Set RX filter. */
1744	rl_rxfilter(sc);
1745
1746#ifdef DEVICE_POLLING
1747	/* Disable interrupts if we are polling. */
1748	if (ifp->if_capenable & IFCAP_POLLING)
1749		CSR_WRITE_2(sc, RL_IMR, 0);
1750	else
1751#endif
1752	/* Enable interrupts. */
1753	CSR_WRITE_2(sc, RL_IMR, RL_INTRS);
1754
1755	/* Set initial TX threshold */
1756	sc->rl_txthresh = RL_TX_THRESH_INIT;
1757
1758	/* Start RX/TX process. */
1759	CSR_WRITE_4(sc, RL_MISSEDPKT, 0);
1760
1761	/* Enable receiver and transmitter. */
1762	CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_TX_ENB|RL_CMD_RX_ENB);
1763
1764	sc->rl_flags &= ~RL_FLAG_LINK;
1765	mii_mediachg(mii);
1766
1767	CSR_WRITE_1(sc, sc->rl_cfg1, RL_CFG1_DRVLOAD|RL_CFG1_FULLDUPLEX);
1768
1769	ifp->if_drv_flags |= IFF_DRV_RUNNING;
1770	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1771
1772	callout_reset(&sc->rl_stat_callout, hz, rl_tick, sc);
1773}
1774
1775/*
1776 * Set media options.
1777 */
1778static int
1779rl_ifmedia_upd(struct ifnet *ifp)
1780{
1781	struct rl_softc		*sc = ifp->if_softc;
1782	struct mii_data		*mii;
1783
1784	mii = device_get_softc(sc->rl_miibus);
1785
1786	RL_LOCK(sc);
1787	mii_mediachg(mii);
1788	RL_UNLOCK(sc);
1789
1790	return (0);
1791}
1792
1793/*
1794 * Report current media status.
1795 */
1796static void
1797rl_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1798{
1799	struct rl_softc		*sc = ifp->if_softc;
1800	struct mii_data		*mii;
1801
1802	mii = device_get_softc(sc->rl_miibus);
1803
1804	RL_LOCK(sc);
1805	mii_pollstat(mii);
1806	ifmr->ifm_active = mii->mii_media_active;
1807	ifmr->ifm_status = mii->mii_media_status;
1808	RL_UNLOCK(sc);
1809}
1810
1811static int
1812rl_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
1813{
1814	struct ifreq		*ifr = (struct ifreq *)data;
1815	struct mii_data		*mii;
1816	struct rl_softc		*sc = ifp->if_softc;
1817	int			error = 0, mask;
1818
1819	switch (command) {
1820	case SIOCSIFFLAGS:
1821		RL_LOCK(sc);
1822		if (ifp->if_flags & IFF_UP) {
1823			if (ifp->if_drv_flags & IFF_DRV_RUNNING &&
1824			    ((ifp->if_flags ^ sc->rl_if_flags) &
1825                            (IFF_PROMISC | IFF_ALLMULTI)))
1826				rl_rxfilter(sc);
1827                        else
1828				rl_init_locked(sc);
1829                } else if (ifp->if_drv_flags & IFF_DRV_RUNNING)
1830			rl_stop(sc);
1831		sc->rl_if_flags = ifp->if_flags;
1832		RL_UNLOCK(sc);
1833		break;
1834	case SIOCADDMULTI:
1835	case SIOCDELMULTI:
1836		RL_LOCK(sc);
1837		rl_rxfilter(sc);
1838		RL_UNLOCK(sc);
1839		break;
1840	case SIOCGIFMEDIA:
1841	case SIOCSIFMEDIA:
1842		mii = device_get_softc(sc->rl_miibus);
1843		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
1844		break;
1845	case SIOCSIFCAP:
1846		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
1847#ifdef DEVICE_POLLING
1848		if (ifr->ifr_reqcap & IFCAP_POLLING &&
1849		    !(ifp->if_capenable & IFCAP_POLLING)) {
1850			error = ether_poll_register(rl_poll, ifp);
1851			if (error)
1852				return(error);
1853			RL_LOCK(sc);
1854			/* Disable interrupts */
1855			CSR_WRITE_2(sc, RL_IMR, 0x0000);
1856			ifp->if_capenable |= IFCAP_POLLING;
1857			RL_UNLOCK(sc);
1858			return (error);
1859
1860		}
1861		if (!(ifr->ifr_reqcap & IFCAP_POLLING) &&
1862		    ifp->if_capenable & IFCAP_POLLING) {
1863			error = ether_poll_deregister(ifp);
1864			/* Enable interrupts. */
1865			RL_LOCK(sc);
1866			CSR_WRITE_2(sc, RL_IMR, RL_INTRS);
1867			ifp->if_capenable &= ~IFCAP_POLLING;
1868			RL_UNLOCK(sc);
1869			return (error);
1870		}
1871#endif /* DEVICE_POLLING */
1872		if ((mask & IFCAP_WOL) != 0 &&
1873		    (ifp->if_capabilities & IFCAP_WOL) != 0) {
1874			if ((mask & IFCAP_WOL_UCAST) != 0)
1875				ifp->if_capenable ^= IFCAP_WOL_UCAST;
1876			if ((mask & IFCAP_WOL_MCAST) != 0)
1877				ifp->if_capenable ^= IFCAP_WOL_MCAST;
1878			if ((mask & IFCAP_WOL_MAGIC) != 0)
1879				ifp->if_capenable ^= IFCAP_WOL_MAGIC;
1880		}
1881		break;
1882	default:
1883		error = ether_ioctl(ifp, command, data);
1884		break;
1885	}
1886
1887	return (error);
1888}
1889
1890static void
1891rl_watchdog(struct rl_softc *sc)
1892{
1893
1894	RL_LOCK_ASSERT(sc);
1895
1896	if (sc->rl_watchdog_timer == 0 || --sc->rl_watchdog_timer >0)
1897		return;
1898
1899	device_printf(sc->rl_dev, "watchdog timeout\n");
1900	if_inc_counter(sc->rl_ifp, IFCOUNTER_OERRORS, 1);
1901
1902	rl_txeof(sc);
1903	rl_rxeof(sc);
1904	sc->rl_ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1905	rl_init_locked(sc);
1906}
1907
1908/*
1909 * Stop the adapter and free any mbufs allocated to the
1910 * RX and TX lists.
1911 */
1912static void
1913rl_stop(struct rl_softc *sc)
1914{
1915	int			i;
1916	struct ifnet		*ifp = sc->rl_ifp;
1917
1918	RL_LOCK_ASSERT(sc);
1919
1920	sc->rl_watchdog_timer = 0;
1921	callout_stop(&sc->rl_stat_callout);
1922	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
1923	sc->rl_flags &= ~RL_FLAG_LINK;
1924
1925	CSR_WRITE_1(sc, RL_COMMAND, 0x00);
1926	CSR_WRITE_2(sc, RL_IMR, 0x0000);
1927	for (i = 0; i < RL_TIMEOUT; i++) {
1928		DELAY(10);
1929		if ((CSR_READ_1(sc, RL_COMMAND) &
1930		    (RL_CMD_RX_ENB | RL_CMD_TX_ENB)) == 0)
1931			break;
1932	}
1933	if (i == RL_TIMEOUT)
1934		device_printf(sc->rl_dev, "Unable to stop Tx/Rx MAC\n");
1935
1936	/*
1937	 * Free the TX list buffers.
1938	 */
1939	for (i = 0; i < RL_TX_LIST_CNT; i++) {
1940		if (sc->rl_cdata.rl_tx_chain[i] != NULL) {
1941			bus_dmamap_sync(sc->rl_cdata.rl_tx_tag,
1942			    sc->rl_cdata.rl_tx_dmamap[i],
1943			    BUS_DMASYNC_POSTWRITE);
1944			bus_dmamap_unload(sc->rl_cdata.rl_tx_tag,
1945			    sc->rl_cdata.rl_tx_dmamap[i]);
1946			m_freem(sc->rl_cdata.rl_tx_chain[i]);
1947			sc->rl_cdata.rl_tx_chain[i] = NULL;
1948			CSR_WRITE_4(sc, RL_TXADDR0 + (i * sizeof(uint32_t)),
1949			    0x0000000);
1950		}
1951	}
1952}
1953
1954/*
1955 * Device suspend routine.  Stop the interface and save some PCI
1956 * settings in case the BIOS doesn't restore them properly on
1957 * resume.
1958 */
1959static int
1960rl_suspend(device_t dev)
1961{
1962	struct rl_softc		*sc;
1963
1964	sc = device_get_softc(dev);
1965
1966	RL_LOCK(sc);
1967	rl_stop(sc);
1968	rl_setwol(sc);
1969	sc->suspended = 1;
1970	RL_UNLOCK(sc);
1971
1972	return (0);
1973}
1974
1975/*
1976 * Device resume routine.  Restore some PCI settings in case the BIOS
1977 * doesn't, re-enable busmastering, and restart the interface if
1978 * appropriate.
1979 */
1980static int
1981rl_resume(device_t dev)
1982{
1983	struct rl_softc		*sc;
1984	struct ifnet		*ifp;
1985	int			pmc;
1986	uint16_t		pmstat;
1987
1988	sc = device_get_softc(dev);
1989	ifp = sc->rl_ifp;
1990
1991	RL_LOCK(sc);
1992
1993	if ((ifp->if_capabilities & IFCAP_WOL) != 0 &&
1994	    pci_find_cap(sc->rl_dev, PCIY_PMG, &pmc) == 0) {
1995		/* Disable PME and clear PME status. */
1996		pmstat = pci_read_config(sc->rl_dev,
1997		    pmc + PCIR_POWER_STATUS, 2);
1998		if ((pmstat & PCIM_PSTAT_PMEENABLE) != 0) {
1999			pmstat &= ~PCIM_PSTAT_PMEENABLE;
2000			pci_write_config(sc->rl_dev,
2001			    pmc + PCIR_POWER_STATUS, pmstat, 2);
2002		}
2003		/*
2004		 * Clear WOL matching such that normal Rx filtering
2005		 * wouldn't interfere with WOL patterns.
2006		 */
2007		rl_clrwol(sc);
2008	}
2009
2010	/* reinitialize interface if necessary */
2011	if (ifp->if_flags & IFF_UP)
2012		rl_init_locked(sc);
2013
2014	sc->suspended = 0;
2015
2016	RL_UNLOCK(sc);
2017
2018	return (0);
2019}
2020
2021/*
2022 * Stop all chip I/O so that the kernel's probe routines don't
2023 * get confused by errant DMAs when rebooting.
2024 */
2025static int
2026rl_shutdown(device_t dev)
2027{
2028	struct rl_softc		*sc;
2029
2030	sc = device_get_softc(dev);
2031
2032	RL_LOCK(sc);
2033	rl_stop(sc);
2034	/*
2035	 * Mark interface as down since otherwise we will panic if
2036	 * interrupt comes in later on, which can happen in some
2037	 * cases.
2038	 */
2039	sc->rl_ifp->if_flags &= ~IFF_UP;
2040	rl_setwol(sc);
2041	RL_UNLOCK(sc);
2042
2043	return (0);
2044}
2045
2046static void
2047rl_setwol(struct rl_softc *sc)
2048{
2049	struct ifnet		*ifp;
2050	int			pmc;
2051	uint16_t		pmstat;
2052	uint8_t			v;
2053
2054	RL_LOCK_ASSERT(sc);
2055
2056	ifp = sc->rl_ifp;
2057	if ((ifp->if_capabilities & IFCAP_WOL) == 0)
2058		return;
2059	if (pci_find_cap(sc->rl_dev, PCIY_PMG, &pmc) != 0)
2060		return;
2061
2062	/* Enable config register write. */
2063	CSR_WRITE_1(sc, RL_EECMD, RL_EE_MODE);
2064
2065	/* Enable PME. */
2066	v = CSR_READ_1(sc, sc->rl_cfg1);
2067	v &= ~RL_CFG1_PME;
2068	if ((ifp->if_capenable & IFCAP_WOL) != 0)
2069		v |= RL_CFG1_PME;
2070	CSR_WRITE_1(sc, sc->rl_cfg1, v);
2071
2072	v = CSR_READ_1(sc, sc->rl_cfg3);
2073	v &= ~(RL_CFG3_WOL_LINK | RL_CFG3_WOL_MAGIC);
2074	if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0)
2075		v |= RL_CFG3_WOL_MAGIC;
2076	CSR_WRITE_1(sc, sc->rl_cfg3, v);
2077
2078	v = CSR_READ_1(sc, sc->rl_cfg5);
2079	v &= ~(RL_CFG5_WOL_BCAST | RL_CFG5_WOL_MCAST | RL_CFG5_WOL_UCAST);
2080	v &= ~RL_CFG5_WOL_LANWAKE;
2081	if ((ifp->if_capenable & IFCAP_WOL_UCAST) != 0)
2082		v |= RL_CFG5_WOL_UCAST;
2083	if ((ifp->if_capenable & IFCAP_WOL_MCAST) != 0)
2084		v |= RL_CFG5_WOL_MCAST | RL_CFG5_WOL_BCAST;
2085	if ((ifp->if_capenable & IFCAP_WOL) != 0)
2086		v |= RL_CFG5_WOL_LANWAKE;
2087	CSR_WRITE_1(sc, sc->rl_cfg5, v);
2088
2089	/* Config register write done. */
2090	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);
2091
2092	/* Request PME if WOL is requested. */
2093	pmstat = pci_read_config(sc->rl_dev, pmc + PCIR_POWER_STATUS, 2);
2094	pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
2095	if ((ifp->if_capenable & IFCAP_WOL) != 0)
2096		pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
2097	pci_write_config(sc->rl_dev, pmc + PCIR_POWER_STATUS, pmstat, 2);
2098}
2099
2100static void
2101rl_clrwol(struct rl_softc *sc)
2102{
2103	struct ifnet		*ifp;
2104	uint8_t			v;
2105
2106	ifp = sc->rl_ifp;
2107	if ((ifp->if_capabilities & IFCAP_WOL) == 0)
2108		return;
2109
2110	/* Enable config register write. */
2111	CSR_WRITE_1(sc, RL_EECMD, RL_EE_MODE);
2112
2113	v = CSR_READ_1(sc, sc->rl_cfg3);
2114	v &= ~(RL_CFG3_WOL_LINK | RL_CFG3_WOL_MAGIC);
2115	CSR_WRITE_1(sc, sc->rl_cfg3, v);
2116
2117	/* Config register write done. */
2118	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);
2119
2120	v = CSR_READ_1(sc, sc->rl_cfg5);
2121	v &= ~(RL_CFG5_WOL_BCAST | RL_CFG5_WOL_MCAST | RL_CFG5_WOL_UCAST);
2122	v &= ~RL_CFG5_WOL_LANWAKE;
2123	CSR_WRITE_1(sc, sc->rl_cfg5, v);
2124}
2125