1/*-
2 * Copyright (c) 2017 Broadcom. All rights reserved.
3 * The term "Broadcom" refers to Broadcom Limited and/or its subsidiaries.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are met:
7 *
8 * 1. Redistributions of source code must retain the above copyright notice,
9 *    this list of conditions and the following disclaimer.
10 *
11 * 2. Redistributions in binary form must reproduce the above copyright notice,
12 *    this list of conditions and the following disclaimer in the documentation
13 *    and/or other materials provided with the distribution.
14 *
15 * 3. Neither the name of the copyright holder nor the names of its contributors
16 *    may be used to endorse or promote products derived from this software
17 *    without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
20 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
23 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 *
31 * $FreeBSD: stable/11/sys/dev/ocs_fc/ocs_utils.c 331766 2018-03-30 15:28:25Z ken $
32 */
33
34/**
35 * @file
36 *
37 */
38
39#include "ocs.h"
40#include "ocs_os.h"
41
42#define DEFAULT_SLAB_LEN		(64*1024)
43
44struct ocs_array_s {
45	ocs_os_handle_t os;
46
47	uint32_t size;
48	uint32_t count;
49
50	uint32_t n_rows;
51	uint32_t elems_per_row;
52	uint32_t bytes_per_row;
53
54	void **array_rows;
55	uint32_t array_rows_len;
56};
57
58static uint32_t slab_len = DEFAULT_SLAB_LEN;
59
60/**
61 * @brief Set array slab allocation length
62 *
63 * The slab length is the maximum allocation length that the array uses.
64 * The default 64k slab length may be overridden using this function.
65 *
66 * @param len new slab length.
67 *
68 * @return none
69 */
70void
71ocs_array_set_slablen(uint32_t len)
72{
73	slab_len = len;
74}
75
76/**
77 * @brief Allocate an array object
78 *
79 * An array object of size and number of elements is allocated
80 *
81 * @param os OS handle
82 * @param size size of array elements in bytes
83 * @param count number of elements in array
84 *
85 * @return pointer to array object or NULL
86 */
87ocs_array_t *
88ocs_array_alloc(ocs_os_handle_t os, uint32_t size, uint32_t count)
89{
90	ocs_array_t *array = NULL;
91	uint32_t i;
92
93	/* Fail if the item size exceeds slab_len - caller should increase slab_size,
94	 * or not use this API.
95	 */
96	if (size > slab_len) {
97		ocs_log_err(NULL, "Error: size exceeds slab length\n");
98		return NULL;
99	}
100
101	array = ocs_malloc(os, sizeof(*array), OCS_M_ZERO | OCS_M_NOWAIT);
102	if (array == NULL) {
103		return NULL;
104	}
105
106	array->os = os;
107	array->size = size;
108	array->count = count;
109	array->elems_per_row = slab_len / size;
110	array->n_rows = (count + array->elems_per_row - 1) / array->elems_per_row;
111	array->bytes_per_row = array->elems_per_row * array->size;
112
113	array->array_rows_len = array->n_rows * sizeof(*array->array_rows);
114	array->array_rows = ocs_malloc(os, array->array_rows_len, OCS_M_ZERO | OCS_M_NOWAIT);
115	if (array->array_rows == NULL) {
116		ocs_array_free(array);
117		return NULL;
118	}
119	for (i = 0; i < array->n_rows; i++) {
120		array->array_rows[i] = ocs_malloc(os, array->bytes_per_row, OCS_M_ZERO | OCS_M_NOWAIT);
121		if (array->array_rows[i] == NULL) {
122			ocs_array_free(array);
123			return NULL;
124		}
125	}
126
127	return array;
128}
129
130/**
131 * @brief Free an array object
132 *
133 * Frees a prevously allocated array object
134 *
135 * @param array pointer to array object
136 *
137 * @return none
138 */
139void
140ocs_array_free(ocs_array_t *array)
141{
142	uint32_t i;
143
144	if (array != NULL) {
145		if (array->array_rows != NULL) {
146			for (i = 0; i < array->n_rows; i++) {
147				if (array->array_rows[i] != NULL) {
148					ocs_free(array->os, array->array_rows[i], array->bytes_per_row);
149				}
150			}
151			ocs_free(array->os, array->array_rows, array->array_rows_len);
152		}
153		ocs_free(array->os, array, sizeof(*array));
154	}
155}
156
157/**
158 * @brief Return reference to an element of an array object
159 *
160 * Return the address of an array element given an index
161 *
162 * @param array pointer to array object
163 * @param idx array element index
164 *
165 * @return rointer to array element, or NULL if index out of range
166 */
167void *ocs_array_get(ocs_array_t *array, uint32_t idx)
168{
169	void *entry = NULL;
170
171	if (idx < array->count) {
172		uint32_t row = idx / array->elems_per_row;
173		uint32_t offset = idx % array->elems_per_row;
174		entry = ((uint8_t*)array->array_rows[row]) + (offset * array->size);
175	}
176	return entry;
177}
178
179/**
180 * @brief Return number of elements in an array
181 *
182 * Return the number of elements in an array
183 *
184 * @param array pointer to array object
185 *
186 * @return returns count of elements in an array
187 */
188uint32_t
189ocs_array_get_count(ocs_array_t *array)
190{
191	return array->count;
192}
193
194/**
195 * @brief Return size of array elements in bytes
196 *
197 * Returns the size in bytes of each array element
198 *
199 * @param array pointer to array object
200 *
201 * @return size of array element
202 */
203uint32_t
204ocs_array_get_size(ocs_array_t *array)
205{
206	return array->size;
207}
208
209/**
210 * @brief Void pointer array structure
211 *
212 * This structure describes an object consisting of an array of void
213 * pointers.   The object is allocated with a maximum array size, entries
214 * are then added to the array with while maintaining an entry count.   A set of
215 * iterator APIs are included to allow facilitate cycling through the array
216 * entries in a circular fashion.
217 *
218 */
219struct ocs_varray_s {
220	ocs_os_handle_t os;
221	uint32_t array_count;			/*>> maximum entry count in array */
222	void **array;				/*>> pointer to allocated array memory */
223	uint32_t entry_count;			/*>> number of entries added to the array */
224	uint32_t next_index;			/*>> iterator next index */
225	ocs_lock_t lock;			/*>> iterator lock */
226};
227
228/**
229 * @brief Allocate a void pointer array
230 *
231 * A void pointer array of given length is allocated.
232 *
233 * @param os OS handle
234 * @param array_count Array size
235 *
236 * @return returns a pointer to the ocs_varray_t object, other NULL on error
237 */
238ocs_varray_t *
239ocs_varray_alloc(ocs_os_handle_t os, uint32_t array_count)
240{
241	ocs_varray_t *va;
242
243	va = ocs_malloc(os, sizeof(*va), OCS_M_ZERO | OCS_M_NOWAIT);
244	if (va != NULL) {
245		va->os = os;
246		va->array_count = array_count;
247		va->array = ocs_malloc(os, sizeof(*va->array) * va->array_count, OCS_M_ZERO | OCS_M_NOWAIT);
248		if (va->array != NULL) {
249			va->next_index = 0;
250			ocs_lock_init(os, &va->lock, "varray:%p", va);
251		} else {
252			ocs_free(os, va, sizeof(*va));
253			va = NULL;
254		}
255	}
256	return va;
257}
258
259/**
260 * @brief Free a void pointer array
261 *
262 * The void pointer array object is free'd
263 *
264 * @param va Pointer to void pointer array
265 *
266 * @return none
267 */
268void
269ocs_varray_free(ocs_varray_t *va)
270{
271	if (va != NULL) {
272		ocs_lock_free(&va->lock);
273		if (va->array != NULL) {
274			ocs_free(va->os, va->array, sizeof(*va->array) * va->array_count);
275		}
276		ocs_free(va->os, va, sizeof(*va));
277	}
278}
279
280/**
281 * @brief Add an entry to a void pointer array
282 *
283 * An entry is added to the void pointer array
284 *
285 * @param va Pointer to void pointer array
286 * @param entry Pointer to entry to add
287 *
288 * @return returns 0 if entry was added, -1 if there is no more space in the array
289 */
290int32_t
291ocs_varray_add(ocs_varray_t *va, void *entry)
292{
293	uint32_t rc = -1;
294
295	ocs_lock(&va->lock);
296		if (va->entry_count < va->array_count) {
297			va->array[va->entry_count++] = entry;
298			rc = 0;
299		}
300	ocs_unlock(&va->lock);
301
302	return rc;
303}
304
305/**
306 * @brief Reset the void pointer array iterator
307 *
308 * The next index value of the void pointer array iterator is cleared.
309 *
310 * @param va Pointer to void pointer array
311 *
312 * @return none
313 */
314void
315ocs_varray_iter_reset(ocs_varray_t *va)
316{
317	ocs_lock(&va->lock);
318		va->next_index = 0;
319	ocs_unlock(&va->lock);
320}
321
322/**
323 * @brief Return next entry from a void pointer array
324 *
325 * The next entry in the void pointer array is returned.
326 *
327 * @param va Pointer to void point array
328 *
329 * Note: takes the void pointer array lock
330 *
331 * @return returns next void pointer entry
332 */
333void *
334ocs_varray_iter_next(ocs_varray_t *va)
335{
336	void *rval = NULL;
337
338	if (va != NULL) {
339		ocs_lock(&va->lock);
340			rval = _ocs_varray_iter_next(va);
341		ocs_unlock(&va->lock);
342	}
343	return rval;
344}
345
346/**
347 * @brief Return next entry from a void pointer array
348 *
349 * The next entry in the void pointer array is returned.
350 *
351 * @param va Pointer to void point array
352 *
353 * Note: doesn't take the void pointer array lock
354 *
355 * @return returns next void pointer entry
356 */
357void *
358_ocs_varray_iter_next(ocs_varray_t *va)
359{
360	void *rval;
361
362	rval = va->array[va->next_index];
363	if (++va->next_index >= va->entry_count) {
364		va->next_index = 0;
365	}
366	return rval;
367}
368
369/**
370 * @brief Take void pointer array lock
371 *
372 * Takes the lock for the given void pointer array
373 *
374 * @param va Pointer to void pointer array
375 *
376 * @return none
377 */
378void
379ocs_varray_lock(ocs_varray_t *va)
380{
381	ocs_lock(&va->lock);
382}
383
384/**
385 * @brief Release void pointer array lock
386 *
387 * Releases the lock for the given void pointer array
388 *
389 * @param va Pointer to void pointer array
390 *
391 * @return none
392 */
393void
394ocs_varray_unlock(ocs_varray_t *va)
395{
396	ocs_unlock(&va->lock);
397}
398
399/**
400 * @brief Return entry count for a void pointer array
401 *
402 * The entry count for a void pointer array is returned
403 *
404 * @param va Pointer to void pointer array
405 *
406 * @return returns entry count
407 */
408uint32_t
409ocs_varray_get_count(ocs_varray_t *va)
410{
411	uint32_t rc;
412
413	ocs_lock(&va->lock);
414		rc = va->entry_count;
415	ocs_unlock(&va->lock);
416	return rc;
417}
418
419
420struct ocs_cbuf_s {
421	ocs_os_handle_t os;		/*<< OS handle */
422	uint32_t entry_count;		/*<< entry count */
423	void **array;			/*<< pointer to array of cbuf pointers */
424	uint32_t pidx;			/*<< producer index */
425	uint32_t cidx;			/*<< consumer index */
426	ocs_lock_t cbuf_plock;		/*<< idx lock */
427	ocs_lock_t cbuf_clock;		/*<< idx lock */
428	ocs_sem_t cbuf_psem;		/*<< cbuf producer counting semaphore */
429	ocs_sem_t cbuf_csem;		/*<< cbuf consumer counting semaphore */
430};
431
432/**
433 * @brief Initialize a circular buffer queue
434 *
435 * A circular buffer with producer/consumer API is allocated
436 *
437 * @param os OS handle
438 * @param entry_count count of entries
439 *
440 * @return returns pointer to circular buffer, or NULL
441 */
442ocs_cbuf_t*
443ocs_cbuf_alloc(ocs_os_handle_t os, uint32_t entry_count)
444{
445	ocs_cbuf_t *cbuf;
446
447	cbuf = ocs_malloc(os, sizeof(*cbuf), OCS_M_NOWAIT | OCS_M_ZERO);
448	if (cbuf == NULL) {
449		return NULL;
450	}
451
452	cbuf->os = os;
453	cbuf->entry_count = entry_count;
454	cbuf->pidx = 0;
455	cbuf->cidx = 0;
456
457	ocs_lock_init(NULL, &cbuf->cbuf_clock, "cbuf_c:%p", cbuf);
458	ocs_lock_init(NULL, &cbuf->cbuf_plock, "cbuf_p:%p", cbuf);
459	ocs_sem_init(&cbuf->cbuf_csem, 0, "cbuf:%p", cbuf);
460	ocs_sem_init(&cbuf->cbuf_psem, cbuf->entry_count, "cbuf:%p", cbuf);
461
462	cbuf->array = ocs_malloc(os, entry_count * sizeof(*cbuf->array), OCS_M_NOWAIT | OCS_M_ZERO);
463	if (cbuf->array == NULL) {
464		ocs_cbuf_free(cbuf);
465		return NULL;
466	}
467
468	return cbuf;
469}
470
471/**
472 * @brief Free a circular buffer
473 *
474 * The memory resources of a circular buffer are free'd
475 *
476 * @param cbuf pointer to circular buffer
477 *
478 * @return none
479 */
480void
481ocs_cbuf_free(ocs_cbuf_t *cbuf)
482{
483	if (cbuf != NULL) {
484		if (cbuf->array != NULL) {
485			ocs_free(cbuf->os, cbuf->array, sizeof(*cbuf->array) * cbuf->entry_count);
486		}
487		ocs_lock_free(&cbuf->cbuf_clock);
488		ocs_lock_free(&cbuf->cbuf_plock);
489		ocs_free(cbuf->os, cbuf, sizeof(*cbuf));
490	}
491}
492
493/**
494 * @brief Get pointer to buffer
495 *
496 * Wait for a buffer to become available, and return a pointer to the buffer.
497 *
498 * @param cbuf pointer to circular buffer
499 * @param timeout_usec timeout in microseconds
500 *
501 * @return pointer to buffer, or NULL if timeout
502 */
503void*
504ocs_cbuf_get(ocs_cbuf_t *cbuf, int32_t timeout_usec)
505{
506	void *ret = NULL;
507
508	if (likely(ocs_sem_p(&cbuf->cbuf_csem, timeout_usec) == 0)) {
509		ocs_lock(&cbuf->cbuf_clock);
510			ret = cbuf->array[cbuf->cidx];
511			if (unlikely(++cbuf->cidx >= cbuf->entry_count)) {
512				cbuf->cidx = 0;
513			}
514		ocs_unlock(&cbuf->cbuf_clock);
515		ocs_sem_v(&cbuf->cbuf_psem);
516	}
517	return ret;
518}
519
520/**
521 * @brief write a buffer
522 *
523 * The buffer is written to the circular buffer.
524 *
525 * @param cbuf pointer to circular buffer
526 * @param elem pointer to entry
527 *
528 * @return returns 0 for success, a negative error code value for failure.
529 */
530int32_t
531ocs_cbuf_put(ocs_cbuf_t *cbuf, void *elem)
532{
533	int32_t rc = 0;
534
535	if (likely(ocs_sem_p(&cbuf->cbuf_psem, -1) == 0)) {
536		ocs_lock(&cbuf->cbuf_plock);
537			cbuf->array[cbuf->pidx] = elem;
538			if (unlikely(++cbuf->pidx >= cbuf->entry_count)) {
539				cbuf->pidx = 0;
540			}
541		ocs_unlock(&cbuf->cbuf_plock);
542		ocs_sem_v(&cbuf->cbuf_csem);
543	} else {
544		rc = -1;
545	}
546	return rc;
547}
548
549/**
550 * @brief Prime a circular buffer data
551 *
552 * Post array buffers to a circular buffer
553 *
554 * @param cbuf pointer to circular buffer
555 * @param array pointer to buffer array
556 *
557 * @return returns 0 for success, a negative error code value for failure.
558 */
559int32_t
560ocs_cbuf_prime(ocs_cbuf_t *cbuf, ocs_array_t *array)
561{
562	uint32_t i;
563	uint32_t count = MIN(ocs_array_get_count(array), cbuf->entry_count);
564
565	for (i = 0; i < count; i++) {
566		ocs_cbuf_put(cbuf, ocs_array_get(array, i));
567	}
568	return 0;
569}
570
571/**
572 * @brief Generate driver dump start of file information
573 *
574 * The start of file information is added to 'textbuf'
575 *
576 * @param textbuf pointer to driver dump text buffer
577 *
578 * @return none
579 */
580
581void
582ocs_ddump_startfile(ocs_textbuf_t *textbuf)
583{
584	ocs_textbuf_printf(textbuf, "<?xml version=\"1.0\" encoding=\"ISO-8859-1\" ?>\n");
585}
586
587/**
588 * @brief Generate driver dump end of file information
589 *
590 * The end of file information is added to 'textbuf'
591 *
592 * @param textbuf pointer to driver dump text buffer
593 *
594 * @return none
595 */
596
597void
598ocs_ddump_endfile(ocs_textbuf_t *textbuf)
599{
600}
601
602/**
603 * @brief Generate driver dump section start data
604 *
605 * The driver section start information is added to textbuf
606 *
607 * @param textbuf pointer to text buffer
608 * @param name name of section
609 * @param instance instance number of this section
610 *
611 * @return none
612 */
613
614void
615ocs_ddump_section(ocs_textbuf_t *textbuf, const char *name, uint32_t instance)
616{
617	ocs_textbuf_printf(textbuf, "<%s type=\"section\" instance=\"%d\">\n", name, instance);
618}
619
620/**
621 * @brief Generate driver dump section end data
622 *
623 * The driver section end information is added to textbuf
624 *
625 * @param textbuf pointer to text buffer
626 * @param name name of section
627 * @param instance instance number of this section
628 *
629 * @return none
630 */
631
632void
633ocs_ddump_endsection(ocs_textbuf_t *textbuf, const char *name, uint32_t instance)
634{
635	ocs_textbuf_printf(textbuf, "</%s>\n", name);
636}
637
638/**
639 * @brief Generate driver dump data for a given value
640 *
641 * A value is added to textbuf
642 *
643 * @param textbuf pointer to text buffer
644 * @param name name of variable
645 * @param fmt snprintf format specifier
646 *
647 * @return none
648 */
649
650void
651ocs_ddump_value(ocs_textbuf_t *textbuf, const char *name, const char *fmt, ...)
652{
653	va_list ap;
654	char valuebuf[64];
655
656	va_start(ap, fmt);
657	vsnprintf(valuebuf, sizeof(valuebuf), fmt, ap);
658	va_end(ap);
659
660	ocs_textbuf_printf(textbuf, "<%s>%s</%s>\n", name, valuebuf, name);
661}
662
663
664/**
665 * @brief Generate driver dump data for an arbitrary buffer of DWORDS
666 *
667 * A status value is added to textbuf
668 *
669 * @param textbuf pointer to text buffer
670 * @param name name of status variable
671 * @param instance instance number of this section
672 * @param buffer buffer to print
673 * @param size size of buffer in bytes
674 *
675 * @return none
676 */
677
678void
679ocs_ddump_buffer(ocs_textbuf_t *textbuf, const char *name, uint32_t instance, void *buffer, uint32_t size)
680{
681	uint32_t *dword;
682	uint32_t i;
683	uint32_t count;
684
685	count = size / sizeof(uint32_t);
686
687	if (count == 0) {
688		return;
689	}
690
691	ocs_textbuf_printf(textbuf, "<%s type=\"buffer\" instance=\"%d\">\n", name, instance);
692
693	dword = buffer;
694	for (i = 0; i < count; i++) {
695#define OCS_NEWLINE_MOD	8
696		ocs_textbuf_printf(textbuf, "%08x ", *dword++);
697		if ((i % OCS_NEWLINE_MOD) == (OCS_NEWLINE_MOD - 1)) {
698			ocs_textbuf_printf(textbuf, "\n");
699		}
700	}
701
702	ocs_textbuf_printf(textbuf, "</%s>\n", name);
703}
704
705/**
706 * @brief Generate driver dump for queue
707 *
708 * Add queue elements to text buffer
709 *
710 * @param textbuf pointer to driver dump text buffer
711 * @param q_addr address of start of queue
712 * @param size size of each queue entry
713 * @param length number of queue entries in the queue
714 * @param index current index of queue
715 * @param qentries number of most recent queue entries to dump
716 *
717 * @return none
718 */
719
720void
721ocs_ddump_queue_entries(ocs_textbuf_t *textbuf, void *q_addr, uint32_t size,
722			uint32_t length, int32_t index, uint32_t qentries)
723{
724	uint32_t i;
725	uint32_t j;
726	uint8_t *entry;
727	uint32_t *dword;
728	uint32_t entry_count = 0;
729	uint32_t entry_words = size / sizeof(uint32_t);
730
731	if ((qentries == (uint32_t)-1) || (qentries > length)) {
732		/* if qentries is -1 or larger than queue size, dump entire queue */
733		entry_count = length;
734		index = 0;
735	} else {
736		entry_count = qentries;
737
738		index -= (qentries - 1);
739		if (index < 0) {
740			index += length;
741		}
742
743	}
744#define OCS_NEWLINE_MOD	8
745	ocs_textbuf_printf(textbuf, "<qentries>\n");
746	for (i = 0; i < entry_count; i++){
747		entry = q_addr;
748		entry += index * size;
749		dword = (uint32_t *)entry;
750
751		ocs_textbuf_printf(textbuf, "[%04x] ", index);
752		for (j = 0; j < entry_words; j++) {
753			ocs_textbuf_printf(textbuf, "%08x ", *dword++);
754			if (((j+1) == entry_words) ||
755			    ((j % OCS_NEWLINE_MOD) == (OCS_NEWLINE_MOD - 1))) {
756				ocs_textbuf_printf(textbuf, "\n");
757				if ((j+1) < entry_words) {
758					ocs_textbuf_printf(textbuf, "       ");
759				}
760			}
761		}
762
763		index++;
764		if ((uint32_t)index >= length) {
765			index = 0;
766		}
767	}
768	ocs_textbuf_printf(textbuf, "</qentries>\n");
769}
770
771
772#define OCS_DEBUG_ENABLE(x)	(x ? ~0 : 0)
773
774#define OCS_DEBUG_MASK \
775	(OCS_DEBUG_ENABLE(1)	& OCS_DEBUG_ALWAYS)  | \
776	(OCS_DEBUG_ENABLE(0)	& OCS_DEBUG_ENABLE_MQ_DUMP) | \
777	(OCS_DEBUG_ENABLE(0)	& OCS_DEBUG_ENABLE_CQ_DUMP) | \
778	(OCS_DEBUG_ENABLE(0)	& OCS_DEBUG_ENABLE_WQ_DUMP) | \
779	(OCS_DEBUG_ENABLE(0)	& OCS_DEBUG_ENABLE_EQ_DUMP) | \
780	(OCS_DEBUG_ENABLE(0)	& OCS_DEBUG_ENABLE_SPARAM_DUMP)
781
782static uint32_t ocs_debug_mask = OCS_DEBUG_MASK;
783
784static int
785_isprint(int c) {
786	return ((c > 32) && (c < 127));
787}
788
789/**
790 * @ingroup debug
791 * @brief enable debug options
792 *
793 * Enables debug options by or-ing in <b>mask</b> into the currently enabled
794 * debug mask.
795 *
796 * @param mask mask bits to enable
797 *
798 * @return none
799 */
800
801void ocs_debug_enable(uint32_t mask) {
802	ocs_debug_mask |= mask;
803}
804
805/**
806 * @ingroup debug
807 * @brief disable debug options
808 *
809 * Disables debug options by clearing bits in <b>mask</b> into the currently enabled
810 * debug mask.
811 *
812 * @param mask mask bits to enable
813 *
814 * @return none
815 */
816
817void ocs_debug_disable(uint32_t mask) {
818	ocs_debug_mask &= ~mask;
819}
820
821/**
822 * @ingroup debug
823 * @brief return true if debug bits are enabled
824 *
825 * Returns true if the request debug bits are set.
826 *
827 * @param mask debug bit mask
828 *
829 * @return true if corresponding bits are set
830 *
831 * @note Passing in a mask value of zero always returns true
832 */
833
834int ocs_debug_is_enabled(uint32_t mask) {
835	return (ocs_debug_mask & mask) == mask;
836}
837
838
839/**
840 * @ingroup debug
841 * @brief Dump 32 bit hex/ascii data
842 *
843 * Dumps using ocs_log a buffer of data as 32 bit hex and ascii
844 *
845 * @param mask debug enable bits
846 * @param os os handle
847 * @param label text label for the display (may be NULL)
848 * @param buf pointer to data buffer
849 * @param buf_length length of data buffer
850 *
851 * @return none
852 *
853 */
854
855void
856ocs_dump32(uint32_t mask, ocs_os_handle_t os, const char *label, void *buf, uint32_t buf_length)
857{
858	uint32_t word_count = buf_length / sizeof(uint32_t);
859	uint32_t i;
860	uint32_t columns = 8;
861	uint32_t n;
862	uint32_t *wbuf;
863	char *cbuf;
864	uint32_t addr = 0;
865	char linebuf[200];
866	char *pbuf = linebuf;
867
868	if (!ocs_debug_is_enabled(mask))
869		return;
870
871	if (label)
872		ocs_log_debug(os, "%s\n", label);
873
874	wbuf = buf;
875	while (word_count > 0) {
876		pbuf = linebuf;
877		pbuf += ocs_snprintf(pbuf, sizeof(linebuf) - (pbuf-linebuf), "%08X:  ", addr);
878
879		n = word_count;
880		if (n > columns)
881			n = columns;
882
883		for (i = 0; i < n; i ++)
884			pbuf += ocs_snprintf(pbuf, sizeof(linebuf) - (pbuf-linebuf), "%08X ", wbuf[i]);
885
886		for (; i < columns; i ++)
887			pbuf += ocs_snprintf(pbuf, sizeof(linebuf) - (pbuf-linebuf), "%8s ", "");
888
889		pbuf += ocs_snprintf(pbuf, sizeof(linebuf) - (pbuf-linebuf), "    ");
890		cbuf = (char*)wbuf;
891		for (i = 0; i < n*sizeof(uint32_t); i ++)
892			pbuf += ocs_snprintf(pbuf, sizeof(linebuf) - (pbuf-linebuf), "%c", _isprint(cbuf[i]) ? cbuf[i] : '.');
893		pbuf += ocs_snprintf(pbuf, sizeof(linebuf) - (pbuf-linebuf), "\n");
894
895		ocs_log_debug(os, "%s", linebuf);
896
897		wbuf += n;
898		word_count -= n;
899		addr += n*sizeof(uint32_t);
900	}
901}
902
903
904#if defined(OCS_DEBUG_QUEUE_HISTORY)
905
906/* each bit corresponds to word to capture */
907#define OCS_Q_HIST_WQE_WORD_MASK_DEFAULT	(BIT(4) | BIT(6) | BIT(7) | BIT(9) | BIT(12))
908#define OCS_Q_HIST_TRECV_CONT_WQE_WORD_MASK	(BIT(4) | BIT(5) | BIT(6) | BIT(7) | BIT(9) | BIT(12))
909#define OCS_Q_HIST_IWRITE_WQE_WORD_MASK		(BIT(4) | BIT(5) | BIT(6) | BIT(7) | BIT(9))
910#define OCS_Q_HIST_IREAD_WQE_WORD_MASK		(BIT(4) | BIT(6) | BIT(7) | BIT(9))
911#define OCS_Q_HIST_ABORT_WQE_WORD_MASK		(BIT(3) | BIT(7) | BIT(8) | BIT(9))
912#define OCS_Q_HIST_WCQE_WORD_MASK		(BIT(0) | BIT(3))
913#define OCS_Q_HIST_WCQE_WORD_MASK_ERR		(BIT(0) | BIT(1) | BIT(2) | BIT(3))
914#define OCS_Q_HIST_CQXABT_WORD_MASK		(BIT(0) | BIT(1) | BIT(2) | BIT(3))
915
916/* if set, will provide extra queue information in each entry */
917#define OCS_Q_HIST_ENABLE_Q_INFO	0
918uint8_t ocs_queue_history_q_info_enabled(void)
919{
920	return OCS_Q_HIST_ENABLE_Q_INFO;
921}
922
923/* if set, will provide timestamps in each entry */
924#define OCS_Q_HIST_ENABLE_TIMESTAMPS	0
925uint8_t ocs_queue_history_timestamp_enabled(void)
926{
927	return OCS_Q_HIST_ENABLE_TIMESTAMPS;
928}
929
930/* Add WQEs and masks to override default WQE mask */
931ocs_q_hist_wqe_mask_t ocs_q_hist_wqe_masks[] = {
932	/* WQE command   Word mask */
933	{SLI4_WQE_ABORT, OCS_Q_HIST_ABORT_WQE_WORD_MASK},
934	{SLI4_WQE_FCP_IREAD64, OCS_Q_HIST_IREAD_WQE_WORD_MASK},
935	{SLI4_WQE_FCP_IWRITE64, OCS_Q_HIST_IWRITE_WQE_WORD_MASK},
936	{SLI4_WQE_FCP_CONT_TRECEIVE64, OCS_Q_HIST_TRECV_CONT_WQE_WORD_MASK},
937};
938
939/* CQE masks */
940ocs_q_hist_cqe_mask_t ocs_q_hist_cqe_masks[] = {
941	/* CQE type     Q_hist_type		mask (success) 	mask (non-success) */
942	{SLI_QENTRY_WQ, OCS_Q_HIST_TYPE_CWQE, 	OCS_Q_HIST_WCQE_WORD_MASK, OCS_Q_HIST_WCQE_WORD_MASK_ERR},
943	{SLI_QENTRY_XABT, OCS_Q_HIST_TYPE_CXABT, OCS_Q_HIST_CQXABT_WORD_MASK, OCS_Q_HIST_WCQE_WORD_MASK},
944};
945
946static uint32_t ocs_q_hist_get_wqe_mask(sli4_generic_wqe_t *wqe)
947{
948	uint32_t i;
949	for (i = 0; i < ARRAY_SIZE(ocs_q_hist_wqe_masks); i++) {
950		if (ocs_q_hist_wqe_masks[i].command == wqe->command) {
951			return ocs_q_hist_wqe_masks[i].mask;
952		}
953	}
954	/* return default WQE mask */
955	return OCS_Q_HIST_WQE_WORD_MASK_DEFAULT;
956}
957
958/**
959 * @ingroup debug
960 * @brief Initialize resources for queue history
961 *
962 * @param os os handle
963 * @param q_hist Pointer to the queue history object.
964 *
965 * @return none
966 */
967void
968ocs_queue_history_init(ocs_t *ocs, ocs_hw_q_hist_t *q_hist)
969{
970	q_hist->ocs = ocs;
971	if (q_hist->q_hist != NULL) {
972		/* Setup is already done */
973		ocs_log_debug(ocs, "q_hist not NULL, skipping init\n");
974		return;
975	}
976
977	q_hist->q_hist = ocs_malloc(ocs, sizeof(*q_hist->q_hist)*OCS_Q_HIST_SIZE, OCS_M_ZERO | OCS_M_NOWAIT);
978
979	if (q_hist->q_hist == NULL) {
980		ocs_log_err(ocs, "Could not allocate queue history buffer\n");
981	} else {
982		ocs_lock_init(ocs, &q_hist->q_hist_lock, "queue history lock[%d]", ocs_instance(ocs));
983	}
984
985	q_hist->q_hist_index = 0;
986}
987
988/**
989 * @ingroup debug
990 * @brief Free resources for queue history
991 *
992 * @param q_hist Pointer to the queue history object.
993 *
994 * @return none
995 */
996void
997ocs_queue_history_free(ocs_hw_q_hist_t *q_hist)
998{
999	ocs_t *ocs = q_hist->ocs;
1000
1001	if (q_hist->q_hist != NULL) {
1002		ocs_free(ocs, q_hist->q_hist, sizeof(*q_hist->q_hist)*OCS_Q_HIST_SIZE);
1003		ocs_lock_free(&q_hist->q_hist_lock);
1004		q_hist->q_hist = NULL;
1005	}
1006}
1007
1008static void
1009ocs_queue_history_add_q_info(ocs_hw_q_hist_t *q_hist, uint32_t qid, uint32_t qindex)
1010{
1011	if (ocs_queue_history_q_info_enabled()) {
1012		/* write qid, index */
1013		q_hist->q_hist[q_hist->q_hist_index] = (qid << 16) | qindex;
1014		q_hist->q_hist_index++;
1015		q_hist->q_hist_index = q_hist->q_hist_index % OCS_Q_HIST_SIZE;
1016	}
1017}
1018
1019static void
1020ocs_queue_history_add_timestamp(ocs_hw_q_hist_t *q_hist)
1021{
1022	if (ocs_queue_history_timestamp_enabled()) {
1023		/* write tsc */
1024		uint64_t tsc_value;
1025		tsc_value = get_cyclecount();
1026		q_hist->q_hist[q_hist->q_hist_index] = ((tsc_value >> 32 ) & 0xFFFFFFFF);
1027		q_hist->q_hist_index++;
1028		q_hist->q_hist_index = q_hist->q_hist_index % OCS_Q_HIST_SIZE;
1029		q_hist->q_hist[q_hist->q_hist_index] = (tsc_value & 0xFFFFFFFF);
1030		q_hist->q_hist_index++;
1031		q_hist->q_hist_index = q_hist->q_hist_index % OCS_Q_HIST_SIZE;
1032	}
1033}
1034
1035/**
1036 * @ingroup debug
1037 * @brief Log work queue entry (WQE) into history array
1038 *
1039 * @param q_hist Pointer to the queue history object.
1040 * @param entryw Work queue entry in words
1041 * @param qid Queue ID
1042 * @param qindex Queue index
1043 *
1044 * @return none
1045 */
1046void
1047ocs_queue_history_wq(ocs_hw_q_hist_t *q_hist, uint32_t *entryw, uint32_t qid, uint32_t qindex)
1048{
1049	int i;
1050	ocs_q_hist_ftr_t ftr;
1051	uint32_t wqe_word_mask = ocs_q_hist_get_wqe_mask((sli4_generic_wqe_t *)entryw);
1052
1053	if (q_hist->q_hist == NULL) {
1054		/* Can't save anything */
1055		return;
1056	}
1057
1058	ftr.word = 0;
1059	ftr.s.type = OCS_Q_HIST_TYPE_WQE;
1060	ocs_lock(&q_hist->q_hist_lock);
1061		/* Capture words in reverse order since we'll be interpretting them LIFO */
1062		for (i = ((sizeof(wqe_word_mask)*8) - 1); i >= 0; i--){
1063			if ((wqe_word_mask >> i) & 1) {
1064				q_hist->q_hist[q_hist->q_hist_index] = entryw[i];
1065				q_hist->q_hist_index++;
1066				q_hist->q_hist_index = q_hist->q_hist_index % OCS_Q_HIST_SIZE;
1067			}
1068		}
1069
1070		ocs_queue_history_add_q_info(q_hist, qid, qindex);
1071		ocs_queue_history_add_timestamp(q_hist);
1072
1073		/* write footer */
1074		if (wqe_word_mask) {
1075			ftr.s.mask = wqe_word_mask;
1076			q_hist->q_hist[q_hist->q_hist_index] = ftr.word;
1077			q_hist->q_hist_index++;
1078			q_hist->q_hist_index = q_hist->q_hist_index % OCS_Q_HIST_SIZE;
1079		}
1080
1081	ocs_unlock(&q_hist->q_hist_lock);
1082}
1083
1084/**
1085 * @ingroup debug
1086 * @brief Log misc words
1087 *
1088 * @param q_hist Pointer to the queue history object.
1089 * @param entryw array of words
1090 * @param num_words number of words in entryw
1091 *
1092 * @return none
1093 */
1094void
1095ocs_queue_history_misc(ocs_hw_q_hist_t *q_hist, uint32_t *entryw, uint32_t num_words)
1096{
1097	int i;
1098	ocs_q_hist_ftr_t ftr;
1099	uint32_t mask = 0;
1100
1101	if (q_hist->q_hist == NULL) {
1102		/* Can't save anything */
1103		return;
1104	}
1105
1106	ftr.word = 0;
1107	ftr.s.type = OCS_Q_HIST_TYPE_MISC;
1108	ocs_lock(&q_hist->q_hist_lock);
1109		/* Capture words in reverse order since we'll be interpretting them LIFO */
1110		for (i = num_words-1; i >= 0; i--) {
1111			q_hist->q_hist[q_hist->q_hist_index] = entryw[i];
1112			q_hist->q_hist_index++;
1113			q_hist->q_hist_index = q_hist->q_hist_index % OCS_Q_HIST_SIZE;
1114			mask |= BIT(i);
1115		}
1116
1117		ocs_queue_history_add_timestamp(q_hist);
1118
1119		/* write footer */
1120		if (num_words) {
1121			ftr.s.mask = mask;
1122			q_hist->q_hist[q_hist->q_hist_index] = ftr.word;
1123			q_hist->q_hist_index++;
1124			q_hist->q_hist_index = q_hist->q_hist_index % OCS_Q_HIST_SIZE;
1125		}
1126
1127	ocs_unlock(&q_hist->q_hist_lock);
1128}
1129
1130/**
1131 * @ingroup debug
1132 * @brief Log work queue completion (CQE) entry into history
1133 *        array
1134 *
1135 * @param q_hist Pointer to the queue history object.
1136 * @param ctype Type of completion entry
1137 * @param entryw Completion queue entry in words
1138 * @param status Completion queue status
1139 * @param qid Queue ID
1140 * @param qindex Queue index
1141 *
1142 * @return none
1143 */
1144void
1145ocs_queue_history_cqe(ocs_hw_q_hist_t *q_hist, uint8_t ctype, uint32_t *entryw, uint8_t status, uint32_t qid, uint32_t qindex)
1146{
1147	int i;
1148	unsigned j;
1149	uint32_t cqe_word_mask = 0;
1150	ocs_q_hist_ftr_t ftr;
1151
1152	if (q_hist->q_hist == NULL) {
1153		/* Can't save anything */
1154		return;
1155	}
1156
1157	ftr.word = 0;
1158	for (j = 0; j < ARRAY_SIZE(ocs_q_hist_cqe_masks); j++) {
1159		if (ocs_q_hist_cqe_masks[j].ctype == ctype) {
1160			ftr.s.type = ocs_q_hist_cqe_masks[j].type;
1161			if (status != 0) {
1162				cqe_word_mask = ocs_q_hist_cqe_masks[j].mask_err;
1163			} else {
1164				cqe_word_mask = ocs_q_hist_cqe_masks[j].mask;
1165			}
1166		}
1167	}
1168	ocs_lock(&q_hist->q_hist_lock);
1169		/* Capture words in reverse order since we'll be interpretting them LIFO */
1170		for (i = ((sizeof(cqe_word_mask)*8) - 1); i >= 0; i--){
1171			if ((cqe_word_mask >> i) & 1) {
1172				q_hist->q_hist[q_hist->q_hist_index] = entryw[i];
1173				q_hist->q_hist_index++;
1174				q_hist->q_hist_index = q_hist->q_hist_index % OCS_Q_HIST_SIZE;
1175			}
1176		}
1177		ocs_queue_history_add_q_info(q_hist, qid, qindex);
1178		ocs_queue_history_add_timestamp(q_hist);
1179
1180		/* write footer */
1181		if (cqe_word_mask) {
1182			ftr.s.mask = cqe_word_mask;
1183			q_hist->q_hist[q_hist->q_hist_index] = ftr.word;
1184			q_hist->q_hist_index++;
1185			q_hist->q_hist_index = q_hist->q_hist_index % OCS_Q_HIST_SIZE;
1186		}
1187
1188	ocs_unlock(&q_hist->q_hist_lock);
1189}
1190
1191/**
1192 * @brief Get previous index
1193 *
1194 * @param index Index from which previous index is derived.
1195 */
1196uint32_t
1197ocs_queue_history_prev_index(uint32_t index)
1198{
1199	if (index == 0) {
1200		return OCS_Q_HIST_SIZE - 1;
1201	} else {
1202		return index - 1;
1203	}
1204}
1205
1206#endif /* OCS_DEBUG_QUEUE_HISTORY */
1207
1208/**
1209 * @brief Display service parameters
1210 *
1211 * <description>
1212 *
1213 * @param prelabel leading display label
1214 * @param reqlabel display label
1215 * @param dest destination 0=ocs_log, 1=textbuf
1216 * @param textbuf text buffer destination (if dest==1)
1217 * @param sparams pointer to service parameter
1218 *
1219 * @return none
1220 */
1221
1222void
1223ocs_display_sparams(const char *prelabel, const char *reqlabel, int dest, void *textbuf, void *sparams)
1224{
1225	char label[64];
1226
1227	if (sparams == NULL) {
1228		return;
1229	}
1230
1231	switch(dest) {
1232	case 0:
1233		if (prelabel != NULL) {
1234			ocs_snprintf(label, sizeof(label), "[%s] sparam: %s", prelabel, reqlabel);
1235		} else {
1236			ocs_snprintf(label, sizeof(label), "sparam: %s", reqlabel);
1237		}
1238
1239		ocs_dump32(OCS_DEBUG_ENABLE_SPARAM_DUMP, NULL, label, sparams, sizeof(fc_plogi_payload_t));
1240		break;
1241	case 1:
1242		ocs_ddump_buffer((ocs_textbuf_t*) textbuf, reqlabel, 0, sparams, sizeof(fc_plogi_payload_t));
1243		break;
1244	}
1245}
1246
1247/**
1248 * @brief Calculate the T10 PI CRC guard value for a block.
1249 *
1250 * @param buffer Pointer to the data buffer.
1251 * @param size Number of bytes.
1252 * @param crc Previously-calculated CRC, or 0 for a new block.
1253 *
1254 * @return Returns the calculated CRC, which may be passed back in for partial blocks.
1255 *
1256 */
1257
1258uint16_t
1259ocs_scsi_dif_calc_crc(const uint8_t *buffer, uint32_t size, uint16_t crc)
1260{
1261	return t10crc16(buffer, size, crc);
1262}
1263
1264/**
1265 * @brief Calculate the IP-checksum guard value for a block.
1266 *
1267 * @param addrlen array of address length pairs
1268 * @param addrlen_count number of entries in the addrlen[] array
1269 *
1270 * Algorithm:
1271 *    Sum all all the 16-byte words in the block
1272 *    Add in the "carry", which is everything in excess of 16-bits
1273 *    Flip all the bits
1274 *
1275 * @return Returns the calculated checksum
1276 */
1277
1278uint16_t
1279ocs_scsi_dif_calc_checksum(ocs_scsi_vaddr_len_t addrlen[], uint32_t addrlen_count)
1280{
1281	uint32_t i, j;
1282	uint16_t checksum;
1283	uint32_t intermediate; /* Use an intermediate to hold more than 16 bits during calculations */
1284	uint32_t count;
1285	uint16_t *buffer;
1286
1287	intermediate = 0;
1288	for (j = 0; j < addrlen_count; j++) {
1289		buffer = addrlen[j].vaddr;
1290		count = addrlen[j].length / 2;
1291		for (i=0; i < count; i++) {
1292			intermediate += buffer[i];
1293		}
1294	}
1295
1296	/* Carry is everything over 16 bits */
1297	intermediate += ((intermediate & 0xffff0000) >> 16);
1298
1299	/* Flip all the bits */
1300	intermediate = ~intermediate;
1301
1302	checksum = intermediate;
1303
1304	return checksum;
1305}
1306
1307/**
1308 * @brief Return blocksize given SCSI API DIF block size
1309 *
1310 * Given the DIF block size enumerated value, return the block size value. (e.g.
1311 * OCS_SCSI_DIF_BLK_SIZE_512 returns 512)
1312 *
1313 * @param dif_info Pointer to SCSI API DIF info block
1314 *
1315 * @return returns block size, or 0 if SCSI API DIF blocksize is invalid
1316 */
1317
1318uint32_t
1319ocs_scsi_dif_blocksize(ocs_scsi_dif_info_t *dif_info)
1320{
1321	uint32_t blocksize = 0;
1322
1323	switch(dif_info->blk_size) {
1324	case OCS_SCSI_DIF_BK_SIZE_512:	blocksize = 512; break;
1325	case OCS_SCSI_DIF_BK_SIZE_1024:	blocksize = 1024; break;
1326	case OCS_SCSI_DIF_BK_SIZE_2048:	blocksize = 2048; break;
1327	case OCS_SCSI_DIF_BK_SIZE_4096:	blocksize = 4096; break;
1328	case OCS_SCSI_DIF_BK_SIZE_520:	blocksize = 520; break;
1329	case OCS_SCSI_DIF_BK_SIZE_4104:	blocksize = 4104; break;
1330	default:
1331		break;
1332	}
1333
1334	return blocksize;
1335}
1336
1337/**
1338 * @brief Set SCSI API DIF blocksize
1339 *
1340 * Given a blocksize value (512, 1024, etc.), set the SCSI API DIF blocksize
1341 * in the DIF info block
1342 *
1343 * @param dif_info Pointer to the SCSI API DIF info block
1344 * @param blocksize Block size
1345 *
1346 * @return returns 0 for success, a negative error code value for failure.
1347 */
1348
1349int32_t
1350ocs_scsi_dif_set_blocksize(ocs_scsi_dif_info_t *dif_info, uint32_t blocksize)
1351{
1352	int32_t rc = 0;
1353
1354	switch(blocksize) {
1355	case 512:	dif_info->blk_size = OCS_SCSI_DIF_BK_SIZE_512; break;
1356	case 1024:	dif_info->blk_size = OCS_SCSI_DIF_BK_SIZE_1024; break;
1357	case 2048:	dif_info->blk_size = OCS_SCSI_DIF_BK_SIZE_2048; break;
1358	case 4096:	dif_info->blk_size = OCS_SCSI_DIF_BK_SIZE_4096; break;
1359	case 520:	dif_info->blk_size = OCS_SCSI_DIF_BK_SIZE_520; break;
1360	case 4104:	dif_info->blk_size = OCS_SCSI_DIF_BK_SIZE_4104; break;
1361	default:
1362		rc = -1;
1363		break;
1364	}
1365	return rc;
1366
1367}
1368
1369/**
1370 * @brief Return memory block size given SCSI DIF API
1371 *
1372 * The blocksize in memory for the DIF transfer is returned, given the SCSI DIF info
1373 * block and the direction of transfer.
1374 *
1375 * @param dif_info Pointer to DIF info block
1376 * @param wiretomem Transfer direction, 1 is wire to memory, 0 is memory to wire
1377 *
1378 * @return Memory blocksize, or negative error value
1379 *
1380 * WARNING: the order of initialization of the adj[] arrays MUST match the declarations
1381 * of OCS_SCSI_DIF_OPER_*
1382 */
1383
1384int32_t
1385ocs_scsi_dif_mem_blocksize(ocs_scsi_dif_info_t *dif_info, int wiretomem)
1386{
1387	uint32_t blocksize;
1388	uint8_t wiretomem_adj[] = {
1389		0,		/* OCS_SCSI_DIF_OPER_DISABLED, */
1390		DIF_SIZE,	/* OCS_SCSI_DIF_OPER_IN_NODIF_OUT_CRC, */
1391		0,		/* OCS_SCSI_DIF_OPER_IN_CRC_OUT_NODIF, */
1392		DIF_SIZE,	/* OCS_SCSI_DIF_OPER_IN_NODIF_OUT_CHKSUM, */
1393		0,		/* OCS_SCSI_DIF_OPER_IN_CHKSUM_OUT_NODIF, */
1394		DIF_SIZE,	/* OCS_SCSI_DIF_OPER_IN_CRC_OUT_CRC, */
1395		DIF_SIZE,	/* OCS_SCSI_DIF_OPER_IN_CHKSUM_OUT_CHKSUM, */
1396		DIF_SIZE,	/* OCS_SCSI_DIF_OPER_IN_CRC_OUT_CHKSUM, */
1397		DIF_SIZE,	/* OCS_SCSI_DIF_OPER_IN_CHKSUM_OUT_CRC, */
1398		DIF_SIZE};	/* OCS_SCSI_DIF_OPER_IN_RAW_OUT_RAW, */
1399	uint8_t memtowire_adj[] = {
1400		0,		/* OCS_SCSI_DIF_OPER_DISABLED, */
1401		0,		/* OCS_SCSI_DIF_OPER_IN_NODIF_OUT_CRC, */
1402		DIF_SIZE,	/* OCS_SCSI_DIF_OPER_IN_CRC_OUT_NODIF, */
1403		0,		/* OCS_SCSI_DIF_OPER_IN_NODIF_OUT_CHKSUM, */
1404		DIF_SIZE,	/* OCS_SCSI_DIF_OPER_IN_CHKSUM_OUT_NODIF, */
1405		DIF_SIZE,	/* OCS_SCSI_DIF_OPER_IN_CRC_OUT_CRC, */
1406		DIF_SIZE,	/* OCS_SCSI_DIF_OPER_IN_CHKSUM_OUT_CHKSUM, */
1407		DIF_SIZE,	/* OCS_SCSI_DIF_OPER_IN_CRC_OUT_CHKSUM, */
1408		DIF_SIZE,	/* OCS_SCSI_DIF_OPER_IN_CHKSUM_OUT_CRC, */
1409		DIF_SIZE};	/* OCS_SCSI_DIF_OPER_IN_RAW_OUT_RAW, */
1410
1411	blocksize = ocs_scsi_dif_blocksize(dif_info);
1412	if (blocksize == 0) {
1413		return -1;
1414	}
1415
1416	if (wiretomem) {
1417		ocs_assert(dif_info->dif_oper < ARRAY_SIZE(wiretomem_adj), 0);
1418		blocksize += wiretomem_adj[dif_info->dif_oper];
1419	} else {	/* mem to wire */
1420		ocs_assert(dif_info->dif_oper < ARRAY_SIZE(memtowire_adj), 0);
1421		blocksize += memtowire_adj[dif_info->dif_oper];
1422	}
1423	return blocksize;
1424}
1425
1426/**
1427 * @brief Return wire block size given SCSI DIF API
1428 *
1429 * The blocksize on the wire for the DIF transfer is returned, given the SCSI DIF info
1430 * block and the direction of transfer.
1431 *
1432 * @param dif_info Pointer to DIF info block
1433 * @param wiretomem Transfer direction, 1 is wire to memory, 0 is memory to wire
1434 *
1435 * @return Wire blocksize or negative error value
1436 *
1437 * WARNING: the order of initialization of the adj[] arrays MUST match the declarations
1438 * of OCS_SCSI_DIF_OPER_*
1439 */
1440
1441int32_t
1442ocs_scsi_dif_wire_blocksize(ocs_scsi_dif_info_t *dif_info, int wiretomem)
1443{
1444	uint32_t blocksize;
1445	uint8_t wiretomem_adj[] = {
1446		0,		/* OCS_SCSI_DIF_OPER_DISABLED, */
1447		0,		/* OCS_SCSI_DIF_OPER_IN_NODIF_OUT_CRC, */
1448		DIF_SIZE,	/* OCS_SCSI_DIF_OPER_IN_CRC_OUT_NODIF, */
1449		0,		/* OCS_SCSI_DIF_OPER_IN_NODIF_OUT_CHKSUM, */
1450		DIF_SIZE,	/* OCS_SCSI_DIF_OPER_IN_CHKSUM_OUT_NODIF, */
1451		DIF_SIZE,	/* OCS_SCSI_DIF_OPER_IN_CRC_OUT_CRC, */
1452		DIF_SIZE,	/* OCS_SCSI_DIF_OPER_IN_CHKSUM_OUT_CHKSUM, */
1453		DIF_SIZE,	/* OCS_SCSI_DIF_OPER_IN_CRC_OUT_CHKSUM, */
1454		DIF_SIZE,	/* OCS_SCSI_DIF_OPER_IN_CHKSUM_OUT_CRC, */
1455		DIF_SIZE};	/* OCS_SCSI_DIF_OPER_IN_RAW_OUT_RAW, */
1456	uint8_t memtowire_adj[] = {
1457		0,		/* OCS_SCSI_DIF_OPER_DISABLED, */
1458		DIF_SIZE,	/* OCS_SCSI_DIF_OPER_IN_NODIF_OUT_CRC, */
1459		0,		/* OCS_SCSI_DIF_OPER_IN_CRC_OUT_NODIF, */
1460		DIF_SIZE,	/* OCS_SCSI_DIF_OPER_IN_NODIF_OUT_CHKSUM, */
1461		0,		/* OCS_SCSI_DIF_OPER_IN_CHKSUM_OUT_NODIF, */
1462		DIF_SIZE,	/* OCS_SCSI_DIF_OPER_IN_CRC_OUT_CRC, */
1463		DIF_SIZE,	/* OCS_SCSI_DIF_OPER_IN_CHKSUM_OUT_CHKSUM, */
1464		DIF_SIZE,	/* OCS_SCSI_DIF_OPER_IN_CRC_OUT_CHKSUM, */
1465		DIF_SIZE,	/* OCS_SCSI_DIF_OPER_IN_CHKSUM_OUT_CRC, */
1466		DIF_SIZE};	/* OCS_SCSI_DIF_OPER_IN_RAW_OUT_RAW, */
1467
1468
1469	blocksize = ocs_scsi_dif_blocksize(dif_info);
1470	if (blocksize == 0) {
1471		return -1;
1472	}
1473
1474	if (wiretomem) {
1475		ocs_assert(dif_info->dif_oper < ARRAY_SIZE(wiretomem_adj), 0);
1476		blocksize += wiretomem_adj[dif_info->dif_oper];
1477	} else {	/* mem to wire */
1478		ocs_assert(dif_info->dif_oper < ARRAY_SIZE(memtowire_adj), 0);
1479		blocksize += memtowire_adj[dif_info->dif_oper];
1480	}
1481
1482	return blocksize;
1483}
1484/**
1485 * @brief Return blocksize given HW API DIF block size
1486 *
1487 * Given the DIF block size enumerated value, return the block size value. (e.g.
1488 * OCS_SCSI_DIF_BLK_SIZE_512 returns 512)
1489 *
1490 * @param dif_info Pointer to HW API DIF info block
1491 *
1492 * @return returns block size, or 0 if HW API DIF blocksize is invalid
1493 */
1494
1495uint32_t
1496ocs_hw_dif_blocksize(ocs_hw_dif_info_t *dif_info)
1497{
1498	uint32_t blocksize = 0;
1499
1500	switch(dif_info->blk_size) {
1501	case OCS_HW_DIF_BK_SIZE_512:	blocksize = 512; break;
1502	case OCS_HW_DIF_BK_SIZE_1024:	blocksize = 1024; break;
1503	case OCS_HW_DIF_BK_SIZE_2048:	blocksize = 2048; break;
1504	case OCS_HW_DIF_BK_SIZE_4096:	blocksize = 4096; break;
1505	case OCS_HW_DIF_BK_SIZE_520:	blocksize = 520; break;
1506	case OCS_HW_DIF_BK_SIZE_4104:	blocksize = 4104; break;
1507	default:
1508		break;
1509	}
1510
1511	return blocksize;
1512}
1513
1514/**
1515 * @brief Return memory block size given HW DIF API
1516 *
1517 * The blocksize in memory for the DIF transfer is returned, given the HW DIF info
1518 * block and the direction of transfer.
1519 *
1520 * @param dif_info Pointer to DIF info block
1521 * @param wiretomem Transfer direction, 1 is wire to memory, 0 is memory to wire
1522 *
1523 * @return Memory blocksize, or negative error value
1524 *
1525 * WARNING: the order of initialization of the adj[] arrays MUST match the declarations
1526 * of OCS_HW_DIF_OPER_*
1527 */
1528
1529int32_t
1530ocs_hw_dif_mem_blocksize(ocs_hw_dif_info_t *dif_info, int wiretomem)
1531{
1532	uint32_t blocksize;
1533	uint8_t wiretomem_adj[] = {
1534		0,		/* OCS_HW_DIF_OPER_DISABLED, */
1535		DIF_SIZE,	/* OCS_HW_DIF_OPER_IN_NODIF_OUT_CRC, */
1536		0,		/* OCS_HW_DIF_OPER_IN_CRC_OUT_NODIF, */
1537		DIF_SIZE,	/* OCS_HW_DIF_OPER_IN_NODIF_OUT_CHKSUM, */
1538		0,		/* OCS_HW_DIF_OPER_IN_CHKSUM_OUT_NODIF, */
1539		DIF_SIZE,	/* OCS_HW_DIF_OPER_IN_CRC_OUT_CRC, */
1540		DIF_SIZE,	/* OCS_HW_DIF_OPER_IN_CHKSUM_OUT_CHKSUM, */
1541		DIF_SIZE,	/* OCS_HW_DIF_OPER_IN_CRC_OUT_CHKSUM, */
1542		DIF_SIZE,	/* OCS_HW_DIF_OPER_IN_CHKSUM_OUT_CRC, */
1543		DIF_SIZE};	/* OCS_HW_DIF_OPER_IN_RAW_OUT_RAW, */
1544	uint8_t memtowire_adj[] = {
1545		0,		/* OCS_HW_DIF_OPER_DISABLED, */
1546		0,		/* OCS_HW_DIF_OPER_IN_NODIF_OUT_CRC, */
1547		DIF_SIZE,	/* OCS_HW_DIF_OPER_IN_CRC_OUT_NODIF, */
1548		0,		/* OCS_HW_DIF_OPER_IN_NODIF_OUT_CHKSUM, */
1549		DIF_SIZE,	/* OCS_HW_DIF_OPER_IN_CHKSUM_OUT_NODIF, */
1550		DIF_SIZE,	/* OCS_HW_DIF_OPER_IN_CRC_OUT_CRC, */
1551		DIF_SIZE,	/* OCS_HW_DIF_OPER_IN_CHKSUM_OUT_CHKSUM, */
1552		DIF_SIZE,	/* OCS_HW_DIF_OPER_IN_CRC_OUT_CHKSUM, */
1553		DIF_SIZE,	/* OCS_HW_DIF_OPER_IN_CHKSUM_OUT_CRC, */
1554		DIF_SIZE};	/* OCS_HW_DIF_OPER_IN_RAW_OUT_RAW, */
1555
1556	blocksize = ocs_hw_dif_blocksize(dif_info);
1557	if (blocksize == 0) {
1558		return -1;
1559	}
1560
1561	if (wiretomem) {
1562		ocs_assert(dif_info->dif_oper < ARRAY_SIZE(wiretomem_adj), 0);
1563		blocksize += wiretomem_adj[dif_info->dif_oper];
1564	} else {	/* mem to wire */
1565		ocs_assert(dif_info->dif_oper < ARRAY_SIZE(memtowire_adj), 0);
1566		blocksize += memtowire_adj[dif_info->dif_oper];
1567	}
1568	return blocksize;
1569}
1570
1571/**
1572 * @brief Return wire block size given HW DIF API
1573 *
1574 * The blocksize on the wire for the DIF transfer is returned, given the HW DIF info
1575 * block and the direction of transfer.
1576 *
1577 * @param dif_info Pointer to DIF info block
1578 * @param wiretomem Transfer direction, 1 is wire to memory, 0 is memory to wire
1579 *
1580 * @return Wire blocksize or negative error value
1581 *
1582 * WARNING: the order of initialization of the adj[] arrays MUST match the declarations
1583 * of OCS_HW_DIF_OPER_*
1584 */
1585
1586int32_t
1587ocs_hw_dif_wire_blocksize(ocs_hw_dif_info_t *dif_info, int wiretomem)
1588{
1589	uint32_t blocksize;
1590	uint8_t wiretomem_adj[] = {
1591		0,		/* OCS_HW_DIF_OPER_DISABLED, */
1592		0,		/* OCS_HW_DIF_OPER_IN_NODIF_OUT_CRC, */
1593		DIF_SIZE,	/* OCS_HW_DIF_OPER_IN_CRC_OUT_NODIF, */
1594		0,		/* OCS_HW_DIF_OPER_IN_NODIF_OUT_CHKSUM, */
1595		DIF_SIZE,	/* OCS_HW_DIF_OPER_IN_CHKSUM_OUT_NODIF, */
1596		DIF_SIZE,	/* OCS_HW_DIF_OPER_IN_CRC_OUT_CRC, */
1597		DIF_SIZE,	/* OCS_HW_DIF_OPER_IN_CHKSUM_OUT_CHKSUM, */
1598		DIF_SIZE,	/* OCS_HW_DIF_OPER_IN_CRC_OUT_CHKSUM, */
1599		DIF_SIZE,	/* OCS_HW_DIF_OPER_IN_CHKSUM_OUT_CRC, */
1600		DIF_SIZE};	/* OCS_HW_DIF_OPER_IN_RAW_OUT_RAW, */
1601	uint8_t memtowire_adj[] = {
1602		0,		/* OCS_HW_DIF_OPER_DISABLED, */
1603		DIF_SIZE,	/* OCS_HW_DIF_OPER_IN_NODIF_OUT_CRC, */
1604		0,		/* OCS_HW_DIF_OPER_IN_CRC_OUT_NODIF, */
1605		DIF_SIZE,	/* OCS_HW_DIF_OPER_IN_NODIF_OUT_CHKSUM, */
1606		0,		/* OCS_HW_DIF_OPER_IN_CHKSUM_OUT_NODIF, */
1607		DIF_SIZE,	/* OCS_HW_DIF_OPER_IN_CRC_OUT_CRC, */
1608		DIF_SIZE,	/* OCS_HW_DIF_OPER_IN_CHKSUM_OUT_CHKSUM, */
1609		DIF_SIZE,	/* OCS_HW_DIF_OPER_IN_CRC_OUT_CHKSUM, */
1610		DIF_SIZE,	/* OCS_HW_DIF_OPER_IN_CHKSUM_OUT_CRC, */
1611		DIF_SIZE};	/* OCS_HW_DIF_OPER_IN_RAW_OUT_RAW, */
1612
1613
1614	blocksize = ocs_hw_dif_blocksize(dif_info);
1615	if (blocksize == 0) {
1616		return -1;
1617	}
1618
1619	if (wiretomem) {
1620		ocs_assert(dif_info->dif_oper < ARRAY_SIZE(wiretomem_adj), 0);
1621		blocksize += wiretomem_adj[dif_info->dif_oper];
1622	} else {	/* mem to wire */
1623		ocs_assert(dif_info->dif_oper < ARRAY_SIZE(memtowire_adj), 0);
1624		blocksize += memtowire_adj[dif_info->dif_oper];
1625	}
1626
1627	return blocksize;
1628}
1629
1630static int32_t ocs_segment_remaining(ocs_textbuf_segment_t *segment);
1631static ocs_textbuf_segment_t *ocs_textbuf_segment_alloc(ocs_textbuf_t *textbuf);
1632static void ocs_textbuf_segment_free(ocs_t *ocs, ocs_textbuf_segment_t *segment);
1633static ocs_textbuf_segment_t *ocs_textbuf_get_segment(ocs_textbuf_t *textbuf, uint32_t idx);
1634
1635uint8_t *
1636ocs_textbuf_get_buffer(ocs_textbuf_t *textbuf)
1637{
1638	return ocs_textbuf_ext_get_buffer(textbuf, 0);
1639}
1640
1641int32_t
1642ocs_textbuf_get_length(ocs_textbuf_t *textbuf)
1643{
1644	return ocs_textbuf_ext_get_length(textbuf, 0);
1645}
1646
1647int32_t
1648ocs_textbuf_get_written(ocs_textbuf_t *textbuf)
1649{
1650	uint32_t idx;
1651	int32_t n;
1652	int32_t total = 0;
1653
1654	for (idx = 0; (n = ocs_textbuf_ext_get_written(textbuf, idx)) >= 0; idx++) {
1655		total += n;
1656	}
1657	return total;
1658}
1659
1660uint8_t *ocs_textbuf_ext_get_buffer(ocs_textbuf_t *textbuf, uint32_t idx)
1661{
1662	ocs_textbuf_segment_t *segment = ocs_textbuf_get_segment(textbuf, idx);
1663	if (segment == NULL) {
1664		return NULL;
1665	}
1666	return segment->buffer;
1667}
1668
1669int32_t ocs_textbuf_ext_get_length(ocs_textbuf_t *textbuf, uint32_t idx)
1670{
1671	ocs_textbuf_segment_t *segment = ocs_textbuf_get_segment(textbuf, idx);
1672	if (segment == NULL) {
1673		return -1;
1674	}
1675	return segment->buffer_length;
1676}
1677
1678int32_t ocs_textbuf_ext_get_written(ocs_textbuf_t *textbuf, uint32_t idx)
1679{
1680	ocs_textbuf_segment_t *segment = ocs_textbuf_get_segment(textbuf, idx);
1681	if (segment == NULL) {
1682		return -1;
1683	}
1684	return segment->buffer_written;
1685}
1686
1687uint32_t
1688ocs_textbuf_initialized(ocs_textbuf_t *textbuf)
1689{
1690	return (textbuf->ocs != NULL);
1691}
1692
1693int32_t
1694ocs_textbuf_alloc(ocs_t *ocs, ocs_textbuf_t *textbuf, uint32_t length)
1695{
1696	ocs_memset(textbuf, 0, sizeof(*textbuf));
1697
1698	textbuf->ocs = ocs;
1699	ocs_list_init(&textbuf->segment_list, ocs_textbuf_segment_t, link);
1700
1701	if (length > OCS_TEXTBUF_MAX_ALLOC_LEN) {
1702		textbuf->allocation_length = OCS_TEXTBUF_MAX_ALLOC_LEN;
1703	} else {
1704		textbuf->allocation_length = length;
1705	}
1706
1707	/* mark as extendable */
1708	textbuf->extendable = TRUE;
1709
1710	/* save maximum allocation length */
1711	textbuf->max_allocation_length = length;
1712
1713	/* Add first segment */
1714	return (ocs_textbuf_segment_alloc(textbuf) == NULL) ? -1 : 0;
1715}
1716
1717static ocs_textbuf_segment_t *
1718ocs_textbuf_segment_alloc(ocs_textbuf_t *textbuf)
1719{
1720	ocs_textbuf_segment_t *segment = NULL;
1721
1722	if (textbuf->extendable) {
1723		segment = ocs_malloc(textbuf->ocs, sizeof(*segment), OCS_M_ZERO | OCS_M_NOWAIT);
1724		if (segment != NULL) {
1725			segment->buffer = ocs_malloc(textbuf->ocs, textbuf->allocation_length, OCS_M_ZERO | OCS_M_NOWAIT);
1726			if (segment->buffer != NULL) {
1727				segment->buffer_length = textbuf->allocation_length;
1728				segment->buffer_written = 0;
1729				ocs_list_add_tail(&textbuf->segment_list, segment);
1730				textbuf->total_allocation_length += textbuf->allocation_length;
1731
1732				/* If we've allocated our limit, then mark as not extendable */
1733				if (textbuf->total_allocation_length >= textbuf->max_allocation_length) {
1734					textbuf->extendable = 0;
1735				}
1736
1737			} else {
1738				ocs_textbuf_segment_free(textbuf->ocs, segment);
1739				segment = NULL;
1740			}
1741		}
1742	}
1743	return segment;
1744}
1745
1746static void
1747ocs_textbuf_segment_free(ocs_t *ocs, ocs_textbuf_segment_t *segment)
1748{
1749	if (segment) {
1750		if (segment->buffer && !segment->user_allocated) {
1751			ocs_free(ocs, segment->buffer, segment->buffer_length);
1752		}
1753		ocs_free(ocs, segment, sizeof(*segment));
1754	}
1755}
1756
1757static ocs_textbuf_segment_t *
1758ocs_textbuf_get_segment(ocs_textbuf_t *textbuf, uint32_t idx)
1759{
1760	uint32_t i;
1761	ocs_textbuf_segment_t *segment;
1762
1763	if (ocs_textbuf_initialized(textbuf)) {
1764		i = 0;
1765		ocs_list_foreach(&textbuf->segment_list, segment) {
1766			if (i == idx) {
1767				return segment;
1768			}
1769			i++;
1770		}
1771	}
1772	return NULL;
1773}
1774
1775int32_t
1776ocs_textbuf_init(ocs_t *ocs, ocs_textbuf_t *textbuf, void *buffer, uint32_t length)
1777{
1778	int32_t rc = -1;
1779	ocs_textbuf_segment_t *segment;
1780
1781	ocs_memset(textbuf, 0, sizeof(*textbuf));
1782
1783	textbuf->ocs = ocs;
1784	ocs_list_init(&textbuf->segment_list, ocs_textbuf_segment_t, link);
1785	segment = ocs_malloc(ocs, sizeof(*segment), OCS_M_ZERO | OCS_M_NOWAIT);
1786	if (segment) {
1787		segment->buffer = buffer;
1788		segment->buffer_length = length;
1789		segment->buffer_written = 0;
1790		segment->user_allocated = 1;
1791		ocs_list_add_tail(&textbuf->segment_list, segment);
1792		rc = 0;
1793	}
1794
1795	return rc;
1796}
1797
1798void
1799ocs_textbuf_free(ocs_t *ocs, ocs_textbuf_t *textbuf)
1800{
1801	ocs_textbuf_segment_t *segment;
1802	ocs_textbuf_segment_t *n;
1803
1804	if (ocs_textbuf_initialized(textbuf)) {
1805		ocs_list_foreach_safe(&textbuf->segment_list, segment, n) {
1806			ocs_list_remove(&textbuf->segment_list, segment);
1807			ocs_textbuf_segment_free(ocs, segment);
1808		}
1809
1810		ocs_memset(textbuf, 0, sizeof(*textbuf));
1811	}
1812}
1813
1814void
1815ocs_textbuf_printf(ocs_textbuf_t *textbuf, const char *fmt, ...)
1816{
1817	va_list ap;
1818
1819	if (ocs_textbuf_initialized(textbuf)) {
1820		va_start(ap, fmt);
1821		ocs_textbuf_vprintf(textbuf, fmt, ap);
1822		va_end(ap);
1823	}
1824}
1825
1826void
1827ocs_textbuf_vprintf(ocs_textbuf_t *textbuf, const char *fmt, va_list ap)
1828{
1829	int avail;
1830	int written;
1831	ocs_textbuf_segment_t *segment;
1832	va_list save_ap;
1833
1834	if (!ocs_textbuf_initialized(textbuf)) {
1835		return;
1836	}
1837
1838	va_copy(save_ap, ap);
1839
1840	/* fetch last segment */
1841	segment = ocs_list_get_tail(&textbuf->segment_list);
1842
1843	avail = ocs_segment_remaining(segment);
1844	if (avail == 0) {
1845		if ((segment = ocs_textbuf_segment_alloc(textbuf)) == NULL) {
1846			goto out;
1847		}
1848		avail = ocs_segment_remaining(segment);
1849	}
1850
1851	written = ocs_vsnprintf(segment->buffer + segment->buffer_written, avail, fmt, ap);
1852
1853	/* See if data was truncated */
1854	if (written >= avail) {
1855
1856		written = avail;
1857
1858		if (textbuf->extendable) {
1859
1860			/* revert the partially written data */
1861			*(segment->buffer + segment->buffer_written) = 0;
1862
1863			/* Allocate a new segment */
1864			if ((segment = ocs_textbuf_segment_alloc(textbuf)) == NULL) {
1865				ocs_log_err(textbuf->ocs, "alloc segment failed\n");
1866				goto out;
1867			}
1868			avail = ocs_segment_remaining(segment);
1869
1870			/* Retry the write */
1871			written = ocs_vsnprintf(segment->buffer + segment->buffer_written, avail, fmt, save_ap);
1872		}
1873	}
1874	segment->buffer_written += written;
1875
1876out:
1877	va_end(save_ap);
1878}
1879
1880void
1881ocs_textbuf_putc(ocs_textbuf_t *textbuf, uint8_t c)
1882{
1883	ocs_textbuf_segment_t *segment;
1884
1885	if (ocs_textbuf_initialized(textbuf)) {
1886		segment = ocs_list_get_tail(&textbuf->segment_list);
1887
1888		if (ocs_segment_remaining(segment)) {
1889			*(segment->buffer + segment->buffer_written++) = c;
1890		}
1891		if (ocs_segment_remaining(segment) == 0) {
1892			ocs_textbuf_segment_alloc(textbuf);
1893		}
1894	}
1895}
1896
1897void
1898ocs_textbuf_puts(ocs_textbuf_t *textbuf, char *s)
1899{
1900	if (ocs_textbuf_initialized(textbuf)) {
1901		while(*s) {
1902			ocs_textbuf_putc(textbuf, *s++);
1903		}
1904	}
1905}
1906
1907void
1908ocs_textbuf_buffer(ocs_textbuf_t *textbuf, uint8_t *buffer, uint32_t buffer_length)
1909{
1910	char *s;
1911
1912	if (!ocs_textbuf_initialized(textbuf)) {
1913		return;
1914	}
1915
1916	s = (char*) buffer;
1917	while(*s) {
1918
1919		/*
1920		 * XML escapes
1921		 *
1922		 * "   &quot;
1923		 * '   &apos;
1924		 * <   &lt;
1925		 * >   &gt;
1926		 * &   &amp;
1927		 */
1928
1929		switch(*s) {
1930		case '"':	ocs_textbuf_puts(textbuf, "&quot;"); break;
1931		case '\'':	ocs_textbuf_puts(textbuf, "&apos;"); break;
1932		case '<':	ocs_textbuf_puts(textbuf, "&lt;"); break;
1933		case '>':	ocs_textbuf_puts(textbuf, "&gt;"); break;
1934		case '&':	ocs_textbuf_puts(textbuf, "&amp;"); break;
1935		default:	ocs_textbuf_putc(textbuf, *s); break;
1936		}
1937		s++;
1938	}
1939
1940}
1941
1942void
1943ocs_textbuf_copy(ocs_textbuf_t *textbuf, uint8_t *buffer, uint32_t buffer_length)
1944{
1945	char *s;
1946
1947	if (!ocs_textbuf_initialized(textbuf)) {
1948		return;
1949	}
1950
1951	s = (char*) buffer;
1952	while(*s) {
1953		ocs_textbuf_putc(textbuf, *s++);
1954	}
1955
1956}
1957
1958int32_t
1959ocs_textbuf_remaining(ocs_textbuf_t *textbuf)
1960{
1961	if (ocs_textbuf_initialized(textbuf)) {
1962		return ocs_segment_remaining(ocs_list_get_head(&textbuf->segment_list));
1963	} else {
1964		return 0;
1965	}
1966}
1967
1968static int32_t
1969ocs_segment_remaining(ocs_textbuf_segment_t *segment)
1970{
1971	return segment->buffer_length - segment->buffer_written;
1972}
1973
1974void
1975ocs_textbuf_reset(ocs_textbuf_t *textbuf)
1976{
1977	uint32_t i = 0;
1978	ocs_textbuf_segment_t *segment;
1979	ocs_textbuf_segment_t *n;
1980
1981	if (ocs_textbuf_initialized(textbuf)) {
1982		/* zero written on the first segment, free the rest */
1983		ocs_list_foreach_safe(&textbuf->segment_list, segment, n) {
1984			if (i++ == 0) {
1985				segment->buffer_written = 0;
1986			} else {
1987				ocs_list_remove(&textbuf->segment_list, segment);
1988				ocs_textbuf_segment_free(textbuf->ocs, segment);
1989			}
1990		}
1991	}
1992}
1993
1994/**
1995 * @brief Sparse Vector API.
1996 *
1997 * This is a trimmed down sparse vector implementation tuned to the problem of
1998 * 24-bit FC_IDs. In this case, the 24-bit index value is broken down in three
1999 * 8-bit values. These values are used to index up to three 256 element arrays.
2000 * Arrays are allocated, only when needed. @n @n
2001 * The lookup can complete in constant time (3 indexed array references). @n @n
2002 * A typical use case would be that the fabric/directory FC_IDs would cause two rows to be
2003 * allocated, and the fabric assigned remote nodes would cause two rows to be allocated, with
2004 * the root row always allocated. This gives five rows of 256 x sizeof(void*),
2005 * resulting in 10k.
2006 */
2007
2008
2009
2010/**
2011 * @ingroup spv
2012 * @brief Allocate a new sparse vector row.
2013 *
2014 * @param os OS handle
2015 * @param rowcount Count of rows.
2016 *
2017 * @par Description
2018 * A new sparse vector row is allocated.
2019 *
2020 * @param rowcount Number of elements in a row.
2021 *
2022 * @return Returns the pointer to a row.
2023 */
2024static void
2025**spv_new_row(ocs_os_handle_t os, uint32_t rowcount)
2026{
2027	return ocs_malloc(os, sizeof(void*) * rowcount, OCS_M_ZERO | OCS_M_NOWAIT);
2028}
2029
2030
2031
2032/**
2033 * @ingroup spv
2034 * @brief Delete row recursively.
2035 *
2036 * @par Description
2037 * This function recursively deletes the rows in this sparse vector
2038 *
2039 * @param os OS handle
2040 * @param a Pointer to the row.
2041 * @param n Number of elements in the row.
2042 * @param depth Depth of deleting.
2043 *
2044 * @return None.
2045 */
2046static void
2047_spv_del(ocs_os_handle_t os, void **a, uint32_t n, uint32_t depth)
2048{
2049	if (a) {
2050		if (depth) {
2051			uint32_t i;
2052
2053			for (i = 0; i < n; i ++) {
2054				_spv_del(os, a[i], n, depth-1);
2055			}
2056
2057			ocs_free(os, a, SPV_ROWLEN*sizeof(*a));
2058		}
2059	}
2060}
2061
2062/**
2063 * @ingroup spv
2064 * @brief Delete a sparse vector.
2065 *
2066 * @par Description
2067 * The sparse vector is freed.
2068 *
2069 * @param spv Pointer to the sparse vector object.
2070 */
2071void
2072spv_del(sparse_vector_t spv)
2073{
2074	if (spv) {
2075		_spv_del(spv->os, spv->array, SPV_ROWLEN, SPV_DIM);
2076		ocs_free(spv->os, spv, sizeof(*spv));
2077	}
2078}
2079
2080/**
2081 * @ingroup spv
2082 * @brief Instantiate a new sparse vector object.
2083 *
2084 * @par Description
2085 * A new sparse vector is allocated.
2086 *
2087 * @param os OS handle
2088 *
2089 * @return Returns the pointer to the sparse vector, or NULL.
2090 */
2091sparse_vector_t
2092spv_new(ocs_os_handle_t os)
2093{
2094	sparse_vector_t spv;
2095	uint32_t i;
2096
2097	spv = ocs_malloc(os, sizeof(*spv), OCS_M_ZERO | OCS_M_NOWAIT);
2098	if (!spv) {
2099		return NULL;
2100	}
2101
2102	spv->os = os;
2103	spv->max_idx = 1;
2104	for (i = 0; i < SPV_DIM; i ++) {
2105		spv->max_idx *= SPV_ROWLEN;
2106	}
2107
2108	return spv;
2109}
2110
2111/**
2112 * @ingroup spv
2113 * @brief Return the address of a cell.
2114 *
2115 * @par Description
2116 * Returns the address of a cell, allocates sparse rows as needed if the
2117 *         alloc_new_rows parameter is set.
2118 *
2119 * @param sv Pointer to the sparse vector.
2120 * @param idx Index of which to return the address.
2121 * @param alloc_new_rows If TRUE, then new rows may be allocated to set values,
2122 *                       Set to FALSE for retrieving values.
2123 *
2124 * @return Returns the pointer to the cell, or NULL.
2125 */
2126static void
2127*spv_new_cell(sparse_vector_t sv, uint32_t idx, uint8_t alloc_new_rows)
2128{
2129	uint32_t a = (idx >> 16) & 0xff;
2130	uint32_t b = (idx >>  8) & 0xff;
2131	uint32_t c = (idx >>  0) & 0xff;
2132	void **p;
2133
2134	if (idx >= sv->max_idx) {
2135		return NULL;
2136	}
2137
2138	if (sv->array == NULL) {
2139		sv->array = (alloc_new_rows ? spv_new_row(sv->os, SPV_ROWLEN) : NULL);
2140		if (sv->array == NULL) {
2141			return NULL;
2142		}
2143	}
2144	p = sv->array;
2145	if (p[a] == NULL) {
2146		p[a] = (alloc_new_rows ? spv_new_row(sv->os, SPV_ROWLEN) : NULL);
2147		if (p[a] == NULL) {
2148			return NULL;
2149		}
2150	}
2151	p = p[a];
2152	if (p[b] == NULL) {
2153		p[b] = (alloc_new_rows ? spv_new_row(sv->os, SPV_ROWLEN) : NULL);
2154		if (p[b] == NULL) {
2155			return NULL;
2156		}
2157	}
2158	p = p[b];
2159
2160	return &p[c];
2161}
2162
2163/**
2164 * @ingroup spv
2165 * @brief Set the sparse vector cell value.
2166 *
2167 * @par Description
2168 * Sets the sparse vector at @c idx to @c value.
2169 *
2170 * @param sv Pointer to the sparse vector.
2171 * @param idx Index of which to store.
2172 * @param value Value to store.
2173 *
2174 * @return None.
2175 */
2176void
2177spv_set(sparse_vector_t sv, uint32_t idx, void *value)
2178{
2179	void **ref = spv_new_cell(sv, idx, TRUE);
2180	if (ref) {
2181		*ref = value;
2182	}
2183}
2184
2185/**
2186 * @ingroup spv
2187 * @brief Return the sparse vector cell value.
2188 *
2189 * @par Description
2190 * Returns the value at @c idx.
2191 *
2192 * @param sv Pointer to the sparse vector.
2193 * @param idx Index of which to return the value.
2194 *
2195 * @return Returns the cell value, or NULL.
2196 */
2197void
2198*spv_get(sparse_vector_t sv, uint32_t idx)
2199{
2200	void **ref = spv_new_cell(sv, idx, FALSE);
2201	if (ref) {
2202		return *ref;
2203	}
2204	return NULL;
2205}
2206
2207/*****************************************************************/
2208/*                                                               */
2209/* CRC LOOKUP TABLE                                              */
2210/* ================                                              */
2211/* The following CRC lookup table was generated automagically    */
2212/* by the Rocksoft^tm Model CRC Algorithm Table Generation       */
2213/* Program V1.0 using the following model parameters:            */
2214/*                                                               */
2215/*    Width   : 2 bytes.                                         */
2216/*    Poly    : 0x8BB7                                           */
2217/*    Reverse : FALSE.                                           */
2218/*                                                               */
2219/* For more information on the Rocksoft^tm Model CRC Algorithm,  */
2220/* see the document titled "A Painless Guide to CRC Error        */
2221/* Detection Algorithms" by Ross Williams                        */
2222/* (ross@guest.adelaide.edu.au.). This document is likely to be  */
2223/* in the FTP archive "ftp.adelaide.edu.au/pub/rocksoft".        */
2224/*                                                               */
2225/*****************************************************************/
2226/*
2227 * Emulex Inc, changes:
2228 * - minor syntax changes for successful compilation with contemporary
2229 *   C compilers, and OCS SDK API
2230 * - crctable[] generated using Rocksoft public domain code
2231 *
2232 * Used in the Emulex SDK, the generated file crctable.out is cut and pasted into
2233 * applicable SDK sources.
2234 */
2235
2236
2237static unsigned short crctable[256] =
2238{
2239 0x0000, 0x8BB7, 0x9CD9, 0x176E, 0xB205, 0x39B2, 0x2EDC, 0xA56B,
2240 0xEFBD, 0x640A, 0x7364, 0xF8D3, 0x5DB8, 0xD60F, 0xC161, 0x4AD6,
2241 0x54CD, 0xDF7A, 0xC814, 0x43A3, 0xE6C8, 0x6D7F, 0x7A11, 0xF1A6,
2242 0xBB70, 0x30C7, 0x27A9, 0xAC1E, 0x0975, 0x82C2, 0x95AC, 0x1E1B,
2243 0xA99A, 0x222D, 0x3543, 0xBEF4, 0x1B9F, 0x9028, 0x8746, 0x0CF1,
2244 0x4627, 0xCD90, 0xDAFE, 0x5149, 0xF422, 0x7F95, 0x68FB, 0xE34C,
2245 0xFD57, 0x76E0, 0x618E, 0xEA39, 0x4F52, 0xC4E5, 0xD38B, 0x583C,
2246 0x12EA, 0x995D, 0x8E33, 0x0584, 0xA0EF, 0x2B58, 0x3C36, 0xB781,
2247 0xD883, 0x5334, 0x445A, 0xCFED, 0x6A86, 0xE131, 0xF65F, 0x7DE8,
2248 0x373E, 0xBC89, 0xABE7, 0x2050, 0x853B, 0x0E8C, 0x19E2, 0x9255,
2249 0x8C4E, 0x07F9, 0x1097, 0x9B20, 0x3E4B, 0xB5FC, 0xA292, 0x2925,
2250 0x63F3, 0xE844, 0xFF2A, 0x749D, 0xD1F6, 0x5A41, 0x4D2F, 0xC698,
2251 0x7119, 0xFAAE, 0xEDC0, 0x6677, 0xC31C, 0x48AB, 0x5FC5, 0xD472,
2252 0x9EA4, 0x1513, 0x027D, 0x89CA, 0x2CA1, 0xA716, 0xB078, 0x3BCF,
2253 0x25D4, 0xAE63, 0xB90D, 0x32BA, 0x97D1, 0x1C66, 0x0B08, 0x80BF,
2254 0xCA69, 0x41DE, 0x56B0, 0xDD07, 0x786C, 0xF3DB, 0xE4B5, 0x6F02,
2255 0x3AB1, 0xB106, 0xA668, 0x2DDF, 0x88B4, 0x0303, 0x146D, 0x9FDA,
2256 0xD50C, 0x5EBB, 0x49D5, 0xC262, 0x6709, 0xECBE, 0xFBD0, 0x7067,
2257 0x6E7C, 0xE5CB, 0xF2A5, 0x7912, 0xDC79, 0x57CE, 0x40A0, 0xCB17,
2258 0x81C1, 0x0A76, 0x1D18, 0x96AF, 0x33C4, 0xB873, 0xAF1D, 0x24AA,
2259 0x932B, 0x189C, 0x0FF2, 0x8445, 0x212E, 0xAA99, 0xBDF7, 0x3640,
2260 0x7C96, 0xF721, 0xE04F, 0x6BF8, 0xCE93, 0x4524, 0x524A, 0xD9FD,
2261 0xC7E6, 0x4C51, 0x5B3F, 0xD088, 0x75E3, 0xFE54, 0xE93A, 0x628D,
2262 0x285B, 0xA3EC, 0xB482, 0x3F35, 0x9A5E, 0x11E9, 0x0687, 0x8D30,
2263 0xE232, 0x6985, 0x7EEB, 0xF55C, 0x5037, 0xDB80, 0xCCEE, 0x4759,
2264 0x0D8F, 0x8638, 0x9156, 0x1AE1, 0xBF8A, 0x343D, 0x2353, 0xA8E4,
2265 0xB6FF, 0x3D48, 0x2A26, 0xA191, 0x04FA, 0x8F4D, 0x9823, 0x1394,
2266 0x5942, 0xD2F5, 0xC59B, 0x4E2C, 0xEB47, 0x60F0, 0x779E, 0xFC29,
2267 0x4BA8, 0xC01F, 0xD771, 0x5CC6, 0xF9AD, 0x721A, 0x6574, 0xEEC3,
2268 0xA415, 0x2FA2, 0x38CC, 0xB37B, 0x1610, 0x9DA7, 0x8AC9, 0x017E,
2269 0x1F65, 0x94D2, 0x83BC, 0x080B, 0xAD60, 0x26D7, 0x31B9, 0xBA0E,
2270 0xF0D8, 0x7B6F, 0x6C01, 0xE7B6, 0x42DD, 0xC96A, 0xDE04, 0x55B3
2271};
2272
2273/*****************************************************************/
2274/*                   End of CRC Lookup Table                     */
2275/*****************************************************************/
2276
2277/**
2278 * @brief Calculate the T10 PI CRC guard value for a block.
2279 *
2280 * Code based on Rocksoft's public domain CRC code, refer to
2281 * http://www.ross.net/crc/download/crc_v3.txt.  Minimally altered
2282 * to work with the ocs_dif API.
2283 *
2284 * @param blk_adr Pointer to the data buffer.
2285 * @param blk_len Number of bytes.
2286 * @param crc Previously-calculated CRC, or crcseed for a new block.
2287 *
2288 * @return Returns the calculated CRC, which may be passed back in for partial blocks.
2289 *
2290 */
2291
2292unsigned short
2293t10crc16(const unsigned char *blk_adr, unsigned long blk_len, unsigned short crc)
2294{
2295	if (blk_len > 0) {
2296		while (blk_len--) {
2297			crc = crctable[((crc>>8) ^ *blk_adr++) & 0xFFL] ^ (crc << 8);
2298		}
2299	}
2300	return crc;
2301}
2302
2303struct ocs_ramlog_s {
2304	uint32_t initialized;
2305	uint32_t textbuf_count;
2306	uint32_t textbuf_base;
2307	ocs_textbuf_t *textbufs;
2308	uint32_t cur_textbuf_idx;
2309	ocs_textbuf_t *cur_textbuf;
2310	ocs_lock_t lock;
2311};
2312
2313static uint32_t ocs_ramlog_next_idx(ocs_ramlog_t *ramlog, uint32_t idx);
2314
2315/**
2316 * @brief Allocate a ramlog buffer.
2317 *
2318 * Initialize a RAM logging buffer with text buffers totalling buffer_len.
2319 *
2320 * @param ocs Pointer to driver structure.
2321 * @param buffer_len Total length of RAM log buffers.
2322 * @param buffer_count Number of text buffers to allocate (totalling buffer-len).
2323 *
2324 * @return Returns pointer to ocs_ramlog_t instance, or NULL.
2325 */
2326ocs_ramlog_t *
2327ocs_ramlog_init(ocs_t *ocs, uint32_t buffer_len, uint32_t buffer_count)
2328{
2329	uint32_t i;
2330	uint32_t rc;
2331	ocs_ramlog_t *ramlog;
2332
2333	ramlog = ocs_malloc(ocs, sizeof(*ramlog), OCS_M_ZERO | OCS_M_NOWAIT);
2334	if (ramlog == NULL) {
2335		ocs_log_err(ocs, "ocs_malloc ramlog failed\n");
2336		return NULL;
2337	}
2338
2339	ramlog->textbuf_count = buffer_count;
2340
2341	ramlog->textbufs = ocs_malloc(ocs, sizeof(*ramlog->textbufs)*buffer_count, OCS_M_ZERO | OCS_M_NOWAIT);
2342	if (ramlog->textbufs == NULL) {
2343		ocs_log_err(ocs, "ocs_malloc textbufs failed\n");
2344		ocs_ramlog_free(ocs, ramlog);
2345		return NULL;
2346	}
2347
2348	for (i = 0; i < buffer_count; i ++) {
2349		rc = ocs_textbuf_alloc(ocs, &ramlog->textbufs[i], buffer_len);
2350		if (rc) {
2351			ocs_log_err(ocs, "ocs_textbuf_alloc failed\n");
2352			ocs_ramlog_free(ocs, ramlog);
2353			return NULL;
2354		}
2355	}
2356
2357	ramlog->cur_textbuf_idx = 0;
2358	ramlog->textbuf_base = 1;
2359	ramlog->cur_textbuf = &ramlog->textbufs[0];
2360	ramlog->initialized = TRUE;
2361	ocs_lock_init(ocs, &ramlog->lock, "ramlog_lock[%d]", ocs_instance(ocs));
2362	return ramlog;
2363}
2364
2365/**
2366 * @brief Free a ramlog buffer.
2367 *
2368 * A previously allocated RAM logging buffer is freed.
2369 *
2370 * @param ocs Pointer to driver structure.
2371 * @param ramlog Pointer to RAM logging buffer structure.
2372 *
2373 * @return None.
2374 */
2375
2376void
2377ocs_ramlog_free(ocs_t *ocs, ocs_ramlog_t *ramlog)
2378{
2379	uint32_t i;
2380
2381	if (ramlog != NULL) {
2382		ocs_lock_free(&ramlog->lock);
2383		if (ramlog->textbufs) {
2384			for (i = 0; i < ramlog->textbuf_count; i ++) {
2385				ocs_textbuf_free(ocs, &ramlog->textbufs[i]);
2386			}
2387
2388			ocs_free(ocs, ramlog->textbufs, ramlog->textbuf_count*sizeof(*ramlog->textbufs));
2389			ramlog->textbufs = NULL;
2390		}
2391		ocs_free(ocs, ramlog, sizeof(*ramlog));
2392	}
2393}
2394
2395/**
2396 * @brief Clear a ramlog buffer.
2397 *
2398 * The text in the start of day and/or recent ramlog text buffers is cleared.
2399 *
2400 * @param ocs Pointer to driver structure.
2401 * @param ramlog Pointer to RAM logging buffer structure.
2402 * @param clear_start_of_day Clear the start of day (driver init) portion of the ramlog.
2403 * @param clear_recent Clear the recent messages portion of the ramlog.
2404 *
2405 * @return None.
2406 */
2407
2408void
2409ocs_ramlog_clear(ocs_t *ocs, ocs_ramlog_t *ramlog, int clear_start_of_day, int clear_recent)
2410{
2411	uint32_t i;
2412
2413	if (clear_recent) {
2414		for (i = ramlog->textbuf_base; i < ramlog->textbuf_count; i ++) {
2415			ocs_textbuf_reset(&ramlog->textbufs[i]);
2416		}
2417		ramlog->cur_textbuf_idx = 1;
2418	}
2419	if (clear_start_of_day && ramlog->textbuf_base) {
2420		ocs_textbuf_reset(&ramlog->textbufs[0]);
2421		/* Set textbuf_base to 0, so that all buffers are available for
2422		 * recent logs
2423		 */
2424		ramlog->textbuf_base = 0;
2425	}
2426}
2427
2428/**
2429 * @brief Append formatted printf data to a ramlog buffer.
2430 *
2431 * Formatted data is appended to a RAM logging buffer.
2432 *
2433 * @param os Pointer to driver structure.
2434 * @param fmt Pointer to printf style format specifier.
2435 *
2436 * @return Returns 0 on success, or a negative error code value on failure.
2437 */
2438
2439int32_t
2440ocs_ramlog_printf(void *os, const char *fmt, ...)
2441{
2442	ocs_t *ocs = os;
2443	va_list ap;
2444	int32_t res;
2445
2446	if (ocs == NULL || ocs->ramlog == NULL) {
2447		return -1;
2448	}
2449
2450	va_start(ap, fmt);
2451	res = ocs_ramlog_vprintf(ocs->ramlog, fmt, ap);
2452	va_end(ap);
2453
2454	return res;
2455}
2456
2457/**
2458 * @brief Append formatted text to a ramlog using variable arguments.
2459 *
2460 * Formatted data is appended to the RAM logging buffer, using variable arguments.
2461 *
2462 * @param ramlog Pointer to RAM logging buffer.
2463 * @param fmt Pointer to printf style formatting string.
2464 * @param ap Variable argument pointer.
2465 *
2466 * @return Returns 0 on success, or a negative error code value on failure.
2467 */
2468
2469int32_t
2470ocs_ramlog_vprintf(ocs_ramlog_t *ramlog, const char *fmt, va_list ap)
2471{
2472	if (ramlog == NULL || !ramlog->initialized) {
2473		return -1;
2474	}
2475
2476	/* check the current text buffer, if it is almost full (less than 120 characaters), then
2477	 * roll to the next one.
2478	 */
2479	ocs_lock(&ramlog->lock);
2480	if (ocs_textbuf_remaining(ramlog->cur_textbuf) < 120) {
2481		ramlog->cur_textbuf_idx = ocs_ramlog_next_idx(ramlog, ramlog->cur_textbuf_idx);
2482		ramlog->cur_textbuf = &ramlog->textbufs[ramlog->cur_textbuf_idx];
2483		ocs_textbuf_reset(ramlog->cur_textbuf);
2484	}
2485
2486	ocs_textbuf_vprintf(ramlog->cur_textbuf, fmt, ap);
2487	ocs_unlock(&ramlog->lock);
2488
2489	return 0;
2490}
2491
2492/**
2493 * @brief Return next ramlog buffer index.
2494 *
2495 * Given a RAM logging buffer index, return the next index.
2496 *
2497 * @param ramlog Pointer to RAM logging buffer.
2498 * @param idx Index value.
2499 *
2500 * @return Returns next index value.
2501 */
2502
2503static uint32_t
2504ocs_ramlog_next_idx(ocs_ramlog_t *ramlog, uint32_t idx)
2505{
2506	idx = idx + 1;
2507
2508	if (idx >= ramlog->textbuf_count) {
2509		idx = ramlog->textbuf_base;
2510	}
2511
2512	return idx;
2513}
2514
2515/**
2516 * @brief Perform ramlog buffer driver dump.
2517 *
2518 * The RAM logging buffer is appended to the driver dump data.
2519 *
2520 * @param textbuf Pointer to the driver dump text buffer.
2521 * @param ramlog Pointer to the RAM logging buffer.
2522 *
2523 * @return Returns 0 on success, or a negative error code value on failure.
2524 */
2525
2526int32_t
2527ocs_ddump_ramlog(ocs_textbuf_t *textbuf, ocs_ramlog_t *ramlog)
2528{
2529	uint32_t i;
2530	ocs_textbuf_t *rltextbuf;
2531	int idx;
2532
2533	if ((ramlog == NULL) || (ramlog->textbufs == NULL)) {
2534		return -1;
2535	}
2536
2537	ocs_ddump_section(textbuf, "driver-log", 0);
2538
2539	/* Dump the start of day buffer */
2540	ocs_ddump_section(textbuf, "startofday", 0);
2541	/* If textbuf_base is 0, then all buffers are used for recent */
2542	if (ramlog->textbuf_base) {
2543		rltextbuf = &ramlog->textbufs[0];
2544		ocs_textbuf_buffer(textbuf, ocs_textbuf_get_buffer(rltextbuf), ocs_textbuf_get_written(rltextbuf));
2545	}
2546	ocs_ddump_endsection(textbuf, "startofday", 0);
2547
2548	/* Dump the most recent buffers */
2549	ocs_ddump_section(textbuf, "recent", 0);
2550
2551	/* start with the next textbuf */
2552	idx = ocs_ramlog_next_idx(ramlog, ramlog->textbuf_count);
2553
2554	for (i = ramlog->textbuf_base; i < ramlog->textbuf_count; i ++) {
2555		rltextbuf = &ramlog->textbufs[idx];
2556		ocs_textbuf_buffer(textbuf, ocs_textbuf_get_buffer(rltextbuf), ocs_textbuf_get_written(rltextbuf));
2557		idx = ocs_ramlog_next_idx(ramlog, idx);
2558	}
2559	ocs_ddump_endsection(textbuf, "recent", 0);
2560	ocs_ddump_endsection(textbuf, "driver-log", 0);
2561
2562	return 0;
2563}
2564
2565struct ocs_pool_s {
2566	ocs_os_handle_t os;
2567	ocs_array_t *a;
2568	ocs_list_t freelist;
2569	uint32_t use_lock:1;
2570	ocs_lock_t lock;
2571};
2572
2573typedef struct {
2574	ocs_list_link_t link;
2575} pool_hdr_t;
2576
2577
2578/**
2579 * @brief Allocate a memory pool.
2580 *
2581 * A memory pool of given size and item count is allocated.
2582 *
2583 * @param os OS handle.
2584 * @param size Size in bytes of item.
2585 * @param count Number of items in a memory pool.
2586 * @param use_lock TRUE to enable locking of pool.
2587 *
2588 * @return Returns pointer to allocated memory pool, or NULL.
2589 */
2590ocs_pool_t *
2591ocs_pool_alloc(ocs_os_handle_t os, uint32_t size, uint32_t count, uint32_t use_lock)
2592{
2593	ocs_pool_t *pool;
2594	uint32_t i;
2595
2596	pool = ocs_malloc(os, sizeof(*pool), OCS_M_ZERO | OCS_M_NOWAIT);
2597	if (pool == NULL) {
2598		return NULL;
2599	}
2600
2601	pool->os = os;
2602	pool->use_lock = use_lock;
2603
2604	/* Allocate an array where each array item is the size of a pool_hdr_t plus
2605	 * the requested memory item size (size)
2606	 */
2607	pool->a = ocs_array_alloc(os, size + sizeof(pool_hdr_t), count);
2608	if (pool->a == NULL) {
2609		ocs_pool_free(pool);
2610		return NULL;
2611	}
2612
2613	ocs_list_init(&pool->freelist, pool_hdr_t, link);
2614	for (i = 0; i < count; i++) {
2615		ocs_list_add_tail(&pool->freelist, ocs_array_get(pool->a, i));
2616	}
2617
2618	if (pool->use_lock) {
2619		ocs_lock_init(os, &pool->lock, "ocs_pool:%p", pool);
2620	}
2621
2622	return pool;
2623}
2624
2625/**
2626 * @brief Reset a memory pool.
2627 *
2628 * Place all pool elements on the free list, and zero them.
2629 *
2630 * @param pool Pointer to the pool object.
2631 *
2632 * @return None.
2633 */
2634void
2635ocs_pool_reset(ocs_pool_t *pool)
2636{
2637	uint32_t i;
2638	uint32_t count = ocs_array_get_count(pool->a);
2639	uint32_t size = ocs_array_get_size(pool->a);
2640
2641	if (pool->use_lock) {
2642		ocs_lock(&pool->lock);
2643	}
2644
2645	/*
2646	 * Remove all the entries from the free list, otherwise we will
2647	 * encountered linked list asserts when they are re-added.
2648	 */
2649	while (!ocs_list_empty(&pool->freelist)) {
2650		ocs_list_remove_head(&pool->freelist);
2651	}
2652
2653	/* Reset the free list */
2654	ocs_list_init(&pool->freelist, pool_hdr_t, link);
2655
2656	/* Return all elements to the free list and zero the elements */
2657	for (i = 0; i < count; i++) {
2658		ocs_memset(ocs_pool_get_instance(pool, i), 0, size - sizeof(pool_hdr_t));
2659		ocs_list_add_tail(&pool->freelist, ocs_array_get(pool->a, i));
2660	}
2661	if (pool->use_lock) {
2662		ocs_unlock(&pool->lock);
2663	}
2664
2665}
2666
2667/**
2668 * @brief Free a previously allocated memory pool.
2669 *
2670 * The memory pool is freed.
2671 *
2672 * @param pool Pointer to memory pool.
2673 *
2674 * @return None.
2675 */
2676void
2677ocs_pool_free(ocs_pool_t *pool)
2678{
2679	if (pool != NULL) {
2680		if (pool->a != NULL) {
2681			ocs_array_free(pool->a);
2682		}
2683		if (pool->use_lock) {
2684			ocs_lock_free(&pool->lock);
2685		}
2686		ocs_free(pool->os, pool, sizeof(*pool));
2687	}
2688}
2689
2690/**
2691 * @brief Allocate a memory pool item
2692 *
2693 * A memory pool item is taken from the free list and returned.
2694 *
2695 * @param pool Pointer to memory pool.
2696 *
2697 * @return Pointer to allocated item, otherwise NULL if there are no unallocated
2698 *	   items.
2699 */
2700void *
2701ocs_pool_get(ocs_pool_t *pool)
2702{
2703	pool_hdr_t *h;
2704	void *item = NULL;
2705
2706	if (pool->use_lock) {
2707		ocs_lock(&pool->lock);
2708	}
2709
2710	h = ocs_list_remove_head(&pool->freelist);
2711
2712	if (h != NULL) {
2713		/* Return the array item address offset by the size of pool_hdr_t */
2714		item = &h[1];
2715	}
2716
2717	if (pool->use_lock) {
2718		ocs_unlock(&pool->lock);
2719	}
2720	return item;
2721}
2722
2723/**
2724 * @brief free memory pool item
2725 *
2726 * A memory pool item is freed.
2727 *
2728 * @param pool Pointer to memory pool.
2729 * @param item Pointer to item to free.
2730 *
2731 * @return None.
2732 */
2733void
2734ocs_pool_put(ocs_pool_t *pool, void *item)
2735{
2736	pool_hdr_t *h;
2737
2738	if (pool->use_lock) {
2739		ocs_lock(&pool->lock);
2740	}
2741
2742	/* Fetch the address of the array item, which is the item address negatively offset
2743	 * by size of pool_hdr_t (note the index of [-1]
2744	 */
2745	h = &((pool_hdr_t*)item)[-1];
2746
2747	ocs_list_add_tail(&pool->freelist, h);
2748
2749	if (pool->use_lock) {
2750		ocs_unlock(&pool->lock);
2751	}
2752
2753}
2754
2755/**
2756 * @brief Return memory pool item count.
2757 *
2758 * Returns the allocated number of items.
2759 *
2760 * @param pool Pointer to memory pool.
2761 *
2762 * @return Returns count of allocated items.
2763 */
2764uint32_t
2765ocs_pool_get_count(ocs_pool_t *pool)
2766{
2767	uint32_t count;
2768	if (pool->use_lock) {
2769		ocs_lock(&pool->lock);
2770	}
2771	count = ocs_array_get_count(pool->a);
2772	if (pool->use_lock) {
2773		ocs_unlock(&pool->lock);
2774	}
2775	return count;
2776}
2777
2778/**
2779 * @brief Return item given an index.
2780 *
2781 * A pointer to a memory pool item is returned given an index.
2782 *
2783 * @param pool Pointer to memory pool.
2784 * @param idx Index.
2785 *
2786 * @return Returns pointer to item, or NULL if index is invalid.
2787 */
2788void *
2789ocs_pool_get_instance(ocs_pool_t *pool, uint32_t idx)
2790{
2791	pool_hdr_t *h = ocs_array_get(pool->a, idx);
2792
2793	if (h == NULL) {
2794		return NULL;
2795	}
2796	return &h[1];
2797}
2798
2799/**
2800 * @brief Return count of free objects in a pool.
2801 *
2802 * The number of objects on a pool's free list.
2803 *
2804 * @param pool Pointer to memory pool.
2805 *
2806 * @return Returns count of objects on free list.
2807 */
2808uint32_t
2809ocs_pool_get_freelist_count(ocs_pool_t *pool)
2810{
2811	uint32_t count = 0;
2812	void *item;
2813
2814	if (pool->use_lock) {
2815		ocs_lock(&pool->lock);
2816	}
2817
2818	ocs_list_foreach(&pool->freelist, item) {
2819		count++;
2820	}
2821
2822	if (pool->use_lock) {
2823		ocs_unlock(&pool->lock);
2824	}
2825	return count;
2826}
2827