1/*
2 * Copyright (c) 2017-2018 Cavium, Inc.
3 * All rights reserved.
4 *
5 *  Redistribution and use in source and binary forms, with or without
6 *  modification, are permitted provided that the following conditions
7 *  are met:
8 *
9 *  1. Redistributions of source code must retain the above copyright
10 *     notice, this list of conditions and the following disclaimer.
11 *  2. Redistributions in binary form must reproduce the above copyright
12 *     notice, this list of conditions and the following disclaimer in the
13 *     documentation and/or other materials provided with the distribution.
14 *
15 *  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
16 *  AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17 *  IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18 *  ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
19 *  LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
20 *  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
21 *  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
22 *  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
23 *  CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
24 *  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
25 *  POSSIBILITY OF SUCH DAMAGE.
26 */
27/*
28 * File : ecore_int.c
29 */
30#include <sys/cdefs.h>
31__FBSDID("$FreeBSD: stable/11/sys/dev/qlnx/qlnxe/ecore_int.c 337517 2018-08-09 01:17:35Z davidcs $");
32
33#include "bcm_osal.h"
34#include "ecore.h"
35#include "ecore_spq.h"
36#include "reg_addr.h"
37#include "ecore_gtt_reg_addr.h"
38#include "ecore_init_ops.h"
39#include "ecore_rt_defs.h"
40#include "ecore_int.h"
41#include "reg_addr.h"
42#include "ecore_hw.h"
43#include "ecore_sriov.h"
44#include "ecore_vf.h"
45#include "ecore_hw_defs.h"
46#include "ecore_hsi_common.h"
47#include "ecore_mcp.h"
48#include "ecore_dbg_fw_funcs.h"
49
50#ifdef DIAG
51/* This is nasty, but diag is using the drv_dbg_fw_funcs.c [non-ecore flavor],
52 * and so the functions are lacking ecore prefix.
53 * If there would be other clients needing this [or if the content that isn't
54 * really optional there would increase], we'll need to re-think this.
55 */
56enum dbg_status dbg_read_attn(struct ecore_hwfn *dev,
57							  struct ecore_ptt *ptt,
58							  enum block_id block,
59							  enum dbg_attn_type attn_type,
60							  bool clear_status,
61							  struct dbg_attn_block_result *results);
62
63enum dbg_status dbg_parse_attn(struct ecore_hwfn *dev,
64							   struct dbg_attn_block_result *results);
65
66const char* dbg_get_status_str(enum dbg_status status);
67
68#define ecore_dbg_read_attn(hwfn, ptt, id, type, clear, results) \
69	dbg_read_attn(hwfn, ptt, id, type, clear, results)
70#define ecore_dbg_parse_attn(hwfn, results) \
71	dbg_parse_attn(hwfn, results)
72#define ecore_dbg_get_status_str(status) \
73	dbg_get_status_str(status)
74#endif
75
76struct ecore_pi_info {
77	ecore_int_comp_cb_t comp_cb;
78	void *cookie; /* Will be sent to the completion callback function */
79};
80
81struct ecore_sb_sp_info {
82	struct ecore_sb_info sb_info;
83	/* per protocol index data */
84	struct ecore_pi_info pi_info_arr[PIS_PER_SB_E4];
85};
86
87enum ecore_attention_type {
88	ECORE_ATTN_TYPE_ATTN,
89	ECORE_ATTN_TYPE_PARITY,
90};
91
92#define SB_ATTN_ALIGNED_SIZE(p_hwfn) \
93	ALIGNED_TYPE_SIZE(struct atten_status_block, p_hwfn)
94
95struct aeu_invert_reg_bit {
96	char bit_name[30];
97
98#define ATTENTION_PARITY		(1 << 0)
99
100#define ATTENTION_LENGTH_MASK		(0x00000ff0)
101#define ATTENTION_LENGTH_SHIFT		(4)
102#define ATTENTION_LENGTH(flags)		(((flags) & ATTENTION_LENGTH_MASK) >> \
103					 ATTENTION_LENGTH_SHIFT)
104#define ATTENTION_SINGLE		(1 << ATTENTION_LENGTH_SHIFT)
105#define ATTENTION_PAR			(ATTENTION_SINGLE | ATTENTION_PARITY)
106#define ATTENTION_PAR_INT		((2 << ATTENTION_LENGTH_SHIFT) | \
107					 ATTENTION_PARITY)
108
109/* Multiple bits start with this offset */
110#define ATTENTION_OFFSET_MASK		(0x000ff000)
111#define ATTENTION_OFFSET_SHIFT		(12)
112
113#define ATTENTION_BB_MASK		(0x00700000)
114#define ATTENTION_BB_SHIFT		(20)
115#define ATTENTION_BB(value)		(value << ATTENTION_BB_SHIFT)
116#define ATTENTION_BB_DIFFERENT		(1 << 23)
117
118#define	ATTENTION_CLEAR_ENABLE		(1 << 28)
119	unsigned int flags;
120
121	/* Callback to call if attention will be triggered */
122	enum _ecore_status_t (*cb)(struct ecore_hwfn *p_hwfn);
123
124	enum block_id block_index;
125};
126
127struct aeu_invert_reg {
128	struct aeu_invert_reg_bit bits[32];
129};
130
131#define MAX_ATTN_GRPS		(8)
132#define NUM_ATTN_REGS		(9)
133
134static enum _ecore_status_t ecore_mcp_attn_cb(struct ecore_hwfn *p_hwfn)
135{
136	u32 tmp = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt, MCP_REG_CPU_STATE);
137
138	DP_INFO(p_hwfn->p_dev, "MCP_REG_CPU_STATE: %08x - Masking...\n",
139		tmp);
140	ecore_wr(p_hwfn, p_hwfn->p_dpc_ptt, MCP_REG_CPU_EVENT_MASK,
141		 0xffffffff);
142
143	return ECORE_SUCCESS;
144}
145
146#define ECORE_PSWHST_ATTENTION_DISABLED_PF_MASK		(0x3c000)
147#define ECORE_PSWHST_ATTENTION_DISABLED_PF_SHIFT	(14)
148#define ECORE_PSWHST_ATTENTION_DISABLED_VF_MASK		(0x03fc0)
149#define ECORE_PSWHST_ATTENTION_DISABLED_VF_SHIFT	(6)
150#define ECORE_PSWHST_ATTENTION_DISABLED_VALID_MASK	(0x00020)
151#define ECORE_PSWHST_ATTENTION_DISABLED_VALID_SHIFT	(5)
152#define ECORE_PSWHST_ATTENTION_DISABLED_CLIENT_MASK	(0x0001e)
153#define ECORE_PSWHST_ATTENTION_DISABLED_CLIENT_SHIFT	(1)
154#define ECORE_PSWHST_ATTENTION_DISABLED_WRITE_MASK	(0x1)
155#define ECORE_PSWHST_ATTNETION_DISABLED_WRITE_SHIFT	(0)
156#define ECORE_PSWHST_ATTENTION_VF_DISABLED		(0x1)
157#define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS		(0x1)
158#define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_WR_MASK 	(0x1)
159#define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_WR_SHIFT	(0)
160#define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_CLIENT_MASK	(0x1e)
161#define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_CLIENT_SHIFT	(1)
162#define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_VF_VALID_MASK	(0x20)
163#define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_VF_VALID_SHIFT	(5)
164#define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_VF_ID_MASK	(0x3fc0)
165#define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_VF_ID_SHIFT	(6)
166#define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_PF_ID_MASK	(0x3c000)
167#define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_PF_ID_SHIFT	(14)
168#define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_BYTE_EN_MASK	(0x3fc0000)
169#define ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_BYTE_EN_SHIFT	(18)
170static enum _ecore_status_t ecore_pswhst_attn_cb(struct ecore_hwfn *p_hwfn)
171{
172	u32 tmp = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt, PSWHST_REG_VF_DISABLED_ERROR_VALID);
173
174	/* Disabled VF access */
175	if (tmp & ECORE_PSWHST_ATTENTION_VF_DISABLED) {
176		u32 addr, data;
177
178		addr = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
179				PSWHST_REG_VF_DISABLED_ERROR_ADDRESS);
180		data = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
181				PSWHST_REG_VF_DISABLED_ERROR_DATA);
182		DP_INFO(p_hwfn->p_dev, "PF[0x%02x] VF [0x%02x] [Valid 0x%02x] Client [0x%02x] Write [0x%02x] Addr [0x%08x]\n",
183			(u8)((data & ECORE_PSWHST_ATTENTION_DISABLED_PF_MASK) >>
184			     ECORE_PSWHST_ATTENTION_DISABLED_PF_SHIFT),
185			(u8)((data & ECORE_PSWHST_ATTENTION_DISABLED_VF_MASK) >>
186			     ECORE_PSWHST_ATTENTION_DISABLED_VF_SHIFT),
187			(u8)((data & ECORE_PSWHST_ATTENTION_DISABLED_VALID_MASK) >>
188			     ECORE_PSWHST_ATTENTION_DISABLED_VALID_SHIFT),
189			(u8)((data & ECORE_PSWHST_ATTENTION_DISABLED_CLIENT_MASK) >>
190			     ECORE_PSWHST_ATTENTION_DISABLED_CLIENT_SHIFT),
191			(u8)((data & ECORE_PSWHST_ATTENTION_DISABLED_WRITE_MASK) >>
192			     ECORE_PSWHST_ATTNETION_DISABLED_WRITE_SHIFT),
193			addr);
194	}
195
196	tmp = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
197		       PSWHST_REG_INCORRECT_ACCESS_VALID);
198	if (tmp & ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS) {
199		u32 addr, data, length;
200
201		addr = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
202				PSWHST_REG_INCORRECT_ACCESS_ADDRESS);
203		data = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
204				PSWHST_REG_INCORRECT_ACCESS_DATA);
205		length = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
206				  PSWHST_REG_INCORRECT_ACCESS_LENGTH);
207
208		DP_INFO(p_hwfn->p_dev, "Incorrect access to %08x of length %08x - PF [%02x] VF [%04x] [valid %02x] client [%02x] write [%02x] Byte-Enable [%04x] [%08x]\n",
209			addr, length,
210			(u8)((data & ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_PF_ID_MASK) >>
211			     ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_PF_ID_SHIFT),
212			(u8)((data & ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_VF_ID_MASK) >>
213			     ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_VF_ID_SHIFT),
214			(u8)((data & ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_VF_VALID_MASK) >>
215			     ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_VF_VALID_SHIFT),
216			(u8)((data & ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_CLIENT_MASK) >>
217			     ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_CLIENT_SHIFT),
218			(u8)((data & ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_WR_MASK) >>
219			     ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_WR_SHIFT),
220			(u8)((data & ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_BYTE_EN_MASK) >>
221			     ECORE_PSWHST_ATTENTION_INCORRECT_ACCESS_BYTE_EN_SHIFT),
222			data);
223	}
224
225	/* TODO - We know 'some' of these are legal due to virtualization,
226	 * but is it true for all of them?
227	 */
228	return ECORE_SUCCESS;
229}
230
231#define ECORE_GRC_ATTENTION_VALID_BIT		(1 << 0)
232#define ECORE_GRC_ATTENTION_ADDRESS_MASK	(0x7fffff << 0)
233#define ECORE_GRC_ATTENTION_RDWR_BIT		(1 << 23)
234#define ECORE_GRC_ATTENTION_MASTER_MASK		(0xf << 24)
235#define ECORE_GRC_ATTENTION_MASTER_SHIFT	(24)
236#define ECORE_GRC_ATTENTION_PF_MASK		(0xf)
237#define ECORE_GRC_ATTENTION_VF_MASK		(0xff << 4)
238#define ECORE_GRC_ATTENTION_VF_SHIFT		(4)
239#define ECORE_GRC_ATTENTION_PRIV_MASK		(0x3 << 14)
240#define ECORE_GRC_ATTENTION_PRIV_SHIFT		(14)
241#define ECORE_GRC_ATTENTION_PRIV_VF		(0)
242static const char* grc_timeout_attn_master_to_str(u8 master)
243{
244	switch(master) {
245	case 1: return "PXP";
246	case 2: return "MCP";
247	case 3: return "MSDM";
248	case 4: return "PSDM";
249	case 5: return "YSDM";
250	case 6: return "USDM";
251	case 7: return "TSDM";
252	case 8: return "XSDM";
253	case 9: return "DBU";
254	case 10: return "DMAE";
255	default:
256		return "Unkown";
257	}
258}
259
260static enum _ecore_status_t ecore_grc_attn_cb(struct ecore_hwfn *p_hwfn)
261{
262	u32 tmp, tmp2;
263
264	/* We've already cleared the timeout interrupt register, so we learn
265	 * of interrupts via the validity register
266	 */
267	tmp = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
268		       GRC_REG_TIMEOUT_ATTN_ACCESS_VALID);
269	if (!(tmp & ECORE_GRC_ATTENTION_VALID_BIT))
270		goto out;
271
272	/* Read the GRC timeout information */
273	tmp = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
274		       GRC_REG_TIMEOUT_ATTN_ACCESS_DATA_0);
275	tmp2 = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
276			GRC_REG_TIMEOUT_ATTN_ACCESS_DATA_1);
277
278	DP_NOTICE(p_hwfn->p_dev, false,
279		  "GRC timeout [%08x:%08x] - %s Address [%08x] [Master %s] [PF: %02x %s %02x]\n",
280		  tmp2, tmp,
281		  (tmp & ECORE_GRC_ATTENTION_RDWR_BIT) ? "Write to"
282						       : "Read from",
283		  (tmp & ECORE_GRC_ATTENTION_ADDRESS_MASK) << 2,
284		  grc_timeout_attn_master_to_str((tmp & ECORE_GRC_ATTENTION_MASTER_MASK) >>
285						 ECORE_GRC_ATTENTION_MASTER_SHIFT),
286		  (tmp2 & ECORE_GRC_ATTENTION_PF_MASK),
287		  (((tmp2 & ECORE_GRC_ATTENTION_PRIV_MASK) >>
288		  ECORE_GRC_ATTENTION_PRIV_SHIFT) ==
289		  ECORE_GRC_ATTENTION_PRIV_VF) ? "VF" : "(Irrelevant:)",
290		  (tmp2 & ECORE_GRC_ATTENTION_VF_MASK) >>
291		  ECORE_GRC_ATTENTION_VF_SHIFT);
292
293out:
294	/* Regardles of anything else, clean the validity bit */
295	ecore_wr(p_hwfn, p_hwfn->p_dpc_ptt,
296		 GRC_REG_TIMEOUT_ATTN_ACCESS_VALID, 0);
297	return ECORE_SUCCESS;
298}
299
300#define ECORE_PGLUE_ATTENTION_VALID (1 << 29)
301#define ECORE_PGLUE_ATTENTION_RD_VALID (1 << 26)
302#define ECORE_PGLUE_ATTENTION_DETAILS_PFID_MASK (0xf << 20)
303#define ECORE_PGLUE_ATTENTION_DETAILS_PFID_SHIFT (20)
304#define ECORE_PGLUE_ATTENTION_DETAILS_VF_VALID (1 << 19)
305#define ECORE_PGLUE_ATTENTION_DETAILS_VFID_MASK (0xff << 24)
306#define ECORE_PGLUE_ATTENTION_DETAILS_VFID_SHIFT (24)
307#define ECORE_PGLUE_ATTENTION_DETAILS2_WAS_ERR (1 << 21)
308#define ECORE_PGLUE_ATTENTION_DETAILS2_BME	(1 << 22)
309#define ECORE_PGLUE_ATTENTION_DETAILS2_FID_EN (1 << 23)
310#define ECORE_PGLUE_ATTENTION_ICPL_VALID (1 << 23)
311#define ECORE_PGLUE_ATTENTION_ZLR_VALID (1 << 25)
312#define ECORE_PGLUE_ATTENTION_ILT_VALID (1 << 23)
313
314enum _ecore_status_t ecore_pglueb_rbc_attn_handler(struct ecore_hwfn *p_hwfn,
315						   struct ecore_ptt *p_ptt)
316{
317	u32 tmp;
318
319	tmp = ecore_rd(p_hwfn, p_ptt, PGLUE_B_REG_TX_ERR_WR_DETAILS2);
320	if (tmp & ECORE_PGLUE_ATTENTION_VALID) {
321		u32 addr_lo, addr_hi, details;
322
323		addr_lo = ecore_rd(p_hwfn, p_ptt,
324				   PGLUE_B_REG_TX_ERR_WR_ADD_31_0);
325		addr_hi = ecore_rd(p_hwfn, p_ptt,
326				   PGLUE_B_REG_TX_ERR_WR_ADD_63_32);
327		details = ecore_rd(p_hwfn, p_ptt,
328				   PGLUE_B_REG_TX_ERR_WR_DETAILS);
329
330		DP_NOTICE(p_hwfn, false,
331			  "Illegal write by chip to [%08x:%08x] blocked. Details: %08x [PFID %02x, VFID %02x, VF_VALID %02x] Details2 %08x [Was_error %02x BME deassert %02x FID_enable deassert %02x]\n",
332			  addr_hi, addr_lo, details,
333			  (u8)((details & ECORE_PGLUE_ATTENTION_DETAILS_PFID_MASK) >> ECORE_PGLUE_ATTENTION_DETAILS_PFID_SHIFT),
334			  (u8)((details & ECORE_PGLUE_ATTENTION_DETAILS_VFID_MASK) >> ECORE_PGLUE_ATTENTION_DETAILS_VFID_SHIFT),
335			  (u8)((details & ECORE_PGLUE_ATTENTION_DETAILS_VF_VALID) ? 1 : 0),
336			  tmp,
337			  (u8)((tmp & ECORE_PGLUE_ATTENTION_DETAILS2_WAS_ERR) ? 1 : 0),
338			  (u8)((tmp & ECORE_PGLUE_ATTENTION_DETAILS2_BME) ? 1 : 0),
339			  (u8)((tmp & ECORE_PGLUE_ATTENTION_DETAILS2_FID_EN) ? 1 : 0));
340	}
341
342	tmp = ecore_rd(p_hwfn, p_ptt, PGLUE_B_REG_TX_ERR_RD_DETAILS2);
343	if (tmp & ECORE_PGLUE_ATTENTION_RD_VALID) {
344		u32 addr_lo, addr_hi, details;
345
346		addr_lo = ecore_rd(p_hwfn, p_ptt,
347				   PGLUE_B_REG_TX_ERR_RD_ADD_31_0);
348		addr_hi = ecore_rd(p_hwfn, p_ptt,
349				   PGLUE_B_REG_TX_ERR_RD_ADD_63_32);
350		details = ecore_rd(p_hwfn, p_ptt,
351				   PGLUE_B_REG_TX_ERR_RD_DETAILS);
352
353		DP_NOTICE(p_hwfn, false,
354			  "Illegal read by chip from [%08x:%08x] blocked. Details: %08x [PFID %02x, VFID %02x, VF_VALID %02x] Details2 %08x [Was_error %02x BME deassert %02x FID_enable deassert %02x]\n",
355			  addr_hi, addr_lo, details,
356			  (u8)((details & ECORE_PGLUE_ATTENTION_DETAILS_PFID_MASK) >> ECORE_PGLUE_ATTENTION_DETAILS_PFID_SHIFT),
357			  (u8)((details & ECORE_PGLUE_ATTENTION_DETAILS_VFID_MASK) >> ECORE_PGLUE_ATTENTION_DETAILS_VFID_SHIFT),
358			  (u8)((details & ECORE_PGLUE_ATTENTION_DETAILS_VF_VALID) ? 1 : 0),
359			  tmp,
360			  (u8)((tmp & ECORE_PGLUE_ATTENTION_DETAILS2_WAS_ERR) ? 1 : 0),
361			  (u8)((tmp & ECORE_PGLUE_ATTENTION_DETAILS2_BME) ? 1 : 0),
362			  (u8)((tmp & ECORE_PGLUE_ATTENTION_DETAILS2_FID_EN) ? 1 : 0));
363	}
364
365	tmp = ecore_rd(p_hwfn, p_ptt, PGLUE_B_REG_TX_ERR_WR_DETAILS_ICPL);
366	if (tmp & ECORE_PGLUE_ATTENTION_ICPL_VALID)
367		DP_NOTICE(p_hwfn, false, "ICPL eror - %08x\n", tmp);
368
369	tmp = ecore_rd(p_hwfn, p_ptt, PGLUE_B_REG_MASTER_ZLR_ERR_DETAILS);
370	if (tmp & ECORE_PGLUE_ATTENTION_ZLR_VALID) {
371		u32 addr_hi, addr_lo;
372
373		addr_lo = ecore_rd(p_hwfn, p_ptt,
374				   PGLUE_B_REG_MASTER_ZLR_ERR_ADD_31_0);
375		addr_hi = ecore_rd(p_hwfn, p_ptt,
376				   PGLUE_B_REG_MASTER_ZLR_ERR_ADD_63_32);
377
378		DP_NOTICE(p_hwfn, false,
379			  "ICPL eror - %08x [Address %08x:%08x]\n",
380			  tmp, addr_hi, addr_lo);
381	}
382
383	tmp = ecore_rd(p_hwfn, p_ptt, PGLUE_B_REG_VF_ILT_ERR_DETAILS2);
384	if (tmp & ECORE_PGLUE_ATTENTION_ILT_VALID) {
385		u32 addr_hi, addr_lo, details;
386
387		addr_lo = ecore_rd(p_hwfn, p_ptt,
388				   PGLUE_B_REG_VF_ILT_ERR_ADD_31_0);
389		addr_hi = ecore_rd(p_hwfn, p_ptt,
390				   PGLUE_B_REG_VF_ILT_ERR_ADD_63_32);
391		details = ecore_rd(p_hwfn, p_ptt,
392				   PGLUE_B_REG_VF_ILT_ERR_DETAILS);
393
394		DP_NOTICE(p_hwfn, false,
395			  "ILT error - Details %08x Details2 %08x [Address %08x:%08x]\n",
396			  details, tmp, addr_hi, addr_lo);
397	}
398
399	/* Clear the indications */
400	ecore_wr(p_hwfn, p_ptt, PGLUE_B_REG_LATCHED_ERRORS_CLR, (1 << 2));
401
402	return ECORE_SUCCESS;
403}
404
405static enum _ecore_status_t ecore_pglueb_rbc_attn_cb(struct ecore_hwfn *p_hwfn)
406{
407	return ecore_pglueb_rbc_attn_handler(p_hwfn, p_hwfn->p_dpc_ptt);
408}
409
410static enum _ecore_status_t ecore_fw_assertion(struct ecore_hwfn *p_hwfn)
411{
412	DP_NOTICE(p_hwfn, false, "FW assertion!\n");
413
414	ecore_hw_err_notify(p_hwfn, ECORE_HW_ERR_FW_ASSERT);
415
416	return ECORE_INVAL;
417}
418
419static enum _ecore_status_t
420ecore_general_attention_35(struct ecore_hwfn *p_hwfn)
421{
422	DP_INFO(p_hwfn, "General attention 35!\n");
423
424	return ECORE_SUCCESS;
425}
426
427#define ECORE_DORQ_ATTENTION_REASON_MASK	(0xfffff)
428#define ECORE_DORQ_ATTENTION_OPAQUE_MASK	(0xffff)
429#define ECORE_DORQ_ATTENTION_OPAQUE_SHIFT	(0x0)
430#define ECORE_DORQ_ATTENTION_SIZE_MASK		(0x7f)
431#define ECORE_DORQ_ATTENTION_SIZE_SHIFT		(16)
432
433#define ECORE_DB_REC_COUNT			10
434#define ECORE_DB_REC_INTERVAL			100
435
436/* assumes sticky overflow indication was set for this PF */
437static enum _ecore_status_t ecore_db_rec_attn(struct ecore_hwfn *p_hwfn,
438					      struct ecore_ptt *p_ptt)
439{
440	u8 count = ECORE_DB_REC_COUNT;
441	u32 usage = 1;
442
443	/* wait for usage to zero or count to run out. This is necessary since
444	 * EDPM doorbell transactions can take multiple 64b cycles, and as such
445	 * can "split" over the pci. Possibly, the doorbell drop can happen with
446	 * half an EDPM in the queue and other half dropped. Another EDPM
447	 * doorbell to the same address (from doorbell recovery mechanism or
448	 * from the doorbelling entity) could have first half dropped and second
449	 * half interperted as continuation of the first. To prevent such
450	 * malformed doorbells from reaching the device, flush the queue before
451	 * releaseing the overflow sticky indication.
452	 */
453	while (count-- && usage) {
454		usage = ecore_rd(p_hwfn, p_ptt, DORQ_REG_PF_USAGE_CNT);
455		OSAL_UDELAY(ECORE_DB_REC_INTERVAL);
456	}
457
458	/* should have been depleted by now */
459	if (usage) {
460		DP_NOTICE(p_hwfn->p_dev, false,
461			  "DB recovery: doorbell usage failed to zero after %d usec. usage was %x\n",
462			  ECORE_DB_REC_INTERVAL * ECORE_DB_REC_COUNT, usage);
463		return ECORE_TIMEOUT;
464	}
465
466	/* flush any pedning (e)dpm as they may never arrive */
467	ecore_wr(p_hwfn, p_ptt, DORQ_REG_DPM_FORCE_ABORT, 0x1);
468
469	/* release overflow sticky indication (stop silently dropping everything) */
470	ecore_wr(p_hwfn, p_ptt, DORQ_REG_PF_OVFL_STICKY, 0x0);
471
472	/* repeat all last doorbells (doorbell drop recovery) */
473	ecore_db_recovery_execute(p_hwfn, DB_REC_REAL_DEAL);
474
475	return ECORE_SUCCESS;
476}
477
478static enum _ecore_status_t ecore_dorq_attn_cb(struct ecore_hwfn *p_hwfn)
479{
480	u32 int_sts, first_drop_reason, details, address, overflow,
481		all_drops_reason;
482	struct ecore_ptt *p_ptt = p_hwfn->p_dpc_ptt;
483	enum _ecore_status_t rc;
484
485	int_sts = ecore_rd(p_hwfn, p_ptt, DORQ_REG_INT_STS);
486	DP_NOTICE(p_hwfn->p_dev, false, "DORQ attention. int_sts was %x\n",
487		  int_sts);
488
489	/* int_sts may be zero since all PFs were interrupted for doorbell
490	 * overflow but another one already handled it. Can abort here. If
491	 * This PF also requires overflow recovery we will be interrupted again.
492	 * The masked almost full indication may also be set. Ignoring.
493	 */
494	if (!(int_sts & ~DORQ_REG_INT_STS_DORQ_FIFO_AFULL))
495		return ECORE_SUCCESS;
496
497	/* check if db_drop or overflow happened */
498	if (int_sts & (DORQ_REG_INT_STS_DB_DROP |
499		       DORQ_REG_INT_STS_DORQ_FIFO_OVFL_ERR)) {
500
501		/* obtain data about db drop/overflow */
502		first_drop_reason = ecore_rd(p_hwfn, p_ptt,
503				  DORQ_REG_DB_DROP_REASON) &
504				  ECORE_DORQ_ATTENTION_REASON_MASK;
505		details = ecore_rd(p_hwfn, p_ptt,
506				   DORQ_REG_DB_DROP_DETAILS);
507		address = ecore_rd(p_hwfn, p_ptt,
508				   DORQ_REG_DB_DROP_DETAILS_ADDRESS);
509		overflow = ecore_rd(p_hwfn, p_ptt,
510				    DORQ_REG_PF_OVFL_STICKY);
511		all_drops_reason = ecore_rd(p_hwfn, p_ptt,
512					    DORQ_REG_DB_DROP_DETAILS_REASON);
513
514		/* log info */
515		DP_NOTICE(p_hwfn->p_dev, false,
516			  "Doorbell drop occurred\n"
517			  "Address\t\t0x%08x\t(second BAR address)\n"
518			  "FID\t\t0x%04x\t\t(Opaque FID)\n"
519			  "Size\t\t0x%04x\t\t(in bytes)\n"
520			  "1st drop reason\t0x%08x\t(details on first drop since last handling)\n"
521			  "Sticky reasons\t0x%08x\t(all drop reasons since last handling)\n"
522			  "Overflow\t0x%x\t\t(a per PF indication)\n",
523			  address, GET_FIELD(details, ECORE_DORQ_ATTENTION_OPAQUE),
524			  GET_FIELD(details, ECORE_DORQ_ATTENTION_SIZE) * 4,
525			  first_drop_reason, all_drops_reason, overflow);
526
527		/* if this PF caused overflow, initiate recovery */
528		if (overflow) {
529			rc = ecore_db_rec_attn(p_hwfn, p_ptt);
530			if (rc != ECORE_SUCCESS)
531				return rc;
532		}
533
534		/* clear the doorbell drop details and prepare for next drop */
535		ecore_wr(p_hwfn, p_ptt, DORQ_REG_DB_DROP_DETAILS_REL, 0);
536
537		/* mark interrupt as handeld (note: even if drop was due to a diffrent
538		 * reason than overflow we mark as handled)
539		 */
540		ecore_wr(p_hwfn, p_ptt, DORQ_REG_INT_STS_WR,
541			 DORQ_REG_INT_STS_DB_DROP | DORQ_REG_INT_STS_DORQ_FIFO_OVFL_ERR);
542
543		/* if there are no indications otherthan drop indications, success */
544		if ((int_sts & ~(DORQ_REG_INT_STS_DB_DROP |
545				 DORQ_REG_INT_STS_DORQ_FIFO_OVFL_ERR |
546				 DORQ_REG_INT_STS_DORQ_FIFO_AFULL)) == 0)
547			return ECORE_SUCCESS;
548	}
549
550	/* some other indication was present - non recoverable */
551	DP_INFO(p_hwfn, "DORQ fatal attention\n");
552
553	return ECORE_INVAL;
554}
555
556static enum _ecore_status_t ecore_tm_attn_cb(struct ecore_hwfn *p_hwfn)
557{
558#ifndef ASIC_ONLY
559	if (CHIP_REV_IS_EMUL_B0(p_hwfn->p_dev)) {
560		u32 val = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
561				   TM_REG_INT_STS_1);
562
563		if (val & ~(TM_REG_INT_STS_1_PEND_TASK_SCAN |
564			    TM_REG_INT_STS_1_PEND_CONN_SCAN))
565			return ECORE_INVAL;
566
567		if (val & (TM_REG_INT_STS_1_PEND_TASK_SCAN |
568			   TM_REG_INT_STS_1_PEND_CONN_SCAN))
569			DP_INFO(p_hwfn, "TM attention on emulation - most likely results of clock-ratios\n");
570		val = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt, TM_REG_INT_MASK_1);
571		val |= TM_REG_INT_MASK_1_PEND_CONN_SCAN |
572		       TM_REG_INT_MASK_1_PEND_TASK_SCAN;
573		ecore_wr(p_hwfn, p_hwfn->p_dpc_ptt, TM_REG_INT_MASK_1, val);
574
575		return ECORE_SUCCESS;
576	}
577#endif
578
579	return ECORE_INVAL;
580}
581
582/* Instead of major changes to the data-structure, we have a some 'special'
583 * identifiers for sources that changed meaning between adapters.
584 */
585enum aeu_invert_reg_special_type {
586	AEU_INVERT_REG_SPECIAL_CNIG_0,
587	AEU_INVERT_REG_SPECIAL_CNIG_1,
588	AEU_INVERT_REG_SPECIAL_CNIG_2,
589	AEU_INVERT_REG_SPECIAL_CNIG_3,
590	AEU_INVERT_REG_SPECIAL_MAX,
591};
592
593static struct aeu_invert_reg_bit
594aeu_descs_special[AEU_INVERT_REG_SPECIAL_MAX] = {
595	{"CNIG port 0", ATTENTION_SINGLE, OSAL_NULL, BLOCK_CNIG},
596	{"CNIG port 1", ATTENTION_SINGLE, OSAL_NULL, BLOCK_CNIG},
597	{"CNIG port 2", ATTENTION_SINGLE, OSAL_NULL, BLOCK_CNIG},
598	{"CNIG port 3", ATTENTION_SINGLE, OSAL_NULL, BLOCK_CNIG},
599};
600
601/* Notice aeu_invert_reg must be defined in the same order of bits as HW; */
602static struct aeu_invert_reg aeu_descs[NUM_ATTN_REGS] =
603{
604	{
605		{	/* After Invert 1 */
606			{"GPIO0 function%d", (32 << ATTENTION_LENGTH_SHIFT), OSAL_NULL, MAX_BLOCK_ID},
607		}
608	},
609
610	{
611		{	/* After Invert 2 */
612			{"PGLUE config_space", ATTENTION_SINGLE, OSAL_NULL, MAX_BLOCK_ID},
613			{"PGLUE misc_flr", ATTENTION_SINGLE, OSAL_NULL, MAX_BLOCK_ID},
614			{"PGLUE B RBC", ATTENTION_PAR_INT, ecore_pglueb_rbc_attn_cb, BLOCK_PGLUE_B},
615			{"PGLUE misc_mctp", ATTENTION_SINGLE, OSAL_NULL, MAX_BLOCK_ID},
616			{"Flash event", ATTENTION_SINGLE, OSAL_NULL, MAX_BLOCK_ID},
617			{"SMB event", ATTENTION_SINGLE, OSAL_NULL, MAX_BLOCK_ID},
618			{"Main Power", ATTENTION_SINGLE, OSAL_NULL, MAX_BLOCK_ID},
619			{"SW timers #%d", (8 << ATTENTION_LENGTH_SHIFT) | (1 << ATTENTION_OFFSET_SHIFT), OSAL_NULL, MAX_BLOCK_ID},
620			{"PCIE glue/PXP VPD %d", (16 << ATTENTION_LENGTH_SHIFT), OSAL_NULL, BLOCK_PGLCS},
621		}
622	},
623
624	{
625		{	/* After Invert 3 */
626			{"General Attention %d", (32 << ATTENTION_LENGTH_SHIFT), OSAL_NULL, MAX_BLOCK_ID},
627		}
628	},
629
630	{
631		{	/* After Invert 4 */
632			{"General Attention 32", ATTENTION_SINGLE | ATTENTION_CLEAR_ENABLE, ecore_fw_assertion, MAX_BLOCK_ID},
633			{"General Attention %d", (2 << ATTENTION_LENGTH_SHIFT) | (33 << ATTENTION_OFFSET_SHIFT), OSAL_NULL, MAX_BLOCK_ID},
634			{"General Attention 35", ATTENTION_SINGLE | ATTENTION_CLEAR_ENABLE, ecore_general_attention_35, MAX_BLOCK_ID},
635			{"NWS Parity", ATTENTION_PAR | ATTENTION_BB_DIFFERENT |
636				       ATTENTION_BB(AEU_INVERT_REG_SPECIAL_CNIG_0) , OSAL_NULL, BLOCK_NWS},
637			{"NWS Interrupt", ATTENTION_SINGLE | ATTENTION_BB_DIFFERENT |
638					  ATTENTION_BB(AEU_INVERT_REG_SPECIAL_CNIG_1), OSAL_NULL, BLOCK_NWS},
639			{"NWM Parity", ATTENTION_PAR | ATTENTION_BB_DIFFERENT |
640				       ATTENTION_BB(AEU_INVERT_REG_SPECIAL_CNIG_2), OSAL_NULL, BLOCK_NWM},
641			{"NWM Interrupt", ATTENTION_SINGLE | ATTENTION_BB_DIFFERENT |
642					  ATTENTION_BB(AEU_INVERT_REG_SPECIAL_CNIG_3), OSAL_NULL, BLOCK_NWM},
643			{"MCP CPU", ATTENTION_SINGLE, ecore_mcp_attn_cb, MAX_BLOCK_ID},
644			{"MCP Watchdog timer", ATTENTION_SINGLE, OSAL_NULL, MAX_BLOCK_ID},
645			{"MCP M2P", ATTENTION_SINGLE, OSAL_NULL, MAX_BLOCK_ID},
646			{"AVS stop status ready", ATTENTION_SINGLE, OSAL_NULL, MAX_BLOCK_ID},
647			{"MSTAT", ATTENTION_PAR_INT, OSAL_NULL, MAX_BLOCK_ID},
648			{"MSTAT per-path", ATTENTION_PAR_INT, OSAL_NULL, MAX_BLOCK_ID},
649			{"Reserved %d", (6 << ATTENTION_LENGTH_SHIFT), OSAL_NULL, MAX_BLOCK_ID },
650			{"NIG", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_NIG},
651			{"BMB/OPTE/MCP", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_BMB},
652			{"BTB", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_BTB},
653			{"BRB", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_BRB},
654			{"PRS", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PRS},
655		}
656	},
657
658	{
659		{	/* After Invert 5 */
660			{"SRC", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_SRC},
661			{"PB Client1", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PBF_PB1},
662			{"PB Client2", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PBF_PB2},
663			{"RPB", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_RPB},
664			{"PBF", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PBF},
665			{"QM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_QM},
666			{"TM", ATTENTION_PAR_INT, ecore_tm_attn_cb, BLOCK_TM},
667			{"MCM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_MCM},
668			{"MSDM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_MSDM},
669			{"MSEM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_MSEM},
670			{"PCM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PCM},
671			{"PSDM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PSDM},
672			{"PSEM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PSEM},
673			{"TCM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_TCM},
674			{"TSDM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_TSDM},
675			{"TSEM", ATTENTION_PAR_INT,  OSAL_NULL, BLOCK_TSEM},
676		}
677	},
678
679	{
680		{	/* After Invert 6 */
681			{"UCM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_UCM},
682			{"USDM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_USDM},
683			{"USEM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_USEM},
684			{"XCM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_XCM},
685			{"XSDM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_XSDM},
686			{"XSEM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_XSEM},
687			{"YCM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_YCM},
688			{"YSDM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_YSDM},
689			{"YSEM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_YSEM},
690			{"XYLD", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_XYLD},
691			{"TMLD", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_TMLD},
692			{"MYLD", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_MULD},
693			{"YULD", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_YULD},
694			{"DORQ", ATTENTION_PAR_INT, ecore_dorq_attn_cb, BLOCK_DORQ},
695			{"DBG", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_DBG},
696			{"IPC", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_IPC},
697		}
698	},
699
700	{
701		{	/* After Invert 7 */
702			{"CCFC", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_CCFC},
703			{"CDU", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_CDU},
704			{"DMAE", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_DMAE},
705			{"IGU", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_IGU},
706			{"ATC", ATTENTION_PAR_INT, OSAL_NULL, MAX_BLOCK_ID},
707			{"CAU", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_CAU},
708			{"PTU", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PTU},
709			{"PRM", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PRM},
710			{"TCFC", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_TCFC},
711			{"RDIF", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_RDIF},
712			{"TDIF", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_TDIF},
713			{"RSS", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_RSS},
714			{"MISC", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_MISC},
715			{"MISCS", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_MISCS},
716			{"PCIE", ATTENTION_PAR, OSAL_NULL, BLOCK_PCIE},
717			{"Vaux PCI core", ATTENTION_SINGLE, OSAL_NULL, BLOCK_PGLCS},
718			{"PSWRQ", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PSWRQ},
719		}
720	},
721
722	{
723		{	/* After Invert 8 */
724			{"PSWRQ (pci_clk)", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PSWRQ2},
725			{"PSWWR", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PSWWR},
726			{"PSWWR (pci_clk)", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PSWWR2},
727			{"PSWRD", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PSWRD},
728			{"PSWRD (pci_clk)", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PSWRD2},
729			{"PSWHST", ATTENTION_PAR_INT, ecore_pswhst_attn_cb, BLOCK_PSWHST},
730			{"PSWHST (pci_clk)", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_PSWHST2},
731			{"GRC", ATTENTION_PAR_INT, ecore_grc_attn_cb, BLOCK_GRC},
732			{"CPMU", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_CPMU},
733			{"NCSI", ATTENTION_PAR_INT, OSAL_NULL, BLOCK_NCSI},
734			{"MSEM PRAM", ATTENTION_PAR, OSAL_NULL, MAX_BLOCK_ID},
735			{"PSEM PRAM", ATTENTION_PAR, OSAL_NULL, MAX_BLOCK_ID},
736			{"TSEM PRAM", ATTENTION_PAR, OSAL_NULL, MAX_BLOCK_ID},
737			{"USEM PRAM", ATTENTION_PAR, OSAL_NULL, MAX_BLOCK_ID},
738			{"XSEM PRAM", ATTENTION_PAR, OSAL_NULL, MAX_BLOCK_ID},
739			{"YSEM PRAM", ATTENTION_PAR, OSAL_NULL, MAX_BLOCK_ID},
740			{"pxp_misc_mps", ATTENTION_PAR, OSAL_NULL, BLOCK_PGLCS},
741			{"PCIE glue/PXP Exp. ROM", ATTENTION_SINGLE, OSAL_NULL, BLOCK_PGLCS},
742			{"PERST_B assertion", ATTENTION_SINGLE, OSAL_NULL, MAX_BLOCK_ID},
743			{"PERST_B deassertion", ATTENTION_SINGLE, OSAL_NULL, MAX_BLOCK_ID},
744			{"Reserved %d", (2 << ATTENTION_LENGTH_SHIFT), OSAL_NULL, MAX_BLOCK_ID },
745		}
746	},
747
748	{
749		{	/* After Invert 9 */
750			{"MCP Latched memory", ATTENTION_PAR, OSAL_NULL, MAX_BLOCK_ID},
751			{"MCP Latched scratchpad cache", ATTENTION_SINGLE, OSAL_NULL, MAX_BLOCK_ID},
752			{"MCP Latched ump_tx", ATTENTION_PAR, OSAL_NULL, MAX_BLOCK_ID},
753			{"MCP Latched scratchpad", ATTENTION_PAR, OSAL_NULL, MAX_BLOCK_ID},
754			{"Reserved %d", (28 << ATTENTION_LENGTH_SHIFT), OSAL_NULL, MAX_BLOCK_ID },
755		}
756	},
757
758};
759
760static struct aeu_invert_reg_bit *
761ecore_int_aeu_translate(struct ecore_hwfn *p_hwfn,
762			struct aeu_invert_reg_bit *p_bit)
763{
764	if (!ECORE_IS_BB(p_hwfn->p_dev))
765		return p_bit;
766
767	if (!(p_bit->flags & ATTENTION_BB_DIFFERENT))
768		return p_bit;
769
770	return &aeu_descs_special[(p_bit->flags & ATTENTION_BB_MASK) >>
771				  ATTENTION_BB_SHIFT];
772}
773
774static bool ecore_int_is_parity_flag(struct ecore_hwfn *p_hwfn,
775				     struct aeu_invert_reg_bit *p_bit)
776{
777	return !!(ecore_int_aeu_translate(p_hwfn, p_bit)->flags &
778		  ATTENTION_PARITY);
779}
780
781#define ATTN_STATE_BITS		(0xfff)
782#define ATTN_BITS_MASKABLE	(0x3ff)
783struct ecore_sb_attn_info {
784	/* Virtual & Physical address of the SB */
785	struct atten_status_block	*sb_attn;
786	dma_addr_t			sb_phys;
787
788	/* Last seen running index */
789	u16				index;
790
791	/* A mask of the AEU bits resulting in a parity error */
792	u32				parity_mask[NUM_ATTN_REGS];
793
794	/* A pointer to the attention description structure */
795	struct aeu_invert_reg		*p_aeu_desc;
796
797	/* Previously asserted attentions, which are still unasserted */
798	u16				known_attn;
799
800	/* Cleanup address for the link's general hw attention */
801	u32				mfw_attn_addr;
802};
803
804static u16 ecore_attn_update_idx(struct ecore_hwfn *p_hwfn,
805				 struct ecore_sb_attn_info *p_sb_desc)
806{
807	u16 rc = 0, index;
808
809	OSAL_MMIOWB(p_hwfn->p_dev);
810
811	index = OSAL_LE16_TO_CPU(p_sb_desc->sb_attn->sb_index);
812	if (p_sb_desc->index != index) {
813		p_sb_desc->index = index;
814		rc = ECORE_SB_ATT_IDX;
815	}
816
817	OSAL_MMIOWB(p_hwfn->p_dev);
818
819	return rc;
820}
821
822/**
823 * @brief ecore_int_assertion - handles asserted attention bits
824 *
825 * @param p_hwfn
826 * @param asserted_bits newly asserted bits
827 * @return enum _ecore_status_t
828 */
829static enum _ecore_status_t ecore_int_assertion(struct ecore_hwfn *p_hwfn,
830						u16 asserted_bits)
831{
832	struct ecore_sb_attn_info *sb_attn_sw = p_hwfn->p_sb_attn;
833	u32 igu_mask;
834
835	/* Mask the source of the attention in the IGU */
836	igu_mask = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
837			    IGU_REG_ATTENTION_ENABLE);
838	DP_VERBOSE(p_hwfn, ECORE_MSG_INTR, "IGU mask: 0x%08x --> 0x%08x\n",
839		   igu_mask, igu_mask & ~(asserted_bits & ATTN_BITS_MASKABLE));
840	igu_mask &= ~(asserted_bits & ATTN_BITS_MASKABLE);
841	ecore_wr(p_hwfn, p_hwfn->p_dpc_ptt, IGU_REG_ATTENTION_ENABLE, igu_mask);
842
843	DP_VERBOSE(p_hwfn, ECORE_MSG_INTR,
844		   "inner known ATTN state: 0x%04x --> 0x%04x\n",
845		   sb_attn_sw->known_attn,
846		   sb_attn_sw->known_attn | asserted_bits);
847	sb_attn_sw->known_attn |= asserted_bits;
848
849	/* Handle MCP events */
850	if (asserted_bits & 0x100) {
851		ecore_mcp_handle_events(p_hwfn, p_hwfn->p_dpc_ptt);
852		/* Clean the MCP attention */
853		ecore_wr(p_hwfn, p_hwfn->p_dpc_ptt,
854			 sb_attn_sw->mfw_attn_addr, 0);
855	}
856
857	/* FIXME - this will change once we'll have GOOD gtt definitions */
858	DIRECT_REG_WR(p_hwfn,
859		      (u8 OSAL_IOMEM*)p_hwfn->regview +
860		      GTT_BAR0_MAP_REG_IGU_CMD +
861		      ((IGU_CMD_ATTN_BIT_SET_UPPER -
862			IGU_CMD_INT_ACK_BASE) << 3), (u32)asserted_bits);
863
864	DP_VERBOSE(p_hwfn, ECORE_MSG_INTR, "set cmd IGU: 0x%04x\n",
865		   asserted_bits);
866
867	return ECORE_SUCCESS;
868}
869
870static void ecore_int_attn_print(struct ecore_hwfn *p_hwfn,
871				 enum block_id id, enum dbg_attn_type type,
872				 bool b_clear)
873{
874	struct dbg_attn_block_result attn_results;
875	enum dbg_status status;
876
877	OSAL_MEMSET(&attn_results, 0, sizeof(attn_results));
878
879	status = ecore_dbg_read_attn(p_hwfn, p_hwfn->p_dpc_ptt, id, type,
880				     b_clear, &attn_results);
881#ifdef ATTN_DESC
882	if (status != DBG_STATUS_OK)
883		DP_NOTICE(p_hwfn, true,
884			  "Failed to parse attention information [status: %s]\n",
885			  ecore_dbg_get_status_str(status));
886	else
887		ecore_dbg_parse_attn(p_hwfn, &attn_results);
888#else
889	if (status != DBG_STATUS_OK)
890		DP_NOTICE(p_hwfn, true,
891			  "Failed to parse attention information [status: %d]\n",
892			  status);
893	else
894		ecore_dbg_print_attn(p_hwfn, &attn_results);
895#endif
896}
897
898/**
899 * @brief ecore_int_deassertion_aeu_bit - handles the effects of a single
900 * cause of the attention
901 *
902 * @param p_hwfn
903 * @param p_aeu - descriptor of an AEU bit which caused the attention
904 * @param aeu_en_reg - register offset of the AEU enable reg. which configured
905 *  this bit to this group.
906 * @param bit_index - index of this bit in the aeu_en_reg
907 *
908 * @return enum _ecore_status_t
909 */
910static enum _ecore_status_t
911ecore_int_deassertion_aeu_bit(struct ecore_hwfn *p_hwfn,
912			      struct aeu_invert_reg_bit *p_aeu,
913			      u32 aeu_en_reg,
914			      const char *p_bit_name,
915			      u32 bitmask)
916{
917	enum _ecore_status_t rc = ECORE_INVAL;
918	bool b_fatal = false;
919
920	DP_INFO(p_hwfn, "Deasserted attention `%s'[%08x]\n",
921		p_bit_name, bitmask);
922
923	/* Call callback before clearing the interrupt status */
924	if (p_aeu->cb) {
925		DP_INFO(p_hwfn, "`%s (attention)': Calling Callback function\n",
926			p_bit_name);
927		rc = p_aeu->cb(p_hwfn);
928	}
929
930	if (rc != ECORE_SUCCESS)
931		b_fatal = true;
932
933	/* Print HW block interrupt registers */
934	if (p_aeu->block_index != MAX_BLOCK_ID)
935		ecore_int_attn_print(p_hwfn, p_aeu->block_index,
936				     ATTN_TYPE_INTERRUPT, !b_fatal);
937
938	/* Reach assertion if attention is fatal */
939	if (b_fatal) {
940		DP_NOTICE(p_hwfn, true, "`%s': Fatal attention\n",
941			  p_bit_name);
942
943		ecore_hw_err_notify(p_hwfn, ECORE_HW_ERR_HW_ATTN);
944	}
945
946	/* Prevent this Attention from being asserted in the future */
947	if (p_aeu->flags & ATTENTION_CLEAR_ENABLE ||
948	    p_hwfn->p_dev->attn_clr_en) {
949		u32 val;
950		u32 mask = ~bitmask;
951		val = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en_reg);
952		ecore_wr(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en_reg, (val & mask));
953		DP_INFO(p_hwfn, "`%s' - Disabled future attentions\n",
954			p_bit_name);
955	}
956
957	return rc;
958}
959
960/**
961 * @brief ecore_int_deassertion_parity - handle a single parity AEU source
962 *
963 * @param p_hwfn
964 * @param p_aeu - descriptor of an AEU bit which caused the parity
965 * @param aeu_en_reg - address of the AEU enable register
966 * @param bit_index
967 */
968static void ecore_int_deassertion_parity(struct ecore_hwfn *p_hwfn,
969					 struct aeu_invert_reg_bit *p_aeu,
970					 u32 aeu_en_reg, u8 bit_index)
971{
972	u32 block_id = p_aeu->block_index, mask, val;
973
974	DP_NOTICE(p_hwfn->p_dev, false,
975		  "%s parity attention is set [address 0x%08x, bit %d]\n",
976		  p_aeu->bit_name, aeu_en_reg, bit_index);
977
978	if (block_id != MAX_BLOCK_ID) {
979		ecore_int_attn_print(p_hwfn, block_id, ATTN_TYPE_PARITY, false);
980
981		/* In A0, there's a single parity bit for several blocks */
982		if (block_id == BLOCK_BTB) {
983			ecore_int_attn_print(p_hwfn, BLOCK_OPTE,
984					     ATTN_TYPE_PARITY, false);
985			ecore_int_attn_print(p_hwfn, BLOCK_MCP,
986					     ATTN_TYPE_PARITY, false);
987		}
988	}
989
990	/* Prevent this parity error from being re-asserted */
991	mask = ~(0x1 << bit_index);
992	val = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en_reg);
993	ecore_wr(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en_reg, val & mask);
994	DP_INFO(p_hwfn, "`%s' - Disabled future parity errors\n",
995		p_aeu->bit_name);
996}
997
998/**
999 * @brief - handles deassertion of previously asserted attentions.
1000 *
1001 * @param p_hwfn
1002 * @param deasserted_bits - newly deasserted bits
1003 * @return enum _ecore_status_t
1004 *
1005 */
1006static enum _ecore_status_t ecore_int_deassertion(struct ecore_hwfn *p_hwfn,
1007						  u16 deasserted_bits)
1008{
1009	struct ecore_sb_attn_info *sb_attn_sw = p_hwfn->p_sb_attn;
1010	u32 aeu_inv_arr[NUM_ATTN_REGS], aeu_mask, aeu_en, en;
1011	u8 i, j, k, bit_idx;
1012	enum _ecore_status_t rc = ECORE_SUCCESS;
1013
1014	/* Read the attention registers in the AEU */
1015	for (i = 0; i < NUM_ATTN_REGS; i++) {
1016		aeu_inv_arr[i] = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
1017					  MISC_REG_AEU_AFTER_INVERT_1_IGU +
1018					  i * 0x4);
1019		DP_VERBOSE(p_hwfn, ECORE_MSG_INTR,
1020			   "Deasserted bits [%d]: %08x\n",
1021			   i, aeu_inv_arr[i]);
1022	}
1023
1024	/* Handle parity attentions first */
1025	for (i = 0; i < NUM_ATTN_REGS; i++)
1026	{
1027		struct aeu_invert_reg *p_aeu = &sb_attn_sw->p_aeu_desc[i];
1028		u32 parities;
1029
1030		aeu_en = MISC_REG_AEU_ENABLE1_IGU_OUT_0 + i * sizeof(u32);
1031		en = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en);
1032		parities = sb_attn_sw->parity_mask[i] & aeu_inv_arr[i] & en;
1033
1034		/* Skip register in which no parity bit is currently set */
1035		if (!parities)
1036			continue;
1037
1038		for (j = 0, bit_idx = 0; bit_idx < 32; j++) {
1039			struct aeu_invert_reg_bit *p_bit = &p_aeu->bits[j];
1040
1041			if (ecore_int_is_parity_flag(p_hwfn, p_bit) &&
1042			    !!(parities & (1 << bit_idx)))
1043				ecore_int_deassertion_parity(p_hwfn, p_bit,
1044							     aeu_en, bit_idx);
1045
1046			bit_idx += ATTENTION_LENGTH(p_bit->flags);
1047		}
1048	}
1049
1050	/* Find non-parity cause for attention and act */
1051	for (k = 0; k < MAX_ATTN_GRPS; k++) {
1052		struct aeu_invert_reg_bit *p_aeu;
1053
1054		/* Handle only groups whose attention is currently deasserted */
1055		if (!(deasserted_bits & (1 << k)))
1056			continue;
1057
1058		for (i = 0; i < NUM_ATTN_REGS; i++) {
1059			u32 bits;
1060
1061			aeu_en = MISC_REG_AEU_ENABLE1_IGU_OUT_0 +
1062				 i * sizeof(u32) +
1063				 k * sizeof(u32) * NUM_ATTN_REGS;
1064			en = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en);
1065			bits = aeu_inv_arr[i] & en;
1066
1067			/* Skip if no bit from this group is currently set */
1068			if (!bits)
1069				continue;
1070
1071			/* Find all set bits from current register which belong
1072			 * to current group, making them responsible for the
1073			 * previous assertion.
1074			 */
1075			for (j = 0, bit_idx = 0; bit_idx < 32; j++)
1076			{
1077				long unsigned int bitmask;
1078				u8 bit, bit_len;
1079
1080				/* Need to account bits with changed meaning */
1081				p_aeu = &sb_attn_sw->p_aeu_desc[i].bits[j];
1082				p_aeu = ecore_int_aeu_translate(p_hwfn, p_aeu);
1083
1084				bit = bit_idx;
1085				bit_len = ATTENTION_LENGTH(p_aeu->flags);
1086				if (ecore_int_is_parity_flag(p_hwfn, p_aeu)) {
1087					/* Skip Parity */
1088					bit++;
1089					bit_len--;
1090				}
1091
1092				/* Find the bits relating to HW-block, then
1093				 * shift so they'll become LSB.
1094				 */
1095				bitmask = bits & (((1 << bit_len) - 1) << bit);
1096				bitmask >>= bit;
1097
1098				if (bitmask) {
1099					u32 flags = p_aeu->flags;
1100					char bit_name[30];
1101					u8 num;
1102
1103					num = (u8)OSAL_FIND_FIRST_BIT(&bitmask,
1104								bit_len);
1105
1106					/* Some bits represent more than a
1107					 * a single interrupt. Correctly print
1108					 * their name.
1109					 */
1110					if (ATTENTION_LENGTH(flags) > 2 ||
1111					    ((flags & ATTENTION_PAR_INT) &&
1112					    ATTENTION_LENGTH(flags) > 1))
1113						OSAL_SNPRINTF(bit_name, 30,
1114							      p_aeu->bit_name,
1115							      num);
1116					else
1117						OSAL_STRNCPY(bit_name,
1118							     p_aeu->bit_name,
1119							     30);
1120
1121					/* We now need to pass bitmask in its
1122					 * correct position.
1123					 */
1124					bitmask <<= bit;
1125
1126					/* Handle source of the attention */
1127					ecore_int_deassertion_aeu_bit(p_hwfn,
1128								      p_aeu,
1129								      aeu_en,
1130								      bit_name,
1131								      bitmask);
1132				}
1133
1134				bit_idx += ATTENTION_LENGTH(p_aeu->flags);
1135			}
1136		}
1137	}
1138
1139	/* Clear IGU indication for the deasserted bits */
1140	/* FIXME - this will change once we'll have GOOD gtt definitions */
1141	DIRECT_REG_WR(p_hwfn,
1142		      (u8 OSAL_IOMEM*)p_hwfn->regview +
1143				      GTT_BAR0_MAP_REG_IGU_CMD +
1144				      ((IGU_CMD_ATTN_BIT_CLR_UPPER -
1145					IGU_CMD_INT_ACK_BASE) << 3),
1146		      ~((u32)deasserted_bits));
1147
1148	/* Unmask deasserted attentions in IGU */
1149	aeu_mask = ecore_rd(p_hwfn, p_hwfn->p_dpc_ptt,
1150			    IGU_REG_ATTENTION_ENABLE);
1151	aeu_mask |= (deasserted_bits & ATTN_BITS_MASKABLE);
1152	ecore_wr(p_hwfn, p_hwfn->p_dpc_ptt, IGU_REG_ATTENTION_ENABLE, aeu_mask);
1153
1154	/* Clear deassertion from inner state */
1155	sb_attn_sw->known_attn &= ~deasserted_bits;
1156
1157	return rc;
1158}
1159
1160static enum _ecore_status_t ecore_int_attentions(struct ecore_hwfn *p_hwfn)
1161{
1162	struct ecore_sb_attn_info *p_sb_attn_sw = p_hwfn->p_sb_attn;
1163	struct atten_status_block *p_sb_attn = p_sb_attn_sw->sb_attn;
1164	u16 index = 0, asserted_bits, deasserted_bits;
1165	u32 attn_bits = 0, attn_acks = 0;
1166	enum _ecore_status_t rc = ECORE_SUCCESS;
1167
1168	/* Read current attention bits/acks - safeguard against attentions
1169	 * by guaranting work on a synchronized timeframe
1170	 */
1171	do {
1172		index = OSAL_LE16_TO_CPU(p_sb_attn->sb_index);
1173		attn_bits = OSAL_LE32_TO_CPU(p_sb_attn->atten_bits);
1174		attn_acks = OSAL_LE32_TO_CPU(p_sb_attn->atten_ack);
1175	} while (index != OSAL_LE16_TO_CPU(p_sb_attn->sb_index));
1176	p_sb_attn->sb_index = index;
1177
1178	/* Attention / Deassertion are meaningful (and in correct state)
1179	 * only when they differ and consistent with known state - deassertion
1180	 * when previous attention & current ack, and assertion when current
1181	 * attention with no previous attention
1182	 */
1183	asserted_bits = (attn_bits & ~attn_acks & ATTN_STATE_BITS) &
1184			~p_sb_attn_sw->known_attn;
1185	deasserted_bits = (~attn_bits & attn_acks & ATTN_STATE_BITS) &
1186			  p_sb_attn_sw->known_attn;
1187
1188	if ((asserted_bits & ~0x100) || (deasserted_bits & ~0x100))
1189		DP_INFO(p_hwfn,
1190			"Attention: Index: 0x%04x, Bits: 0x%08x, Acks: 0x%08x, asserted: 0x%04x, De-asserted 0x%04x [Prev. known: 0x%04x]\n",
1191			index, attn_bits, attn_acks, asserted_bits,
1192			deasserted_bits, p_sb_attn_sw->known_attn);
1193	else if (asserted_bits == 0x100)
1194		DP_INFO(p_hwfn,
1195			"MFW indication via attention\n");
1196	else
1197		DP_VERBOSE(p_hwfn, ECORE_MSG_INTR,
1198			   "MFW indication [deassertion]\n");
1199
1200	if (asserted_bits) {
1201		rc = ecore_int_assertion(p_hwfn, asserted_bits);
1202		if (rc)
1203			return rc;
1204	}
1205
1206	if (deasserted_bits)
1207		rc = ecore_int_deassertion(p_hwfn, deasserted_bits);
1208
1209	return rc;
1210}
1211
1212static void ecore_sb_ack_attn(struct ecore_hwfn *p_hwfn,
1213			      void OSAL_IOMEM *igu_addr, u32 ack_cons)
1214{
1215	struct igu_prod_cons_update igu_ack = { 0 };
1216
1217	igu_ack.sb_id_and_flags =
1218		((ack_cons << IGU_PROD_CONS_UPDATE_SB_INDEX_SHIFT) |
1219		 (1 << IGU_PROD_CONS_UPDATE_UPDATE_FLAG_SHIFT) |
1220		 (IGU_INT_NOP << IGU_PROD_CONS_UPDATE_ENABLE_INT_SHIFT) |
1221		 (IGU_SEG_ACCESS_ATTN <<
1222		  IGU_PROD_CONS_UPDATE_SEGMENT_ACCESS_SHIFT));
1223
1224	DIRECT_REG_WR(p_hwfn, igu_addr, igu_ack.sb_id_and_flags);
1225
1226	/* Both segments (interrupts & acks) are written to same place address;
1227	 * Need to guarantee all commands will be received (in-order) by HW.
1228	 */
1229	OSAL_MMIOWB(p_hwfn->p_dev);
1230	OSAL_BARRIER(p_hwfn->p_dev);
1231}
1232
1233void ecore_int_sp_dpc(osal_int_ptr_t hwfn_cookie)
1234{
1235	struct ecore_hwfn *p_hwfn = (struct ecore_hwfn *)hwfn_cookie;
1236	struct ecore_pi_info *pi_info = OSAL_NULL;
1237	struct ecore_sb_attn_info *sb_attn;
1238	struct ecore_sb_info *sb_info;
1239	int arr_size;
1240	u16 rc = 0;
1241
1242	if (!p_hwfn)
1243		return;
1244
1245	if (!p_hwfn->p_sp_sb) {
1246		DP_ERR(p_hwfn->p_dev, "DPC called - no p_sp_sb\n");
1247		return;
1248	}
1249
1250	sb_info = &p_hwfn->p_sp_sb->sb_info;
1251	arr_size = OSAL_ARRAY_SIZE(p_hwfn->p_sp_sb->pi_info_arr);
1252	if (!sb_info) {
1253		DP_ERR(p_hwfn->p_dev, "Status block is NULL - cannot ack interrupts\n");
1254		return;
1255	}
1256
1257	if (!p_hwfn->p_sb_attn) {
1258		DP_ERR(p_hwfn->p_dev, "DPC called - no p_sb_attn");
1259		return;
1260	}
1261	sb_attn =  p_hwfn->p_sb_attn;
1262
1263	DP_VERBOSE(p_hwfn, ECORE_MSG_INTR, "DPC Called! (hwfn %p %d)\n",
1264		   p_hwfn, p_hwfn->my_id);
1265
1266	/* Disable ack for def status block. Required both for msix +
1267	 * inta in non-mask mode, in inta does no harm.
1268	 */
1269	ecore_sb_ack(sb_info, IGU_INT_DISABLE, 0);
1270
1271	/* Gather Interrupts/Attentions information */
1272	if (!sb_info->sb_virt) {
1273		DP_ERR(p_hwfn->p_dev, "Interrupt Status block is NULL - cannot check for new interrupts!\n");
1274	} else {
1275		u32 tmp_index = sb_info->sb_ack;
1276		rc = ecore_sb_update_sb_idx(sb_info);
1277		DP_VERBOSE(p_hwfn->p_dev, ECORE_MSG_INTR,
1278			   "Interrupt indices: 0x%08x --> 0x%08x\n",
1279			   tmp_index, sb_info->sb_ack);
1280	}
1281
1282	if (!sb_attn || !sb_attn->sb_attn) {
1283		DP_ERR(p_hwfn->p_dev, "Attentions Status block is NULL - cannot check for new attentions!\n");
1284	} else {
1285		u16 tmp_index = sb_attn->index;
1286
1287		rc |= ecore_attn_update_idx(p_hwfn, sb_attn);
1288		DP_VERBOSE(p_hwfn->p_dev, ECORE_MSG_INTR,
1289			   "Attention indices: 0x%08x --> 0x%08x\n",
1290			   tmp_index, sb_attn->index);
1291	}
1292
1293	/* Check if we expect interrupts at this time. if not just ack them */
1294	if (!(rc & ECORE_SB_EVENT_MASK)) {
1295		ecore_sb_ack(sb_info, IGU_INT_ENABLE, 1);
1296		return;
1297	}
1298
1299	/* Check the validity of the DPC ptt. If not ack interrupts and fail */
1300	if (!p_hwfn->p_dpc_ptt) {
1301		DP_NOTICE(p_hwfn->p_dev, true, "Failed to allocate PTT\n");
1302		ecore_sb_ack(sb_info, IGU_INT_ENABLE, 1);
1303		return;
1304	}
1305
1306	if (rc & ECORE_SB_ATT_IDX)
1307		ecore_int_attentions(p_hwfn);
1308
1309	if (rc & ECORE_SB_IDX) {
1310		int pi;
1311
1312		/* Since we only looked at the SB index, it's possible more
1313		 * than a single protocol-index on the SB incremented.
1314		 * Iterate over all configured protocol indices and check
1315		 * whether something happened for each.
1316		 */
1317		for (pi = 0; pi < arr_size; pi++) {
1318			pi_info = &p_hwfn->p_sp_sb->pi_info_arr[pi];
1319			if (pi_info->comp_cb != OSAL_NULL)
1320				pi_info->comp_cb(p_hwfn, pi_info->cookie);
1321		}
1322	}
1323
1324	if (sb_attn && (rc & ECORE_SB_ATT_IDX)) {
1325		/* This should be done before the interrupts are enabled,
1326		 * since otherwise a new attention will be generated.
1327		 */
1328		ecore_sb_ack_attn(p_hwfn, sb_info->igu_addr, sb_attn->index);
1329	}
1330
1331	ecore_sb_ack(sb_info, IGU_INT_ENABLE, 1);
1332}
1333
1334static void ecore_int_sb_attn_free(struct ecore_hwfn *p_hwfn)
1335{
1336	struct ecore_sb_attn_info *p_sb = p_hwfn->p_sb_attn;
1337
1338	if (!p_sb)
1339		return;
1340
1341	if (p_sb->sb_attn) {
1342		OSAL_DMA_FREE_COHERENT(p_hwfn->p_dev, p_sb->sb_attn,
1343				       p_sb->sb_phys,
1344				       SB_ATTN_ALIGNED_SIZE(p_hwfn));
1345	}
1346
1347	OSAL_FREE(p_hwfn->p_dev, p_sb);
1348	p_hwfn->p_sb_attn = OSAL_NULL;
1349}
1350
1351static void ecore_int_sb_attn_setup(struct ecore_hwfn *p_hwfn,
1352				    struct ecore_ptt *p_ptt)
1353{
1354	struct ecore_sb_attn_info *sb_info = p_hwfn->p_sb_attn;
1355
1356	OSAL_MEMSET(sb_info->sb_attn, 0, sizeof(*sb_info->sb_attn));
1357
1358	sb_info->index = 0;
1359	sb_info->known_attn = 0;
1360
1361	/* Configure Attention Status Block in IGU */
1362	ecore_wr(p_hwfn, p_ptt, IGU_REG_ATTN_MSG_ADDR_L,
1363		 DMA_LO(p_hwfn->p_sb_attn->sb_phys));
1364	ecore_wr(p_hwfn, p_ptt, IGU_REG_ATTN_MSG_ADDR_H,
1365		 DMA_HI(p_hwfn->p_sb_attn->sb_phys));
1366}
1367
1368static void ecore_int_sb_attn_init(struct ecore_hwfn *p_hwfn,
1369				   struct ecore_ptt *p_ptt,
1370				   void *sb_virt_addr,
1371				   dma_addr_t sb_phy_addr)
1372{
1373	struct ecore_sb_attn_info *sb_info = p_hwfn->p_sb_attn;
1374	int i, j, k;
1375
1376	sb_info->sb_attn = sb_virt_addr;
1377	sb_info->sb_phys = sb_phy_addr;
1378
1379	/* Set the pointer to the AEU descriptors */
1380	sb_info->p_aeu_desc = aeu_descs;
1381
1382	/* Calculate Parity Masks */
1383	OSAL_MEMSET(sb_info->parity_mask, 0, sizeof(u32) * NUM_ATTN_REGS);
1384	for (i = 0; i < NUM_ATTN_REGS; i++) {
1385		/* j is array index, k is bit index */
1386		for (j = 0, k = 0; k < 32; j++) {
1387			struct aeu_invert_reg_bit *p_aeu;
1388
1389			p_aeu = &aeu_descs[i].bits[j];
1390			if (ecore_int_is_parity_flag(p_hwfn, p_aeu))
1391				sb_info->parity_mask[i] |= 1 << k;
1392
1393			k += ATTENTION_LENGTH(p_aeu->flags);
1394		}
1395		DP_VERBOSE(p_hwfn, ECORE_MSG_INTR,
1396			   "Attn Mask [Reg %d]: 0x%08x\n",
1397			   i, sb_info->parity_mask[i]);
1398	}
1399
1400	/* Set the address of cleanup for the mcp attention */
1401	sb_info->mfw_attn_addr = (p_hwfn->rel_pf_id << 3) +
1402				 MISC_REG_AEU_GENERAL_ATTN_0;
1403
1404	ecore_int_sb_attn_setup(p_hwfn, p_ptt);
1405}
1406
1407static enum _ecore_status_t ecore_int_sb_attn_alloc(struct ecore_hwfn *p_hwfn,
1408						    struct ecore_ptt *p_ptt)
1409{
1410	struct ecore_dev *p_dev = p_hwfn->p_dev;
1411	struct ecore_sb_attn_info *p_sb;
1412	dma_addr_t p_phys = 0;
1413	void *p_virt;
1414
1415	/* SB struct */
1416	p_sb = OSAL_ALLOC(p_dev, GFP_KERNEL, sizeof(*p_sb));
1417	if (!p_sb) {
1418		DP_NOTICE(p_dev, false, "Failed to allocate `struct ecore_sb_attn_info'\n");
1419		return ECORE_NOMEM;
1420	}
1421
1422	/* SB ring  */
1423	p_virt = OSAL_DMA_ALLOC_COHERENT(p_dev, &p_phys,
1424					 SB_ATTN_ALIGNED_SIZE(p_hwfn));
1425	if (!p_virt) {
1426		DP_NOTICE(p_dev, false, "Failed to allocate status block (attentions)\n");
1427		OSAL_FREE(p_dev, p_sb);
1428		return ECORE_NOMEM;
1429	}
1430
1431	/* Attention setup */
1432	p_hwfn->p_sb_attn = p_sb;
1433	ecore_int_sb_attn_init(p_hwfn, p_ptt, p_virt, p_phys);
1434
1435	return ECORE_SUCCESS;
1436}
1437
1438/* coalescing timeout = timeset << (timer_res + 1) */
1439#define ECORE_CAU_DEF_RX_USECS 24
1440#define ECORE_CAU_DEF_TX_USECS 48
1441
1442void ecore_init_cau_sb_entry(struct ecore_hwfn *p_hwfn,
1443			     struct cau_sb_entry *p_sb_entry,
1444			     u8 pf_id, u16 vf_number, u8 vf_valid)
1445{
1446	struct ecore_dev *p_dev = p_hwfn->p_dev;
1447	u32 cau_state;
1448	u8 timer_res;
1449
1450	OSAL_MEMSET(p_sb_entry, 0, sizeof(*p_sb_entry));
1451
1452	SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_PF_NUMBER, pf_id);
1453	SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_VF_NUMBER, vf_number);
1454	SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_VF_VALID, vf_valid);
1455	SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_SB_TIMESET0, 0x7F);
1456	SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_SB_TIMESET1, 0x7F);
1457
1458	cau_state = CAU_HC_DISABLE_STATE;
1459
1460	if (p_dev->int_coalescing_mode == ECORE_COAL_MODE_ENABLE) {
1461		cau_state = CAU_HC_ENABLE_STATE;
1462		if (!p_dev->rx_coalesce_usecs)
1463			p_dev->rx_coalesce_usecs = ECORE_CAU_DEF_RX_USECS;
1464		if (!p_dev->tx_coalesce_usecs)
1465			p_dev->tx_coalesce_usecs = ECORE_CAU_DEF_TX_USECS;
1466	}
1467
1468	/* Coalesce = (timeset << timer-res), timeset is 7bit wide */
1469	if (p_dev->rx_coalesce_usecs <= 0x7F)
1470		timer_res = 0;
1471	else if (p_dev->rx_coalesce_usecs <= 0xFF)
1472		timer_res = 1;
1473	else
1474		timer_res = 2;
1475	SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_TIMER_RES0, timer_res);
1476
1477	if (p_dev->tx_coalesce_usecs <= 0x7F)
1478		timer_res = 0;
1479	else if (p_dev->tx_coalesce_usecs <= 0xFF)
1480		timer_res = 1;
1481	else
1482		timer_res = 2;
1483	SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_TIMER_RES1, timer_res);
1484
1485	SET_FIELD(p_sb_entry->data, CAU_SB_ENTRY_STATE0, cau_state);
1486	SET_FIELD(p_sb_entry->data, CAU_SB_ENTRY_STATE1, cau_state);
1487}
1488
1489static void _ecore_int_cau_conf_pi(struct ecore_hwfn *p_hwfn,
1490				   struct ecore_ptt *p_ptt,
1491				   u16 igu_sb_id, u32 pi_index,
1492				   enum ecore_coalescing_fsm coalescing_fsm,
1493				   u8 timeset)
1494{
1495	struct cau_pi_entry pi_entry;
1496	u32 sb_offset, pi_offset;
1497
1498	if (IS_VF(p_hwfn->p_dev))
1499		return;/* @@@TBD MichalK- VF CAU... */
1500
1501	sb_offset = igu_sb_id * PIS_PER_SB_E4;
1502	OSAL_MEMSET(&pi_entry, 0, sizeof(struct cau_pi_entry));
1503
1504	SET_FIELD(pi_entry.prod, CAU_PI_ENTRY_PI_TIMESET, timeset);
1505	if (coalescing_fsm == ECORE_COAL_RX_STATE_MACHINE)
1506		SET_FIELD(pi_entry.prod, CAU_PI_ENTRY_FSM_SEL, 0);
1507	else
1508		SET_FIELD(pi_entry.prod, CAU_PI_ENTRY_FSM_SEL, 1);
1509
1510	pi_offset = sb_offset + pi_index;
1511	if (p_hwfn->hw_init_done) {
1512		ecore_wr(p_hwfn, p_ptt,
1513			 CAU_REG_PI_MEMORY + pi_offset * sizeof(u32),
1514			 *((u32 *)&(pi_entry)));
1515	} else {
1516		STORE_RT_REG(p_hwfn,
1517			     CAU_REG_PI_MEMORY_RT_OFFSET + pi_offset,
1518			     *((u32 *)&(pi_entry)));
1519	}
1520}
1521
1522void ecore_int_cau_conf_pi(struct ecore_hwfn *p_hwfn,
1523			   struct ecore_ptt *p_ptt,
1524			   struct ecore_sb_info *p_sb, u32 pi_index,
1525			   enum ecore_coalescing_fsm coalescing_fsm,
1526			   u8 timeset)
1527{
1528	_ecore_int_cau_conf_pi(p_hwfn, p_ptt, p_sb->igu_sb_id,
1529			       pi_index, coalescing_fsm, timeset);
1530}
1531
1532void ecore_int_cau_conf_sb(struct ecore_hwfn *p_hwfn,
1533			   struct ecore_ptt *p_ptt,
1534			   dma_addr_t sb_phys, u16 igu_sb_id,
1535			   u16 vf_number, u8 vf_valid)
1536{
1537	struct cau_sb_entry sb_entry;
1538
1539	ecore_init_cau_sb_entry(p_hwfn, &sb_entry, p_hwfn->rel_pf_id,
1540				vf_number, vf_valid);
1541
1542	if (p_hwfn->hw_init_done) {
1543		/* Wide-bus, initialize via DMAE */
1544		u64 phys_addr = (u64)sb_phys;
1545
1546		ecore_dmae_host2grc(p_hwfn, p_ptt, (u64)(osal_uintptr_t)&phys_addr,
1547				    CAU_REG_SB_ADDR_MEMORY +
1548				    igu_sb_id * sizeof(u64), 2,
1549				    OSAL_NULL /* default parameters */);
1550		ecore_dmae_host2grc(p_hwfn, p_ptt, (u64)(osal_uintptr_t)&sb_entry,
1551				    CAU_REG_SB_VAR_MEMORY +
1552				    igu_sb_id * sizeof(u64), 2,
1553				    OSAL_NULL /* default parameters */);
1554	} else {
1555		/* Initialize Status Block Address */
1556		STORE_RT_REG_AGG(p_hwfn,
1557				 CAU_REG_SB_ADDR_MEMORY_RT_OFFSET+igu_sb_id*2,
1558				 sb_phys);
1559
1560		STORE_RT_REG_AGG(p_hwfn,
1561				 CAU_REG_SB_VAR_MEMORY_RT_OFFSET+igu_sb_id*2,
1562				 sb_entry);
1563	}
1564
1565	/* Configure pi coalescing if set */
1566	if (p_hwfn->p_dev->int_coalescing_mode == ECORE_COAL_MODE_ENABLE) {
1567		/* eth will open queues for all tcs, so configure all of them
1568		 * properly, rather than just the active ones
1569		 */
1570		u8 num_tc = p_hwfn->hw_info.num_hw_tc;
1571
1572		u8 timeset, timer_res;
1573		u8 i;
1574
1575		/* timeset = (coalesce >> timer-res), timeset is 7bit wide */
1576		if (p_hwfn->p_dev->rx_coalesce_usecs <= 0x7F)
1577			timer_res = 0;
1578		else if (p_hwfn->p_dev->rx_coalesce_usecs <= 0xFF)
1579			timer_res = 1;
1580		else
1581			timer_res = 2;
1582		timeset = (u8)(p_hwfn->p_dev->rx_coalesce_usecs >> timer_res);
1583		_ecore_int_cau_conf_pi(p_hwfn, p_ptt, igu_sb_id, RX_PI,
1584				       ECORE_COAL_RX_STATE_MACHINE,
1585				       timeset);
1586
1587		if (p_hwfn->p_dev->tx_coalesce_usecs <= 0x7F)
1588			timer_res = 0;
1589		else if (p_hwfn->p_dev->tx_coalesce_usecs <= 0xFF)
1590			timer_res = 1;
1591		else
1592			timer_res = 2;
1593		timeset = (u8)(p_hwfn->p_dev->tx_coalesce_usecs >> timer_res);
1594		for (i = 0; i < num_tc; i++) {
1595			_ecore_int_cau_conf_pi(p_hwfn, p_ptt,
1596					       igu_sb_id, TX_PI(i),
1597					       ECORE_COAL_TX_STATE_MACHINE,
1598					       timeset);
1599		}
1600	}
1601}
1602
1603void ecore_int_sb_setup(struct ecore_hwfn *p_hwfn,
1604			       struct ecore_ptt *p_ptt,
1605			       struct ecore_sb_info *sb_info)
1606{
1607	/* zero status block and ack counter */
1608	sb_info->sb_ack = 0;
1609	OSAL_MEMSET(sb_info->sb_virt, 0, sizeof(*sb_info->sb_virt));
1610
1611	if (IS_PF(p_hwfn->p_dev))
1612		ecore_int_cau_conf_sb(p_hwfn, p_ptt, sb_info->sb_phys,
1613				      sb_info->igu_sb_id, 0, 0);
1614}
1615
1616struct ecore_igu_block *
1617ecore_get_igu_free_sb(struct ecore_hwfn *p_hwfn, bool b_is_pf)
1618{
1619	struct ecore_igu_block *p_block;
1620	u16 igu_id;
1621
1622	for (igu_id = 0; igu_id < ECORE_MAPPING_MEMORY_SIZE(p_hwfn->p_dev);
1623	     igu_id++) {
1624		p_block = &p_hwfn->hw_info.p_igu_info->entry[igu_id];
1625
1626		if (!(p_block->status & ECORE_IGU_STATUS_VALID) ||
1627		    !(p_block->status & ECORE_IGU_STATUS_FREE))
1628			continue;
1629
1630		if (!!(p_block->status & ECORE_IGU_STATUS_PF) ==
1631		    b_is_pf)
1632			return p_block;
1633	}
1634
1635	return OSAL_NULL;
1636}
1637
1638static u16 ecore_get_pf_igu_sb_id(struct ecore_hwfn *p_hwfn,
1639				  u16 vector_id)
1640{
1641	struct ecore_igu_block *p_block;
1642	u16 igu_id;
1643
1644	for (igu_id = 0; igu_id < ECORE_MAPPING_MEMORY_SIZE(p_hwfn->p_dev);
1645	     igu_id++) {
1646		p_block = &p_hwfn->hw_info.p_igu_info->entry[igu_id];
1647
1648		if (!(p_block->status & ECORE_IGU_STATUS_VALID) ||
1649		    !p_block->is_pf ||
1650		    p_block->vector_number != vector_id)
1651			continue;
1652
1653		return igu_id;
1654	}
1655
1656	return ECORE_SB_INVALID_IDX;
1657}
1658
1659u16 ecore_get_igu_sb_id(struct ecore_hwfn *p_hwfn, u16 sb_id)
1660{
1661	u16 igu_sb_id;
1662
1663	/* Assuming continuous set of IGU SBs dedicated for given PF */
1664	if (sb_id == ECORE_SP_SB_ID)
1665		igu_sb_id = p_hwfn->hw_info.p_igu_info->igu_dsb_id;
1666	else if (IS_PF(p_hwfn->p_dev))
1667		igu_sb_id = ecore_get_pf_igu_sb_id(p_hwfn, sb_id + 1);
1668	else
1669		igu_sb_id = ecore_vf_get_igu_sb_id(p_hwfn, sb_id);
1670
1671	if (igu_sb_id == ECORE_SB_INVALID_IDX)
1672		DP_NOTICE(p_hwfn, true,
1673			  "Slowpath SB vector %04x doesn't exist\n",
1674			  sb_id);
1675	else if (sb_id == ECORE_SP_SB_ID)
1676		DP_VERBOSE(p_hwfn, ECORE_MSG_INTR,
1677			   "Slowpath SB index in IGU is 0x%04x\n", igu_sb_id);
1678	else
1679		DP_VERBOSE(p_hwfn, ECORE_MSG_INTR,
1680			   "SB [%04x] <--> IGU SB [%04x]\n", sb_id, igu_sb_id);
1681
1682	return igu_sb_id;
1683}
1684
1685enum _ecore_status_t ecore_int_sb_init(struct ecore_hwfn *p_hwfn,
1686				       struct ecore_ptt *p_ptt,
1687				       struct ecore_sb_info *sb_info,
1688				       void *sb_virt_addr,
1689				       dma_addr_t sb_phy_addr,
1690				       u16 sb_id)
1691{
1692	sb_info->sb_virt = sb_virt_addr;
1693	sb_info->sb_phys = sb_phy_addr;
1694
1695	sb_info->igu_sb_id = ecore_get_igu_sb_id(p_hwfn, sb_id);
1696
1697	if (sb_info->igu_sb_id == ECORE_SB_INVALID_IDX)
1698		return ECORE_INVAL;
1699
1700	/* Let the igu info reference the client's SB info */
1701	if (sb_id != ECORE_SP_SB_ID) {
1702		if (IS_PF(p_hwfn->p_dev)) {
1703			struct ecore_igu_info *p_info;
1704			struct ecore_igu_block *p_block;
1705
1706			p_info = p_hwfn->hw_info.p_igu_info;
1707			p_block = &p_info->entry[sb_info->igu_sb_id];
1708
1709			p_block->sb_info = sb_info;
1710			p_block->status &= ~ECORE_IGU_STATUS_FREE;
1711			p_info->usage.free_cnt--;
1712		} else {
1713			ecore_vf_set_sb_info(p_hwfn, sb_id, sb_info);
1714		}
1715	}
1716
1717#ifdef ECORE_CONFIG_DIRECT_HWFN
1718	sb_info->p_hwfn = p_hwfn;
1719#endif
1720	sb_info->p_dev = p_hwfn->p_dev;
1721
1722	/* The igu address will hold the absolute address that needs to be
1723	 * written to for a specific status block
1724	 */
1725	if (IS_PF(p_hwfn->p_dev)) {
1726		sb_info->igu_addr = (u8 OSAL_IOMEM*)p_hwfn->regview +
1727				    GTT_BAR0_MAP_REG_IGU_CMD +
1728				    (sb_info->igu_sb_id << 3);
1729
1730	} else {
1731		sb_info->igu_addr =
1732			(u8 OSAL_IOMEM*)p_hwfn->regview +
1733			PXP_VF_BAR0_START_IGU +
1734			((IGU_CMD_INT_ACK_BASE + sb_info->igu_sb_id) << 3);
1735	}
1736
1737	sb_info->flags |= ECORE_SB_INFO_INIT;
1738
1739	ecore_int_sb_setup(p_hwfn, p_ptt, sb_info);
1740
1741	return ECORE_SUCCESS;
1742}
1743
1744enum _ecore_status_t ecore_int_sb_release(struct ecore_hwfn *p_hwfn,
1745					  struct ecore_sb_info *sb_info,
1746					  u16 sb_id)
1747{
1748	struct ecore_igu_info *p_info;
1749	struct ecore_igu_block *p_block;
1750
1751	if (sb_info == OSAL_NULL)
1752		return ECORE_SUCCESS;
1753
1754	/* zero status block and ack counter */
1755	sb_info->sb_ack = 0;
1756	OSAL_MEMSET(sb_info->sb_virt, 0, sizeof(*sb_info->sb_virt));
1757
1758	if (IS_VF(p_hwfn->p_dev)) {
1759		ecore_vf_set_sb_info(p_hwfn, sb_id, OSAL_NULL);
1760		return ECORE_SUCCESS;
1761	}
1762
1763	p_info = p_hwfn->hw_info.p_igu_info;
1764	p_block = &p_info->entry[sb_info->igu_sb_id];
1765
1766	/* Vector 0 is reserved to Default SB */
1767	if (p_block->vector_number == 0) {
1768		DP_ERR(p_hwfn, "Do Not free sp sb using this function");
1769		return ECORE_INVAL;
1770	}
1771
1772	/* Lose reference to client's SB info, and fix counters */
1773	p_block->sb_info = OSAL_NULL;
1774	p_block->status |= ECORE_IGU_STATUS_FREE;
1775	p_info->usage.free_cnt++;
1776
1777	return ECORE_SUCCESS;
1778}
1779
1780static void ecore_int_sp_sb_free(struct ecore_hwfn *p_hwfn)
1781{
1782	struct ecore_sb_sp_info *p_sb = p_hwfn->p_sp_sb;
1783
1784	if (!p_sb)
1785		return;
1786
1787	if (p_sb->sb_info.sb_virt) {
1788		OSAL_DMA_FREE_COHERENT(p_hwfn->p_dev,
1789				       p_sb->sb_info.sb_virt,
1790				       p_sb->sb_info.sb_phys,
1791				       SB_ALIGNED_SIZE(p_hwfn));
1792	}
1793
1794	OSAL_FREE(p_hwfn->p_dev, p_sb);
1795	p_hwfn->p_sp_sb = OSAL_NULL;
1796}
1797
1798static enum _ecore_status_t ecore_int_sp_sb_alloc(struct ecore_hwfn *p_hwfn,
1799						  struct ecore_ptt *p_ptt)
1800{
1801	struct ecore_sb_sp_info *p_sb;
1802	dma_addr_t p_phys = 0;
1803	void *p_virt;
1804
1805	/* SB struct */
1806	p_sb = OSAL_ALLOC(p_hwfn->p_dev, GFP_KERNEL, sizeof(*p_sb));
1807	if (!p_sb) {
1808		DP_NOTICE(p_hwfn, false, "Failed to allocate `struct ecore_sb_info'\n");
1809		return ECORE_NOMEM;
1810	}
1811
1812	/* SB ring  */
1813	p_virt = OSAL_DMA_ALLOC_COHERENT(p_hwfn->p_dev,
1814					 &p_phys,
1815					 SB_ALIGNED_SIZE(p_hwfn));
1816	if (!p_virt) {
1817		DP_NOTICE(p_hwfn, false, "Failed to allocate status block\n");
1818		OSAL_FREE(p_hwfn->p_dev, p_sb);
1819		return ECORE_NOMEM;
1820	}
1821
1822
1823	/* Status Block setup */
1824	p_hwfn->p_sp_sb = p_sb;
1825	ecore_int_sb_init(p_hwfn, p_ptt, &p_sb->sb_info,
1826			  p_virt, p_phys, ECORE_SP_SB_ID);
1827
1828	OSAL_MEMSET(p_sb->pi_info_arr, 0, sizeof(p_sb->pi_info_arr));
1829
1830	return ECORE_SUCCESS;
1831}
1832
1833enum _ecore_status_t ecore_int_register_cb(struct ecore_hwfn *p_hwfn,
1834					   ecore_int_comp_cb_t comp_cb,
1835					   void *cookie,
1836					   u8 *sb_idx,
1837					   __le16 **p_fw_cons)
1838{
1839	struct ecore_sb_sp_info *p_sp_sb  = p_hwfn->p_sp_sb;
1840	enum _ecore_status_t rc = ECORE_NOMEM;
1841	u8 pi;
1842
1843	/* Look for a free index */
1844	for (pi = 0; pi < OSAL_ARRAY_SIZE(p_sp_sb->pi_info_arr); pi++) {
1845		if (p_sp_sb->pi_info_arr[pi].comp_cb != OSAL_NULL)
1846			continue;
1847
1848		p_sp_sb->pi_info_arr[pi].comp_cb = comp_cb;
1849		p_sp_sb->pi_info_arr[pi].cookie = cookie;
1850		*sb_idx = pi;
1851		*p_fw_cons = &p_sp_sb->sb_info.sb_virt->pi_array[pi];
1852		rc = ECORE_SUCCESS;
1853		break;
1854	}
1855
1856	return rc;
1857}
1858
1859enum _ecore_status_t ecore_int_unregister_cb(struct ecore_hwfn *p_hwfn,
1860					     u8 pi)
1861{
1862	struct ecore_sb_sp_info *p_sp_sb = p_hwfn->p_sp_sb;
1863
1864	if (p_sp_sb->pi_info_arr[pi].comp_cb == OSAL_NULL)
1865		return ECORE_NOMEM;
1866
1867	p_sp_sb->pi_info_arr[pi].comp_cb = OSAL_NULL;
1868	p_sp_sb->pi_info_arr[pi].cookie = OSAL_NULL;
1869
1870	return ECORE_SUCCESS;
1871}
1872
1873u16 ecore_int_get_sp_sb_id(struct ecore_hwfn *p_hwfn)
1874{
1875	return p_hwfn->p_sp_sb->sb_info.igu_sb_id;
1876}
1877
1878void ecore_int_igu_enable_int(struct ecore_hwfn *p_hwfn,
1879			      struct ecore_ptt	*p_ptt,
1880			      enum ecore_int_mode int_mode)
1881{
1882	u32 igu_pf_conf = IGU_PF_CONF_FUNC_EN | IGU_PF_CONF_ATTN_BIT_EN;
1883
1884#ifndef ASIC_ONLY
1885	if (CHIP_REV_IS_FPGA(p_hwfn->p_dev)) {
1886		DP_INFO(p_hwfn, "FPGA - don't enable ATTN generation in IGU\n");
1887		igu_pf_conf &= ~IGU_PF_CONF_ATTN_BIT_EN;
1888	}
1889#endif
1890
1891	p_hwfn->p_dev->int_mode = int_mode;
1892	switch (p_hwfn->p_dev->int_mode) {
1893	case ECORE_INT_MODE_INTA:
1894		igu_pf_conf |= IGU_PF_CONF_INT_LINE_EN;
1895		igu_pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN;
1896		break;
1897
1898	case ECORE_INT_MODE_MSI:
1899		igu_pf_conf |= IGU_PF_CONF_MSI_MSIX_EN;
1900		igu_pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN;
1901		break;
1902
1903	case ECORE_INT_MODE_MSIX:
1904		igu_pf_conf |= IGU_PF_CONF_MSI_MSIX_EN;
1905		break;
1906	case ECORE_INT_MODE_POLL:
1907		break;
1908	}
1909
1910	ecore_wr(p_hwfn, p_ptt, IGU_REG_PF_CONFIGURATION, igu_pf_conf);
1911}
1912
1913static void ecore_int_igu_enable_attn(struct ecore_hwfn *p_hwfn,
1914				      struct ecore_ptt *p_ptt)
1915{
1916#ifndef ASIC_ONLY
1917	if (CHIP_REV_IS_FPGA(p_hwfn->p_dev)) {
1918		DP_INFO(p_hwfn, "FPGA - Don't enable Attentions in IGU and MISC\n");
1919		return;
1920	}
1921#endif
1922
1923	/* Configure AEU signal change to produce attentions */
1924	ecore_wr(p_hwfn, p_ptt, IGU_REG_ATTENTION_ENABLE, 0);
1925	ecore_wr(p_hwfn, p_ptt, IGU_REG_LEADING_EDGE_LATCH, 0xfff);
1926	ecore_wr(p_hwfn, p_ptt, IGU_REG_TRAILING_EDGE_LATCH, 0xfff);
1927	ecore_wr(p_hwfn, p_ptt, IGU_REG_ATTENTION_ENABLE, 0xfff);
1928
1929	/* Flush the writes to IGU */
1930	OSAL_MMIOWB(p_hwfn->p_dev);
1931
1932	/* Unmask AEU signals toward IGU */
1933	ecore_wr(p_hwfn, p_ptt, MISC_REG_AEU_MASK_ATTN_IGU, 0xff);
1934}
1935
1936enum _ecore_status_t
1937ecore_int_igu_enable(struct ecore_hwfn *p_hwfn, struct ecore_ptt *p_ptt,
1938			  enum ecore_int_mode int_mode)
1939{
1940	enum _ecore_status_t rc = ECORE_SUCCESS;
1941
1942	ecore_int_igu_enable_attn(p_hwfn, p_ptt);
1943
1944	if ((int_mode != ECORE_INT_MODE_INTA) || IS_LEAD_HWFN(p_hwfn)) {
1945		rc = OSAL_SLOWPATH_IRQ_REQ(p_hwfn);
1946		if (rc != ECORE_SUCCESS) {
1947			DP_NOTICE(p_hwfn, true, "Slowpath IRQ request failed\n");
1948			return ECORE_NORESOURCES;
1949		}
1950		p_hwfn->b_int_requested = true;
1951	}
1952
1953	/* Enable interrupt Generation */
1954	ecore_int_igu_enable_int(p_hwfn, p_ptt, int_mode);
1955
1956	p_hwfn->b_int_enabled = 1;
1957
1958	return rc;
1959}
1960
1961void ecore_int_igu_disable_int(struct ecore_hwfn	*p_hwfn,
1962			       struct ecore_ptt		*p_ptt)
1963{
1964	p_hwfn->b_int_enabled = 0;
1965
1966	if (IS_VF(p_hwfn->p_dev))
1967		return;
1968
1969	ecore_wr(p_hwfn, p_ptt, IGU_REG_PF_CONFIGURATION, 0);
1970}
1971
1972#define IGU_CLEANUP_SLEEP_LENGTH		(1000)
1973static void ecore_int_igu_cleanup_sb(struct ecore_hwfn *p_hwfn,
1974				     struct ecore_ptt *p_ptt,
1975				     u16 igu_sb_id,
1976				     bool cleanup_set,
1977				     u16 opaque_fid)
1978{
1979	u32 cmd_ctrl = 0, val = 0, sb_bit = 0, sb_bit_addr = 0, data = 0;
1980	u32 pxp_addr = IGU_CMD_INT_ACK_BASE + igu_sb_id;
1981	u32 sleep_cnt = IGU_CLEANUP_SLEEP_LENGTH;
1982	u8  type = 0; /* FIXME MichalS type??? */
1983
1984	OSAL_BUILD_BUG_ON((IGU_REG_CLEANUP_STATUS_4 -
1985			   IGU_REG_CLEANUP_STATUS_0) != 0x200);
1986
1987	/* USE Control Command Register to perform cleanup. There is an
1988	 * option to do this using IGU bar, but then it can't be used for VFs.
1989	 */
1990
1991	/* Set the data field */
1992	SET_FIELD(data, IGU_CLEANUP_CLEANUP_SET, cleanup_set ? 1 : 0);
1993	SET_FIELD(data, IGU_CLEANUP_CLEANUP_TYPE, type);
1994	SET_FIELD(data, IGU_CLEANUP_COMMAND_TYPE, IGU_COMMAND_TYPE_SET);
1995
1996	/* Set the control register */
1997	SET_FIELD(cmd_ctrl, IGU_CTRL_REG_PXP_ADDR, pxp_addr);
1998	SET_FIELD(cmd_ctrl, IGU_CTRL_REG_FID, opaque_fid);
1999	SET_FIELD(cmd_ctrl, IGU_CTRL_REG_TYPE, IGU_CTRL_CMD_TYPE_WR);
2000
2001	ecore_wr(p_hwfn, p_ptt, IGU_REG_COMMAND_REG_32LSB_DATA, data);
2002
2003	OSAL_BARRIER(p_hwfn->p_dev);
2004
2005	ecore_wr(p_hwfn, p_ptt, IGU_REG_COMMAND_REG_CTRL, cmd_ctrl);
2006
2007	/* Flush the write to IGU */
2008	OSAL_MMIOWB(p_hwfn->p_dev);
2009
2010	/* calculate where to read the status bit from */
2011	sb_bit = 1 << (igu_sb_id % 32);
2012	sb_bit_addr = igu_sb_id / 32 * sizeof(u32);
2013
2014	sb_bit_addr += IGU_REG_CLEANUP_STATUS_0 + (0x80 * type);
2015
2016	/* Now wait for the command to complete */
2017	while (--sleep_cnt) {
2018		val = ecore_rd(p_hwfn, p_ptt, sb_bit_addr);
2019		if ((val & sb_bit) == (cleanup_set ? sb_bit : 0))
2020			break;
2021		OSAL_MSLEEP(5);
2022	}
2023
2024	if (!sleep_cnt)
2025		DP_NOTICE(p_hwfn, true,
2026			  "Timeout waiting for clear status 0x%08x [for sb %d]\n",
2027			  val, igu_sb_id);
2028}
2029
2030void ecore_int_igu_init_pure_rt_single(struct ecore_hwfn *p_hwfn,
2031				       struct ecore_ptt *p_ptt,
2032				       u16 igu_sb_id, u16 opaque, bool b_set)
2033{
2034	struct ecore_igu_block *p_block;
2035	int pi, i;
2036
2037	p_block = &p_hwfn->hw_info.p_igu_info->entry[igu_sb_id];
2038	DP_VERBOSE(p_hwfn, ECORE_MSG_INTR,
2039		   "Cleaning SB [%04x]: func_id= %d is_pf = %d vector_num = 0x%0x\n",
2040		   igu_sb_id, p_block->function_id, p_block->is_pf,
2041		   p_block->vector_number);
2042
2043	/* Set */
2044	if (b_set)
2045		ecore_int_igu_cleanup_sb(p_hwfn, p_ptt, igu_sb_id, 1, opaque);
2046
2047	/* Clear */
2048	ecore_int_igu_cleanup_sb(p_hwfn, p_ptt, igu_sb_id, 0, opaque);
2049
2050	/* Wait for the IGU SB to cleanup */
2051	for (i = 0; i < IGU_CLEANUP_SLEEP_LENGTH; i++) {
2052		u32 val;
2053
2054		val = ecore_rd(p_hwfn, p_ptt,
2055			       IGU_REG_WRITE_DONE_PENDING +
2056			       ((igu_sb_id / 32) * 4));
2057		if (val & (1 << (igu_sb_id % 32)))
2058			OSAL_UDELAY(10);
2059		else
2060			break;
2061	}
2062	if (i == IGU_CLEANUP_SLEEP_LENGTH)
2063		DP_NOTICE(p_hwfn, true,
2064			  "Failed SB[0x%08x] still appearing in WRITE_DONE_PENDING\n",
2065			  igu_sb_id);
2066
2067	/* Clear the CAU for the SB */
2068	for (pi = 0; pi < 12; pi++)
2069		ecore_wr(p_hwfn, p_ptt,
2070			 CAU_REG_PI_MEMORY + (igu_sb_id * 12 + pi) * 4, 0);
2071}
2072
2073void ecore_int_igu_init_pure_rt(struct ecore_hwfn *p_hwfn,
2074				 struct ecore_ptt *p_ptt,
2075				 bool b_set,
2076				 bool b_slowpath)
2077{
2078	struct ecore_igu_info *p_info = p_hwfn->hw_info.p_igu_info;
2079	struct ecore_igu_block *p_block;
2080	u16 igu_sb_id = 0;
2081	u32 val = 0;
2082
2083	/* @@@TBD MichalK temporary... should be moved to init-tool... */
2084	val = ecore_rd(p_hwfn, p_ptt, IGU_REG_BLOCK_CONFIGURATION);
2085	val |= IGU_REG_BLOCK_CONFIGURATION_VF_CLEANUP_EN;
2086	val &= ~IGU_REG_BLOCK_CONFIGURATION_PXP_TPH_INTERFACE_EN;
2087	ecore_wr(p_hwfn, p_ptt, IGU_REG_BLOCK_CONFIGURATION, val);
2088	/* end temporary */
2089
2090	for (igu_sb_id = 0;
2091	     igu_sb_id < ECORE_MAPPING_MEMORY_SIZE(p_hwfn->p_dev);
2092	     igu_sb_id++) {
2093		p_block = &p_info->entry[igu_sb_id];
2094
2095		if (!(p_block->status & ECORE_IGU_STATUS_VALID) ||
2096		    !p_block->is_pf ||
2097		    (p_block->status & ECORE_IGU_STATUS_DSB))
2098			continue;
2099
2100		ecore_int_igu_init_pure_rt_single(p_hwfn, p_ptt, igu_sb_id,
2101						  p_hwfn->hw_info.opaque_fid,
2102						  b_set);
2103	}
2104
2105	if (b_slowpath)
2106		ecore_int_igu_init_pure_rt_single(p_hwfn, p_ptt,
2107						  p_info->igu_dsb_id,
2108						  p_hwfn->hw_info.opaque_fid,
2109						  b_set);
2110}
2111
2112int ecore_int_igu_reset_cam(struct ecore_hwfn *p_hwfn,
2113			    struct ecore_ptt *p_ptt)
2114{
2115	struct ecore_igu_info *p_info = p_hwfn->hw_info.p_igu_info;
2116	struct ecore_igu_block *p_block;
2117	int pf_sbs, vf_sbs;
2118	u16 igu_sb_id;
2119	u32 val, rval;
2120
2121	if (!RESC_NUM(p_hwfn, ECORE_SB)) {
2122		/* We're using an old MFW - have to prevent any switching
2123		 * of SBs between PF and VFs as later driver wouldn't be
2124		 * able to tell which belongs to which.
2125		 */
2126		p_info->b_allow_pf_vf_change = false;
2127	} else {
2128		/* Use the numbers the MFW have provided -
2129		 * don't forget MFW accounts for the default SB as well.
2130		 */
2131		p_info->b_allow_pf_vf_change = true;
2132
2133		if (p_info->usage.cnt != RESC_NUM(p_hwfn, ECORE_SB) - 1) {
2134			DP_INFO(p_hwfn,
2135				"MFW notifies of 0x%04x PF SBs; IGU indicates of only 0x%04x\n",
2136				RESC_NUM(p_hwfn, ECORE_SB) - 1,
2137				p_info->usage.cnt);
2138			p_info->usage.cnt = RESC_NUM(p_hwfn, ECORE_SB) - 1;
2139		}
2140
2141		/* TODO - how do we learn about VF SBs from MFW? */
2142		if (IS_PF_SRIOV(p_hwfn)) {
2143			u16 vfs = p_hwfn->p_dev->p_iov_info->total_vfs;
2144
2145			if (vfs != p_info->usage.iov_cnt)
2146				DP_VERBOSE(p_hwfn, ECORE_MSG_INTR,
2147					   "0x%04x VF SBs in IGU CAM != PCI configuration 0x%04x\n",
2148					   p_info->usage.iov_cnt, vfs);
2149
2150			/* At this point we know how many SBs we have totally
2151			 * in IGU + number of PF SBs. So we can validate that
2152			 * we'd have sufficient for VF.
2153			 */
2154			if (vfs > p_info->usage.free_cnt +
2155				  p_info->usage.free_cnt_iov -
2156				  p_info->usage.cnt) {
2157				DP_NOTICE(p_hwfn, true,
2158					  "Not enough SBs for VFs - 0x%04x SBs, from which %04x PFs and %04x are required\n",
2159					  p_info->usage.free_cnt +
2160					  p_info->usage.free_cnt_iov,
2161					  p_info->usage.cnt, vfs);
2162				return ECORE_INVAL;
2163			}
2164		}
2165	}
2166
2167	/* Cap the number of VFs SBs by the number of VFs */
2168	if (IS_PF_SRIOV(p_hwfn))
2169		p_info->usage.iov_cnt = p_hwfn->p_dev->p_iov_info->total_vfs;
2170
2171	/* Mark all SBs as free, now in the right PF/VFs division */
2172	p_info->usage.free_cnt = p_info->usage.cnt;
2173	p_info->usage.free_cnt_iov = p_info->usage.iov_cnt;
2174	p_info->usage.orig = p_info->usage.cnt;
2175	p_info->usage.iov_orig = p_info->usage.iov_cnt;
2176
2177	/* We now proceed to re-configure the IGU cam to reflect the initial
2178	 * configuration. We can start with the Default SB.
2179	 */
2180	pf_sbs = p_info->usage.cnt;
2181	vf_sbs = p_info->usage.iov_cnt;
2182
2183	for (igu_sb_id = p_info->igu_dsb_id;
2184	     igu_sb_id < ECORE_MAPPING_MEMORY_SIZE(p_hwfn->p_dev);
2185	     igu_sb_id++) {
2186		p_block = &p_info->entry[igu_sb_id];
2187		val = 0;
2188
2189		if (!(p_block->status & ECORE_IGU_STATUS_VALID))
2190			continue;
2191
2192		if (p_block->status & ECORE_IGU_STATUS_DSB) {
2193			p_block->function_id = p_hwfn->rel_pf_id;
2194			p_block->is_pf = 1;
2195			p_block->vector_number = 0;
2196			p_block->status = ECORE_IGU_STATUS_VALID |
2197					  ECORE_IGU_STATUS_PF |
2198					  ECORE_IGU_STATUS_DSB;
2199		} else if (pf_sbs) {
2200			pf_sbs--;
2201			p_block->function_id = p_hwfn->rel_pf_id;
2202			p_block->is_pf = 1;
2203			p_block->vector_number = p_info->usage.cnt - pf_sbs;
2204			p_block->status = ECORE_IGU_STATUS_VALID |
2205					  ECORE_IGU_STATUS_PF |
2206					  ECORE_IGU_STATUS_FREE;
2207		} else if (vf_sbs) {
2208			p_block->function_id =
2209				p_hwfn->p_dev->p_iov_info->first_vf_in_pf +
2210				p_info->usage.iov_cnt - vf_sbs;
2211			p_block->is_pf = 0;
2212			p_block->vector_number = 0;
2213			p_block->status = ECORE_IGU_STATUS_VALID |
2214					  ECORE_IGU_STATUS_FREE;
2215			vf_sbs--;
2216		} else {
2217			p_block->function_id = 0;
2218			p_block->is_pf = 0;
2219			p_block->vector_number = 0;
2220		}
2221
2222		SET_FIELD(val, IGU_MAPPING_LINE_FUNCTION_NUMBER,
2223			  p_block->function_id);
2224		SET_FIELD(val, IGU_MAPPING_LINE_PF_VALID, p_block->is_pf);
2225		SET_FIELD(val, IGU_MAPPING_LINE_VECTOR_NUMBER,
2226			  p_block->vector_number);
2227
2228		/* VF entries would be enabled when VF is initializaed */
2229		SET_FIELD(val, IGU_MAPPING_LINE_VALID, p_block->is_pf);
2230
2231		rval = ecore_rd(p_hwfn, p_ptt,
2232				IGU_REG_MAPPING_MEMORY +
2233				sizeof(u32) * igu_sb_id);
2234
2235		if (rval != val) {
2236			ecore_wr(p_hwfn, p_ptt,
2237				 IGU_REG_MAPPING_MEMORY +
2238				 sizeof(u32) * igu_sb_id,
2239				 val);
2240
2241			DP_VERBOSE(p_hwfn, ECORE_MSG_INTR,
2242				   "IGU reset: [SB 0x%04x] func_id = %d is_pf = %d vector_num = 0x%x [%08x -> %08x]\n",
2243				   igu_sb_id, p_block->function_id,
2244				   p_block->is_pf, p_block->vector_number,
2245				   rval, val);
2246		}
2247	}
2248
2249	return 0;
2250}
2251
2252int ecore_int_igu_reset_cam_default(struct ecore_hwfn *p_hwfn,
2253				    struct ecore_ptt *p_ptt)
2254{
2255	struct ecore_sb_cnt_info *p_cnt = &p_hwfn->hw_info.p_igu_info->usage;
2256
2257	/* Return all the usage indications to default prior to the reset;
2258	 * The reset expects the !orig to reflect the initial status of the
2259	 * SBs, and would re-calculate the originals based on those.
2260	 */
2261	p_cnt->cnt = p_cnt->orig;
2262	p_cnt->free_cnt = p_cnt->orig;
2263	p_cnt->iov_cnt = p_cnt->iov_orig;
2264	p_cnt->free_cnt_iov = p_cnt->iov_orig;
2265	p_cnt->orig = 0;
2266	p_cnt->iov_orig = 0;
2267
2268	/* TODO - we probably need to re-configure the CAU as well... */
2269	return ecore_int_igu_reset_cam(p_hwfn, p_ptt);
2270}
2271
2272static void ecore_int_igu_read_cam_block(struct ecore_hwfn *p_hwfn,
2273					 struct ecore_ptt *p_ptt,
2274					 u16 igu_sb_id)
2275{
2276	u32 val = ecore_rd(p_hwfn, p_ptt,
2277			   IGU_REG_MAPPING_MEMORY + sizeof(u32) * igu_sb_id);
2278	struct ecore_igu_block *p_block;
2279
2280	p_block = &p_hwfn->hw_info.p_igu_info->entry[igu_sb_id];
2281
2282	/* Fill the block information */
2283	p_block->function_id = GET_FIELD(val,
2284					 IGU_MAPPING_LINE_FUNCTION_NUMBER);
2285	p_block->is_pf = GET_FIELD(val, IGU_MAPPING_LINE_PF_VALID);
2286	p_block->vector_number = GET_FIELD(val,
2287					   IGU_MAPPING_LINE_VECTOR_NUMBER);
2288	p_block->igu_sb_id = igu_sb_id;
2289}
2290
2291enum _ecore_status_t ecore_int_igu_read_cam(struct ecore_hwfn *p_hwfn,
2292					    struct ecore_ptt *p_ptt)
2293{
2294	struct ecore_igu_info *p_igu_info;
2295	struct ecore_igu_block *p_block;
2296	u32 min_vf = 0, max_vf = 0;
2297	u16 igu_sb_id;
2298
2299	p_hwfn->hw_info.p_igu_info = OSAL_ZALLOC(p_hwfn->p_dev,
2300						 GFP_KERNEL,
2301						 sizeof(*p_igu_info));
2302	if (!p_hwfn->hw_info.p_igu_info)
2303		return ECORE_NOMEM;
2304	p_igu_info = p_hwfn->hw_info.p_igu_info;
2305
2306	/* Distinguish between existent and onn-existent default SB */
2307	p_igu_info->igu_dsb_id = ECORE_SB_INVALID_IDX;
2308
2309	/* Find the range of VF ids whose SB belong to this PF */
2310	if (p_hwfn->p_dev->p_iov_info) {
2311		struct ecore_hw_sriov_info *p_iov = p_hwfn->p_dev->p_iov_info;
2312
2313		min_vf = p_iov->first_vf_in_pf;
2314		max_vf = p_iov->first_vf_in_pf + p_iov->total_vfs;
2315	}
2316
2317	for (igu_sb_id = 0;
2318	     igu_sb_id < ECORE_MAPPING_MEMORY_SIZE(p_hwfn->p_dev);
2319	     igu_sb_id++) {
2320		/* Read current entry; Notice it might not belong to this PF */
2321		ecore_int_igu_read_cam_block(p_hwfn, p_ptt, igu_sb_id);
2322		p_block = &p_igu_info->entry[igu_sb_id];
2323
2324		if ((p_block->is_pf) &&
2325		    (p_block->function_id == p_hwfn->rel_pf_id)) {
2326			p_block->status = ECORE_IGU_STATUS_PF |
2327					  ECORE_IGU_STATUS_VALID |
2328					  ECORE_IGU_STATUS_FREE;
2329
2330			if (p_igu_info->igu_dsb_id != ECORE_SB_INVALID_IDX)
2331				p_igu_info->usage.cnt++;
2332		} else if (!(p_block->is_pf) &&
2333			   (p_block->function_id >= min_vf) &&
2334			   (p_block->function_id < max_vf)) {
2335			/* Available for VFs of this PF */
2336			p_block->status = ECORE_IGU_STATUS_VALID |
2337					  ECORE_IGU_STATUS_FREE;
2338
2339			if (p_igu_info->igu_dsb_id != ECORE_SB_INVALID_IDX)
2340				p_igu_info->usage.iov_cnt++;
2341		}
2342
2343		/* Mark the First entry belonging to the PF or its VFs
2344		 * as the default SB [we'll reset IGU prior to first usage].
2345		 */
2346		if ((p_block->status & ECORE_IGU_STATUS_VALID) &&
2347		    (p_igu_info->igu_dsb_id == ECORE_SB_INVALID_IDX)) {
2348			p_igu_info->igu_dsb_id = igu_sb_id;
2349			p_block->status |= ECORE_IGU_STATUS_DSB;
2350		}
2351
2352		/* While this isn't suitable for all clients, limit number
2353		 * of prints by having each PF print only its entries with the
2354		 * exception of PF0 which would print everything.
2355		 */
2356		if ((p_block->status & ECORE_IGU_STATUS_VALID) ||
2357		    (p_hwfn->abs_pf_id == 0))
2358			DP_VERBOSE(p_hwfn, ECORE_MSG_INTR,
2359				   "IGU_BLOCK: [SB 0x%04x] func_id = %d is_pf = %d vector_num = 0x%x\n",
2360				   igu_sb_id, p_block->function_id,
2361				   p_block->is_pf, p_block->vector_number);
2362	}
2363
2364	if (p_igu_info->igu_dsb_id == ECORE_SB_INVALID_IDX) {
2365		DP_NOTICE(p_hwfn, true,
2366			  "IGU CAM returned invalid values igu_dsb_id=0x%x\n",
2367			  p_igu_info->igu_dsb_id);
2368		return ECORE_INVAL;
2369	}
2370
2371	/* All non default SB are considered free at this point */
2372	p_igu_info->usage.free_cnt = p_igu_info->usage.cnt;
2373	p_igu_info->usage.free_cnt_iov = p_igu_info->usage.iov_cnt;
2374
2375	DP_VERBOSE(p_hwfn, ECORE_MSG_INTR,
2376		   "igu_dsb_id=0x%x, num Free SBs - PF: %04x VF: %04x [might change after resource allocation]\n",
2377		   p_igu_info->igu_dsb_id, p_igu_info->usage.cnt,
2378		   p_igu_info->usage.iov_cnt);
2379
2380	return ECORE_SUCCESS;
2381}
2382
2383enum _ecore_status_t
2384ecore_int_igu_relocate_sb(struct ecore_hwfn *p_hwfn, struct ecore_ptt *p_ptt,
2385			  u16 sb_id, bool b_to_vf)
2386{
2387	struct ecore_igu_info *p_info = p_hwfn->hw_info.p_igu_info;
2388	struct ecore_igu_block *p_block = OSAL_NULL;
2389	u16 igu_sb_id = 0, vf_num = 0;
2390	u32 val = 0;
2391
2392	if (IS_VF(p_hwfn->p_dev) || !IS_PF_SRIOV(p_hwfn))
2393		return ECORE_INVAL;
2394
2395	if (sb_id == ECORE_SP_SB_ID)
2396		return ECORE_INVAL;
2397
2398	if (!p_info->b_allow_pf_vf_change) {
2399		DP_INFO(p_hwfn, "Can't relocate SBs as MFW is too old.\n");
2400		return ECORE_INVAL;
2401	}
2402
2403	/* If we're moving a SB from PF to VF, the client had to specify
2404	 * which vector it wants to move.
2405	 */
2406	if (b_to_vf) {
2407		igu_sb_id = ecore_get_pf_igu_sb_id(p_hwfn, sb_id + 1);
2408		if (igu_sb_id == ECORE_SB_INVALID_IDX)
2409			return ECORE_INVAL;
2410	}
2411
2412	/* If we're moving a SB from VF to PF, need to validate there isn't
2413	 * already a line configured for that vector.
2414	 */
2415	if (!b_to_vf) {
2416		if (ecore_get_pf_igu_sb_id(p_hwfn, sb_id + 1) !=
2417		    ECORE_SB_INVALID_IDX)
2418			return ECORE_INVAL;
2419	}
2420
2421	/* We need to validate that the SB can actually be relocated.
2422	 * This would also handle the previous case where we've explicitly
2423	 * stated which IGU SB needs to move.
2424	 */
2425	for (; igu_sb_id < ECORE_MAPPING_MEMORY_SIZE(p_hwfn->p_dev);
2426	     igu_sb_id++) {
2427		p_block = &p_info->entry[igu_sb_id];
2428
2429		if (!(p_block->status & ECORE_IGU_STATUS_VALID) ||
2430		    !(p_block->status & ECORE_IGU_STATUS_FREE) ||
2431		    (!!(p_block->status & ECORE_IGU_STATUS_PF) != b_to_vf)) {
2432			if (b_to_vf)
2433				return ECORE_INVAL;
2434			else
2435				continue;
2436		}
2437
2438		break;
2439	}
2440
2441	if (igu_sb_id == ECORE_MAPPING_MEMORY_SIZE(p_hwfn->p_dev)) {
2442		DP_VERBOSE(p_hwfn, (ECORE_MSG_INTR | ECORE_MSG_IOV),
2443			   "Failed to find a free SB to move\n");
2444		return ECORE_INVAL;
2445	}
2446
2447	if (p_block == OSAL_NULL) {
2448		DP_VERBOSE(p_hwfn, (ECORE_MSG_INTR | ECORE_MSG_IOV),
2449			   "SB address (p_block) is NULL\n");
2450		return ECORE_INVAL;
2451	}
2452
2453	/* At this point, p_block points to the SB we want to relocate */
2454	if (b_to_vf) {
2455		p_block->status &= ~ECORE_IGU_STATUS_PF;
2456
2457		/* It doesn't matter which VF number we choose, since we're
2458		 * going to disable the line; But let's keep it in range.
2459		 */
2460		vf_num = (u16)p_hwfn->p_dev->p_iov_info->first_vf_in_pf;
2461
2462		p_block->function_id = (u8)vf_num;
2463		p_block->is_pf = 0;
2464		p_block->vector_number = 0;
2465
2466		p_info->usage.cnt--;
2467		p_info->usage.free_cnt--;
2468		p_info->usage.iov_cnt++;
2469		p_info->usage.free_cnt_iov++;
2470
2471		/* TODO - if SBs aren't really the limiting factor,
2472		 * then it might not be accurate [in the since that
2473		 * we might not need decrement the feature].
2474		 */
2475		p_hwfn->hw_info.feat_num[ECORE_PF_L2_QUE]--;
2476		p_hwfn->hw_info.feat_num[ECORE_VF_L2_QUE]++;
2477	} else {
2478		p_block->status |= ECORE_IGU_STATUS_PF;
2479		p_block->function_id = p_hwfn->rel_pf_id;
2480		p_block->is_pf = 1;
2481		p_block->vector_number = sb_id + 1;
2482
2483		p_info->usage.cnt++;
2484		p_info->usage.free_cnt++;
2485		p_info->usage.iov_cnt--;
2486		p_info->usage.free_cnt_iov--;
2487
2488		p_hwfn->hw_info.feat_num[ECORE_PF_L2_QUE]++;
2489		p_hwfn->hw_info.feat_num[ECORE_VF_L2_QUE]--;
2490	}
2491
2492	/* Update the IGU and CAU with the new configuration */
2493	SET_FIELD(val, IGU_MAPPING_LINE_FUNCTION_NUMBER,
2494		  p_block->function_id);
2495	SET_FIELD(val, IGU_MAPPING_LINE_PF_VALID, p_block->is_pf);
2496	SET_FIELD(val, IGU_MAPPING_LINE_VALID, p_block->is_pf);
2497	SET_FIELD(val, IGU_MAPPING_LINE_VECTOR_NUMBER,
2498		  p_block->vector_number);
2499
2500	ecore_wr(p_hwfn, p_ptt,
2501		 IGU_REG_MAPPING_MEMORY + sizeof(u32) * igu_sb_id,
2502		 val);
2503
2504	ecore_int_cau_conf_sb(p_hwfn, p_ptt, 0,
2505			      igu_sb_id, vf_num,
2506			      p_block->is_pf ? 0 : 1);
2507
2508	DP_VERBOSE(p_hwfn, ECORE_MSG_INTR,
2509		   "Relocation: [SB 0x%04x] func_id = %d is_pf = %d vector_num = 0x%x\n",
2510		   igu_sb_id, p_block->function_id,
2511		   p_block->is_pf, p_block->vector_number);
2512
2513	return ECORE_SUCCESS;
2514}
2515
2516/**
2517 * @brief Initialize igu runtime registers
2518 *
2519 * @param p_hwfn
2520 */
2521void ecore_int_igu_init_rt(struct ecore_hwfn *p_hwfn)
2522{
2523	u32 igu_pf_conf = IGU_PF_CONF_FUNC_EN;
2524
2525	STORE_RT_REG(p_hwfn, IGU_REG_PF_CONFIGURATION_RT_OFFSET, igu_pf_conf);
2526}
2527
2528#define LSB_IGU_CMD_ADDR (IGU_REG_SISR_MDPC_WMASK_LSB_UPPER - \
2529			  IGU_CMD_INT_ACK_BASE)
2530#define MSB_IGU_CMD_ADDR (IGU_REG_SISR_MDPC_WMASK_MSB_UPPER - \
2531			  IGU_CMD_INT_ACK_BASE)
2532u64 ecore_int_igu_read_sisr_reg(struct ecore_hwfn *p_hwfn)
2533{
2534	u32 intr_status_hi = 0, intr_status_lo = 0;
2535	u64 intr_status = 0;
2536
2537	intr_status_lo = REG_RD(p_hwfn,
2538				GTT_BAR0_MAP_REG_IGU_CMD +
2539				LSB_IGU_CMD_ADDR * 8);
2540	intr_status_hi = REG_RD(p_hwfn,
2541				GTT_BAR0_MAP_REG_IGU_CMD +
2542				MSB_IGU_CMD_ADDR * 8);
2543	intr_status = ((u64)intr_status_hi << 32) + (u64)intr_status_lo;
2544
2545	return intr_status;
2546}
2547
2548static void ecore_int_sp_dpc_setup(struct ecore_hwfn *p_hwfn)
2549{
2550	OSAL_DPC_INIT(p_hwfn->sp_dpc, p_hwfn);
2551	p_hwfn->b_sp_dpc_enabled = true;
2552}
2553
2554static enum _ecore_status_t ecore_int_sp_dpc_alloc(struct ecore_hwfn *p_hwfn)
2555{
2556	p_hwfn->sp_dpc = OSAL_DPC_ALLOC(p_hwfn);
2557	if (!p_hwfn->sp_dpc)
2558		return ECORE_NOMEM;
2559
2560	return ECORE_SUCCESS;
2561}
2562
2563static void ecore_int_sp_dpc_free(struct ecore_hwfn *p_hwfn)
2564{
2565	OSAL_FREE(p_hwfn->p_dev, p_hwfn->sp_dpc);
2566	p_hwfn->sp_dpc = OSAL_NULL;
2567}
2568
2569enum _ecore_status_t ecore_int_alloc(struct ecore_hwfn *p_hwfn,
2570				     struct ecore_ptt *p_ptt)
2571{
2572	enum _ecore_status_t rc = ECORE_SUCCESS;
2573
2574	rc = ecore_int_sp_dpc_alloc(p_hwfn);
2575	if (rc != ECORE_SUCCESS) {
2576		DP_ERR(p_hwfn->p_dev, "Failed to allocate sp dpc mem\n");
2577		return rc;
2578	}
2579
2580	rc = ecore_int_sp_sb_alloc(p_hwfn, p_ptt);
2581	if (rc != ECORE_SUCCESS) {
2582		DP_ERR(p_hwfn->p_dev, "Failed to allocate sp sb mem\n");
2583		return rc;
2584	}
2585
2586	rc = ecore_int_sb_attn_alloc(p_hwfn, p_ptt);
2587	if (rc != ECORE_SUCCESS)
2588		DP_ERR(p_hwfn->p_dev, "Failed to allocate sb attn mem\n");
2589
2590	return rc;
2591}
2592
2593void ecore_int_free(struct ecore_hwfn *p_hwfn)
2594{
2595	ecore_int_sp_sb_free(p_hwfn);
2596	ecore_int_sb_attn_free(p_hwfn);
2597	ecore_int_sp_dpc_free(p_hwfn);
2598}
2599
2600void ecore_int_setup(struct ecore_hwfn *p_hwfn, struct ecore_ptt *p_ptt)
2601{
2602	if (!p_hwfn || !p_hwfn->p_sp_sb || !p_hwfn->p_sb_attn)
2603		return;
2604
2605	ecore_int_sb_setup(p_hwfn, p_ptt, &p_hwfn->p_sp_sb->sb_info);
2606	ecore_int_sb_attn_setup(p_hwfn, p_ptt);
2607	ecore_int_sp_dpc_setup(p_hwfn);
2608}
2609
2610void ecore_int_get_num_sbs(struct ecore_hwfn *p_hwfn,
2611			   struct ecore_sb_cnt_info *p_sb_cnt_info)
2612{
2613	struct ecore_igu_info *p_igu_info = p_hwfn->hw_info.p_igu_info;
2614
2615	if (!p_igu_info || !p_sb_cnt_info)
2616		return;
2617
2618	OSAL_MEMCPY(p_sb_cnt_info, &p_igu_info->usage,
2619		    sizeof(*p_sb_cnt_info));
2620}
2621
2622void ecore_int_disable_post_isr_release(struct ecore_dev *p_dev)
2623{
2624	int i;
2625
2626	for_each_hwfn(p_dev, i)
2627		p_dev->hwfns[i].b_int_requested = false;
2628}
2629
2630void ecore_int_attn_clr_enable(struct ecore_dev *p_dev, bool clr_enable)
2631{
2632	p_dev->attn_clr_en = clr_enable;
2633}
2634
2635enum _ecore_status_t ecore_int_set_timer_res(struct ecore_hwfn *p_hwfn,
2636					     struct ecore_ptt *p_ptt,
2637					     u8 timer_res, u16 sb_id, bool tx)
2638{
2639	struct cau_sb_entry sb_entry;
2640	enum _ecore_status_t rc;
2641
2642	if (!p_hwfn->hw_init_done) {
2643		DP_ERR(p_hwfn, "hardware not initialized yet\n");
2644		return ECORE_INVAL;
2645	}
2646
2647	rc = ecore_dmae_grc2host(p_hwfn, p_ptt, CAU_REG_SB_VAR_MEMORY +
2648				 sb_id * sizeof(u64),
2649				 (u64)(osal_uintptr_t)&sb_entry, 2,
2650				 OSAL_NULL /* default parameters */);
2651	if (rc != ECORE_SUCCESS) {
2652		DP_ERR(p_hwfn, "dmae_grc2host failed %d\n", rc);
2653		return rc;
2654	}
2655
2656	if (tx)
2657		SET_FIELD(sb_entry.params, CAU_SB_ENTRY_TIMER_RES1, timer_res);
2658	else
2659		SET_FIELD(sb_entry.params, CAU_SB_ENTRY_TIMER_RES0, timer_res);
2660
2661	rc = ecore_dmae_host2grc(p_hwfn, p_ptt,
2662				 (u64)(osal_uintptr_t)&sb_entry,
2663				 CAU_REG_SB_VAR_MEMORY + sb_id * sizeof(u64), 2,
2664				 OSAL_NULL /* default parameters */);
2665	if (rc != ECORE_SUCCESS) {
2666		DP_ERR(p_hwfn, "dmae_host2grc failed %d\n", rc);
2667		return rc;
2668	}
2669
2670	return rc;
2671}
2672
2673enum _ecore_status_t ecore_int_get_sb_dbg(struct ecore_hwfn *p_hwfn,
2674					  struct ecore_ptt *p_ptt,
2675					  struct ecore_sb_info *p_sb,
2676					  struct ecore_sb_info_dbg *p_info)
2677{
2678	u16 sbid = p_sb->igu_sb_id;
2679	int i;
2680
2681	if (IS_VF(p_hwfn->p_dev))
2682		return ECORE_INVAL;
2683
2684	if (sbid > NUM_OF_SBS(p_hwfn->p_dev))
2685		return ECORE_INVAL;
2686
2687	p_info->igu_prod = ecore_rd(p_hwfn, p_ptt,
2688				    IGU_REG_PRODUCER_MEMORY + sbid * 4);
2689	p_info->igu_cons = ecore_rd(p_hwfn, p_ptt,
2690				    IGU_REG_CONSUMER_MEM + sbid * 4);
2691
2692	for (i = 0; i < PIS_PER_SB_E4; i++)
2693		p_info->pi[i] = (u16)ecore_rd(p_hwfn, p_ptt,
2694					      CAU_REG_PI_MEMORY +
2695					      sbid * 4 * PIS_PER_SB_E4 + i * 4);
2696
2697	return ECORE_SUCCESS;
2698}
2699