if_nge.c revision 108470
1/*
2 * Copyright (c) 2001 Wind River Systems
3 * Copyright (c) 1997, 1998, 1999, 2000, 2001
4 *	Bill Paul <wpaul@bsdi.com>.  All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 *    notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 * 3. All advertising materials mentioning features or use of this software
15 *    must display the following acknowledgement:
16 *	This product includes software developed by Bill Paul.
17 * 4. Neither the name of the author nor the names of any co-contributors
18 *    may be used to endorse or promote products derived from this software
19 *    without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
25 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
31 * THE POSSIBILITY OF SUCH DAMAGE.
32 *
33 * $FreeBSD: head/sys/dev/nge/if_nge.c 108470 2002-12-30 21:18:15Z schweikh $
34 */
35
36/*
37 * National Semiconductor DP83820/DP83821 gigabit ethernet driver
38 * for FreeBSD. Datasheets are available from:
39 *
40 * http://www.national.com/ds/DP/DP83820.pdf
41 * http://www.national.com/ds/DP/DP83821.pdf
42 *
43 * These chips are used on several low cost gigabit ethernet NICs
44 * sold by D-Link, Addtron, SMC and Asante. Both parts are
45 * virtually the same, except the 83820 is a 64-bit/32-bit part,
46 * while the 83821 is 32-bit only.
47 *
48 * Many cards also use National gigE transceivers, such as the
49 * DP83891, DP83861 and DP83862 gigPHYTER parts. The DP83861 datasheet
50 * contains a full register description that applies to all of these
51 * components:
52 *
53 * http://www.national.com/ds/DP/DP83861.pdf
54 *
55 * Written by Bill Paul <wpaul@bsdi.com>
56 * BSDi Open Source Solutions
57 */
58
59/*
60 * The NatSemi DP83820 and 83821 controllers are enhanced versions
61 * of the NatSemi MacPHYTER 10/100 devices. They support 10, 100
62 * and 1000Mbps speeds with 1000baseX (ten bit interface), MII and GMII
63 * ports. Other features include 8K TX FIFO and 32K RX FIFO, TCP/IP
64 * hardware checksum offload (IPv4 only), VLAN tagging and filtering,
65 * priority TX and RX queues, a 2048 bit multicast hash filter, 4 RX pattern
66 * matching buffers, one perfect address filter buffer and interrupt
67 * moderation. The 83820 supports both 64-bit and 32-bit addressing
68 * and data transfers: the 64-bit support can be toggled on or off
69 * via software. This affects the size of certain fields in the DMA
70 * descriptors.
71 *
72 * There are two bugs/misfeatures in the 83820/83821 that I have
73 * discovered so far:
74 *
75 * - Receive buffers must be aligned on 64-bit boundaries, which means
76 *   you must resort to copying data in order to fix up the payload
77 *   alignment.
78 *
79 * - In order to transmit jumbo frames larger than 8170 bytes, you have
80 *   to turn off transmit checksum offloading, because the chip can't
81 *   compute the checksum on an outgoing frame unless it fits entirely
82 *   within the TX FIFO, which is only 8192 bytes in size. If you have
83 *   TX checksum offload enabled and you transmit attempt to transmit a
84 *   frame larger than 8170 bytes, the transmitter will wedge.
85 *
86 * To work around the latter problem, TX checksum offload is disabled
87 * if the user selects an MTU larger than 8152 (8170 - 18).
88 */
89
90#include <sys/param.h>
91#include <sys/systm.h>
92#include <sys/sockio.h>
93#include <sys/mbuf.h>
94#include <sys/malloc.h>
95#include <sys/kernel.h>
96#include <sys/socket.h>
97
98#include <net/if.h>
99#include <net/if_arp.h>
100#include <net/ethernet.h>
101#include <net/if_dl.h>
102#include <net/if_media.h>
103#include <net/if_types.h>
104#include <net/if_vlan_var.h>
105
106#include <net/bpf.h>
107
108#include <vm/vm.h>              /* for vtophys */
109#include <vm/pmap.h>            /* for vtophys */
110#include <machine/clock.h>      /* for DELAY */
111#include <machine/bus_pio.h>
112#include <machine/bus_memio.h>
113#include <machine/bus.h>
114#include <machine/resource.h>
115#include <sys/bus.h>
116#include <sys/rman.h>
117
118#include <dev/mii/mii.h>
119#include <dev/mii/miivar.h>
120
121#include <pci/pcireg.h>
122#include <pci/pcivar.h>
123
124#define NGE_USEIOSPACE
125
126#include <dev/nge/if_ngereg.h>
127
128MODULE_DEPEND(nge, miibus, 1, 1, 1);
129
130/* "controller miibus0" required.  See GENERIC if you get errors here. */
131#include "miibus_if.h"
132
133#ifndef lint
134static const char rcsid[] =
135  "$FreeBSD: head/sys/dev/nge/if_nge.c 108470 2002-12-30 21:18:15Z schweikh $";
136#endif
137
138#define NGE_CSUM_FEATURES	(CSUM_IP | CSUM_TCP | CSUM_UDP)
139
140/*
141 * Various supported device vendors/types and their names.
142 */
143static struct nge_type nge_devs[] = {
144	{ NGE_VENDORID, NGE_DEVICEID,
145	    "National Semiconductor Gigabit Ethernet" },
146	{ 0, 0, NULL }
147};
148
149static int nge_probe(device_t);
150static int nge_attach(device_t);
151static int nge_detach(device_t);
152
153static int nge_alloc_jumbo_mem(struct nge_softc *);
154static void nge_free_jumbo_mem(struct nge_softc *);
155static void *nge_jalloc(struct nge_softc *);
156static void nge_jfree(void *, void *);
157
158static int nge_newbuf(struct nge_softc *, struct nge_desc *, struct mbuf *);
159static int nge_encap(struct nge_softc *, struct mbuf *, u_int32_t *);
160static void nge_rxeof(struct nge_softc *);
161static void nge_txeof(struct nge_softc *);
162static void nge_intr(void *);
163static void nge_tick(void *);
164static void nge_start(struct ifnet *);
165static int nge_ioctl(struct ifnet *, u_long, caddr_t);
166static void nge_init(void *);
167static void nge_stop(struct nge_softc *);
168static void nge_watchdog(struct ifnet *);
169static void nge_shutdown(device_t);
170static int nge_ifmedia_upd(struct ifnet *);
171static void nge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
172
173static void nge_delay(struct nge_softc *);
174static void nge_eeprom_idle(struct nge_softc *);
175static void nge_eeprom_putbyte(struct nge_softc *, int);
176static void nge_eeprom_getword(struct nge_softc *, int, u_int16_t *);
177static void nge_read_eeprom(struct nge_softc *, caddr_t, int, int, int);
178
179static void nge_mii_sync(struct nge_softc *);
180static void nge_mii_send(struct nge_softc *, u_int32_t, int);
181static int nge_mii_readreg(struct nge_softc *, struct nge_mii_frame *);
182static int nge_mii_writereg(struct nge_softc *, struct nge_mii_frame *);
183
184static int nge_miibus_readreg(device_t, int, int);
185static int nge_miibus_writereg(device_t, int, int, int);
186static void nge_miibus_statchg(device_t);
187
188static void nge_setmulti(struct nge_softc *);
189static u_int32_t nge_crc(struct nge_softc *, caddr_t);
190static void nge_reset(struct nge_softc *);
191static int nge_list_rx_init(struct nge_softc *);
192static int nge_list_tx_init(struct nge_softc *);
193
194#ifdef NGE_USEIOSPACE
195#define NGE_RES			SYS_RES_IOPORT
196#define NGE_RID			NGE_PCI_LOIO
197#else
198#define NGE_RES			SYS_RES_MEMORY
199#define NGE_RID			NGE_PCI_LOMEM
200#endif
201
202static device_method_t nge_methods[] = {
203	/* Device interface */
204	DEVMETHOD(device_probe,		nge_probe),
205	DEVMETHOD(device_attach,	nge_attach),
206	DEVMETHOD(device_detach,	nge_detach),
207	DEVMETHOD(device_shutdown,	nge_shutdown),
208
209	/* bus interface */
210	DEVMETHOD(bus_print_child,	bus_generic_print_child),
211	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
212
213	/* MII interface */
214	DEVMETHOD(miibus_readreg,	nge_miibus_readreg),
215	DEVMETHOD(miibus_writereg,	nge_miibus_writereg),
216	DEVMETHOD(miibus_statchg,	nge_miibus_statchg),
217
218	{ 0, 0 }
219};
220
221static driver_t nge_driver = {
222	"nge",
223	nge_methods,
224	sizeof(struct nge_softc)
225};
226
227static devclass_t nge_devclass;
228
229DRIVER_MODULE(if_nge, pci, nge_driver, nge_devclass, 0, 0);
230DRIVER_MODULE(miibus, nge, miibus_driver, miibus_devclass, 0, 0);
231
232#define NGE_SETBIT(sc, reg, x)				\
233	CSR_WRITE_4(sc, reg,				\
234		CSR_READ_4(sc, reg) | (x))
235
236#define NGE_CLRBIT(sc, reg, x)				\
237	CSR_WRITE_4(sc, reg,				\
238		CSR_READ_4(sc, reg) & ~(x))
239
240#define SIO_SET(x)					\
241	CSR_WRITE_4(sc, NGE_MEAR, CSR_READ_4(sc, NGE_MEAR) | (x))
242
243#define SIO_CLR(x)					\
244	CSR_WRITE_4(sc, NGE_MEAR, CSR_READ_4(sc, NGE_MEAR) & ~(x))
245
246static void
247nge_delay(sc)
248	struct nge_softc	*sc;
249{
250	int			idx;
251
252	for (idx = (300 / 33) + 1; idx > 0; idx--)
253		CSR_READ_4(sc, NGE_CSR);
254
255	return;
256}
257
258static void
259nge_eeprom_idle(sc)
260	struct nge_softc	*sc;
261{
262	register int		i;
263
264	SIO_SET(NGE_MEAR_EE_CSEL);
265	nge_delay(sc);
266	SIO_SET(NGE_MEAR_EE_CLK);
267	nge_delay(sc);
268
269	for (i = 0; i < 25; i++) {
270		SIO_CLR(NGE_MEAR_EE_CLK);
271		nge_delay(sc);
272		SIO_SET(NGE_MEAR_EE_CLK);
273		nge_delay(sc);
274	}
275
276	SIO_CLR(NGE_MEAR_EE_CLK);
277	nge_delay(sc);
278	SIO_CLR(NGE_MEAR_EE_CSEL);
279	nge_delay(sc);
280	CSR_WRITE_4(sc, NGE_MEAR, 0x00000000);
281
282	return;
283}
284
285/*
286 * Send a read command and address to the EEPROM, check for ACK.
287 */
288static void
289nge_eeprom_putbyte(sc, addr)
290	struct nge_softc	*sc;
291	int			addr;
292{
293	register int		d, i;
294
295	d = addr | NGE_EECMD_READ;
296
297	/*
298	 * Feed in each bit and stobe the clock.
299	 */
300	for (i = 0x400; i; i >>= 1) {
301		if (d & i) {
302			SIO_SET(NGE_MEAR_EE_DIN);
303		} else {
304			SIO_CLR(NGE_MEAR_EE_DIN);
305		}
306		nge_delay(sc);
307		SIO_SET(NGE_MEAR_EE_CLK);
308		nge_delay(sc);
309		SIO_CLR(NGE_MEAR_EE_CLK);
310		nge_delay(sc);
311	}
312
313	return;
314}
315
316/*
317 * Read a word of data stored in the EEPROM at address 'addr.'
318 */
319static void
320nge_eeprom_getword(sc, addr, dest)
321	struct nge_softc	*sc;
322	int			addr;
323	u_int16_t		*dest;
324{
325	register int		i;
326	u_int16_t		word = 0;
327
328	/* Force EEPROM to idle state. */
329	nge_eeprom_idle(sc);
330
331	/* Enter EEPROM access mode. */
332	nge_delay(sc);
333	SIO_CLR(NGE_MEAR_EE_CLK);
334	nge_delay(sc);
335	SIO_SET(NGE_MEAR_EE_CSEL);
336	nge_delay(sc);
337
338	/*
339	 * Send address of word we want to read.
340	 */
341	nge_eeprom_putbyte(sc, addr);
342
343	/*
344	 * Start reading bits from EEPROM.
345	 */
346	for (i = 0x8000; i; i >>= 1) {
347		SIO_SET(NGE_MEAR_EE_CLK);
348		nge_delay(sc);
349		if (CSR_READ_4(sc, NGE_MEAR) & NGE_MEAR_EE_DOUT)
350			word |= i;
351		nge_delay(sc);
352		SIO_CLR(NGE_MEAR_EE_CLK);
353		nge_delay(sc);
354	}
355
356	/* Turn off EEPROM access mode. */
357	nge_eeprom_idle(sc);
358
359	*dest = word;
360
361	return;
362}
363
364/*
365 * Read a sequence of words from the EEPROM.
366 */
367static void
368nge_read_eeprom(sc, dest, off, cnt, swap)
369	struct nge_softc	*sc;
370	caddr_t			dest;
371	int			off;
372	int			cnt;
373	int			swap;
374{
375	int			i;
376	u_int16_t		word = 0, *ptr;
377
378	for (i = 0; i < cnt; i++) {
379		nge_eeprom_getword(sc, off + i, &word);
380		ptr = (u_int16_t *)(dest + (i * 2));
381		if (swap)
382			*ptr = ntohs(word);
383		else
384			*ptr = word;
385	}
386
387	return;
388}
389
390/*
391 * Sync the PHYs by setting data bit and strobing the clock 32 times.
392 */
393static void
394nge_mii_sync(sc)
395	struct nge_softc		*sc;
396{
397	register int		i;
398
399	SIO_SET(NGE_MEAR_MII_DIR|NGE_MEAR_MII_DATA);
400
401	for (i = 0; i < 32; i++) {
402		SIO_SET(NGE_MEAR_MII_CLK);
403		DELAY(1);
404		SIO_CLR(NGE_MEAR_MII_CLK);
405		DELAY(1);
406	}
407
408	return;
409}
410
411/*
412 * Clock a series of bits through the MII.
413 */
414static void
415nge_mii_send(sc, bits, cnt)
416	struct nge_softc		*sc;
417	u_int32_t		bits;
418	int			cnt;
419{
420	int			i;
421
422	SIO_CLR(NGE_MEAR_MII_CLK);
423
424	for (i = (0x1 << (cnt - 1)); i; i >>= 1) {
425                if (bits & i) {
426			SIO_SET(NGE_MEAR_MII_DATA);
427                } else {
428			SIO_CLR(NGE_MEAR_MII_DATA);
429                }
430		DELAY(1);
431		SIO_CLR(NGE_MEAR_MII_CLK);
432		DELAY(1);
433		SIO_SET(NGE_MEAR_MII_CLK);
434	}
435}
436
437/*
438 * Read an PHY register through the MII.
439 */
440static int
441nge_mii_readreg(sc, frame)
442	struct nge_softc		*sc;
443	struct nge_mii_frame	*frame;
444
445{
446	int			i, ack, s;
447
448	s = splimp();
449
450	/*
451	 * Set up frame for RX.
452	 */
453	frame->mii_stdelim = NGE_MII_STARTDELIM;
454	frame->mii_opcode = NGE_MII_READOP;
455	frame->mii_turnaround = 0;
456	frame->mii_data = 0;
457
458	CSR_WRITE_4(sc, NGE_MEAR, 0);
459
460	/*
461 	 * Turn on data xmit.
462	 */
463	SIO_SET(NGE_MEAR_MII_DIR);
464
465	nge_mii_sync(sc);
466
467	/*
468	 * Send command/address info.
469	 */
470	nge_mii_send(sc, frame->mii_stdelim, 2);
471	nge_mii_send(sc, frame->mii_opcode, 2);
472	nge_mii_send(sc, frame->mii_phyaddr, 5);
473	nge_mii_send(sc, frame->mii_regaddr, 5);
474
475	/* Idle bit */
476	SIO_CLR((NGE_MEAR_MII_CLK|NGE_MEAR_MII_DATA));
477	DELAY(1);
478	SIO_SET(NGE_MEAR_MII_CLK);
479	DELAY(1);
480
481	/* Turn off xmit. */
482	SIO_CLR(NGE_MEAR_MII_DIR);
483	/* Check for ack */
484	SIO_CLR(NGE_MEAR_MII_CLK);
485	DELAY(1);
486	SIO_SET(NGE_MEAR_MII_CLK);
487	DELAY(1);
488	ack = CSR_READ_4(sc, NGE_MEAR) & NGE_MEAR_MII_DATA;
489
490	/*
491	 * Now try reading data bits. If the ack failed, we still
492	 * need to clock through 16 cycles to keep the PHY(s) in sync.
493	 */
494	if (ack) {
495		for(i = 0; i < 16; i++) {
496			SIO_CLR(NGE_MEAR_MII_CLK);
497			DELAY(1);
498			SIO_SET(NGE_MEAR_MII_CLK);
499			DELAY(1);
500		}
501		goto fail;
502	}
503
504	for (i = 0x8000; i; i >>= 1) {
505		SIO_CLR(NGE_MEAR_MII_CLK);
506		DELAY(1);
507		if (!ack) {
508			if (CSR_READ_4(sc, NGE_MEAR) & NGE_MEAR_MII_DATA)
509				frame->mii_data |= i;
510			DELAY(1);
511		}
512		SIO_SET(NGE_MEAR_MII_CLK);
513		DELAY(1);
514	}
515
516fail:
517
518	SIO_CLR(NGE_MEAR_MII_CLK);
519	DELAY(1);
520	SIO_SET(NGE_MEAR_MII_CLK);
521	DELAY(1);
522
523	splx(s);
524
525	if (ack)
526		return(1);
527	return(0);
528}
529
530/*
531 * Write to a PHY register through the MII.
532 */
533static int
534nge_mii_writereg(sc, frame)
535	struct nge_softc		*sc;
536	struct nge_mii_frame	*frame;
537
538{
539	int			s;
540
541	s = splimp();
542	/*
543	 * Set up frame for TX.
544	 */
545
546	frame->mii_stdelim = NGE_MII_STARTDELIM;
547	frame->mii_opcode = NGE_MII_WRITEOP;
548	frame->mii_turnaround = NGE_MII_TURNAROUND;
549
550	/*
551 	 * Turn on data output.
552	 */
553	SIO_SET(NGE_MEAR_MII_DIR);
554
555	nge_mii_sync(sc);
556
557	nge_mii_send(sc, frame->mii_stdelim, 2);
558	nge_mii_send(sc, frame->mii_opcode, 2);
559	nge_mii_send(sc, frame->mii_phyaddr, 5);
560	nge_mii_send(sc, frame->mii_regaddr, 5);
561	nge_mii_send(sc, frame->mii_turnaround, 2);
562	nge_mii_send(sc, frame->mii_data, 16);
563
564	/* Idle bit. */
565	SIO_SET(NGE_MEAR_MII_CLK);
566	DELAY(1);
567	SIO_CLR(NGE_MEAR_MII_CLK);
568	DELAY(1);
569
570	/*
571	 * Turn off xmit.
572	 */
573	SIO_CLR(NGE_MEAR_MII_DIR);
574
575	splx(s);
576
577	return(0);
578}
579
580static int
581nge_miibus_readreg(dev, phy, reg)
582	device_t		dev;
583	int			phy, reg;
584{
585	struct nge_softc	*sc;
586	struct nge_mii_frame	frame;
587
588	sc = device_get_softc(dev);
589
590	bzero((char *)&frame, sizeof(frame));
591
592	frame.mii_phyaddr = phy;
593	frame.mii_regaddr = reg;
594	nge_mii_readreg(sc, &frame);
595
596	return(frame.mii_data);
597}
598
599static int
600nge_miibus_writereg(dev, phy, reg, data)
601	device_t		dev;
602	int			phy, reg, data;
603{
604	struct nge_softc	*sc;
605	struct nge_mii_frame	frame;
606
607	sc = device_get_softc(dev);
608
609	bzero((char *)&frame, sizeof(frame));
610
611	frame.mii_phyaddr = phy;
612	frame.mii_regaddr = reg;
613	frame.mii_data = data;
614	nge_mii_writereg(sc, &frame);
615
616	return(0);
617}
618
619static void
620nge_miibus_statchg(dev)
621	device_t		dev;
622{
623	int			status;
624	struct nge_softc	*sc;
625	struct mii_data		*mii;
626
627	sc = device_get_softc(dev);
628	if (sc->nge_tbi) {
629		if (IFM_SUBTYPE(sc->nge_ifmedia.ifm_cur->ifm_media)
630		    == IFM_AUTO) {
631			status = CSR_READ_4(sc, NGE_TBI_ANLPAR);
632			if (status == 0 || status & NGE_TBIANAR_FDX) {
633				NGE_SETBIT(sc, NGE_TX_CFG,
634				    (NGE_TXCFG_IGN_HBEAT|NGE_TXCFG_IGN_CARR));
635				NGE_SETBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
636			} else {
637				NGE_CLRBIT(sc, NGE_TX_CFG,
638				    (NGE_TXCFG_IGN_HBEAT|NGE_TXCFG_IGN_CARR));
639				NGE_CLRBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
640			}
641
642		} else if ((sc->nge_ifmedia.ifm_cur->ifm_media & IFM_GMASK)
643			!= IFM_FDX) {
644			NGE_CLRBIT(sc, NGE_TX_CFG,
645			    (NGE_TXCFG_IGN_HBEAT|NGE_TXCFG_IGN_CARR));
646			NGE_CLRBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
647		} else {
648			NGE_SETBIT(sc, NGE_TX_CFG,
649			    (NGE_TXCFG_IGN_HBEAT|NGE_TXCFG_IGN_CARR));
650			NGE_SETBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
651		}
652	} else {
653		mii = device_get_softc(sc->nge_miibus);
654
655		if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
656		        NGE_SETBIT(sc, NGE_TX_CFG,
657			    (NGE_TXCFG_IGN_HBEAT|NGE_TXCFG_IGN_CARR));
658			NGE_SETBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
659		} else {
660			NGE_CLRBIT(sc, NGE_TX_CFG,
661			    (NGE_TXCFG_IGN_HBEAT|NGE_TXCFG_IGN_CARR));
662			NGE_CLRBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
663		}
664
665		/* If we have a 1000Mbps link, set the mode_1000 bit. */
666		if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T ||
667		    IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX) {
668			NGE_SETBIT(sc, NGE_CFG, NGE_CFG_MODE_1000);
669		} else {
670			NGE_CLRBIT(sc, NGE_CFG, NGE_CFG_MODE_1000);
671		}
672	}
673	return;
674}
675
676static u_int32_t
677nge_crc(sc, addr)
678	struct nge_softc	*sc;
679	caddr_t			addr;
680{
681	u_int32_t		crc, carry;
682	int			i, j;
683	u_int8_t		c;
684
685	/* Compute CRC for the address value. */
686	crc = 0xFFFFFFFF; /* initial value */
687
688	for (i = 0; i < 6; i++) {
689		c = *(addr + i);
690		for (j = 0; j < 8; j++) {
691			carry = ((crc & 0x80000000) ? 1 : 0) ^ (c & 0x01);
692			crc <<= 1;
693			c >>= 1;
694			if (carry)
695				crc = (crc ^ 0x04c11db6) | carry;
696		}
697	}
698
699	/*
700	 * return the filter bit position
701	 */
702
703	return((crc >> 21) & 0x00000FFF);
704}
705
706static void
707nge_setmulti(sc)
708	struct nge_softc	*sc;
709{
710	struct ifnet		*ifp;
711	struct ifmultiaddr	*ifma;
712	u_int32_t		h = 0, i, filtsave;
713	int			bit, index;
714
715	ifp = &sc->arpcom.ac_if;
716
717	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
718		NGE_CLRBIT(sc, NGE_RXFILT_CTL,
719		    NGE_RXFILTCTL_MCHASH|NGE_RXFILTCTL_UCHASH);
720		NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_ALLMULTI);
721		return;
722	}
723
724	/*
725	 * We have to explicitly enable the multicast hash table
726	 * on the NatSemi chip if we want to use it, which we do.
727	 * We also have to tell it that we don't want to use the
728	 * hash table for matching unicast addresses.
729	 */
730	NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_MCHASH);
731	NGE_CLRBIT(sc, NGE_RXFILT_CTL,
732	    NGE_RXFILTCTL_ALLMULTI|NGE_RXFILTCTL_UCHASH);
733
734	filtsave = CSR_READ_4(sc, NGE_RXFILT_CTL);
735
736	/* first, zot all the existing hash bits */
737	for (i = 0; i < NGE_MCAST_FILTER_LEN; i += 2) {
738		CSR_WRITE_4(sc, NGE_RXFILT_CTL, NGE_FILTADDR_MCAST_LO + i);
739		CSR_WRITE_4(sc, NGE_RXFILT_DATA, 0);
740	}
741
742	/*
743	 * From the 11 bits returned by the crc routine, the top 7
744	 * bits represent the 16-bit word in the mcast hash table
745	 * that needs to be updated, and the lower 4 bits represent
746	 * which bit within that byte needs to be set.
747	 */
748	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
749		if (ifma->ifma_addr->sa_family != AF_LINK)
750			continue;
751		h = nge_crc(sc, LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
752		index = (h >> 4) & 0x7F;
753		bit = h & 0xF;
754		CSR_WRITE_4(sc, NGE_RXFILT_CTL,
755		    NGE_FILTADDR_MCAST_LO + (index * 2));
756		NGE_SETBIT(sc, NGE_RXFILT_DATA, (1 << bit));
757	}
758
759	CSR_WRITE_4(sc, NGE_RXFILT_CTL, filtsave);
760
761	return;
762}
763
764static void
765nge_reset(sc)
766	struct nge_softc	*sc;
767{
768	register int		i;
769
770	NGE_SETBIT(sc, NGE_CSR, NGE_CSR_RESET);
771
772	for (i = 0; i < NGE_TIMEOUT; i++) {
773		if (!(CSR_READ_4(sc, NGE_CSR) & NGE_CSR_RESET))
774			break;
775	}
776
777	if (i == NGE_TIMEOUT)
778		printf("nge%d: reset never completed\n", sc->nge_unit);
779
780	/* Wait a little while for the chip to get its brains in order. */
781	DELAY(1000);
782
783	/*
784	 * If this is a NetSemi chip, make sure to clear
785	 * PME mode.
786	 */
787	CSR_WRITE_4(sc, NGE_CLKRUN, NGE_CLKRUN_PMESTS);
788	CSR_WRITE_4(sc, NGE_CLKRUN, 0);
789
790        return;
791}
792
793/*
794 * Probe for a NatSemi chip. Check the PCI vendor and device
795 * IDs against our list and return a device name if we find a match.
796 */
797static int
798nge_probe(dev)
799	device_t		dev;
800{
801	struct nge_type		*t;
802
803	t = nge_devs;
804
805	while(t->nge_name != NULL) {
806		if ((pci_get_vendor(dev) == t->nge_vid) &&
807		    (pci_get_device(dev) == t->nge_did)) {
808			device_set_desc(dev, t->nge_name);
809			return(0);
810		}
811		t++;
812	}
813
814	return(ENXIO);
815}
816
817/*
818 * Attach the interface. Allocate softc structures, do ifmedia
819 * setup and ethernet/BPF attach.
820 */
821static int
822nge_attach(dev)
823	device_t		dev;
824{
825	int			s;
826	u_char			eaddr[ETHER_ADDR_LEN];
827	u_int32_t		command;
828	struct nge_softc	*sc;
829	struct ifnet		*ifp;
830	int			unit, error = 0, rid;
831	const char		*sep = "";
832
833	s = splimp();
834
835	sc = device_get_softc(dev);
836	unit = device_get_unit(dev);
837	bzero(sc, sizeof(struct nge_softc));
838
839	mtx_init(&sc->nge_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
840	    MTX_DEF | MTX_RECURSE);
841
842	/*
843	 * Handle power management nonsense.
844	 */
845	if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
846		u_int32_t		iobase, membase, irq;
847
848		/* Save important PCI config data. */
849		iobase = pci_read_config(dev, NGE_PCI_LOIO, 4);
850		membase = pci_read_config(dev, NGE_PCI_LOMEM, 4);
851		irq = pci_read_config(dev, NGE_PCI_INTLINE, 4);
852
853		/* Reset the power state. */
854		printf("nge%d: chip is in D%d power mode "
855		    "-- setting to D0\n", unit,
856		    pci_get_powerstate(dev));
857		pci_set_powerstate(dev, PCI_POWERSTATE_D0);
858
859		/* Restore PCI config data. */
860		pci_write_config(dev, NGE_PCI_LOIO, iobase, 4);
861		pci_write_config(dev, NGE_PCI_LOMEM, membase, 4);
862		pci_write_config(dev, NGE_PCI_INTLINE, irq, 4);
863	}
864
865	/*
866	 * Map control/status registers.
867	 */
868	pci_enable_busmaster(dev);
869	pci_enable_io(dev, SYS_RES_IOPORT);
870	pci_enable_io(dev, SYS_RES_MEMORY);
871	command = pci_read_config(dev, PCIR_COMMAND, 4);
872
873#ifdef NGE_USEIOSPACE
874	if (!(command & PCIM_CMD_PORTEN)) {
875		printf("nge%d: failed to enable I/O ports!\n", unit);
876		error = ENXIO;;
877		goto fail;
878	}
879#else
880	if (!(command & PCIM_CMD_MEMEN)) {
881		printf("nge%d: failed to enable memory mapping!\n", unit);
882		error = ENXIO;;
883		goto fail;
884	}
885#endif
886
887	rid = NGE_RID;
888	sc->nge_res = bus_alloc_resource(dev, NGE_RES, &rid,
889	    0, ~0, 1, RF_ACTIVE);
890
891	if (sc->nge_res == NULL) {
892		printf("nge%d: couldn't map ports/memory\n", unit);
893		error = ENXIO;
894		goto fail;
895	}
896
897	sc->nge_btag = rman_get_bustag(sc->nge_res);
898	sc->nge_bhandle = rman_get_bushandle(sc->nge_res);
899
900	/* Allocate interrupt */
901	rid = 0;
902	sc->nge_irq = bus_alloc_resource(dev, SYS_RES_IRQ, &rid, 0, ~0, 1,
903	    RF_SHAREABLE | RF_ACTIVE);
904
905	if (sc->nge_irq == NULL) {
906		printf("nge%d: couldn't map interrupt\n", unit);
907		bus_release_resource(dev, NGE_RES, NGE_RID, sc->nge_res);
908		error = ENXIO;
909		goto fail;
910	}
911
912	error = bus_setup_intr(dev, sc->nge_irq, INTR_TYPE_NET,
913	    nge_intr, sc, &sc->nge_intrhand);
914
915	if (error) {
916		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->nge_irq);
917		bus_release_resource(dev, NGE_RES, NGE_RID, sc->nge_res);
918		printf("nge%d: couldn't set up irq\n", unit);
919		goto fail;
920	}
921
922	/* Reset the adapter. */
923	nge_reset(sc);
924
925	/*
926	 * Get station address from the EEPROM.
927	 */
928	nge_read_eeprom(sc, (caddr_t)&eaddr[4], NGE_EE_NODEADDR, 1, 0);
929	nge_read_eeprom(sc, (caddr_t)&eaddr[2], NGE_EE_NODEADDR + 1, 1, 0);
930	nge_read_eeprom(sc, (caddr_t)&eaddr[0], NGE_EE_NODEADDR + 2, 1, 0);
931
932	/*
933	 * A NatSemi chip was detected. Inform the world.
934	 */
935	printf("nge%d: Ethernet address: %6D\n", unit, eaddr, ":");
936
937	sc->nge_unit = unit;
938	bcopy(eaddr, (char *)&sc->arpcom.ac_enaddr, ETHER_ADDR_LEN);
939
940	sc->nge_ldata = contigmalloc(sizeof(struct nge_list_data), M_DEVBUF,
941	    M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0);
942
943	if (sc->nge_ldata == NULL) {
944		printf("nge%d: no memory for list buffers!\n", unit);
945		bus_teardown_intr(dev, sc->nge_irq, sc->nge_intrhand);
946		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->nge_irq);
947		bus_release_resource(dev, NGE_RES, NGE_RID, sc->nge_res);
948		error = ENXIO;
949		goto fail;
950	}
951	bzero(sc->nge_ldata, sizeof(struct nge_list_data));
952
953	/* Try to allocate memory for jumbo buffers. */
954	if (nge_alloc_jumbo_mem(sc)) {
955		printf("nge%d: jumbo buffer allocation failed\n",
956                    sc->nge_unit);
957		contigfree(sc->nge_ldata,
958		    sizeof(struct nge_list_data), M_DEVBUF);
959		bus_teardown_intr(dev, sc->nge_irq, sc->nge_intrhand);
960		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->nge_irq);
961		bus_release_resource(dev, NGE_RES, NGE_RID, sc->nge_res);
962		error = ENXIO;
963		goto fail;
964	}
965
966	ifp = &sc->arpcom.ac_if;
967	ifp->if_softc = sc;
968	ifp->if_unit = unit;
969	ifp->if_name = "nge";
970	ifp->if_mtu = ETHERMTU;
971	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
972	ifp->if_ioctl = nge_ioctl;
973	ifp->if_output = ether_output;
974	ifp->if_start = nge_start;
975	ifp->if_watchdog = nge_watchdog;
976	ifp->if_init = nge_init;
977	ifp->if_baudrate = 1000000000;
978	ifp->if_snd.ifq_maxlen = NGE_TX_LIST_CNT - 1;
979	ifp->if_hwassist = NGE_CSUM_FEATURES;
980	ifp->if_capabilities = IFCAP_HWCSUM | IFCAP_VLAN_HWTAGGING;
981	ifp->if_capenable = ifp->if_capabilities;
982
983	/*
984	 * Do MII setup.
985	 */
986	if (mii_phy_probe(dev, &sc->nge_miibus,
987			  nge_ifmedia_upd, nge_ifmedia_sts)) {
988		if (CSR_READ_4(sc, NGE_CFG) & NGE_CFG_TBI_EN) {
989			sc->nge_tbi = 1;
990			device_printf(dev, "Using TBI\n");
991
992			sc->nge_miibus = dev;
993
994			ifmedia_init(&sc->nge_ifmedia, 0, nge_ifmedia_upd,
995				nge_ifmedia_sts);
996#define	ADD(m, c)	ifmedia_add(&sc->nge_ifmedia, (m), (c), NULL)
997#define PRINT(s)	printf("%s%s", sep, s); sep = ", "
998			ADD(IFM_MAKEWORD(IFM_ETHER, IFM_NONE, 0, 0), 0);
999			device_printf(dev, " ");
1000			ADD(IFM_MAKEWORD(IFM_ETHER, IFM_1000_SX, 0, 0), 0);
1001			PRINT("1000baseSX");
1002			ADD(IFM_MAKEWORD(IFM_ETHER, IFM_1000_SX, IFM_FDX, 0),0);
1003			PRINT("1000baseSX-FDX");
1004			ADD(IFM_MAKEWORD(IFM_ETHER, IFM_AUTO, 0, 0), 0);
1005			PRINT("auto");
1006
1007			printf("\n");
1008#undef ADD
1009#undef PRINT
1010			ifmedia_set(&sc->nge_ifmedia,
1011				IFM_MAKEWORD(IFM_ETHER, IFM_AUTO, 0, 0));
1012
1013			CSR_WRITE_4(sc, NGE_GPIO, CSR_READ_4(sc, NGE_GPIO)
1014				| NGE_GPIO_GP4_OUT
1015				| NGE_GPIO_GP1_OUTENB | NGE_GPIO_GP2_OUTENB
1016				| NGE_GPIO_GP3_OUTENB
1017				| NGE_GPIO_GP3_IN | NGE_GPIO_GP4_IN);
1018
1019		} else {
1020			printf("nge%d: MII without any PHY!\n", sc->nge_unit);
1021			nge_free_jumbo_mem(sc);
1022			bus_teardown_intr(dev, sc->nge_irq, sc->nge_intrhand);
1023			bus_release_resource(dev, SYS_RES_IRQ, 0, sc->nge_irq);
1024			bus_release_resource(dev, NGE_RES, NGE_RID,
1025					 sc->nge_res);
1026			error = ENXIO;
1027			goto fail;
1028		}
1029	}
1030
1031	/*
1032	 * Call MI attach routine.
1033	 */
1034	ether_ifattach(ifp, eaddr);
1035	callout_handle_init(&sc->nge_stat_ch);
1036
1037fail:
1038
1039	splx(s);
1040	mtx_destroy(&sc->nge_mtx);
1041	return(error);
1042}
1043
1044static int
1045nge_detach(dev)
1046	device_t		dev;
1047{
1048	struct nge_softc	*sc;
1049	struct ifnet		*ifp;
1050	int			s;
1051
1052	s = splimp();
1053
1054	sc = device_get_softc(dev);
1055	ifp = &sc->arpcom.ac_if;
1056
1057	nge_reset(sc);
1058	nge_stop(sc);
1059	ether_ifdetach(ifp);
1060
1061	bus_generic_detach(dev);
1062	if (!sc->nge_tbi) {
1063		device_delete_child(dev, sc->nge_miibus);
1064	}
1065	bus_teardown_intr(dev, sc->nge_irq, sc->nge_intrhand);
1066	bus_release_resource(dev, SYS_RES_IRQ, 0, sc->nge_irq);
1067	bus_release_resource(dev, NGE_RES, NGE_RID, sc->nge_res);
1068
1069	contigfree(sc->nge_ldata, sizeof(struct nge_list_data), M_DEVBUF);
1070	nge_free_jumbo_mem(sc);
1071
1072	splx(s);
1073	mtx_destroy(&sc->nge_mtx);
1074
1075	return(0);
1076}
1077
1078/*
1079 * Initialize the transmit descriptors.
1080 */
1081static int
1082nge_list_tx_init(sc)
1083	struct nge_softc	*sc;
1084{
1085	struct nge_list_data	*ld;
1086	struct nge_ring_data	*cd;
1087	int			i;
1088
1089	cd = &sc->nge_cdata;
1090	ld = sc->nge_ldata;
1091
1092	for (i = 0; i < NGE_TX_LIST_CNT; i++) {
1093		if (i == (NGE_TX_LIST_CNT - 1)) {
1094			ld->nge_tx_list[i].nge_nextdesc =
1095			    &ld->nge_tx_list[0];
1096			ld->nge_tx_list[i].nge_next =
1097			    vtophys(&ld->nge_tx_list[0]);
1098		} else {
1099			ld->nge_tx_list[i].nge_nextdesc =
1100			    &ld->nge_tx_list[i + 1];
1101			ld->nge_tx_list[i].nge_next =
1102			    vtophys(&ld->nge_tx_list[i + 1]);
1103		}
1104		ld->nge_tx_list[i].nge_mbuf = NULL;
1105		ld->nge_tx_list[i].nge_ptr = 0;
1106		ld->nge_tx_list[i].nge_ctl = 0;
1107	}
1108
1109	cd->nge_tx_prod = cd->nge_tx_cons = cd->nge_tx_cnt = 0;
1110
1111	return(0);
1112}
1113
1114
1115/*
1116 * Initialize the RX descriptors and allocate mbufs for them. Note that
1117 * we arrange the descriptors in a closed ring, so that the last descriptor
1118 * points back to the first.
1119 */
1120static int
1121nge_list_rx_init(sc)
1122	struct nge_softc	*sc;
1123{
1124	struct nge_list_data	*ld;
1125	struct nge_ring_data	*cd;
1126	int			i;
1127
1128	ld = sc->nge_ldata;
1129	cd = &sc->nge_cdata;
1130
1131	for (i = 0; i < NGE_RX_LIST_CNT; i++) {
1132		if (nge_newbuf(sc, &ld->nge_rx_list[i], NULL) == ENOBUFS)
1133			return(ENOBUFS);
1134		if (i == (NGE_RX_LIST_CNT - 1)) {
1135			ld->nge_rx_list[i].nge_nextdesc =
1136			    &ld->nge_rx_list[0];
1137			ld->nge_rx_list[i].nge_next =
1138			    vtophys(&ld->nge_rx_list[0]);
1139		} else {
1140			ld->nge_rx_list[i].nge_nextdesc =
1141			    &ld->nge_rx_list[i + 1];
1142			ld->nge_rx_list[i].nge_next =
1143			    vtophys(&ld->nge_rx_list[i + 1]);
1144		}
1145	}
1146
1147	cd->nge_rx_prod = 0;
1148
1149	return(0);
1150}
1151
1152/*
1153 * Initialize an RX descriptor and attach an MBUF cluster.
1154 */
1155static int
1156nge_newbuf(sc, c, m)
1157	struct nge_softc	*sc;
1158	struct nge_desc		*c;
1159	struct mbuf		*m;
1160{
1161	struct mbuf		*m_new = NULL;
1162	caddr_t			*buf = NULL;
1163
1164	if (m == NULL) {
1165		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1166		if (m_new == NULL) {
1167			printf("nge%d: no memory for rx list "
1168			    "-- packet dropped!\n", sc->nge_unit);
1169			return(ENOBUFS);
1170		}
1171
1172		/* Allocate the jumbo buffer */
1173		buf = nge_jalloc(sc);
1174		if (buf == NULL) {
1175#ifdef NGE_VERBOSE
1176			printf("nge%d: jumbo allocation failed "
1177			    "-- packet dropped!\n", sc->nge_unit);
1178#endif
1179			m_freem(m_new);
1180			return(ENOBUFS);
1181		}
1182		/* Attach the buffer to the mbuf */
1183		m_new->m_data = (void *)buf;
1184		m_new->m_len = m_new->m_pkthdr.len = NGE_JUMBO_FRAMELEN;
1185		MEXTADD(m_new, buf, NGE_JUMBO_FRAMELEN, nge_jfree,
1186		    (struct nge_softc *)sc, 0, EXT_NET_DRV);
1187	} else {
1188		m_new = m;
1189		m_new->m_len = m_new->m_pkthdr.len = NGE_JUMBO_FRAMELEN;
1190		m_new->m_data = m_new->m_ext.ext_buf;
1191	}
1192
1193	m_adj(m_new, sizeof(u_int64_t));
1194
1195	c->nge_mbuf = m_new;
1196	c->nge_ptr = vtophys(mtod(m_new, caddr_t));
1197	c->nge_ctl = m_new->m_len;
1198	c->nge_extsts = 0;
1199
1200	return(0);
1201}
1202
1203static int
1204nge_alloc_jumbo_mem(sc)
1205	struct nge_softc	*sc;
1206{
1207	caddr_t			ptr;
1208	register int		i;
1209	struct nge_jpool_entry   *entry;
1210
1211	/* Grab a big chunk o' storage. */
1212	sc->nge_cdata.nge_jumbo_buf = contigmalloc(NGE_JMEM, M_DEVBUF,
1213	    M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0);
1214
1215	if (sc->nge_cdata.nge_jumbo_buf == NULL) {
1216		printf("nge%d: no memory for jumbo buffers!\n", sc->nge_unit);
1217		return(ENOBUFS);
1218	}
1219
1220	SLIST_INIT(&sc->nge_jfree_listhead);
1221	SLIST_INIT(&sc->nge_jinuse_listhead);
1222
1223	/*
1224	 * Now divide it up into 9K pieces and save the addresses
1225	 * in an array.
1226	 */
1227	ptr = sc->nge_cdata.nge_jumbo_buf;
1228	for (i = 0; i < NGE_JSLOTS; i++) {
1229		sc->nge_cdata.nge_jslots[i] = ptr;
1230		ptr += NGE_JLEN;
1231		entry = malloc(sizeof(struct nge_jpool_entry),
1232		    M_DEVBUF, M_NOWAIT);
1233		if (entry == NULL) {
1234			printf("nge%d: no memory for jumbo "
1235			    "buffer queue!\n", sc->nge_unit);
1236			return(ENOBUFS);
1237		}
1238		entry->slot = i;
1239		SLIST_INSERT_HEAD(&sc->nge_jfree_listhead,
1240		    entry, jpool_entries);
1241	}
1242
1243	return(0);
1244}
1245
1246static void
1247nge_free_jumbo_mem(sc)
1248	struct nge_softc	*sc;
1249{
1250	register int		i;
1251	struct nge_jpool_entry   *entry;
1252
1253	for (i = 0; i < NGE_JSLOTS; i++) {
1254		entry = SLIST_FIRST(&sc->nge_jfree_listhead);
1255		SLIST_REMOVE_HEAD(&sc->nge_jfree_listhead, jpool_entries);
1256		free(entry, M_DEVBUF);
1257	}
1258
1259	contigfree(sc->nge_cdata.nge_jumbo_buf, NGE_JMEM, M_DEVBUF);
1260
1261	return;
1262}
1263
1264/*
1265 * Allocate a jumbo buffer.
1266 */
1267static void *
1268nge_jalloc(sc)
1269	struct nge_softc	*sc;
1270{
1271	struct nge_jpool_entry   *entry;
1272
1273	entry = SLIST_FIRST(&sc->nge_jfree_listhead);
1274
1275	if (entry == NULL) {
1276#ifdef NGE_VERBOSE
1277		printf("nge%d: no free jumbo buffers\n", sc->nge_unit);
1278#endif
1279		return(NULL);
1280	}
1281
1282	SLIST_REMOVE_HEAD(&sc->nge_jfree_listhead, jpool_entries);
1283	SLIST_INSERT_HEAD(&sc->nge_jinuse_listhead, entry, jpool_entries);
1284	return(sc->nge_cdata.nge_jslots[entry->slot]);
1285}
1286
1287/*
1288 * Release a jumbo buffer.
1289 */
1290static void
1291nge_jfree(buf, args)
1292	void			*buf;
1293	void			*args;
1294{
1295	struct nge_softc	*sc;
1296	int		        i;
1297	struct nge_jpool_entry   *entry;
1298
1299	/* Extract the softc struct pointer. */
1300	sc = args;
1301
1302	if (sc == NULL)
1303		panic("nge_jfree: can't find softc pointer!");
1304
1305	/* calculate the slot this buffer belongs to */
1306	i = ((vm_offset_t)buf
1307	     - (vm_offset_t)sc->nge_cdata.nge_jumbo_buf) / NGE_JLEN;
1308
1309	if ((i < 0) || (i >= NGE_JSLOTS))
1310		panic("nge_jfree: asked to free buffer that we don't manage!");
1311
1312	entry = SLIST_FIRST(&sc->nge_jinuse_listhead);
1313	if (entry == NULL)
1314		panic("nge_jfree: buffer not in use!");
1315	entry->slot = i;
1316	SLIST_REMOVE_HEAD(&sc->nge_jinuse_listhead, jpool_entries);
1317	SLIST_INSERT_HEAD(&sc->nge_jfree_listhead, entry, jpool_entries);
1318
1319	return;
1320}
1321/*
1322 * A frame has been uploaded: pass the resulting mbuf chain up to
1323 * the higher level protocols.
1324 */
1325static void
1326nge_rxeof(sc)
1327	struct nge_softc	*sc;
1328{
1329        struct mbuf		*m;
1330        struct ifnet		*ifp;
1331	struct nge_desc		*cur_rx;
1332	int			i, total_len = 0;
1333	u_int32_t		rxstat;
1334
1335	ifp = &sc->arpcom.ac_if;
1336	i = sc->nge_cdata.nge_rx_prod;
1337
1338	while(NGE_OWNDESC(&sc->nge_ldata->nge_rx_list[i])) {
1339		struct mbuf		*m0 = NULL;
1340		u_int32_t		extsts;
1341
1342#ifdef DEVICE_POLLING
1343		if (ifp->if_ipending & IFF_POLLING) {
1344			if (sc->rxcycles <= 0)
1345				break;
1346			sc->rxcycles--;
1347		}
1348#endif /* DEVICE_POLLING */
1349
1350		cur_rx = &sc->nge_ldata->nge_rx_list[i];
1351		rxstat = cur_rx->nge_rxstat;
1352		extsts = cur_rx->nge_extsts;
1353		m = cur_rx->nge_mbuf;
1354		cur_rx->nge_mbuf = NULL;
1355		total_len = NGE_RXBYTES(cur_rx);
1356		NGE_INC(i, NGE_RX_LIST_CNT);
1357		/*
1358		 * If an error occurs, update stats, clear the
1359		 * status word and leave the mbuf cluster in place:
1360		 * it should simply get re-used next time this descriptor
1361	 	 * comes up in the ring.
1362		 */
1363		if (!(rxstat & NGE_CMDSTS_PKT_OK)) {
1364			ifp->if_ierrors++;
1365			nge_newbuf(sc, cur_rx, m);
1366			continue;
1367		}
1368
1369		/*
1370		 * Ok. NatSemi really screwed up here. This is the
1371		 * only gigE chip I know of with alignment constraints
1372		 * on receive buffers. RX buffers must be 64-bit aligned.
1373		 */
1374#ifdef __i386__
1375		/*
1376		 * By popular demand, ignore the alignment problems
1377		 * on the Intel x86 platform. The performance hit
1378		 * incurred due to unaligned accesses is much smaller
1379		 * than the hit produced by forcing buffer copies all
1380		 * the time, especially with jumbo frames. We still
1381		 * need to fix up the alignment everywhere else though.
1382		 */
1383		if (nge_newbuf(sc, cur_rx, NULL) == ENOBUFS) {
1384#endif
1385			m0 = m_devget(mtod(m, char *), total_len,
1386			    ETHER_ALIGN, ifp, NULL);
1387			nge_newbuf(sc, cur_rx, m);
1388			if (m0 == NULL) {
1389				printf("nge%d: no receive buffers "
1390				    "available -- packet dropped!\n",
1391				    sc->nge_unit);
1392				ifp->if_ierrors++;
1393				continue;
1394			}
1395			m = m0;
1396#ifdef __i386__
1397		} else {
1398			m->m_pkthdr.rcvif = ifp;
1399			m->m_pkthdr.len = m->m_len = total_len;
1400		}
1401#endif
1402
1403		ifp->if_ipackets++;
1404
1405		/* Do IP checksum checking. */
1406		if (extsts & NGE_RXEXTSTS_IPPKT)
1407			m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
1408		if (!(extsts & NGE_RXEXTSTS_IPCSUMERR))
1409			m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
1410		if ((extsts & NGE_RXEXTSTS_TCPPKT &&
1411		    !(extsts & NGE_RXEXTSTS_TCPCSUMERR)) ||
1412		    (extsts & NGE_RXEXTSTS_UDPPKT &&
1413		    !(extsts & NGE_RXEXTSTS_UDPCSUMERR))) {
1414			m->m_pkthdr.csum_flags |=
1415			    CSUM_DATA_VALID|CSUM_PSEUDO_HDR;
1416			m->m_pkthdr.csum_data = 0xffff;
1417		}
1418
1419		/*
1420		 * If we received a packet with a vlan tag, pass it
1421		 * to vlan_input() instead of ether_input().
1422		 */
1423		if (extsts & NGE_RXEXTSTS_VLANPKT) {
1424			VLAN_INPUT_TAG(ifp, m,
1425				extsts & NGE_RXEXTSTS_VTCI, continue);
1426		}
1427
1428		(*ifp->if_input)(ifp, m);
1429	}
1430
1431	sc->nge_cdata.nge_rx_prod = i;
1432
1433	return;
1434}
1435
1436/*
1437 * A frame was downloaded to the chip. It's safe for us to clean up
1438 * the list buffers.
1439 */
1440
1441static void
1442nge_txeof(sc)
1443	struct nge_softc	*sc;
1444{
1445	struct nge_desc		*cur_tx = NULL;
1446	struct ifnet		*ifp;
1447	u_int32_t		idx;
1448
1449	ifp = &sc->arpcom.ac_if;
1450
1451	/* Clear the timeout timer. */
1452	ifp->if_timer = 0;
1453
1454	/*
1455	 * Go through our tx list and free mbufs for those
1456	 * frames that have been transmitted.
1457	 */
1458	idx = sc->nge_cdata.nge_tx_cons;
1459	while (idx != sc->nge_cdata.nge_tx_prod) {
1460		cur_tx = &sc->nge_ldata->nge_tx_list[idx];
1461
1462		if (NGE_OWNDESC(cur_tx))
1463			break;
1464
1465		if (cur_tx->nge_ctl & NGE_CMDSTS_MORE) {
1466			sc->nge_cdata.nge_tx_cnt--;
1467			NGE_INC(idx, NGE_TX_LIST_CNT);
1468			continue;
1469		}
1470
1471		if (!(cur_tx->nge_ctl & NGE_CMDSTS_PKT_OK)) {
1472			ifp->if_oerrors++;
1473			if (cur_tx->nge_txstat & NGE_TXSTAT_EXCESSCOLLS)
1474				ifp->if_collisions++;
1475			if (cur_tx->nge_txstat & NGE_TXSTAT_OUTOFWINCOLL)
1476				ifp->if_collisions++;
1477		}
1478
1479		ifp->if_collisions +=
1480		    (cur_tx->nge_txstat & NGE_TXSTAT_COLLCNT) >> 16;
1481
1482		ifp->if_opackets++;
1483		if (cur_tx->nge_mbuf != NULL) {
1484			m_freem(cur_tx->nge_mbuf);
1485			cur_tx->nge_mbuf = NULL;
1486		}
1487
1488		sc->nge_cdata.nge_tx_cnt--;
1489		NGE_INC(idx, NGE_TX_LIST_CNT);
1490		ifp->if_timer = 0;
1491	}
1492
1493	sc->nge_cdata.nge_tx_cons = idx;
1494
1495	if (cur_tx != NULL)
1496		ifp->if_flags &= ~IFF_OACTIVE;
1497
1498	return;
1499}
1500
1501static void
1502nge_tick(xsc)
1503	void			*xsc;
1504{
1505	struct nge_softc	*sc;
1506	struct mii_data		*mii;
1507	struct ifnet		*ifp;
1508	int			s;
1509
1510	s = splimp();
1511
1512	sc = xsc;
1513	ifp = &sc->arpcom.ac_if;
1514
1515	if (sc->nge_tbi) {
1516		if (!sc->nge_link) {
1517			if (CSR_READ_4(sc, NGE_TBI_BMSR)
1518			    & NGE_TBIBMSR_ANEG_DONE) {
1519				printf("nge%d: gigabit link up\n",
1520				    sc->nge_unit);
1521				nge_miibus_statchg(sc->nge_miibus);
1522				sc->nge_link++;
1523				if (ifp->if_snd.ifq_head != NULL)
1524					nge_start(ifp);
1525			}
1526		}
1527	} else {
1528		mii = device_get_softc(sc->nge_miibus);
1529		mii_tick(mii);
1530
1531		if (!sc->nge_link) {
1532			if (mii->mii_media_status & IFM_ACTIVE &&
1533			    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
1534				sc->nge_link++;
1535				if (IFM_SUBTYPE(mii->mii_media_active)
1536				    == IFM_1000_T)
1537					printf("nge%d: gigabit link up\n",
1538					    sc->nge_unit);
1539				if (ifp->if_snd.ifq_head != NULL)
1540					nge_start(ifp);
1541			}
1542		}
1543	}
1544	sc->nge_stat_ch = timeout(nge_tick, sc, hz);
1545
1546	splx(s);
1547
1548	return;
1549}
1550
1551#ifdef DEVICE_POLLING
1552static poll_handler_t nge_poll;
1553
1554static void
1555nge_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1556{
1557	struct  nge_softc *sc = ifp->if_softc;
1558
1559	if (cmd == POLL_DEREGISTER) {	/* final call, enable interrupts */
1560		CSR_WRITE_4(sc, NGE_IER, 1);
1561		return;
1562	}
1563
1564	/*
1565	 * On the nge, reading the status register also clears it.
1566	 * So before returning to intr mode we must make sure that all
1567	 * possible pending sources of interrupts have been served.
1568	 * In practice this means run to completion the *eof routines,
1569	 * and then call the interrupt routine
1570	 */
1571	sc->rxcycles = count;
1572	nge_rxeof(sc);
1573	nge_txeof(sc);
1574	if (ifp->if_snd.ifq_head != NULL)
1575		nge_start(ifp);
1576
1577	if (sc->rxcycles > 0 || cmd == POLL_AND_CHECK_STATUS) {
1578		u_int32_t	status;
1579
1580		/* Reading the ISR register clears all interrupts. */
1581		status = CSR_READ_4(sc, NGE_ISR);
1582
1583		if (status & (NGE_ISR_RX_ERR|NGE_ISR_RX_OFLOW))
1584			nge_rxeof(sc);
1585
1586		if (status & (NGE_ISR_RX_IDLE))
1587			NGE_SETBIT(sc, NGE_CSR, NGE_CSR_RX_ENABLE);
1588
1589		if (status & NGE_ISR_SYSERR) {
1590			nge_reset(sc);
1591			nge_init(sc);
1592		}
1593	}
1594}
1595#endif /* DEVICE_POLLING */
1596
1597static void
1598nge_intr(arg)
1599	void			*arg;
1600{
1601	struct nge_softc	*sc;
1602	struct ifnet		*ifp;
1603	u_int32_t		status;
1604
1605	sc = arg;
1606	ifp = &sc->arpcom.ac_if;
1607
1608#ifdef DEVICE_POLLING
1609	if (ifp->if_ipending & IFF_POLLING)
1610		return;
1611	if (ether_poll_register(nge_poll, ifp)) { /* ok, disable interrupts */
1612		CSR_WRITE_4(sc, NGE_IER, 0);
1613		nge_poll(ifp, 0, 1);
1614		return;
1615	}
1616#endif /* DEVICE_POLLING */
1617
1618	/* Supress unwanted interrupts */
1619	if (!(ifp->if_flags & IFF_UP)) {
1620		nge_stop(sc);
1621		return;
1622	}
1623
1624	/* Disable interrupts. */
1625	CSR_WRITE_4(sc, NGE_IER, 0);
1626
1627	/* Data LED on for TBI mode */
1628	if(sc->nge_tbi)
1629		 CSR_WRITE_4(sc, NGE_GPIO, CSR_READ_4(sc, NGE_GPIO)
1630			     | NGE_GPIO_GP3_OUT);
1631
1632	for (;;) {
1633		/* Reading the ISR register clears all interrupts. */
1634		status = CSR_READ_4(sc, NGE_ISR);
1635
1636		if ((status & NGE_INTRS) == 0)
1637			break;
1638
1639		if ((status & NGE_ISR_TX_DESC_OK) ||
1640		    (status & NGE_ISR_TX_ERR) ||
1641		    (status & NGE_ISR_TX_OK) ||
1642		    (status & NGE_ISR_TX_IDLE))
1643			nge_txeof(sc);
1644
1645		if ((status & NGE_ISR_RX_DESC_OK) ||
1646		    (status & NGE_ISR_RX_ERR) ||
1647		    (status & NGE_ISR_RX_OFLOW) ||
1648		    (status & NGE_ISR_RX_FIFO_OFLOW) ||
1649		    (status & NGE_ISR_RX_IDLE) ||
1650		    (status & NGE_ISR_RX_OK))
1651			nge_rxeof(sc);
1652
1653		if ((status & NGE_ISR_RX_IDLE))
1654			NGE_SETBIT(sc, NGE_CSR, NGE_CSR_RX_ENABLE);
1655
1656		if (status & NGE_ISR_SYSERR) {
1657			nge_reset(sc);
1658			ifp->if_flags &= ~IFF_RUNNING;
1659			nge_init(sc);
1660		}
1661
1662#if 0
1663		/*
1664		 * XXX: nge_tick() is not ready to be called this way
1665		 * it screws up the aneg timeout because mii_tick() is
1666		 * only to be called once per second.
1667		 */
1668		if (status & NGE_IMR_PHY_INTR) {
1669			sc->nge_link = 0;
1670			nge_tick(sc);
1671		}
1672#endif
1673	}
1674
1675	/* Re-enable interrupts. */
1676	CSR_WRITE_4(sc, NGE_IER, 1);
1677
1678	if (ifp->if_snd.ifq_head != NULL)
1679		nge_start(ifp);
1680
1681	/* Data LED off for TBI mode */
1682
1683	if(sc->nge_tbi)
1684		CSR_WRITE_4(sc, NGE_GPIO, CSR_READ_4(sc, NGE_GPIO)
1685			    & ~NGE_GPIO_GP3_OUT);
1686
1687	return;
1688}
1689
1690/*
1691 * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
1692 * pointers to the fragment pointers.
1693 */
1694static int
1695nge_encap(sc, m_head, txidx)
1696	struct nge_softc	*sc;
1697	struct mbuf		*m_head;
1698	u_int32_t		*txidx;
1699{
1700	struct nge_desc		*f = NULL;
1701	struct mbuf		*m;
1702	int			frag, cur, cnt = 0;
1703	struct m_tag		*mtag;
1704
1705	/*
1706 	 * Start packing the mbufs in this chain into
1707	 * the fragment pointers. Stop when we run out
1708 	 * of fragments or hit the end of the mbuf chain.
1709	 */
1710	m = m_head;
1711	cur = frag = *txidx;
1712
1713	for (m = m_head; m != NULL; m = m->m_next) {
1714		if (m->m_len != 0) {
1715			if ((NGE_TX_LIST_CNT -
1716			    (sc->nge_cdata.nge_tx_cnt + cnt)) < 2)
1717				return(ENOBUFS);
1718			f = &sc->nge_ldata->nge_tx_list[frag];
1719			f->nge_ctl = NGE_CMDSTS_MORE | m->m_len;
1720			f->nge_ptr = vtophys(mtod(m, vm_offset_t));
1721			if (cnt != 0)
1722				f->nge_ctl |= NGE_CMDSTS_OWN;
1723			cur = frag;
1724			NGE_INC(frag, NGE_TX_LIST_CNT);
1725			cnt++;
1726		}
1727	}
1728
1729	if (m != NULL)
1730		return(ENOBUFS);
1731
1732	sc->nge_ldata->nge_tx_list[*txidx].nge_extsts = 0;
1733	if (m_head->m_pkthdr.csum_flags) {
1734		if (m_head->m_pkthdr.csum_flags & CSUM_IP)
1735			sc->nge_ldata->nge_tx_list[*txidx].nge_extsts |=
1736			    NGE_TXEXTSTS_IPCSUM;
1737		if (m_head->m_pkthdr.csum_flags & CSUM_TCP)
1738			sc->nge_ldata->nge_tx_list[*txidx].nge_extsts |=
1739			    NGE_TXEXTSTS_TCPCSUM;
1740		if (m_head->m_pkthdr.csum_flags & CSUM_UDP)
1741			sc->nge_ldata->nge_tx_list[*txidx].nge_extsts |=
1742			    NGE_TXEXTSTS_UDPCSUM;
1743	}
1744
1745	mtag = VLAN_OUTPUT_TAG(&sc->arpcom.ac_if, m);
1746	if (mtag != NULL) {
1747		sc->nge_ldata->nge_tx_list[cur].nge_extsts |=
1748			(NGE_TXEXTSTS_VLANPKT|VLAN_TAG_VALUE(mtag));
1749	}
1750
1751	sc->nge_ldata->nge_tx_list[cur].nge_mbuf = m_head;
1752	sc->nge_ldata->nge_tx_list[cur].nge_ctl &= ~NGE_CMDSTS_MORE;
1753	sc->nge_ldata->nge_tx_list[*txidx].nge_ctl |= NGE_CMDSTS_OWN;
1754	sc->nge_cdata.nge_tx_cnt += cnt;
1755	*txidx = frag;
1756
1757	return(0);
1758}
1759
1760/*
1761 * Main transmit routine. To avoid having to do mbuf copies, we put pointers
1762 * to the mbuf data regions directly in the transmit lists. We also save a
1763 * copy of the pointers since the transmit list fragment pointers are
1764 * physical addresses.
1765 */
1766
1767static void
1768nge_start(ifp)
1769	struct ifnet		*ifp;
1770{
1771	struct nge_softc	*sc;
1772	struct mbuf		*m_head = NULL;
1773	u_int32_t		idx;
1774
1775	sc = ifp->if_softc;
1776
1777	if (!sc->nge_link)
1778		return;
1779
1780	idx = sc->nge_cdata.nge_tx_prod;
1781
1782	if (ifp->if_flags & IFF_OACTIVE)
1783		return;
1784
1785	while(sc->nge_ldata->nge_tx_list[idx].nge_mbuf == NULL) {
1786		IF_DEQUEUE(&ifp->if_snd, m_head);
1787		if (m_head == NULL)
1788			break;
1789
1790		if (nge_encap(sc, m_head, &idx)) {
1791			IF_PREPEND(&ifp->if_snd, m_head);
1792			ifp->if_flags |= IFF_OACTIVE;
1793			break;
1794		}
1795
1796		/*
1797		 * If there's a BPF listener, bounce a copy of this frame
1798		 * to him.
1799		 */
1800		BPF_MTAP(ifp, m_head);
1801
1802	}
1803
1804	/* Transmit */
1805	sc->nge_cdata.nge_tx_prod = idx;
1806	NGE_SETBIT(sc, NGE_CSR, NGE_CSR_TX_ENABLE);
1807
1808	/*
1809	 * Set a timeout in case the chip goes out to lunch.
1810	 */
1811	ifp->if_timer = 5;
1812
1813	return;
1814}
1815
1816static void
1817nge_init(xsc)
1818	void			*xsc;
1819{
1820	struct nge_softc	*sc = xsc;
1821	struct ifnet		*ifp = &sc->arpcom.ac_if;
1822	struct mii_data		*mii;
1823	int			s;
1824
1825	if (ifp->if_flags & IFF_RUNNING)
1826		return;
1827
1828	s = splimp();
1829
1830	/*
1831	 * Cancel pending I/O and free all RX/TX buffers.
1832	 */
1833	nge_stop(sc);
1834
1835	if (sc->nge_tbi) {
1836		mii = NULL;
1837	} else {
1838		mii = device_get_softc(sc->nge_miibus);
1839	}
1840
1841	/* Set MAC address */
1842	CSR_WRITE_4(sc, NGE_RXFILT_CTL, NGE_FILTADDR_PAR0);
1843	CSR_WRITE_4(sc, NGE_RXFILT_DATA,
1844	    ((u_int16_t *)sc->arpcom.ac_enaddr)[0]);
1845	CSR_WRITE_4(sc, NGE_RXFILT_CTL, NGE_FILTADDR_PAR1);
1846	CSR_WRITE_4(sc, NGE_RXFILT_DATA,
1847	    ((u_int16_t *)sc->arpcom.ac_enaddr)[1]);
1848	CSR_WRITE_4(sc, NGE_RXFILT_CTL, NGE_FILTADDR_PAR2);
1849	CSR_WRITE_4(sc, NGE_RXFILT_DATA,
1850	    ((u_int16_t *)sc->arpcom.ac_enaddr)[2]);
1851
1852	/* Init circular RX list. */
1853	if (nge_list_rx_init(sc) == ENOBUFS) {
1854		printf("nge%d: initialization failed: no "
1855			"memory for rx buffers\n", sc->nge_unit);
1856		nge_stop(sc);
1857		(void)splx(s);
1858		return;
1859	}
1860
1861	/*
1862	 * Init tx descriptors.
1863	 */
1864	nge_list_tx_init(sc);
1865
1866	/*
1867	 * For the NatSemi chip, we have to explicitly enable the
1868	 * reception of ARP frames, as well as turn on the 'perfect
1869	 * match' filter where we store the station address, otherwise
1870	 * we won't receive unicasts meant for this host.
1871	 */
1872	NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_ARP);
1873	NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_PERFECT);
1874
1875	 /* If we want promiscuous mode, set the allframes bit. */
1876	if (ifp->if_flags & IFF_PROMISC) {
1877		NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_ALLPHYS);
1878	} else {
1879		NGE_CLRBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_ALLPHYS);
1880	}
1881
1882	/*
1883	 * Set the capture broadcast bit to capture broadcast frames.
1884	 */
1885	if (ifp->if_flags & IFF_BROADCAST) {
1886		NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_BROAD);
1887	} else {
1888		NGE_CLRBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_BROAD);
1889	}
1890
1891	/*
1892	 * Load the multicast filter.
1893	 */
1894	nge_setmulti(sc);
1895
1896	/* Turn the receive filter on */
1897	NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_ENABLE);
1898
1899	/*
1900	 * Load the address of the RX and TX lists.
1901	 */
1902	CSR_WRITE_4(sc, NGE_RX_LISTPTR,
1903	    vtophys(&sc->nge_ldata->nge_rx_list[0]));
1904	CSR_WRITE_4(sc, NGE_TX_LISTPTR,
1905	    vtophys(&sc->nge_ldata->nge_tx_list[0]));
1906
1907	/* Set RX configuration */
1908	CSR_WRITE_4(sc, NGE_RX_CFG, NGE_RXCFG);
1909	/*
1910	 * Enable hardware checksum validation for all IPv4
1911	 * packets, do not reject packets with bad checksums.
1912	 */
1913	CSR_WRITE_4(sc, NGE_VLAN_IP_RXCTL, NGE_VIPRXCTL_IPCSUM_ENB);
1914
1915	/*
1916	 * Tell the chip to detect and strip VLAN tag info from
1917	 * received frames. The tag will be provided in the extsts
1918	 * field in the RX descriptors.
1919	 */
1920	NGE_SETBIT(sc, NGE_VLAN_IP_RXCTL,
1921	    NGE_VIPRXCTL_TAG_DETECT_ENB|NGE_VIPRXCTL_TAG_STRIP_ENB);
1922
1923	/* Set TX configuration */
1924	CSR_WRITE_4(sc, NGE_TX_CFG, NGE_TXCFG);
1925
1926	/*
1927	 * Enable TX IPv4 checksumming on a per-packet basis.
1928	 */
1929	CSR_WRITE_4(sc, NGE_VLAN_IP_TXCTL, NGE_VIPTXCTL_CSUM_PER_PKT);
1930
1931	/*
1932	 * Tell the chip to insert VLAN tags on a per-packet basis as
1933	 * dictated by the code in the frame encapsulation routine.
1934	 */
1935	NGE_SETBIT(sc, NGE_VLAN_IP_TXCTL, NGE_VIPTXCTL_TAG_PER_PKT);
1936
1937	/* Set full/half duplex mode. */
1938	if (sc->nge_tbi) {
1939		if ((sc->nge_ifmedia.ifm_cur->ifm_media & IFM_GMASK)
1940		    == IFM_FDX) {
1941			NGE_SETBIT(sc, NGE_TX_CFG,
1942			    (NGE_TXCFG_IGN_HBEAT|NGE_TXCFG_IGN_CARR));
1943			NGE_SETBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
1944		} else {
1945			NGE_CLRBIT(sc, NGE_TX_CFG,
1946			    (NGE_TXCFG_IGN_HBEAT|NGE_TXCFG_IGN_CARR));
1947			NGE_CLRBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
1948		}
1949	} else {
1950		if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
1951			NGE_SETBIT(sc, NGE_TX_CFG,
1952			    (NGE_TXCFG_IGN_HBEAT|NGE_TXCFG_IGN_CARR));
1953			NGE_SETBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
1954		} else {
1955			NGE_CLRBIT(sc, NGE_TX_CFG,
1956			    (NGE_TXCFG_IGN_HBEAT|NGE_TXCFG_IGN_CARR));
1957			NGE_CLRBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
1958		}
1959	}
1960
1961	nge_tick(sc);
1962
1963	/*
1964	 * Enable the delivery of PHY interrupts based on
1965	 * link/speed/duplex status changes. Also enable the
1966	 * extsts field in the DMA descriptors (needed for
1967	 * TCP/IP checksum offload on transmit).
1968	 */
1969	NGE_SETBIT(sc, NGE_CFG, NGE_CFG_PHYINTR_SPD|
1970	    NGE_CFG_PHYINTR_LNK|NGE_CFG_PHYINTR_DUP|NGE_CFG_EXTSTS_ENB);
1971
1972	/*
1973	 * Configure interrupt holdoff (moderation). We can
1974	 * have the chip delay interrupt delivery for a certain
1975	 * period. Units are in 100us, and the max setting
1976	 * is 25500us (0xFF x 100us). Default is a 100us holdoff.
1977	 */
1978	CSR_WRITE_4(sc, NGE_IHR, 0x01);
1979
1980	/*
1981	 * Enable interrupts.
1982	 */
1983	CSR_WRITE_4(sc, NGE_IMR, NGE_INTRS);
1984#ifdef DEVICE_POLLING
1985	/*
1986	 * ... only enable interrupts if we are not polling, make sure
1987	 * they are off otherwise.
1988	 */
1989	if (ifp->if_ipending & IFF_POLLING)
1990		CSR_WRITE_4(sc, NGE_IER, 0);
1991	else
1992#endif /* DEVICE_POLLING */
1993	CSR_WRITE_4(sc, NGE_IER, 1);
1994
1995	/* Enable receiver and transmitter. */
1996	NGE_CLRBIT(sc, NGE_CSR, NGE_CSR_TX_DISABLE|NGE_CSR_RX_DISABLE);
1997	NGE_SETBIT(sc, NGE_CSR, NGE_CSR_RX_ENABLE);
1998
1999	nge_ifmedia_upd(ifp);
2000
2001	ifp->if_flags |= IFF_RUNNING;
2002	ifp->if_flags &= ~IFF_OACTIVE;
2003
2004	(void)splx(s);
2005
2006	return;
2007}
2008
2009/*
2010 * Set media options.
2011 */
2012static int
2013nge_ifmedia_upd(ifp)
2014	struct ifnet		*ifp;
2015{
2016	struct nge_softc	*sc;
2017	struct mii_data		*mii;
2018
2019	sc = ifp->if_softc;
2020
2021	if (sc->nge_tbi) {
2022		if (IFM_SUBTYPE(sc->nge_ifmedia.ifm_cur->ifm_media)
2023		     == IFM_AUTO) {
2024			CSR_WRITE_4(sc, NGE_TBI_ANAR,
2025				CSR_READ_4(sc, NGE_TBI_ANAR)
2026					| NGE_TBIANAR_HDX | NGE_TBIANAR_FDX
2027					| NGE_TBIANAR_PS1 | NGE_TBIANAR_PS2);
2028			CSR_WRITE_4(sc, NGE_TBI_BMCR, NGE_TBIBMCR_ENABLE_ANEG
2029				| NGE_TBIBMCR_RESTART_ANEG);
2030			CSR_WRITE_4(sc, NGE_TBI_BMCR, NGE_TBIBMCR_ENABLE_ANEG);
2031		} else if ((sc->nge_ifmedia.ifm_cur->ifm_media
2032			    & IFM_GMASK) == IFM_FDX) {
2033			NGE_SETBIT(sc, NGE_TX_CFG,
2034			    (NGE_TXCFG_IGN_HBEAT|NGE_TXCFG_IGN_CARR));
2035			NGE_SETBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
2036
2037			CSR_WRITE_4(sc, NGE_TBI_ANAR, 0);
2038			CSR_WRITE_4(sc, NGE_TBI_BMCR, 0);
2039		} else {
2040			NGE_CLRBIT(sc, NGE_TX_CFG,
2041			    (NGE_TXCFG_IGN_HBEAT|NGE_TXCFG_IGN_CARR));
2042			NGE_CLRBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
2043
2044			CSR_WRITE_4(sc, NGE_TBI_ANAR, 0);
2045			CSR_WRITE_4(sc, NGE_TBI_BMCR, 0);
2046		}
2047
2048		CSR_WRITE_4(sc, NGE_GPIO, CSR_READ_4(sc, NGE_GPIO)
2049			    & ~NGE_GPIO_GP3_OUT);
2050	} else {
2051		mii = device_get_softc(sc->nge_miibus);
2052		sc->nge_link = 0;
2053		if (mii->mii_instance) {
2054			struct mii_softc	*miisc;
2055			for (miisc = LIST_FIRST(&mii->mii_phys); miisc != NULL;
2056			    miisc = LIST_NEXT(miisc, mii_list))
2057				mii_phy_reset(miisc);
2058		}
2059		mii_mediachg(mii);
2060	}
2061
2062	return(0);
2063}
2064
2065/*
2066 * Report current media status.
2067 */
2068static void
2069nge_ifmedia_sts(ifp, ifmr)
2070	struct ifnet		*ifp;
2071	struct ifmediareq	*ifmr;
2072{
2073	struct nge_softc	*sc;
2074	struct mii_data		*mii;
2075
2076	sc = ifp->if_softc;
2077
2078	if (sc->nge_tbi) {
2079		ifmr->ifm_status = IFM_AVALID;
2080		ifmr->ifm_active = IFM_ETHER;
2081
2082		if (CSR_READ_4(sc, NGE_TBI_BMSR) & NGE_TBIBMSR_ANEG_DONE) {
2083			ifmr->ifm_status |= IFM_ACTIVE;
2084		}
2085		if (CSR_READ_4(sc, NGE_TBI_BMCR) & NGE_TBIBMCR_LOOPBACK)
2086			ifmr->ifm_active |= IFM_LOOP;
2087		if (!CSR_READ_4(sc, NGE_TBI_BMSR) & NGE_TBIBMSR_ANEG_DONE) {
2088			ifmr->ifm_active |= IFM_NONE;
2089			ifmr->ifm_status = 0;
2090			return;
2091		}
2092		ifmr->ifm_active |= IFM_1000_SX;
2093		if (IFM_SUBTYPE(sc->nge_ifmedia.ifm_cur->ifm_media)
2094		    == IFM_AUTO) {
2095			ifmr->ifm_active |= IFM_AUTO;
2096			if (CSR_READ_4(sc, NGE_TBI_ANLPAR)
2097			    & NGE_TBIANAR_FDX) {
2098				ifmr->ifm_active |= IFM_FDX;
2099			}else if (CSR_READ_4(sc, NGE_TBI_ANLPAR)
2100				  & NGE_TBIANAR_HDX) {
2101				ifmr->ifm_active |= IFM_HDX;
2102			}
2103		} else if ((sc->nge_ifmedia.ifm_cur->ifm_media & IFM_GMASK)
2104			== IFM_FDX)
2105			ifmr->ifm_active |= IFM_FDX;
2106		else
2107			ifmr->ifm_active |= IFM_HDX;
2108
2109	} else {
2110		mii = device_get_softc(sc->nge_miibus);
2111		mii_pollstat(mii);
2112		ifmr->ifm_active = mii->mii_media_active;
2113		ifmr->ifm_status = mii->mii_media_status;
2114	}
2115
2116	return;
2117}
2118
2119static int
2120nge_ioctl(ifp, command, data)
2121	struct ifnet		*ifp;
2122	u_long			command;
2123	caddr_t			data;
2124{
2125	struct nge_softc	*sc = ifp->if_softc;
2126	struct ifreq		*ifr = (struct ifreq *) data;
2127	struct mii_data		*mii;
2128	int			s, error = 0;
2129
2130	s = splimp();
2131
2132	switch(command) {
2133	case SIOCSIFMTU:
2134		if (ifr->ifr_mtu > NGE_JUMBO_MTU)
2135			error = EINVAL;
2136		else {
2137			ifp->if_mtu = ifr->ifr_mtu;
2138			/*
2139			 * Workaround: if the MTU is larger than
2140			 * 8152 (TX FIFO size minus 64 minus 18), turn off
2141			 * TX checksum offloading.
2142			 */
2143			if (ifr->ifr_mtu >= 8152)
2144				ifp->if_hwassist = 0;
2145			else
2146				ifp->if_hwassist = NGE_CSUM_FEATURES;
2147		}
2148		break;
2149	case SIOCSIFFLAGS:
2150		if (ifp->if_flags & IFF_UP) {
2151			if (ifp->if_flags & IFF_RUNNING &&
2152			    ifp->if_flags & IFF_PROMISC &&
2153			    !(sc->nge_if_flags & IFF_PROMISC)) {
2154				NGE_SETBIT(sc, NGE_RXFILT_CTL,
2155				    NGE_RXFILTCTL_ALLPHYS|
2156				    NGE_RXFILTCTL_ALLMULTI);
2157			} else if (ifp->if_flags & IFF_RUNNING &&
2158			    !(ifp->if_flags & IFF_PROMISC) &&
2159			    sc->nge_if_flags & IFF_PROMISC) {
2160				NGE_CLRBIT(sc, NGE_RXFILT_CTL,
2161				    NGE_RXFILTCTL_ALLPHYS);
2162				if (!(ifp->if_flags & IFF_ALLMULTI))
2163					NGE_CLRBIT(sc, NGE_RXFILT_CTL,
2164					    NGE_RXFILTCTL_ALLMULTI);
2165			} else {
2166				ifp->if_flags &= ~IFF_RUNNING;
2167				nge_init(sc);
2168			}
2169		} else {
2170			if (ifp->if_flags & IFF_RUNNING)
2171				nge_stop(sc);
2172		}
2173		sc->nge_if_flags = ifp->if_flags;
2174		error = 0;
2175		break;
2176	case SIOCADDMULTI:
2177	case SIOCDELMULTI:
2178		nge_setmulti(sc);
2179		error = 0;
2180		break;
2181	case SIOCGIFMEDIA:
2182	case SIOCSIFMEDIA:
2183		if (sc->nge_tbi) {
2184			error = ifmedia_ioctl(ifp, ifr, &sc->nge_ifmedia,
2185					      command);
2186		} else {
2187			mii = device_get_softc(sc->nge_miibus);
2188			error = ifmedia_ioctl(ifp, ifr, &mii->mii_media,
2189					      command);
2190		}
2191		break;
2192	default:
2193		error = ether_ioctl(ifp, command, data);
2194		break;
2195	}
2196
2197	(void)splx(s);
2198
2199	return(error);
2200}
2201
2202static void
2203nge_watchdog(ifp)
2204	struct ifnet		*ifp;
2205{
2206	struct nge_softc	*sc;
2207
2208	sc = ifp->if_softc;
2209
2210	ifp->if_oerrors++;
2211	printf("nge%d: watchdog timeout\n", sc->nge_unit);
2212
2213	nge_stop(sc);
2214	nge_reset(sc);
2215	ifp->if_flags &= ~IFF_RUNNING;
2216	nge_init(sc);
2217
2218	if (ifp->if_snd.ifq_head != NULL)
2219		nge_start(ifp);
2220
2221	return;
2222}
2223
2224/*
2225 * Stop the adapter and free any mbufs allocated to the
2226 * RX and TX lists.
2227 */
2228static void
2229nge_stop(sc)
2230	struct nge_softc	*sc;
2231{
2232	register int		i;
2233	struct ifnet		*ifp;
2234	struct mii_data		*mii;
2235
2236	ifp = &sc->arpcom.ac_if;
2237	ifp->if_timer = 0;
2238	if (sc->nge_tbi) {
2239		mii = NULL;
2240	} else {
2241		mii = device_get_softc(sc->nge_miibus);
2242	}
2243
2244	untimeout(nge_tick, sc, sc->nge_stat_ch);
2245#ifdef DEVICE_POLLING
2246	ether_poll_deregister(ifp);
2247#endif
2248	CSR_WRITE_4(sc, NGE_IER, 0);
2249	CSR_WRITE_4(sc, NGE_IMR, 0);
2250	NGE_SETBIT(sc, NGE_CSR, NGE_CSR_TX_DISABLE|NGE_CSR_RX_DISABLE);
2251	DELAY(1000);
2252	CSR_WRITE_4(sc, NGE_TX_LISTPTR, 0);
2253	CSR_WRITE_4(sc, NGE_RX_LISTPTR, 0);
2254
2255	if (!sc->nge_tbi)
2256		mii_down(mii);
2257
2258	sc->nge_link = 0;
2259
2260	/*
2261	 * Free data in the RX lists.
2262	 */
2263	for (i = 0; i < NGE_RX_LIST_CNT; i++) {
2264		if (sc->nge_ldata->nge_rx_list[i].nge_mbuf != NULL) {
2265			m_freem(sc->nge_ldata->nge_rx_list[i].nge_mbuf);
2266			sc->nge_ldata->nge_rx_list[i].nge_mbuf = NULL;
2267		}
2268	}
2269	bzero((char *)&sc->nge_ldata->nge_rx_list,
2270		sizeof(sc->nge_ldata->nge_rx_list));
2271
2272	/*
2273	 * Free the TX list buffers.
2274	 */
2275	for (i = 0; i < NGE_TX_LIST_CNT; i++) {
2276		if (sc->nge_ldata->nge_tx_list[i].nge_mbuf != NULL) {
2277			m_freem(sc->nge_ldata->nge_tx_list[i].nge_mbuf);
2278			sc->nge_ldata->nge_tx_list[i].nge_mbuf = NULL;
2279		}
2280	}
2281
2282	bzero((char *)&sc->nge_ldata->nge_tx_list,
2283		sizeof(sc->nge_ldata->nge_tx_list));
2284
2285	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2286
2287	return;
2288}
2289
2290/*
2291 * Stop all chip I/O so that the kernel's probe routines don't
2292 * get confused by errant DMAs when rebooting.
2293 */
2294static void
2295nge_shutdown(dev)
2296	device_t		dev;
2297{
2298	struct nge_softc	*sc;
2299
2300	sc = device_get_softc(dev);
2301
2302	nge_reset(sc);
2303	nge_stop(sc);
2304
2305	return;
2306}
2307