1/*
2 * Copyright (C) 2013-2016 Vincenzo Maffione
3 * Copyright (C) 2013-2016 Luigi Rizzo
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 *   1. Redistributions of source code must retain the above copyright
10 *      notice, this list of conditions and the following disclaimer.
11 *   2. Redistributions in binary form must reproduce the above copyright
12 *      notice, this list of conditions and the following disclaimer in the
13 *      documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25 * SUCH DAMAGE.
26 */
27
28/*
29 * This module implements netmap support on top of standard,
30 * unmodified device drivers.
31 *
32 * A NIOCREGIF request is handled here if the device does not
33 * have native support. TX and RX rings are emulated as follows:
34 *
35 * NIOCREGIF
36 *	We preallocate a block of TX mbufs (roughly as many as
37 *	tx descriptors; the number is not critical) to speed up
38 *	operation during transmissions. The refcount on most of
39 *	these buffers is artificially bumped up so we can recycle
40 *	them more easily. Also, the destructor is intercepted
41 *	so we use it as an interrupt notification to wake up
42 *	processes blocked on a poll().
43 *
44 *	For each receive ring we allocate one "struct mbq"
45 *	(an mbuf tailq plus a spinlock). We intercept packets
46 *	(through if_input)
47 *	on the receive path and put them in the mbq from which
48 *	netmap receive routines can grab them.
49 *
50 * TX:
51 *	in the generic_txsync() routine, netmap buffers are copied
52 *	(or linked, in a future) to the preallocated mbufs
53 *	and pushed to the transmit queue. Some of these mbufs
54 *	(those with NS_REPORT, or otherwise every half ring)
55 *	have the refcount=1, others have refcount=2.
56 *	When the destructor is invoked, we take that as
57 *	a notification that all mbufs up to that one in
58 *	the specific ring have been completed, and generate
59 *	the equivalent of a transmit interrupt.
60 *
61 * RX:
62 *
63 */
64
65#ifdef __FreeBSD__
66
67#include <sys/cdefs.h> /* prerequisite */
68__FBSDID("$FreeBSD: stable/11/sys/dev/netmap/netmap_generic.c 350007 2019-07-15 20:14:30Z vmaffione $");
69
70#include <sys/types.h>
71#include <sys/errno.h>
72#include <sys/malloc.h>
73#include <sys/lock.h>   /* PROT_EXEC */
74#include <sys/rwlock.h>
75#include <sys/socket.h> /* sockaddrs */
76#include <sys/selinfo.h>
77#include <net/if.h>
78#include <net/if_types.h>
79#include <net/if_var.h>
80#include <machine/bus.h>        /* bus_dmamap_* in netmap_kern.h */
81
82#include <net/netmap.h>
83#include <dev/netmap/netmap_kern.h>
84#include <dev/netmap/netmap_mem2.h>
85
86#define MBUF_RXQ(m)	((m)->m_pkthdr.flowid)
87#define smp_mb()
88
89#elif defined _WIN32
90
91#include "win_glue.h"
92
93#define MBUF_TXQ(m) 	0//((m)->m_pkthdr.flowid)
94#define MBUF_RXQ(m)	    0//((m)->m_pkthdr.flowid)
95#define smp_mb()		//XXX: to be correctly defined
96
97#else /* linux */
98
99#include "bsd_glue.h"
100
101#include <linux/ethtool.h>      /* struct ethtool_ops, get_ringparam */
102#include <linux/hrtimer.h>
103
104static inline struct mbuf *
105nm_os_get_mbuf(struct ifnet *ifp, int len)
106{
107	return alloc_skb(ifp->needed_headroom + len +
108			 ifp->needed_tailroom, GFP_ATOMIC);
109}
110
111#endif /* linux */
112
113
114/* Common headers. */
115#include <net/netmap.h>
116#include <dev/netmap/netmap_kern.h>
117#include <dev/netmap/netmap_mem2.h>
118
119
120#define for_each_kring_n(_i, _k, _karr, _n) \
121	for ((_k)=*(_karr), (_i) = 0; (_i) < (_n); (_i)++, (_k) = (_karr)[(_i)])
122
123#define for_each_tx_kring(_i, _k, _na) \
124		for_each_kring_n(_i, _k, (_na)->tx_rings, (_na)->num_tx_rings)
125#define for_each_tx_kring_h(_i, _k, _na) \
126		for_each_kring_n(_i, _k, (_na)->tx_rings, (_na)->num_tx_rings + 1)
127
128#define for_each_rx_kring(_i, _k, _na) \
129		for_each_kring_n(_i, _k, (_na)->rx_rings, (_na)->num_rx_rings)
130#define for_each_rx_kring_h(_i, _k, _na) \
131		for_each_kring_n(_i, _k, (_na)->rx_rings, (_na)->num_rx_rings + 1)
132
133
134/* ======================== PERFORMANCE STATISTICS =========================== */
135
136#ifdef RATE_GENERIC
137#define IFRATE(x) x
138struct rate_stats {
139	unsigned long txpkt;
140	unsigned long txsync;
141	unsigned long txirq;
142	unsigned long txrepl;
143	unsigned long txdrop;
144	unsigned long rxpkt;
145	unsigned long rxirq;
146	unsigned long rxsync;
147};
148
149struct rate_context {
150	unsigned refcount;
151	struct timer_list timer;
152	struct rate_stats new;
153	struct rate_stats old;
154};
155
156#define RATE_PRINTK(_NAME_) \
157	printk( #_NAME_ " = %lu Hz\n", (cur._NAME_ - ctx->old._NAME_)/RATE_PERIOD);
158#define RATE_PERIOD  2
159static void rate_callback(unsigned long arg)
160{
161	struct rate_context * ctx = (struct rate_context *)arg;
162	struct rate_stats cur = ctx->new;
163	int r;
164
165	RATE_PRINTK(txpkt);
166	RATE_PRINTK(txsync);
167	RATE_PRINTK(txirq);
168	RATE_PRINTK(txrepl);
169	RATE_PRINTK(txdrop);
170	RATE_PRINTK(rxpkt);
171	RATE_PRINTK(rxsync);
172	RATE_PRINTK(rxirq);
173	printk("\n");
174
175	ctx->old = cur;
176	r = mod_timer(&ctx->timer, jiffies +
177			msecs_to_jiffies(RATE_PERIOD * 1000));
178	if (unlikely(r))
179		nm_prerr("mod_timer() failed");
180}
181
182static struct rate_context rate_ctx;
183
184void generic_rate(int txp, int txs, int txi, int rxp, int rxs, int rxi)
185{
186	if (txp) rate_ctx.new.txpkt++;
187	if (txs) rate_ctx.new.txsync++;
188	if (txi) rate_ctx.new.txirq++;
189	if (rxp) rate_ctx.new.rxpkt++;
190	if (rxs) rate_ctx.new.rxsync++;
191	if (rxi) rate_ctx.new.rxirq++;
192}
193
194#else /* !RATE */
195#define IFRATE(x)
196#endif /* !RATE */
197
198
199/* ========== GENERIC (EMULATED) NETMAP ADAPTER SUPPORT ============= */
200
201/*
202 * Wrapper used by the generic adapter layer to notify
203 * the poller threads. Differently from netmap_rx_irq(), we check
204 * only NAF_NETMAP_ON instead of NAF_NATIVE_ON to enable the irq.
205 */
206void
207netmap_generic_irq(struct netmap_adapter *na, u_int q, u_int *work_done)
208{
209	if (unlikely(!nm_netmap_on(na)))
210		return;
211
212	netmap_common_irq(na, q, work_done);
213#ifdef RATE_GENERIC
214	if (work_done)
215		rate_ctx.new.rxirq++;
216	else
217		rate_ctx.new.txirq++;
218#endif  /* RATE_GENERIC */
219}
220
221static int
222generic_netmap_unregister(struct netmap_adapter *na)
223{
224	struct netmap_generic_adapter *gna = (struct netmap_generic_adapter *)na;
225	struct netmap_kring *kring = NULL;
226	int i, r;
227
228	if (na->active_fds == 0) {
229		na->na_flags &= ~NAF_NETMAP_ON;
230
231		/* Stop intercepting packets on the RX path. */
232		nm_os_catch_rx(gna, 0);
233
234		/* Release packet steering control. */
235		nm_os_catch_tx(gna, 0);
236	}
237
238	netmap_krings_mode_commit(na, /*onoff=*/0);
239
240	for_each_rx_kring(r, kring, na) {
241		/* Free the mbufs still pending in the RX queues,
242		 * that did not end up into the corresponding netmap
243		 * RX rings. */
244		mbq_safe_purge(&kring->rx_queue);
245		nm_os_mitigation_cleanup(&gna->mit[r]);
246	}
247
248	/* Decrement reference counter for the mbufs in the
249	 * TX pools. These mbufs can be still pending in drivers,
250	 * (e.g. this happens with virtio-net driver, which
251	 * does lazy reclaiming of transmitted mbufs). */
252	for_each_tx_kring(r, kring, na) {
253		/* We must remove the destructor on the TX event,
254		 * because the destructor invokes netmap code, and
255		 * the netmap module may disappear before the
256		 * TX event is consumed. */
257		mtx_lock_spin(&kring->tx_event_lock);
258		if (kring->tx_event) {
259			SET_MBUF_DESTRUCTOR(kring->tx_event, NULL);
260		}
261		kring->tx_event = NULL;
262		mtx_unlock_spin(&kring->tx_event_lock);
263	}
264
265	if (na->active_fds == 0) {
266		nm_os_free(gna->mit);
267
268		for_each_rx_kring(r, kring, na) {
269			mbq_safe_fini(&kring->rx_queue);
270		}
271
272		for_each_tx_kring(r, kring, na) {
273			mtx_destroy(&kring->tx_event_lock);
274			if (kring->tx_pool == NULL) {
275				continue;
276			}
277
278			for (i=0; i<na->num_tx_desc; i++) {
279				if (kring->tx_pool[i]) {
280					m_freem(kring->tx_pool[i]);
281				}
282			}
283			nm_os_free(kring->tx_pool);
284			kring->tx_pool = NULL;
285		}
286
287#ifdef RATE_GENERIC
288		if (--rate_ctx.refcount == 0) {
289			nm_prinf("del_timer()");
290			del_timer(&rate_ctx.timer);
291		}
292#endif
293		nm_prinf("Emulated adapter for %s deactivated", na->name);
294	}
295
296	return 0;
297}
298
299/* Enable/disable netmap mode for a generic network interface. */
300static int
301generic_netmap_register(struct netmap_adapter *na, int enable)
302{
303	struct netmap_generic_adapter *gna = (struct netmap_generic_adapter *)na;
304	struct netmap_kring *kring = NULL;
305	int error;
306	int i, r;
307
308	if (!na) {
309		return EINVAL;
310	}
311
312	if (!enable) {
313		/* This is actually an unregif. */
314		return generic_netmap_unregister(na);
315	}
316
317	if (na->active_fds == 0) {
318		nm_prinf("Emulated adapter for %s activated", na->name);
319		/* Do all memory allocations when (na->active_fds == 0), to
320		 * simplify error management. */
321
322		/* Allocate memory for mitigation support on all the rx queues. */
323		gna->mit = nm_os_malloc(na->num_rx_rings * sizeof(struct nm_generic_mit));
324		if (!gna->mit) {
325			nm_prerr("mitigation allocation failed");
326			error = ENOMEM;
327			goto out;
328		}
329
330		for_each_rx_kring(r, kring, na) {
331			/* Init mitigation support. */
332			nm_os_mitigation_init(&gna->mit[r], r, na);
333
334			/* Initialize the rx queue, as generic_rx_handler() can
335			 * be called as soon as nm_os_catch_rx() returns.
336			 */
337			mbq_safe_init(&kring->rx_queue);
338		}
339
340		/*
341		 * Prepare mbuf pools (parallel to the tx rings), for packet
342		 * transmission. Don't preallocate the mbufs here, it's simpler
343		 * to leave this task to txsync.
344		 */
345		for_each_tx_kring(r, kring, na) {
346			kring->tx_pool = NULL;
347		}
348		for_each_tx_kring(r, kring, na) {
349			kring->tx_pool =
350				nm_os_malloc(na->num_tx_desc * sizeof(struct mbuf *));
351			if (!kring->tx_pool) {
352				nm_prerr("tx_pool allocation failed");
353				error = ENOMEM;
354				goto free_tx_pools;
355			}
356			mtx_init(&kring->tx_event_lock, "tx_event_lock",
357				 NULL, MTX_SPIN);
358		}
359	}
360
361	netmap_krings_mode_commit(na, /*onoff=*/1);
362
363	for_each_tx_kring(r, kring, na) {
364		/* Initialize tx_pool and tx_event. */
365		for (i=0; i<na->num_tx_desc; i++) {
366			kring->tx_pool[i] = NULL;
367		}
368
369		kring->tx_event = NULL;
370	}
371
372	if (na->active_fds == 0) {
373		/* Prepare to intercept incoming traffic. */
374		error = nm_os_catch_rx(gna, 1);
375		if (error) {
376			nm_prerr("nm_os_catch_rx(1) failed (%d)", error);
377			goto free_tx_pools;
378		}
379
380		/* Let netmap control the packet steering. */
381		error = nm_os_catch_tx(gna, 1);
382		if (error) {
383			nm_prerr("nm_os_catch_tx(1) failed (%d)", error);
384			goto catch_rx;
385		}
386
387		na->na_flags |= NAF_NETMAP_ON;
388
389#ifdef RATE_GENERIC
390		if (rate_ctx.refcount == 0) {
391			nm_prinf("setup_timer()");
392			memset(&rate_ctx, 0, sizeof(rate_ctx));
393			setup_timer(&rate_ctx.timer, &rate_callback, (unsigned long)&rate_ctx);
394			if (mod_timer(&rate_ctx.timer, jiffies + msecs_to_jiffies(1500))) {
395				nm_prerr("Error: mod_timer()");
396			}
397		}
398		rate_ctx.refcount++;
399#endif /* RATE */
400	}
401
402	return 0;
403
404	/* Here (na->active_fds == 0) holds. */
405catch_rx:
406	nm_os_catch_rx(gna, 0);
407free_tx_pools:
408	for_each_tx_kring(r, kring, na) {
409		mtx_destroy(&kring->tx_event_lock);
410		if (kring->tx_pool == NULL) {
411			continue;
412		}
413		nm_os_free(kring->tx_pool);
414		kring->tx_pool = NULL;
415	}
416	for_each_rx_kring(r, kring, na) {
417		mbq_safe_fini(&kring->rx_queue);
418	}
419	nm_os_free(gna->mit);
420out:
421
422	return error;
423}
424
425/*
426 * Callback invoked when the device driver frees an mbuf used
427 * by netmap to transmit a packet. This usually happens when
428 * the NIC notifies the driver that transmission is completed.
429 */
430static void
431generic_mbuf_destructor(struct mbuf *m)
432{
433	struct netmap_adapter *na = NA(GEN_TX_MBUF_IFP(m));
434	struct netmap_kring *kring;
435	unsigned int r = MBUF_TXQ(m);
436	unsigned int r_orig = r;
437
438	if (unlikely(!nm_netmap_on(na) || r >= na->num_tx_rings)) {
439		nm_prerr("Error: no netmap adapter on device %p",
440		  GEN_TX_MBUF_IFP(m));
441		return;
442	}
443
444	/*
445	 * First, clear the event mbuf.
446	 * In principle, the event 'm' should match the one stored
447	 * on ring 'r'. However we check it explicitely to stay
448	 * safe against lower layers (qdisc, driver, etc.) changing
449	 * MBUF_TXQ(m) under our feet. If the match is not found
450	 * on 'r', we try to see if it belongs to some other ring.
451	 */
452	for (;;) {
453		bool match = false;
454
455		kring = na->tx_rings[r];
456		mtx_lock_spin(&kring->tx_event_lock);
457		if (kring->tx_event == m) {
458			kring->tx_event = NULL;
459			match = true;
460		}
461		mtx_unlock_spin(&kring->tx_event_lock);
462
463		if (match) {
464			if (r != r_orig) {
465				nm_prlim(1, "event %p migrated: ring %u --> %u",
466				      m, r_orig, r);
467			}
468			break;
469		}
470
471		if (++r == na->num_tx_rings) r = 0;
472
473		if (r == r_orig) {
474			nm_prlim(1, "Cannot match event %p", m);
475			return;
476		}
477	}
478
479	/* Second, wake up clients. They will reclaim the event through
480	 * txsync. */
481	netmap_generic_irq(na, r, NULL);
482#ifdef __FreeBSD__
483#if __FreeBSD_version <= 1200050
484	void_mbuf_dtor(m, NULL, NULL);
485#else  /* __FreeBSD_version >= 1200051 */
486	void_mbuf_dtor(m);
487#endif /* __FreeBSD_version >= 1200051 */
488#endif
489}
490
491/* Record completed transmissions and update hwtail.
492 *
493 * The oldest tx buffer not yet completed is at nr_hwtail + 1,
494 * nr_hwcur is the first unsent buffer.
495 */
496static u_int
497generic_netmap_tx_clean(struct netmap_kring *kring, int txqdisc)
498{
499	u_int const lim = kring->nkr_num_slots - 1;
500	u_int nm_i = nm_next(kring->nr_hwtail, lim);
501	u_int hwcur = kring->nr_hwcur;
502	u_int n = 0;
503	struct mbuf **tx_pool = kring->tx_pool;
504
505	nm_prdis("hwcur = %d, hwtail = %d", kring->nr_hwcur, kring->nr_hwtail);
506
507	while (nm_i != hwcur) { /* buffers not completed */
508		struct mbuf *m = tx_pool[nm_i];
509
510		if (txqdisc) {
511			if (m == NULL) {
512				/* Nothing to do, this is going
513				 * to be replenished. */
514				nm_prlim(3, "Is this happening?");
515
516			} else if (MBUF_QUEUED(m)) {
517				break; /* Not dequeued yet. */
518
519			} else if (MBUF_REFCNT(m) != 1) {
520				/* This mbuf has been dequeued but is still busy
521				 * (refcount is 2).
522				 * Leave it to the driver and replenish. */
523				m_freem(m);
524				tx_pool[nm_i] = NULL;
525			}
526
527		} else {
528			if (unlikely(m == NULL)) {
529				int event_consumed;
530
531				/* This slot was used to place an event. */
532				mtx_lock_spin(&kring->tx_event_lock);
533				event_consumed = (kring->tx_event == NULL);
534				mtx_unlock_spin(&kring->tx_event_lock);
535				if (!event_consumed) {
536					/* The event has not been consumed yet,
537					 * still busy in the driver. */
538					break;
539				}
540				/* The event has been consumed, we can go
541				 * ahead. */
542
543			} else if (MBUF_REFCNT(m) != 1) {
544				/* This mbuf is still busy: its refcnt is 2. */
545				break;
546			}
547		}
548
549		n++;
550		nm_i = nm_next(nm_i, lim);
551	}
552	kring->nr_hwtail = nm_prev(nm_i, lim);
553	nm_prdis("tx completed [%d] -> hwtail %d", n, kring->nr_hwtail);
554
555	return n;
556}
557
558/* Compute a slot index in the middle between inf and sup. */
559static inline u_int
560ring_middle(u_int inf, u_int sup, u_int lim)
561{
562	u_int n = lim + 1;
563	u_int e;
564
565	if (sup >= inf) {
566		e = (sup + inf) / 2;
567	} else { /* wrap around */
568		e = (sup + n + inf) / 2;
569		if (e >= n) {
570			e -= n;
571		}
572	}
573
574	if (unlikely(e >= n)) {
575		nm_prerr("This cannot happen");
576		e = 0;
577	}
578
579	return e;
580}
581
582static void
583generic_set_tx_event(struct netmap_kring *kring, u_int hwcur)
584{
585	u_int lim = kring->nkr_num_slots - 1;
586	struct mbuf *m;
587	u_int e;
588	u_int ntc = nm_next(kring->nr_hwtail, lim); /* next to clean */
589
590	if (ntc == hwcur) {
591		return; /* all buffers are free */
592	}
593
594	/*
595	 * We have pending packets in the driver between hwtail+1
596	 * and hwcur, and we have to chose one of these slot to
597	 * generate a notification.
598	 * There is a race but this is only called within txsync which
599	 * does a double check.
600	 */
601#if 0
602	/* Choose a slot in the middle, so that we don't risk ending
603	 * up in a situation where the client continuously wake up,
604	 * fills one or a few TX slots and go to sleep again. */
605	e = ring_middle(ntc, hwcur, lim);
606#else
607	/* Choose the first pending slot, to be safe against driver
608	 * reordering mbuf transmissions. */
609	e = ntc;
610#endif
611
612	m = kring->tx_pool[e];
613	if (m == NULL) {
614		/* An event is already in place. */
615		return;
616	}
617
618	mtx_lock_spin(&kring->tx_event_lock);
619	if (kring->tx_event) {
620		/* An event is already in place. */
621		mtx_unlock_spin(&kring->tx_event_lock);
622		return;
623	}
624
625	SET_MBUF_DESTRUCTOR(m, generic_mbuf_destructor);
626	kring->tx_event = m;
627	mtx_unlock_spin(&kring->tx_event_lock);
628
629	kring->tx_pool[e] = NULL;
630
631	nm_prdis("Request Event at %d mbuf %p refcnt %d", e, m, m ? MBUF_REFCNT(m) : -2 );
632
633	/* Decrement the refcount. This will free it if we lose the race
634	 * with the driver. */
635	m_freem(m);
636	smp_mb();
637}
638
639
640/*
641 * generic_netmap_txsync() transforms netmap buffers into mbufs
642 * and passes them to the standard device driver
643 * (ndo_start_xmit() or ifp->if_transmit() ).
644 * On linux this is not done directly, but using dev_queue_xmit(),
645 * since it implements the TX flow control (and takes some locks).
646 */
647static int
648generic_netmap_txsync(struct netmap_kring *kring, int flags)
649{
650	struct netmap_adapter *na = kring->na;
651	struct netmap_generic_adapter *gna = (struct netmap_generic_adapter *)na;
652	struct ifnet *ifp = na->ifp;
653	struct netmap_ring *ring = kring->ring;
654	u_int nm_i;	/* index into the netmap ring */ // j
655	u_int const lim = kring->nkr_num_slots - 1;
656	u_int const head = kring->rhead;
657	u_int ring_nr = kring->ring_id;
658
659	IFRATE(rate_ctx.new.txsync++);
660
661	rmb();
662
663	/*
664	 * First part: process new packets to send.
665	 */
666	nm_i = kring->nr_hwcur;
667	if (nm_i != head) {	/* we have new packets to send */
668		struct nm_os_gen_arg a;
669		u_int event = -1;
670
671		if (gna->txqdisc && nm_kr_txempty(kring)) {
672			/* In txqdisc mode, we ask for a delayed notification,
673			 * but only when cur == hwtail, which means that the
674			 * client is going to block. */
675			event = ring_middle(nm_i, head, lim);
676			nm_prdis("Place txqdisc event (hwcur=%u,event=%u,"
677			      "head=%u,hwtail=%u)", nm_i, event, head,
678			      kring->nr_hwtail);
679		}
680
681		a.ifp = ifp;
682		a.ring_nr = ring_nr;
683		a.head = a.tail = NULL;
684
685		while (nm_i != head) {
686			struct netmap_slot *slot = &ring->slot[nm_i];
687			u_int len = slot->len;
688			void *addr = NMB(na, slot);
689			/* device-specific */
690			struct mbuf *m;
691			int tx_ret;
692
693			NM_CHECK_ADDR_LEN(na, addr, len);
694
695			/* Tale a mbuf from the tx pool (replenishing the pool
696			 * entry if necessary) and copy in the user packet. */
697			m = kring->tx_pool[nm_i];
698			if (unlikely(m == NULL)) {
699				kring->tx_pool[nm_i] = m =
700					nm_os_get_mbuf(ifp, NETMAP_BUF_SIZE(na));
701				if (m == NULL) {
702					nm_prlim(2, "Failed to replenish mbuf");
703					/* Here we could schedule a timer which
704					 * retries to replenish after a while,
705					 * and notifies the client when it
706					 * manages to replenish some slots. In
707					 * any case we break early to avoid
708					 * crashes. */
709					break;
710				}
711				IFRATE(rate_ctx.new.txrepl++);
712			}
713
714			a.m = m;
715			a.addr = addr;
716			a.len = len;
717			a.qevent = (nm_i == event);
718			/* When not in txqdisc mode, we should ask
719			 * notifications when NS_REPORT is set, or roughly
720			 * every half ring. To optimize this, we set a
721			 * notification event when the client runs out of
722			 * TX ring space, or when transmission fails. In
723			 * the latter case we also break early.
724			 */
725			tx_ret = nm_os_generic_xmit_frame(&a);
726			if (unlikely(tx_ret)) {
727				if (!gna->txqdisc) {
728					/*
729					 * No room for this mbuf in the device driver.
730					 * Request a notification FOR A PREVIOUS MBUF,
731					 * then call generic_netmap_tx_clean(kring) to do the
732					 * double check and see if we can free more buffers.
733					 * If there is space continue, else break;
734					 * NOTE: the double check is necessary if the problem
735					 * occurs in the txsync call after selrecord().
736					 * Also, we need some way to tell the caller that not
737					 * all buffers were queued onto the device (this was
738					 * not a problem with native netmap driver where space
739					 * is preallocated). The bridge has a similar problem
740					 * and we solve it there by dropping the excess packets.
741					 */
742					generic_set_tx_event(kring, nm_i);
743					if (generic_netmap_tx_clean(kring, gna->txqdisc)) {
744						/* space now available */
745						continue;
746					} else {
747						break;
748					}
749				}
750
751				/* In txqdisc mode, the netmap-aware qdisc
752				 * queue has the same length as the number of
753				 * netmap slots (N). Since tail is advanced
754				 * only when packets are dequeued, qdisc
755				 * queue overrun cannot happen, so
756				 * nm_os_generic_xmit_frame() did not fail
757				 * because of that.
758				 * However, packets can be dropped because
759				 * carrier is off, or because our qdisc is
760				 * being deactivated, or possibly for other
761				 * reasons. In these cases, we just let the
762				 * packet to be dropped. */
763				IFRATE(rate_ctx.new.txdrop++);
764			}
765
766			slot->flags &= ~(NS_REPORT | NS_BUF_CHANGED);
767			nm_i = nm_next(nm_i, lim);
768			IFRATE(rate_ctx.new.txpkt++);
769		}
770		if (a.head != NULL) {
771			a.addr = NULL;
772			nm_os_generic_xmit_frame(&a);
773		}
774		/* Update hwcur to the next slot to transmit. Here nm_i
775		 * is not necessarily head, we could break early. */
776		kring->nr_hwcur = nm_i;
777	}
778
779	/*
780	 * Second, reclaim completed buffers
781	 */
782	if (!gna->txqdisc && (flags & NAF_FORCE_RECLAIM || nm_kr_txempty(kring))) {
783		/* No more available slots? Set a notification event
784		 * on a netmap slot that will be cleaned in the future.
785		 * No doublecheck is performed, since txsync() will be
786		 * called twice by netmap_poll().
787		 */
788		generic_set_tx_event(kring, nm_i);
789	}
790
791	generic_netmap_tx_clean(kring, gna->txqdisc);
792
793	return 0;
794}
795
796
797/*
798 * This handler is registered (through nm_os_catch_rx())
799 * within the attached network interface
800 * in the RX subsystem, so that every mbuf passed up by
801 * the driver can be stolen to the network stack.
802 * Stolen packets are put in a queue where the
803 * generic_netmap_rxsync() callback can extract them.
804 * Returns 1 if the packet was stolen, 0 otherwise.
805 */
806int
807generic_rx_handler(struct ifnet *ifp, struct mbuf *m)
808{
809	struct netmap_adapter *na = NA(ifp);
810	struct netmap_generic_adapter *gna = (struct netmap_generic_adapter *)na;
811	struct netmap_kring *kring;
812	u_int work_done;
813	u_int r = MBUF_RXQ(m); /* receive ring number */
814
815	if (r >= na->num_rx_rings) {
816		r = r % na->num_rx_rings;
817	}
818
819	kring = na->rx_rings[r];
820
821	if (kring->nr_mode == NKR_NETMAP_OFF) {
822		/* We must not intercept this mbuf. */
823		return 0;
824	}
825
826	/* limit the size of the queue */
827	if (unlikely(!gna->rxsg && MBUF_LEN(m) > NETMAP_BUF_SIZE(na))) {
828		/* This may happen when GRO/LRO features are enabled for
829		 * the NIC driver when the generic adapter does not
830		 * support RX scatter-gather. */
831		nm_prlim(2, "Warning: driver pushed up big packet "
832				"(size=%d)", (int)MBUF_LEN(m));
833		m_freem(m);
834	} else if (unlikely(mbq_len(&kring->rx_queue) > 1024)) {
835		m_freem(m);
836	} else {
837		mbq_safe_enqueue(&kring->rx_queue, m);
838	}
839
840	if (netmap_generic_mit < 32768) {
841		/* no rx mitigation, pass notification up */
842		netmap_generic_irq(na, r, &work_done);
843	} else {
844		/* same as send combining, filter notification if there is a
845		 * pending timer, otherwise pass it up and start a timer.
846		 */
847		if (likely(nm_os_mitigation_active(&gna->mit[r]))) {
848			/* Record that there is some pending work. */
849			gna->mit[r].mit_pending = 1;
850		} else {
851			netmap_generic_irq(na, r, &work_done);
852			nm_os_mitigation_start(&gna->mit[r]);
853		}
854	}
855
856	/* We have intercepted the mbuf. */
857	return 1;
858}
859
860/*
861 * generic_netmap_rxsync() extracts mbufs from the queue filled by
862 * generic_netmap_rx_handler() and puts their content in the netmap
863 * receive ring.
864 * Access must be protected because the rx handler is asynchronous,
865 */
866static int
867generic_netmap_rxsync(struct netmap_kring *kring, int flags)
868{
869	struct netmap_ring *ring = kring->ring;
870	struct netmap_adapter *na = kring->na;
871	u_int nm_i;	/* index into the netmap ring */ //j,
872	u_int n;
873	u_int const lim = kring->nkr_num_slots - 1;
874	u_int const head = kring->rhead;
875	int force_update = (flags & NAF_FORCE_READ) || kring->nr_kflags & NKR_PENDINTR;
876
877	/* Adapter-specific variables. */
878	u_int nm_buf_len = NETMAP_BUF_SIZE(na);
879	struct mbq tmpq;
880	struct mbuf *m;
881	int avail; /* in bytes */
882	int mlen;
883	int copy;
884
885	if (head > lim)
886		return netmap_ring_reinit(kring);
887
888	IFRATE(rate_ctx.new.rxsync++);
889
890	/*
891	 * First part: skip past packets that userspace has released.
892	 * This can possibly make room for the second part.
893	 */
894	nm_i = kring->nr_hwcur;
895	if (nm_i != head) {
896		/* Userspace has released some packets. */
897		for (n = 0; nm_i != head; n++) {
898			struct netmap_slot *slot = &ring->slot[nm_i];
899
900			slot->flags &= ~NS_BUF_CHANGED;
901			nm_i = nm_next(nm_i, lim);
902		}
903		kring->nr_hwcur = head;
904	}
905
906	/*
907	 * Second part: import newly received packets.
908	 */
909	if (!netmap_no_pendintr && !force_update) {
910		return 0;
911	}
912
913	nm_i = kring->nr_hwtail; /* First empty slot in the receive ring. */
914
915	/* Compute the available space (in bytes) in this netmap ring.
916	 * The first slot that is not considered in is the one before
917	 * nr_hwcur. */
918
919	avail = nm_prev(kring->nr_hwcur, lim) - nm_i;
920	if (avail < 0)
921		avail += lim + 1;
922	avail *= nm_buf_len;
923
924	/* First pass: While holding the lock on the RX mbuf queue,
925	 * extract as many mbufs as they fit the available space,
926	 * and put them in a temporary queue.
927	 * To avoid performing a per-mbuf division (mlen / nm_buf_len) to
928	 * to update avail, we do the update in a while loop that we
929	 * also use to set the RX slots, but without performing the copy. */
930	mbq_init(&tmpq);
931	mbq_lock(&kring->rx_queue);
932	for (n = 0;; n++) {
933		m = mbq_peek(&kring->rx_queue);
934		if (!m) {
935			/* No more packets from the driver. */
936			break;
937		}
938
939		mlen = MBUF_LEN(m);
940		if (mlen > avail) {
941			/* No more space in the ring. */
942			break;
943		}
944
945		mbq_dequeue(&kring->rx_queue);
946
947		while (mlen) {
948			copy = nm_buf_len;
949			if (mlen < copy) {
950				copy = mlen;
951			}
952			mlen -= copy;
953			avail -= nm_buf_len;
954
955			ring->slot[nm_i].len = copy;
956			ring->slot[nm_i].flags = (mlen ? NS_MOREFRAG : 0);
957			nm_i = nm_next(nm_i, lim);
958		}
959
960		mbq_enqueue(&tmpq, m);
961	}
962	mbq_unlock(&kring->rx_queue);
963
964	/* Second pass: Drain the temporary queue, going over the used RX slots,
965	 * and perform the copy out of the RX queue lock. */
966	nm_i = kring->nr_hwtail;
967
968	for (;;) {
969		void *nmaddr;
970		int ofs = 0;
971		int morefrag;
972
973		m = mbq_dequeue(&tmpq);
974		if (!m)	{
975			break;
976		}
977
978		do {
979			nmaddr = NMB(na, &ring->slot[nm_i]);
980			/* We only check the address here on generic rx rings. */
981			if (nmaddr == NETMAP_BUF_BASE(na)) { /* Bad buffer */
982				m_freem(m);
983				mbq_purge(&tmpq);
984				mbq_fini(&tmpq);
985				return netmap_ring_reinit(kring);
986			}
987
988			copy = ring->slot[nm_i].len;
989			m_copydata(m, ofs, copy, nmaddr);
990			ofs += copy;
991			morefrag = ring->slot[nm_i].flags & NS_MOREFRAG;
992			nm_i = nm_next(nm_i, lim);
993		} while (morefrag);
994
995		m_freem(m);
996	}
997
998	mbq_fini(&tmpq);
999
1000	if (n) {
1001		kring->nr_hwtail = nm_i;
1002		IFRATE(rate_ctx.new.rxpkt += n);
1003	}
1004	kring->nr_kflags &= ~NKR_PENDINTR;
1005
1006	return 0;
1007}
1008
1009static void
1010generic_netmap_dtor(struct netmap_adapter *na)
1011{
1012	struct netmap_generic_adapter *gna = (struct netmap_generic_adapter*)na;
1013	struct ifnet *ifp = netmap_generic_getifp(gna);
1014	struct netmap_adapter *prev_na = gna->prev;
1015
1016	if (prev_na != NULL) {
1017		netmap_adapter_put(prev_na);
1018		if (nm_iszombie(na)) {
1019		        /*
1020		         * The driver has been removed without releasing
1021		         * the reference so we need to do it here.
1022		         */
1023		        netmap_adapter_put(prev_na);
1024		}
1025		nm_prinf("Native netmap adapter for %s restored", prev_na->name);
1026	}
1027	NM_RESTORE_NA(ifp, prev_na);
1028	/*
1029	 * netmap_detach_common(), that it's called after this function,
1030	 * overrides WNA(ifp) if na->ifp is not NULL.
1031	 */
1032	na->ifp = NULL;
1033	nm_prinf("Emulated netmap adapter for %s destroyed", na->name);
1034}
1035
1036int
1037na_is_generic(struct netmap_adapter *na)
1038{
1039	return na->nm_register == generic_netmap_register;
1040}
1041
1042/*
1043 * generic_netmap_attach() makes it possible to use netmap on
1044 * a device without native netmap support.
1045 * This is less performant than native support but potentially
1046 * faster than raw sockets or similar schemes.
1047 *
1048 * In this "emulated" mode, netmap rings do not necessarily
1049 * have the same size as those in the NIC. We use a default
1050 * value and possibly override it if the OS has ways to fetch the
1051 * actual configuration.
1052 */
1053int
1054generic_netmap_attach(struct ifnet *ifp)
1055{
1056	struct netmap_adapter *na;
1057	struct netmap_generic_adapter *gna;
1058	int retval;
1059	u_int num_tx_desc, num_rx_desc;
1060
1061#ifdef __FreeBSD__
1062	if (ifp->if_type == IFT_LOOP) {
1063		nm_prerr("if_loop is not supported by %s", __func__);
1064		return EINVAL;
1065	}
1066#endif
1067
1068	if (NM_NA_CLASH(ifp)) {
1069		/* If NA(ifp) is not null but there is no valid netmap
1070		 * adapter it means that someone else is using the same
1071		 * pointer (e.g. ax25_ptr on linux). This happens for
1072		 * instance when also PF_RING is in use. */
1073		nm_prerr("Error: netmap adapter hook is busy");
1074		return EBUSY;
1075	}
1076
1077	num_tx_desc = num_rx_desc = netmap_generic_ringsize; /* starting point */
1078
1079	nm_os_generic_find_num_desc(ifp, &num_tx_desc, &num_rx_desc); /* ignore errors */
1080	if (num_tx_desc == 0 || num_rx_desc == 0) {
1081		nm_prerr("Device has no hw slots (tx %u, rx %u)", num_tx_desc, num_rx_desc);
1082		return EINVAL;
1083	}
1084
1085	gna = nm_os_malloc(sizeof(*gna));
1086	if (gna == NULL) {
1087		nm_prerr("no memory on attach, give up");
1088		return ENOMEM;
1089	}
1090	na = (struct netmap_adapter *)gna;
1091	strlcpy(na->name, ifp->if_xname, sizeof(na->name));
1092	na->ifp = ifp;
1093	na->num_tx_desc = num_tx_desc;
1094	na->num_rx_desc = num_rx_desc;
1095	na->rx_buf_maxsize = 32768;
1096	na->nm_register = &generic_netmap_register;
1097	na->nm_txsync = &generic_netmap_txsync;
1098	na->nm_rxsync = &generic_netmap_rxsync;
1099	na->nm_dtor = &generic_netmap_dtor;
1100	/* when using generic, NAF_NETMAP_ON is set so we force
1101	 * NAF_SKIP_INTR to use the regular interrupt handler
1102	 */
1103	na->na_flags = NAF_SKIP_INTR | NAF_HOST_RINGS;
1104
1105	nm_prdis("[GNA] num_tx_queues(%d), real_num_tx_queues(%d), len(%lu)",
1106			ifp->num_tx_queues, ifp->real_num_tx_queues,
1107			ifp->tx_queue_len);
1108	nm_prdis("[GNA] num_rx_queues(%d), real_num_rx_queues(%d)",
1109			ifp->num_rx_queues, ifp->real_num_rx_queues);
1110
1111	nm_os_generic_find_num_queues(ifp, &na->num_tx_rings, &na->num_rx_rings);
1112
1113	retval = netmap_attach_common(na);
1114	if (retval) {
1115		nm_os_free(gna);
1116		return retval;
1117	}
1118
1119	if (NM_NA_VALID(ifp)) {
1120		gna->prev = NA(ifp); /* save old na */
1121		netmap_adapter_get(gna->prev);
1122	}
1123	NM_ATTACH_NA(ifp, na);
1124
1125	nm_os_generic_set_features(gna);
1126
1127	nm_prinf("Emulated adapter for %s created (prev was %s)", na->name,
1128	    gna->prev ? gna->prev->name : "NULL");
1129
1130	return retval;
1131}
1132