if_nge.c revision 79798
1/*
2 * Copyright (c) 2001 Wind River Systems
3 * Copyright (c) 1997, 1998, 1999, 2000, 2001
4 *	Bill Paul <wpaul@bsdi.com>.  All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 *    notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 * 3. All advertising materials mentioning features or use of this software
15 *    must display the following acknowledgement:
16 *	This product includes software developed by Bill Paul.
17 * 4. Neither the name of the author nor the names of any co-contributors
18 *    may be used to endorse or promote products derived from this software
19 *    without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
25 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
31 * THE POSSIBILITY OF SUCH DAMAGE.
32 *
33 * $FreeBSD: head/sys/dev/nge/if_nge.c 79798 2001-07-16 16:35:09Z wpaul $
34 */
35
36/*
37 * National Semiconductor DP83820/DP83821 gigabit ethernet driver
38 * for FreeBSD. Datasheets are available from:
39 *
40 * http://www.national.com/ds/DP/DP83820.pdf
41 * http://www.national.com/ds/DP/DP83821.pdf
42 *
43 * These chips are used on several low cost gigabit ethernet NICs
44 * sold by D-Link, Addtron, SMC and Asante. Both parts are
45 * virtually the same, except the 83820 is a 64-bit/32-bit part,
46 * while the 83821 is 32-bit only.
47 *
48 * Many cards also use National gigE transceivers, such as the
49 * DP83891, DP83861 and DP83862 gigPHYTER parts. The DP83861 datasheet
50 * contains a full register description that applies to all of these
51 * components:
52 *
53 * http://www.national.com/ds/DP/DP83861.pdf
54 *
55 * Written by Bill Paul <wpaul@bsdi.com>
56 * BSDi Open Source Solutions
57 */
58
59/*
60 * The NatSemi DP83820 and 83821 controllers are enhanced versions
61 * of the NatSemi MacPHYTER 10/100 devices. They support 10, 100
62 * and 1000Mbps speeds with 1000baseX (ten bit interface), MII and GMII
63 * ports. Other features include 8K TX FIFO and 32K RX FIFO, TCP/IP
64 * hardware checksum offload (IPv4 only), VLAN tagging and filtering,
65 * priority TX and RX queues, a 2048 bit multicast hash filter, 4 RX pattern
66 * matching buffers, one perfect address filter buffer and interrupt
67 * moderation. The 83820 supports both 64-bit and 32-bit addressing
68 * and data transfers: the 64-bit support can be toggled on or off
69 * via software. This affects the size of certain fields in the DMA
70 * descriptors.
71 *
72 * There are two bugs/misfeatures in the 83820/83821 that I have
73 * discovered so far:
74 *
75 * - Receive buffers must be aligned on 64-bit boundaries, which means
76 *   you must resort to copying data in order to fix up the payload
77 *   alignment.
78 *
79 * - In order to transmit jumbo frames larger than 8170 bytes, you have
80 *   to turn off transmit checksum offloading, because the chip can't
81 *   compute the checksum on an outgoing frame unless it fits entirely
82 *   within the TX FIFO, which is only 8192 bytes in size. If you have
83 *   TX checksum offload enabled and you transmit attempt to transmit a
84 *   frame larger than 8170 bytes, the transmitter will wedge.
85 *
86 * To work around the latter problem, TX checksum offload is disabled
87 * if the user selects an MTU larger than 8152 (8170 - 18).
88 */
89
90#include "vlan.h"
91
92#include <sys/param.h>
93#include <sys/systm.h>
94#include <sys/sockio.h>
95#include <sys/mbuf.h>
96#include <sys/malloc.h>
97#include <sys/kernel.h>
98#include <sys/socket.h>
99
100#include <net/if.h>
101#include <net/if_arp.h>
102#include <net/ethernet.h>
103#include <net/if_dl.h>
104#include <net/if_media.h>
105
106#if NVLAN > 0
107#include <net/if_types.h>
108#include <net/if_vlan_var.h>
109#endif
110
111#include <net/bpf.h>
112
113#include <vm/vm.h>              /* for vtophys */
114#include <vm/pmap.h>            /* for vtophys */
115#include <machine/clock.h>      /* for DELAY */
116#include <machine/bus_pio.h>
117#include <machine/bus_memio.h>
118#include <machine/bus.h>
119#include <machine/resource.h>
120#include <sys/bus.h>
121#include <sys/rman.h>
122
123#include <dev/mii/mii.h>
124#include <dev/mii/miivar.h>
125
126#include <pci/pcireg.h>
127#include <pci/pcivar.h>
128
129#define NGE_USEIOSPACE
130
131#include <dev/nge/if_ngereg.h>
132
133MODULE_DEPEND(nge, miibus, 1, 1, 1);
134
135/* "controller miibus0" required.  See GENERIC if you get errors here. */
136#include "miibus_if.h"
137
138#ifndef lint
139static const char rcsid[] =
140  "$FreeBSD: head/sys/dev/nge/if_nge.c 79798 2001-07-16 16:35:09Z wpaul $";
141#endif
142
143#define NGE_CSUM_FEATURES	(CSUM_IP | CSUM_TCP | CSUM_UDP)
144
145/*
146 * Various supported device vendors/types and their names.
147 */
148static struct nge_type nge_devs[] = {
149	{ NGE_VENDORID, NGE_DEVICEID,
150	    "National Semiconductor Gigabit Ethernet" },
151	{ 0, 0, NULL }
152};
153
154static int nge_probe		__P((device_t));
155static int nge_attach		__P((device_t));
156static int nge_detach		__P((device_t));
157
158static int nge_alloc_jumbo_mem	__P((struct nge_softc *));
159static void nge_free_jumbo_mem	__P((struct nge_softc *));
160static void *nge_jalloc		__P((struct nge_softc *));
161static void nge_jfree		__P((caddr_t, void *));
162
163static int nge_newbuf		__P((struct nge_softc *,
164					struct nge_desc *,
165					struct mbuf *));
166static int nge_encap		__P((struct nge_softc *,
167					struct mbuf *, u_int32_t *));
168static void nge_rxeof		__P((struct nge_softc *));
169static void nge_rxeoc		__P((struct nge_softc *));
170static void nge_txeof		__P((struct nge_softc *));
171static void nge_intr		__P((void *));
172static void nge_tick		__P((void *));
173static void nge_start		__P((struct ifnet *));
174static int nge_ioctl		__P((struct ifnet *, u_long, caddr_t));
175static void nge_init		__P((void *));
176static void nge_stop		__P((struct nge_softc *));
177static void nge_watchdog		__P((struct ifnet *));
178static void nge_shutdown		__P((device_t));
179static int nge_ifmedia_upd	__P((struct ifnet *));
180static void nge_ifmedia_sts	__P((struct ifnet *, struct ifmediareq *));
181
182static void nge_delay		__P((struct nge_softc *));
183static void nge_eeprom_idle	__P((struct nge_softc *));
184static void nge_eeprom_putbyte	__P((struct nge_softc *, int));
185static void nge_eeprom_getword	__P((struct nge_softc *, int, u_int16_t *));
186static void nge_read_eeprom	__P((struct nge_softc *, caddr_t, int,
187							int, int));
188
189static void nge_mii_sync	__P((struct nge_softc *));
190static void nge_mii_send	__P((struct nge_softc *, u_int32_t, int));
191static int nge_mii_readreg	__P((struct nge_softc *,
192					struct nge_mii_frame *));
193static int nge_mii_writereg	__P((struct nge_softc *,
194					struct nge_mii_frame *));
195
196static int nge_miibus_readreg	__P((device_t, int, int));
197static int nge_miibus_writereg	__P((device_t, int, int, int));
198static void nge_miibus_statchg	__P((device_t));
199
200static void nge_setmulti	__P((struct nge_softc *));
201static u_int32_t nge_crc	__P((struct nge_softc *, caddr_t));
202static void nge_reset		__P((struct nge_softc *));
203static int nge_list_rx_init	__P((struct nge_softc *));
204static int nge_list_tx_init	__P((struct nge_softc *));
205
206#ifdef NGE_USEIOSPACE
207#define NGE_RES			SYS_RES_IOPORT
208#define NGE_RID			NGE_PCI_LOIO
209#else
210#define NGE_RES			SYS_RES_MEMORY
211#define NGE_RID			NGE_PCI_LOMEM
212#endif
213
214static device_method_t nge_methods[] = {
215	/* Device interface */
216	DEVMETHOD(device_probe,		nge_probe),
217	DEVMETHOD(device_attach,	nge_attach),
218	DEVMETHOD(device_detach,	nge_detach),
219	DEVMETHOD(device_shutdown,	nge_shutdown),
220
221	/* bus interface */
222	DEVMETHOD(bus_print_child,	bus_generic_print_child),
223	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
224
225	/* MII interface */
226	DEVMETHOD(miibus_readreg,	nge_miibus_readreg),
227	DEVMETHOD(miibus_writereg,	nge_miibus_writereg),
228	DEVMETHOD(miibus_statchg,	nge_miibus_statchg),
229
230	{ 0, 0 }
231};
232
233static driver_t nge_driver = {
234	"nge",
235	nge_methods,
236	sizeof(struct nge_softc)
237};
238
239static devclass_t nge_devclass;
240
241DRIVER_MODULE(if_nge, pci, nge_driver, nge_devclass, 0, 0);
242DRIVER_MODULE(miibus, nge, miibus_driver, miibus_devclass, 0, 0);
243
244#define NGE_SETBIT(sc, reg, x)				\
245	CSR_WRITE_4(sc, reg,				\
246		CSR_READ_4(sc, reg) | (x))
247
248#define NGE_CLRBIT(sc, reg, x)				\
249	CSR_WRITE_4(sc, reg,				\
250		CSR_READ_4(sc, reg) & ~(x))
251
252#define SIO_SET(x)					\
253	CSR_WRITE_4(sc, NGE_MEAR, CSR_READ_4(sc, NGE_MEAR) | x)
254
255#define SIO_CLR(x)					\
256	CSR_WRITE_4(sc, NGE_MEAR, CSR_READ_4(sc, NGE_MEAR) & ~x)
257
258static void nge_delay(sc)
259	struct nge_softc	*sc;
260{
261	int			idx;
262
263	for (idx = (300 / 33) + 1; idx > 0; idx--)
264		CSR_READ_4(sc, NGE_CSR);
265
266	return;
267}
268
269static void nge_eeprom_idle(sc)
270	struct nge_softc	*sc;
271{
272	register int		i;
273
274	SIO_SET(NGE_MEAR_EE_CSEL);
275	nge_delay(sc);
276	SIO_SET(NGE_MEAR_EE_CLK);
277	nge_delay(sc);
278
279	for (i = 0; i < 25; i++) {
280		SIO_CLR(NGE_MEAR_EE_CLK);
281		nge_delay(sc);
282		SIO_SET(NGE_MEAR_EE_CLK);
283		nge_delay(sc);
284	}
285
286	SIO_CLR(NGE_MEAR_EE_CLK);
287	nge_delay(sc);
288	SIO_CLR(NGE_MEAR_EE_CSEL);
289	nge_delay(sc);
290	CSR_WRITE_4(sc, NGE_MEAR, 0x00000000);
291
292	return;
293}
294
295/*
296 * Send a read command and address to the EEPROM, check for ACK.
297 */
298static void nge_eeprom_putbyte(sc, addr)
299	struct nge_softc	*sc;
300	int			addr;
301{
302	register int		d, i;
303
304	d = addr | NGE_EECMD_READ;
305
306	/*
307	 * Feed in each bit and stobe the clock.
308	 */
309	for (i = 0x400; i; i >>= 1) {
310		if (d & i) {
311			SIO_SET(NGE_MEAR_EE_DIN);
312		} else {
313			SIO_CLR(NGE_MEAR_EE_DIN);
314		}
315		nge_delay(sc);
316		SIO_SET(NGE_MEAR_EE_CLK);
317		nge_delay(sc);
318		SIO_CLR(NGE_MEAR_EE_CLK);
319		nge_delay(sc);
320	}
321
322	return;
323}
324
325/*
326 * Read a word of data stored in the EEPROM at address 'addr.'
327 */
328static void nge_eeprom_getword(sc, addr, dest)
329	struct nge_softc	*sc;
330	int			addr;
331	u_int16_t		*dest;
332{
333	register int		i;
334	u_int16_t		word = 0;
335
336	/* Force EEPROM to idle state. */
337	nge_eeprom_idle(sc);
338
339	/* Enter EEPROM access mode. */
340	nge_delay(sc);
341	SIO_CLR(NGE_MEAR_EE_CLK);
342	nge_delay(sc);
343	SIO_SET(NGE_MEAR_EE_CSEL);
344	nge_delay(sc);
345
346	/*
347	 * Send address of word we want to read.
348	 */
349	nge_eeprom_putbyte(sc, addr);
350
351	/*
352	 * Start reading bits from EEPROM.
353	 */
354	for (i = 0x8000; i; i >>= 1) {
355		SIO_SET(NGE_MEAR_EE_CLK);
356		nge_delay(sc);
357		if (CSR_READ_4(sc, NGE_MEAR) & NGE_MEAR_EE_DOUT)
358			word |= i;
359		nge_delay(sc);
360		SIO_CLR(NGE_MEAR_EE_CLK);
361		nge_delay(sc);
362	}
363
364	/* Turn off EEPROM access mode. */
365	nge_eeprom_idle(sc);
366
367	*dest = word;
368
369	return;
370}
371
372/*
373 * Read a sequence of words from the EEPROM.
374 */
375static void nge_read_eeprom(sc, dest, off, cnt, swap)
376	struct nge_softc	*sc;
377	caddr_t			dest;
378	int			off;
379	int			cnt;
380	int			swap;
381{
382	int			i;
383	u_int16_t		word = 0, *ptr;
384
385	for (i = 0; i < cnt; i++) {
386		nge_eeprom_getword(sc, off + i, &word);
387		ptr = (u_int16_t *)(dest + (i * 2));
388		if (swap)
389			*ptr = ntohs(word);
390		else
391			*ptr = word;
392	}
393
394	return;
395}
396
397/*
398 * Sync the PHYs by setting data bit and strobing the clock 32 times.
399 */
400static void nge_mii_sync(sc)
401	struct nge_softc		*sc;
402{
403	register int		i;
404
405	SIO_SET(NGE_MEAR_MII_DIR|NGE_MEAR_MII_DATA);
406
407	for (i = 0; i < 32; i++) {
408		SIO_SET(NGE_MEAR_MII_CLK);
409		DELAY(1);
410		SIO_CLR(NGE_MEAR_MII_CLK);
411		DELAY(1);
412	}
413
414	return;
415}
416
417/*
418 * Clock a series of bits through the MII.
419 */
420static void nge_mii_send(sc, bits, cnt)
421	struct nge_softc		*sc;
422	u_int32_t		bits;
423	int			cnt;
424{
425	int			i;
426
427	SIO_CLR(NGE_MEAR_MII_CLK);
428
429	for (i = (0x1 << (cnt - 1)); i; i >>= 1) {
430                if (bits & i) {
431			SIO_SET(NGE_MEAR_MII_DATA);
432                } else {
433			SIO_CLR(NGE_MEAR_MII_DATA);
434                }
435		DELAY(1);
436		SIO_CLR(NGE_MEAR_MII_CLK);
437		DELAY(1);
438		SIO_SET(NGE_MEAR_MII_CLK);
439	}
440}
441
442/*
443 * Read an PHY register through the MII.
444 */
445static int nge_mii_readreg(sc, frame)
446	struct nge_softc		*sc;
447	struct nge_mii_frame	*frame;
448
449{
450	int			i, ack, s;
451
452	s = splimp();
453
454	/*
455	 * Set up frame for RX.
456	 */
457	frame->mii_stdelim = NGE_MII_STARTDELIM;
458	frame->mii_opcode = NGE_MII_READOP;
459	frame->mii_turnaround = 0;
460	frame->mii_data = 0;
461
462	CSR_WRITE_4(sc, NGE_MEAR, 0);
463
464	/*
465 	 * Turn on data xmit.
466	 */
467	SIO_SET(NGE_MEAR_MII_DIR);
468
469	nge_mii_sync(sc);
470
471	/*
472	 * Send command/address info.
473	 */
474	nge_mii_send(sc, frame->mii_stdelim, 2);
475	nge_mii_send(sc, frame->mii_opcode, 2);
476	nge_mii_send(sc, frame->mii_phyaddr, 5);
477	nge_mii_send(sc, frame->mii_regaddr, 5);
478
479	/* Idle bit */
480	SIO_CLR((NGE_MEAR_MII_CLK|NGE_MEAR_MII_DATA));
481	DELAY(1);
482	SIO_SET(NGE_MEAR_MII_CLK);
483	DELAY(1);
484
485	/* Turn off xmit. */
486	SIO_CLR(NGE_MEAR_MII_DIR);
487	/* Check for ack */
488	SIO_CLR(NGE_MEAR_MII_CLK);
489	DELAY(1);
490	SIO_SET(NGE_MEAR_MII_CLK);
491	DELAY(1);
492	ack = CSR_READ_4(sc, NGE_MEAR) & NGE_MEAR_MII_DATA;
493
494	/*
495	 * Now try reading data bits. If the ack failed, we still
496	 * need to clock through 16 cycles to keep the PHY(s) in sync.
497	 */
498	if (ack) {
499		for(i = 0; i < 16; i++) {
500			SIO_CLR(NGE_MEAR_MII_CLK);
501			DELAY(1);
502			SIO_SET(NGE_MEAR_MII_CLK);
503			DELAY(1);
504		}
505		goto fail;
506	}
507
508	for (i = 0x8000; i; i >>= 1) {
509		SIO_CLR(NGE_MEAR_MII_CLK);
510		DELAY(1);
511		if (!ack) {
512			if (CSR_READ_4(sc, NGE_MEAR) & NGE_MEAR_MII_DATA)
513				frame->mii_data |= i;
514			DELAY(1);
515		}
516		SIO_SET(NGE_MEAR_MII_CLK);
517		DELAY(1);
518	}
519
520fail:
521
522	SIO_CLR(NGE_MEAR_MII_CLK);
523	DELAY(1);
524	SIO_SET(NGE_MEAR_MII_CLK);
525	DELAY(1);
526
527	splx(s);
528
529	if (ack)
530		return(1);
531	return(0);
532}
533
534/*
535 * Write to a PHY register through the MII.
536 */
537static int nge_mii_writereg(sc, frame)
538	struct nge_softc		*sc;
539	struct nge_mii_frame	*frame;
540
541{
542	int			s;
543
544	s = splimp();
545	/*
546	 * Set up frame for TX.
547	 */
548
549	frame->mii_stdelim = NGE_MII_STARTDELIM;
550	frame->mii_opcode = NGE_MII_WRITEOP;
551	frame->mii_turnaround = NGE_MII_TURNAROUND;
552
553	/*
554 	 * Turn on data output.
555	 */
556	SIO_SET(NGE_MEAR_MII_DIR);
557
558	nge_mii_sync(sc);
559
560	nge_mii_send(sc, frame->mii_stdelim, 2);
561	nge_mii_send(sc, frame->mii_opcode, 2);
562	nge_mii_send(sc, frame->mii_phyaddr, 5);
563	nge_mii_send(sc, frame->mii_regaddr, 5);
564	nge_mii_send(sc, frame->mii_turnaround, 2);
565	nge_mii_send(sc, frame->mii_data, 16);
566
567	/* Idle bit. */
568	SIO_SET(NGE_MEAR_MII_CLK);
569	DELAY(1);
570	SIO_CLR(NGE_MEAR_MII_CLK);
571	DELAY(1);
572
573	/*
574	 * Turn off xmit.
575	 */
576	SIO_CLR(NGE_MEAR_MII_DIR);
577
578	splx(s);
579
580	return(0);
581}
582
583static int nge_miibus_readreg(dev, phy, reg)
584	device_t		dev;
585	int			phy, reg;
586{
587	struct nge_softc	*sc;
588	struct nge_mii_frame	frame;
589
590	sc = device_get_softc(dev);
591
592	bzero((char *)&frame, sizeof(frame));
593
594	frame.mii_phyaddr = phy;
595	frame.mii_regaddr = reg;
596	nge_mii_readreg(sc, &frame);
597
598	return(frame.mii_data);
599}
600
601static int nge_miibus_writereg(dev, phy, reg, data)
602	device_t		dev;
603	int			phy, reg, data;
604{
605	struct nge_softc	*sc;
606	struct nge_mii_frame	frame;
607
608	sc = device_get_softc(dev);
609
610	bzero((char *)&frame, sizeof(frame));
611
612	frame.mii_phyaddr = phy;
613	frame.mii_regaddr = reg;
614	frame.mii_data = data;
615	nge_mii_writereg(sc, &frame);
616
617	return(0);
618}
619
620static void nge_miibus_statchg(dev)
621	device_t		dev;
622{
623	struct nge_softc	*sc;
624	struct mii_data		*mii;
625
626	sc = device_get_softc(dev);
627	mii = device_get_softc(sc->nge_miibus);
628
629	if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
630		NGE_SETBIT(sc, NGE_TX_CFG,
631		    (NGE_TXCFG_IGN_HBEAT|NGE_TXCFG_IGN_CARR));
632		NGE_SETBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
633	} else {
634		NGE_CLRBIT(sc, NGE_TX_CFG,
635		    (NGE_TXCFG_IGN_HBEAT|NGE_TXCFG_IGN_CARR));
636		NGE_CLRBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
637	}
638
639	/* If we have a 1000Mbps link, set the mode_1000 bit. */
640	if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_TX ||
641	    IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX) {
642		NGE_SETBIT(sc, NGE_CFG, NGE_CFG_MODE_1000);
643	} else {
644		NGE_CLRBIT(sc, NGE_CFG, NGE_CFG_MODE_1000);
645	}
646
647	return;
648}
649
650static u_int32_t nge_crc(sc, addr)
651	struct nge_softc	*sc;
652	caddr_t			addr;
653{
654	u_int32_t		crc, carry;
655	int			i, j;
656	u_int8_t		c;
657
658	/* Compute CRC for the address value. */
659	crc = 0xFFFFFFFF; /* initial value */
660
661	for (i = 0; i < 6; i++) {
662		c = *(addr + i);
663		for (j = 0; j < 8; j++) {
664			carry = ((crc & 0x80000000) ? 1 : 0) ^ (c & 0x01);
665			crc <<= 1;
666			c >>= 1;
667			if (carry)
668				crc = (crc ^ 0x04c11db6) | carry;
669		}
670	}
671
672	/*
673	 * return the filter bit position
674	 */
675
676	return((crc >> 21) & 0x00000FFF);
677}
678
679static void nge_setmulti(sc)
680	struct nge_softc	*sc;
681{
682	struct ifnet		*ifp;
683	struct ifmultiaddr	*ifma;
684	u_int32_t		h = 0, i, filtsave;
685	int			bit, index;
686
687	ifp = &sc->arpcom.ac_if;
688
689	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
690		NGE_CLRBIT(sc, NGE_RXFILT_CTL,
691		    NGE_RXFILTCTL_MCHASH|NGE_RXFILTCTL_UCHASH);
692		NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_ALLMULTI);
693		return;
694	}
695
696	/*
697	 * We have to explicitly enable the multicast hash table
698	 * on the NatSemi chip if we want to use it, which we do.
699	 * We also have to tell it that we don't want to use the
700	 * hash table for matching unicast addresses.
701	 */
702	NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_MCHASH);
703	NGE_CLRBIT(sc, NGE_RXFILT_CTL,
704	    NGE_RXFILTCTL_ALLMULTI|NGE_RXFILTCTL_UCHASH);
705
706	filtsave = CSR_READ_4(sc, NGE_RXFILT_CTL);
707
708	/* first, zot all the existing hash bits */
709	for (i = 0; i < NGE_MCAST_FILTER_LEN; i += 2) {
710		CSR_WRITE_4(sc, NGE_RXFILT_CTL, NGE_FILTADDR_MCAST_LO + i);
711		CSR_WRITE_4(sc, NGE_RXFILT_DATA, 0);
712	}
713
714	/*
715	 * From the 11 bits returned by the crc routine, the top 7
716	 * bits represent the 16-bit word in the mcast hash table
717	 * that needs to be updated, and the lower 4 bits represent
718	 * which bit within that byte needs to be set.
719	 */
720	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
721		if (ifma->ifma_addr->sa_family != AF_LINK)
722			continue;
723		h = nge_crc(sc, LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
724		index = (h >> 4) & 0x7F;
725		bit = h & 0xF;
726		CSR_WRITE_4(sc, NGE_RXFILT_CTL,
727		    NGE_FILTADDR_MCAST_LO + (index * 2));
728		NGE_SETBIT(sc, NGE_RXFILT_DATA, (1 << bit));
729	}
730
731	CSR_WRITE_4(sc, NGE_RXFILT_CTL, filtsave);
732
733	return;
734}
735
736static void nge_reset(sc)
737	struct nge_softc	*sc;
738{
739	register int		i;
740
741	NGE_SETBIT(sc, NGE_CSR, NGE_CSR_RESET);
742
743	for (i = 0; i < NGE_TIMEOUT; i++) {
744		if (!(CSR_READ_4(sc, NGE_CSR) & NGE_CSR_RESET))
745			break;
746	}
747
748	if (i == NGE_TIMEOUT)
749		printf("nge%d: reset never completed\n", sc->nge_unit);
750
751	/* Wait a little while for the chip to get its brains in order. */
752	DELAY(1000);
753
754	/*
755	 * If this is a NetSemi chip, make sure to clear
756	 * PME mode.
757	 */
758	CSR_WRITE_4(sc, NGE_CLKRUN, NGE_CLKRUN_PMESTS);
759	CSR_WRITE_4(sc, NGE_CLKRUN, 0);
760
761        return;
762}
763
764/*
765 * Probe for an NatSemi chip. Check the PCI vendor and device
766 * IDs against our list and return a device name if we find a match.
767 */
768static int nge_probe(dev)
769	device_t		dev;
770{
771	struct nge_type		*t;
772
773	t = nge_devs;
774
775	while(t->nge_name != NULL) {
776		if ((pci_get_vendor(dev) == t->nge_vid) &&
777		    (pci_get_device(dev) == t->nge_did)) {
778			device_set_desc(dev, t->nge_name);
779			return(0);
780		}
781		t++;
782	}
783
784	return(ENXIO);
785}
786
787/*
788 * Attach the interface. Allocate softc structures, do ifmedia
789 * setup and ethernet/BPF attach.
790 */
791static int nge_attach(dev)
792	device_t		dev;
793{
794	int			s;
795	u_char			eaddr[ETHER_ADDR_LEN];
796	u_int32_t		command;
797	struct nge_softc	*sc;
798	struct ifnet		*ifp;
799	int			unit, error = 0, rid;
800
801	s = splimp();
802
803	sc = device_get_softc(dev);
804	unit = device_get_unit(dev);
805	bzero(sc, sizeof(struct nge_softc));
806
807	mtx_init(&sc->nge_mtx, device_get_nameunit(dev), MTX_DEF|MTX_RECURSE);
808
809	/*
810	 * Handle power management nonsense.
811	 */
812	if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
813		u_int32_t		iobase, membase, irq;
814
815		/* Save important PCI config data. */
816		iobase = pci_read_config(dev, NGE_PCI_LOIO, 4);
817		membase = pci_read_config(dev, NGE_PCI_LOMEM, 4);
818		irq = pci_read_config(dev, NGE_PCI_INTLINE, 4);
819
820		/* Reset the power state. */
821		printf("nge%d: chip is in D%d power mode "
822		    "-- setting to D0\n", unit,
823		    pci_get_powerstate(dev));
824		pci_set_powerstate(dev, PCI_POWERSTATE_D0);
825
826		/* Restore PCI config data. */
827		pci_write_config(dev, NGE_PCI_LOIO, iobase, 4);
828		pci_write_config(dev, NGE_PCI_LOMEM, membase, 4);
829		pci_write_config(dev, NGE_PCI_INTLINE, irq, 4);
830	}
831
832	/*
833	 * Map control/status registers.
834	 */
835	pci_enable_busmaster(dev);
836	pci_enable_io(dev, SYS_RES_IOPORT);
837	pci_enable_io(dev, SYS_RES_MEMORY);
838	command = pci_read_config(dev, PCIR_COMMAND, 4);
839
840#ifdef NGE_USEIOSPACE
841	if (!(command & PCIM_CMD_PORTEN)) {
842		printf("nge%d: failed to enable I/O ports!\n", unit);
843		error = ENXIO;;
844		goto fail;
845	}
846#else
847	if (!(command & PCIM_CMD_MEMEN)) {
848		printf("nge%d: failed to enable memory mapping!\n", unit);
849		error = ENXIO;;
850		goto fail;
851	}
852#endif
853
854	rid = NGE_RID;
855	sc->nge_res = bus_alloc_resource(dev, NGE_RES, &rid,
856	    0, ~0, 1, RF_ACTIVE);
857
858	if (sc->nge_res == NULL) {
859		printf("nge%d: couldn't map ports/memory\n", unit);
860		error = ENXIO;
861		goto fail;
862	}
863
864	sc->nge_btag = rman_get_bustag(sc->nge_res);
865	sc->nge_bhandle = rman_get_bushandle(sc->nge_res);
866
867	/* Allocate interrupt */
868	rid = 0;
869	sc->nge_irq = bus_alloc_resource(dev, SYS_RES_IRQ, &rid, 0, ~0, 1,
870	    RF_SHAREABLE | RF_ACTIVE);
871
872	if (sc->nge_irq == NULL) {
873		printf("nge%d: couldn't map interrupt\n", unit);
874		bus_release_resource(dev, NGE_RES, NGE_RID, sc->nge_res);
875		error = ENXIO;
876		goto fail;
877	}
878
879	error = bus_setup_intr(dev, sc->nge_irq, INTR_TYPE_NET,
880	    nge_intr, sc, &sc->nge_intrhand);
881
882	if (error) {
883		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->nge_irq);
884		bus_release_resource(dev, NGE_RES, NGE_RID, sc->nge_res);
885		printf("nge%d: couldn't set up irq\n", unit);
886		goto fail;
887	}
888
889	/* Reset the adapter. */
890	nge_reset(sc);
891
892	/*
893	 * Get station address from the EEPROM.
894	 */
895	nge_read_eeprom(sc, (caddr_t)&eaddr[4], NGE_EE_NODEADDR, 1, 0);
896	nge_read_eeprom(sc, (caddr_t)&eaddr[2], NGE_EE_NODEADDR + 1, 1, 0);
897	nge_read_eeprom(sc, (caddr_t)&eaddr[0], NGE_EE_NODEADDR + 2, 1, 0);
898
899	/*
900	 * A NatSemi chip was detected. Inform the world.
901	 */
902	printf("nge%d: Ethernet address: %6D\n", unit, eaddr, ":");
903
904	sc->nge_unit = unit;
905	bcopy(eaddr, (char *)&sc->arpcom.ac_enaddr, ETHER_ADDR_LEN);
906
907	sc->nge_ldata = contigmalloc(sizeof(struct nge_list_data), M_DEVBUF,
908	    M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0);
909
910	if (sc->nge_ldata == NULL) {
911		printf("nge%d: no memory for list buffers!\n", unit);
912		bus_teardown_intr(dev, sc->nge_irq, sc->nge_intrhand);
913		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->nge_irq);
914		bus_release_resource(dev, NGE_RES, NGE_RID, sc->nge_res);
915		error = ENXIO;
916		goto fail;
917	}
918	bzero(sc->nge_ldata, sizeof(struct nge_list_data));
919
920	/* Try to allocate memory for jumbo buffers. */
921	if (nge_alloc_jumbo_mem(sc)) {
922		printf("nge%d: jumbo buffer allocation failed\n",
923                    sc->nge_unit);
924		contigfree(sc->nge_ldata,
925		    sizeof(struct nge_list_data), M_DEVBUF);
926		bus_teardown_intr(dev, sc->nge_irq, sc->nge_intrhand);
927		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->nge_irq);
928		bus_release_resource(dev, NGE_RES, NGE_RID, sc->nge_res);
929		error = ENXIO;
930		goto fail;
931	}
932
933	ifp = &sc->arpcom.ac_if;
934	ifp->if_softc = sc;
935	ifp->if_unit = unit;
936	ifp->if_name = "nge";
937	ifp->if_mtu = ETHERMTU;
938	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
939	ifp->if_ioctl = nge_ioctl;
940	ifp->if_output = ether_output;
941	ifp->if_start = nge_start;
942	ifp->if_watchdog = nge_watchdog;
943	ifp->if_init = nge_init;
944	ifp->if_baudrate = 1000000000;
945	ifp->if_snd.ifq_maxlen = NGE_TX_LIST_CNT - 1;
946	ifp->if_hwassist = NGE_CSUM_FEATURES;
947
948	/*
949	 * Do MII setup.
950	 */
951	if (mii_phy_probe(dev, &sc->nge_miibus,
952	    nge_ifmedia_upd, nge_ifmedia_sts)) {
953		printf("nge%d: MII without any PHY!\n", sc->nge_unit);
954		nge_free_jumbo_mem(sc);
955		bus_teardown_intr(dev, sc->nge_irq, sc->nge_intrhand);
956		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->nge_irq);
957		bus_release_resource(dev, NGE_RES, NGE_RID, sc->nge_res);
958		error = ENXIO;
959		goto fail;
960	}
961
962	/*
963	 * Call MI attach routine.
964	 */
965	ether_ifattach(ifp, ETHER_BPF_SUPPORTED);
966	callout_handle_init(&sc->nge_stat_ch);
967
968fail:
969	splx(s);
970	mtx_destroy(&sc->nge_mtx);
971	return(error);
972}
973
974static int nge_detach(dev)
975	device_t		dev;
976{
977	struct nge_softc	*sc;
978	struct ifnet		*ifp;
979	int			s;
980
981	s = splimp();
982
983	sc = device_get_softc(dev);
984	ifp = &sc->arpcom.ac_if;
985
986	nge_reset(sc);
987	nge_stop(sc);
988	ether_ifdetach(ifp, ETHER_BPF_SUPPORTED);
989
990	bus_generic_detach(dev);
991	device_delete_child(dev, sc->nge_miibus);
992
993	bus_teardown_intr(dev, sc->nge_irq, sc->nge_intrhand);
994	bus_release_resource(dev, SYS_RES_IRQ, 0, sc->nge_irq);
995	bus_release_resource(dev, NGE_RES, NGE_RID, sc->nge_res);
996
997	contigfree(sc->nge_ldata, sizeof(struct nge_list_data), M_DEVBUF);
998	nge_free_jumbo_mem(sc);
999
1000	splx(s);
1001	mtx_destroy(&sc->nge_mtx);
1002
1003	return(0);
1004}
1005
1006/*
1007 * Initialize the transmit descriptors.
1008 */
1009static int nge_list_tx_init(sc)
1010	struct nge_softc	*sc;
1011{
1012	struct nge_list_data	*ld;
1013	struct nge_ring_data	*cd;
1014	int			i;
1015
1016	cd = &sc->nge_cdata;
1017	ld = sc->nge_ldata;
1018
1019	for (i = 0; i < NGE_TX_LIST_CNT; i++) {
1020		if (i == (NGE_TX_LIST_CNT - 1)) {
1021			ld->nge_tx_list[i].nge_nextdesc =
1022			    &ld->nge_tx_list[0];
1023			ld->nge_tx_list[i].nge_next =
1024			    vtophys(&ld->nge_tx_list[0]);
1025		} else {
1026			ld->nge_tx_list[i].nge_nextdesc =
1027			    &ld->nge_tx_list[i + 1];
1028			ld->nge_tx_list[i].nge_next =
1029			    vtophys(&ld->nge_tx_list[i + 1]);
1030		}
1031		ld->nge_tx_list[i].nge_mbuf = NULL;
1032		ld->nge_tx_list[i].nge_ptr = 0;
1033		ld->nge_tx_list[i].nge_ctl = 0;
1034	}
1035
1036	cd->nge_tx_prod = cd->nge_tx_cons = cd->nge_tx_cnt = 0;
1037
1038	return(0);
1039}
1040
1041
1042/*
1043 * Initialize the RX descriptors and allocate mbufs for them. Note that
1044 * we arrange the descriptors in a closed ring, so that the last descriptor
1045 * points back to the first.
1046 */
1047static int nge_list_rx_init(sc)
1048	struct nge_softc	*sc;
1049{
1050	struct nge_list_data	*ld;
1051	struct nge_ring_data	*cd;
1052	int			i;
1053
1054	ld = sc->nge_ldata;
1055	cd = &sc->nge_cdata;
1056
1057	for (i = 0; i < NGE_RX_LIST_CNT; i++) {
1058		if (nge_newbuf(sc, &ld->nge_rx_list[i], NULL) == ENOBUFS)
1059			return(ENOBUFS);
1060		if (i == (NGE_RX_LIST_CNT - 1)) {
1061			ld->nge_rx_list[i].nge_nextdesc =
1062			    &ld->nge_rx_list[0];
1063			ld->nge_rx_list[i].nge_next =
1064			    vtophys(&ld->nge_rx_list[0]);
1065		} else {
1066			ld->nge_rx_list[i].nge_nextdesc =
1067			    &ld->nge_rx_list[i + 1];
1068			ld->nge_rx_list[i].nge_next =
1069			    vtophys(&ld->nge_rx_list[i + 1]);
1070		}
1071	}
1072
1073	cd->nge_rx_prod = 0;
1074
1075	return(0);
1076}
1077
1078/*
1079 * Initialize an RX descriptor and attach an MBUF cluster.
1080 */
1081static int nge_newbuf(sc, c, m)
1082	struct nge_softc	*sc;
1083	struct nge_desc		*c;
1084	struct mbuf		*m;
1085{
1086	struct mbuf		*m_new = NULL;
1087	caddr_t			*buf = NULL;
1088
1089	if (m == NULL) {
1090		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1091		if (m_new == NULL) {
1092			printf("nge%d: no memory for rx list "
1093			    "-- packet dropped!\n", sc->nge_unit);
1094			return(ENOBUFS);
1095		}
1096
1097		/* Allocate the jumbo buffer */
1098		buf = nge_jalloc(sc);
1099		if (buf == NULL) {
1100#ifdef NGE_VERBOSE
1101			printf("nge%d: jumbo allocation failed "
1102			    "-- packet dropped!\n", sc->nge_unit);
1103#endif
1104			m_freem(m_new);
1105			return(ENOBUFS);
1106		}
1107		/* Attach the buffer to the mbuf */
1108		m_new->m_data = (void *)buf;
1109		m_new->m_len = m_new->m_pkthdr.len = NGE_JUMBO_FRAMELEN;
1110		MEXTADD(m_new, buf, NGE_JUMBO_FRAMELEN, nge_jfree,
1111		    (struct nge_softc *)sc, 0, EXT_NET_DRV);
1112	} else {
1113		m_new = m;
1114		m_new->m_len = m_new->m_pkthdr.len = NGE_JUMBO_FRAMELEN;
1115		m_new->m_data = m_new->m_ext.ext_buf;
1116	}
1117
1118	m_adj(m_new, sizeof(u_int64_t));
1119
1120	c->nge_mbuf = m_new;
1121	c->nge_ptr = vtophys(mtod(m_new, caddr_t));
1122	c->nge_ctl = m_new->m_len;
1123	c->nge_extsts = 0;
1124
1125	return(0);
1126}
1127
1128static int nge_alloc_jumbo_mem(sc)
1129	struct nge_softc	*sc;
1130{
1131	caddr_t			ptr;
1132	register int		i;
1133	struct nge_jpool_entry   *entry;
1134
1135	/* Grab a big chunk o' storage. */
1136	sc->nge_cdata.nge_jumbo_buf = contigmalloc(NGE_JMEM, M_DEVBUF,
1137	    M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0);
1138
1139	if (sc->nge_cdata.nge_jumbo_buf == NULL) {
1140		printf("nge%d: no memory for jumbo buffers!\n", sc->nge_unit);
1141		return(ENOBUFS);
1142	}
1143
1144	SLIST_INIT(&sc->nge_jfree_listhead);
1145	SLIST_INIT(&sc->nge_jinuse_listhead);
1146
1147	/*
1148	 * Now divide it up into 9K pieces and save the addresses
1149	 * in an array.
1150	 */
1151	ptr = sc->nge_cdata.nge_jumbo_buf;
1152	for (i = 0; i < NGE_JSLOTS; i++) {
1153		sc->nge_cdata.nge_jslots[i] = ptr;
1154		ptr += NGE_JLEN;
1155		entry = malloc(sizeof(struct nge_jpool_entry),
1156		    M_DEVBUF, M_NOWAIT);
1157		if (entry == NULL) {
1158			printf("nge%d: no memory for jumbo "
1159			    "buffer queue!\n", sc->nge_unit);
1160			return(ENOBUFS);
1161		}
1162		entry->slot = i;
1163		SLIST_INSERT_HEAD(&sc->nge_jfree_listhead,
1164		    entry, jpool_entries);
1165	}
1166
1167	return(0);
1168}
1169
1170static void nge_free_jumbo_mem(sc)
1171	struct nge_softc	*sc;
1172{
1173	register int		i;
1174	struct nge_jpool_entry   *entry;
1175
1176	for (i = 0; i < NGE_JSLOTS; i++) {
1177		entry = SLIST_FIRST(&sc->nge_jfree_listhead);
1178		SLIST_REMOVE_HEAD(&sc->nge_jfree_listhead, jpool_entries);
1179		free(entry, M_DEVBUF);
1180	}
1181
1182	contigfree(sc->nge_cdata.nge_jumbo_buf, NGE_JMEM, M_DEVBUF);
1183
1184	return;
1185}
1186
1187/*
1188 * Allocate a jumbo buffer.
1189 */
1190static void *nge_jalloc(sc)
1191	struct nge_softc	*sc;
1192{
1193	struct nge_jpool_entry   *entry;
1194
1195	entry = SLIST_FIRST(&sc->nge_jfree_listhead);
1196
1197	if (entry == NULL) {
1198#ifdef NGE_VERBOSE
1199		printf("nge%d: no free jumbo buffers\n", sc->nge_unit);
1200#endif
1201		return(NULL);
1202	}
1203
1204	SLIST_REMOVE_HEAD(&sc->nge_jfree_listhead, jpool_entries);
1205	SLIST_INSERT_HEAD(&sc->nge_jinuse_listhead, entry, jpool_entries);
1206	return(sc->nge_cdata.nge_jslots[entry->slot]);
1207}
1208
1209/*
1210 * Release a jumbo buffer.
1211 */
1212static void nge_jfree(buf, args)
1213	caddr_t			buf;
1214	void			*args;
1215{
1216	struct nge_softc	*sc;
1217	int		        i;
1218	struct nge_jpool_entry   *entry;
1219
1220	/* Extract the softc struct pointer. */
1221	sc = args;
1222
1223	if (sc == NULL)
1224		panic("nge_jfree: can't find softc pointer!");
1225
1226	/* calculate the slot this buffer belongs to */
1227	i = ((vm_offset_t)buf
1228	     - (vm_offset_t)sc->nge_cdata.nge_jumbo_buf) / NGE_JLEN;
1229
1230	if ((i < 0) || (i >= NGE_JSLOTS))
1231		panic("nge_jfree: asked to free buffer that we don't manage!");
1232
1233	entry = SLIST_FIRST(&sc->nge_jinuse_listhead);
1234	if (entry == NULL)
1235		panic("nge_jfree: buffer not in use!");
1236	entry->slot = i;
1237	SLIST_REMOVE_HEAD(&sc->nge_jinuse_listhead, jpool_entries);
1238	SLIST_INSERT_HEAD(&sc->nge_jfree_listhead, entry, jpool_entries);
1239
1240	return;
1241}
1242/*
1243 * A frame has been uploaded: pass the resulting mbuf chain up to
1244 * the higher level protocols.
1245 */
1246static void nge_rxeof(sc)
1247	struct nge_softc	*sc;
1248{
1249        struct ether_header	*eh;
1250        struct mbuf		*m;
1251        struct ifnet		*ifp;
1252	struct nge_desc		*cur_rx;
1253	int			i, total_len = 0;
1254	u_int32_t		rxstat;
1255
1256	ifp = &sc->arpcom.ac_if;
1257	i = sc->nge_cdata.nge_rx_prod;
1258
1259	while(NGE_OWNDESC(&sc->nge_ldata->nge_rx_list[i])) {
1260		struct mbuf		*m0 = NULL;
1261		u_int32_t		extsts;
1262
1263		cur_rx = &sc->nge_ldata->nge_rx_list[i];
1264		rxstat = cur_rx->nge_rxstat;
1265		extsts = cur_rx->nge_extsts;
1266		m = cur_rx->nge_mbuf;
1267		cur_rx->nge_mbuf = NULL;
1268		total_len = NGE_RXBYTES(cur_rx);
1269		NGE_INC(i, NGE_RX_LIST_CNT);
1270
1271		/*
1272		 * If an error occurs, update stats, clear the
1273		 * status word and leave the mbuf cluster in place:
1274		 * it should simply get re-used next time this descriptor
1275	 	 * comes up in the ring.
1276		 */
1277		if (!(rxstat & NGE_CMDSTS_PKT_OK)) {
1278			ifp->if_ierrors++;
1279			nge_newbuf(sc, cur_rx, m);
1280			continue;
1281		}
1282
1283
1284		/*
1285		 * Ok. NatSemi really screwed up here. This is the
1286		 * only gigE chip I know of with alignment constraints
1287		 * on receive buffers. RX buffers must be 64-bit aligned.
1288		 */
1289#ifdef __i386__
1290		/*
1291		 * By popular demand, ignore the alignment problems
1292		 * on the Intel x86 platform. The performance hit
1293		 * incurred due to unaligned accesses is much smaller
1294		 * than the hit produced by forcing buffer copies all
1295		 * the time, especially with jumbo frames. We still
1296		 * need to fix up the alignment everywhere else though.
1297		 */
1298		if (nge_newbuf(sc, cur_rx, NULL) == ENOBUFS) {
1299#endif
1300			m0 = m_devget(mtod(m, char *), total_len,
1301			    ETHER_ALIGN, ifp, NULL);
1302			nge_newbuf(sc, cur_rx, m);
1303			if (m0 == NULL) {
1304				printf("nge%d: no receive buffers "
1305				    "available -- packet dropped!\n",
1306				    sc->nge_unit);
1307				ifp->if_ierrors++;
1308				continue;
1309			}
1310			m = m0;
1311#ifdef __i386__
1312		} else {
1313			m->m_pkthdr.rcvif = ifp;
1314			m->m_pkthdr.len = m->m_len = total_len;
1315		}
1316#endif
1317
1318		ifp->if_ipackets++;
1319		eh = mtod(m, struct ether_header *);
1320
1321		/* Remove header from mbuf and pass it on. */
1322		m_adj(m, sizeof(struct ether_header));
1323
1324		/* Do IP checksum checking. */
1325		if (extsts & NGE_RXEXTSTS_IPPKT)
1326			m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
1327		if (!(extsts & NGE_RXEXTSTS_IPCSUMERR))
1328			m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
1329		if ((extsts & NGE_RXEXTSTS_TCPPKT &&
1330		    !(extsts & NGE_RXEXTSTS_TCPCSUMERR)) ||
1331		    (extsts & NGE_RXEXTSTS_UDPPKT &&
1332		    !(extsts & NGE_RXEXTSTS_UDPCSUMERR))) {
1333			m->m_pkthdr.csum_flags |=
1334			    CSUM_DATA_VALID|CSUM_PSEUDO_HDR;
1335			m->m_pkthdr.csum_data = 0xffff;
1336		}
1337
1338#if NVLAN > 0
1339		/*
1340		 * If we received a packet with a vlan tag, pass it
1341		 * to vlan_input() instead of ether_input().
1342		 */
1343		if (extsts & NGE_RXEXTSTS_VLANPKT) {
1344			vlan_input_tag(eh, m, extsts & NGE_RXEXTSTS_VTCI);
1345                        continue;
1346                }
1347#endif
1348
1349		ether_input(ifp, eh, m);
1350	}
1351
1352	sc->nge_cdata.nge_rx_prod = i;
1353
1354	return;
1355}
1356
1357void nge_rxeoc(sc)
1358	struct nge_softc	*sc;
1359{
1360	struct ifnet		*ifp;
1361
1362	ifp = &sc->arpcom.ac_if;
1363	nge_rxeof(sc);
1364	ifp->if_flags &= ~IFF_RUNNING;
1365	nge_init(sc);
1366	return;
1367}
1368
1369/*
1370 * A frame was downloaded to the chip. It's safe for us to clean up
1371 * the list buffers.
1372 */
1373
1374static void nge_txeof(sc)
1375	struct nge_softc	*sc;
1376{
1377	struct nge_desc		*cur_tx = NULL;
1378	struct ifnet		*ifp;
1379	u_int32_t		idx;
1380
1381	ifp = &sc->arpcom.ac_if;
1382
1383	/* Clear the timeout timer. */
1384	ifp->if_timer = 0;
1385
1386	/*
1387	 * Go through our tx list and free mbufs for those
1388	 * frames that have been transmitted.
1389	 */
1390	idx = sc->nge_cdata.nge_tx_cons;
1391	while (idx != sc->nge_cdata.nge_tx_prod) {
1392		cur_tx = &sc->nge_ldata->nge_tx_list[idx];
1393
1394		if (NGE_OWNDESC(cur_tx))
1395			break;
1396
1397		if (cur_tx->nge_ctl & NGE_CMDSTS_MORE) {
1398			sc->nge_cdata.nge_tx_cnt--;
1399			NGE_INC(idx, NGE_TX_LIST_CNT);
1400			continue;
1401		}
1402
1403		if (!(cur_tx->nge_ctl & NGE_CMDSTS_PKT_OK)) {
1404			ifp->if_oerrors++;
1405			if (cur_tx->nge_txstat & NGE_TXSTAT_EXCESSCOLLS)
1406				ifp->if_collisions++;
1407			if (cur_tx->nge_txstat & NGE_TXSTAT_OUTOFWINCOLL)
1408				ifp->if_collisions++;
1409		}
1410
1411		ifp->if_collisions +=
1412		    (cur_tx->nge_txstat & NGE_TXSTAT_COLLCNT) >> 16;
1413
1414		ifp->if_opackets++;
1415		if (cur_tx->nge_mbuf != NULL) {
1416			m_freem(cur_tx->nge_mbuf);
1417			cur_tx->nge_mbuf = NULL;
1418		}
1419
1420		sc->nge_cdata.nge_tx_cnt--;
1421		NGE_INC(idx, NGE_TX_LIST_CNT);
1422		ifp->if_timer = 0;
1423	}
1424
1425	sc->nge_cdata.nge_tx_cons = idx;
1426
1427	if (cur_tx != NULL)
1428		ifp->if_flags &= ~IFF_OACTIVE;
1429
1430	return;
1431}
1432
1433static void nge_tick(xsc)
1434	void			*xsc;
1435{
1436	struct nge_softc	*sc;
1437	struct mii_data		*mii;
1438	struct ifnet		*ifp;
1439	int			s;
1440
1441	s = splimp();
1442
1443	sc = xsc;
1444	ifp = &sc->arpcom.ac_if;
1445
1446	mii = device_get_softc(sc->nge_miibus);
1447	mii_tick(mii);
1448
1449	if (!sc->nge_link) {
1450		mii_pollstat(mii);
1451		if (mii->mii_media_status & IFM_ACTIVE &&
1452		    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
1453			sc->nge_link++;
1454			if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_TX)
1455				printf("nge%d: gigabit link up\n",
1456				    sc->nge_unit);
1457			if (ifp->if_snd.ifq_head != NULL)
1458				nge_start(ifp);
1459		} else
1460			sc->nge_stat_ch = timeout(nge_tick, sc, hz);
1461	}
1462
1463
1464	splx(s);
1465
1466	return;
1467}
1468
1469static void nge_intr(arg)
1470	void			*arg;
1471{
1472	struct nge_softc	*sc;
1473	struct ifnet		*ifp;
1474	u_int32_t		status;
1475
1476	sc = arg;
1477	ifp = &sc->arpcom.ac_if;
1478
1479	/* Supress unwanted interrupts */
1480	if (!(ifp->if_flags & IFF_UP)) {
1481		nge_stop(sc);
1482		return;
1483	}
1484
1485	/* Disable interrupts. */
1486	CSR_WRITE_4(sc, NGE_IER, 0);
1487
1488	for (;;) {
1489		/* Reading the ISR register clears all interrupts. */
1490		status = CSR_READ_4(sc, NGE_ISR);
1491
1492		if ((status & NGE_INTRS) == 0)
1493			break;
1494
1495		if ((status & NGE_ISR_TX_DESC_OK) ||
1496		    (status & NGE_ISR_TX_ERR) ||
1497		    (status & NGE_ISR_TX_OK) ||
1498		    (status & NGE_ISR_TX_IDLE))
1499			nge_txeof(sc);
1500
1501		if ((status & NGE_ISR_RX_DESC_OK) ||
1502		    (status & NGE_ISR_RX_ERR) ||
1503		    (status & NGE_ISR_RX_OK))
1504			nge_rxeof(sc);
1505
1506		if ((status & NGE_ISR_RX_OFLOW))
1507			nge_rxeoc(sc);
1508
1509		if (status & NGE_ISR_SYSERR) {
1510			nge_reset(sc);
1511			ifp->if_flags &= ~IFF_RUNNING;
1512			nge_init(sc);
1513		}
1514
1515		if (status & NGE_IMR_PHY_INTR) {
1516			sc->nge_link = 0;
1517			nge_tick(sc);
1518		}
1519	}
1520
1521	/* Re-enable interrupts. */
1522	CSR_WRITE_4(sc, NGE_IER, 1);
1523
1524	if (ifp->if_snd.ifq_head != NULL)
1525		nge_start(ifp);
1526
1527	return;
1528}
1529
1530/*
1531 * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
1532 * pointers to the fragment pointers.
1533 */
1534static int nge_encap(sc, m_head, txidx)
1535	struct nge_softc	*sc;
1536	struct mbuf		*m_head;
1537	u_int32_t		*txidx;
1538{
1539	struct nge_desc		*f = NULL;
1540	struct mbuf		*m;
1541	int			frag, cur, cnt = 0;
1542#if NVLAN > 0
1543	struct ifvlan		*ifv = NULL;
1544
1545	if ((m_head->m_flags & (M_PROTO1|M_PKTHDR)) == (M_PROTO1|M_PKTHDR) &&
1546	    m_head->m_pkthdr.rcvif != NULL &&
1547	    m_head->m_pkthdr.rcvif->if_type == IFT_8021_VLAN)
1548		ifv = m_head->m_pkthdr.rcvif->if_softc;
1549#endif
1550
1551	/*
1552 	 * Start packing the mbufs in this chain into
1553	 * the fragment pointers. Stop when we run out
1554 	 * of fragments or hit the end of the mbuf chain.
1555	 */
1556	m = m_head;
1557	cur = frag = *txidx;
1558
1559	for (m = m_head; m != NULL; m = m->m_next) {
1560		if (m->m_len != 0) {
1561			if ((NGE_TX_LIST_CNT -
1562			    (sc->nge_cdata.nge_tx_cnt + cnt)) < 2)
1563				return(ENOBUFS);
1564			f = &sc->nge_ldata->nge_tx_list[frag];
1565			f->nge_ctl = NGE_CMDSTS_MORE | m->m_len;
1566			f->nge_ptr = vtophys(mtod(m, vm_offset_t));
1567			if (cnt != 0)
1568				f->nge_ctl |= NGE_CMDSTS_OWN;
1569			cur = frag;
1570			NGE_INC(frag, NGE_TX_LIST_CNT);
1571			cnt++;
1572		}
1573	}
1574
1575	if (m != NULL)
1576		return(ENOBUFS);
1577
1578	sc->nge_ldata->nge_tx_list[*txidx].nge_extsts = 0;
1579	if (m_head->m_pkthdr.csum_flags) {
1580		if (m_head->m_pkthdr.csum_flags & CSUM_IP)
1581			sc->nge_ldata->nge_tx_list[*txidx].nge_extsts |=
1582			    NGE_TXEXTSTS_IPCSUM;
1583		if (m_head->m_pkthdr.csum_flags & CSUM_TCP)
1584			sc->nge_ldata->nge_tx_list[*txidx].nge_extsts |=
1585			    NGE_TXEXTSTS_TCPCSUM;
1586		if (m_head->m_pkthdr.csum_flags & CSUM_UDP)
1587			sc->nge_ldata->nge_tx_list[*txidx].nge_extsts |=
1588			    NGE_TXEXTSTS_UDPCSUM;
1589	}
1590
1591#if NVLAN > 0
1592	if (ifv != NULL) {
1593		sc->nge_ldata->nge_tx_list[cur].nge_extsts |=
1594			(NGE_TXEXTSTS_VLANPKT|ifv->ifv_tag);
1595	}
1596#endif
1597
1598	sc->nge_ldata->nge_tx_list[cur].nge_mbuf = m_head;
1599	sc->nge_ldata->nge_tx_list[cur].nge_ctl &= ~NGE_CMDSTS_MORE;
1600	sc->nge_ldata->nge_tx_list[*txidx].nge_ctl |= NGE_CMDSTS_OWN;
1601	sc->nge_cdata.nge_tx_cnt += cnt;
1602	*txidx = frag;
1603
1604	return(0);
1605}
1606
1607/*
1608 * Main transmit routine. To avoid having to do mbuf copies, we put pointers
1609 * to the mbuf data regions directly in the transmit lists. We also save a
1610 * copy of the pointers since the transmit list fragment pointers are
1611 * physical addresses.
1612 */
1613
1614static void nge_start(ifp)
1615	struct ifnet		*ifp;
1616{
1617	struct nge_softc	*sc;
1618	struct mbuf		*m_head = NULL;
1619	u_int32_t		idx;
1620
1621	sc = ifp->if_softc;
1622
1623	if (!sc->nge_link)
1624		return;
1625
1626	idx = sc->nge_cdata.nge_tx_prod;
1627
1628	if (ifp->if_flags & IFF_OACTIVE)
1629		return;
1630
1631	while(sc->nge_ldata->nge_tx_list[idx].nge_mbuf == NULL) {
1632		IF_DEQUEUE(&ifp->if_snd, m_head);
1633		if (m_head == NULL)
1634			break;
1635
1636		if (nge_encap(sc, m_head, &idx)) {
1637			IF_PREPEND(&ifp->if_snd, m_head);
1638			ifp->if_flags |= IFF_OACTIVE;
1639			break;
1640		}
1641
1642		/*
1643		 * If there's a BPF listener, bounce a copy of this frame
1644		 * to him.
1645		 */
1646		if (ifp->if_bpf)
1647			bpf_mtap(ifp, m_head);
1648
1649	}
1650
1651	/* Transmit */
1652	sc->nge_cdata.nge_tx_prod = idx;
1653	NGE_SETBIT(sc, NGE_CSR, NGE_CSR_TX_ENABLE);
1654
1655	/*
1656	 * Set a timeout in case the chip goes out to lunch.
1657	 */
1658	ifp->if_timer = 5;
1659
1660	return;
1661}
1662
1663static void nge_init(xsc)
1664	void			*xsc;
1665{
1666	struct nge_softc	*sc = xsc;
1667	struct ifnet		*ifp = &sc->arpcom.ac_if;
1668	struct mii_data		*mii;
1669	int			s;
1670
1671	if (ifp->if_flags & IFF_RUNNING)
1672		return;
1673
1674	s = splimp();
1675
1676	/*
1677	 * Cancel pending I/O and free all RX/TX buffers.
1678	 */
1679	nge_stop(sc);
1680
1681	mii = device_get_softc(sc->nge_miibus);
1682
1683	/* Set MAC address */
1684	CSR_WRITE_4(sc, NGE_RXFILT_CTL, NGE_FILTADDR_PAR0);
1685	CSR_WRITE_4(sc, NGE_RXFILT_DATA,
1686	    ((u_int16_t *)sc->arpcom.ac_enaddr)[0]);
1687	CSR_WRITE_4(sc, NGE_RXFILT_CTL, NGE_FILTADDR_PAR1);
1688	CSR_WRITE_4(sc, NGE_RXFILT_DATA,
1689	    ((u_int16_t *)sc->arpcom.ac_enaddr)[1]);
1690	CSR_WRITE_4(sc, NGE_RXFILT_CTL, NGE_FILTADDR_PAR2);
1691	CSR_WRITE_4(sc, NGE_RXFILT_DATA,
1692	    ((u_int16_t *)sc->arpcom.ac_enaddr)[2]);
1693
1694	/* Init circular RX list. */
1695	if (nge_list_rx_init(sc) == ENOBUFS) {
1696		printf("nge%d: initialization failed: no "
1697			"memory for rx buffers\n", sc->nge_unit);
1698		nge_stop(sc);
1699		(void)splx(s);
1700		return;
1701	}
1702
1703	/*
1704	 * Init tx descriptors.
1705	 */
1706	nge_list_tx_init(sc);
1707
1708	/*
1709	 * For the NatSemi chip, we have to explicitly enable the
1710	 * reception of ARP frames, as well as turn on the 'perfect
1711	 * match' filter where we store the station address, otherwise
1712	 * we won't receive unicasts meant for this host.
1713	 */
1714	NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_ARP);
1715	NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_PERFECT);
1716
1717	 /* If we want promiscuous mode, set the allframes bit. */
1718	if (ifp->if_flags & IFF_PROMISC) {
1719		NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_ALLPHYS);
1720	} else {
1721		NGE_CLRBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_ALLPHYS);
1722	}
1723
1724	/*
1725	 * Set the capture broadcast bit to capture broadcast frames.
1726	 */
1727	if (ifp->if_flags & IFF_BROADCAST) {
1728		NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_BROAD);
1729	} else {
1730		NGE_CLRBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_BROAD);
1731	}
1732
1733	/*
1734	 * Load the multicast filter.
1735	 */
1736	nge_setmulti(sc);
1737
1738	/* Turn the receive filter on */
1739	NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_ENABLE);
1740
1741	/*
1742	 * Load the address of the RX and TX lists.
1743	 */
1744	CSR_WRITE_4(sc, NGE_RX_LISTPTR,
1745	    vtophys(&sc->nge_ldata->nge_rx_list[0]));
1746	CSR_WRITE_4(sc, NGE_TX_LISTPTR,
1747	    vtophys(&sc->nge_ldata->nge_tx_list[0]));
1748
1749	/* Set RX configuration */
1750	CSR_WRITE_4(sc, NGE_RX_CFG, NGE_RXCFG);
1751	/*
1752	 * Enable hardware checksum validation for all IPv4
1753	 * packets, do not reject packets with bad checksums.
1754	 */
1755	CSR_WRITE_4(sc, NGE_VLAN_IP_RXCTL, NGE_VIPRXCTL_IPCSUM_ENB);
1756
1757#if NVLAN > 0
1758	/*
1759	 * If VLAN support is enabled, tell the chip to detect
1760	 * and strip VLAN tag info from received frames. The tag
1761	 * will be provided in the extsts field in the RX descriptors.
1762	 */
1763	NGE_SETBIT(sc, NGE_VLAN_IP_RXCTL,
1764	    NGE_VIPRXCTL_TAG_DETECT_ENB|NGE_VIPRXCTL_TAG_STRIP_ENB);
1765#endif
1766
1767	/* Set TX configuration */
1768	CSR_WRITE_4(sc, NGE_TX_CFG, NGE_TXCFG);
1769
1770	/*
1771	 * Enable TX IPv4 checksumming on a per-packet basis.
1772	 */
1773	CSR_WRITE_4(sc, NGE_VLAN_IP_TXCTL, NGE_VIPTXCTL_CSUM_PER_PKT);
1774
1775#if NVLAN > 0
1776	/*
1777	 * If VLAN support is enabled, tell the chip to insert
1778	 * VLAN tags on a per-packet basis as dictated by the
1779	 * code in the frame encapsulation routine.
1780	 */
1781	NGE_SETBIT(sc, NGE_VLAN_IP_TXCTL, NGE_VIPTXCTL_TAG_PER_PKT);
1782#endif
1783
1784	/* Set full/half duplex mode. */
1785	if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
1786		NGE_SETBIT(sc, NGE_TX_CFG,
1787		    (NGE_TXCFG_IGN_HBEAT|NGE_TXCFG_IGN_CARR));
1788		NGE_SETBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
1789	} else {
1790		NGE_CLRBIT(sc, NGE_TX_CFG,
1791		    (NGE_TXCFG_IGN_HBEAT|NGE_TXCFG_IGN_CARR));
1792		NGE_CLRBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
1793	}
1794
1795	/*
1796	 * Enable the delivery of PHY interrupts based on
1797	 * link/speed/duplex status changes. Also enable the
1798	 * extsts field in the DMA descriptors (needed for
1799	 * TCP/IP checksum offload on transmit).
1800	 */
1801	NGE_SETBIT(sc, NGE_CFG, NGE_CFG_PHYINTR_SPD|
1802	    NGE_CFG_PHYINTR_LNK|NGE_CFG_PHYINTR_DUP|NGE_CFG_EXTSTS_ENB);
1803
1804	/*
1805	 * Configure interrupt holdoff (moderation). We can
1806	 * have the chip delay interrupt delivery for a certain
1807	 * period. Units are in 100us, and the max setting
1808	 * is 25500us (0xFF x 100us). Default is a 100us holdoff.
1809	 */
1810	CSR_WRITE_4(sc, NGE_IHR, 0x01);
1811
1812	/*
1813	 * Enable interrupts.
1814	 */
1815	CSR_WRITE_4(sc, NGE_IMR, NGE_INTRS);
1816	CSR_WRITE_4(sc, NGE_IER, 1);
1817
1818	/* Enable receiver and transmitter. */
1819	NGE_CLRBIT(sc, NGE_CSR, NGE_CSR_TX_DISABLE|NGE_CSR_RX_DISABLE);
1820	NGE_SETBIT(sc, NGE_CSR, NGE_CSR_RX_ENABLE);
1821
1822	nge_ifmedia_upd(ifp);
1823
1824	ifp->if_flags |= IFF_RUNNING;
1825	ifp->if_flags &= ~IFF_OACTIVE;
1826
1827	(void)splx(s);
1828
1829	return;
1830}
1831
1832/*
1833 * Set media options.
1834 */
1835static int nge_ifmedia_upd(ifp)
1836	struct ifnet		*ifp;
1837{
1838	struct nge_softc	*sc;
1839	struct mii_data		*mii;
1840
1841	sc = ifp->if_softc;
1842
1843	mii = device_get_softc(sc->nge_miibus);
1844	sc->nge_link = 0;
1845	if (mii->mii_instance) {
1846		struct mii_softc	*miisc;
1847		for (miisc = LIST_FIRST(&mii->mii_phys); miisc != NULL;
1848		    miisc = LIST_NEXT(miisc, mii_list))
1849			mii_phy_reset(miisc);
1850	}
1851	mii_mediachg(mii);
1852
1853	return(0);
1854}
1855
1856/*
1857 * Report current media status.
1858 */
1859static void nge_ifmedia_sts(ifp, ifmr)
1860	struct ifnet		*ifp;
1861	struct ifmediareq	*ifmr;
1862{
1863	struct nge_softc	*sc;
1864	struct mii_data		*mii;
1865
1866	sc = ifp->if_softc;
1867
1868	mii = device_get_softc(sc->nge_miibus);
1869	mii_pollstat(mii);
1870	ifmr->ifm_active = mii->mii_media_active;
1871	ifmr->ifm_status = mii->mii_media_status;
1872
1873	return;
1874}
1875
1876static int nge_ioctl(ifp, command, data)
1877	struct ifnet		*ifp;
1878	u_long			command;
1879	caddr_t			data;
1880{
1881	struct nge_softc	*sc = ifp->if_softc;
1882	struct ifreq		*ifr = (struct ifreq *) data;
1883	struct mii_data		*mii;
1884	int			s, error = 0;
1885
1886	s = splimp();
1887
1888	switch(command) {
1889	case SIOCSIFADDR:
1890	case SIOCGIFADDR:
1891		error = ether_ioctl(ifp, command, data);
1892		break;
1893	case SIOCSIFMTU:
1894		if (ifr->ifr_mtu > NGE_JUMBO_MTU)
1895			error = EINVAL;
1896		else {
1897			ifp->if_mtu = ifr->ifr_mtu;
1898			/*
1899			 * Workaround: if the MTU is larger than
1900			 * 8152 (TX FIFO size minus 64 minus 18), turn off
1901			 * TX checksum offloading.
1902			 */
1903			if (ifr->ifr_mtu >= 8152)
1904				ifp->if_hwassist = 0;
1905			else
1906				ifp->if_hwassist = NGE_CSUM_FEATURES;
1907		}
1908		break;
1909	case SIOCSIFFLAGS:
1910		if (ifp->if_flags & IFF_UP) {
1911			if (ifp->if_flags & IFF_RUNNING &&
1912			    ifp->if_flags & IFF_PROMISC &&
1913			    !(sc->nge_if_flags & IFF_PROMISC)) {
1914				NGE_SETBIT(sc, NGE_RXFILT_CTL,
1915				    NGE_RXFILTCTL_ALLPHYS|
1916				    NGE_RXFILTCTL_ALLMULTI);
1917			} else if (ifp->if_flags & IFF_RUNNING &&
1918			    !(ifp->if_flags & IFF_PROMISC) &&
1919			    sc->nge_if_flags & IFF_PROMISC) {
1920				NGE_CLRBIT(sc, NGE_RXFILT_CTL,
1921				    NGE_RXFILTCTL_ALLPHYS);
1922				if (!(ifp->if_flags & IFF_ALLMULTI))
1923					NGE_CLRBIT(sc, NGE_RXFILT_CTL,
1924					    NGE_RXFILTCTL_ALLMULTI);
1925			} else {
1926				ifp->if_flags &= ~IFF_RUNNING;
1927				nge_init(sc);
1928			}
1929		} else {
1930			if (ifp->if_flags & IFF_RUNNING)
1931				nge_stop(sc);
1932		}
1933		sc->nge_if_flags = ifp->if_flags;
1934		error = 0;
1935		break;
1936	case SIOCADDMULTI:
1937	case SIOCDELMULTI:
1938		nge_setmulti(sc);
1939		error = 0;
1940		break;
1941	case SIOCGIFMEDIA:
1942	case SIOCSIFMEDIA:
1943		mii = device_get_softc(sc->nge_miibus);
1944		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
1945		break;
1946	default:
1947		error = EINVAL;
1948		break;
1949	}
1950
1951	(void)splx(s);
1952
1953	return(error);
1954}
1955
1956static void nge_watchdog(ifp)
1957	struct ifnet		*ifp;
1958{
1959	struct nge_softc	*sc;
1960
1961	sc = ifp->if_softc;
1962
1963	ifp->if_oerrors++;
1964	printf("nge%d: watchdog timeout\n", sc->nge_unit);
1965
1966	nge_stop(sc);
1967	nge_reset(sc);
1968	ifp->if_flags &= ~IFF_RUNNING;
1969	nge_init(sc);
1970
1971	if (ifp->if_snd.ifq_head != NULL)
1972		nge_start(ifp);
1973
1974	return;
1975}
1976
1977/*
1978 * Stop the adapter and free any mbufs allocated to the
1979 * RX and TX lists.
1980 */
1981static void nge_stop(sc)
1982	struct nge_softc	*sc;
1983{
1984	register int		i;
1985	struct ifnet		*ifp;
1986	struct ifmedia_entry	*ifm;
1987	struct mii_data		*mii;
1988	int			mtmp, itmp;
1989
1990	ifp = &sc->arpcom.ac_if;
1991	ifp->if_timer = 0;
1992	mii = device_get_softc(sc->nge_miibus);
1993
1994	untimeout(nge_tick, sc, sc->nge_stat_ch);
1995	CSR_WRITE_4(sc, NGE_IER, 0);
1996	CSR_WRITE_4(sc, NGE_IMR, 0);
1997	NGE_SETBIT(sc, NGE_CSR, NGE_CSR_TX_DISABLE|NGE_CSR_RX_DISABLE);
1998	DELAY(1000);
1999	CSR_WRITE_4(sc, NGE_TX_LISTPTR, 0);
2000	CSR_WRITE_4(sc, NGE_RX_LISTPTR, 0);
2001
2002	/*
2003	 * Isolate/power down the PHY, but leave the media selection
2004	 * unchanged so that things will be put back to normal when
2005	 * we bring the interface back up.
2006	 */
2007	itmp = ifp->if_flags;
2008	ifp->if_flags |= IFF_UP;
2009	ifm = mii->mii_media.ifm_cur;
2010	mtmp = ifm->ifm_media;
2011	ifm->ifm_media = IFM_ETHER|IFM_NONE;
2012	mii_mediachg(mii);
2013	ifm->ifm_media = mtmp;
2014	ifp->if_flags = itmp;
2015
2016	sc->nge_link = 0;
2017
2018	/*
2019	 * Free data in the RX lists.
2020	 */
2021	for (i = 0; i < NGE_RX_LIST_CNT; i++) {
2022		if (sc->nge_ldata->nge_rx_list[i].nge_mbuf != NULL) {
2023			m_freem(sc->nge_ldata->nge_rx_list[i].nge_mbuf);
2024			sc->nge_ldata->nge_rx_list[i].nge_mbuf = NULL;
2025		}
2026	}
2027	bzero((char *)&sc->nge_ldata->nge_rx_list,
2028		sizeof(sc->nge_ldata->nge_rx_list));
2029
2030	/*
2031	 * Free the TX list buffers.
2032	 */
2033	for (i = 0; i < NGE_TX_LIST_CNT; i++) {
2034		if (sc->nge_ldata->nge_tx_list[i].nge_mbuf != NULL) {
2035			m_freem(sc->nge_ldata->nge_tx_list[i].nge_mbuf);
2036			sc->nge_ldata->nge_tx_list[i].nge_mbuf = NULL;
2037		}
2038	}
2039
2040	bzero((char *)&sc->nge_ldata->nge_tx_list,
2041		sizeof(sc->nge_ldata->nge_tx_list));
2042
2043	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2044
2045	return;
2046}
2047
2048/*
2049 * Stop all chip I/O so that the kernel's probe routines don't
2050 * get confused by errant DMAs when rebooting.
2051 */
2052static void nge_shutdown(dev)
2053	device_t		dev;
2054{
2055	struct nge_softc	*sc;
2056
2057	sc = device_get_softc(dev);
2058
2059	nge_reset(sc);
2060	nge_stop(sc);
2061
2062	return;
2063}
2064