1/*
2 * Copyright (c) 2017-2018 Cavium, Inc.
3 * All rights reserved.
4 *
5 *  Redistribution and use in source and binary forms, with or without
6 *  modification, are permitted provided that the following conditions
7 *  are met:
8 *
9 *  1. Redistributions of source code must retain the above copyright
10 *     notice, this list of conditions and the following disclaimer.
11 *  2. Redistributions in binary form must reproduce the above copyright
12 *     notice, this list of conditions and the following disclaimer in the
13 *     documentation and/or other materials provided with the distribution.
14 *
15 *  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
16 *  AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17 *  IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18 *  ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
19 *  LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
20 *  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
21 *  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
22 *  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
23 *  CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
24 *  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
25 *  POSSIBILITY OF SUCH DAMAGE.
26 */
27
28/*
29 * File : ecore_init_fw_funcs.c
30 */
31#include <sys/cdefs.h>
32__FBSDID("$FreeBSD: stable/11/sys/dev/qlnx/qlnxe/ecore_init_fw_funcs.c 337517 2018-08-09 01:17:35Z davidcs $");
33
34#include "bcm_osal.h"
35#include "ecore_hw.h"
36#include "ecore_init_ops.h"
37#include "reg_addr.h"
38#include "ecore_rt_defs.h"
39#include "ecore_hsi_common.h"
40#include "ecore_hsi_init_func.h"
41#include "ecore_hsi_eth.h"
42#include "ecore_hsi_init_tool.h"
43#include "ecore_iro.h"
44#include "ecore_init_fw_funcs.h"
45
46#define CDU_VALIDATION_DEFAULT_CFG 61
47
48static u16 con_region_offsets[3][NUM_OF_CONNECTION_TYPES_E4] = {
49	{ 400,  336,  352,  304,  304,  384,  416,  352}, /* region 3 offsets */
50	{ 528,  496,  416,  448,  448,  512,  544,  480}, /* region 4 offsets */
51	{ 608,  544,  496,  512,  576,  592,  624,  560}  /* region 5 offsets */
52};
53static u16 task_region_offsets[1][NUM_OF_CONNECTION_TYPES_E4] = {
54	{ 240,  240,  112,    0,    0,    0,    0,   96}  /* region 1 offsets */
55};
56
57/* General constants */
58#define QM_PQ_MEM_4KB(pq_size)			(pq_size ? DIV_ROUND_UP((pq_size + 1) * QM_PQ_ELEMENT_SIZE, 0x1000) : 0)
59#define QM_PQ_SIZE_256B(pq_size)		(pq_size ? DIV_ROUND_UP(pq_size, 0x100) - 1 : 0)
60#define QM_INVALID_PQ_ID		0xffff
61
62/* Feature enable */
63#define QM_BYPASS_EN			1
64#define QM_BYTE_CRD_EN			1
65
66/* Other PQ constants */
67#define QM_OTHER_PQS_PER_PF		4
68
69/* VOQ constants */
70#define QM_E5_NUM_EXT_VOQ		(MAX_NUM_PORTS_E5 * NUM_OF_TCS)
71
72/* WFQ constants: */
73
74/* Upper bound in MB, 10 * burst size of 1ms in 50Gbps */
75#define QM_WFQ_UPPER_BOUND		62500000
76
77/* Bit  of VOQ in WFQ VP PQ map */
78#define QM_WFQ_VP_PQ_VOQ_SHIFT		0
79
80/* Bit  of PF in WFQ VP PQ map */
81#define QM_WFQ_VP_PQ_PF_E4_SHIFT	5
82#define QM_WFQ_VP_PQ_PF_E5_SHIFT	6
83
84/* 0x9000 = 4*9*1024 */
85#define QM_WFQ_INC_VAL(weight)		((weight) * 0x9000)
86
87/* Max WFQ increment value is 0.7 * upper bound */
88#define QM_WFQ_MAX_INC_VAL		((QM_WFQ_UPPER_BOUND * 7) / 10)
89
90/* Number of VOQs in E5 QmWfqCrd register */
91#define QM_WFQ_CRD_E5_NUM_VOQS		16
92
93/* RL constants: */
94
95/* Period in us */
96#define QM_RL_PERIOD			5
97
98/* Period in 25MHz cycles */
99#define QM_RL_PERIOD_CLK_25M		(25 * QM_RL_PERIOD)
100
101/* RL increment value - rate is specified in mbps. the factor of 1.01 was
102* added after seeing only 99% factor reached in a 25Gbps port with DPDK RFC
103* 2544 test. In this scenario the PF RL was reducing the line rate to 99%
104* although the credit increment value was the correct one and FW calculated
105* correct packet sizes. The reason for the inaccuracy of the RL is unknown at
106* this point.
107*/
108#define QM_RL_INC_VAL(rate)			OSAL_MAX_T(u32, (u32)(((rate ? rate : 100000) * QM_RL_PERIOD * 101) 	/ (8 * 100)), 1)
109
110/* PF RL Upper bound is set to 10 * burst size of 1ms in 50Gbps */
111#define QM_PF_RL_UPPER_BOUND		62500000
112
113/* Max PF RL increment value is 0.7 * upper bound */
114#define QM_PF_RL_MAX_INC_VAL		((QM_PF_RL_UPPER_BOUND * 7) / 10)
115
116/* Vport RL Upper bound, link speed is in Mpbs */
117#define QM_VP_RL_UPPER_BOUND(speed)		((u32)OSAL_MAX_T(u32, QM_RL_INC_VAL(speed), 9700 + 1000))
118
119/* Max Vport RL increment value is the Vport RL upper bound */
120#define QM_VP_RL_MAX_INC_VAL(speed)	QM_VP_RL_UPPER_BOUND(speed)
121
122/* Vport RL credit threshold in case of QM bypass */
123#define QM_VP_RL_BYPASS_THRESH_SPEED	(QM_VP_RL_UPPER_BOUND(10000) - 1)
124
125/* AFullOprtnstcCrdMask constants */
126#define QM_OPPOR_LINE_VOQ_DEF		1
127#define QM_OPPOR_FW_STOP_DEF		0
128#define QM_OPPOR_PQ_EMPTY_DEF		1
129
130/* Command Queue constants: */
131
132/* Pure LB CmdQ lines (+spare) */
133#define PBF_CMDQ_PURE_LB_LINES		150
134
135#define PBF_CMDQ_LINES_E5_RSVD_RATIO	8
136
137#define PBF_CMDQ_LINES_RT_OFFSET(ext_voq)		(PBF_REG_YCMD_QS_NUM_LINES_VOQ0_RT_OFFSET + ext_voq 	* (PBF_REG_YCMD_QS_NUM_LINES_VOQ1_RT_OFFSET 	- PBF_REG_YCMD_QS_NUM_LINES_VOQ0_RT_OFFSET))
138
139#define PBF_BTB_GUARANTEED_RT_OFFSET(ext_voq) 	(PBF_REG_BTB_GUARANTEED_VOQ0_RT_OFFSET + ext_voq 	* (PBF_REG_BTB_GUARANTEED_VOQ1_RT_OFFSET 	- PBF_REG_BTB_GUARANTEED_VOQ0_RT_OFFSET))
140
141#define QM_VOQ_LINE_CRD(pbf_cmd_lines)		((((pbf_cmd_lines) - 4) * 2) | QM_LINE_CRD_REG_SIGN_BIT)
142
143/* BTB: blocks constants (block size = 256B) */
144
145/* 256B blocks in 9700B packet */
146#define BTB_JUMBO_PKT_BLOCKS		38
147
148/* Headroom per-port */
149#define BTB_HEADROOM_BLOCKS		BTB_JUMBO_PKT_BLOCKS
150#define BTB_PURE_LB_FACTOR		10
151
152/* Factored (hence really 0.7) */
153#define BTB_PURE_LB_RATIO		7
154
155/* QM stop command constants */
156#define QM_STOP_PQ_MASK_WIDTH		32
157#define QM_STOP_CMD_ADDR		2
158#define QM_STOP_CMD_STRUCT_SIZE		2
159#define QM_STOP_CMD_PAUSE_MASK_OFFSET	0
160#define QM_STOP_CMD_PAUSE_MASK_SHIFT	0
161#define QM_STOP_CMD_PAUSE_MASK_MASK	-1
162#define QM_STOP_CMD_GROUP_ID_OFFSET	1
163#define QM_STOP_CMD_GROUP_ID_SHIFT	16
164#define QM_STOP_CMD_GROUP_ID_MASK	15
165#define QM_STOP_CMD_PQ_TYPE_OFFSET	1
166#define QM_STOP_CMD_PQ_TYPE_SHIFT	24
167#define QM_STOP_CMD_PQ_TYPE_MASK	1
168#define QM_STOP_CMD_MAX_POLL_COUNT	100
169#define QM_STOP_CMD_POLL_PERIOD_US	500
170
171/* QM command macros */
172#define QM_CMD_STRUCT_SIZE(cmd)		  cmd##_STRUCT_SIZE
173#define QM_CMD_SET_FIELD(var, cmd, field, value)  	SET_FIELD(var[cmd##_##field##_OFFSET], cmd##_##field, value)
174
175#define QM_INIT_TX_PQ_MAP(p_hwfn, map, chip, pq_id, rl_valid, vp_pq_id, rl_id, ext_voq, wrr) 	OSAL_MEMSET(&map, 0, sizeof(map)); 	SET_FIELD(map.reg, QM_RF_PQ_MAP_##chip##_PQ_VALID, 1); 	SET_FIELD(map.reg, QM_RF_PQ_MAP_##chip##_RL_VALID, rl_valid); 	SET_FIELD(map.reg, QM_RF_PQ_MAP_##chip##_VP_PQ_ID, vp_pq_id); 	SET_FIELD(map.reg, QM_RF_PQ_MAP_##chip##_RL_ID, rl_id); 	SET_FIELD(map.reg, QM_RF_PQ_MAP_##chip##_VOQ, ext_voq); 	SET_FIELD(map.reg, QM_RF_PQ_MAP_##chip##_WRR_WEIGHT_GROUP, wrr); 	STORE_RT_REG(p_hwfn, QM_REG_TXPQMAP_RT_OFFSET + pq_id, *((u32 *)&map))
176
177#define WRITE_PQ_INFO_TO_RAM							1
178#define PQ_INFO_ELEMENT(vp, pf, tc, port, rl_valid, rl)	(((vp) << 0) | ((pf) << 12) | ((tc) << 16) | ((port) << 20) | ((rl_valid) << 22) | ((rl) << 24))
179#define PQ_INFO_RAM_GRC_ADDRESS(pq_id)					XSEM_REG_FAST_MEMORY + SEM_FAST_REG_INT_RAM + 21776 + (pq_id) * 4
180
181/******************** INTERNAL IMPLEMENTATION *********************/
182
183/* Returns the external VOQ number */
184static u8 ecore_get_ext_voq(struct ecore_hwfn *p_hwfn,
185							u8 port_id,
186							u8 tc,
187							u8 max_phys_tcs_per_port)
188{
189	if (tc == PURE_LB_TC)
190		return NUM_OF_PHYS_TCS * (ECORE_IS_E5(p_hwfn->p_dev) ? MAX_NUM_PORTS_E5 : MAX_NUM_PORTS_BB) + port_id;
191	else
192		return port_id * (ECORE_IS_E5(p_hwfn->p_dev) ? NUM_OF_PHYS_TCS : max_phys_tcs_per_port) + tc;
193}
194
195/* Prepare PF RL enable/disable runtime init values */
196static void ecore_enable_pf_rl(struct ecore_hwfn *p_hwfn,
197							   bool pf_rl_en)
198{
199	STORE_RT_REG(p_hwfn, QM_REG_RLPFENABLE_RT_OFFSET, pf_rl_en ? 1 : 0);
200	if (pf_rl_en) {
201		u8 num_ext_voqs = ECORE_IS_E5(p_hwfn->p_dev) ? QM_E5_NUM_EXT_VOQ : MAX_NUM_VOQS_E4;
202		u64 voq_bit_mask = ((u64)1 << num_ext_voqs) - 1;
203
204		/* Enable RLs for all VOQs */
205		STORE_RT_REG(p_hwfn, QM_REG_RLPFVOQENABLE_RT_OFFSET, (u32)voq_bit_mask);
206#ifdef QM_REG_RLPFVOQENABLE_MSB_RT_OFFSET
207		if (num_ext_voqs >= 32)
208			STORE_RT_REG(p_hwfn, QM_REG_RLPFVOQENABLE_MSB_RT_OFFSET, (u32)(voq_bit_mask >> 32));
209#endif
210
211		/* Write RL period */
212		STORE_RT_REG(p_hwfn, QM_REG_RLPFPERIOD_RT_OFFSET, QM_RL_PERIOD_CLK_25M);
213		STORE_RT_REG(p_hwfn, QM_REG_RLPFPERIODTIMER_RT_OFFSET, QM_RL_PERIOD_CLK_25M);
214
215		/* Set credit threshold for QM bypass flow */
216		if (QM_BYPASS_EN)
217			STORE_RT_REG(p_hwfn, QM_REG_AFULLQMBYPTHRPFRL_RT_OFFSET, QM_PF_RL_UPPER_BOUND);
218	}
219}
220
221/* Prepare PF WFQ enable/disable runtime init values */
222static void ecore_enable_pf_wfq(struct ecore_hwfn *p_hwfn,
223								bool pf_wfq_en)
224{
225	STORE_RT_REG(p_hwfn, QM_REG_WFQPFENABLE_RT_OFFSET, pf_wfq_en ? 1 : 0);
226
227	/* Set credit threshold for QM bypass flow */
228	if (pf_wfq_en && QM_BYPASS_EN)
229		STORE_RT_REG(p_hwfn, QM_REG_AFULLQMBYPTHRPFWFQ_RT_OFFSET, QM_WFQ_UPPER_BOUND);
230}
231
232/* Prepare VPORT RL enable/disable runtime init values */
233static void ecore_enable_vport_rl(struct ecore_hwfn *p_hwfn,
234								  bool vport_rl_en)
235{
236	STORE_RT_REG(p_hwfn, QM_REG_RLGLBLENABLE_RT_OFFSET, vport_rl_en ? 1 : 0);
237	if (vport_rl_en) {
238
239		/* Write RL period (use timer 0 only) */
240		STORE_RT_REG(p_hwfn, QM_REG_RLGLBLPERIOD_0_RT_OFFSET, QM_RL_PERIOD_CLK_25M);
241		STORE_RT_REG(p_hwfn, QM_REG_RLGLBLPERIODTIMER_0_RT_OFFSET, QM_RL_PERIOD_CLK_25M);
242
243		/* Set credit threshold for QM bypass flow */
244		if (QM_BYPASS_EN)
245			STORE_RT_REG(p_hwfn, QM_REG_AFULLQMBYPTHRGLBLRL_RT_OFFSET, QM_VP_RL_BYPASS_THRESH_SPEED);
246	}
247}
248
249/* Prepare VPORT WFQ enable/disable runtime init values */
250static void ecore_enable_vport_wfq(struct ecore_hwfn *p_hwfn,
251								   bool vport_wfq_en)
252{
253	STORE_RT_REG(p_hwfn, QM_REG_WFQVPENABLE_RT_OFFSET, vport_wfq_en ? 1 : 0);
254
255	/* Set credit threshold for QM bypass flow */
256	if (vport_wfq_en && QM_BYPASS_EN)
257		STORE_RT_REG(p_hwfn, QM_REG_AFULLQMBYPTHRVPWFQ_RT_OFFSET, QM_WFQ_UPPER_BOUND);
258}
259
260/* Prepare runtime init values to allocate PBF command queue lines for
261 * the specified VOQ.
262 */
263static void ecore_cmdq_lines_voq_rt_init(struct ecore_hwfn *p_hwfn,
264										 u8 ext_voq,
265										 u16 cmdq_lines)
266{
267	u32 qm_line_crd;
268
269	qm_line_crd = QM_VOQ_LINE_CRD(cmdq_lines);
270
271	OVERWRITE_RT_REG(p_hwfn, PBF_CMDQ_LINES_RT_OFFSET(ext_voq), (u32)cmdq_lines);
272	STORE_RT_REG(p_hwfn, QM_REG_VOQCRDLINE_RT_OFFSET + ext_voq, qm_line_crd);
273	STORE_RT_REG(p_hwfn, QM_REG_VOQINITCRDLINE_RT_OFFSET + ext_voq, qm_line_crd);
274}
275
276/* Prepare runtime init values to allocate PBF command queue lines. */
277static void ecore_cmdq_lines_rt_init(struct ecore_hwfn *p_hwfn,
278									 u8 max_ports_per_engine,
279									 u8 max_phys_tcs_per_port,
280									 struct init_qm_port_params port_params[MAX_NUM_PORTS])
281{
282	u8 tc, ext_voq, port_id, num_tcs_in_port;
283	u8 num_ext_voqs = ECORE_IS_E5(p_hwfn->p_dev) ? QM_E5_NUM_EXT_VOQ : MAX_NUM_VOQS_E4;
284
285	/* Clear PBF lines of all VOQs */
286	for (ext_voq = 0; ext_voq < num_ext_voqs; ext_voq++)
287		STORE_RT_REG(p_hwfn, PBF_CMDQ_LINES_RT_OFFSET(ext_voq), 0);
288
289	for (port_id = 0; port_id < max_ports_per_engine; port_id++) {
290		u16 phys_lines, phys_lines_per_tc;
291
292		if (!port_params[port_id].active)
293			continue;
294
295		/* Find number of command queue lines to divide between the
296		 * active physical TCs. In E5, 1/8 of the lines are reserved.
297		 * the lines for pure LB TC are subtracted.
298		 */
299		phys_lines = port_params[port_id].num_pbf_cmd_lines;
300		if (ECORE_IS_E5(p_hwfn->p_dev))
301			phys_lines -= DIV_ROUND_UP(phys_lines, PBF_CMDQ_LINES_E5_RSVD_RATIO);
302		phys_lines -= PBF_CMDQ_PURE_LB_LINES;
303
304		/* Find #lines per active physical TC */
305		num_tcs_in_port = 0;
306		for (tc = 0; tc < max_phys_tcs_per_port; tc++)
307			if (((port_params[port_id].active_phys_tcs >> tc) & 0x1) == 1)
308				num_tcs_in_port++;
309		phys_lines_per_tc = phys_lines / num_tcs_in_port;
310
311		/* Init registers per active TC */
312		for (tc = 0; tc < max_phys_tcs_per_port; tc++) {
313			ext_voq = ecore_get_ext_voq(p_hwfn, port_id, tc, max_phys_tcs_per_port);
314			if (((port_params[port_id].active_phys_tcs >> tc) & 0x1) == 1)
315				ecore_cmdq_lines_voq_rt_init(p_hwfn, ext_voq, phys_lines_per_tc);
316		}
317
318		/* Init registers for pure LB TC */
319		ext_voq = ecore_get_ext_voq(p_hwfn, port_id, PURE_LB_TC, max_phys_tcs_per_port);
320		ecore_cmdq_lines_voq_rt_init(p_hwfn, ext_voq, PBF_CMDQ_PURE_LB_LINES);
321	}
322}
323
324/* Prepare runtime init values to allocate guaranteed BTB blocks for the
325 * specified port. The guaranteed BTB space is divided between the TCs as
326 * follows (shared space Is currently not used):
327 * 1. Parameters:
328 *    B - BTB blocks for this port
329 *    C - Number of physical TCs for this port
330 * 2. Calculation:
331 *    a. 38 blocks (9700B jumbo frame) are allocated for global per port
332 *	 headroom.
333 *    b. B = B - 38 (remainder after global headroom allocation).
334 *    c. MAX(38,B/(C+0.7)) blocks are allocated for the pure LB VOQ.
335 *    d. B = B � MAX(38, B/(C+0.7)) (remainder after pure LB allocation).
336 *    e. B/C blocks are allocated for each physical TC.
337 * Assumptions:
338 * - MTU is up to 9700 bytes (38 blocks)
339 * - All TCs are considered symmetrical (same rate and packet size)
340 * - No optimization for lossy TC (all are considered lossless). Shared space
341 *   is not enabled and allocated for each TC.
342 */
343static void ecore_btb_blocks_rt_init(struct ecore_hwfn *p_hwfn,
344									 u8 max_ports_per_engine,
345									 u8 max_phys_tcs_per_port,
346									 struct init_qm_port_params port_params[MAX_NUM_PORTS])
347{
348	u32 usable_blocks, pure_lb_blocks, phys_blocks;
349	u8 tc, ext_voq, port_id, num_tcs_in_port;
350
351	for (port_id = 0; port_id < max_ports_per_engine; port_id++) {
352		if (!port_params[port_id].active)
353			continue;
354
355		/* Subtract headroom blocks */
356		usable_blocks = port_params[port_id].num_btb_blocks - BTB_HEADROOM_BLOCKS;
357
358		/* Find blocks per physical TC. use factor to avoid floating
359		 * arithmethic.
360		 */
361		num_tcs_in_port = 0;
362		for (tc = 0; tc < NUM_OF_PHYS_TCS; tc++)
363			if (((port_params[port_id].active_phys_tcs >> tc) & 0x1) == 1)
364				num_tcs_in_port++;
365
366		pure_lb_blocks = (usable_blocks * BTB_PURE_LB_FACTOR) / (num_tcs_in_port * BTB_PURE_LB_FACTOR + BTB_PURE_LB_RATIO);
367		pure_lb_blocks = OSAL_MAX_T(u32, BTB_JUMBO_PKT_BLOCKS, pure_lb_blocks / BTB_PURE_LB_FACTOR);
368		phys_blocks = (usable_blocks - pure_lb_blocks) / num_tcs_in_port;
369
370		/* Init physical TCs */
371		for (tc = 0; tc < NUM_OF_PHYS_TCS; tc++) {
372			if (((port_params[port_id].active_phys_tcs >> tc) & 0x1) == 1) {
373				ext_voq = ecore_get_ext_voq(p_hwfn, port_id, tc, max_phys_tcs_per_port);
374				STORE_RT_REG(p_hwfn, PBF_BTB_GUARANTEED_RT_OFFSET(ext_voq), phys_blocks);
375			}
376		}
377
378		/* Init pure LB TC */
379		ext_voq = ecore_get_ext_voq(p_hwfn, port_id, PURE_LB_TC, max_phys_tcs_per_port);
380		STORE_RT_REG(p_hwfn, PBF_BTB_GUARANTEED_RT_OFFSET(ext_voq), pure_lb_blocks);
381	}
382}
383
384/* Prepare Tx PQ mapping runtime init values for the specified PF */
385static void ecore_tx_pq_map_rt_init(struct ecore_hwfn *p_hwfn,
386									struct ecore_ptt *p_ptt,
387									u8 port_id,
388									u8 pf_id,
389									u8 max_phys_tcs_per_port,
390									bool is_pf_loading,
391									u32 num_pf_cids,
392									u32 num_vf_cids,
393									u16 start_pq,
394									u16 num_pf_pqs,
395									u16 num_vf_pqs,
396									u8 start_vport,
397									u32 base_mem_addr_4kb,
398									struct init_qm_pq_params *pq_params,
399									struct init_qm_vport_params *vport_params)
400{
401	/* A bit per Tx PQ indicating if the PQ is associated with a VF */
402	u32 tx_pq_vf_mask[MAX_QM_TX_QUEUES / QM_PF_QUEUE_GROUP_SIZE] = { 0 };
403	u32 num_tx_pq_vf_masks = MAX_QM_TX_QUEUES / QM_PF_QUEUE_GROUP_SIZE;
404	u16 num_pqs, first_pq_group, last_pq_group, i, j, pq_id, pq_group;
405	u32 pq_mem_4kb, vport_pq_mem_4kb, mem_addr_4kb;
406
407	num_pqs = num_pf_pqs + num_vf_pqs;
408
409	first_pq_group = start_pq / QM_PF_QUEUE_GROUP_SIZE;
410	last_pq_group = (start_pq + num_pqs - 1) / QM_PF_QUEUE_GROUP_SIZE;
411
412	pq_mem_4kb = QM_PQ_MEM_4KB(num_pf_cids);
413	vport_pq_mem_4kb = QM_PQ_MEM_4KB(num_vf_cids);
414	mem_addr_4kb = base_mem_addr_4kb;
415
416	/* Set mapping from PQ group to PF */
417	for (pq_group = first_pq_group; pq_group <= last_pq_group; pq_group++)
418		STORE_RT_REG(p_hwfn, QM_REG_PQTX2PF_0_RT_OFFSET + pq_group, (u32)(pf_id));
419
420	/* Set PQ sizes */
421	STORE_RT_REG(p_hwfn, QM_REG_MAXPQSIZE_0_RT_OFFSET, QM_PQ_SIZE_256B(num_pf_cids));
422	STORE_RT_REG(p_hwfn, QM_REG_MAXPQSIZE_1_RT_OFFSET, QM_PQ_SIZE_256B(num_vf_cids));
423
424	/* Go over all Tx PQs */
425	for (i = 0, pq_id = start_pq; i < num_pqs; i++, pq_id++) {
426		u32 max_qm_global_rls = MAX_QM_GLOBAL_RLS;
427		u8 ext_voq, vport_id_in_pf;
428		bool is_vf_pq, rl_valid;
429		u16 first_tx_pq_id;
430
431		ext_voq = ecore_get_ext_voq(p_hwfn, port_id, pq_params[i].tc_id, max_phys_tcs_per_port);
432		is_vf_pq = (i >= num_pf_pqs);
433		rl_valid = pq_params[i].rl_valid && pq_params[i].vport_id < max_qm_global_rls;
434
435		/* Update first Tx PQ of VPORT/TC */
436		vport_id_in_pf = pq_params[i].vport_id - start_vport;
437		first_tx_pq_id = vport_params[vport_id_in_pf].first_tx_pq_id[pq_params[i].tc_id];
438		if (first_tx_pq_id == QM_INVALID_PQ_ID) {
439			u32 map_val = (ext_voq << QM_WFQ_VP_PQ_VOQ_SHIFT) | (pf_id << (ECORE_IS_E5(p_hwfn->p_dev) ? QM_WFQ_VP_PQ_PF_E5_SHIFT : QM_WFQ_VP_PQ_PF_E4_SHIFT));
440
441			/* Create new VP PQ */
442			vport_params[vport_id_in_pf].first_tx_pq_id[pq_params[i].tc_id] = pq_id;
443			first_tx_pq_id = pq_id;
444
445			/* Map VP PQ to VOQ and PF */
446			STORE_RT_REG(p_hwfn, QM_REG_WFQVPMAP_RT_OFFSET + first_tx_pq_id, map_val);
447		}
448
449		/* Check RL ID */
450		if (pq_params[i].rl_valid && pq_params[i].vport_id >= max_qm_global_rls)
451			DP_NOTICE(p_hwfn, true, "Invalid VPORT ID for rate limiter configuration\n");
452
453		/* Prepare PQ map entry */
454		if (ECORE_IS_E5(p_hwfn->p_dev)) {
455			struct qm_rf_pq_map_e5 tx_pq_map;
456			QM_INIT_TX_PQ_MAP(p_hwfn, tx_pq_map, E5, pq_id, rl_valid ? 1 : 0, first_tx_pq_id, rl_valid ? pq_params[i].vport_id : 0, ext_voq, pq_params[i].wrr_group);
457		}
458		else {
459			struct qm_rf_pq_map_e4 tx_pq_map;
460			QM_INIT_TX_PQ_MAP(p_hwfn, tx_pq_map, E4, pq_id, rl_valid ? 1 : 0, first_tx_pq_id, rl_valid ? pq_params[i].vport_id : 0, ext_voq, pq_params[i].wrr_group);
461		}
462
463		/* Set PQ base address */
464		STORE_RT_REG(p_hwfn, QM_REG_BASEADDRTXPQ_RT_OFFSET + pq_id, mem_addr_4kb);
465
466		/* Clear PQ pointer table entry (64 bit) */
467		if (is_pf_loading)
468			for (j = 0; j < 2; j++)
469				STORE_RT_REG(p_hwfn, QM_REG_PTRTBLTX_RT_OFFSET + (pq_id * 2) + j, 0);
470
471		/* Write PQ info to RAM */
472		if (WRITE_PQ_INFO_TO_RAM != 0)
473		{
474			u32 pq_info = 0;
475			pq_info = PQ_INFO_ELEMENT(first_tx_pq_id, pf_id, pq_params[i].tc_id, port_id, rl_valid ? 1 : 0, rl_valid ? pq_params[i].vport_id : 0);
476			ecore_wr(p_hwfn, p_ptt, PQ_INFO_RAM_GRC_ADDRESS(pq_id), pq_info);
477		}
478
479		/* If VF PQ, add indication to PQ VF mask */
480		if (is_vf_pq) {
481			tx_pq_vf_mask[pq_id / QM_PF_QUEUE_GROUP_SIZE] |= (1 << (pq_id % QM_PF_QUEUE_GROUP_SIZE));
482			mem_addr_4kb += vport_pq_mem_4kb;
483		}
484		else {
485			mem_addr_4kb += pq_mem_4kb;
486		}
487	}
488
489	/* Store Tx PQ VF mask to size select register */
490	for (i = 0; i < num_tx_pq_vf_masks; i++)
491		if (tx_pq_vf_mask[i])
492			STORE_RT_REG(p_hwfn, QM_REG_MAXPQSIZETXSEL_0_RT_OFFSET + i, tx_pq_vf_mask[i]);
493}
494
495/* Prepare Other PQ mapping runtime init values for the specified PF */
496static void ecore_other_pq_map_rt_init(struct ecore_hwfn *p_hwfn,
497									   u8 pf_id,
498									   bool is_pf_loading,
499									   u32 num_pf_cids,
500									   u32 num_tids,
501									   u32 base_mem_addr_4kb)
502{
503	u32 pq_size, pq_mem_4kb, mem_addr_4kb;
504	u16 i, j, pq_id, pq_group;
505
506	/* A single other PQ group is used in each PF, where PQ group i is used
507	 * in PF i.
508	 */
509	pq_group = pf_id;
510	pq_size = num_pf_cids + num_tids;
511	pq_mem_4kb = QM_PQ_MEM_4KB(pq_size);
512	mem_addr_4kb = base_mem_addr_4kb;
513
514	/* Map PQ group to PF */
515	STORE_RT_REG(p_hwfn, QM_REG_PQOTHER2PF_0_RT_OFFSET + pq_group, (u32)(pf_id));
516
517	/* Set PQ sizes */
518	STORE_RT_REG(p_hwfn, QM_REG_MAXPQSIZE_2_RT_OFFSET, QM_PQ_SIZE_256B(pq_size));
519
520	for (i = 0, pq_id = pf_id * QM_PF_QUEUE_GROUP_SIZE; i < QM_OTHER_PQS_PER_PF; i++, pq_id++) {
521		/* Set PQ base address */
522		STORE_RT_REG(p_hwfn, QM_REG_BASEADDROTHERPQ_RT_OFFSET + pq_id, mem_addr_4kb);
523
524		/* Clear PQ pointer table entry */
525		if (is_pf_loading)
526			for (j = 0; j < 2; j++)
527				STORE_RT_REG(p_hwfn, QM_REG_PTRTBLOTHER_RT_OFFSET + (pq_id * 2) + j, 0);
528
529		mem_addr_4kb += pq_mem_4kb;
530	}
531}
532
533/* Prepare PF WFQ runtime init values for the specified PF.
534 * Return -1 on error.
535 */
536static int ecore_pf_wfq_rt_init(struct ecore_hwfn *p_hwfn,
537								u8 port_id,
538								u8 pf_id,
539								u16 pf_wfq,
540								u8 max_phys_tcs_per_port,
541								u16 num_tx_pqs,
542								struct init_qm_pq_params *pq_params)
543{
544	u32 inc_val, crd_reg_offset;
545	u8 ext_voq;
546	u16 i;
547
548	inc_val = QM_WFQ_INC_VAL(pf_wfq);
549	if (!inc_val || inc_val > QM_WFQ_MAX_INC_VAL) {
550		DP_NOTICE(p_hwfn, true, "Invalid PF WFQ weight configuration\n");
551		return -1;
552	}
553
554	for (i = 0; i < num_tx_pqs; i++) {
555		ext_voq = ecore_get_ext_voq(p_hwfn, port_id, pq_params[i].tc_id, max_phys_tcs_per_port);
556		crd_reg_offset = ECORE_IS_E5(p_hwfn->p_dev) ?
557			(ext_voq < QM_WFQ_CRD_E5_NUM_VOQS ? QM_REG_WFQPFCRD_RT_OFFSET : QM_REG_WFQPFCRD_MSB_RT_OFFSET) + (ext_voq % QM_WFQ_CRD_E5_NUM_VOQS) * MAX_NUM_PFS_E5 + pf_id :
558			(pf_id < MAX_NUM_PFS_BB ? QM_REG_WFQPFCRD_RT_OFFSET : QM_REG_WFQPFCRD_MSB_RT_OFFSET) + ext_voq * MAX_NUM_PFS_BB + (pf_id % MAX_NUM_PFS_BB);
559		OVERWRITE_RT_REG(p_hwfn, crd_reg_offset, (u32)QM_WFQ_CRD_REG_SIGN_BIT);
560	}
561
562	STORE_RT_REG(p_hwfn, QM_REG_WFQPFUPPERBOUND_RT_OFFSET + pf_id, QM_WFQ_UPPER_BOUND | (u32)QM_WFQ_CRD_REG_SIGN_BIT);
563	STORE_RT_REG(p_hwfn, QM_REG_WFQPFWEIGHT_RT_OFFSET + pf_id, inc_val);
564
565	return 0;
566}
567
568/* Prepare PF RL runtime init values for the specified PF.
569 * Return -1 on error.
570 */
571static int ecore_pf_rl_rt_init(struct ecore_hwfn *p_hwfn,
572							  u8 pf_id,
573							  u32 pf_rl)
574{
575	u32 inc_val;
576
577	inc_val = QM_RL_INC_VAL(pf_rl);
578	if (inc_val > QM_PF_RL_MAX_INC_VAL) {
579		DP_NOTICE(p_hwfn, true, "Invalid PF rate limit configuration\n");
580		return -1;
581	}
582
583	STORE_RT_REG(p_hwfn, QM_REG_RLPFCRD_RT_OFFSET + pf_id, (u32)QM_RL_CRD_REG_SIGN_BIT);
584	STORE_RT_REG(p_hwfn, QM_REG_RLPFUPPERBOUND_RT_OFFSET + pf_id, QM_PF_RL_UPPER_BOUND | (u32)QM_RL_CRD_REG_SIGN_BIT);
585	STORE_RT_REG(p_hwfn, QM_REG_RLPFINCVAL_RT_OFFSET + pf_id, inc_val);
586
587	return 0;
588}
589
590/* Prepare VPORT WFQ runtime init values for the specified VPORTs.
591 * Return -1 on error.
592 */
593static int ecore_vp_wfq_rt_init(struct ecore_hwfn *p_hwfn,
594								u8 num_vports,
595								struct init_qm_vport_params *vport_params)
596{
597	u16 vport_pq_id;
598	u32 inc_val;
599	u8 tc, i;
600
601	/* Go over all PF VPORTs */
602	for (i = 0; i < num_vports; i++) {
603		if (!vport_params[i].vport_wfq)
604			continue;
605
606		inc_val = QM_WFQ_INC_VAL(vport_params[i].vport_wfq);
607		if (inc_val > QM_WFQ_MAX_INC_VAL) {
608			DP_NOTICE(p_hwfn, true, "Invalid VPORT WFQ weight configuration\n");
609			return -1;
610		}
611
612		/* Each VPORT can have several VPORT PQ IDs for various TCs */
613		for (tc = 0; tc < NUM_OF_TCS; tc++) {
614			vport_pq_id = vport_params[i].first_tx_pq_id[tc];
615			if (vport_pq_id != QM_INVALID_PQ_ID) {
616				STORE_RT_REG(p_hwfn, QM_REG_WFQVPCRD_RT_OFFSET + vport_pq_id, (u32)QM_WFQ_CRD_REG_SIGN_BIT);
617				STORE_RT_REG(p_hwfn, QM_REG_WFQVPWEIGHT_RT_OFFSET + vport_pq_id, inc_val);
618			}
619		}
620	}
621
622	return 0;
623}
624
625/* Prepare VPORT RL runtime init values for the specified VPORTs.
626 * Return -1 on error.
627 */
628static int ecore_vport_rl_rt_init(struct ecore_hwfn *p_hwfn,
629								  u8 start_vport,
630								  u8 num_vports,
631								  u32 link_speed,
632								  struct init_qm_vport_params *vport_params)
633{
634	u8 i, vport_id;
635	u32 inc_val;
636
637	if (start_vport + num_vports >= MAX_QM_GLOBAL_RLS) {
638		DP_NOTICE(p_hwfn, true, "Invalid VPORT ID for rate limiter configuration\n");
639		return -1;
640	}
641
642	/* Go over all PF VPORTs */
643	for (i = 0, vport_id = start_vport; i < num_vports; i++, vport_id++) {
644		inc_val = QM_RL_INC_VAL(vport_params[i].vport_rl ? vport_params[i].vport_rl : link_speed);
645		if (inc_val > QM_VP_RL_MAX_INC_VAL(link_speed)) {
646			DP_NOTICE(p_hwfn, true, "Invalid VPORT rate-limit configuration\n");
647			return -1;
648		}
649
650		STORE_RT_REG(p_hwfn, QM_REG_RLGLBLCRD_RT_OFFSET + vport_id, (u32)QM_RL_CRD_REG_SIGN_BIT);
651		STORE_RT_REG(p_hwfn, QM_REG_RLGLBLUPPERBOUND_RT_OFFSET + vport_id, QM_VP_RL_UPPER_BOUND(link_speed) | (u32)QM_RL_CRD_REG_SIGN_BIT);
652		STORE_RT_REG(p_hwfn, QM_REG_RLGLBLINCVAL_RT_OFFSET + vport_id, inc_val);
653	}
654
655	return 0;
656}
657
658static bool ecore_poll_on_qm_cmd_ready(struct ecore_hwfn *p_hwfn,
659									   struct ecore_ptt *p_ptt)
660{
661	u32 reg_val, i;
662
663	for (i = 0, reg_val = 0; i < QM_STOP_CMD_MAX_POLL_COUNT && !reg_val; i++) {
664		OSAL_UDELAY(QM_STOP_CMD_POLL_PERIOD_US);
665		reg_val = ecore_rd(p_hwfn, p_ptt, QM_REG_SDMCMDREADY);
666	}
667
668	/* Check if timeout while waiting for SDM command ready */
669	if (i == QM_STOP_CMD_MAX_POLL_COUNT) {
670		DP_VERBOSE(p_hwfn, ECORE_MSG_DEBUG, "Timeout when waiting for QM SDM command ready signal\n");
671		return false;
672	}
673
674	return true;
675}
676
677static bool ecore_send_qm_cmd(struct ecore_hwfn *p_hwfn,
678							  struct ecore_ptt *p_ptt,
679							  u32 cmd_addr,
680							  u32 cmd_data_lsb,
681							  u32 cmd_data_msb)
682{
683	if (!ecore_poll_on_qm_cmd_ready(p_hwfn, p_ptt))
684		return false;
685
686	ecore_wr(p_hwfn, p_ptt, QM_REG_SDMCMDADDR, cmd_addr);
687	ecore_wr(p_hwfn, p_ptt, QM_REG_SDMCMDDATALSB, cmd_data_lsb);
688	ecore_wr(p_hwfn, p_ptt, QM_REG_SDMCMDDATAMSB, cmd_data_msb);
689	ecore_wr(p_hwfn, p_ptt, QM_REG_SDMCMDGO, 1);
690	ecore_wr(p_hwfn, p_ptt, QM_REG_SDMCMDGO, 0);
691
692	return ecore_poll_on_qm_cmd_ready(p_hwfn, p_ptt);
693}
694
695
696/******************** INTERFACE IMPLEMENTATION *********************/
697
698u32 ecore_qm_pf_mem_size(u32 num_pf_cids,
699						 u32 num_vf_cids,
700						 u32 num_tids,
701						 u16 num_pf_pqs,
702						 u16 num_vf_pqs)
703{
704	return QM_PQ_MEM_4KB(num_pf_cids) * num_pf_pqs +
705		   QM_PQ_MEM_4KB(num_vf_cids) * num_vf_pqs +
706		   QM_PQ_MEM_4KB(num_pf_cids + num_tids) * QM_OTHER_PQS_PER_PF;
707}
708
709int ecore_qm_common_rt_init(struct ecore_hwfn *p_hwfn,
710							u8 max_ports_per_engine,
711							u8 max_phys_tcs_per_port,
712							bool pf_rl_en,
713							bool pf_wfq_en,
714							bool vport_rl_en,
715							bool vport_wfq_en,
716							struct init_qm_port_params port_params[MAX_NUM_PORTS])
717{
718	u32 mask;
719
720	/* Init AFullOprtnstcCrdMask */
721	mask = (QM_OPPOR_LINE_VOQ_DEF << QM_RF_OPPORTUNISTIC_MASK_LINEVOQ_SHIFT) |
722		(QM_BYTE_CRD_EN << QM_RF_OPPORTUNISTIC_MASK_BYTEVOQ_SHIFT) |
723		(pf_wfq_en << QM_RF_OPPORTUNISTIC_MASK_PFWFQ_SHIFT) |
724		(vport_wfq_en << QM_RF_OPPORTUNISTIC_MASK_VPWFQ_SHIFT) |
725		(pf_rl_en << QM_RF_OPPORTUNISTIC_MASK_PFRL_SHIFT) |
726		(vport_rl_en << QM_RF_OPPORTUNISTIC_MASK_VPQCNRL_SHIFT) |
727		(QM_OPPOR_FW_STOP_DEF << QM_RF_OPPORTUNISTIC_MASK_FWPAUSE_SHIFT) |
728		(QM_OPPOR_PQ_EMPTY_DEF << QM_RF_OPPORTUNISTIC_MASK_QUEUEEMPTY_SHIFT);
729	STORE_RT_REG(p_hwfn, QM_REG_AFULLOPRTNSTCCRDMASK_RT_OFFSET, mask);
730
731	/* Enable/disable PF RL */
732	ecore_enable_pf_rl(p_hwfn, pf_rl_en);
733
734	/* Enable/disable PF WFQ */
735	ecore_enable_pf_wfq(p_hwfn, pf_wfq_en);
736
737	/* Enable/disable VPORT RL */
738	ecore_enable_vport_rl(p_hwfn, vport_rl_en);
739
740	/* Enable/disable VPORT WFQ */
741	ecore_enable_vport_wfq(p_hwfn, vport_wfq_en);
742
743	/* Init PBF CMDQ line credit */
744	ecore_cmdq_lines_rt_init(p_hwfn, max_ports_per_engine, max_phys_tcs_per_port, port_params);
745
746	/* Init BTB blocks in PBF */
747	ecore_btb_blocks_rt_init(p_hwfn, max_ports_per_engine, max_phys_tcs_per_port, port_params);
748
749	return 0;
750}
751
752int ecore_qm_pf_rt_init(struct ecore_hwfn *p_hwfn,
753						struct ecore_ptt *p_ptt,
754						u8 port_id,
755						u8 pf_id,
756						u8 max_phys_tcs_per_port,
757						bool is_pf_loading,
758						u32 num_pf_cids,
759						u32 num_vf_cids,
760						u32 num_tids,
761						u16 start_pq,
762						u16 num_pf_pqs,
763						u16 num_vf_pqs,
764						u8 start_vport,
765						u8 num_vports,
766						u16 pf_wfq,
767						u32 pf_rl,
768						u32 link_speed,
769						struct init_qm_pq_params *pq_params,
770						struct init_qm_vport_params *vport_params)
771{
772	u32 other_mem_size_4kb;
773	u8 tc, i;
774
775	other_mem_size_4kb = QM_PQ_MEM_4KB(num_pf_cids + num_tids) * QM_OTHER_PQS_PER_PF;
776
777	/* Clear first Tx PQ ID array for each VPORT */
778	for(i = 0; i < num_vports; i++)
779		for(tc = 0; tc < NUM_OF_TCS; tc++)
780			vport_params[i].first_tx_pq_id[tc] = QM_INVALID_PQ_ID;
781
782	/* Map Other PQs (if any) */
783#if QM_OTHER_PQS_PER_PF > 0
784	ecore_other_pq_map_rt_init(p_hwfn, pf_id, is_pf_loading, num_pf_cids, num_tids, 0);
785#endif
786
787	/* Map Tx PQs */
788	ecore_tx_pq_map_rt_init(p_hwfn, p_ptt, port_id, pf_id, max_phys_tcs_per_port, is_pf_loading, num_pf_cids, num_vf_cids,
789							start_pq, num_pf_pqs, num_vf_pqs, start_vport, other_mem_size_4kb, pq_params, vport_params);
790
791	/* Init PF WFQ */
792	if (pf_wfq)
793		if (ecore_pf_wfq_rt_init(p_hwfn, port_id, pf_id, pf_wfq, max_phys_tcs_per_port, num_pf_pqs + num_vf_pqs, pq_params))
794		return -1;
795
796	/* Init PF RL */
797	if (ecore_pf_rl_rt_init(p_hwfn, pf_id, pf_rl))
798		return -1;
799
800	/* Set VPORT WFQ */
801	if (ecore_vp_wfq_rt_init(p_hwfn, num_vports, vport_params))
802		return -1;
803
804	/* Set VPORT RL */
805	if (ecore_vport_rl_rt_init(p_hwfn, start_vport, num_vports, link_speed, vport_params))
806		return -1;
807
808	return 0;
809}
810
811int ecore_init_pf_wfq(struct ecore_hwfn *p_hwfn,
812					  struct ecore_ptt *p_ptt,
813					  u8 pf_id,
814					  u16 pf_wfq)
815{
816	u32 inc_val;
817
818	inc_val = QM_WFQ_INC_VAL(pf_wfq);
819	if (!inc_val || inc_val > QM_WFQ_MAX_INC_VAL) {
820		DP_NOTICE(p_hwfn, true, "Invalid PF WFQ weight configuration\n");
821		return -1;
822	}
823
824	ecore_wr(p_hwfn, p_ptt, QM_REG_WFQPFWEIGHT + pf_id * 4, inc_val);
825
826	return 0;
827}
828
829int ecore_init_pf_rl(struct ecore_hwfn *p_hwfn,
830					 struct ecore_ptt *p_ptt,
831					 u8 pf_id,
832					 u32 pf_rl)
833{
834	u32 inc_val;
835
836	inc_val = QM_RL_INC_VAL(pf_rl);
837	if (inc_val > QM_PF_RL_MAX_INC_VAL) {
838		DP_NOTICE(p_hwfn, true, "Invalid PF rate limit configuration\n");
839		return -1;
840	}
841
842	ecore_wr(p_hwfn, p_ptt, QM_REG_RLPFCRD + pf_id * 4, (u32)QM_RL_CRD_REG_SIGN_BIT);
843	ecore_wr(p_hwfn, p_ptt, QM_REG_RLPFINCVAL + pf_id * 4, inc_val);
844
845	return 0;
846}
847
848int ecore_init_vport_wfq(struct ecore_hwfn *p_hwfn,
849						 struct ecore_ptt *p_ptt,
850						 u16 first_tx_pq_id[NUM_OF_TCS],
851						 u16 vport_wfq)
852{
853	u16 vport_pq_id;
854	u32 inc_val;
855	u8 tc;
856
857	inc_val = QM_WFQ_INC_VAL(vport_wfq);
858	if (!inc_val || inc_val > QM_WFQ_MAX_INC_VAL) {
859		DP_NOTICE(p_hwfn, true, "Invalid VPORT WFQ weight configuration\n");
860		return -1;
861	}
862
863	for (tc = 0; tc < NUM_OF_TCS; tc++) {
864		vport_pq_id = first_tx_pq_id[tc];
865		if (vport_pq_id != QM_INVALID_PQ_ID) {
866			ecore_wr(p_hwfn, p_ptt, QM_REG_WFQVPWEIGHT + vport_pq_id * 4, inc_val);
867		}
868	}
869
870	return 0;
871}
872
873int ecore_init_vport_rl(struct ecore_hwfn *p_hwfn,
874						struct ecore_ptt *p_ptt,
875						u8 vport_id,
876						u32 vport_rl,
877						u32 link_speed)
878{
879	u32 inc_val, max_qm_global_rls = MAX_QM_GLOBAL_RLS;
880
881	if (vport_id >= max_qm_global_rls) {
882		DP_NOTICE(p_hwfn, true, "Invalid VPORT ID for rate limiter configuration\n");
883		return -1;
884	}
885
886	inc_val = QM_RL_INC_VAL(vport_rl ? vport_rl : link_speed);
887	if (inc_val > QM_VP_RL_MAX_INC_VAL(link_speed)) {
888		DP_NOTICE(p_hwfn, true, "Invalid VPORT rate-limit configuration\n");
889		return -1;
890	}
891
892	ecore_wr(p_hwfn, p_ptt, QM_REG_RLGLBLCRD + vport_id * 4, (u32)QM_RL_CRD_REG_SIGN_BIT);
893	ecore_wr(p_hwfn, p_ptt, QM_REG_RLGLBLINCVAL + vport_id * 4, inc_val);
894
895	return 0;
896}
897
898bool ecore_send_qm_stop_cmd(struct ecore_hwfn *p_hwfn,
899							struct ecore_ptt *p_ptt,
900							bool is_release_cmd,
901							bool is_tx_pq,
902							u16 start_pq,
903							u16 num_pqs)
904{
905	u32 cmd_arr[QM_CMD_STRUCT_SIZE(QM_STOP_CMD)] = {0};
906	u32 pq_mask = 0, last_pq, pq_id;
907
908	last_pq = start_pq + num_pqs - 1;
909
910	/* Set command's PQ type */
911	QM_CMD_SET_FIELD(cmd_arr, QM_STOP_CMD, PQ_TYPE, is_tx_pq ? 0 : 1);
912
913	/* Go over requested PQs */
914	for (pq_id = start_pq; pq_id <= last_pq; pq_id++) {
915
916		/* Set PQ bit in mask (stop command only) */
917		if (!is_release_cmd)
918			pq_mask |= (1 << (pq_id % QM_STOP_PQ_MASK_WIDTH));
919
920		/* If last PQ or end of PQ mask, write command */
921		if ((pq_id == last_pq) || (pq_id % QM_STOP_PQ_MASK_WIDTH == (QM_STOP_PQ_MASK_WIDTH - 1))) {
922			QM_CMD_SET_FIELD(cmd_arr, (u32)QM_STOP_CMD, PAUSE_MASK, pq_mask);
923			QM_CMD_SET_FIELD(cmd_arr, QM_STOP_CMD, GROUP_ID, pq_id / QM_STOP_PQ_MASK_WIDTH);
924			if (!ecore_send_qm_cmd(p_hwfn, p_ptt, QM_STOP_CMD_ADDR, cmd_arr[0], cmd_arr[1]))
925				return false;
926			pq_mask = 0;
927		}
928	}
929
930	return true;
931}
932
933#ifndef UNUSED_HSI_FUNC
934
935/* NIG: ETS configuration constants */
936#define NIG_TX_ETS_CLIENT_OFFSET	4
937#define NIG_LB_ETS_CLIENT_OFFSET	1
938#define NIG_ETS_MIN_WFQ_BYTES		1600
939
940/* NIG: ETS constants */
941#define NIG_ETS_UP_BOUND(weight,mtu)		(2 * ((weight) > (mtu) ? (weight) : (mtu)))
942
943/* NIG: RL constants */
944
945/* Byte base type value */
946#define NIG_RL_BASE_TYPE		1
947
948/* Period in us */
949#define NIG_RL_PERIOD			1
950
951/* Period in 25MHz cycles */
952#define NIG_RL_PERIOD_CLK_25M		(25 * NIG_RL_PERIOD)
953
954/* Rate in mbps */
955#define NIG_RL_INC_VAL(rate)		(((rate) * NIG_RL_PERIOD) / 8)
956
957#define NIG_RL_MAX_VAL(inc_val,mtu)		(2 * ((inc_val) > (mtu) ? (inc_val) : (mtu)))
958
959/* NIG: packet prioritry configuration constants */
960#define NIG_PRIORITY_MAP_TC_BITS	4
961
962
963void ecore_init_nig_ets(struct ecore_hwfn *p_hwfn,
964						struct ecore_ptt *p_ptt,
965						struct init_ets_req* req,
966						bool is_lb)
967{
968	u32 min_weight, tc_weight_base_addr, tc_weight_addr_diff;
969	u32 tc_bound_base_addr, tc_bound_addr_diff;
970	u8 sp_tc_map = 0, wfq_tc_map = 0;
971	u8 tc, num_tc, tc_client_offset;
972
973	num_tc = is_lb ? NUM_OF_TCS : NUM_OF_PHYS_TCS;
974	tc_client_offset = is_lb ? NIG_LB_ETS_CLIENT_OFFSET : NIG_TX_ETS_CLIENT_OFFSET;
975	min_weight = 0xffffffff;
976	tc_weight_base_addr = is_lb ? NIG_REG_LB_ARB_CREDIT_WEIGHT_0 : NIG_REG_TX_ARB_CREDIT_WEIGHT_0;
977	tc_weight_addr_diff = is_lb ? NIG_REG_LB_ARB_CREDIT_WEIGHT_1 - NIG_REG_LB_ARB_CREDIT_WEIGHT_0 :
978								  NIG_REG_TX_ARB_CREDIT_WEIGHT_1 - NIG_REG_TX_ARB_CREDIT_WEIGHT_0;
979	tc_bound_base_addr = is_lb ? NIG_REG_LB_ARB_CREDIT_UPPER_BOUND_0 : NIG_REG_TX_ARB_CREDIT_UPPER_BOUND_0;
980	tc_bound_addr_diff = is_lb ? NIG_REG_LB_ARB_CREDIT_UPPER_BOUND_1 - NIG_REG_LB_ARB_CREDIT_UPPER_BOUND_0 :
981								 NIG_REG_TX_ARB_CREDIT_UPPER_BOUND_1 - NIG_REG_TX_ARB_CREDIT_UPPER_BOUND_0;
982
983	for (tc = 0; tc < num_tc; tc++) {
984		struct init_ets_tc_req *tc_req = &req->tc_req[tc];
985
986		/* Update SP map */
987		if (tc_req->use_sp)
988			sp_tc_map |= (1 << tc);
989
990		if (!tc_req->use_wfq)
991			continue;
992
993		/* Update WFQ map */
994		wfq_tc_map |= (1 << tc);
995
996		/* Find minimal weight */
997		if (tc_req->weight < min_weight)
998			min_weight = tc_req->weight;
999	}
1000
1001	/* Write SP map */
1002	ecore_wr(p_hwfn, p_ptt, is_lb ? NIG_REG_LB_ARB_CLIENT_IS_STRICT : NIG_REG_TX_ARB_CLIENT_IS_STRICT, (sp_tc_map << tc_client_offset));
1003
1004	/* Write WFQ map */
1005	ecore_wr(p_hwfn, p_ptt, is_lb ? NIG_REG_LB_ARB_CLIENT_IS_SUBJECT2WFQ : NIG_REG_TX_ARB_CLIENT_IS_SUBJECT2WFQ, (wfq_tc_map << tc_client_offset));
1006
1007	/* Write WFQ weights */
1008	for (tc = 0; tc < num_tc; tc++, tc_client_offset++) {
1009		struct init_ets_tc_req *tc_req = &req->tc_req[tc];
1010		u32 byte_weight;
1011
1012		if (!tc_req->use_wfq)
1013			continue;
1014
1015		/* Translate weight to bytes */
1016		byte_weight = (NIG_ETS_MIN_WFQ_BYTES * tc_req->weight) / min_weight;
1017
1018		/* Write WFQ weight */
1019		ecore_wr(p_hwfn, p_ptt, tc_weight_base_addr + tc_weight_addr_diff * tc_client_offset, byte_weight);
1020
1021		/* Write WFQ upper bound */
1022		ecore_wr(p_hwfn, p_ptt, tc_bound_base_addr + tc_bound_addr_diff * tc_client_offset, NIG_ETS_UP_BOUND(byte_weight, req->mtu));
1023	}
1024}
1025
1026void ecore_init_nig_lb_rl(struct ecore_hwfn *p_hwfn,
1027						  struct ecore_ptt *p_ptt,
1028						  struct init_nig_lb_rl_req* req)
1029{
1030	u32 ctrl, inc_val, reg_offset;
1031	u8 tc;
1032
1033	/* Disable global MAC+LB RL */
1034	ctrl = NIG_RL_BASE_TYPE << NIG_REG_TX_LB_GLBRATELIMIT_CTRL_TX_LB_GLBRATELIMIT_BASE_TYPE_SHIFT;
1035	ecore_wr(p_hwfn, p_ptt, NIG_REG_TX_LB_GLBRATELIMIT_CTRL, ctrl);
1036
1037	/* Configure and enable global MAC+LB RL */
1038	if (req->lb_mac_rate) {
1039
1040		/* Configure  */
1041		ecore_wr(p_hwfn, p_ptt, NIG_REG_TX_LB_GLBRATELIMIT_INC_PERIOD, NIG_RL_PERIOD_CLK_25M);
1042		inc_val = NIG_RL_INC_VAL(req->lb_mac_rate);
1043		ecore_wr(p_hwfn, p_ptt, NIG_REG_TX_LB_GLBRATELIMIT_INC_VALUE, inc_val);
1044		ecore_wr(p_hwfn, p_ptt, NIG_REG_TX_LB_GLBRATELIMIT_MAX_VALUE, NIG_RL_MAX_VAL(inc_val, req->mtu));
1045
1046		/* Enable */
1047		ctrl |= 1 << NIG_REG_TX_LB_GLBRATELIMIT_CTRL_TX_LB_GLBRATELIMIT_EN_SHIFT;
1048		ecore_wr(p_hwfn, p_ptt, NIG_REG_TX_LB_GLBRATELIMIT_CTRL, ctrl);
1049	}
1050
1051	/* Disable global LB-only RL */
1052	ctrl = NIG_RL_BASE_TYPE << NIG_REG_LB_BRBRATELIMIT_CTRL_LB_BRBRATELIMIT_BASE_TYPE_SHIFT;
1053	ecore_wr(p_hwfn, p_ptt, NIG_REG_LB_BRBRATELIMIT_CTRL, ctrl);
1054
1055	/* Configure and enable global LB-only RL */
1056	if (req->lb_rate) {
1057
1058		/* Configure  */
1059		ecore_wr(p_hwfn, p_ptt, NIG_REG_LB_BRBRATELIMIT_INC_PERIOD, NIG_RL_PERIOD_CLK_25M);
1060		inc_val = NIG_RL_INC_VAL(req->lb_rate);
1061		ecore_wr(p_hwfn, p_ptt, NIG_REG_LB_BRBRATELIMIT_INC_VALUE, inc_val);
1062		ecore_wr(p_hwfn, p_ptt, NIG_REG_LB_BRBRATELIMIT_MAX_VALUE, NIG_RL_MAX_VAL(inc_val, req->mtu));
1063
1064		/* Enable */
1065		ctrl |= 1 << NIG_REG_LB_BRBRATELIMIT_CTRL_LB_BRBRATELIMIT_EN_SHIFT;
1066		ecore_wr(p_hwfn, p_ptt, NIG_REG_LB_BRBRATELIMIT_CTRL, ctrl);
1067	}
1068
1069	/* Per-TC RLs */
1070	for (tc = 0, reg_offset = 0; tc < NUM_OF_PHYS_TCS; tc++, reg_offset += 4) {
1071
1072		/* Disable TC RL */
1073		ctrl = NIG_RL_BASE_TYPE << NIG_REG_LB_TCRATELIMIT_CTRL_0_LB_TCRATELIMIT_BASE_TYPE_0_SHIFT;
1074		ecore_wr(p_hwfn, p_ptt, NIG_REG_LB_TCRATELIMIT_CTRL_0 + reg_offset, ctrl);
1075
1076		/* Configure and enable TC RL */
1077		if (!req->tc_rate[tc])
1078			continue;
1079
1080		/* Configure */
1081		ecore_wr(p_hwfn, p_ptt, NIG_REG_LB_TCRATELIMIT_INC_PERIOD_0 + reg_offset, NIG_RL_PERIOD_CLK_25M);
1082		inc_val = NIG_RL_INC_VAL(req->tc_rate[tc]);
1083		ecore_wr(p_hwfn, p_ptt, NIG_REG_LB_TCRATELIMIT_INC_VALUE_0 + reg_offset, inc_val);
1084		ecore_wr(p_hwfn, p_ptt, NIG_REG_LB_TCRATELIMIT_MAX_VALUE_0 + reg_offset, NIG_RL_MAX_VAL(inc_val, req->mtu));
1085
1086		/* Enable */
1087		ctrl |= 1 << NIG_REG_LB_TCRATELIMIT_CTRL_0_LB_TCRATELIMIT_EN_0_SHIFT;
1088		ecore_wr(p_hwfn, p_ptt, NIG_REG_LB_TCRATELIMIT_CTRL_0 + reg_offset, ctrl);
1089	}
1090}
1091
1092void ecore_init_nig_pri_tc_map(struct ecore_hwfn *p_hwfn,
1093							   struct ecore_ptt *p_ptt,
1094							   struct init_nig_pri_tc_map_req* req)
1095{
1096	u8 tc_pri_mask[NUM_OF_PHYS_TCS] = { 0 };
1097	u32 pri_tc_mask = 0;
1098	u8 pri, tc;
1099
1100	for (pri = 0; pri < NUM_OF_VLAN_PRIORITIES; pri++) {
1101		if (!req->pri[pri].valid)
1102			continue;
1103
1104		pri_tc_mask |= (req->pri[pri].tc_id << (pri * NIG_PRIORITY_MAP_TC_BITS));
1105		tc_pri_mask[req->pri[pri].tc_id] |= (1 << pri);
1106	}
1107
1108	/* Write priority -> TC mask */
1109	ecore_wr(p_hwfn, p_ptt, NIG_REG_PKT_PRIORITY_TO_TC, pri_tc_mask);
1110
1111	/* Write TC -> priority mask */
1112	for (tc = 0; tc < NUM_OF_PHYS_TCS; tc++) {
1113		ecore_wr(p_hwfn, p_ptt, NIG_REG_PRIORITY_FOR_TC_0 + tc * 4, tc_pri_mask[tc]);
1114		ecore_wr(p_hwfn, p_ptt, NIG_REG_RX_TC0_PRIORITY_MASK + tc * 4, tc_pri_mask[tc]);
1115	}
1116}
1117
1118#endif /* UNUSED_HSI_FUNC */
1119
1120#ifndef UNUSED_HSI_FUNC
1121
1122/* PRS: ETS configuration constants */
1123#define PRS_ETS_MIN_WFQ_BYTES		1600
1124#define PRS_ETS_UP_BOUND(weight,mtu)		(2 * ((weight) > (mtu) ? (weight) : (mtu)))
1125
1126
1127void ecore_init_prs_ets(struct ecore_hwfn *p_hwfn,
1128						struct ecore_ptt *p_ptt,
1129						struct init_ets_req* req)
1130{
1131	u32 tc_weight_addr_diff, tc_bound_addr_diff, min_weight = 0xffffffff;
1132	u8 tc, sp_tc_map = 0, wfq_tc_map = 0;
1133
1134	tc_weight_addr_diff = PRS_REG_ETS_ARB_CREDIT_WEIGHT_1 - PRS_REG_ETS_ARB_CREDIT_WEIGHT_0;
1135	tc_bound_addr_diff = PRS_REG_ETS_ARB_CREDIT_UPPER_BOUND_1 - PRS_REG_ETS_ARB_CREDIT_UPPER_BOUND_0;
1136
1137	for (tc = 0; tc < NUM_OF_TCS; tc++) {
1138		struct init_ets_tc_req *tc_req = &req->tc_req[tc];
1139
1140		/* Update SP map */
1141		if (tc_req->use_sp)
1142			sp_tc_map |= (1 << tc);
1143
1144		if (!tc_req->use_wfq)
1145			continue;
1146
1147		/* Update WFQ map */
1148		wfq_tc_map |= (1 << tc);
1149
1150		/* Find minimal weight */
1151		if (tc_req->weight < min_weight)
1152			min_weight = tc_req->weight;
1153	}
1154
1155	/* Write SP map */
1156	ecore_wr(p_hwfn, p_ptt, PRS_REG_ETS_ARB_CLIENT_IS_STRICT, sp_tc_map);
1157
1158	/* Write WFQ map */
1159	ecore_wr(p_hwfn, p_ptt, PRS_REG_ETS_ARB_CLIENT_IS_SUBJECT2WFQ, wfq_tc_map);
1160
1161	/* Write WFQ weights */
1162	for (tc = 0; tc < NUM_OF_TCS; tc++) {
1163		struct init_ets_tc_req *tc_req = &req->tc_req[tc];
1164		u32 byte_weight;
1165
1166		if (!tc_req->use_wfq)
1167			continue;
1168
1169		/* Translate weight to bytes */
1170		byte_weight = (PRS_ETS_MIN_WFQ_BYTES * tc_req->weight) / min_weight;
1171
1172		/* Write WFQ weight */
1173		ecore_wr(p_hwfn, p_ptt, PRS_REG_ETS_ARB_CREDIT_WEIGHT_0 + tc * tc_weight_addr_diff, byte_weight);
1174
1175		/* Write WFQ upper bound */
1176		ecore_wr(p_hwfn, p_ptt, PRS_REG_ETS_ARB_CREDIT_UPPER_BOUND_0 + tc * tc_bound_addr_diff, PRS_ETS_UP_BOUND(byte_weight, req->mtu));
1177	}
1178}
1179
1180#endif /* UNUSED_HSI_FUNC */
1181#ifndef UNUSED_HSI_FUNC
1182
1183/* BRB: RAM configuration constants */
1184#define BRB_TOTAL_RAM_BLOCKS_BB	4800
1185#define BRB_TOTAL_RAM_BLOCKS_K2	5632
1186#define BRB_BLOCK_SIZE		128
1187#define BRB_MIN_BLOCKS_PER_TC	9
1188#define BRB_HYST_BYTES		10240
1189#define BRB_HYST_BLOCKS		(BRB_HYST_BYTES / BRB_BLOCK_SIZE)
1190
1191/* Temporary big RAM allocation - should be updated */
1192void ecore_init_brb_ram(struct ecore_hwfn *p_hwfn,
1193						struct ecore_ptt *p_ptt,
1194						struct init_brb_ram_req* req)
1195{
1196	u32 tc_headroom_blocks, min_pkt_size_blocks, total_blocks;
1197	u32 active_port_blocks, reg_offset = 0;
1198	u8 port, active_ports = 0;
1199
1200	tc_headroom_blocks = (u32)DIV_ROUND_UP(req->headroom_per_tc, BRB_BLOCK_SIZE);
1201	min_pkt_size_blocks = (u32)DIV_ROUND_UP(req->min_pkt_size, BRB_BLOCK_SIZE);
1202	total_blocks = ECORE_IS_K2(p_hwfn->p_dev) ? BRB_TOTAL_RAM_BLOCKS_K2 : BRB_TOTAL_RAM_BLOCKS_BB;
1203
1204	/* Find number of active ports */
1205	for (port = 0; port < MAX_NUM_PORTS; port++)
1206		if (req->num_active_tcs[port])
1207			active_ports++;
1208
1209	active_port_blocks = (u32)(total_blocks / active_ports);
1210
1211	for (port = 0; port < req->max_ports_per_engine; port++) {
1212		u32 port_blocks, port_shared_blocks, port_guaranteed_blocks;
1213		u32 full_xoff_th, full_xon_th, pause_xoff_th, pause_xon_th;
1214		u32 tc_guaranteed_blocks;
1215		u8 tc;
1216
1217		/* Calculate per-port sizes */
1218		tc_guaranteed_blocks = (u32)DIV_ROUND_UP(req->guranteed_per_tc, BRB_BLOCK_SIZE);
1219		port_blocks = req->num_active_tcs[port] ? active_port_blocks : 0;
1220		port_guaranteed_blocks = req->num_active_tcs[port] * tc_guaranteed_blocks;
1221		port_shared_blocks = port_blocks - port_guaranteed_blocks;
1222		full_xoff_th = req->num_active_tcs[port] * BRB_MIN_BLOCKS_PER_TC;
1223		full_xon_th = full_xoff_th + min_pkt_size_blocks;
1224		pause_xoff_th = tc_headroom_blocks;
1225		pause_xon_th = pause_xoff_th + min_pkt_size_blocks;
1226
1227		/* Init total size per port */
1228		ecore_wr(p_hwfn, p_ptt, BRB_REG_TOTAL_MAC_SIZE + port * 4, port_blocks);
1229
1230		/* Init shared size per port */
1231		ecore_wr(p_hwfn, p_ptt, BRB_REG_SHARED_HR_AREA + port * 4, port_shared_blocks);
1232
1233		for (tc = 0; tc < NUM_OF_TCS; tc++, reg_offset += 4) {
1234			/* Clear init values for non-active TCs */
1235			if (tc == req->num_active_tcs[port]) {
1236				tc_guaranteed_blocks = 0;
1237				full_xoff_th = 0;
1238				full_xon_th = 0;
1239				pause_xoff_th = 0;
1240				pause_xon_th = 0;
1241			}
1242
1243			/* Init guaranteed size per TC */
1244			ecore_wr(p_hwfn, p_ptt, BRB_REG_TC_GUARANTIED_0 + reg_offset, tc_guaranteed_blocks);
1245			ecore_wr(p_hwfn, p_ptt, BRB_REG_MAIN_TC_GUARANTIED_HYST_0 + reg_offset, BRB_HYST_BLOCKS);
1246
1247			/* Init pause/full thresholds per physical TC - for
1248			 * loopback traffic.
1249			 */
1250			ecore_wr(p_hwfn, p_ptt, BRB_REG_LB_TC_FULL_XOFF_THRESHOLD_0 + reg_offset, full_xoff_th);
1251			ecore_wr(p_hwfn, p_ptt, BRB_REG_LB_TC_FULL_XON_THRESHOLD_0 + reg_offset, full_xon_th);
1252			ecore_wr(p_hwfn, p_ptt, BRB_REG_LB_TC_PAUSE_XOFF_THRESHOLD_0 + reg_offset, pause_xoff_th);
1253			ecore_wr(p_hwfn, p_ptt, BRB_REG_LB_TC_PAUSE_XON_THRESHOLD_0 + reg_offset, pause_xon_th);
1254
1255			/* Init pause/full thresholds per physical TC - for
1256			 * main traffic.
1257			 */
1258			ecore_wr(p_hwfn, p_ptt, BRB_REG_MAIN_TC_FULL_XOFF_THRESHOLD_0 + reg_offset, full_xoff_th);
1259			ecore_wr(p_hwfn, p_ptt, BRB_REG_MAIN_TC_FULL_XON_THRESHOLD_0 + reg_offset, full_xon_th);
1260			ecore_wr(p_hwfn, p_ptt, BRB_REG_MAIN_TC_PAUSE_XOFF_THRESHOLD_0 + reg_offset, pause_xoff_th);
1261			ecore_wr(p_hwfn, p_ptt, BRB_REG_MAIN_TC_PAUSE_XON_THRESHOLD_0 + reg_offset, pause_xon_th);
1262		}
1263	}
1264}
1265
1266#endif /* UNUSED_HSI_FUNC */
1267#ifndef UNUSED_HSI_FUNC
1268
1269/* In MF, should be called once per port to set EtherType of OuterTag */
1270void ecore_set_port_mf_ovlan_eth_type(struct ecore_hwfn *p_hwfn, u32 ethType)
1271{
1272	/* Update DORQ register */
1273	STORE_RT_REG(p_hwfn, DORQ_REG_TAG1_ETHERTYPE_RT_OFFSET, ethType);
1274}
1275
1276#endif /* UNUSED_HSI_FUNC */
1277
1278
1279#define SET_TUNNEL_TYPE_ENABLE_BIT(var,offset,enable) var = ((var) & ~(1 << (offset))) | ( (enable) ? (1 << (offset)) : 0)
1280#define PRS_ETH_TUNN_OUTPUT_FORMAT        -188897008
1281#define PRS_ETH_OUTPUT_FORMAT             -46832
1282
1283void ecore_set_vxlan_dest_port(struct ecore_hwfn *p_hwfn,
1284	struct ecore_ptt *p_ptt,
1285	u16 dest_port)
1286{
1287	/* Update PRS register */
1288	ecore_wr(p_hwfn, p_ptt, PRS_REG_VXLAN_PORT, dest_port);
1289
1290	/* Update NIG register */
1291	ecore_wr(p_hwfn, p_ptt, NIG_REG_VXLAN_CTRL, dest_port);
1292
1293	/* Update PBF register */
1294	ecore_wr(p_hwfn, p_ptt, PBF_REG_VXLAN_PORT, dest_port);
1295}
1296
1297void ecore_set_vxlan_enable(struct ecore_hwfn *p_hwfn,
1298	struct ecore_ptt *p_ptt,
1299	bool vxlan_enable)
1300{
1301	u32 reg_val;
1302
1303	/* Update PRS register */
1304	reg_val = ecore_rd(p_hwfn, p_ptt, PRS_REG_ENCAPSULATION_TYPE_EN);
1305	SET_TUNNEL_TYPE_ENABLE_BIT(reg_val, PRS_REG_ENCAPSULATION_TYPE_EN_VXLAN_ENABLE_SHIFT, vxlan_enable);
1306	ecore_wr(p_hwfn, p_ptt, PRS_REG_ENCAPSULATION_TYPE_EN, reg_val);
1307    if (reg_val) /* TODO: handle E5 init */
1308    {
1309        reg_val = ecore_rd(p_hwfn, p_ptt, PRS_REG_OUTPUT_FORMAT_4_0_BB_K2);
1310
1311        /* Update output  only if tunnel blocks not included. */
1312        if (reg_val == (u32)PRS_ETH_OUTPUT_FORMAT)
1313        {
1314            ecore_wr(p_hwfn, p_ptt, PRS_REG_OUTPUT_FORMAT_4_0_BB_K2, (u32)PRS_ETH_TUNN_OUTPUT_FORMAT);
1315        }
1316    }
1317
1318	/* Update NIG register */
1319	reg_val = ecore_rd(p_hwfn, p_ptt, NIG_REG_ENC_TYPE_ENABLE);
1320	SET_TUNNEL_TYPE_ENABLE_BIT(reg_val, NIG_REG_ENC_TYPE_ENABLE_VXLAN_ENABLE_SHIFT, vxlan_enable);
1321	ecore_wr(p_hwfn, p_ptt, NIG_REG_ENC_TYPE_ENABLE, reg_val);
1322
1323	/* Update DORQ register */
1324	ecore_wr(p_hwfn, p_ptt, DORQ_REG_L2_EDPM_TUNNEL_VXLAN_EN, vxlan_enable ? 1 : 0);
1325}
1326
1327void ecore_set_gre_enable(struct ecore_hwfn *p_hwfn,
1328	struct ecore_ptt *p_ptt,
1329	bool eth_gre_enable,
1330	bool ip_gre_enable)
1331{
1332	u32 reg_val;
1333
1334	/* Update PRS register */
1335	reg_val = ecore_rd(p_hwfn, p_ptt, PRS_REG_ENCAPSULATION_TYPE_EN);
1336	SET_TUNNEL_TYPE_ENABLE_BIT(reg_val, PRS_REG_ENCAPSULATION_TYPE_EN_ETH_OVER_GRE_ENABLE_SHIFT, eth_gre_enable);
1337	SET_TUNNEL_TYPE_ENABLE_BIT(reg_val, PRS_REG_ENCAPSULATION_TYPE_EN_IP_OVER_GRE_ENABLE_SHIFT,  ip_gre_enable);
1338	ecore_wr(p_hwfn, p_ptt, PRS_REG_ENCAPSULATION_TYPE_EN, reg_val);
1339    if (reg_val) /* TODO: handle E5 init */
1340    {
1341        reg_val = ecore_rd(p_hwfn, p_ptt, PRS_REG_OUTPUT_FORMAT_4_0_BB_K2);
1342
1343        /* Update output  only if tunnel blocks not included. */
1344        if (reg_val == (u32)PRS_ETH_OUTPUT_FORMAT)
1345        {
1346            ecore_wr(p_hwfn, p_ptt, PRS_REG_OUTPUT_FORMAT_4_0_BB_K2, (u32)PRS_ETH_TUNN_OUTPUT_FORMAT);
1347        }
1348    }
1349
1350	/* Update NIG register */
1351	reg_val = ecore_rd(p_hwfn, p_ptt, NIG_REG_ENC_TYPE_ENABLE);
1352	SET_TUNNEL_TYPE_ENABLE_BIT(reg_val, NIG_REG_ENC_TYPE_ENABLE_ETH_OVER_GRE_ENABLE_SHIFT, eth_gre_enable);
1353	SET_TUNNEL_TYPE_ENABLE_BIT(reg_val, NIG_REG_ENC_TYPE_ENABLE_IP_OVER_GRE_ENABLE_SHIFT,  ip_gre_enable);
1354	ecore_wr(p_hwfn, p_ptt, NIG_REG_ENC_TYPE_ENABLE, reg_val);
1355
1356	/* Update DORQ registers */
1357	ecore_wr(p_hwfn, p_ptt, DORQ_REG_L2_EDPM_TUNNEL_GRE_ETH_EN, eth_gre_enable ? 1 : 0);
1358	ecore_wr(p_hwfn, p_ptt, DORQ_REG_L2_EDPM_TUNNEL_GRE_IP_EN, ip_gre_enable ? 1 : 0);
1359}
1360
1361void ecore_set_geneve_dest_port(struct ecore_hwfn *p_hwfn,
1362	struct ecore_ptt *p_ptt,
1363	u16 dest_port)
1364
1365{
1366	/* Update PRS register */
1367	ecore_wr(p_hwfn, p_ptt, PRS_REG_NGE_PORT, dest_port);
1368
1369	/* Update NIG register */
1370	ecore_wr(p_hwfn, p_ptt, NIG_REG_NGE_PORT, dest_port);
1371
1372	/* Update PBF register */
1373	ecore_wr(p_hwfn, p_ptt, PBF_REG_NGE_PORT, dest_port);
1374}
1375
1376void ecore_set_geneve_enable(struct ecore_hwfn *p_hwfn,
1377                             struct ecore_ptt *p_ptt,
1378                             bool eth_geneve_enable,
1379                             bool ip_geneve_enable)
1380{
1381	u32 reg_val;
1382
1383	/* Update PRS register */
1384	reg_val = ecore_rd(p_hwfn, p_ptt, PRS_REG_ENCAPSULATION_TYPE_EN);
1385	SET_TUNNEL_TYPE_ENABLE_BIT(reg_val, PRS_REG_ENCAPSULATION_TYPE_EN_ETH_OVER_GENEVE_ENABLE_SHIFT, eth_geneve_enable);
1386	SET_TUNNEL_TYPE_ENABLE_BIT(reg_val, PRS_REG_ENCAPSULATION_TYPE_EN_IP_OVER_GENEVE_ENABLE_SHIFT, ip_geneve_enable);
1387	ecore_wr(p_hwfn, p_ptt, PRS_REG_ENCAPSULATION_TYPE_EN, reg_val);
1388    if (reg_val) /* TODO: handle E5 init */
1389    {
1390        reg_val = ecore_rd(p_hwfn, p_ptt, PRS_REG_OUTPUT_FORMAT_4_0_BB_K2);
1391
1392        /* Update output  only if tunnel blocks not included. */
1393        if (reg_val == (u32)PRS_ETH_OUTPUT_FORMAT)
1394        {
1395            ecore_wr(p_hwfn, p_ptt, PRS_REG_OUTPUT_FORMAT_4_0_BB_K2, (u32)PRS_ETH_TUNN_OUTPUT_FORMAT);
1396        }
1397    }
1398
1399	/* Update NIG register */
1400	ecore_wr(p_hwfn, p_ptt, NIG_REG_NGE_ETH_ENABLE, eth_geneve_enable ? 1 : 0);
1401	ecore_wr(p_hwfn, p_ptt, NIG_REG_NGE_IP_ENABLE, ip_geneve_enable ? 1 : 0);
1402
1403	/* EDPM with geneve tunnel not supported in BB */
1404	if (ECORE_IS_BB_B0(p_hwfn->p_dev))
1405		return;
1406
1407	/* Update DORQ registers */
1408	ecore_wr(p_hwfn, p_ptt, DORQ_REG_L2_EDPM_TUNNEL_NGE_ETH_EN_K2_E5, eth_geneve_enable ? 1 : 0);
1409	ecore_wr(p_hwfn, p_ptt, DORQ_REG_L2_EDPM_TUNNEL_NGE_IP_EN_K2_E5, ip_geneve_enable ? 1 : 0);
1410}
1411
1412#define PRS_ETH_VXLAN_NO_L2_ENABLE_OFFSET   4
1413#define PRS_ETH_VXLAN_NO_L2_OUTPUT_FORMAT      -927094512
1414
1415void ecore_set_vxlan_no_l2_enable(struct ecore_hwfn *p_hwfn,
1416                                struct ecore_ptt *p_ptt,
1417                                bool enable)
1418{
1419    u32 reg_val, cfg_mask;
1420
1421    /* read PRS config register */
1422    reg_val = ecore_rd(p_hwfn, p_ptt, PRS_REG_MSG_INFO);
1423
1424    /* set VXLAN_NO_L2_ENABLE mask */
1425    cfg_mask = (1 << PRS_ETH_VXLAN_NO_L2_ENABLE_OFFSET);
1426
1427    if (enable)
1428    {
1429        /* set VXLAN_NO_L2_ENABLE flag */
1430        reg_val |= cfg_mask;
1431
1432        /* update PRS FIC  register */
1433        ecore_wr(p_hwfn, p_ptt, PRS_REG_OUTPUT_FORMAT_4_0_BB_K2, (u32)PRS_ETH_VXLAN_NO_L2_OUTPUT_FORMAT);
1434    }
1435    else
1436    {
1437        /* clear VXLAN_NO_L2_ENABLE flag */
1438        reg_val &= ~cfg_mask;
1439    }
1440
1441    /* write PRS config register */
1442    ecore_wr(p_hwfn, p_ptt, PRS_REG_MSG_INFO, reg_val);
1443}
1444
1445#ifndef UNUSED_HSI_FUNC
1446
1447#define T_ETH_PACKET_ACTION_GFT_EVENTID  23
1448#define PARSER_ETH_CONN_GFT_ACTION_CM_HDR  272
1449#define T_ETH_PACKET_MATCH_RFS_EVENTID 25
1450#define PARSER_ETH_CONN_CM_HDR 0
1451#define CAM_LINE_SIZE sizeof(u32)
1452#define RAM_LINE_SIZE sizeof(u64)
1453#define REG_SIZE sizeof(u32)
1454
1455
1456void ecore_gft_disable(struct ecore_hwfn *p_hwfn,
1457    struct ecore_ptt *p_ptt,
1458    u16 pf_id)
1459{
1460    /* disable gft search for PF */
1461    ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_GFT, 0);
1462
1463    /* Clean ram & cam for next gft session*/
1464
1465    /* Zero camline */
1466    ecore_wr(p_hwfn, p_ptt, PRS_REG_GFT_CAM + CAM_LINE_SIZE*pf_id, 0);
1467
1468    /* Zero ramline */
1469    ecore_wr(p_hwfn, p_ptt, PRS_REG_GFT_PROFILE_MASK_RAM + RAM_LINE_SIZE*pf_id, 0);
1470    ecore_wr(p_hwfn, p_ptt, PRS_REG_GFT_PROFILE_MASK_RAM + RAM_LINE_SIZE*pf_id + REG_SIZE, 0);
1471}
1472
1473
1474void ecore_set_gft_event_id_cm_hdr (struct ecore_hwfn *p_hwfn,
1475	struct ecore_ptt *p_ptt)
1476{
1477	u32 rfs_cm_hdr_event_id;
1478
1479    /* Set RFS event ID to be awakened i Tstorm By Prs */
1480    rfs_cm_hdr_event_id = ecore_rd(p_hwfn, p_ptt, PRS_REG_CM_HDR_GFT);
1481    rfs_cm_hdr_event_id |= T_ETH_PACKET_ACTION_GFT_EVENTID << PRS_REG_CM_HDR_GFT_EVENT_ID_SHIFT;
1482    rfs_cm_hdr_event_id |= PARSER_ETH_CONN_GFT_ACTION_CM_HDR << PRS_REG_CM_HDR_GFT_CM_HDR_SHIFT;
1483    ecore_wr(p_hwfn, p_ptt, PRS_REG_CM_HDR_GFT, rfs_cm_hdr_event_id);
1484}
1485
1486void ecore_gft_config(struct ecore_hwfn *p_hwfn,
1487    struct ecore_ptt *p_ptt,
1488    u16 pf_id,
1489    bool tcp,
1490    bool udp,
1491    bool ipv4,
1492    bool ipv6,
1493    enum gft_profile_type profile_type)
1494{
1495    u32 reg_val, cam_line, ram_line_lo, ram_line_hi;
1496
1497    if (!ipv6 && !ipv4)
1498        DP_NOTICE(p_hwfn, true, "gft_config: must accept at least on of - ipv4 or ipv6'\n");
1499    if (!tcp && !udp)
1500        DP_NOTICE(p_hwfn, true, "gft_config: must accept at least on of - udp or tcp\n");
1501    if (profile_type >= MAX_GFT_PROFILE_TYPE)
1502        DP_NOTICE(p_hwfn, true, "gft_config: unsupported gft_profile_type\n");
1503
1504    /* Set RFS event ID to be awakened i Tstorm By Prs */
1505    reg_val = T_ETH_PACKET_MATCH_RFS_EVENTID << PRS_REG_CM_HDR_GFT_EVENT_ID_SHIFT;
1506    reg_val |= PARSER_ETH_CONN_CM_HDR << PRS_REG_CM_HDR_GFT_CM_HDR_SHIFT;
1507    ecore_wr(p_hwfn, p_ptt, PRS_REG_CM_HDR_GFT, reg_val);
1508
1509    /* Do not load context only cid in PRS on match. */
1510    ecore_wr(p_hwfn, p_ptt, PRS_REG_LOAD_L2_FILTER, 0);
1511
1512    /* Do not use tenant ID exist bit for gft search*/
1513    ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_TENANT_ID, 0);
1514
1515    /* Set Cam */
1516    cam_line = 0;
1517    SET_FIELD(cam_line, GFT_CAM_LINE_MAPPED_VALID, 1);
1518
1519    /* Filters are per PF!! */
1520    SET_FIELD(cam_line, GFT_CAM_LINE_MAPPED_PF_ID_MASK, GFT_CAM_LINE_MAPPED_PF_ID_MASK_MASK);
1521    SET_FIELD(cam_line, GFT_CAM_LINE_MAPPED_PF_ID, pf_id);
1522
1523    if (!(tcp && udp)) {
1524        SET_FIELD(cam_line, GFT_CAM_LINE_MAPPED_UPPER_PROTOCOL_TYPE_MASK, GFT_CAM_LINE_MAPPED_UPPER_PROTOCOL_TYPE_MASK_MASK);
1525        if (tcp)
1526            SET_FIELD(cam_line, GFT_CAM_LINE_MAPPED_UPPER_PROTOCOL_TYPE, GFT_PROFILE_TCP_PROTOCOL);
1527        else
1528            SET_FIELD(cam_line, GFT_CAM_LINE_MAPPED_UPPER_PROTOCOL_TYPE, GFT_PROFILE_UDP_PROTOCOL);
1529    }
1530
1531    if (!(ipv4 && ipv6)) {
1532        SET_FIELD(cam_line, GFT_CAM_LINE_MAPPED_IP_VERSION_MASK, 1);
1533        if (ipv4)
1534            SET_FIELD(cam_line, GFT_CAM_LINE_MAPPED_IP_VERSION, GFT_PROFILE_IPV4);
1535        else
1536            SET_FIELD(cam_line, GFT_CAM_LINE_MAPPED_IP_VERSION, GFT_PROFILE_IPV6);
1537    }
1538
1539    /* Write characteristics to cam */
1540    ecore_wr(p_hwfn, p_ptt, PRS_REG_GFT_CAM + CAM_LINE_SIZE*pf_id, cam_line);
1541    cam_line = ecore_rd(p_hwfn, p_ptt, PRS_REG_GFT_CAM + CAM_LINE_SIZE*pf_id);
1542
1543    /* Write line to RAM - compare to filter 4 tuple */
1544    ram_line_lo = 0;
1545    ram_line_hi = 0;
1546
1547    /* Tunnel type */
1548    SET_FIELD(ram_line_lo, GFT_RAM_LINE_TUNNEL_DST_PORT, 1);
1549    SET_FIELD(ram_line_lo, GFT_RAM_LINE_TUNNEL_OVER_IP_PROTOCOL, 1);
1550
1551    if (profile_type == GFT_PROFILE_TYPE_4_TUPLE)
1552    {
1553        SET_FIELD(ram_line_hi, GFT_RAM_LINE_DST_IP, 1);
1554        SET_FIELD(ram_line_hi, GFT_RAM_LINE_SRC_IP, 1);
1555        SET_FIELD(ram_line_hi, GFT_RAM_LINE_OVER_IP_PROTOCOL, 1);
1556        SET_FIELD(ram_line_lo, GFT_RAM_LINE_ETHERTYPE, 1);
1557        SET_FIELD(ram_line_lo, GFT_RAM_LINE_SRC_PORT, 1);
1558        SET_FIELD(ram_line_lo, GFT_RAM_LINE_DST_PORT, 1);
1559    }
1560    else if (profile_type == GFT_PROFILE_TYPE_L4_DST_PORT)
1561    {
1562        SET_FIELD(ram_line_hi, GFT_RAM_LINE_OVER_IP_PROTOCOL, 1);
1563        SET_FIELD(ram_line_lo, GFT_RAM_LINE_ETHERTYPE, 1);
1564        SET_FIELD(ram_line_lo, GFT_RAM_LINE_DST_PORT, 1);
1565    }
1566    else if (profile_type == GFT_PROFILE_TYPE_IP_DST_ADDR)
1567    {
1568        SET_FIELD(ram_line_hi, GFT_RAM_LINE_DST_IP, 1);
1569        SET_FIELD(ram_line_lo, GFT_RAM_LINE_ETHERTYPE, 1);
1570    }
1571    else if (profile_type == GFT_PROFILE_TYPE_IP_SRC_ADDR)
1572    {
1573        SET_FIELD(ram_line_hi, GFT_RAM_LINE_SRC_IP, 1);
1574        SET_FIELD(ram_line_lo, GFT_RAM_LINE_ETHERTYPE, 1);
1575    }
1576    else if (profile_type == GFT_PROFILE_TYPE_TUNNEL_TYPE)
1577    {
1578        SET_FIELD(ram_line_lo, GFT_RAM_LINE_TUNNEL_ETHERTYPE, 1);
1579    }
1580
1581    ecore_wr(p_hwfn, p_ptt, PRS_REG_GFT_PROFILE_MASK_RAM + RAM_LINE_SIZE*pf_id, ram_line_lo);
1582    ecore_wr(p_hwfn, p_ptt, PRS_REG_GFT_PROFILE_MASK_RAM + RAM_LINE_SIZE*pf_id + REG_SIZE, ram_line_hi);
1583
1584    /* Set default profile so that no filter match will happen */
1585    ecore_wr(p_hwfn, p_ptt, PRS_REG_GFT_PROFILE_MASK_RAM + RAM_LINE_SIZE*PRS_GFT_CAM_LINES_NO_MATCH, 0xffffffff);
1586    ecore_wr(p_hwfn, p_ptt, PRS_REG_GFT_PROFILE_MASK_RAM + RAM_LINE_SIZE*PRS_GFT_CAM_LINES_NO_MATCH + REG_SIZE, 0x3ff);
1587
1588    /* Enable gft search */
1589    ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_GFT, 1);
1590}
1591
1592
1593#endif /* UNUSED_HSI_FUNC */
1594
1595/* Configure VF zone size mode*/
1596void ecore_config_vf_zone_size_mode(struct ecore_hwfn *p_hwfn, struct ecore_ptt *p_ptt, u16 mode, bool runtime_init)
1597{
1598	u32 msdm_vf_size_log = MSTORM_VF_ZONE_DEFAULT_SIZE_LOG;
1599	u32 msdm_vf_offset_mask;
1600
1601	if (mode == VF_ZONE_SIZE_MODE_DOUBLE)
1602		msdm_vf_size_log += 1;
1603	else if (mode == VF_ZONE_SIZE_MODE_QUAD)
1604		msdm_vf_size_log += 2;
1605
1606	msdm_vf_offset_mask = (1 << msdm_vf_size_log) - 1;
1607
1608	if (runtime_init) {
1609		STORE_RT_REG(p_hwfn, PGLUE_REG_B_MSDM_VF_SHIFT_B_RT_OFFSET, msdm_vf_size_log);
1610		STORE_RT_REG(p_hwfn, PGLUE_REG_B_MSDM_OFFSET_MASK_B_RT_OFFSET, msdm_vf_offset_mask);
1611	}
1612	else {
1613		ecore_wr(p_hwfn, p_ptt, PGLUE_B_REG_MSDM_VF_SHIFT_B, msdm_vf_size_log);
1614		ecore_wr(p_hwfn, p_ptt, PGLUE_B_REG_MSDM_OFFSET_MASK_B, msdm_vf_offset_mask);
1615	}
1616}
1617
1618/* Get mstorm statistics for offset by VF zone size mode */
1619u32 ecore_get_mstorm_queue_stat_offset(struct ecore_hwfn *p_hwfn, u16 stat_cnt_id, u16 vf_zone_size_mode)
1620{
1621	u32 offset = MSTORM_QUEUE_STAT_OFFSET(stat_cnt_id);
1622
1623	if ((vf_zone_size_mode != VF_ZONE_SIZE_MODE_DEFAULT) && (stat_cnt_id > MAX_NUM_PFS)) {
1624		if (vf_zone_size_mode == VF_ZONE_SIZE_MODE_DOUBLE)
1625			offset += (1 << MSTORM_VF_ZONE_DEFAULT_SIZE_LOG) * (stat_cnt_id - MAX_NUM_PFS);
1626		else if (vf_zone_size_mode == VF_ZONE_SIZE_MODE_QUAD)
1627			offset += 3 * (1 << MSTORM_VF_ZONE_DEFAULT_SIZE_LOG) * (stat_cnt_id - MAX_NUM_PFS);
1628	}
1629
1630	return offset;
1631}
1632
1633/* Get mstorm VF producer offset by VF zone size mode */
1634u32 ecore_get_mstorm_eth_vf_prods_offset(struct ecore_hwfn *p_hwfn, u8 vf_id, u8 vf_queue_id, u16 vf_zone_size_mode)
1635{
1636	u32 offset = MSTORM_ETH_VF_PRODS_OFFSET(vf_id, vf_queue_id);
1637
1638	if (vf_zone_size_mode != VF_ZONE_SIZE_MODE_DEFAULT) {
1639		if (vf_zone_size_mode == VF_ZONE_SIZE_MODE_DOUBLE)
1640			offset += (1 << MSTORM_VF_ZONE_DEFAULT_SIZE_LOG) * vf_id;
1641		else if (vf_zone_size_mode == VF_ZONE_SIZE_MODE_QUAD)
1642			offset += 3 * (1 << MSTORM_VF_ZONE_DEFAULT_SIZE_LOG) * vf_id;
1643	}
1644
1645	return offset;
1646}
1647
1648#ifndef LINUX_REMOVE
1649#define CRC8_INIT_VALUE 0xFF
1650#endif
1651static u8 cdu_crc8_table[CRC8_TABLE_SIZE];
1652
1653/* Calculate and return CDU validation byte per connection type/region/cid */
1654static u8 ecore_calc_cdu_validation_byte(u8 conn_type, u8 region, u32 cid)
1655{
1656	const u8 validation_cfg = CDU_VALIDATION_DEFAULT_CFG;
1657
1658	static u8 crc8_table_valid;	/*automatically initialized to 0*/
1659	u8 crc, validation_byte = 0;
1660	u32 validation_string = 0;
1661	u32 data_to_crc;
1662
1663	if (crc8_table_valid == 0) {
1664		OSAL_CRC8_POPULATE(cdu_crc8_table, 0x07);
1665		crc8_table_valid = 1;
1666	}
1667
1668	/* The CRC is calculated on the String-to-compress:
1669	 * [31:8]  = {CID[31:20],CID[11:0]}
1670	 * [7:4]   = Region
1671	 * [3:0]   = Type
1672	 */
1673	if ((validation_cfg >> CDU_CONTEXT_VALIDATION_CFG_USE_CID) & 1)
1674		validation_string |= (cid & 0xFFF00000) | ((cid & 0xFFF) << 8);
1675
1676	if ((validation_cfg >> CDU_CONTEXT_VALIDATION_CFG_USE_REGION) & 1)
1677		validation_string |= ((region & 0xF) << 4);
1678
1679	if ((validation_cfg >> CDU_CONTEXT_VALIDATION_CFG_USE_TYPE) & 1)
1680		validation_string |= (conn_type & 0xF);
1681
1682	/* Convert to big-endian and calculate CRC8*/
1683	data_to_crc = OSAL_BE32_TO_CPU(validation_string);
1684
1685	crc = OSAL_CRC8(cdu_crc8_table, (u8 *)&data_to_crc, sizeof(data_to_crc), CRC8_INIT_VALUE);
1686
1687	/* The validation byte [7:0] is composed:
1688	 * for type A validation
1689	 * [7]		= active configuration bit
1690	 * [6:0]	= crc[6:0]
1691	 *
1692	 * for type B validation
1693	 * [7]		= active configuration bit
1694	 * [6:3]	= connection_type[3:0]
1695	 * [2:0]	= crc[2:0]
1696	 */
1697	validation_byte |= ((validation_cfg >> CDU_CONTEXT_VALIDATION_CFG_USE_ACTIVE) & 1) << 7;
1698
1699	if ((validation_cfg >> CDU_CONTEXT_VALIDATION_CFG_VALIDATION_TYPE_SHIFT) & 1)
1700		validation_byte |= ((conn_type & 0xF) << 3) | (crc & 0x7);
1701	else
1702		validation_byte |= crc & 0x7F;
1703
1704	return validation_byte;
1705}
1706
1707/* Calcualte and set validation bytes for session context */
1708void ecore_calc_session_ctx_validation(void *p_ctx_mem, u16 ctx_size, u8 ctx_type, u32 cid)
1709{
1710	u8 *x_val_ptr, *t_val_ptr, *u_val_ptr, *p_ctx;
1711
1712	p_ctx = (u8* const)p_ctx_mem;
1713	x_val_ptr = &p_ctx[con_region_offsets[0][ctx_type]];
1714	t_val_ptr = &p_ctx[con_region_offsets[1][ctx_type]];
1715	u_val_ptr = &p_ctx[con_region_offsets[2][ctx_type]];
1716
1717	OSAL_MEMSET(p_ctx, 0, ctx_size);
1718
1719	*x_val_ptr = ecore_calc_cdu_validation_byte(ctx_type, 3, cid);
1720	*t_val_ptr = ecore_calc_cdu_validation_byte(ctx_type, 4, cid);
1721	*u_val_ptr = ecore_calc_cdu_validation_byte(ctx_type, 5, cid);
1722}
1723
1724/* Calcualte and set validation bytes for task context */
1725void ecore_calc_task_ctx_validation(void *p_ctx_mem, u16 ctx_size, u8 ctx_type, u32 tid)
1726{
1727	u8 *p_ctx, *region1_val_ptr;
1728
1729	p_ctx = (u8* const)p_ctx_mem;
1730	region1_val_ptr = &p_ctx[task_region_offsets[0][ctx_type]];
1731
1732	OSAL_MEMSET(p_ctx, 0, ctx_size);
1733
1734	*region1_val_ptr = ecore_calc_cdu_validation_byte(ctx_type, 1, tid);
1735}
1736
1737/* Memset session context to 0 while preserving validation bytes */
1738void ecore_memset_session_ctx(void *p_ctx_mem, u32 ctx_size, u8 ctx_type)
1739{
1740	u8 *x_val_ptr, *t_val_ptr, *u_val_ptr, *p_ctx;
1741	u8 x_val, t_val, u_val;
1742
1743	p_ctx = (u8* const)p_ctx_mem;
1744	x_val_ptr = &p_ctx[con_region_offsets[0][ctx_type]];
1745	t_val_ptr = &p_ctx[con_region_offsets[1][ctx_type]];
1746	u_val_ptr = &p_ctx[con_region_offsets[2][ctx_type]];
1747
1748	x_val = *x_val_ptr;
1749	t_val = *t_val_ptr;
1750	u_val = *u_val_ptr;
1751
1752	OSAL_MEMSET(p_ctx, 0, ctx_size);
1753
1754	*x_val_ptr = x_val;
1755	*t_val_ptr = t_val;
1756	*u_val_ptr = u_val;
1757}
1758
1759/* Memset task context to 0 while preserving validation bytes */
1760void ecore_memset_task_ctx(void *p_ctx_mem, u32 ctx_size, u8 ctx_type)
1761{
1762	u8 *p_ctx, *region1_val_ptr;
1763	u8 region1_val;
1764
1765	p_ctx = (u8* const)p_ctx_mem;
1766	region1_val_ptr = &p_ctx[task_region_offsets[0][ctx_type]];
1767
1768	region1_val = *region1_val_ptr;
1769
1770	OSAL_MEMSET(p_ctx, 0, ctx_size);
1771
1772	*region1_val_ptr = region1_val;
1773}
1774
1775/* Enable and configure context validation */
1776void ecore_enable_context_validation(struct ecore_hwfn * p_hwfn, struct ecore_ptt *p_ptt)
1777{
1778	u32 ctx_validation;
1779
1780	/* Enable validation for connection region 3: CCFC_CTX_VALID0[31:24] */
1781	ctx_validation = CDU_VALIDATION_DEFAULT_CFG << 24;
1782	ecore_wr(p_hwfn, p_ptt, CDU_REG_CCFC_CTX_VALID0, ctx_validation);
1783
1784	/* Enable validation for connection region 5: CCFC_CTX_VALID1[15:8] */
1785	ctx_validation = CDU_VALIDATION_DEFAULT_CFG << 8;
1786	ecore_wr(p_hwfn, p_ptt, CDU_REG_CCFC_CTX_VALID1, ctx_validation);
1787
1788	/* Enable validation for connection region 1: TCFC_CTX_VALID0[15:8] */
1789	ctx_validation = CDU_VALIDATION_DEFAULT_CFG << 8;
1790	ecore_wr(p_hwfn, p_ptt, CDU_REG_TCFC_CTX_VALID0, ctx_validation);
1791}
1792
1793#define RSS_IND_TABLE_BASE_ADDR       4112
1794#define RSS_IND_TABLE_VPORT_SIZE      16
1795#define RSS_IND_TABLE_ENTRY_PER_LINE  8
1796
1797/* Update RSS indirection table entry. */
1798void ecore_update_eth_rss_ind_table_entry(struct ecore_hwfn * p_hwfn,
1799    struct ecore_ptt *p_ptt,
1800    u8 rss_id,
1801    u8 ind_table_index,
1802    u16 ind_table_value)
1803{
1804    u32 cnt, rss_addr;
1805    u32 * reg_val;
1806    u16 rss_ind_entry[RSS_IND_TABLE_ENTRY_PER_LINE];
1807    u16 rss_ind_mask [RSS_IND_TABLE_ENTRY_PER_LINE];
1808
1809    /* get entry address */
1810    rss_addr =  RSS_IND_TABLE_BASE_ADDR +
1811                RSS_IND_TABLE_VPORT_SIZE * rss_id +
1812                ind_table_index/RSS_IND_TABLE_ENTRY_PER_LINE;
1813
1814    /* prepare update command */
1815    ind_table_index %= RSS_IND_TABLE_ENTRY_PER_LINE;
1816
1817    for (cnt = 0; cnt < RSS_IND_TABLE_ENTRY_PER_LINE; cnt ++)
1818    {
1819        if (cnt == ind_table_index)
1820        {
1821            rss_ind_entry[cnt] = ind_table_value;
1822            rss_ind_mask[cnt]  = 0xFFFF;
1823        }
1824        else
1825        {
1826            rss_ind_entry[cnt] = 0;
1827            rss_ind_mask[cnt]  = 0;
1828        }
1829    }
1830
1831    /* Update entry in HW*/
1832    ecore_wr(p_hwfn, p_ptt, RSS_REG_RSS_RAM_ADDR, rss_addr);
1833
1834    reg_val = (u32*)rss_ind_mask;
1835    ecore_wr(p_hwfn, p_ptt, RSS_REG_RSS_RAM_MASK, reg_val[0]);
1836    ecore_wr(p_hwfn, p_ptt, RSS_REG_RSS_RAM_MASK + 4, reg_val[1]);
1837    ecore_wr(p_hwfn, p_ptt, RSS_REG_RSS_RAM_MASK + 8, reg_val[2]);
1838    ecore_wr(p_hwfn, p_ptt, RSS_REG_RSS_RAM_MASK + 12, reg_val[3]);
1839
1840    reg_val = (u32*)rss_ind_entry;
1841    ecore_wr(p_hwfn, p_ptt, RSS_REG_RSS_RAM_DATA, reg_val[0]);
1842    ecore_wr(p_hwfn, p_ptt, RSS_REG_RSS_RAM_DATA + 4, reg_val[1]);
1843    ecore_wr(p_hwfn, p_ptt, RSS_REG_RSS_RAM_DATA + 8, reg_val[2]);
1844    ecore_wr(p_hwfn, p_ptt, RSS_REG_RSS_RAM_DATA + 12, reg_val[3]);
1845}
1846
1847
1848