if_mwl.c revision 196842
1/*-
2 * Copyright (c) 2007-2009 Sam Leffler, Errno Consulting
3 * Copyright (c) 2007-2008 Marvell Semiconductor, Inc.
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 *    notice, this list of conditions and the following disclaimer,
11 *    without modification.
12 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
13 *    similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
14 *    redistribution must be conditioned upon including a substantially
15 *    similar Disclaimer requirement for further binary redistribution.
16 *
17 * NO WARRANTY
18 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20 * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
21 * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
22 * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
23 * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
24 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
25 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
26 * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
27 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
28 * THE POSSIBILITY OF SUCH DAMAGES.
29 */
30
31#include <sys/cdefs.h>
32__FBSDID("$FreeBSD: head/sys/dev/mwl/if_mwl.c 196842 2009-09-04 22:34:57Z sam $");
33
34/*
35 * Driver for the Marvell 88W8363 Wireless LAN controller.
36 */
37
38#include "opt_inet.h"
39#include "opt_mwl.h"
40
41#include <sys/param.h>
42#include <sys/systm.h>
43#include <sys/sysctl.h>
44#include <sys/mbuf.h>
45#include <sys/malloc.h>
46#include <sys/lock.h>
47#include <sys/mutex.h>
48#include <sys/kernel.h>
49#include <sys/socket.h>
50#include <sys/sockio.h>
51#include <sys/errno.h>
52#include <sys/callout.h>
53#include <sys/bus.h>
54#include <sys/endian.h>
55#include <sys/kthread.h>
56#include <sys/taskqueue.h>
57
58#include <machine/bus.h>
59
60#include <net/if.h>
61#include <net/if_dl.h>
62#include <net/if_media.h>
63#include <net/if_types.h>
64#include <net/if_arp.h>
65#include <net/ethernet.h>
66#include <net/if_llc.h>
67
68#include <net/bpf.h>
69
70#include <net80211/ieee80211_var.h>
71#include <net80211/ieee80211_regdomain.h>
72
73#ifdef INET
74#include <netinet/in.h>
75#include <netinet/if_ether.h>
76#endif /* INET */
77
78#include <dev/mwl/if_mwlvar.h>
79#include <dev/mwl/mwldiag.h>
80
81/* idiomatic shorthands: MS = mask+shift, SM = shift+mask */
82#define	MS(v,x)	(((v) & x) >> x##_S)
83#define	SM(v,x)	(((v) << x##_S) & x)
84
85static struct ieee80211vap *mwl_vap_create(struct ieee80211com *,
86		    const char name[IFNAMSIZ], int unit, int opmode,
87		    int flags, const uint8_t bssid[IEEE80211_ADDR_LEN],
88		    const uint8_t mac[IEEE80211_ADDR_LEN]);
89static void	mwl_vap_delete(struct ieee80211vap *);
90static int	mwl_setupdma(struct mwl_softc *);
91static int	mwl_hal_reset(struct mwl_softc *sc);
92static int	mwl_init_locked(struct mwl_softc *);
93static void	mwl_init(void *);
94static void	mwl_stop_locked(struct ifnet *, int);
95static int	mwl_reset(struct ieee80211vap *, u_long);
96static void	mwl_stop(struct ifnet *, int);
97static void	mwl_start(struct ifnet *);
98static int	mwl_raw_xmit(struct ieee80211_node *, struct mbuf *,
99			const struct ieee80211_bpf_params *);
100static int	mwl_media_change(struct ifnet *);
101static void	mwl_watchdog(struct ifnet *);
102static int	mwl_ioctl(struct ifnet *, u_long, caddr_t);
103static void	mwl_radar_proc(void *, int);
104static void	mwl_chanswitch_proc(void *, int);
105static void	mwl_bawatchdog_proc(void *, int);
106static int	mwl_key_alloc(struct ieee80211vap *,
107			struct ieee80211_key *,
108			ieee80211_keyix *, ieee80211_keyix *);
109static int	mwl_key_delete(struct ieee80211vap *,
110			const struct ieee80211_key *);
111static int	mwl_key_set(struct ieee80211vap *, const struct ieee80211_key *,
112			const uint8_t mac[IEEE80211_ADDR_LEN]);
113static int	mwl_mode_init(struct mwl_softc *);
114static void	mwl_update_mcast(struct ifnet *);
115static void	mwl_update_promisc(struct ifnet *);
116static void	mwl_updateslot(struct ifnet *);
117static int	mwl_beacon_setup(struct ieee80211vap *);
118static void	mwl_beacon_update(struct ieee80211vap *, int);
119#ifdef MWL_HOST_PS_SUPPORT
120static void	mwl_update_ps(struct ieee80211vap *, int);
121static int	mwl_set_tim(struct ieee80211_node *, int);
122#endif
123static int	mwl_dma_setup(struct mwl_softc *);
124static void	mwl_dma_cleanup(struct mwl_softc *);
125static struct ieee80211_node *mwl_node_alloc(struct ieee80211vap *,
126		    const uint8_t [IEEE80211_ADDR_LEN]);
127static void	mwl_node_cleanup(struct ieee80211_node *);
128static void	mwl_node_drain(struct ieee80211_node *);
129static void	mwl_node_getsignal(const struct ieee80211_node *,
130			int8_t *, int8_t *);
131static void	mwl_node_getmimoinfo(const struct ieee80211_node *,
132			struct ieee80211_mimo_info *);
133static int	mwl_rxbuf_init(struct mwl_softc *, struct mwl_rxbuf *);
134static void	mwl_rx_proc(void *, int);
135static void	mwl_txq_init(struct mwl_softc *sc, struct mwl_txq *, int);
136static int	mwl_tx_setup(struct mwl_softc *, int, int);
137static int	mwl_wme_update(struct ieee80211com *);
138static void	mwl_tx_cleanupq(struct mwl_softc *, struct mwl_txq *);
139static void	mwl_tx_cleanup(struct mwl_softc *);
140static uint16_t	mwl_calcformat(uint8_t rate, const struct ieee80211_node *);
141static int	mwl_tx_start(struct mwl_softc *, struct ieee80211_node *,
142			     struct mwl_txbuf *, struct mbuf *);
143static void	mwl_tx_proc(void *, int);
144static int	mwl_chan_set(struct mwl_softc *, struct ieee80211_channel *);
145static void	mwl_draintxq(struct mwl_softc *);
146static void	mwl_cleartxq(struct mwl_softc *, struct ieee80211vap *);
147static int	mwl_recv_action(struct ieee80211_node *,
148			const struct ieee80211_frame *,
149			const uint8_t *, const uint8_t *);
150static int	mwl_addba_request(struct ieee80211_node *,
151			struct ieee80211_tx_ampdu *, int dialogtoken,
152			int baparamset, int batimeout);
153static int	mwl_addba_response(struct ieee80211_node *,
154			struct ieee80211_tx_ampdu *, int status,
155			int baparamset, int batimeout);
156static void	mwl_addba_stop(struct ieee80211_node *,
157			struct ieee80211_tx_ampdu *);
158static int	mwl_startrecv(struct mwl_softc *);
159static MWL_HAL_APMODE mwl_getapmode(const struct ieee80211vap *,
160			struct ieee80211_channel *);
161static int	mwl_setapmode(struct ieee80211vap *, struct ieee80211_channel*);
162static void	mwl_scan_start(struct ieee80211com *);
163static void	mwl_scan_end(struct ieee80211com *);
164static void	mwl_set_channel(struct ieee80211com *);
165static int	mwl_peerstadb(struct ieee80211_node *,
166			int aid, int staid, MWL_HAL_PEERINFO *pi);
167static int	mwl_localstadb(struct ieee80211vap *);
168static int	mwl_newstate(struct ieee80211vap *, enum ieee80211_state, int);
169static int	allocstaid(struct mwl_softc *sc, int aid);
170static void	delstaid(struct mwl_softc *sc, int staid);
171static void	mwl_newassoc(struct ieee80211_node *, int);
172static void	mwl_agestations(void *);
173static int	mwl_setregdomain(struct ieee80211com *,
174			struct ieee80211_regdomain *, int,
175			struct ieee80211_channel []);
176static void	mwl_getradiocaps(struct ieee80211com *, int, int *,
177			struct ieee80211_channel []);
178static int	mwl_getchannels(struct mwl_softc *);
179
180static void	mwl_sysctlattach(struct mwl_softc *);
181static void	mwl_announce(struct mwl_softc *);
182
183SYSCTL_NODE(_hw, OID_AUTO, mwl, CTLFLAG_RD, 0, "Marvell driver parameters");
184
185static	int mwl_rxdesc = MWL_RXDESC;		/* # rx desc's to allocate */
186SYSCTL_INT(_hw_mwl, OID_AUTO, rxdesc, CTLFLAG_RW, &mwl_rxdesc,
187	    0, "rx descriptors allocated");
188static	int mwl_rxbuf = MWL_RXBUF;		/* # rx buffers to allocate */
189SYSCTL_INT(_hw_mwl, OID_AUTO, rxbuf, CTLFLAG_RW, &mwl_rxbuf,
190	    0, "rx buffers allocated");
191TUNABLE_INT("hw.mwl.rxbuf", &mwl_rxbuf);
192static	int mwl_txbuf = MWL_TXBUF;		/* # tx buffers to allocate */
193SYSCTL_INT(_hw_mwl, OID_AUTO, txbuf, CTLFLAG_RW, &mwl_txbuf,
194	    0, "tx buffers allocated");
195TUNABLE_INT("hw.mwl.txbuf", &mwl_txbuf);
196static	int mwl_txcoalesce = 8;		/* # tx packets to q before poking f/w*/
197SYSCTL_INT(_hw_mwl, OID_AUTO, txcoalesce, CTLFLAG_RW, &mwl_txcoalesce,
198	    0, "tx buffers to send at once");
199TUNABLE_INT("hw.mwl.txcoalesce", &mwl_txcoalesce);
200static	int mwl_rxquota = MWL_RXBUF;		/* # max buffers to process */
201SYSCTL_INT(_hw_mwl, OID_AUTO, rxquota, CTLFLAG_RW, &mwl_rxquota,
202	    0, "max rx buffers to process per interrupt");
203TUNABLE_INT("hw.mwl.rxquota", &mwl_rxquota);
204static	int mwl_rxdmalow = 3;			/* # min buffers for wakeup */
205SYSCTL_INT(_hw_mwl, OID_AUTO, rxdmalow, CTLFLAG_RW, &mwl_rxdmalow,
206	    0, "min free rx buffers before restarting traffic");
207TUNABLE_INT("hw.mwl.rxdmalow", &mwl_rxdmalow);
208
209#ifdef MWL_DEBUG
210static	int mwl_debug = 0;
211SYSCTL_INT(_hw_mwl, OID_AUTO, debug, CTLFLAG_RW, &mwl_debug,
212	    0, "control debugging printfs");
213TUNABLE_INT("hw.mwl.debug", &mwl_debug);
214enum {
215	MWL_DEBUG_XMIT		= 0x00000001,	/* basic xmit operation */
216	MWL_DEBUG_XMIT_DESC	= 0x00000002,	/* xmit descriptors */
217	MWL_DEBUG_RECV		= 0x00000004,	/* basic recv operation */
218	MWL_DEBUG_RECV_DESC	= 0x00000008,	/* recv descriptors */
219	MWL_DEBUG_RESET		= 0x00000010,	/* reset processing */
220	MWL_DEBUG_BEACON 	= 0x00000020,	/* beacon handling */
221	MWL_DEBUG_INTR		= 0x00000040,	/* ISR */
222	MWL_DEBUG_TX_PROC	= 0x00000080,	/* tx ISR proc */
223	MWL_DEBUG_RX_PROC	= 0x00000100,	/* rx ISR proc */
224	MWL_DEBUG_KEYCACHE	= 0x00000200,	/* key cache management */
225	MWL_DEBUG_STATE		= 0x00000400,	/* 802.11 state transitions */
226	MWL_DEBUG_NODE		= 0x00000800,	/* node management */
227	MWL_DEBUG_RECV_ALL	= 0x00001000,	/* trace all frames (beacons) */
228	MWL_DEBUG_TSO		= 0x00002000,	/* TSO processing */
229	MWL_DEBUG_AMPDU		= 0x00004000,	/* BA stream handling */
230	MWL_DEBUG_ANY		= 0xffffffff
231};
232#define	IS_BEACON(wh) \
233    ((wh->i_fc[0] & (IEEE80211_FC0_TYPE_MASK|IEEE80211_FC0_SUBTYPE_MASK)) == \
234	 (IEEE80211_FC0_TYPE_MGT|IEEE80211_FC0_SUBTYPE_BEACON))
235#define	IFF_DUMPPKTS_RECV(sc, wh) \
236    (((sc->sc_debug & MWL_DEBUG_RECV) && \
237      ((sc->sc_debug & MWL_DEBUG_RECV_ALL) || !IS_BEACON(wh))) || \
238     (sc->sc_ifp->if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
239#define	IFF_DUMPPKTS_XMIT(sc) \
240	((sc->sc_debug & MWL_DEBUG_XMIT) || \
241	 (sc->sc_ifp->if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
242#define	DPRINTF(sc, m, fmt, ...) do {				\
243	if (sc->sc_debug & (m))					\
244		printf(fmt, __VA_ARGS__);			\
245} while (0)
246#define	KEYPRINTF(sc, hk, mac) do {				\
247	if (sc->sc_debug & MWL_DEBUG_KEYCACHE)			\
248		mwl_keyprint(sc, __func__, hk, mac);		\
249} while (0)
250static	void mwl_printrxbuf(const struct mwl_rxbuf *bf, u_int ix);
251static	void mwl_printtxbuf(const struct mwl_txbuf *bf, u_int qnum, u_int ix);
252#else
253#define	IFF_DUMPPKTS_RECV(sc, wh) \
254	((sc->sc_ifp->if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
255#define	IFF_DUMPPKTS_XMIT(sc) \
256	((sc->sc_ifp->if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
257#define	DPRINTF(sc, m, fmt, ...) do {				\
258	(void) sc;						\
259} while (0)
260#define	KEYPRINTF(sc, k, mac) do {				\
261	(void) sc;						\
262} while (0)
263#endif
264
265MALLOC_DEFINE(M_MWLDEV, "mwldev", "mwl driver dma buffers");
266
267/*
268 * Each packet has fixed front matter: a 2-byte length
269 * of the payload, followed by a 4-address 802.11 header
270 * (regardless of the actual header and always w/o any
271 * QoS header).  The payload then follows.
272 */
273struct mwltxrec {
274	uint16_t fwlen;
275	struct ieee80211_frame_addr4 wh;
276} __packed;
277
278/*
279 * Read/Write shorthands for accesses to BAR 0.  Note
280 * that all BAR 1 operations are done in the "hal" and
281 * there should be no reference to them here.
282 */
283static __inline uint32_t
284RD4(struct mwl_softc *sc, bus_size_t off)
285{
286	return bus_space_read_4(sc->sc_io0t, sc->sc_io0h, off);
287}
288
289static __inline void
290WR4(struct mwl_softc *sc, bus_size_t off, uint32_t val)
291{
292	bus_space_write_4(sc->sc_io0t, sc->sc_io0h, off, val);
293}
294
295int
296mwl_attach(uint16_t devid, struct mwl_softc *sc)
297{
298	struct ifnet *ifp;
299	struct ieee80211com *ic;
300	struct mwl_hal *mh;
301	int error = 0;
302
303	DPRINTF(sc, MWL_DEBUG_ANY, "%s: devid 0x%x\n", __func__, devid);
304
305	ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211);
306	if (ifp == NULL) {
307		device_printf(sc->sc_dev, "can not if_alloc()\n");
308		return ENOSPC;
309	}
310	ic = ifp->if_l2com;
311
312	/* set these up early for if_printf use */
313	if_initname(ifp, device_get_name(sc->sc_dev),
314		device_get_unit(sc->sc_dev));
315
316	mh = mwl_hal_attach(sc->sc_dev, devid,
317	    sc->sc_io1h, sc->sc_io1t, sc->sc_dmat);
318	if (mh == NULL) {
319		if_printf(ifp, "unable to attach HAL\n");
320		error = EIO;
321		goto bad;
322	}
323	sc->sc_mh = mh;
324	/*
325	 * Load firmware so we can get setup.  We arbitrarily
326	 * pick station firmware; we'll re-load firmware as
327	 * needed so setting up the wrong mode isn't a big deal.
328	 */
329	if (mwl_hal_fwload(mh, NULL) != 0) {
330		if_printf(ifp, "unable to setup builtin firmware\n");
331		error = EIO;
332		goto bad1;
333	}
334	if (mwl_hal_gethwspecs(mh, &sc->sc_hwspecs) != 0) {
335		if_printf(ifp, "unable to fetch h/w specs\n");
336		error = EIO;
337		goto bad1;
338	}
339	error = mwl_getchannels(sc);
340	if (error != 0)
341		goto bad1;
342
343	sc->sc_txantenna = 0;		/* h/w default */
344	sc->sc_rxantenna = 0;		/* h/w default */
345	sc->sc_invalid = 0;		/* ready to go, enable int handling */
346	sc->sc_ageinterval = MWL_AGEINTERVAL;
347
348	/*
349	 * Allocate tx+rx descriptors and populate the lists.
350	 * We immediately push the information to the firmware
351	 * as otherwise it gets upset.
352	 */
353	error = mwl_dma_setup(sc);
354	if (error != 0) {
355		if_printf(ifp, "failed to setup descriptors: %d\n", error);
356		goto bad1;
357	}
358	error = mwl_setupdma(sc);	/* push to firmware */
359	if (error != 0)			/* NB: mwl_setupdma prints msg */
360		goto bad1;
361
362	callout_init(&sc->sc_timer, CALLOUT_MPSAFE);
363
364	sc->sc_tq = taskqueue_create("mwl_taskq", M_NOWAIT,
365		taskqueue_thread_enqueue, &sc->sc_tq);
366	taskqueue_start_threads(&sc->sc_tq, 1, PI_NET,
367		"%s taskq", ifp->if_xname);
368
369	TASK_INIT(&sc->sc_rxtask, 0, mwl_rx_proc, sc);
370	TASK_INIT(&sc->sc_radartask, 0, mwl_radar_proc, sc);
371	TASK_INIT(&sc->sc_chanswitchtask, 0, mwl_chanswitch_proc, sc);
372	TASK_INIT(&sc->sc_bawatchdogtask, 0, mwl_bawatchdog_proc, sc);
373
374	/* NB: insure BK queue is the lowest priority h/w queue */
375	if (!mwl_tx_setup(sc, WME_AC_BK, MWL_WME_AC_BK)) {
376		if_printf(ifp, "unable to setup xmit queue for %s traffic!\n",
377			ieee80211_wme_acnames[WME_AC_BK]);
378		error = EIO;
379		goto bad2;
380	}
381	if (!mwl_tx_setup(sc, WME_AC_BE, MWL_WME_AC_BE) ||
382	    !mwl_tx_setup(sc, WME_AC_VI, MWL_WME_AC_VI) ||
383	    !mwl_tx_setup(sc, WME_AC_VO, MWL_WME_AC_VO)) {
384		/*
385		 * Not enough hardware tx queues to properly do WME;
386		 * just punt and assign them all to the same h/w queue.
387		 * We could do a better job of this if, for example,
388		 * we allocate queues when we switch from station to
389		 * AP mode.
390		 */
391		if (sc->sc_ac2q[WME_AC_VI] != NULL)
392			mwl_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_VI]);
393		if (sc->sc_ac2q[WME_AC_BE] != NULL)
394			mwl_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_BE]);
395		sc->sc_ac2q[WME_AC_BE] = sc->sc_ac2q[WME_AC_BK];
396		sc->sc_ac2q[WME_AC_VI] = sc->sc_ac2q[WME_AC_BK];
397		sc->sc_ac2q[WME_AC_VO] = sc->sc_ac2q[WME_AC_BK];
398	}
399	TASK_INIT(&sc->sc_txtask, 0, mwl_tx_proc, sc);
400
401	ifp->if_softc = sc;
402	ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST;
403	ifp->if_start = mwl_start;
404	ifp->if_watchdog = mwl_watchdog;
405	ifp->if_ioctl = mwl_ioctl;
406	ifp->if_init = mwl_init;
407	IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN);
408	ifp->if_snd.ifq_drv_maxlen = IFQ_MAXLEN;
409	IFQ_SET_READY(&ifp->if_snd);
410
411	ic->ic_ifp = ifp;
412	/* XXX not right but it's not used anywhere important */
413	ic->ic_phytype = IEEE80211_T_OFDM;
414	ic->ic_opmode = IEEE80211_M_STA;
415	ic->ic_caps =
416		  IEEE80211_C_STA		/* station mode supported */
417		| IEEE80211_C_HOSTAP		/* hostap mode */
418		| IEEE80211_C_MONITOR		/* monitor mode */
419#if 0
420		| IEEE80211_C_IBSS		/* ibss, nee adhoc, mode */
421		| IEEE80211_C_AHDEMO		/* adhoc demo mode */
422#endif
423		| IEEE80211_C_MBSS		/* mesh point link mode */
424		| IEEE80211_C_WDS		/* WDS supported */
425		| IEEE80211_C_SHPREAMBLE	/* short preamble supported */
426		| IEEE80211_C_SHSLOT		/* short slot time supported */
427		| IEEE80211_C_WME		/* WME/WMM supported */
428		| IEEE80211_C_BURST		/* xmit bursting supported */
429		| IEEE80211_C_WPA		/* capable of WPA1+WPA2 */
430		| IEEE80211_C_BGSCAN		/* capable of bg scanning */
431		| IEEE80211_C_TXFRAG		/* handle tx frags */
432		| IEEE80211_C_TXPMGT		/* capable of txpow mgt */
433		| IEEE80211_C_DFS		/* DFS supported */
434		;
435
436	ic->ic_htcaps =
437		  IEEE80211_HTCAP_SMPS_ENA	/* SM PS mode enabled */
438		| IEEE80211_HTCAP_CHWIDTH40	/* 40MHz channel width */
439		| IEEE80211_HTCAP_SHORTGI20	/* short GI in 20MHz */
440		| IEEE80211_HTCAP_SHORTGI40	/* short GI in 40MHz */
441		| IEEE80211_HTCAP_RXSTBC_2STREAM/* 1-2 spatial streams */
442#if MWL_AGGR_SIZE == 7935
443		| IEEE80211_HTCAP_MAXAMSDU_7935	/* max A-MSDU length */
444#else
445		| IEEE80211_HTCAP_MAXAMSDU_3839	/* max A-MSDU length */
446#endif
447#if 0
448		| IEEE80211_HTCAP_PSMP		/* PSMP supported */
449		| IEEE80211_HTCAP_40INTOLERANT	/* 40MHz intolerant */
450#endif
451		/* s/w capabilities */
452		| IEEE80211_HTC_HT		/* HT operation */
453		| IEEE80211_HTC_AMPDU		/* tx A-MPDU */
454		| IEEE80211_HTC_AMSDU		/* tx A-MSDU */
455		| IEEE80211_HTC_SMPS		/* SMPS available */
456		;
457
458	/*
459	 * Mark h/w crypto support.
460	 * XXX no way to query h/w support.
461	 */
462	ic->ic_cryptocaps |= IEEE80211_CRYPTO_WEP
463			  |  IEEE80211_CRYPTO_AES_CCM
464			  |  IEEE80211_CRYPTO_TKIP
465			  |  IEEE80211_CRYPTO_TKIPMIC
466			  ;
467	/*
468	 * Transmit requires space in the packet for a special
469	 * format transmit record and optional padding between
470	 * this record and the payload.  Ask the net80211 layer
471	 * to arrange this when encapsulating packets so we can
472	 * add it efficiently.
473	 */
474	ic->ic_headroom = sizeof(struct mwltxrec) -
475		sizeof(struct ieee80211_frame);
476
477	/* call MI attach routine. */
478	ieee80211_ifattach(ic, sc->sc_hwspecs.macAddr);
479	ic->ic_setregdomain = mwl_setregdomain;
480	ic->ic_getradiocaps = mwl_getradiocaps;
481	/* override default methods */
482	ic->ic_raw_xmit = mwl_raw_xmit;
483	ic->ic_newassoc = mwl_newassoc;
484	ic->ic_updateslot = mwl_updateslot;
485	ic->ic_update_mcast = mwl_update_mcast;
486	ic->ic_update_promisc = mwl_update_promisc;
487	ic->ic_wme.wme_update = mwl_wme_update;
488
489	ic->ic_node_alloc = mwl_node_alloc;
490	sc->sc_node_cleanup = ic->ic_node_cleanup;
491	ic->ic_node_cleanup = mwl_node_cleanup;
492	sc->sc_node_drain = ic->ic_node_drain;
493	ic->ic_node_drain = mwl_node_drain;
494	ic->ic_node_getsignal = mwl_node_getsignal;
495	ic->ic_node_getmimoinfo = mwl_node_getmimoinfo;
496
497	ic->ic_scan_start = mwl_scan_start;
498	ic->ic_scan_end = mwl_scan_end;
499	ic->ic_set_channel = mwl_set_channel;
500
501	sc->sc_recv_action = ic->ic_recv_action;
502	ic->ic_recv_action = mwl_recv_action;
503	sc->sc_addba_request = ic->ic_addba_request;
504	ic->ic_addba_request = mwl_addba_request;
505	sc->sc_addba_response = ic->ic_addba_response;
506	ic->ic_addba_response = mwl_addba_response;
507	sc->sc_addba_stop = ic->ic_addba_stop;
508	ic->ic_addba_stop = mwl_addba_stop;
509
510	ic->ic_vap_create = mwl_vap_create;
511	ic->ic_vap_delete = mwl_vap_delete;
512
513	ieee80211_radiotap_attach(ic,
514	    &sc->sc_tx_th.wt_ihdr, sizeof(sc->sc_tx_th),
515		MWL_TX_RADIOTAP_PRESENT,
516	    &sc->sc_rx_th.wr_ihdr, sizeof(sc->sc_rx_th),
517		MWL_RX_RADIOTAP_PRESENT);
518	/*
519	 * Setup dynamic sysctl's now that country code and
520	 * regdomain are available from the hal.
521	 */
522	mwl_sysctlattach(sc);
523
524	if (bootverbose)
525		ieee80211_announce(ic);
526	mwl_announce(sc);
527	return 0;
528bad2:
529	mwl_dma_cleanup(sc);
530bad1:
531	mwl_hal_detach(mh);
532bad:
533	if_free(ifp);
534	sc->sc_invalid = 1;
535	return error;
536}
537
538int
539mwl_detach(struct mwl_softc *sc)
540{
541	struct ifnet *ifp = sc->sc_ifp;
542	struct ieee80211com *ic = ifp->if_l2com;
543
544	DPRINTF(sc, MWL_DEBUG_ANY, "%s: if_flags %x\n",
545		__func__, ifp->if_flags);
546
547	mwl_stop(ifp, 1);
548	/*
549	 * NB: the order of these is important:
550	 * o call the 802.11 layer before detaching the hal to
551	 *   insure callbacks into the driver to delete global
552	 *   key cache entries can be handled
553	 * o reclaim the tx queue data structures after calling
554	 *   the 802.11 layer as we'll get called back to reclaim
555	 *   node state and potentially want to use them
556	 * o to cleanup the tx queues the hal is called, so detach
557	 *   it last
558	 * Other than that, it's straightforward...
559	 */
560	ieee80211_ifdetach(ic);
561	mwl_dma_cleanup(sc);
562	mwl_tx_cleanup(sc);
563	mwl_hal_detach(sc->sc_mh);
564	if_free(ifp);
565
566	return 0;
567}
568
569/*
570 * MAC address handling for multiple BSS on the same radio.
571 * The first vap uses the MAC address from the EEPROM.  For
572 * subsequent vap's we set the U/L bit (bit 1) in the MAC
573 * address and use the next six bits as an index.
574 */
575static void
576assign_address(struct mwl_softc *sc, uint8_t mac[IEEE80211_ADDR_LEN], int clone)
577{
578	int i;
579
580	if (clone && mwl_hal_ismbsscapable(sc->sc_mh)) {
581		/* NB: we only do this if h/w supports multiple bssid */
582		for (i = 0; i < 32; i++)
583			if ((sc->sc_bssidmask & (1<<i)) == 0)
584				break;
585		if (i != 0)
586			mac[0] |= (i << 2)|0x2;
587	} else
588		i = 0;
589	sc->sc_bssidmask |= 1<<i;
590	if (i == 0)
591		sc->sc_nbssid0++;
592}
593
594static void
595reclaim_address(struct mwl_softc *sc, uint8_t mac[IEEE80211_ADDR_LEN])
596{
597	int i = mac[0] >> 2;
598	if (i != 0 || --sc->sc_nbssid0 == 0)
599		sc->sc_bssidmask &= ~(1<<i);
600}
601
602static struct ieee80211vap *
603mwl_vap_create(struct ieee80211com *ic,
604	const char name[IFNAMSIZ], int unit, int opmode, int flags,
605	const uint8_t bssid[IEEE80211_ADDR_LEN],
606	const uint8_t mac0[IEEE80211_ADDR_LEN])
607{
608	struct ifnet *ifp = ic->ic_ifp;
609	struct mwl_softc *sc = ifp->if_softc;
610	struct mwl_hal *mh = sc->sc_mh;
611	struct ieee80211vap *vap, *apvap;
612	struct mwl_hal_vap *hvap;
613	struct mwl_vap *mvp;
614	uint8_t mac[IEEE80211_ADDR_LEN];
615
616	IEEE80211_ADDR_COPY(mac, mac0);
617	switch (opmode) {
618	case IEEE80211_M_HOSTAP:
619	case IEEE80211_M_MBSS:
620		if ((flags & IEEE80211_CLONE_MACADDR) == 0)
621			assign_address(sc, mac, flags & IEEE80211_CLONE_BSSID);
622		hvap = mwl_hal_newvap(mh, MWL_HAL_AP, mac);
623		if (hvap == NULL) {
624			if ((flags & IEEE80211_CLONE_MACADDR) == 0)
625				reclaim_address(sc, mac);
626			return NULL;
627		}
628		break;
629	case IEEE80211_M_STA:
630		if ((flags & IEEE80211_CLONE_MACADDR) == 0)
631			assign_address(sc, mac, flags & IEEE80211_CLONE_BSSID);
632		hvap = mwl_hal_newvap(mh, MWL_HAL_STA, mac);
633		if (hvap == NULL) {
634			if ((flags & IEEE80211_CLONE_MACADDR) == 0)
635				reclaim_address(sc, mac);
636			return NULL;
637		}
638		/* no h/w beacon miss support; always use s/w */
639		flags |= IEEE80211_CLONE_NOBEACONS;
640		break;
641	case IEEE80211_M_WDS:
642		hvap = NULL;		/* NB: we use associated AP vap */
643		if (sc->sc_napvaps == 0)
644			return NULL;	/* no existing AP vap */
645		break;
646	case IEEE80211_M_MONITOR:
647		hvap = NULL;
648		break;
649	case IEEE80211_M_IBSS:
650	case IEEE80211_M_AHDEMO:
651	default:
652		return NULL;
653	}
654
655	mvp = (struct mwl_vap *) malloc(sizeof(struct mwl_vap),
656	    M_80211_VAP, M_NOWAIT | M_ZERO);
657	if (mvp == NULL) {
658		if (hvap != NULL) {
659			mwl_hal_delvap(hvap);
660			if ((flags & IEEE80211_CLONE_MACADDR) == 0)
661				reclaim_address(sc, mac);
662		}
663		/* XXX msg */
664		return NULL;
665	}
666	mvp->mv_hvap = hvap;
667	if (opmode == IEEE80211_M_WDS) {
668		/*
669		 * WDS vaps must have an associated AP vap; find one.
670		 * XXX not right.
671		 */
672		TAILQ_FOREACH(apvap, &ic->ic_vaps, iv_next)
673			if (apvap->iv_opmode == IEEE80211_M_HOSTAP) {
674				mvp->mv_ap_hvap = MWL_VAP(apvap)->mv_hvap;
675				break;
676			}
677		KASSERT(mvp->mv_ap_hvap != NULL, ("no ap vap"));
678	}
679	vap = &mvp->mv_vap;
680	ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid, mac);
681	if (hvap != NULL)
682		IEEE80211_ADDR_COPY(vap->iv_myaddr, mac);
683	/* override with driver methods */
684	mvp->mv_newstate = vap->iv_newstate;
685	vap->iv_newstate = mwl_newstate;
686	vap->iv_max_keyix = 0;	/* XXX */
687	vap->iv_key_alloc = mwl_key_alloc;
688	vap->iv_key_delete = mwl_key_delete;
689	vap->iv_key_set = mwl_key_set;
690#ifdef MWL_HOST_PS_SUPPORT
691	if (opmode == IEEE80211_M_HOSTAP || opmode == IEEE80211_M_MBSS) {
692		vap->iv_update_ps = mwl_update_ps;
693		mvp->mv_set_tim = vap->iv_set_tim;
694		vap->iv_set_tim = mwl_set_tim;
695	}
696#endif
697	vap->iv_reset = mwl_reset;
698	vap->iv_update_beacon = mwl_beacon_update;
699
700	/* override max aid so sta's cannot assoc when we're out of sta id's */
701	vap->iv_max_aid = MWL_MAXSTAID;
702	/* override default A-MPDU rx parameters */
703	vap->iv_ampdu_rxmax = IEEE80211_HTCAP_MAXRXAMPDU_64K;
704	vap->iv_ampdu_density = IEEE80211_HTCAP_MPDUDENSITY_4;
705
706	/* complete setup */
707	ieee80211_vap_attach(vap, mwl_media_change, ieee80211_media_status);
708
709	switch (vap->iv_opmode) {
710	case IEEE80211_M_HOSTAP:
711	case IEEE80211_M_MBSS:
712	case IEEE80211_M_STA:
713		/*
714		 * Setup sta db entry for local address.
715		 */
716		mwl_localstadb(vap);
717		if (vap->iv_opmode == IEEE80211_M_HOSTAP ||
718		    vap->iv_opmode == IEEE80211_M_MBSS)
719			sc->sc_napvaps++;
720		else
721			sc->sc_nstavaps++;
722		break;
723	case IEEE80211_M_WDS:
724		sc->sc_nwdsvaps++;
725		break;
726	default:
727		break;
728	}
729	/*
730	 * Setup overall operating mode.
731	 */
732	if (sc->sc_napvaps)
733		ic->ic_opmode = IEEE80211_M_HOSTAP;
734	else if (sc->sc_nstavaps)
735		ic->ic_opmode = IEEE80211_M_STA;
736	else
737		ic->ic_opmode = opmode;
738
739	return vap;
740}
741
742static void
743mwl_vap_delete(struct ieee80211vap *vap)
744{
745	struct mwl_vap *mvp = MWL_VAP(vap);
746	struct ifnet *parent = vap->iv_ic->ic_ifp;
747	struct mwl_softc *sc = parent->if_softc;
748	struct mwl_hal *mh = sc->sc_mh;
749	struct mwl_hal_vap *hvap = mvp->mv_hvap;
750	enum ieee80211_opmode opmode = vap->iv_opmode;
751
752	/* XXX disallow ap vap delete if WDS still present */
753	if (parent->if_drv_flags & IFF_DRV_RUNNING) {
754		/* quiesce h/w while we remove the vap */
755		mwl_hal_intrset(mh, 0);		/* disable interrupts */
756	}
757	ieee80211_vap_detach(vap);
758	switch (opmode) {
759	case IEEE80211_M_HOSTAP:
760	case IEEE80211_M_MBSS:
761	case IEEE80211_M_STA:
762		KASSERT(hvap != NULL, ("no hal vap handle"));
763		(void) mwl_hal_delstation(hvap, vap->iv_myaddr);
764		mwl_hal_delvap(hvap);
765		if (opmode == IEEE80211_M_HOSTAP || opmode == IEEE80211_M_MBSS)
766			sc->sc_napvaps--;
767		else
768			sc->sc_nstavaps--;
769		/* XXX don't do it for IEEE80211_CLONE_MACADDR */
770		reclaim_address(sc, vap->iv_myaddr);
771		break;
772	case IEEE80211_M_WDS:
773		sc->sc_nwdsvaps--;
774		break;
775	default:
776		break;
777	}
778	mwl_cleartxq(sc, vap);
779	free(mvp, M_80211_VAP);
780	if (parent->if_drv_flags & IFF_DRV_RUNNING)
781		mwl_hal_intrset(mh, sc->sc_imask);
782}
783
784void
785mwl_suspend(struct mwl_softc *sc)
786{
787	struct ifnet *ifp = sc->sc_ifp;
788
789	DPRINTF(sc, MWL_DEBUG_ANY, "%s: if_flags %x\n",
790		__func__, ifp->if_flags);
791
792	mwl_stop(ifp, 1);
793}
794
795void
796mwl_resume(struct mwl_softc *sc)
797{
798	struct ifnet *ifp = sc->sc_ifp;
799
800	DPRINTF(sc, MWL_DEBUG_ANY, "%s: if_flags %x\n",
801		__func__, ifp->if_flags);
802
803	if (ifp->if_flags & IFF_UP)
804		mwl_init(sc);
805}
806
807void
808mwl_shutdown(void *arg)
809{
810	struct mwl_softc *sc = arg;
811
812	mwl_stop(sc->sc_ifp, 1);
813}
814
815/*
816 * Interrupt handler.  Most of the actual processing is deferred.
817 */
818void
819mwl_intr(void *arg)
820{
821	struct mwl_softc *sc = arg;
822	struct mwl_hal *mh = sc->sc_mh;
823	uint32_t status;
824
825	if (sc->sc_invalid) {
826		/*
827		 * The hardware is not ready/present, don't touch anything.
828		 * Note this can happen early on if the IRQ is shared.
829		 */
830		DPRINTF(sc, MWL_DEBUG_ANY, "%s: invalid; ignored\n", __func__);
831		return;
832	}
833	/*
834	 * Figure out the reason(s) for the interrupt.
835	 */
836	mwl_hal_getisr(mh, &status);		/* NB: clears ISR too */
837	if (status == 0)			/* must be a shared irq */
838		return;
839
840	DPRINTF(sc, MWL_DEBUG_INTR, "%s: status 0x%x imask 0x%x\n",
841	    __func__, status, sc->sc_imask);
842	if (status & MACREG_A2HRIC_BIT_RX_RDY)
843		taskqueue_enqueue(sc->sc_tq, &sc->sc_rxtask);
844	if (status & MACREG_A2HRIC_BIT_TX_DONE)
845		taskqueue_enqueue(sc->sc_tq, &sc->sc_txtask);
846	if (status & MACREG_A2HRIC_BIT_BA_WATCHDOG)
847		taskqueue_enqueue(sc->sc_tq, &sc->sc_bawatchdogtask);
848	if (status & MACREG_A2HRIC_BIT_OPC_DONE)
849		mwl_hal_cmddone(mh);
850	if (status & MACREG_A2HRIC_BIT_MAC_EVENT) {
851		;
852	}
853	if (status & MACREG_A2HRIC_BIT_ICV_ERROR) {
854		/* TKIP ICV error */
855		sc->sc_stats.mst_rx_badtkipicv++;
856	}
857	if (status & MACREG_A2HRIC_BIT_QUEUE_EMPTY) {
858		/* 11n aggregation queue is empty, re-fill */
859		;
860	}
861	if (status & MACREG_A2HRIC_BIT_QUEUE_FULL) {
862		;
863	}
864	if (status & MACREG_A2HRIC_BIT_RADAR_DETECT) {
865		/* radar detected, process event */
866		taskqueue_enqueue(sc->sc_tq, &sc->sc_radartask);
867	}
868	if (status & MACREG_A2HRIC_BIT_CHAN_SWITCH) {
869		/* DFS channel switch */
870		taskqueue_enqueue(sc->sc_tq, &sc->sc_chanswitchtask);
871	}
872}
873
874static void
875mwl_radar_proc(void *arg, int pending)
876{
877	struct mwl_softc *sc = arg;
878	struct ifnet *ifp = sc->sc_ifp;
879	struct ieee80211com *ic = ifp->if_l2com;
880
881	DPRINTF(sc, MWL_DEBUG_ANY, "%s: radar detected, pending %u\n",
882	    __func__, pending);
883
884	sc->sc_stats.mst_radardetect++;
885	/* XXX stop h/w BA streams? */
886
887	IEEE80211_LOCK(ic);
888	ieee80211_dfs_notify_radar(ic, ic->ic_curchan);
889	IEEE80211_UNLOCK(ic);
890}
891
892static void
893mwl_chanswitch_proc(void *arg, int pending)
894{
895	struct mwl_softc *sc = arg;
896	struct ifnet *ifp = sc->sc_ifp;
897	struct ieee80211com *ic = ifp->if_l2com;
898
899	DPRINTF(sc, MWL_DEBUG_ANY, "%s: channel switch notice, pending %u\n",
900	    __func__, pending);
901
902	IEEE80211_LOCK(ic);
903	sc->sc_csapending = 0;
904	ieee80211_csa_completeswitch(ic);
905	IEEE80211_UNLOCK(ic);
906}
907
908static void
909mwl_bawatchdog(const MWL_HAL_BASTREAM *sp)
910{
911	struct ieee80211_node *ni = sp->data[0];
912
913	/* send DELBA and drop the stream */
914	ieee80211_ampdu_stop(ni, sp->data[1], IEEE80211_REASON_UNSPECIFIED);
915}
916
917static void
918mwl_bawatchdog_proc(void *arg, int pending)
919{
920	struct mwl_softc *sc = arg;
921	struct mwl_hal *mh = sc->sc_mh;
922	const MWL_HAL_BASTREAM *sp;
923	uint8_t bitmap, n;
924
925	sc->sc_stats.mst_bawatchdog++;
926
927	if (mwl_hal_getwatchdogbitmap(mh, &bitmap) != 0) {
928		DPRINTF(sc, MWL_DEBUG_AMPDU,
929		    "%s: could not get bitmap\n", __func__);
930		sc->sc_stats.mst_bawatchdog_failed++;
931		return;
932	}
933	DPRINTF(sc, MWL_DEBUG_AMPDU, "%s: bitmap 0x%x\n", __func__, bitmap);
934	if (bitmap == 0xff) {
935		n = 0;
936		/* disable all ba streams */
937		for (bitmap = 0; bitmap < 8; bitmap++) {
938			sp = mwl_hal_bastream_lookup(mh, bitmap);
939			if (sp != NULL) {
940				mwl_bawatchdog(sp);
941				n++;
942			}
943		}
944		if (n == 0) {
945			DPRINTF(sc, MWL_DEBUG_AMPDU,
946			    "%s: no BA streams found\n", __func__);
947			sc->sc_stats.mst_bawatchdog_empty++;
948		}
949	} else if (bitmap != 0xaa) {
950		/* disable a single ba stream */
951		sp = mwl_hal_bastream_lookup(mh, bitmap);
952		if (sp != NULL) {
953			mwl_bawatchdog(sp);
954		} else {
955			DPRINTF(sc, MWL_DEBUG_AMPDU,
956			    "%s: no BA stream %d\n", __func__, bitmap);
957			sc->sc_stats.mst_bawatchdog_notfound++;
958		}
959	}
960}
961
962/*
963 * Convert net80211 channel to a HAL channel.
964 */
965static void
966mwl_mapchan(MWL_HAL_CHANNEL *hc, const struct ieee80211_channel *chan)
967{
968	hc->channel = chan->ic_ieee;
969
970	*(uint32_t *)&hc->channelFlags = 0;
971	if (IEEE80211_IS_CHAN_2GHZ(chan))
972		hc->channelFlags.FreqBand = MWL_FREQ_BAND_2DOT4GHZ;
973	else if (IEEE80211_IS_CHAN_5GHZ(chan))
974		hc->channelFlags.FreqBand = MWL_FREQ_BAND_5GHZ;
975	if (IEEE80211_IS_CHAN_HT40(chan)) {
976		hc->channelFlags.ChnlWidth = MWL_CH_40_MHz_WIDTH;
977		if (IEEE80211_IS_CHAN_HT40U(chan))
978			hc->channelFlags.ExtChnlOffset = MWL_EXT_CH_ABOVE_CTRL_CH;
979		else
980			hc->channelFlags.ExtChnlOffset = MWL_EXT_CH_BELOW_CTRL_CH;
981	} else
982		hc->channelFlags.ChnlWidth = MWL_CH_20_MHz_WIDTH;
983	/* XXX 10MHz channels */
984}
985
986/*
987 * Inform firmware of our tx/rx dma setup.  The BAR 0
988 * writes below are for compatibility with older firmware.
989 * For current firmware we send this information with a
990 * cmd block via mwl_hal_sethwdma.
991 */
992static int
993mwl_setupdma(struct mwl_softc *sc)
994{
995	int error, i;
996
997	sc->sc_hwdma.rxDescRead = sc->sc_rxdma.dd_desc_paddr;
998	WR4(sc, sc->sc_hwspecs.rxDescRead, sc->sc_hwdma.rxDescRead);
999	WR4(sc, sc->sc_hwspecs.rxDescWrite, sc->sc_hwdma.rxDescRead);
1000
1001	for (i = 0; i < MWL_NUM_TX_QUEUES-MWL_NUM_ACK_QUEUES; i++) {
1002		struct mwl_txq *txq = &sc->sc_txq[i];
1003		sc->sc_hwdma.wcbBase[i] = txq->dma.dd_desc_paddr;
1004		WR4(sc, sc->sc_hwspecs.wcbBase[i], sc->sc_hwdma.wcbBase[i]);
1005	}
1006	sc->sc_hwdma.maxNumTxWcb = mwl_txbuf;
1007	sc->sc_hwdma.maxNumWCB = MWL_NUM_TX_QUEUES-MWL_NUM_ACK_QUEUES;
1008
1009	error = mwl_hal_sethwdma(sc->sc_mh, &sc->sc_hwdma);
1010	if (error != 0) {
1011		device_printf(sc->sc_dev,
1012		    "unable to setup tx/rx dma; hal status %u\n", error);
1013		/* XXX */
1014	}
1015	return error;
1016}
1017
1018/*
1019 * Inform firmware of tx rate parameters.
1020 * Called after a channel change.
1021 */
1022static int
1023mwl_setcurchanrates(struct mwl_softc *sc)
1024{
1025	struct ifnet *ifp = sc->sc_ifp;
1026	struct ieee80211com *ic = ifp->if_l2com;
1027	const struct ieee80211_rateset *rs;
1028	MWL_HAL_TXRATE rates;
1029
1030	memset(&rates, 0, sizeof(rates));
1031	rs = ieee80211_get_suprates(ic, ic->ic_curchan);
1032	/* rate used to send management frames */
1033	rates.MgtRate = rs->rs_rates[0] & IEEE80211_RATE_VAL;
1034	/* rate used to send multicast frames */
1035	rates.McastRate = rates.MgtRate;
1036
1037	return mwl_hal_settxrate_auto(sc->sc_mh, &rates);
1038}
1039
1040/*
1041 * Inform firmware of tx rate parameters.  Called whenever
1042 * user-settable params change and after a channel change.
1043 */
1044static int
1045mwl_setrates(struct ieee80211vap *vap)
1046{
1047	struct mwl_vap *mvp = MWL_VAP(vap);
1048	struct ieee80211_node *ni = vap->iv_bss;
1049	const struct ieee80211_txparam *tp = ni->ni_txparms;
1050	MWL_HAL_TXRATE rates;
1051
1052	KASSERT(vap->iv_state == IEEE80211_S_RUN, ("state %d", vap->iv_state));
1053
1054	/*
1055	 * Update the h/w rate map.
1056	 * NB: 0x80 for MCS is passed through unchanged
1057	 */
1058	memset(&rates, 0, sizeof(rates));
1059	/* rate used to send management frames */
1060	rates.MgtRate = tp->mgmtrate;
1061	/* rate used to send multicast frames */
1062	rates.McastRate = tp->mcastrate;
1063
1064	/* while here calculate EAPOL fixed rate cookie */
1065	mvp->mv_eapolformat = htole16(mwl_calcformat(rates.MgtRate, ni));
1066
1067	return mwl_hal_settxrate(mvp->mv_hvap,
1068	    tp->ucastrate != IEEE80211_FIXED_RATE_NONE ?
1069		RATE_FIXED : RATE_AUTO, &rates);
1070}
1071
1072/*
1073 * Setup a fixed xmit rate cookie for EAPOL frames.
1074 */
1075static void
1076mwl_seteapolformat(struct ieee80211vap *vap)
1077{
1078	struct mwl_vap *mvp = MWL_VAP(vap);
1079	struct ieee80211_node *ni = vap->iv_bss;
1080	enum ieee80211_phymode mode;
1081	uint8_t rate;
1082
1083	KASSERT(vap->iv_state == IEEE80211_S_RUN, ("state %d", vap->iv_state));
1084
1085	mode = ieee80211_chan2mode(ni->ni_chan);
1086	/*
1087	 * Use legacy rates when operating a mixed HT+non-HT bss.
1088	 * NB: this may violate POLA for sta and wds vap's.
1089	 */
1090	if (mode == IEEE80211_MODE_11NA &&
1091	    (vap->iv_flags_ht & IEEE80211_FHT_PUREN) == 0)
1092		rate = vap->iv_txparms[IEEE80211_MODE_11A].mgmtrate;
1093	else if (mode == IEEE80211_MODE_11NG &&
1094	    (vap->iv_flags_ht & IEEE80211_FHT_PUREN) == 0)
1095		rate = vap->iv_txparms[IEEE80211_MODE_11G].mgmtrate;
1096	else
1097		rate = vap->iv_txparms[mode].mgmtrate;
1098
1099	mvp->mv_eapolformat = htole16(mwl_calcformat(rate, ni));
1100}
1101
1102/*
1103 * Map SKU+country code to region code for radar bin'ing.
1104 */
1105static int
1106mwl_map2regioncode(const struct ieee80211_regdomain *rd)
1107{
1108	switch (rd->regdomain) {
1109	case SKU_FCC:
1110	case SKU_FCC3:
1111		return DOMAIN_CODE_FCC;
1112	case SKU_CA:
1113		return DOMAIN_CODE_IC;
1114	case SKU_ETSI:
1115	case SKU_ETSI2:
1116	case SKU_ETSI3:
1117		if (rd->country == CTRY_SPAIN)
1118			return DOMAIN_CODE_SPAIN;
1119		if (rd->country == CTRY_FRANCE || rd->country == CTRY_FRANCE2)
1120			return DOMAIN_CODE_FRANCE;
1121		/* XXX force 1.3.1 radar type */
1122		return DOMAIN_CODE_ETSI_131;
1123	case SKU_JAPAN:
1124		return DOMAIN_CODE_MKK;
1125	case SKU_ROW:
1126		return DOMAIN_CODE_DGT;	/* Taiwan */
1127	case SKU_APAC:
1128	case SKU_APAC2:
1129	case SKU_APAC3:
1130		return DOMAIN_CODE_AUS;	/* Australia */
1131	}
1132	/* XXX KOREA? */
1133	return DOMAIN_CODE_FCC;			/* XXX? */
1134}
1135
1136static int
1137mwl_hal_reset(struct mwl_softc *sc)
1138{
1139	struct ifnet *ifp = sc->sc_ifp;
1140	struct ieee80211com *ic = ifp->if_l2com;
1141	struct mwl_hal *mh = sc->sc_mh;
1142
1143	mwl_hal_setantenna(mh, WL_ANTENNATYPE_RX, sc->sc_rxantenna);
1144	mwl_hal_setantenna(mh, WL_ANTENNATYPE_TX, sc->sc_txantenna);
1145	mwl_hal_setradio(mh, 1, WL_AUTO_PREAMBLE);
1146	mwl_hal_setwmm(sc->sc_mh, (ic->ic_flags & IEEE80211_F_WME) != 0);
1147	mwl_chan_set(sc, ic->ic_curchan);
1148	/* NB: RF/RA performance tuned for indoor mode */
1149	mwl_hal_setrateadaptmode(mh, 0);
1150	mwl_hal_setoptimizationlevel(mh,
1151	    (ic->ic_flags & IEEE80211_F_BURST) != 0);
1152
1153	mwl_hal_setregioncode(mh, mwl_map2regioncode(&ic->ic_regdomain));
1154
1155	mwl_hal_setaggampduratemode(mh, 1, 80);		/* XXX */
1156	mwl_hal_setcfend(mh, 0);			/* XXX */
1157
1158	return 1;
1159}
1160
1161static int
1162mwl_init_locked(struct mwl_softc *sc)
1163{
1164	struct ifnet *ifp = sc->sc_ifp;
1165	struct mwl_hal *mh = sc->sc_mh;
1166	int error = 0;
1167
1168	DPRINTF(sc, MWL_DEBUG_ANY, "%s: if_flags 0x%x\n",
1169		__func__, ifp->if_flags);
1170
1171	MWL_LOCK_ASSERT(sc);
1172
1173	/*
1174	 * Stop anything previously setup.  This is safe
1175	 * whether this is the first time through or not.
1176	 */
1177	mwl_stop_locked(ifp, 0);
1178
1179	/*
1180	 * Push vap-independent state to the firmware.
1181	 */
1182	if (!mwl_hal_reset(sc)) {
1183		if_printf(ifp, "unable to reset hardware\n");
1184		return EIO;
1185	}
1186
1187	/*
1188	 * Setup recv (once); transmit is already good to go.
1189	 */
1190	error = mwl_startrecv(sc);
1191	if (error != 0) {
1192		if_printf(ifp, "unable to start recv logic\n");
1193		return error;
1194	}
1195
1196	/*
1197	 * Enable interrupts.
1198	 */
1199	sc->sc_imask = MACREG_A2HRIC_BIT_RX_RDY
1200		     | MACREG_A2HRIC_BIT_TX_DONE
1201		     | MACREG_A2HRIC_BIT_OPC_DONE
1202#if 0
1203		     | MACREG_A2HRIC_BIT_MAC_EVENT
1204#endif
1205		     | MACREG_A2HRIC_BIT_ICV_ERROR
1206		     | MACREG_A2HRIC_BIT_RADAR_DETECT
1207		     | MACREG_A2HRIC_BIT_CHAN_SWITCH
1208#if 0
1209		     | MACREG_A2HRIC_BIT_QUEUE_EMPTY
1210#endif
1211		     | MACREG_A2HRIC_BIT_BA_WATCHDOG
1212		     | MACREQ_A2HRIC_BIT_TX_ACK
1213		     ;
1214
1215	ifp->if_drv_flags |= IFF_DRV_RUNNING;
1216	mwl_hal_intrset(mh, sc->sc_imask);
1217
1218	return 0;
1219}
1220
1221static void
1222mwl_init(void *arg)
1223{
1224	struct mwl_softc *sc = arg;
1225	struct ifnet *ifp = sc->sc_ifp;
1226	struct ieee80211com *ic = ifp->if_l2com;
1227	int error = 0;
1228
1229	DPRINTF(sc, MWL_DEBUG_ANY, "%s: if_flags 0x%x\n",
1230		__func__, ifp->if_flags);
1231
1232	MWL_LOCK(sc);
1233	error = mwl_init_locked(sc);
1234	MWL_UNLOCK(sc);
1235
1236	if (error == 0)
1237		ieee80211_start_all(ic);	/* start all vap's */
1238}
1239
1240static void
1241mwl_stop_locked(struct ifnet *ifp, int disable)
1242{
1243	struct mwl_softc *sc = ifp->if_softc;
1244
1245	DPRINTF(sc, MWL_DEBUG_ANY, "%s: invalid %u if_flags 0x%x\n",
1246		__func__, sc->sc_invalid, ifp->if_flags);
1247
1248	MWL_LOCK_ASSERT(sc);
1249	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1250		/*
1251		 * Shutdown the hardware and driver.
1252		 */
1253		ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1254		ifp->if_timer = 0;
1255		mwl_draintxq(sc);
1256	}
1257}
1258
1259static void
1260mwl_stop(struct ifnet *ifp, int disable)
1261{
1262	struct mwl_softc *sc = ifp->if_softc;
1263
1264	MWL_LOCK(sc);
1265	mwl_stop_locked(ifp, disable);
1266	MWL_UNLOCK(sc);
1267}
1268
1269static int
1270mwl_reset_vap(struct ieee80211vap *vap, int state)
1271{
1272	struct mwl_hal_vap *hvap = MWL_VAP(vap)->mv_hvap;
1273	struct ieee80211com *ic = vap->iv_ic;
1274
1275	if (state == IEEE80211_S_RUN)
1276		mwl_setrates(vap);
1277	/* XXX off by 1? */
1278	mwl_hal_setrtsthreshold(hvap, vap->iv_rtsthreshold);
1279	/* XXX auto? 20/40 split? */
1280	mwl_hal_sethtgi(hvap, (vap->iv_flags_ht &
1281	    (IEEE80211_FHT_SHORTGI20|IEEE80211_FHT_SHORTGI40)) ? 1 : 0);
1282	mwl_hal_setnprot(hvap, ic->ic_htprotmode == IEEE80211_PROT_NONE ?
1283	    HTPROTECT_NONE : HTPROTECT_AUTO);
1284	/* XXX txpower cap */
1285
1286	/* re-setup beacons */
1287	if (state == IEEE80211_S_RUN &&
1288	    (vap->iv_opmode == IEEE80211_M_HOSTAP ||
1289	     vap->iv_opmode == IEEE80211_M_MBSS ||
1290	     vap->iv_opmode == IEEE80211_M_IBSS)) {
1291		mwl_setapmode(vap, vap->iv_bss->ni_chan);
1292		mwl_hal_setnprotmode(hvap,
1293		    MS(ic->ic_curhtprotmode, IEEE80211_HTINFO_OPMODE));
1294		return mwl_beacon_setup(vap);
1295	}
1296	return 0;
1297}
1298
1299/*
1300 * Reset the hardware w/o losing operational state.
1301 * Used to to reset or reload hardware state for a vap.
1302 */
1303static int
1304mwl_reset(struct ieee80211vap *vap, u_long cmd)
1305{
1306	struct mwl_hal_vap *hvap = MWL_VAP(vap)->mv_hvap;
1307	int error = 0;
1308
1309	if (hvap != NULL) {			/* WDS, MONITOR, etc. */
1310		struct ieee80211com *ic = vap->iv_ic;
1311		struct ifnet *ifp = ic->ic_ifp;
1312		struct mwl_softc *sc = ifp->if_softc;
1313		struct mwl_hal *mh = sc->sc_mh;
1314
1315		/* XXX handle DWDS sta vap change */
1316		/* XXX do we need to disable interrupts? */
1317		mwl_hal_intrset(mh, 0);		/* disable interrupts */
1318		error = mwl_reset_vap(vap, vap->iv_state);
1319		mwl_hal_intrset(mh, sc->sc_imask);
1320	}
1321	return error;
1322}
1323
1324/*
1325 * Allocate a tx buffer for sending a frame.  The
1326 * packet is assumed to have the WME AC stored so
1327 * we can use it to select the appropriate h/w queue.
1328 */
1329static struct mwl_txbuf *
1330mwl_gettxbuf(struct mwl_softc *sc, struct mwl_txq *txq)
1331{
1332	struct mwl_txbuf *bf;
1333
1334	/*
1335	 * Grab a TX buffer and associated resources.
1336	 */
1337	MWL_TXQ_LOCK(txq);
1338	bf = STAILQ_FIRST(&txq->free);
1339	if (bf != NULL) {
1340		STAILQ_REMOVE_HEAD(&txq->free, bf_list);
1341		txq->nfree--;
1342	}
1343	MWL_TXQ_UNLOCK(txq);
1344	if (bf == NULL)
1345		DPRINTF(sc, MWL_DEBUG_XMIT,
1346		    "%s: out of xmit buffers on q %d\n", __func__, txq->qnum);
1347	return bf;
1348}
1349
1350/*
1351 * Return a tx buffer to the queue it came from.  Note there
1352 * are two cases because we must preserve the order of buffers
1353 * as it reflects the fixed order of descriptors in memory
1354 * (the firmware pre-fetches descriptors so we cannot reorder).
1355 */
1356static void
1357mwl_puttxbuf_head(struct mwl_txq *txq, struct mwl_txbuf *bf)
1358{
1359	bf->bf_m = NULL;
1360	bf->bf_node = NULL;
1361	MWL_TXQ_LOCK(txq);
1362	STAILQ_INSERT_HEAD(&txq->free, bf, bf_list);
1363	txq->nfree++;
1364	MWL_TXQ_UNLOCK(txq);
1365}
1366
1367static void
1368mwl_puttxbuf_tail(struct mwl_txq *txq, struct mwl_txbuf *bf)
1369{
1370	bf->bf_m = NULL;
1371	bf->bf_node = NULL;
1372	MWL_TXQ_LOCK(txq);
1373	STAILQ_INSERT_TAIL(&txq->free, bf, bf_list);
1374	txq->nfree++;
1375	MWL_TXQ_UNLOCK(txq);
1376}
1377
1378static void
1379mwl_start(struct ifnet *ifp)
1380{
1381	struct mwl_softc *sc = ifp->if_softc;
1382	struct ieee80211_node *ni;
1383	struct mwl_txbuf *bf;
1384	struct mbuf *m;
1385	struct mwl_txq *txq = NULL;	/* XXX silence gcc */
1386	int nqueued;
1387
1388	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 || sc->sc_invalid)
1389		return;
1390	nqueued = 0;
1391	for (;;) {
1392		bf = NULL;
1393		IFQ_DEQUEUE(&ifp->if_snd, m);
1394		if (m == NULL)
1395			break;
1396		/*
1397		 * Grab the node for the destination.
1398		 */
1399		ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
1400		KASSERT(ni != NULL, ("no node"));
1401		m->m_pkthdr.rcvif = NULL;	/* committed, clear ref */
1402		/*
1403		 * Grab a TX buffer and associated resources.
1404		 * We honor the classification by the 802.11 layer.
1405		 */
1406		txq = sc->sc_ac2q[M_WME_GETAC(m)];
1407		bf = mwl_gettxbuf(sc, txq);
1408		if (bf == NULL) {
1409			m_freem(m);
1410			ieee80211_free_node(ni);
1411#ifdef MWL_TX_NODROP
1412			sc->sc_stats.mst_tx_qstop++;
1413			/* XXX blocks other traffic */
1414			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1415			break;
1416#else
1417			DPRINTF(sc, MWL_DEBUG_XMIT,
1418			    "%s: tail drop on q %d\n", __func__, txq->qnum);
1419			sc->sc_stats.mst_tx_qdrop++;
1420			continue;
1421#endif /* MWL_TX_NODROP */
1422		}
1423
1424		/*
1425		 * Pass the frame to the h/w for transmission.
1426		 */
1427		if (mwl_tx_start(sc, ni, bf, m)) {
1428			ifp->if_oerrors++;
1429			mwl_puttxbuf_head(txq, bf);
1430			ieee80211_free_node(ni);
1431			continue;
1432		}
1433		nqueued++;
1434		if (nqueued >= mwl_txcoalesce) {
1435			/*
1436			 * Poke the firmware to process queued frames;
1437			 * see below about (lack of) locking.
1438			 */
1439			nqueued = 0;
1440			mwl_hal_txstart(sc->sc_mh, 0/*XXX*/);
1441		}
1442	}
1443	if (nqueued) {
1444		/*
1445		 * NB: We don't need to lock against tx done because
1446		 * this just prods the firmware to check the transmit
1447		 * descriptors.  The firmware will also start fetching
1448		 * descriptors by itself if it notices new ones are
1449		 * present when it goes to deliver a tx done interrupt
1450		 * to the host. So if we race with tx done processing
1451		 * it's ok.  Delivering the kick here rather than in
1452		 * mwl_tx_start is an optimization to avoid poking the
1453		 * firmware for each packet.
1454		 *
1455		 * NB: the queue id isn't used so 0 is ok.
1456		 */
1457		mwl_hal_txstart(sc->sc_mh, 0/*XXX*/);
1458	}
1459}
1460
1461static int
1462mwl_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
1463	const struct ieee80211_bpf_params *params)
1464{
1465	struct ieee80211com *ic = ni->ni_ic;
1466	struct ifnet *ifp = ic->ic_ifp;
1467	struct mwl_softc *sc = ifp->if_softc;
1468	struct mwl_txbuf *bf;
1469	struct mwl_txq *txq;
1470
1471	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 || sc->sc_invalid) {
1472		ieee80211_free_node(ni);
1473		m_freem(m);
1474		return ENETDOWN;
1475	}
1476	/*
1477	 * Grab a TX buffer and associated resources.
1478	 * Note that we depend on the classification
1479	 * by the 802.11 layer to get to the right h/w
1480	 * queue.  Management frames must ALWAYS go on
1481	 * queue 1 but we cannot just force that here
1482	 * because we may receive non-mgt frames.
1483	 */
1484	txq = sc->sc_ac2q[M_WME_GETAC(m)];
1485	bf = mwl_gettxbuf(sc, txq);
1486	if (bf == NULL) {
1487		sc->sc_stats.mst_tx_qstop++;
1488		/* XXX blocks other traffic */
1489		ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1490		ieee80211_free_node(ni);
1491		m_freem(m);
1492		return ENOBUFS;
1493	}
1494	/*
1495	 * Pass the frame to the h/w for transmission.
1496	 */
1497	if (mwl_tx_start(sc, ni, bf, m)) {
1498		ifp->if_oerrors++;
1499		mwl_puttxbuf_head(txq, bf);
1500
1501		ieee80211_free_node(ni);
1502		return EIO;		/* XXX */
1503	}
1504	/*
1505	 * NB: We don't need to lock against tx done because
1506	 * this just prods the firmware to check the transmit
1507	 * descriptors.  The firmware will also start fetching
1508	 * descriptors by itself if it notices new ones are
1509	 * present when it goes to deliver a tx done interrupt
1510	 * to the host. So if we race with tx done processing
1511	 * it's ok.  Delivering the kick here rather than in
1512	 * mwl_tx_start is an optimization to avoid poking the
1513	 * firmware for each packet.
1514	 *
1515	 * NB: the queue id isn't used so 0 is ok.
1516	 */
1517	mwl_hal_txstart(sc->sc_mh, 0/*XXX*/);
1518	return 0;
1519}
1520
1521static int
1522mwl_media_change(struct ifnet *ifp)
1523{
1524	struct ieee80211vap *vap = ifp->if_softc;
1525	int error;
1526
1527	error = ieee80211_media_change(ifp);
1528	/* NB: only the fixed rate can change and that doesn't need a reset */
1529	if (error == ENETRESET) {
1530		mwl_setrates(vap);
1531		error = 0;
1532	}
1533	return error;
1534}
1535
1536#ifdef MWL_DEBUG
1537static void
1538mwl_keyprint(struct mwl_softc *sc, const char *tag,
1539	const MWL_HAL_KEYVAL *hk, const uint8_t mac[IEEE80211_ADDR_LEN])
1540{
1541	static const char *ciphers[] = {
1542		"WEP",
1543		"TKIP",
1544		"AES-CCM",
1545	};
1546	int i, n;
1547
1548	printf("%s: [%u] %-7s", tag, hk->keyIndex, ciphers[hk->keyTypeId]);
1549	for (i = 0, n = hk->keyLen; i < n; i++)
1550		printf(" %02x", hk->key.aes[i]);
1551	printf(" mac %s", ether_sprintf(mac));
1552	if (hk->keyTypeId == KEY_TYPE_ID_TKIP) {
1553		printf(" %s", "rxmic");
1554		for (i = 0; i < sizeof(hk->key.tkip.rxMic); i++)
1555			printf(" %02x", hk->key.tkip.rxMic[i]);
1556		printf(" txmic");
1557		for (i = 0; i < sizeof(hk->key.tkip.txMic); i++)
1558			printf(" %02x", hk->key.tkip.txMic[i]);
1559	}
1560	printf(" flags 0x%x\n", hk->keyFlags);
1561}
1562#endif
1563
1564/*
1565 * Allocate a key cache slot for a unicast key.  The
1566 * firmware handles key allocation and every station is
1567 * guaranteed key space so we are always successful.
1568 */
1569static int
1570mwl_key_alloc(struct ieee80211vap *vap, struct ieee80211_key *k,
1571	ieee80211_keyix *keyix, ieee80211_keyix *rxkeyix)
1572{
1573	struct mwl_softc *sc = vap->iv_ic->ic_ifp->if_softc;
1574
1575	if (k->wk_keyix != IEEE80211_KEYIX_NONE ||
1576	    (k->wk_flags & IEEE80211_KEY_GROUP)) {
1577		if (!(&vap->iv_nw_keys[0] <= k &&
1578		      k < &vap->iv_nw_keys[IEEE80211_WEP_NKID])) {
1579			/* should not happen */
1580			DPRINTF(sc, MWL_DEBUG_KEYCACHE,
1581				"%s: bogus group key\n", __func__);
1582			return 0;
1583		}
1584		/* give the caller what they requested */
1585		*keyix = *rxkeyix = k - vap->iv_nw_keys;
1586	} else {
1587		/*
1588		 * Firmware handles key allocation.
1589		 */
1590		*keyix = *rxkeyix = 0;
1591	}
1592	return 1;
1593}
1594
1595/*
1596 * Delete a key entry allocated by mwl_key_alloc.
1597 */
1598static int
1599mwl_key_delete(struct ieee80211vap *vap, const struct ieee80211_key *k)
1600{
1601	struct mwl_softc *sc = vap->iv_ic->ic_ifp->if_softc;
1602	struct mwl_hal_vap *hvap = MWL_VAP(vap)->mv_hvap;
1603	MWL_HAL_KEYVAL hk;
1604	const uint8_t bcastaddr[IEEE80211_ADDR_LEN] =
1605	    { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
1606
1607	if (hvap == NULL) {
1608		if (vap->iv_opmode != IEEE80211_M_WDS) {
1609			/* XXX monitor mode? */
1610			DPRINTF(sc, MWL_DEBUG_KEYCACHE,
1611			    "%s: no hvap for opmode %d\n", __func__,
1612			    vap->iv_opmode);
1613			return 0;
1614		}
1615		hvap = MWL_VAP(vap)->mv_ap_hvap;
1616	}
1617
1618	DPRINTF(sc, MWL_DEBUG_KEYCACHE, "%s: delete key %u\n",
1619	    __func__, k->wk_keyix);
1620
1621	memset(&hk, 0, sizeof(hk));
1622	hk.keyIndex = k->wk_keyix;
1623	switch (k->wk_cipher->ic_cipher) {
1624	case IEEE80211_CIPHER_WEP:
1625		hk.keyTypeId = KEY_TYPE_ID_WEP;
1626		break;
1627	case IEEE80211_CIPHER_TKIP:
1628		hk.keyTypeId = KEY_TYPE_ID_TKIP;
1629		break;
1630	case IEEE80211_CIPHER_AES_CCM:
1631		hk.keyTypeId = KEY_TYPE_ID_AES;
1632		break;
1633	default:
1634		/* XXX should not happen */
1635		DPRINTF(sc, MWL_DEBUG_KEYCACHE, "%s: unknown cipher %d\n",
1636		    __func__, k->wk_cipher->ic_cipher);
1637		return 0;
1638	}
1639	return (mwl_hal_keyreset(hvap, &hk, bcastaddr) == 0);	/*XXX*/
1640}
1641
1642static __inline int
1643addgroupflags(MWL_HAL_KEYVAL *hk, const struct ieee80211_key *k)
1644{
1645	if (k->wk_flags & IEEE80211_KEY_GROUP) {
1646		if (k->wk_flags & IEEE80211_KEY_XMIT)
1647			hk->keyFlags |= KEY_FLAG_TXGROUPKEY;
1648		if (k->wk_flags & IEEE80211_KEY_RECV)
1649			hk->keyFlags |= KEY_FLAG_RXGROUPKEY;
1650		return 1;
1651	} else
1652		return 0;
1653}
1654
1655/*
1656 * Set the key cache contents for the specified key.  Key cache
1657 * slot(s) must already have been allocated by mwl_key_alloc.
1658 */
1659static int
1660mwl_key_set(struct ieee80211vap *vap, const struct ieee80211_key *k,
1661	const uint8_t mac[IEEE80211_ADDR_LEN])
1662{
1663#define	GRPXMIT	(IEEE80211_KEY_XMIT | IEEE80211_KEY_GROUP)
1664/* NB: static wep keys are marked GROUP+tx/rx; GTK will be tx or rx */
1665#define	IEEE80211_IS_STATICKEY(k) \
1666	(((k)->wk_flags & (GRPXMIT|IEEE80211_KEY_RECV)) == \
1667	 (GRPXMIT|IEEE80211_KEY_RECV))
1668	struct mwl_softc *sc = vap->iv_ic->ic_ifp->if_softc;
1669	struct mwl_hal_vap *hvap = MWL_VAP(vap)->mv_hvap;
1670	const struct ieee80211_cipher *cip = k->wk_cipher;
1671	const uint8_t *macaddr;
1672	MWL_HAL_KEYVAL hk;
1673
1674	KASSERT((k->wk_flags & IEEE80211_KEY_SWCRYPT) == 0,
1675		("s/w crypto set?"));
1676
1677	if (hvap == NULL) {
1678		if (vap->iv_opmode != IEEE80211_M_WDS) {
1679			/* XXX monitor mode? */
1680			DPRINTF(sc, MWL_DEBUG_KEYCACHE,
1681			    "%s: no hvap for opmode %d\n", __func__,
1682			    vap->iv_opmode);
1683			return 0;
1684		}
1685		hvap = MWL_VAP(vap)->mv_ap_hvap;
1686	}
1687	memset(&hk, 0, sizeof(hk));
1688	hk.keyIndex = k->wk_keyix;
1689	switch (cip->ic_cipher) {
1690	case IEEE80211_CIPHER_WEP:
1691		hk.keyTypeId = KEY_TYPE_ID_WEP;
1692		hk.keyLen = k->wk_keylen;
1693		if (k->wk_keyix == vap->iv_def_txkey)
1694			hk.keyFlags = KEY_FLAG_WEP_TXKEY;
1695		if (!IEEE80211_IS_STATICKEY(k)) {
1696			/* NB: WEP is never used for the PTK */
1697			(void) addgroupflags(&hk, k);
1698		}
1699		break;
1700	case IEEE80211_CIPHER_TKIP:
1701		hk.keyTypeId = KEY_TYPE_ID_TKIP;
1702		hk.key.tkip.tsc.high = (uint32_t)(k->wk_keytsc >> 16);
1703		hk.key.tkip.tsc.low = (uint16_t)k->wk_keytsc;
1704		hk.keyFlags = KEY_FLAG_TSC_VALID | KEY_FLAG_MICKEY_VALID;
1705		hk.keyLen = k->wk_keylen + IEEE80211_MICBUF_SIZE;
1706		if (!addgroupflags(&hk, k))
1707			hk.keyFlags |= KEY_FLAG_PAIRWISE;
1708		break;
1709	case IEEE80211_CIPHER_AES_CCM:
1710		hk.keyTypeId = KEY_TYPE_ID_AES;
1711		hk.keyLen = k->wk_keylen;
1712		if (!addgroupflags(&hk, k))
1713			hk.keyFlags |= KEY_FLAG_PAIRWISE;
1714		break;
1715	default:
1716		/* XXX should not happen */
1717		DPRINTF(sc, MWL_DEBUG_KEYCACHE, "%s: unknown cipher %d\n",
1718		    __func__, k->wk_cipher->ic_cipher);
1719		return 0;
1720	}
1721	/*
1722	 * NB: tkip mic keys get copied here too; the layout
1723	 *     just happens to match that in ieee80211_key.
1724	 */
1725	memcpy(hk.key.aes, k->wk_key, hk.keyLen);
1726
1727	/*
1728	 * Locate address of sta db entry for writing key;
1729	 * the convention unfortunately is somewhat different
1730	 * than how net80211, hostapd, and wpa_supplicant think.
1731	 */
1732	if (vap->iv_opmode == IEEE80211_M_STA) {
1733		/*
1734		 * NB: keys plumbed before the sta reaches AUTH state
1735		 * will be discarded or written to the wrong sta db
1736		 * entry because iv_bss is meaningless.  This is ok
1737		 * (right now) because we handle deferred plumbing of
1738		 * WEP keys when the sta reaches AUTH state.
1739		 */
1740		macaddr = vap->iv_bss->ni_bssid;
1741		if ((k->wk_flags & IEEE80211_KEY_GROUP) == 0) {
1742			/* XXX plumb to local sta db too for static key wep */
1743			mwl_hal_keyset(hvap, &hk, vap->iv_myaddr);
1744		}
1745	} else if (vap->iv_opmode == IEEE80211_M_WDS &&
1746	    vap->iv_state != IEEE80211_S_RUN) {
1747		/*
1748		 * Prior to RUN state a WDS vap will not it's BSS node
1749		 * setup so we will plumb the key to the wrong mac
1750		 * address (it'll be our local address).  Workaround
1751		 * this for the moment by grabbing the correct address.
1752		 */
1753		macaddr = vap->iv_des_bssid;
1754	} else if ((k->wk_flags & GRPXMIT) == GRPXMIT)
1755		macaddr = vap->iv_myaddr;
1756	else
1757		macaddr = mac;
1758	KEYPRINTF(sc, &hk, macaddr);
1759	return (mwl_hal_keyset(hvap, &hk, macaddr) == 0);
1760#undef IEEE80211_IS_STATICKEY
1761#undef GRPXMIT
1762}
1763
1764/* unaligned little endian access */
1765#define LE_READ_2(p)				\
1766	((uint16_t)				\
1767	 ((((const uint8_t *)(p))[0]      ) |	\
1768	  (((const uint8_t *)(p))[1] <<  8)))
1769#define LE_READ_4(p)				\
1770	((uint32_t)				\
1771	 ((((const uint8_t *)(p))[0]      ) |	\
1772	  (((const uint8_t *)(p))[1] <<  8) |	\
1773	  (((const uint8_t *)(p))[2] << 16) |	\
1774	  (((const uint8_t *)(p))[3] << 24)))
1775
1776/*
1777 * Set the multicast filter contents into the hardware.
1778 * XXX f/w has no support; just defer to the os.
1779 */
1780static void
1781mwl_setmcastfilter(struct mwl_softc *sc)
1782{
1783	struct ifnet *ifp = sc->sc_ifp;
1784#if 0
1785	struct ether_multi *enm;
1786	struct ether_multistep estep;
1787	uint8_t macs[IEEE80211_ADDR_LEN*MWL_HAL_MCAST_MAX];/* XXX stack use */
1788	uint8_t *mp;
1789	int nmc;
1790
1791	mp = macs;
1792	nmc = 0;
1793	ETHER_FIRST_MULTI(estep, &sc->sc_ec, enm);
1794	while (enm != NULL) {
1795		/* XXX Punt on ranges. */
1796		if (nmc == MWL_HAL_MCAST_MAX ||
1797		    !IEEE80211_ADDR_EQ(enm->enm_addrlo, enm->enm_addrhi)) {
1798			ifp->if_flags |= IFF_ALLMULTI;
1799			return;
1800		}
1801		IEEE80211_ADDR_COPY(mp, enm->enm_addrlo);
1802		mp += IEEE80211_ADDR_LEN, nmc++;
1803		ETHER_NEXT_MULTI(estep, enm);
1804	}
1805	ifp->if_flags &= ~IFF_ALLMULTI;
1806	mwl_hal_setmcast(sc->sc_mh, nmc, macs);
1807#else
1808	/* XXX no mcast filter support; we get everything */
1809	ifp->if_flags |= IFF_ALLMULTI;
1810#endif
1811}
1812
1813static int
1814mwl_mode_init(struct mwl_softc *sc)
1815{
1816	struct ifnet *ifp = sc->sc_ifp;
1817	struct ieee80211com *ic = ifp->if_l2com;
1818	struct mwl_hal *mh = sc->sc_mh;
1819
1820	/*
1821	 * NB: Ignore promisc in hostap mode; it's set by the
1822	 * bridge.  This is wrong but we have no way to
1823	 * identify internal requests (from the bridge)
1824	 * versus external requests such as for tcpdump.
1825	 */
1826	mwl_hal_setpromisc(mh, (ifp->if_flags & IFF_PROMISC) &&
1827	    ic->ic_opmode != IEEE80211_M_HOSTAP);
1828	mwl_setmcastfilter(sc);
1829
1830	return 0;
1831}
1832
1833/*
1834 * Callback from the 802.11 layer after a multicast state change.
1835 */
1836static void
1837mwl_update_mcast(struct ifnet *ifp)
1838{
1839	struct mwl_softc *sc = ifp->if_softc;
1840
1841	mwl_setmcastfilter(sc);
1842}
1843
1844/*
1845 * Callback from the 802.11 layer after a promiscuous mode change.
1846 * Note this interface does not check the operating mode as this
1847 * is an internal callback and we are expected to honor the current
1848 * state (e.g. this is used for setting the interface in promiscuous
1849 * mode when operating in hostap mode to do ACS).
1850 */
1851static void
1852mwl_update_promisc(struct ifnet *ifp)
1853{
1854	struct mwl_softc *sc = ifp->if_softc;
1855
1856	mwl_hal_setpromisc(sc->sc_mh, (ifp->if_flags & IFF_PROMISC) != 0);
1857}
1858
1859/*
1860 * Callback from the 802.11 layer to update the slot time
1861 * based on the current setting.  We use it to notify the
1862 * firmware of ERP changes and the f/w takes care of things
1863 * like slot time and preamble.
1864 */
1865static void
1866mwl_updateslot(struct ifnet *ifp)
1867{
1868	struct mwl_softc *sc = ifp->if_softc;
1869	struct ieee80211com *ic = ifp->if_l2com;
1870	struct mwl_hal *mh = sc->sc_mh;
1871	int prot;
1872
1873	/* NB: can be called early; suppress needless cmds */
1874	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
1875		return;
1876
1877	/*
1878	 * Calculate the ERP flags.  The firwmare will use
1879	 * this to carry out the appropriate measures.
1880	 */
1881	prot = 0;
1882	if (IEEE80211_IS_CHAN_ANYG(ic->ic_curchan)) {
1883		if ((ic->ic_flags & IEEE80211_F_SHSLOT) == 0)
1884			prot |= IEEE80211_ERP_NON_ERP_PRESENT;
1885		if (ic->ic_flags & IEEE80211_F_USEPROT)
1886			prot |= IEEE80211_ERP_USE_PROTECTION;
1887		if (ic->ic_flags & IEEE80211_F_USEBARKER)
1888			prot |= IEEE80211_ERP_LONG_PREAMBLE;
1889	}
1890
1891	DPRINTF(sc, MWL_DEBUG_RESET,
1892	    "%s: chan %u MHz/flags 0x%x %s slot, (prot 0x%x ic_flags 0x%x)\n",
1893	    __func__, ic->ic_curchan->ic_freq, ic->ic_curchan->ic_flags,
1894	    ic->ic_flags & IEEE80211_F_SHSLOT ? "short" : "long", prot,
1895	    ic->ic_flags);
1896
1897	mwl_hal_setgprot(mh, prot);
1898}
1899
1900/*
1901 * Setup the beacon frame.
1902 */
1903static int
1904mwl_beacon_setup(struct ieee80211vap *vap)
1905{
1906	struct mwl_hal_vap *hvap = MWL_VAP(vap)->mv_hvap;
1907	struct ieee80211_node *ni = vap->iv_bss;
1908	struct ieee80211_beacon_offsets bo;
1909	struct mbuf *m;
1910
1911	m = ieee80211_beacon_alloc(ni, &bo);
1912	if (m == NULL)
1913		return ENOBUFS;
1914	mwl_hal_setbeacon(hvap, mtod(m, const void *), m->m_len);
1915	m_free(m);
1916
1917	return 0;
1918}
1919
1920/*
1921 * Update the beacon frame in response to a change.
1922 */
1923static void
1924mwl_beacon_update(struct ieee80211vap *vap, int item)
1925{
1926	struct mwl_hal_vap *hvap = MWL_VAP(vap)->mv_hvap;
1927	struct ieee80211com *ic = vap->iv_ic;
1928
1929	KASSERT(hvap != NULL, ("no beacon"));
1930	switch (item) {
1931	case IEEE80211_BEACON_ERP:
1932		mwl_updateslot(ic->ic_ifp);
1933		break;
1934	case IEEE80211_BEACON_HTINFO:
1935		mwl_hal_setnprotmode(hvap,
1936		    MS(ic->ic_curhtprotmode, IEEE80211_HTINFO_OPMODE));
1937		break;
1938	case IEEE80211_BEACON_CAPS:
1939	case IEEE80211_BEACON_WME:
1940	case IEEE80211_BEACON_APPIE:
1941	case IEEE80211_BEACON_CSA:
1942		break;
1943	case IEEE80211_BEACON_TIM:
1944		/* NB: firmware always forms TIM */
1945		return;
1946	}
1947	/* XXX retain beacon frame and update */
1948	mwl_beacon_setup(vap);
1949}
1950
1951static void
1952mwl_load_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
1953{
1954	bus_addr_t *paddr = (bus_addr_t*) arg;
1955	KASSERT(error == 0, ("error %u on bus_dma callback", error));
1956	*paddr = segs->ds_addr;
1957}
1958
1959#ifdef MWL_HOST_PS_SUPPORT
1960/*
1961 * Handle power save station occupancy changes.
1962 */
1963static void
1964mwl_update_ps(struct ieee80211vap *vap, int nsta)
1965{
1966	struct mwl_vap *mvp = MWL_VAP(vap);
1967
1968	if (nsta == 0 || mvp->mv_last_ps_sta == 0)
1969		mwl_hal_setpowersave_bss(mvp->mv_hvap, nsta);
1970	mvp->mv_last_ps_sta = nsta;
1971}
1972
1973/*
1974 * Handle associated station power save state changes.
1975 */
1976static int
1977mwl_set_tim(struct ieee80211_node *ni, int set)
1978{
1979	struct ieee80211vap *vap = ni->ni_vap;
1980	struct mwl_vap *mvp = MWL_VAP(vap);
1981
1982	if (mvp->mv_set_tim(ni, set)) {		/* NB: state change */
1983		mwl_hal_setpowersave_sta(mvp->mv_hvap,
1984		    IEEE80211_AID(ni->ni_associd), set);
1985		return 1;
1986	} else
1987		return 0;
1988}
1989#endif /* MWL_HOST_PS_SUPPORT */
1990
1991static int
1992mwl_desc_setup(struct mwl_softc *sc, const char *name,
1993	struct mwl_descdma *dd,
1994	int nbuf, size_t bufsize, int ndesc, size_t descsize)
1995{
1996	struct ifnet *ifp = sc->sc_ifp;
1997	uint8_t *ds;
1998	int error;
1999
2000	DPRINTF(sc, MWL_DEBUG_RESET,
2001	    "%s: %s DMA: %u bufs (%ju) %u desc/buf (%ju)\n",
2002	    __func__, name, nbuf, (uintmax_t) bufsize,
2003	    ndesc, (uintmax_t) descsize);
2004
2005	dd->dd_name = name;
2006	dd->dd_desc_len = nbuf * ndesc * descsize;
2007
2008	/*
2009	 * Setup DMA descriptor area.
2010	 */
2011	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev),	/* parent */
2012		       PAGE_SIZE, 0,		/* alignment, bounds */
2013		       BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
2014		       BUS_SPACE_MAXADDR,	/* highaddr */
2015		       NULL, NULL,		/* filter, filterarg */
2016		       dd->dd_desc_len,		/* maxsize */
2017		       1,			/* nsegments */
2018		       dd->dd_desc_len,		/* maxsegsize */
2019		       BUS_DMA_ALLOCNOW,	/* flags */
2020		       NULL,			/* lockfunc */
2021		       NULL,			/* lockarg */
2022		       &dd->dd_dmat);
2023	if (error != 0) {
2024		if_printf(ifp, "cannot allocate %s DMA tag\n", dd->dd_name);
2025		return error;
2026	}
2027
2028	/* allocate descriptors */
2029	error = bus_dmamap_create(dd->dd_dmat, BUS_DMA_NOWAIT, &dd->dd_dmamap);
2030	if (error != 0) {
2031		if_printf(ifp, "unable to create dmamap for %s descriptors, "
2032			"error %u\n", dd->dd_name, error);
2033		goto fail0;
2034	}
2035
2036	error = bus_dmamem_alloc(dd->dd_dmat, (void**) &dd->dd_desc,
2037				 BUS_DMA_NOWAIT | BUS_DMA_COHERENT,
2038				 &dd->dd_dmamap);
2039	if (error != 0) {
2040		if_printf(ifp, "unable to alloc memory for %u %s descriptors, "
2041			"error %u\n", nbuf * ndesc, dd->dd_name, error);
2042		goto fail1;
2043	}
2044
2045	error = bus_dmamap_load(dd->dd_dmat, dd->dd_dmamap,
2046				dd->dd_desc, dd->dd_desc_len,
2047				mwl_load_cb, &dd->dd_desc_paddr,
2048				BUS_DMA_NOWAIT);
2049	if (error != 0) {
2050		if_printf(ifp, "unable to map %s descriptors, error %u\n",
2051			dd->dd_name, error);
2052		goto fail2;
2053	}
2054
2055	ds = dd->dd_desc;
2056	memset(ds, 0, dd->dd_desc_len);
2057	DPRINTF(sc, MWL_DEBUG_RESET, "%s: %s DMA map: %p (%lu) -> %p (%lu)\n",
2058	    __func__, dd->dd_name, ds, (u_long) dd->dd_desc_len,
2059	    (caddr_t) dd->dd_desc_paddr, /*XXX*/ (u_long) dd->dd_desc_len);
2060
2061	return 0;
2062fail2:
2063	bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap);
2064fail1:
2065	bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap);
2066fail0:
2067	bus_dma_tag_destroy(dd->dd_dmat);
2068	memset(dd, 0, sizeof(*dd));
2069	return error;
2070#undef DS2PHYS
2071}
2072
2073static void
2074mwl_desc_cleanup(struct mwl_softc *sc, struct mwl_descdma *dd)
2075{
2076	bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
2077	bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap);
2078	bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap);
2079	bus_dma_tag_destroy(dd->dd_dmat);
2080
2081	memset(dd, 0, sizeof(*dd));
2082}
2083
2084/*
2085 * Construct a tx q's free list.  The order of entries on
2086 * the list must reflect the physical layout of tx descriptors
2087 * because the firmware pre-fetches descriptors.
2088 *
2089 * XXX might be better to use indices into the buffer array.
2090 */
2091static void
2092mwl_txq_reset(struct mwl_softc *sc, struct mwl_txq *txq)
2093{
2094	struct mwl_txbuf *bf;
2095	int i;
2096
2097	bf = txq->dma.dd_bufptr;
2098	STAILQ_INIT(&txq->free);
2099	for (i = 0; i < mwl_txbuf; i++, bf++)
2100		STAILQ_INSERT_TAIL(&txq->free, bf, bf_list);
2101	txq->nfree = i;
2102}
2103
2104#define	DS2PHYS(_dd, _ds) \
2105	((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc))
2106
2107static int
2108mwl_txdma_setup(struct mwl_softc *sc, struct mwl_txq *txq)
2109{
2110	struct ifnet *ifp = sc->sc_ifp;
2111	int error, bsize, i;
2112	struct mwl_txbuf *bf;
2113	struct mwl_txdesc *ds;
2114
2115	error = mwl_desc_setup(sc, "tx", &txq->dma,
2116			mwl_txbuf, sizeof(struct mwl_txbuf),
2117			MWL_TXDESC, sizeof(struct mwl_txdesc));
2118	if (error != 0)
2119		return error;
2120
2121	/* allocate and setup tx buffers */
2122	bsize = mwl_txbuf * sizeof(struct mwl_txbuf);
2123	bf = malloc(bsize, M_MWLDEV, M_NOWAIT | M_ZERO);
2124	if (bf == NULL) {
2125		if_printf(ifp, "malloc of %u tx buffers failed\n",
2126			mwl_txbuf);
2127		return ENOMEM;
2128	}
2129	txq->dma.dd_bufptr = bf;
2130
2131	ds = txq->dma.dd_desc;
2132	for (i = 0; i < mwl_txbuf; i++, bf++, ds += MWL_TXDESC) {
2133		bf->bf_desc = ds;
2134		bf->bf_daddr = DS2PHYS(&txq->dma, ds);
2135		error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT,
2136				&bf->bf_dmamap);
2137		if (error != 0) {
2138			if_printf(ifp, "unable to create dmamap for tx "
2139				"buffer %u, error %u\n", i, error);
2140			return error;
2141		}
2142	}
2143	mwl_txq_reset(sc, txq);
2144	return 0;
2145}
2146
2147static void
2148mwl_txdma_cleanup(struct mwl_softc *sc, struct mwl_txq *txq)
2149{
2150	struct mwl_txbuf *bf;
2151	int i;
2152
2153	bf = txq->dma.dd_bufptr;
2154	for (i = 0; i < mwl_txbuf; i++, bf++) {
2155		KASSERT(bf->bf_m == NULL, ("mbuf on free list"));
2156		KASSERT(bf->bf_node == NULL, ("node on free list"));
2157		if (bf->bf_dmamap != NULL)
2158			bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap);
2159	}
2160	STAILQ_INIT(&txq->free);
2161	txq->nfree = 0;
2162	if (txq->dma.dd_bufptr != NULL) {
2163		free(txq->dma.dd_bufptr, M_MWLDEV);
2164		txq->dma.dd_bufptr = NULL;
2165	}
2166	if (txq->dma.dd_desc_len != 0)
2167		mwl_desc_cleanup(sc, &txq->dma);
2168}
2169
2170static int
2171mwl_rxdma_setup(struct mwl_softc *sc)
2172{
2173	struct ifnet *ifp = sc->sc_ifp;
2174	int error, jumbosize, bsize, i;
2175	struct mwl_rxbuf *bf;
2176	struct mwl_jumbo *rbuf;
2177	struct mwl_rxdesc *ds;
2178	caddr_t data;
2179
2180	error = mwl_desc_setup(sc, "rx", &sc->sc_rxdma,
2181			mwl_rxdesc, sizeof(struct mwl_rxbuf),
2182			1, sizeof(struct mwl_rxdesc));
2183	if (error != 0)
2184		return error;
2185
2186	/*
2187	 * Receive is done to a private pool of jumbo buffers.
2188	 * This allows us to attach to mbuf's and avoid re-mapping
2189	 * memory on each rx we post.  We allocate a large chunk
2190	 * of memory and manage it in the driver.  The mbuf free
2191	 * callback method is used to reclaim frames after sending
2192	 * them up the stack.  By default we allocate 2x the number of
2193	 * rx descriptors configured so we have some slop to hold
2194	 * us while frames are processed.
2195	 */
2196	if (mwl_rxbuf < 2*mwl_rxdesc) {
2197		if_printf(ifp,
2198		    "too few rx dma buffers (%d); increasing to %d\n",
2199		    mwl_rxbuf, 2*mwl_rxdesc);
2200		mwl_rxbuf = 2*mwl_rxdesc;
2201	}
2202	jumbosize = roundup(MWL_AGGR_SIZE, PAGE_SIZE);
2203	sc->sc_rxmemsize = mwl_rxbuf*jumbosize;
2204
2205	error = bus_dma_tag_create(sc->sc_dmat,	/* parent */
2206		       PAGE_SIZE, 0,		/* alignment, bounds */
2207		       BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
2208		       BUS_SPACE_MAXADDR,	/* highaddr */
2209		       NULL, NULL,		/* filter, filterarg */
2210		       sc->sc_rxmemsize,	/* maxsize */
2211		       1,			/* nsegments */
2212		       sc->sc_rxmemsize,	/* maxsegsize */
2213		       BUS_DMA_ALLOCNOW,	/* flags */
2214		       NULL,			/* lockfunc */
2215		       NULL,			/* lockarg */
2216		       &sc->sc_rxdmat);
2217	error = bus_dmamap_create(sc->sc_rxdmat, BUS_DMA_NOWAIT, &sc->sc_rxmap);
2218	if (error != 0) {
2219		if_printf(ifp, "could not create rx DMA map\n");
2220		return error;
2221	}
2222
2223	error = bus_dmamem_alloc(sc->sc_rxdmat, (void**) &sc->sc_rxmem,
2224				 BUS_DMA_NOWAIT | BUS_DMA_COHERENT,
2225				 &sc->sc_rxmap);
2226	if (error != 0) {
2227		if_printf(ifp, "could not alloc %ju bytes of rx DMA memory\n",
2228		    (uintmax_t) sc->sc_rxmemsize);
2229		return error;
2230	}
2231
2232	error = bus_dmamap_load(sc->sc_rxdmat, sc->sc_rxmap,
2233				sc->sc_rxmem, sc->sc_rxmemsize,
2234				mwl_load_cb, &sc->sc_rxmem_paddr,
2235				BUS_DMA_NOWAIT);
2236	if (error != 0) {
2237		if_printf(ifp, "could not load rx DMA map\n");
2238		return error;
2239	}
2240
2241	/*
2242	 * Allocate rx buffers and set them up.
2243	 */
2244	bsize = mwl_rxdesc * sizeof(struct mwl_rxbuf);
2245	bf = malloc(bsize, M_MWLDEV, M_NOWAIT | M_ZERO);
2246	if (bf == NULL) {
2247		if_printf(ifp, "malloc of %u rx buffers failed\n", bsize);
2248		return error;
2249	}
2250	sc->sc_rxdma.dd_bufptr = bf;
2251
2252	STAILQ_INIT(&sc->sc_rxbuf);
2253	ds = sc->sc_rxdma.dd_desc;
2254	for (i = 0; i < mwl_rxdesc; i++, bf++, ds++) {
2255		bf->bf_desc = ds;
2256		bf->bf_daddr = DS2PHYS(&sc->sc_rxdma, ds);
2257		/* pre-assign dma buffer */
2258		bf->bf_data = ((uint8_t *)sc->sc_rxmem) + (i*jumbosize);
2259		/* NB: tail is intentional to preserve descriptor order */
2260		STAILQ_INSERT_TAIL(&sc->sc_rxbuf, bf, bf_list);
2261	}
2262
2263	/*
2264	 * Place remainder of dma memory buffers on the free list.
2265	 */
2266	SLIST_INIT(&sc->sc_rxfree);
2267	for (; i < mwl_rxbuf; i++) {
2268		data = ((uint8_t *)sc->sc_rxmem) + (i*jumbosize);
2269		rbuf = MWL_JUMBO_DATA2BUF(data);
2270		SLIST_INSERT_HEAD(&sc->sc_rxfree, rbuf, next);
2271		sc->sc_nrxfree++;
2272	}
2273	MWL_RXFREE_INIT(sc);
2274	return 0;
2275}
2276#undef DS2PHYS
2277
2278static void
2279mwl_rxdma_cleanup(struct mwl_softc *sc)
2280{
2281	if (sc->sc_rxmap != NULL)
2282		bus_dmamap_unload(sc->sc_rxdmat, sc->sc_rxmap);
2283	if (sc->sc_rxmem != NULL) {
2284		bus_dmamem_free(sc->sc_rxdmat, sc->sc_rxmem, sc->sc_rxmap);
2285		sc->sc_rxmem = NULL;
2286	}
2287	if (sc->sc_rxmap != NULL) {
2288		bus_dmamap_destroy(sc->sc_rxdmat, sc->sc_rxmap);
2289		sc->sc_rxmap = NULL;
2290	}
2291	if (sc->sc_rxdma.dd_bufptr != NULL) {
2292		free(sc->sc_rxdma.dd_bufptr, M_MWLDEV);
2293		sc->sc_rxdma.dd_bufptr = NULL;
2294	}
2295	if (sc->sc_rxdma.dd_desc_len != 0)
2296		mwl_desc_cleanup(sc, &sc->sc_rxdma);
2297	MWL_RXFREE_DESTROY(sc);
2298}
2299
2300static int
2301mwl_dma_setup(struct mwl_softc *sc)
2302{
2303	int error, i;
2304
2305	error = mwl_rxdma_setup(sc);
2306	if (error != 0)
2307		return error;
2308
2309	for (i = 0; i < MWL_NUM_TX_QUEUES; i++) {
2310		error = mwl_txdma_setup(sc, &sc->sc_txq[i]);
2311		if (error != 0) {
2312			mwl_dma_cleanup(sc);
2313			return error;
2314		}
2315	}
2316	return 0;
2317}
2318
2319static void
2320mwl_dma_cleanup(struct mwl_softc *sc)
2321{
2322	int i;
2323
2324	for (i = 0; i < MWL_NUM_TX_QUEUES; i++)
2325		mwl_txdma_cleanup(sc, &sc->sc_txq[i]);
2326	mwl_rxdma_cleanup(sc);
2327}
2328
2329static struct ieee80211_node *
2330mwl_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN])
2331{
2332	struct ieee80211com *ic = vap->iv_ic;
2333	struct mwl_softc *sc = ic->ic_ifp->if_softc;
2334	const size_t space = sizeof(struct mwl_node);
2335	struct mwl_node *mn;
2336
2337	mn = malloc(space, M_80211_NODE, M_NOWAIT|M_ZERO);
2338	if (mn == NULL) {
2339		/* XXX stat+msg */
2340		return NULL;
2341	}
2342	DPRINTF(sc, MWL_DEBUG_NODE, "%s: mn %p\n", __func__, mn);
2343	return &mn->mn_node;
2344}
2345
2346static void
2347mwl_node_cleanup(struct ieee80211_node *ni)
2348{
2349	struct ieee80211com *ic = ni->ni_ic;
2350        struct mwl_softc *sc = ic->ic_ifp->if_softc;
2351	struct mwl_node *mn = MWL_NODE(ni);
2352
2353	DPRINTF(sc, MWL_DEBUG_NODE, "%s: ni %p ic %p staid %d\n",
2354	    __func__, ni, ni->ni_ic, mn->mn_staid);
2355
2356	if (mn->mn_staid != 0) {
2357		struct ieee80211vap *vap = ni->ni_vap;
2358
2359		if (mn->mn_hvap != NULL) {
2360			if (vap->iv_opmode == IEEE80211_M_STA)
2361				mwl_hal_delstation(mn->mn_hvap, vap->iv_myaddr);
2362			else
2363				mwl_hal_delstation(mn->mn_hvap, ni->ni_macaddr);
2364		}
2365		/*
2366		 * NB: legacy WDS peer sta db entry is installed using
2367		 * the associate ap's hvap; use it again to delete it.
2368		 * XXX can vap be NULL?
2369		 */
2370		else if (vap->iv_opmode == IEEE80211_M_WDS &&
2371		    MWL_VAP(vap)->mv_ap_hvap != NULL)
2372			mwl_hal_delstation(MWL_VAP(vap)->mv_ap_hvap,
2373			    ni->ni_macaddr);
2374		delstaid(sc, mn->mn_staid);
2375		mn->mn_staid = 0;
2376	}
2377	sc->sc_node_cleanup(ni);
2378}
2379
2380/*
2381 * Reclaim rx dma buffers from packets sitting on the ampdu
2382 * reorder queue for a station.  We replace buffers with a
2383 * system cluster (if available).
2384 */
2385static void
2386mwl_ampdu_rxdma_reclaim(struct ieee80211_rx_ampdu *rap)
2387{
2388#if 0
2389	int i, n, off;
2390	struct mbuf *m;
2391	void *cl;
2392
2393	n = rap->rxa_qframes;
2394	for (i = 0; i < rap->rxa_wnd && n > 0; i++) {
2395		m = rap->rxa_m[i];
2396		if (m == NULL)
2397			continue;
2398		n--;
2399		/* our dma buffers have a well-known free routine */
2400		if ((m->m_flags & M_EXT) == 0 ||
2401		    m->m_ext.ext_free != mwl_ext_free)
2402			continue;
2403		/*
2404		 * Try to allocate a cluster and move the data.
2405		 */
2406		off = m->m_data - m->m_ext.ext_buf;
2407		if (off + m->m_pkthdr.len > MCLBYTES) {
2408			/* XXX no AMSDU for now */
2409			continue;
2410		}
2411		cl = pool_cache_get_paddr(&mclpool_cache, 0,
2412		    &m->m_ext.ext_paddr);
2413		if (cl != NULL) {
2414			/*
2415			 * Copy the existing data to the cluster, remove
2416			 * the rx dma buffer, and attach the cluster in
2417			 * its place.  Note we preserve the offset to the
2418			 * data so frames being bridged can still prepend
2419			 * their headers without adding another mbuf.
2420			 */
2421			memcpy((caddr_t) cl + off, m->m_data, m->m_pkthdr.len);
2422			MEXTREMOVE(m);
2423			MEXTADD(m, cl, MCLBYTES, 0, NULL, &mclpool_cache);
2424			/* setup mbuf like _MCLGET does */
2425			m->m_flags |= M_CLUSTER | M_EXT_RW;
2426			_MOWNERREF(m, M_EXT | M_CLUSTER);
2427			/* NB: m_data is clobbered by MEXTADDR, adjust */
2428			m->m_data += off;
2429		}
2430	}
2431#endif
2432}
2433
2434/*
2435 * Callback to reclaim resources.  We first let the
2436 * net80211 layer do it's thing, then if we are still
2437 * blocked by a lack of rx dma buffers we walk the ampdu
2438 * reorder q's to reclaim buffers by copying to a system
2439 * cluster.
2440 */
2441static void
2442mwl_node_drain(struct ieee80211_node *ni)
2443{
2444	struct ieee80211com *ic = ni->ni_ic;
2445        struct mwl_softc *sc = ic->ic_ifp->if_softc;
2446	struct mwl_node *mn = MWL_NODE(ni);
2447
2448	DPRINTF(sc, MWL_DEBUG_NODE, "%s: ni %p vap %p staid %d\n",
2449	    __func__, ni, ni->ni_vap, mn->mn_staid);
2450
2451	/* NB: call up first to age out ampdu q's */
2452	sc->sc_node_drain(ni);
2453
2454	/* XXX better to not check low water mark? */
2455	if (sc->sc_rxblocked && mn->mn_staid != 0 &&
2456	    (ni->ni_flags & IEEE80211_NODE_HT)) {
2457		uint8_t tid;
2458		/*
2459		 * Walk the reorder q and reclaim rx dma buffers by copying
2460		 * the packet contents into clusters.
2461		 */
2462		for (tid = 0; tid < WME_NUM_TID; tid++) {
2463			struct ieee80211_rx_ampdu *rap;
2464
2465			rap = &ni->ni_rx_ampdu[tid];
2466			if ((rap->rxa_flags & IEEE80211_AGGR_XCHGPEND) == 0)
2467				continue;
2468			if (rap->rxa_qframes)
2469				mwl_ampdu_rxdma_reclaim(rap);
2470		}
2471	}
2472}
2473
2474static void
2475mwl_node_getsignal(const struct ieee80211_node *ni, int8_t *rssi, int8_t *noise)
2476{
2477	*rssi = ni->ni_ic->ic_node_getrssi(ni);
2478#ifdef MWL_ANT_INFO_SUPPORT
2479#if 0
2480	/* XXX need to smooth data */
2481	*noise = -MWL_NODE_CONST(ni)->mn_ai.nf;
2482#else
2483	*noise = -95;		/* XXX */
2484#endif
2485#else
2486	*noise = -95;		/* XXX */
2487#endif
2488}
2489
2490/*
2491 * Convert Hardware per-antenna rssi info to common format:
2492 * Let a1, a2, a3 represent the amplitudes per chain
2493 * Let amax represent max[a1, a2, a3]
2494 * Rssi1_dBm = RSSI_dBm + 20*log10(a1/amax)
2495 * Rssi1_dBm = RSSI_dBm + 20*log10(a1) - 20*log10(amax)
2496 * We store a table that is 4*20*log10(idx) - the extra 4 is to store or
2497 * maintain some extra precision.
2498 *
2499 * Values are stored in .5 db format capped at 127.
2500 */
2501static void
2502mwl_node_getmimoinfo(const struct ieee80211_node *ni,
2503	struct ieee80211_mimo_info *mi)
2504{
2505#define	CVT(_dst, _src) do {						\
2506	(_dst) = rssi + ((logdbtbl[_src] - logdbtbl[rssi_max]) >> 2);	\
2507	(_dst) = (_dst) > 64 ? 127 : ((_dst) << 1);			\
2508} while (0)
2509	static const int8_t logdbtbl[32] = {
2510	       0,   0,  24,  38,  48,  56,  62,  68,
2511	      72,  76,  80,  83,  86,  89,  92,  94,
2512	      96,  98, 100, 102, 104, 106, 107, 109,
2513	     110, 112, 113, 115, 116, 117, 118, 119
2514	};
2515	const struct mwl_node *mn = MWL_NODE_CONST(ni);
2516	uint8_t rssi = mn->mn_ai.rsvd1/2;		/* XXX */
2517	uint32_t rssi_max;
2518
2519	rssi_max = mn->mn_ai.rssi_a;
2520	if (mn->mn_ai.rssi_b > rssi_max)
2521		rssi_max = mn->mn_ai.rssi_b;
2522	if (mn->mn_ai.rssi_c > rssi_max)
2523		rssi_max = mn->mn_ai.rssi_c;
2524
2525	CVT(mi->rssi[0], mn->mn_ai.rssi_a);
2526	CVT(mi->rssi[1], mn->mn_ai.rssi_b);
2527	CVT(mi->rssi[2], mn->mn_ai.rssi_c);
2528
2529	mi->noise[0] = mn->mn_ai.nf_a;
2530	mi->noise[1] = mn->mn_ai.nf_b;
2531	mi->noise[2] = mn->mn_ai.nf_c;
2532#undef CVT
2533}
2534
2535static __inline void *
2536mwl_getrxdma(struct mwl_softc *sc)
2537{
2538	struct mwl_jumbo *buf;
2539	void *data;
2540
2541	/*
2542	 * Allocate from jumbo pool.
2543	 */
2544	MWL_RXFREE_LOCK(sc);
2545	buf = SLIST_FIRST(&sc->sc_rxfree);
2546	if (buf == NULL) {
2547		DPRINTF(sc, MWL_DEBUG_ANY,
2548		    "%s: out of rx dma buffers\n", __func__);
2549		sc->sc_stats.mst_rx_nodmabuf++;
2550		data = NULL;
2551	} else {
2552		SLIST_REMOVE_HEAD(&sc->sc_rxfree, next);
2553		sc->sc_nrxfree--;
2554		data = MWL_JUMBO_BUF2DATA(buf);
2555	}
2556	MWL_RXFREE_UNLOCK(sc);
2557	return data;
2558}
2559
2560static __inline void
2561mwl_putrxdma(struct mwl_softc *sc, void *data)
2562{
2563	struct mwl_jumbo *buf;
2564
2565	/* XXX bounds check data */
2566	MWL_RXFREE_LOCK(sc);
2567	buf = MWL_JUMBO_DATA2BUF(data);
2568	SLIST_INSERT_HEAD(&sc->sc_rxfree, buf, next);
2569	sc->sc_nrxfree++;
2570	MWL_RXFREE_UNLOCK(sc);
2571}
2572
2573static int
2574mwl_rxbuf_init(struct mwl_softc *sc, struct mwl_rxbuf *bf)
2575{
2576	struct mwl_rxdesc *ds;
2577
2578	ds = bf->bf_desc;
2579	if (bf->bf_data == NULL) {
2580		bf->bf_data = mwl_getrxdma(sc);
2581		if (bf->bf_data == NULL) {
2582			/* mark descriptor to be skipped */
2583			ds->RxControl = EAGLE_RXD_CTRL_OS_OWN;
2584			/* NB: don't need PREREAD */
2585			MWL_RXDESC_SYNC(sc, ds, BUS_DMASYNC_PREWRITE);
2586			sc->sc_stats.mst_rxbuf_failed++;
2587			return ENOMEM;
2588		}
2589	}
2590	/*
2591	 * NB: DMA buffer contents is known to be unmodified
2592	 *     so there's no need to flush the data cache.
2593	 */
2594
2595	/*
2596	 * Setup descriptor.
2597	 */
2598	ds->QosCtrl = 0;
2599	ds->RSSI = 0;
2600	ds->Status = EAGLE_RXD_STATUS_IDLE;
2601	ds->Channel = 0;
2602	ds->PktLen = htole16(MWL_AGGR_SIZE);
2603	ds->SQ2 = 0;
2604	ds->pPhysBuffData = htole32(MWL_JUMBO_DMA_ADDR(sc, bf->bf_data));
2605	/* NB: don't touch pPhysNext, set once */
2606	ds->RxControl = EAGLE_RXD_CTRL_DRIVER_OWN;
2607	MWL_RXDESC_SYNC(sc, ds, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2608
2609	return 0;
2610}
2611
2612static void
2613mwl_ext_free(void *data, void *arg)
2614{
2615	struct mwl_softc *sc = arg;
2616
2617	/* XXX bounds check data */
2618	mwl_putrxdma(sc, data);
2619	/*
2620	 * If we were previously blocked by a lack of rx dma buffers
2621	 * check if we now have enough to restart rx interrupt handling.
2622	 * NB: we know we are called at splvm which is above splnet.
2623	 */
2624	if (sc->sc_rxblocked && sc->sc_nrxfree > mwl_rxdmalow) {
2625		sc->sc_rxblocked = 0;
2626		mwl_hal_intrset(sc->sc_mh, sc->sc_imask);
2627	}
2628}
2629
2630struct mwl_frame_bar {
2631	u_int8_t	i_fc[2];
2632	u_int8_t	i_dur[2];
2633	u_int8_t	i_ra[IEEE80211_ADDR_LEN];
2634	u_int8_t	i_ta[IEEE80211_ADDR_LEN];
2635	/* ctl, seq, FCS */
2636} __packed;
2637
2638/*
2639 * Like ieee80211_anyhdrsize, but handles BAR frames
2640 * specially so the logic below to piece the 802.11
2641 * header together works.
2642 */
2643static __inline int
2644mwl_anyhdrsize(const void *data)
2645{
2646	const struct ieee80211_frame *wh = data;
2647
2648	if ((wh->i_fc[0]&IEEE80211_FC0_TYPE_MASK) == IEEE80211_FC0_TYPE_CTL) {
2649		switch (wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) {
2650		case IEEE80211_FC0_SUBTYPE_CTS:
2651		case IEEE80211_FC0_SUBTYPE_ACK:
2652			return sizeof(struct ieee80211_frame_ack);
2653		case IEEE80211_FC0_SUBTYPE_BAR:
2654			return sizeof(struct mwl_frame_bar);
2655		}
2656		return sizeof(struct ieee80211_frame_min);
2657	} else
2658		return ieee80211_hdrsize(data);
2659}
2660
2661static void
2662mwl_handlemicerror(struct ieee80211com *ic, const uint8_t *data)
2663{
2664	const struct ieee80211_frame *wh;
2665	struct ieee80211_node *ni;
2666
2667	wh = (const struct ieee80211_frame *)(data + sizeof(uint16_t));
2668	ni = ieee80211_find_rxnode(ic, (const struct ieee80211_frame_min *) wh);
2669	if (ni != NULL) {
2670		ieee80211_notify_michael_failure(ni->ni_vap, wh, 0);
2671		ieee80211_free_node(ni);
2672	}
2673}
2674
2675/*
2676 * Convert hardware signal strength to rssi.  The value
2677 * provided by the device has the noise floor added in;
2678 * we need to compensate for this but we don't have that
2679 * so we use a fixed value.
2680 *
2681 * The offset of 8 is good for both 2.4 and 5GHz.  The LNA
2682 * offset is already set as part of the initial gain.  This
2683 * will give at least +/- 3dB for 2.4GHz and +/- 5dB for 5GHz.
2684 */
2685static __inline int
2686cvtrssi(uint8_t ssi)
2687{
2688	int rssi = (int) ssi + 8;
2689	/* XXX hack guess until we have a real noise floor */
2690	rssi = 2*(87 - rssi);	/* NB: .5 dBm units */
2691	return (rssi < 0 ? 0 : rssi > 127 ? 127 : rssi);
2692}
2693
2694static void
2695mwl_rx_proc(void *arg, int npending)
2696{
2697#define	IEEE80211_DIR_DSTODS(wh) \
2698	((((const struct ieee80211_frame *)wh)->i_fc[1] & IEEE80211_FC1_DIR_MASK) == IEEE80211_FC1_DIR_DSTODS)
2699	struct mwl_softc *sc = arg;
2700	struct ifnet *ifp = sc->sc_ifp;
2701	struct ieee80211com *ic = ifp->if_l2com;
2702	struct mwl_rxbuf *bf;
2703	struct mwl_rxdesc *ds;
2704	struct mbuf *m;
2705	struct ieee80211_qosframe *wh;
2706	struct ieee80211_qosframe_addr4 *wh4;
2707	struct ieee80211_node *ni;
2708	struct mwl_node *mn;
2709	int off, len, hdrlen, pktlen, rssi, ntodo;
2710	uint8_t *data, status;
2711	void *newdata;
2712	int16_t nf;
2713
2714	DPRINTF(sc, MWL_DEBUG_RX_PROC, "%s: pending %u rdptr 0x%x wrptr 0x%x\n",
2715	    __func__, npending, RD4(sc, sc->sc_hwspecs.rxDescRead),
2716	    RD4(sc, sc->sc_hwspecs.rxDescWrite));
2717	nf = -96;			/* XXX */
2718	bf = sc->sc_rxnext;
2719	for (ntodo = mwl_rxquota; ntodo > 0; ntodo--) {
2720		if (bf == NULL)
2721			bf = STAILQ_FIRST(&sc->sc_rxbuf);
2722		ds = bf->bf_desc;
2723		data = bf->bf_data;
2724		if (data == NULL) {
2725			/*
2726			 * If data allocation failed previously there
2727			 * will be no buffer; try again to re-populate it.
2728			 * Note the firmware will not advance to the next
2729			 * descriptor with a dma buffer so we must mimic
2730			 * this or we'll get out of sync.
2731			 */
2732			DPRINTF(sc, MWL_DEBUG_ANY,
2733			    "%s: rx buf w/o dma memory\n", __func__);
2734			(void) mwl_rxbuf_init(sc, bf);
2735			sc->sc_stats.mst_rx_dmabufmissing++;
2736			break;
2737		}
2738		MWL_RXDESC_SYNC(sc, ds,
2739		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2740		if (ds->RxControl != EAGLE_RXD_CTRL_DMA_OWN)
2741			break;
2742#ifdef MWL_DEBUG
2743		if (sc->sc_debug & MWL_DEBUG_RECV_DESC)
2744			mwl_printrxbuf(bf, 0);
2745#endif
2746		status = ds->Status;
2747		if (status & EAGLE_RXD_STATUS_DECRYPT_ERR_MASK) {
2748			ifp->if_ierrors++;
2749			sc->sc_stats.mst_rx_crypto++;
2750			/*
2751			 * NB: Check EAGLE_RXD_STATUS_GENERAL_DECRYPT_ERR
2752			 *     for backwards compatibility.
2753			 */
2754			if (status != EAGLE_RXD_STATUS_GENERAL_DECRYPT_ERR &&
2755			    (status & EAGLE_RXD_STATUS_TKIP_MIC_DECRYPT_ERR)) {
2756				/*
2757				 * MIC error, notify upper layers.
2758				 */
2759				bus_dmamap_sync(sc->sc_rxdmat, sc->sc_rxmap,
2760				    BUS_DMASYNC_POSTREAD);
2761				mwl_handlemicerror(ic, data);
2762				sc->sc_stats.mst_rx_tkipmic++;
2763			}
2764			/* XXX too painful to tap packets */
2765			goto rx_next;
2766		}
2767		/*
2768		 * Sync the data buffer.
2769		 */
2770		len = le16toh(ds->PktLen);
2771		bus_dmamap_sync(sc->sc_rxdmat, sc->sc_rxmap, BUS_DMASYNC_POSTREAD);
2772		/*
2773		 * The 802.11 header is provided all or in part at the front;
2774		 * use it to calculate the true size of the header that we'll
2775		 * construct below.  We use this to figure out where to copy
2776		 * payload prior to constructing the header.
2777		 */
2778		hdrlen = mwl_anyhdrsize(data + sizeof(uint16_t));
2779		off = sizeof(uint16_t) + sizeof(struct ieee80211_frame_addr4);
2780
2781		/* calculate rssi early so we can re-use for each aggregate */
2782		rssi = cvtrssi(ds->RSSI);
2783
2784		pktlen = hdrlen + (len - off);
2785		/*
2786		 * NB: we know our frame is at least as large as
2787		 * IEEE80211_MIN_LEN because there is a 4-address
2788		 * frame at the front.  Hence there's no need to
2789		 * vet the packet length.  If the frame in fact
2790		 * is too small it should be discarded at the
2791		 * net80211 layer.
2792		 */
2793
2794		/*
2795		 * Attach dma buffer to an mbuf.  We tried
2796		 * doing this based on the packet size (i.e.
2797		 * copying small packets) but it turns out to
2798		 * be a net loss.  The tradeoff might be system
2799		 * dependent (cache architecture is important).
2800		 */
2801		MGETHDR(m, M_DONTWAIT, MT_DATA);
2802		if (m == NULL) {
2803			DPRINTF(sc, MWL_DEBUG_ANY,
2804			    "%s: no rx mbuf\n", __func__);
2805			sc->sc_stats.mst_rx_nombuf++;
2806			goto rx_next;
2807		}
2808		/*
2809		 * Acquire the replacement dma buffer before
2810		 * processing the frame.  If we're out of dma
2811		 * buffers we disable rx interrupts and wait
2812		 * for the free pool to reach mlw_rxdmalow buffers
2813		 * before starting to do work again.  If the firmware
2814		 * runs out of descriptors then it will toss frames
2815		 * which is better than our doing it as that can
2816		 * starve our processing.  It is also important that
2817		 * we always process rx'd frames in case they are
2818		 * A-MPDU as otherwise the host's view of the BA
2819		 * window may get out of sync with the firmware.
2820		 */
2821		newdata = mwl_getrxdma(sc);
2822		if (newdata == NULL) {
2823			/* NB: stat+msg in mwl_getrxdma */
2824			m_free(m);
2825			/* disable RX interrupt and mark state */
2826			mwl_hal_intrset(sc->sc_mh,
2827			    sc->sc_imask &~ MACREG_A2HRIC_BIT_RX_RDY);
2828			sc->sc_rxblocked = 1;
2829			ieee80211_drain(ic);
2830			/* XXX check rxblocked and immediately start again? */
2831			goto rx_stop;
2832		}
2833		bf->bf_data = newdata;
2834		/*
2835		 * Attach the dma buffer to the mbuf;
2836		 * mwl_rxbuf_init will re-setup the rx
2837		 * descriptor using the replacement dma
2838		 * buffer we just installed above.
2839		 */
2840		MEXTADD(m, data, MWL_AGGR_SIZE, mwl_ext_free,
2841		    data, sc, 0, EXT_NET_DRV);
2842		m->m_data += off - hdrlen;
2843		m->m_pkthdr.len = m->m_len = pktlen;
2844		m->m_pkthdr.rcvif = ifp;
2845		/* NB: dma buffer assumed read-only */
2846
2847		/*
2848		 * Piece 802.11 header together.
2849		 */
2850		wh = mtod(m, struct ieee80211_qosframe *);
2851		/* NB: don't need to do this sometimes but ... */
2852		/* XXX special case so we can memcpy after m_devget? */
2853		ovbcopy(data + sizeof(uint16_t), wh, hdrlen);
2854		if (IEEE80211_QOS_HAS_SEQ(wh)) {
2855			if (IEEE80211_DIR_DSTODS(wh)) {
2856				wh4 = mtod(m,
2857				    struct ieee80211_qosframe_addr4*);
2858				*(uint16_t *)wh4->i_qos = ds->QosCtrl;
2859			} else {
2860				*(uint16_t *)wh->i_qos = ds->QosCtrl;
2861			}
2862		}
2863		/*
2864		 * The f/w strips WEP header but doesn't clear
2865		 * the WEP bit; mark the packet with M_WEP so
2866		 * net80211 will treat the data as decrypted.
2867		 * While here also clear the PWR_MGT bit since
2868		 * power save is handled by the firmware and
2869		 * passing this up will potentially cause the
2870		 * upper layer to put a station in power save
2871		 * (except when configured with MWL_HOST_PS_SUPPORT).
2872		 */
2873		if (wh->i_fc[1] & IEEE80211_FC1_WEP)
2874			m->m_flags |= M_WEP;
2875#ifdef MWL_HOST_PS_SUPPORT
2876		wh->i_fc[1] &= ~IEEE80211_FC1_WEP;
2877#else
2878		wh->i_fc[1] &= ~(IEEE80211_FC1_WEP | IEEE80211_FC1_PWR_MGT);
2879#endif
2880
2881		if (ieee80211_radiotap_active(ic)) {
2882			struct mwl_rx_radiotap_header *tap = &sc->sc_rx_th;
2883
2884			tap->wr_flags = 0;
2885			tap->wr_rate = ds->Rate;
2886			tap->wr_antsignal = rssi + nf;
2887			tap->wr_antnoise = nf;
2888		}
2889		if (IFF_DUMPPKTS_RECV(sc, wh)) {
2890			ieee80211_dump_pkt(ic, mtod(m, caddr_t),
2891			    len, ds->Rate, rssi);
2892		}
2893		ifp->if_ipackets++;
2894
2895		/* dispatch */
2896		ni = ieee80211_find_rxnode(ic,
2897		    (const struct ieee80211_frame_min *) wh);
2898		if (ni != NULL) {
2899			mn = MWL_NODE(ni);
2900#ifdef MWL_ANT_INFO_SUPPORT
2901			mn->mn_ai.rssi_a = ds->ai.rssi_a;
2902			mn->mn_ai.rssi_b = ds->ai.rssi_b;
2903			mn->mn_ai.rssi_c = ds->ai.rssi_c;
2904			mn->mn_ai.rsvd1 = rssi;
2905#endif
2906			/* tag AMPDU aggregates for reorder processing */
2907			if (ni->ni_flags & IEEE80211_NODE_HT)
2908				m->m_flags |= M_AMPDU;
2909			(void) ieee80211_input(ni, m, rssi, nf);
2910			ieee80211_free_node(ni);
2911		} else
2912			(void) ieee80211_input_all(ic, m, rssi, nf);
2913rx_next:
2914		/* NB: ignore ENOMEM so we process more descriptors */
2915		(void) mwl_rxbuf_init(sc, bf);
2916		bf = STAILQ_NEXT(bf, bf_list);
2917	}
2918rx_stop:
2919	sc->sc_rxnext = bf;
2920
2921	if ((ifp->if_drv_flags & IFF_DRV_OACTIVE) == 0 &&
2922	    !IFQ_IS_EMPTY(&ifp->if_snd)) {
2923		/* NB: kick fw; the tx thread may have been preempted */
2924		mwl_hal_txstart(sc->sc_mh, 0);
2925		mwl_start(ifp);
2926	}
2927#undef IEEE80211_DIR_DSTODS
2928}
2929
2930static void
2931mwl_txq_init(struct mwl_softc *sc, struct mwl_txq *txq, int qnum)
2932{
2933	struct mwl_txbuf *bf, *bn;
2934	struct mwl_txdesc *ds;
2935
2936	MWL_TXQ_LOCK_INIT(sc, txq);
2937	txq->qnum = qnum;
2938	txq->txpri = 0;	/* XXX */
2939#if 0
2940	/* NB: q setup by mwl_txdma_setup XXX */
2941	STAILQ_INIT(&txq->free);
2942#endif
2943	STAILQ_FOREACH(bf, &txq->free, bf_list) {
2944		bf->bf_txq = txq;
2945
2946		ds = bf->bf_desc;
2947		bn = STAILQ_NEXT(bf, bf_list);
2948		if (bn == NULL)
2949			bn = STAILQ_FIRST(&txq->free);
2950		ds->pPhysNext = htole32(bn->bf_daddr);
2951	}
2952	STAILQ_INIT(&txq->active);
2953}
2954
2955/*
2956 * Setup a hardware data transmit queue for the specified
2957 * access control.  We record the mapping from ac's
2958 * to h/w queues for use by mwl_tx_start.
2959 */
2960static int
2961mwl_tx_setup(struct mwl_softc *sc, int ac, int mvtype)
2962{
2963#define	N(a)	(sizeof(a)/sizeof(a[0]))
2964	struct mwl_txq *txq;
2965
2966	if (ac >= N(sc->sc_ac2q)) {
2967		device_printf(sc->sc_dev, "AC %u out of range, max %zu!\n",
2968			ac, N(sc->sc_ac2q));
2969		return 0;
2970	}
2971	if (mvtype >= MWL_NUM_TX_QUEUES) {
2972		device_printf(sc->sc_dev, "mvtype %u out of range, max %u!\n",
2973			mvtype, MWL_NUM_TX_QUEUES);
2974		return 0;
2975	}
2976	txq = &sc->sc_txq[mvtype];
2977	mwl_txq_init(sc, txq, mvtype);
2978	sc->sc_ac2q[ac] = txq;
2979	return 1;
2980#undef N
2981}
2982
2983/*
2984 * Update WME parameters for a transmit queue.
2985 */
2986static int
2987mwl_txq_update(struct mwl_softc *sc, int ac)
2988{
2989#define	MWL_EXPONENT_TO_VALUE(v)	((1<<v)-1)
2990	struct ifnet *ifp = sc->sc_ifp;
2991	struct ieee80211com *ic = ifp->if_l2com;
2992	struct mwl_txq *txq = sc->sc_ac2q[ac];
2993	struct wmeParams *wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
2994	struct mwl_hal *mh = sc->sc_mh;
2995	int aifs, cwmin, cwmax, txoplim;
2996
2997	aifs = wmep->wmep_aifsn;
2998	/* XXX in sta mode need to pass log values for cwmin/max */
2999	cwmin = MWL_EXPONENT_TO_VALUE(wmep->wmep_logcwmin);
3000	cwmax = MWL_EXPONENT_TO_VALUE(wmep->wmep_logcwmax);
3001	txoplim = wmep->wmep_txopLimit;		/* NB: units of 32us */
3002
3003	if (mwl_hal_setedcaparams(mh, txq->qnum, cwmin, cwmax, aifs, txoplim)) {
3004		device_printf(sc->sc_dev, "unable to update hardware queue "
3005			"parameters for %s traffic!\n",
3006			ieee80211_wme_acnames[ac]);
3007		return 0;
3008	}
3009	return 1;
3010#undef MWL_EXPONENT_TO_VALUE
3011}
3012
3013/*
3014 * Callback from the 802.11 layer to update WME parameters.
3015 */
3016static int
3017mwl_wme_update(struct ieee80211com *ic)
3018{
3019	struct mwl_softc *sc = ic->ic_ifp->if_softc;
3020
3021	return !mwl_txq_update(sc, WME_AC_BE) ||
3022	    !mwl_txq_update(sc, WME_AC_BK) ||
3023	    !mwl_txq_update(sc, WME_AC_VI) ||
3024	    !mwl_txq_update(sc, WME_AC_VO) ? EIO : 0;
3025}
3026
3027/*
3028 * Reclaim resources for a setup queue.
3029 */
3030static void
3031mwl_tx_cleanupq(struct mwl_softc *sc, struct mwl_txq *txq)
3032{
3033	/* XXX hal work? */
3034	MWL_TXQ_LOCK_DESTROY(txq);
3035}
3036
3037/*
3038 * Reclaim all tx queue resources.
3039 */
3040static void
3041mwl_tx_cleanup(struct mwl_softc *sc)
3042{
3043	int i;
3044
3045	for (i = 0; i < MWL_NUM_TX_QUEUES; i++)
3046		mwl_tx_cleanupq(sc, &sc->sc_txq[i]);
3047}
3048
3049static int
3050mwl_tx_dmasetup(struct mwl_softc *sc, struct mwl_txbuf *bf, struct mbuf *m0)
3051{
3052	struct mbuf *m;
3053	int error;
3054
3055	/*
3056	 * Load the DMA map so any coalescing is done.  This
3057	 * also calculates the number of descriptors we need.
3058	 */
3059	error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m0,
3060				     bf->bf_segs, &bf->bf_nseg,
3061				     BUS_DMA_NOWAIT);
3062	if (error == EFBIG) {
3063		/* XXX packet requires too many descriptors */
3064		bf->bf_nseg = MWL_TXDESC+1;
3065	} else if (error != 0) {
3066		sc->sc_stats.mst_tx_busdma++;
3067		m_freem(m0);
3068		return error;
3069	}
3070	/*
3071	 * Discard null packets and check for packets that
3072	 * require too many TX descriptors.  We try to convert
3073	 * the latter to a cluster.
3074	 */
3075	if (error == EFBIG) {		/* too many desc's, linearize */
3076		sc->sc_stats.mst_tx_linear++;
3077#if MWL_TXDESC > 1
3078		m = m_collapse(m0, M_DONTWAIT, MWL_TXDESC);
3079#else
3080		m = m_defrag(m0, M_DONTWAIT);
3081#endif
3082		if (m == NULL) {
3083			m_freem(m0);
3084			sc->sc_stats.mst_tx_nombuf++;
3085			return ENOMEM;
3086		}
3087		m0 = m;
3088		error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m0,
3089					     bf->bf_segs, &bf->bf_nseg,
3090					     BUS_DMA_NOWAIT);
3091		if (error != 0) {
3092			sc->sc_stats.mst_tx_busdma++;
3093			m_freem(m0);
3094			return error;
3095		}
3096		KASSERT(bf->bf_nseg <= MWL_TXDESC,
3097		    ("too many segments after defrag; nseg %u", bf->bf_nseg));
3098	} else if (bf->bf_nseg == 0) {		/* null packet, discard */
3099		sc->sc_stats.mst_tx_nodata++;
3100		m_freem(m0);
3101		return EIO;
3102	}
3103	DPRINTF(sc, MWL_DEBUG_XMIT, "%s: m %p len %u\n",
3104		__func__, m0, m0->m_pkthdr.len);
3105	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREWRITE);
3106	bf->bf_m = m0;
3107
3108	return 0;
3109}
3110
3111static __inline int
3112mwl_cvtlegacyrate(int rate)
3113{
3114	switch (rate) {
3115	case 2:	 return 0;
3116	case 4:	 return 1;
3117	case 11: return 2;
3118	case 22: return 3;
3119	case 44: return 4;
3120	case 12: return 5;
3121	case 18: return 6;
3122	case 24: return 7;
3123	case 36: return 8;
3124	case 48: return 9;
3125	case 72: return 10;
3126	case 96: return 11;
3127	case 108:return 12;
3128	}
3129	return 0;
3130}
3131
3132/*
3133 * Calculate fixed tx rate information per client state;
3134 * this value is suitable for writing to the Format field
3135 * of a tx descriptor.
3136 */
3137static uint16_t
3138mwl_calcformat(uint8_t rate, const struct ieee80211_node *ni)
3139{
3140	uint16_t fmt;
3141
3142	fmt = SM(3, EAGLE_TXD_ANTENNA)
3143	    | (IEEE80211_IS_CHAN_HT40D(ni->ni_chan) ?
3144		EAGLE_TXD_EXTCHAN_LO : EAGLE_TXD_EXTCHAN_HI);
3145	if (rate & IEEE80211_RATE_MCS) {	/* HT MCS */
3146		fmt |= EAGLE_TXD_FORMAT_HT
3147		    /* NB: 0x80 implicitly stripped from ucastrate */
3148		    | SM(rate, EAGLE_TXD_RATE);
3149		/* XXX short/long GI may be wrong; re-check */
3150		if (IEEE80211_IS_CHAN_HT40(ni->ni_chan)) {
3151			fmt |= EAGLE_TXD_CHW_40
3152			    | (ni->ni_htcap & IEEE80211_HTCAP_SHORTGI40 ?
3153			        EAGLE_TXD_GI_SHORT : EAGLE_TXD_GI_LONG);
3154		} else {
3155			fmt |= EAGLE_TXD_CHW_20
3156			    | (ni->ni_htcap & IEEE80211_HTCAP_SHORTGI20 ?
3157			        EAGLE_TXD_GI_SHORT : EAGLE_TXD_GI_LONG);
3158		}
3159	} else {			/* legacy rate */
3160		fmt |= EAGLE_TXD_FORMAT_LEGACY
3161		    | SM(mwl_cvtlegacyrate(rate), EAGLE_TXD_RATE)
3162		    | EAGLE_TXD_CHW_20
3163		    /* XXX iv_flags & IEEE80211_F_SHPREAMBLE? */
3164		    | (ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_PREAMBLE ?
3165			EAGLE_TXD_PREAMBLE_SHORT : EAGLE_TXD_PREAMBLE_LONG);
3166	}
3167	return fmt;
3168}
3169
3170static int
3171mwl_tx_start(struct mwl_softc *sc, struct ieee80211_node *ni, struct mwl_txbuf *bf,
3172    struct mbuf *m0)
3173{
3174#define	IEEE80211_DIR_DSTODS(wh) \
3175	((wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) == IEEE80211_FC1_DIR_DSTODS)
3176	struct ifnet *ifp = sc->sc_ifp;
3177	struct ieee80211com *ic = ifp->if_l2com;
3178	struct ieee80211vap *vap = ni->ni_vap;
3179	int error, iswep, ismcast;
3180	int hdrlen, copyhdrlen, pktlen;
3181	struct mwl_txdesc *ds;
3182	struct mwl_txq *txq;
3183	struct ieee80211_frame *wh;
3184	struct mwltxrec *tr;
3185	struct mwl_node *mn;
3186	uint16_t qos;
3187#if MWL_TXDESC > 1
3188	int i;
3189#endif
3190
3191	wh = mtod(m0, struct ieee80211_frame *);
3192	iswep = wh->i_fc[1] & IEEE80211_FC1_WEP;
3193	ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
3194	hdrlen = ieee80211_anyhdrsize(wh);
3195	copyhdrlen = hdrlen;
3196	pktlen = m0->m_pkthdr.len;
3197	if (IEEE80211_QOS_HAS_SEQ(wh)) {
3198		if (IEEE80211_DIR_DSTODS(wh)) {
3199			qos = *(uint16_t *)
3200			    (((struct ieee80211_qosframe_addr4 *) wh)->i_qos);
3201			copyhdrlen -= sizeof(qos);
3202		} else
3203			qos = *(uint16_t *)
3204			    (((struct ieee80211_qosframe *) wh)->i_qos);
3205	} else
3206		qos = 0;
3207
3208	if (iswep) {
3209		const struct ieee80211_cipher *cip;
3210		struct ieee80211_key *k;
3211
3212		/*
3213		 * Construct the 802.11 header+trailer for an encrypted
3214		 * frame. The only reason this can fail is because of an
3215		 * unknown or unsupported cipher/key type.
3216		 *
3217		 * NB: we do this even though the firmware will ignore
3218		 *     what we've done for WEP and TKIP as we need the
3219		 *     ExtIV filled in for CCMP and this also adjusts
3220		 *     the headers which simplifies our work below.
3221		 */
3222		k = ieee80211_crypto_encap(ni, m0);
3223		if (k == NULL) {
3224			/*
3225			 * This can happen when the key is yanked after the
3226			 * frame was queued.  Just discard the frame; the
3227			 * 802.11 layer counts failures and provides
3228			 * debugging/diagnostics.
3229			 */
3230			m_freem(m0);
3231			return EIO;
3232		}
3233		/*
3234		 * Adjust the packet length for the crypto additions
3235		 * done during encap and any other bits that the f/w
3236		 * will add later on.
3237		 */
3238		cip = k->wk_cipher;
3239		pktlen += cip->ic_header + cip->ic_miclen + cip->ic_trailer;
3240
3241		/* packet header may have moved, reset our local pointer */
3242		wh = mtod(m0, struct ieee80211_frame *);
3243	}
3244
3245	if (ieee80211_radiotap_active_vap(vap)) {
3246		sc->sc_tx_th.wt_flags = 0;	/* XXX */
3247		if (iswep)
3248			sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_WEP;
3249#if 0
3250		sc->sc_tx_th.wt_rate = ds->DataRate;
3251#endif
3252		sc->sc_tx_th.wt_txpower = ni->ni_txpower;
3253		sc->sc_tx_th.wt_antenna = sc->sc_txantenna;
3254
3255		ieee80211_radiotap_tx(vap, m0);
3256	}
3257	/*
3258	 * Copy up/down the 802.11 header; the firmware requires
3259	 * we present a 2-byte payload length followed by a
3260	 * 4-address header (w/o QoS), followed (optionally) by
3261	 * any WEP/ExtIV header (but only filled in for CCMP).
3262	 * We are assured the mbuf has sufficient headroom to
3263	 * prepend in-place by the setup of ic_headroom in
3264	 * mwl_attach.
3265	 */
3266	if (hdrlen < sizeof(struct mwltxrec)) {
3267		const int space = sizeof(struct mwltxrec) - hdrlen;
3268		if (M_LEADINGSPACE(m0) < space) {
3269			/* NB: should never happen */
3270			device_printf(sc->sc_dev,
3271			    "not enough headroom, need %d found %zd, "
3272			    "m_flags 0x%x m_len %d\n",
3273			    space, M_LEADINGSPACE(m0), m0->m_flags, m0->m_len);
3274			ieee80211_dump_pkt(ic,
3275			    mtod(m0, const uint8_t *), m0->m_len, 0, -1);
3276			m_freem(m0);
3277			sc->sc_stats.mst_tx_noheadroom++;
3278			return EIO;
3279		}
3280		M_PREPEND(m0, space, M_NOWAIT);
3281	}
3282	tr = mtod(m0, struct mwltxrec *);
3283	if (wh != (struct ieee80211_frame *) &tr->wh)
3284		ovbcopy(wh, &tr->wh, hdrlen);
3285	/*
3286	 * Note: the "firmware length" is actually the length
3287	 * of the fully formed "802.11 payload".  That is, it's
3288	 * everything except for the 802.11 header.  In particular
3289	 * this includes all crypto material including the MIC!
3290	 */
3291	tr->fwlen = htole16(pktlen - hdrlen);
3292
3293	/*
3294	 * Load the DMA map so any coalescing is done.  This
3295	 * also calculates the number of descriptors we need.
3296	 */
3297	error = mwl_tx_dmasetup(sc, bf, m0);
3298	if (error != 0) {
3299		/* NB: stat collected in mwl_tx_dmasetup */
3300		DPRINTF(sc, MWL_DEBUG_XMIT,
3301		    "%s: unable to setup dma\n", __func__);
3302		return error;
3303	}
3304	bf->bf_node = ni;			/* NB: held reference */
3305	m0 = bf->bf_m;				/* NB: may have changed */
3306	tr = mtod(m0, struct mwltxrec *);
3307	wh = (struct ieee80211_frame *)&tr->wh;
3308
3309	/*
3310	 * Formulate tx descriptor.
3311	 */
3312	ds = bf->bf_desc;
3313	txq = bf->bf_txq;
3314
3315	ds->QosCtrl = qos;			/* NB: already little-endian */
3316#if MWL_TXDESC == 1
3317	/*
3318	 * NB: multiframes should be zero because the descriptors
3319	 *     are initialized to zero.  This should handle the case
3320	 *     where the driver is built with MWL_TXDESC=1 but we are
3321	 *     using firmware with multi-segment support.
3322	 */
3323	ds->PktPtr = htole32(bf->bf_segs[0].ds_addr);
3324	ds->PktLen = htole16(bf->bf_segs[0].ds_len);
3325#else
3326	ds->multiframes = htole32(bf->bf_nseg);
3327	ds->PktLen = htole16(m0->m_pkthdr.len);
3328	for (i = 0; i < bf->bf_nseg; i++) {
3329		ds->PktPtrArray[i] = htole32(bf->bf_segs[i].ds_addr);
3330		ds->PktLenArray[i] = htole16(bf->bf_segs[i].ds_len);
3331	}
3332#endif
3333	/* NB: pPhysNext, DataRate, and SapPktInfo setup once, don't touch */
3334	ds->Format = 0;
3335	ds->pad = 0;
3336	ds->ack_wcb_addr = 0;
3337
3338	mn = MWL_NODE(ni);
3339	/*
3340	 * Select transmit rate.
3341	 */
3342	switch (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) {
3343	case IEEE80211_FC0_TYPE_MGT:
3344		sc->sc_stats.mst_tx_mgmt++;
3345		/* fall thru... */
3346	case IEEE80211_FC0_TYPE_CTL:
3347		/* NB: assign to BE q to avoid bursting */
3348		ds->TxPriority = MWL_WME_AC_BE;
3349		break;
3350	case IEEE80211_FC0_TYPE_DATA:
3351		if (!ismcast) {
3352			const struct ieee80211_txparam *tp = ni->ni_txparms;
3353			/*
3354			 * EAPOL frames get forced to a fixed rate and w/o
3355			 * aggregation; otherwise check for any fixed rate
3356			 * for the client (may depend on association state).
3357			 */
3358			if (m0->m_flags & M_EAPOL) {
3359				const struct mwl_vap *mvp = MWL_VAP_CONST(vap);
3360				ds->Format = mvp->mv_eapolformat;
3361				ds->pad = htole16(
3362				    EAGLE_TXD_FIXED_RATE | EAGLE_TXD_DONT_AGGR);
3363			} else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE) {
3364				/* XXX pre-calculate per node */
3365				ds->Format = htole16(
3366				    mwl_calcformat(tp->ucastrate, ni));
3367				ds->pad = htole16(EAGLE_TXD_FIXED_RATE);
3368			}
3369			/* NB: EAPOL frames will never have qos set */
3370			if (qos == 0)
3371				ds->TxPriority = txq->qnum;
3372#if MWL_MAXBA > 3
3373			else if (mwl_bastream_match(&mn->mn_ba[3], qos))
3374				ds->TxPriority = mn->mn_ba[3].txq;
3375#endif
3376#if MWL_MAXBA > 2
3377			else if (mwl_bastream_match(&mn->mn_ba[2], qos))
3378				ds->TxPriority = mn->mn_ba[2].txq;
3379#endif
3380#if MWL_MAXBA > 1
3381			else if (mwl_bastream_match(&mn->mn_ba[1], qos))
3382				ds->TxPriority = mn->mn_ba[1].txq;
3383#endif
3384#if MWL_MAXBA > 0
3385			else if (mwl_bastream_match(&mn->mn_ba[0], qos))
3386				ds->TxPriority = mn->mn_ba[0].txq;
3387#endif
3388			else
3389				ds->TxPriority = txq->qnum;
3390		} else
3391			ds->TxPriority = txq->qnum;
3392		break;
3393	default:
3394		if_printf(ifp, "bogus frame type 0x%x (%s)\n",
3395			wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK, __func__);
3396		sc->sc_stats.mst_tx_badframetype++;
3397		m_freem(m0);
3398		return EIO;
3399	}
3400
3401	if (IFF_DUMPPKTS_XMIT(sc))
3402		ieee80211_dump_pkt(ic,
3403		    mtod(m0, const uint8_t *)+sizeof(uint16_t),
3404		    m0->m_len - sizeof(uint16_t), ds->DataRate, -1);
3405
3406	MWL_TXQ_LOCK(txq);
3407	ds->Status = htole32(EAGLE_TXD_STATUS_FW_OWNED);
3408	STAILQ_INSERT_TAIL(&txq->active, bf, bf_list);
3409	MWL_TXDESC_SYNC(txq, ds, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3410
3411	ifp->if_opackets++;
3412	ifp->if_timer = 5;
3413	MWL_TXQ_UNLOCK(txq);
3414
3415	return 0;
3416#undef	IEEE80211_DIR_DSTODS
3417}
3418
3419static __inline int
3420mwl_cvtlegacyrix(int rix)
3421{
3422#define	N(x)	(sizeof(x)/sizeof(x[0]))
3423	static const int ieeerates[] =
3424	    { 2, 4, 11, 22, 44, 12, 18, 24, 36, 48, 72, 96, 108 };
3425	return (rix < N(ieeerates) ? ieeerates[rix] : 0);
3426#undef N
3427}
3428
3429/*
3430 * Process completed xmit descriptors from the specified queue.
3431 */
3432static int
3433mwl_tx_processq(struct mwl_softc *sc, struct mwl_txq *txq)
3434{
3435#define	EAGLE_TXD_STATUS_MCAST \
3436	(EAGLE_TXD_STATUS_MULTICAST_TX | EAGLE_TXD_STATUS_BROADCAST_TX)
3437	struct ifnet *ifp = sc->sc_ifp;
3438	struct ieee80211com *ic = ifp->if_l2com;
3439	struct mwl_txbuf *bf;
3440	struct mwl_txdesc *ds;
3441	struct ieee80211_node *ni;
3442	struct mwl_node *an;
3443	int nreaped;
3444	uint32_t status;
3445
3446	DPRINTF(sc, MWL_DEBUG_TX_PROC, "%s: tx queue %u\n", __func__, txq->qnum);
3447	for (nreaped = 0;; nreaped++) {
3448		MWL_TXQ_LOCK(txq);
3449		bf = STAILQ_FIRST(&txq->active);
3450		if (bf == NULL) {
3451			MWL_TXQ_UNLOCK(txq);
3452			break;
3453		}
3454		ds = bf->bf_desc;
3455		MWL_TXDESC_SYNC(txq, ds,
3456		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
3457		if (ds->Status & htole32(EAGLE_TXD_STATUS_FW_OWNED)) {
3458			MWL_TXQ_UNLOCK(txq);
3459			break;
3460		}
3461		STAILQ_REMOVE_HEAD(&txq->active, bf_list);
3462		MWL_TXQ_UNLOCK(txq);
3463
3464#ifdef MWL_DEBUG
3465		if (sc->sc_debug & MWL_DEBUG_XMIT_DESC)
3466			mwl_printtxbuf(bf, txq->qnum, nreaped);
3467#endif
3468		ni = bf->bf_node;
3469		if (ni != NULL) {
3470			an = MWL_NODE(ni);
3471			status = le32toh(ds->Status);
3472			if (status & EAGLE_TXD_STATUS_OK) {
3473				uint16_t Format = le16toh(ds->Format);
3474				uint8_t txant = MS(Format, EAGLE_TXD_ANTENNA);
3475
3476				sc->sc_stats.mst_ant_tx[txant]++;
3477				if (status & EAGLE_TXD_STATUS_OK_RETRY)
3478					sc->sc_stats.mst_tx_retries++;
3479				if (status & EAGLE_TXD_STATUS_OK_MORE_RETRY)
3480					sc->sc_stats.mst_tx_mretries++;
3481				if (txq->qnum >= MWL_WME_AC_VO)
3482					ic->ic_wme.wme_hipri_traffic++;
3483				ni->ni_txrate = MS(Format, EAGLE_TXD_RATE);
3484				if ((Format & EAGLE_TXD_FORMAT_HT) == 0) {
3485					ni->ni_txrate = mwl_cvtlegacyrix(
3486					    ni->ni_txrate);
3487				} else
3488					ni->ni_txrate |= IEEE80211_RATE_MCS;
3489				sc->sc_stats.mst_tx_rate = ni->ni_txrate;
3490			} else {
3491				if (status & EAGLE_TXD_STATUS_FAILED_LINK_ERROR)
3492					sc->sc_stats.mst_tx_linkerror++;
3493				if (status & EAGLE_TXD_STATUS_FAILED_XRETRY)
3494					sc->sc_stats.mst_tx_xretries++;
3495				if (status & EAGLE_TXD_STATUS_FAILED_AGING)
3496					sc->sc_stats.mst_tx_aging++;
3497				if (bf->bf_m->m_flags & M_FF)
3498					sc->sc_stats.mst_ff_txerr++;
3499			}
3500			/*
3501			 * Do any tx complete callback.  Note this must
3502			 * be done before releasing the node reference.
3503			 * XXX no way to figure out if frame was ACK'd
3504			 */
3505			if (bf->bf_m->m_flags & M_TXCB) {
3506				/* XXX strip fw len in case header inspected */
3507				m_adj(bf->bf_m, sizeof(uint16_t));
3508				ieee80211_process_callback(ni, bf->bf_m,
3509					(status & EAGLE_TXD_STATUS_OK) == 0);
3510			}
3511			/*
3512			 * Reclaim reference to node.
3513			 *
3514			 * NB: the node may be reclaimed here if, for example
3515			 *     this is a DEAUTH message that was sent and the
3516			 *     node was timed out due to inactivity.
3517			 */
3518			ieee80211_free_node(ni);
3519		}
3520		ds->Status = htole32(EAGLE_TXD_STATUS_IDLE);
3521
3522		bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
3523		    BUS_DMASYNC_POSTWRITE);
3524		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
3525		m_freem(bf->bf_m);
3526
3527		mwl_puttxbuf_tail(txq, bf);
3528	}
3529	return nreaped;
3530#undef EAGLE_TXD_STATUS_MCAST
3531}
3532
3533/*
3534 * Deferred processing of transmit interrupt; special-cased
3535 * for four hardware queues, 0-3.
3536 */
3537static void
3538mwl_tx_proc(void *arg, int npending)
3539{
3540	struct mwl_softc *sc = arg;
3541	struct ifnet *ifp = sc->sc_ifp;
3542	int nreaped;
3543
3544	/*
3545	 * Process each active queue.
3546	 */
3547	nreaped = 0;
3548	if (!STAILQ_EMPTY(&sc->sc_txq[0].active))
3549		nreaped += mwl_tx_processq(sc, &sc->sc_txq[0]);
3550	if (!STAILQ_EMPTY(&sc->sc_txq[1].active))
3551		nreaped += mwl_tx_processq(sc, &sc->sc_txq[1]);
3552	if (!STAILQ_EMPTY(&sc->sc_txq[2].active))
3553		nreaped += mwl_tx_processq(sc, &sc->sc_txq[2]);
3554	if (!STAILQ_EMPTY(&sc->sc_txq[3].active))
3555		nreaped += mwl_tx_processq(sc, &sc->sc_txq[3]);
3556
3557	if (nreaped != 0) {
3558		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3559		ifp->if_timer = 0;
3560		if (!IFQ_IS_EMPTY(&ifp->if_snd)) {
3561			/* NB: kick fw; the tx thread may have been preempted */
3562			mwl_hal_txstart(sc->sc_mh, 0);
3563			mwl_start(ifp);
3564		}
3565	}
3566}
3567
3568static void
3569mwl_tx_draintxq(struct mwl_softc *sc, struct mwl_txq *txq)
3570{
3571	struct ieee80211_node *ni;
3572	struct mwl_txbuf *bf;
3573	u_int ix;
3574
3575	/*
3576	 * NB: this assumes output has been stopped and
3577	 *     we do not need to block mwl_tx_tasklet
3578	 */
3579	for (ix = 0;; ix++) {
3580		MWL_TXQ_LOCK(txq);
3581		bf = STAILQ_FIRST(&txq->active);
3582		if (bf == NULL) {
3583			MWL_TXQ_UNLOCK(txq);
3584			break;
3585		}
3586		STAILQ_REMOVE_HEAD(&txq->active, bf_list);
3587		MWL_TXQ_UNLOCK(txq);
3588#ifdef MWL_DEBUG
3589		if (sc->sc_debug & MWL_DEBUG_RESET) {
3590			struct ifnet *ifp = sc->sc_ifp;
3591			struct ieee80211com *ic = ifp->if_l2com;
3592			const struct mwltxrec *tr =
3593			    mtod(bf->bf_m, const struct mwltxrec *);
3594			mwl_printtxbuf(bf, txq->qnum, ix);
3595			ieee80211_dump_pkt(ic, (const uint8_t *)&tr->wh,
3596				bf->bf_m->m_len - sizeof(tr->fwlen), 0, -1);
3597		}
3598#endif /* MWL_DEBUG */
3599		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
3600		ni = bf->bf_node;
3601		if (ni != NULL) {
3602			/*
3603			 * Reclaim node reference.
3604			 */
3605			ieee80211_free_node(ni);
3606		}
3607		m_freem(bf->bf_m);
3608
3609		mwl_puttxbuf_tail(txq, bf);
3610	}
3611}
3612
3613/*
3614 * Drain the transmit queues and reclaim resources.
3615 */
3616static void
3617mwl_draintxq(struct mwl_softc *sc)
3618{
3619	struct ifnet *ifp = sc->sc_ifp;
3620	int i;
3621
3622	for (i = 0; i < MWL_NUM_TX_QUEUES; i++)
3623		mwl_tx_draintxq(sc, &sc->sc_txq[i]);
3624	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3625	ifp->if_timer = 0;
3626}
3627
3628#ifdef MWL_DIAGAPI
3629/*
3630 * Reset the transmit queues to a pristine state after a fw download.
3631 */
3632static void
3633mwl_resettxq(struct mwl_softc *sc)
3634{
3635	int i;
3636
3637	for (i = 0; i < MWL_NUM_TX_QUEUES; i++)
3638		mwl_txq_reset(sc, &sc->sc_txq[i]);
3639}
3640#endif /* MWL_DIAGAPI */
3641
3642/*
3643 * Clear the transmit queues of any frames submitted for the
3644 * specified vap.  This is done when the vap is deleted so we
3645 * don't potentially reference the vap after it is gone.
3646 * Note we cannot remove the frames; we only reclaim the node
3647 * reference.
3648 */
3649static void
3650mwl_cleartxq(struct mwl_softc *sc, struct ieee80211vap *vap)
3651{
3652	struct mwl_txq *txq;
3653	struct mwl_txbuf *bf;
3654	int i;
3655
3656	for (i = 0; i < MWL_NUM_TX_QUEUES; i++) {
3657		txq = &sc->sc_txq[i];
3658		MWL_TXQ_LOCK(txq);
3659		STAILQ_FOREACH(bf, &txq->active, bf_list) {
3660			struct ieee80211_node *ni = bf->bf_node;
3661			if (ni != NULL && ni->ni_vap == vap) {
3662				bf->bf_node = NULL;
3663				ieee80211_free_node(ni);
3664			}
3665		}
3666		MWL_TXQ_UNLOCK(txq);
3667	}
3668}
3669
3670static int
3671mwl_recv_action(struct ieee80211_node *ni, const struct ieee80211_frame *wh,
3672	const uint8_t *frm, const uint8_t *efrm)
3673{
3674	struct mwl_softc *sc = ni->ni_ic->ic_ifp->if_softc;
3675	const struct ieee80211_action *ia;
3676
3677	ia = (const struct ieee80211_action *) frm;
3678	if (ia->ia_category == IEEE80211_ACTION_CAT_HT &&
3679	    ia->ia_action == IEEE80211_ACTION_HT_MIMOPWRSAVE) {
3680		const struct ieee80211_action_ht_mimopowersave *mps =
3681		    (const struct ieee80211_action_ht_mimopowersave *) ia;
3682
3683		mwl_hal_setmimops(sc->sc_mh, ni->ni_macaddr,
3684		    mps->am_control & IEEE80211_A_HT_MIMOPWRSAVE_ENA,
3685		    MS(mps->am_control, IEEE80211_A_HT_MIMOPWRSAVE_MODE));
3686		return 0;
3687	} else
3688		return sc->sc_recv_action(ni, wh, frm, efrm);
3689}
3690
3691static int
3692mwl_addba_request(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap,
3693	int dialogtoken, int baparamset, int batimeout)
3694{
3695	struct mwl_softc *sc = ni->ni_ic->ic_ifp->if_softc;
3696	struct ieee80211vap *vap = ni->ni_vap;
3697	struct mwl_node *mn = MWL_NODE(ni);
3698	struct mwl_bastate *bas;
3699
3700	bas = tap->txa_private;
3701	if (bas == NULL) {
3702		const MWL_HAL_BASTREAM *sp;
3703		/*
3704		 * Check for a free BA stream slot.
3705		 */
3706#if MWL_MAXBA > 3
3707		if (mn->mn_ba[3].bastream == NULL)
3708			bas = &mn->mn_ba[3];
3709		else
3710#endif
3711#if MWL_MAXBA > 2
3712		if (mn->mn_ba[2].bastream == NULL)
3713			bas = &mn->mn_ba[2];
3714		else
3715#endif
3716#if MWL_MAXBA > 1
3717		if (mn->mn_ba[1].bastream == NULL)
3718			bas = &mn->mn_ba[1];
3719		else
3720#endif
3721#if MWL_MAXBA > 0
3722		if (mn->mn_ba[0].bastream == NULL)
3723			bas = &mn->mn_ba[0];
3724		else
3725#endif
3726		{
3727			/* sta already has max BA streams */
3728			/* XXX assign BA stream to highest priority tid */
3729			DPRINTF(sc, MWL_DEBUG_AMPDU,
3730			    "%s: already has max bastreams\n", __func__);
3731			sc->sc_stats.mst_ampdu_reject++;
3732			return 0;
3733		}
3734		/* NB: no held reference to ni */
3735		sp = mwl_hal_bastream_alloc(MWL_VAP(vap)->mv_hvap,
3736		    (baparamset & IEEE80211_BAPS_POLICY_IMMEDIATE) != 0,
3737		    ni->ni_macaddr, WME_AC_TO_TID(tap->txa_ac), ni->ni_htparam,
3738		    ni, tap);
3739		if (sp == NULL) {
3740			/*
3741			 * No available stream, return 0 so no
3742			 * a-mpdu aggregation will be done.
3743			 */
3744			DPRINTF(sc, MWL_DEBUG_AMPDU,
3745			    "%s: no bastream available\n", __func__);
3746			sc->sc_stats.mst_ampdu_nostream++;
3747			return 0;
3748		}
3749		DPRINTF(sc, MWL_DEBUG_AMPDU, "%s: alloc bastream %p\n",
3750		    __func__, sp);
3751		/* NB: qos is left zero so we won't match in mwl_tx_start */
3752		bas->bastream = sp;
3753		tap->txa_private = bas;
3754	}
3755	/* fetch current seq# from the firmware; if available */
3756	if (mwl_hal_bastream_get_seqno(sc->sc_mh, bas->bastream,
3757	    vap->iv_opmode == IEEE80211_M_STA ? vap->iv_myaddr : ni->ni_macaddr,
3758	    &tap->txa_start) != 0)
3759		tap->txa_start = 0;
3760	return sc->sc_addba_request(ni, tap, dialogtoken, baparamset, batimeout);
3761}
3762
3763static int
3764mwl_addba_response(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap,
3765	int code, int baparamset, int batimeout)
3766{
3767	struct mwl_softc *sc = ni->ni_ic->ic_ifp->if_softc;
3768	struct mwl_bastate *bas;
3769
3770	bas = tap->txa_private;
3771	if (bas == NULL) {
3772		/* XXX should not happen */
3773		DPRINTF(sc, MWL_DEBUG_AMPDU,
3774		    "%s: no BA stream allocated, AC %d\n",
3775		    __func__, tap->txa_ac);
3776		sc->sc_stats.mst_addba_nostream++;
3777		return 0;
3778	}
3779	if (code == IEEE80211_STATUS_SUCCESS) {
3780		struct ieee80211vap *vap = ni->ni_vap;
3781		int bufsiz, error;
3782
3783		/*
3784		 * Tell the firmware to setup the BA stream;
3785		 * we know resources are available because we
3786		 * pre-allocated one before forming the request.
3787		 */
3788		bufsiz = MS(baparamset, IEEE80211_BAPS_BUFSIZ);
3789		if (bufsiz == 0)
3790			bufsiz = IEEE80211_AGGR_BAWMAX;
3791		error = mwl_hal_bastream_create(MWL_VAP(vap)->mv_hvap,
3792		    bas->bastream, bufsiz, bufsiz, tap->txa_start);
3793		if (error != 0) {
3794			/*
3795			 * Setup failed, return immediately so no a-mpdu
3796			 * aggregation will be done.
3797			 */
3798			mwl_hal_bastream_destroy(sc->sc_mh, bas->bastream);
3799			mwl_bastream_free(bas);
3800			tap->txa_private = NULL;
3801
3802			DPRINTF(sc, MWL_DEBUG_AMPDU,
3803			    "%s: create failed, error %d, bufsiz %d AC %d "
3804			    "htparam 0x%x\n", __func__, error, bufsiz,
3805			    tap->txa_ac, ni->ni_htparam);
3806			sc->sc_stats.mst_bacreate_failed++;
3807			return 0;
3808		}
3809		/* NB: cache txq to avoid ptr indirect */
3810		mwl_bastream_setup(bas, tap->txa_ac, bas->bastream->txq);
3811		DPRINTF(sc, MWL_DEBUG_AMPDU,
3812		    "%s: bastream %p assigned to txq %d AC %d bufsiz %d "
3813		    "htparam 0x%x\n", __func__, bas->bastream,
3814		    bas->txq, tap->txa_ac, bufsiz, ni->ni_htparam);
3815	} else {
3816		/*
3817		 * Other side NAK'd us; return the resources.
3818		 */
3819		DPRINTF(sc, MWL_DEBUG_AMPDU,
3820		    "%s: request failed with code %d, destroy bastream %p\n",
3821		    __func__, code, bas->bastream);
3822		mwl_hal_bastream_destroy(sc->sc_mh, bas->bastream);
3823		mwl_bastream_free(bas);
3824		tap->txa_private = NULL;
3825	}
3826	/* NB: firmware sends BAR so we don't need to */
3827	return sc->sc_addba_response(ni, tap, code, baparamset, batimeout);
3828}
3829
3830static void
3831mwl_addba_stop(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap)
3832{
3833	struct mwl_softc *sc = ni->ni_ic->ic_ifp->if_softc;
3834	struct mwl_bastate *bas;
3835
3836	bas = tap->txa_private;
3837	if (bas != NULL) {
3838		DPRINTF(sc, MWL_DEBUG_AMPDU, "%s: destroy bastream %p\n",
3839		    __func__, bas->bastream);
3840		mwl_hal_bastream_destroy(sc->sc_mh, bas->bastream);
3841		mwl_bastream_free(bas);
3842		tap->txa_private = NULL;
3843	}
3844	sc->sc_addba_stop(ni, tap);
3845}
3846
3847/*
3848 * Setup the rx data structures.  This should only be
3849 * done once or we may get out of sync with the firmware.
3850 */
3851static int
3852mwl_startrecv(struct mwl_softc *sc)
3853{
3854	if (!sc->sc_recvsetup) {
3855		struct mwl_rxbuf *bf, *prev;
3856		struct mwl_rxdesc *ds;
3857
3858		prev = NULL;
3859		STAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
3860			int error = mwl_rxbuf_init(sc, bf);
3861			if (error != 0) {
3862				DPRINTF(sc, MWL_DEBUG_RECV,
3863					"%s: mwl_rxbuf_init failed %d\n",
3864					__func__, error);
3865				return error;
3866			}
3867			if (prev != NULL) {
3868				ds = prev->bf_desc;
3869				ds->pPhysNext = htole32(bf->bf_daddr);
3870			}
3871			prev = bf;
3872		}
3873		if (prev != NULL) {
3874			ds = prev->bf_desc;
3875			ds->pPhysNext =
3876			    htole32(STAILQ_FIRST(&sc->sc_rxbuf)->bf_daddr);
3877		}
3878		sc->sc_recvsetup = 1;
3879	}
3880	mwl_mode_init(sc);		/* set filters, etc. */
3881	return 0;
3882}
3883
3884static MWL_HAL_APMODE
3885mwl_getapmode(const struct ieee80211vap *vap, struct ieee80211_channel *chan)
3886{
3887	MWL_HAL_APMODE mode;
3888
3889	if (IEEE80211_IS_CHAN_HT(chan)) {
3890		if (vap->iv_flags_ht & IEEE80211_FHT_PUREN)
3891			mode = AP_MODE_N_ONLY;
3892		else if (IEEE80211_IS_CHAN_5GHZ(chan))
3893			mode = AP_MODE_AandN;
3894		else if (vap->iv_flags & IEEE80211_F_PUREG)
3895			mode = AP_MODE_GandN;
3896		else
3897			mode = AP_MODE_BandGandN;
3898	} else if (IEEE80211_IS_CHAN_ANYG(chan)) {
3899		if (vap->iv_flags & IEEE80211_F_PUREG)
3900			mode = AP_MODE_G_ONLY;
3901		else
3902			mode = AP_MODE_MIXED;
3903	} else if (IEEE80211_IS_CHAN_B(chan))
3904		mode = AP_MODE_B_ONLY;
3905	else if (IEEE80211_IS_CHAN_A(chan))
3906		mode = AP_MODE_A_ONLY;
3907	else
3908		mode = AP_MODE_MIXED;		/* XXX should not happen? */
3909	return mode;
3910}
3911
3912static int
3913mwl_setapmode(struct ieee80211vap *vap, struct ieee80211_channel *chan)
3914{
3915	struct mwl_hal_vap *hvap = MWL_VAP(vap)->mv_hvap;
3916	return mwl_hal_setapmode(hvap, mwl_getapmode(vap, chan));
3917}
3918
3919/*
3920 * Set/change channels.
3921 */
3922static int
3923mwl_chan_set(struct mwl_softc *sc, struct ieee80211_channel *chan)
3924{
3925	struct mwl_hal *mh = sc->sc_mh;
3926	struct ifnet *ifp = sc->sc_ifp;
3927	struct ieee80211com *ic = ifp->if_l2com;
3928	MWL_HAL_CHANNEL hchan;
3929	int maxtxpow;
3930
3931	DPRINTF(sc, MWL_DEBUG_RESET, "%s: chan %u MHz/flags 0x%x\n",
3932	    __func__, chan->ic_freq, chan->ic_flags);
3933
3934	/*
3935	 * Convert to a HAL channel description with
3936	 * the flags constrained to reflect the current
3937	 * operating mode.
3938	 */
3939	mwl_mapchan(&hchan, chan);
3940	mwl_hal_intrset(mh, 0);		/* disable interrupts */
3941#if 0
3942	mwl_draintxq(sc);		/* clear pending tx frames */
3943#endif
3944	mwl_hal_setchannel(mh, &hchan);
3945	/*
3946	 * Tx power is cap'd by the regulatory setting and
3947	 * possibly a user-set limit.  We pass the min of
3948	 * these to the hal to apply them to the cal data
3949	 * for this channel.
3950	 * XXX min bound?
3951	 */
3952	maxtxpow = 2*chan->ic_maxregpower;
3953	if (maxtxpow > ic->ic_txpowlimit)
3954		maxtxpow = ic->ic_txpowlimit;
3955	mwl_hal_settxpower(mh, &hchan, maxtxpow / 2);
3956	/* NB: potentially change mcast/mgt rates */
3957	mwl_setcurchanrates(sc);
3958
3959	/*
3960	 * Update internal state.
3961	 */
3962	sc->sc_tx_th.wt_chan_freq = htole16(chan->ic_freq);
3963	sc->sc_rx_th.wr_chan_freq = htole16(chan->ic_freq);
3964	if (IEEE80211_IS_CHAN_A(chan)) {
3965		sc->sc_tx_th.wt_chan_flags = htole16(IEEE80211_CHAN_A);
3966		sc->sc_rx_th.wr_chan_flags = htole16(IEEE80211_CHAN_A);
3967	} else if (IEEE80211_IS_CHAN_ANYG(chan)) {
3968		sc->sc_tx_th.wt_chan_flags = htole16(IEEE80211_CHAN_G);
3969		sc->sc_rx_th.wr_chan_flags = htole16(IEEE80211_CHAN_G);
3970	} else {
3971		sc->sc_tx_th.wt_chan_flags = htole16(IEEE80211_CHAN_B);
3972		sc->sc_rx_th.wr_chan_flags = htole16(IEEE80211_CHAN_B);
3973	}
3974	sc->sc_curchan = hchan;
3975	mwl_hal_intrset(mh, sc->sc_imask);
3976
3977	return 0;
3978}
3979
3980static void
3981mwl_scan_start(struct ieee80211com *ic)
3982{
3983	struct ifnet *ifp = ic->ic_ifp;
3984	struct mwl_softc *sc = ifp->if_softc;
3985
3986	DPRINTF(sc, MWL_DEBUG_STATE, "%s\n", __func__);
3987}
3988
3989static void
3990mwl_scan_end(struct ieee80211com *ic)
3991{
3992	struct ifnet *ifp = ic->ic_ifp;
3993	struct mwl_softc *sc = ifp->if_softc;
3994
3995	DPRINTF(sc, MWL_DEBUG_STATE, "%s\n", __func__);
3996}
3997
3998static void
3999mwl_set_channel(struct ieee80211com *ic)
4000{
4001	struct ifnet *ifp = ic->ic_ifp;
4002	struct mwl_softc *sc = ifp->if_softc;
4003
4004	(void) mwl_chan_set(sc, ic->ic_curchan);
4005}
4006
4007/*
4008 * Handle a channel switch request.  We inform the firmware
4009 * and mark the global state to suppress various actions.
4010 * NB: we issue only one request to the fw; we may be called
4011 * multiple times if there are multiple vap's.
4012 */
4013static void
4014mwl_startcsa(struct ieee80211vap *vap)
4015{
4016	struct ieee80211com *ic = vap->iv_ic;
4017	struct mwl_softc *sc = ic->ic_ifp->if_softc;
4018	MWL_HAL_CHANNEL hchan;
4019
4020	if (sc->sc_csapending)
4021		return;
4022
4023	mwl_mapchan(&hchan, ic->ic_csa_newchan);
4024	/* 1 =>'s quiet channel */
4025	mwl_hal_setchannelswitchie(sc->sc_mh, &hchan, 1, ic->ic_csa_count);
4026	sc->sc_csapending = 1;
4027}
4028
4029/*
4030 * Plumb any static WEP key for the station.  This is
4031 * necessary as we must propagate the key from the
4032 * global key table of the vap to each sta db entry.
4033 */
4034static void
4035mwl_setanywepkey(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN])
4036{
4037	if ((vap->iv_flags & (IEEE80211_F_PRIVACY|IEEE80211_F_WPA)) ==
4038		IEEE80211_F_PRIVACY &&
4039	    vap->iv_def_txkey != IEEE80211_KEYIX_NONE &&
4040	    vap->iv_nw_keys[vap->iv_def_txkey].wk_keyix != IEEE80211_KEYIX_NONE)
4041		(void) mwl_key_set(vap, &vap->iv_nw_keys[vap->iv_def_txkey], mac);
4042}
4043
4044static int
4045mwl_peerstadb(struct ieee80211_node *ni, int aid, int staid, MWL_HAL_PEERINFO *pi)
4046{
4047#define	WME(ie) ((const struct ieee80211_wme_info *) ie)
4048	struct ieee80211vap *vap = ni->ni_vap;
4049	struct mwl_hal_vap *hvap;
4050	int error;
4051
4052	if (vap->iv_opmode == IEEE80211_M_WDS) {
4053		/*
4054		 * WDS vap's do not have a f/w vap; instead they piggyback
4055		 * on an AP vap and we must install the sta db entry and
4056		 * crypto state using that AP's handle (the WDS vap has none).
4057		 */
4058		hvap = MWL_VAP(vap)->mv_ap_hvap;
4059	} else
4060		hvap = MWL_VAP(vap)->mv_hvap;
4061	error = mwl_hal_newstation(hvap, ni->ni_macaddr,
4062	    aid, staid, pi,
4063	    ni->ni_flags & (IEEE80211_NODE_QOS | IEEE80211_NODE_HT),
4064	    ni->ni_ies.wme_ie != NULL ? WME(ni->ni_ies.wme_ie)->wme_info : 0);
4065	if (error == 0) {
4066		/*
4067		 * Setup security for this station.  For sta mode this is
4068		 * needed even though do the same thing on transition to
4069		 * AUTH state because the call to mwl_hal_newstation
4070		 * clobbers the crypto state we setup.
4071		 */
4072		mwl_setanywepkey(vap, ni->ni_macaddr);
4073	}
4074	return error;
4075#undef WME
4076}
4077
4078static void
4079mwl_setglobalkeys(struct ieee80211vap *vap)
4080{
4081	struct ieee80211_key *wk;
4082
4083	wk = &vap->iv_nw_keys[0];
4084	for (; wk < &vap->iv_nw_keys[IEEE80211_WEP_NKID]; wk++)
4085		if (wk->wk_keyix != IEEE80211_KEYIX_NONE)
4086			(void) mwl_key_set(vap, wk, vap->iv_myaddr);
4087}
4088
4089/*
4090 * Convert a legacy rate set to a firmware bitmask.
4091 */
4092static uint32_t
4093get_rate_bitmap(const struct ieee80211_rateset *rs)
4094{
4095	uint32_t rates;
4096	int i;
4097
4098	rates = 0;
4099	for (i = 0; i < rs->rs_nrates; i++)
4100		switch (rs->rs_rates[i] & IEEE80211_RATE_VAL) {
4101		case 2:	  rates |= 0x001; break;
4102		case 4:	  rates |= 0x002; break;
4103		case 11:  rates |= 0x004; break;
4104		case 22:  rates |= 0x008; break;
4105		case 44:  rates |= 0x010; break;
4106		case 12:  rates |= 0x020; break;
4107		case 18:  rates |= 0x040; break;
4108		case 24:  rates |= 0x080; break;
4109		case 36:  rates |= 0x100; break;
4110		case 48:  rates |= 0x200; break;
4111		case 72:  rates |= 0x400; break;
4112		case 96:  rates |= 0x800; break;
4113		case 108: rates |= 0x1000; break;
4114		}
4115	return rates;
4116}
4117
4118/*
4119 * Construct an HT firmware bitmask from an HT rate set.
4120 */
4121static uint32_t
4122get_htrate_bitmap(const struct ieee80211_htrateset *rs)
4123{
4124	uint32_t rates;
4125	int i;
4126
4127	rates = 0;
4128	for (i = 0; i < rs->rs_nrates; i++) {
4129		if (rs->rs_rates[i] < 16)
4130			rates |= 1<<rs->rs_rates[i];
4131	}
4132	return rates;
4133}
4134
4135/*
4136 * Craft station database entry for station.
4137 * NB: use host byte order here, the hal handles byte swapping.
4138 */
4139static MWL_HAL_PEERINFO *
4140mkpeerinfo(MWL_HAL_PEERINFO *pi, const struct ieee80211_node *ni)
4141{
4142	const struct ieee80211vap *vap = ni->ni_vap;
4143
4144	memset(pi, 0, sizeof(*pi));
4145	pi->LegacyRateBitMap = get_rate_bitmap(&ni->ni_rates);
4146	pi->CapInfo = ni->ni_capinfo;
4147	if (ni->ni_flags & IEEE80211_NODE_HT) {
4148		/* HT capabilities, etc */
4149		pi->HTCapabilitiesInfo = ni->ni_htcap;
4150		/* XXX pi.HTCapabilitiesInfo */
4151	        pi->MacHTParamInfo = ni->ni_htparam;
4152		pi->HTRateBitMap = get_htrate_bitmap(&ni->ni_htrates);
4153		pi->AddHtInfo.ControlChan = ni->ni_htctlchan;
4154		pi->AddHtInfo.AddChan = ni->ni_ht2ndchan;
4155		pi->AddHtInfo.OpMode = ni->ni_htopmode;
4156		pi->AddHtInfo.stbc = ni->ni_htstbc;
4157
4158		/* constrain according to local configuration */
4159		if ((vap->iv_flags_ht & IEEE80211_FHT_SHORTGI40) == 0)
4160			pi->HTCapabilitiesInfo &= ~IEEE80211_HTCAP_SHORTGI40;
4161		if ((vap->iv_flags_ht & IEEE80211_FHT_SHORTGI20) == 0)
4162			pi->HTCapabilitiesInfo &= ~IEEE80211_HTCAP_SHORTGI20;
4163		if (ni->ni_chw != 40)
4164			pi->HTCapabilitiesInfo &= ~IEEE80211_HTCAP_CHWIDTH40;
4165	}
4166	return pi;
4167}
4168
4169/*
4170 * Re-create the local sta db entry for a vap to ensure
4171 * up to date WME state is pushed to the firmware.  Because
4172 * this resets crypto state this must be followed by a
4173 * reload of any keys in the global key table.
4174 */
4175static int
4176mwl_localstadb(struct ieee80211vap *vap)
4177{
4178#define	WME(ie) ((const struct ieee80211_wme_info *) ie)
4179	struct mwl_hal_vap *hvap = MWL_VAP(vap)->mv_hvap;
4180	struct ieee80211_node *bss;
4181	MWL_HAL_PEERINFO pi;
4182	int error;
4183
4184	switch (vap->iv_opmode) {
4185	case IEEE80211_M_STA:
4186		bss = vap->iv_bss;
4187		error = mwl_hal_newstation(hvap, vap->iv_myaddr, 0, 0,
4188		    vap->iv_state == IEEE80211_S_RUN ?
4189			mkpeerinfo(&pi, bss) : NULL,
4190		    (bss->ni_flags & (IEEE80211_NODE_QOS | IEEE80211_NODE_HT)),
4191		    bss->ni_ies.wme_ie != NULL ?
4192			WME(bss->ni_ies.wme_ie)->wme_info : 0);
4193		if (error == 0)
4194			mwl_setglobalkeys(vap);
4195		break;
4196	case IEEE80211_M_HOSTAP:
4197	case IEEE80211_M_MBSS:
4198		error = mwl_hal_newstation(hvap, vap->iv_myaddr,
4199		    0, 0, NULL, vap->iv_flags & IEEE80211_F_WME, 0);
4200		if (error == 0)
4201			mwl_setglobalkeys(vap);
4202		break;
4203	default:
4204		error = 0;
4205		break;
4206	}
4207	return error;
4208#undef WME
4209}
4210
4211static int
4212mwl_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
4213{
4214	struct mwl_vap *mvp = MWL_VAP(vap);
4215	struct mwl_hal_vap *hvap = mvp->mv_hvap;
4216	struct ieee80211com *ic = vap->iv_ic;
4217	struct ieee80211_node *ni = NULL;
4218	struct ifnet *ifp = ic->ic_ifp;
4219	struct mwl_softc *sc = ifp->if_softc;
4220	struct mwl_hal *mh = sc->sc_mh;
4221	enum ieee80211_state ostate = vap->iv_state;
4222	int error;
4223
4224	DPRINTF(sc, MWL_DEBUG_STATE, "%s: %s: %s -> %s\n",
4225	    vap->iv_ifp->if_xname, __func__,
4226	    ieee80211_state_name[ostate], ieee80211_state_name[nstate]);
4227
4228	callout_stop(&sc->sc_timer);
4229	/*
4230	 * Clear current radar detection state.
4231	 */
4232	if (ostate == IEEE80211_S_CAC) {
4233		/* stop quiet mode radar detection */
4234		mwl_hal_setradardetection(mh, DR_CHK_CHANNEL_AVAILABLE_STOP);
4235	} else if (sc->sc_radarena) {
4236		/* stop in-service radar detection */
4237		mwl_hal_setradardetection(mh, DR_DFS_DISABLE);
4238		sc->sc_radarena = 0;
4239	}
4240	/*
4241	 * Carry out per-state actions before doing net80211 work.
4242	 */
4243	if (nstate == IEEE80211_S_INIT) {
4244		/* NB: only ap+sta vap's have a fw entity */
4245		if (hvap != NULL)
4246			mwl_hal_stop(hvap);
4247	} else if (nstate == IEEE80211_S_SCAN) {
4248		mwl_hal_start(hvap);
4249		/* NB: this disables beacon frames */
4250		mwl_hal_setinframode(hvap);
4251	} else if (nstate == IEEE80211_S_AUTH) {
4252		/*
4253		 * Must create a sta db entry in case a WEP key needs to
4254		 * be plumbed.  This entry will be overwritten if we
4255		 * associate; otherwise it will be reclaimed on node free.
4256		 */
4257		ni = vap->iv_bss;
4258		MWL_NODE(ni)->mn_hvap = hvap;
4259		(void) mwl_peerstadb(ni, 0, 0, NULL);
4260	} else if (nstate == IEEE80211_S_CSA) {
4261		/* XXX move to below? */
4262		if (vap->iv_opmode == IEEE80211_M_HOSTAP ||
4263		    vap->iv_opmode == IEEE80211_M_MBSS)
4264			mwl_startcsa(vap);
4265	} else if (nstate == IEEE80211_S_CAC) {
4266		/* XXX move to below? */
4267		/* stop ap xmit and enable quiet mode radar detection */
4268		mwl_hal_setradardetection(mh, DR_CHK_CHANNEL_AVAILABLE_START);
4269	}
4270
4271	/*
4272	 * Invoke the parent method to do net80211 work.
4273	 */
4274	error = mvp->mv_newstate(vap, nstate, arg);
4275
4276	/*
4277	 * Carry out work that must be done after net80211 runs;
4278	 * this work requires up to date state (e.g. iv_bss).
4279	 */
4280	if (error == 0 && nstate == IEEE80211_S_RUN) {
4281		/* NB: collect bss node again, it may have changed */
4282		ni = vap->iv_bss;
4283
4284		DPRINTF(sc, MWL_DEBUG_STATE,
4285		    "%s: %s(RUN): iv_flags 0x%08x bintvl %d bssid %s "
4286		    "capinfo 0x%04x chan %d\n",
4287		    vap->iv_ifp->if_xname, __func__, vap->iv_flags,
4288		    ni->ni_intval, ether_sprintf(ni->ni_bssid), ni->ni_capinfo,
4289		    ieee80211_chan2ieee(ic, ic->ic_curchan));
4290
4291		/*
4292		 * Recreate local sta db entry to update WME/HT state.
4293		 */
4294		mwl_localstadb(vap);
4295		switch (vap->iv_opmode) {
4296		case IEEE80211_M_HOSTAP:
4297		case IEEE80211_M_MBSS:
4298			if (ostate == IEEE80211_S_CAC) {
4299				/* enable in-service radar detection */
4300				mwl_hal_setradardetection(mh,
4301				    DR_IN_SERVICE_MONITOR_START);
4302				sc->sc_radarena = 1;
4303			}
4304			/*
4305			 * Allocate and setup the beacon frame
4306			 * (and related state).
4307			 */
4308			error = mwl_reset_vap(vap, IEEE80211_S_RUN);
4309			if (error != 0) {
4310				DPRINTF(sc, MWL_DEBUG_STATE,
4311				    "%s: beacon setup failed, error %d\n",
4312				    __func__, error);
4313				goto bad;
4314			}
4315			/* NB: must be after setting up beacon */
4316			mwl_hal_start(hvap);
4317			break;
4318		case IEEE80211_M_STA:
4319			DPRINTF(sc, MWL_DEBUG_STATE, "%s: %s: aid 0x%x\n",
4320			    vap->iv_ifp->if_xname, __func__, ni->ni_associd);
4321			/*
4322			 * Set state now that we're associated.
4323			 */
4324			mwl_hal_setassocid(hvap, ni->ni_bssid, ni->ni_associd);
4325			mwl_setrates(vap);
4326			mwl_hal_setrtsthreshold(hvap, vap->iv_rtsthreshold);
4327			if ((vap->iv_flags & IEEE80211_F_DWDS) &&
4328			    sc->sc_ndwdsvaps++ == 0)
4329				mwl_hal_setdwds(mh, 1);
4330			break;
4331		case IEEE80211_M_WDS:
4332			DPRINTF(sc, MWL_DEBUG_STATE, "%s: %s: bssid %s\n",
4333			    vap->iv_ifp->if_xname, __func__,
4334			    ether_sprintf(ni->ni_bssid));
4335			mwl_seteapolformat(vap);
4336			break;
4337		default:
4338			break;
4339		}
4340		/*
4341		 * Set CS mode according to operating channel;
4342		 * this mostly an optimization for 5GHz.
4343		 *
4344		 * NB: must follow mwl_hal_start which resets csmode
4345		 */
4346		if (IEEE80211_IS_CHAN_5GHZ(ic->ic_bsschan))
4347			mwl_hal_setcsmode(mh, CSMODE_AGGRESSIVE);
4348		else
4349			mwl_hal_setcsmode(mh, CSMODE_AUTO_ENA);
4350		/*
4351		 * Start timer to prod firmware.
4352		 */
4353		if (sc->sc_ageinterval != 0)
4354			callout_reset(&sc->sc_timer, sc->sc_ageinterval*hz,
4355			    mwl_agestations, sc);
4356	} else if (nstate == IEEE80211_S_SLEEP) {
4357		/* XXX set chip in power save */
4358	} else if ((vap->iv_flags & IEEE80211_F_DWDS) &&
4359	    --sc->sc_ndwdsvaps == 0)
4360		mwl_hal_setdwds(mh, 0);
4361bad:
4362	return error;
4363}
4364
4365/*
4366 * Manage station id's; these are separate from AID's
4367 * as AID's may have values out of the range of possible
4368 * station id's acceptable to the firmware.
4369 */
4370static int
4371allocstaid(struct mwl_softc *sc, int aid)
4372{
4373	int staid;
4374
4375	if (!(0 < aid && aid < MWL_MAXSTAID) || isset(sc->sc_staid, aid)) {
4376		/* NB: don't use 0 */
4377		for (staid = 1; staid < MWL_MAXSTAID; staid++)
4378			if (isclr(sc->sc_staid, staid))
4379				break;
4380	} else
4381		staid = aid;
4382	setbit(sc->sc_staid, staid);
4383	return staid;
4384}
4385
4386static void
4387delstaid(struct mwl_softc *sc, int staid)
4388{
4389	clrbit(sc->sc_staid, staid);
4390}
4391
4392/*
4393 * Setup driver-specific state for a newly associated node.
4394 * Note that we're called also on a re-associate, the isnew
4395 * param tells us if this is the first time or not.
4396 */
4397static void
4398mwl_newassoc(struct ieee80211_node *ni, int isnew)
4399{
4400	struct ieee80211vap *vap = ni->ni_vap;
4401        struct mwl_softc *sc = vap->iv_ic->ic_ifp->if_softc;
4402	struct mwl_node *mn = MWL_NODE(ni);
4403	MWL_HAL_PEERINFO pi;
4404	uint16_t aid;
4405	int error;
4406
4407	aid = IEEE80211_AID(ni->ni_associd);
4408	if (isnew) {
4409		mn->mn_staid = allocstaid(sc, aid);
4410		mn->mn_hvap = MWL_VAP(vap)->mv_hvap;
4411	} else {
4412		mn = MWL_NODE(ni);
4413		/* XXX reset BA stream? */
4414	}
4415	DPRINTF(sc, MWL_DEBUG_NODE, "%s: mac %s isnew %d aid %d staid %d\n",
4416	    __func__, ether_sprintf(ni->ni_macaddr), isnew, aid, mn->mn_staid);
4417	error = mwl_peerstadb(ni, aid, mn->mn_staid, mkpeerinfo(&pi, ni));
4418	if (error != 0) {
4419		DPRINTF(sc, MWL_DEBUG_NODE,
4420		    "%s: error %d creating sta db entry\n",
4421		    __func__, error);
4422		/* XXX how to deal with error? */
4423	}
4424}
4425
4426/*
4427 * Periodically poke the firmware to age out station state
4428 * (power save queues, pending tx aggregates).
4429 */
4430static void
4431mwl_agestations(void *arg)
4432{
4433	struct mwl_softc *sc = arg;
4434
4435	mwl_hal_setkeepalive(sc->sc_mh);
4436	if (sc->sc_ageinterval != 0)		/* NB: catch dynamic changes */
4437		callout_schedule(&sc->sc_timer, sc->sc_ageinterval*hz);
4438}
4439
4440static const struct mwl_hal_channel *
4441findhalchannel(const MWL_HAL_CHANNELINFO *ci, int ieee)
4442{
4443	int i;
4444
4445	for (i = 0; i < ci->nchannels; i++) {
4446		const struct mwl_hal_channel *hc = &ci->channels[i];
4447		if (hc->ieee == ieee)
4448			return hc;
4449	}
4450	return NULL;
4451}
4452
4453static int
4454mwl_setregdomain(struct ieee80211com *ic, struct ieee80211_regdomain *rd,
4455	int nchan, struct ieee80211_channel chans[])
4456{
4457	struct mwl_softc *sc = ic->ic_ifp->if_softc;
4458	struct mwl_hal *mh = sc->sc_mh;
4459	const MWL_HAL_CHANNELINFO *ci;
4460	int i;
4461
4462	for (i = 0; i < nchan; i++) {
4463		struct ieee80211_channel *c = &chans[i];
4464		const struct mwl_hal_channel *hc;
4465
4466		if (IEEE80211_IS_CHAN_2GHZ(c)) {
4467			mwl_hal_getchannelinfo(mh, MWL_FREQ_BAND_2DOT4GHZ,
4468			    IEEE80211_IS_CHAN_HT40(c) ?
4469				MWL_CH_40_MHz_WIDTH : MWL_CH_20_MHz_WIDTH, &ci);
4470		} else if (IEEE80211_IS_CHAN_5GHZ(c)) {
4471			mwl_hal_getchannelinfo(mh, MWL_FREQ_BAND_5GHZ,
4472			    IEEE80211_IS_CHAN_HT40(c) ?
4473				MWL_CH_40_MHz_WIDTH : MWL_CH_20_MHz_WIDTH, &ci);
4474		} else {
4475			if_printf(ic->ic_ifp,
4476			    "%s: channel %u freq %u/0x%x not 2.4/5GHz\n",
4477			    __func__, c->ic_ieee, c->ic_freq, c->ic_flags);
4478			return EINVAL;
4479		}
4480		/*
4481		 * Verify channel has cal data and cap tx power.
4482		 */
4483		hc = findhalchannel(ci, c->ic_ieee);
4484		if (hc != NULL) {
4485			if (c->ic_maxpower > 2*hc->maxTxPow)
4486				c->ic_maxpower = 2*hc->maxTxPow;
4487			goto next;
4488		}
4489		if (IEEE80211_IS_CHAN_HT40(c)) {
4490			/*
4491			 * Look for the extension channel since the
4492			 * hal table only has the primary channel.
4493			 */
4494			hc = findhalchannel(ci, c->ic_extieee);
4495			if (hc != NULL) {
4496				if (c->ic_maxpower > 2*hc->maxTxPow)
4497					c->ic_maxpower = 2*hc->maxTxPow;
4498				goto next;
4499			}
4500		}
4501		if_printf(ic->ic_ifp,
4502		    "%s: no cal data for channel %u ext %u freq %u/0x%x\n",
4503		    __func__, c->ic_ieee, c->ic_extieee,
4504		    c->ic_freq, c->ic_flags);
4505		return EINVAL;
4506	next:
4507		;
4508	}
4509	return 0;
4510}
4511
4512#define	IEEE80211_CHAN_HTG	(IEEE80211_CHAN_HT|IEEE80211_CHAN_G)
4513#define	IEEE80211_CHAN_HTA	(IEEE80211_CHAN_HT|IEEE80211_CHAN_A)
4514
4515static void
4516addchan(struct ieee80211_channel *c, int freq, int flags, int ieee, int txpow)
4517{
4518	c->ic_freq = freq;
4519	c->ic_flags = flags;
4520	c->ic_ieee = ieee;
4521	c->ic_minpower = 0;
4522	c->ic_maxpower = 2*txpow;
4523	c->ic_maxregpower = txpow;
4524}
4525
4526static const struct ieee80211_channel *
4527findchannel(const struct ieee80211_channel chans[], int nchans,
4528	int freq, int flags)
4529{
4530	const struct ieee80211_channel *c;
4531	int i;
4532
4533	for (i = 0; i < nchans; i++) {
4534		c = &chans[i];
4535		if (c->ic_freq == freq && c->ic_flags == flags)
4536			return c;
4537	}
4538	return NULL;
4539}
4540
4541static void
4542addht40channels(struct ieee80211_channel chans[], int maxchans, int *nchans,
4543	const MWL_HAL_CHANNELINFO *ci, int flags)
4544{
4545	struct ieee80211_channel *c;
4546	const struct ieee80211_channel *extc;
4547	const struct mwl_hal_channel *hc;
4548	int i;
4549
4550	c = &chans[*nchans];
4551
4552	flags &= ~IEEE80211_CHAN_HT;
4553	for (i = 0; i < ci->nchannels; i++) {
4554		/*
4555		 * Each entry defines an HT40 channel pair; find the
4556		 * extension channel above and the insert the pair.
4557		 */
4558		hc = &ci->channels[i];
4559		extc = findchannel(chans, *nchans, hc->freq+20,
4560		    flags | IEEE80211_CHAN_HT20);
4561		if (extc != NULL) {
4562			if (*nchans >= maxchans)
4563				break;
4564			addchan(c, hc->freq, flags | IEEE80211_CHAN_HT40U,
4565			    hc->ieee, hc->maxTxPow);
4566			c->ic_extieee = extc->ic_ieee;
4567			c++, (*nchans)++;
4568			if (*nchans >= maxchans)
4569				break;
4570			addchan(c, extc->ic_freq, flags | IEEE80211_CHAN_HT40D,
4571			    extc->ic_ieee, hc->maxTxPow);
4572			c->ic_extieee = hc->ieee;
4573			c++, (*nchans)++;
4574		}
4575	}
4576}
4577
4578static void
4579addchannels(struct ieee80211_channel chans[], int maxchans, int *nchans,
4580	const MWL_HAL_CHANNELINFO *ci, int flags)
4581{
4582	struct ieee80211_channel *c;
4583	int i;
4584
4585	c = &chans[*nchans];
4586
4587	for (i = 0; i < ci->nchannels; i++) {
4588		const struct mwl_hal_channel *hc;
4589
4590		hc = &ci->channels[i];
4591		if (*nchans >= maxchans)
4592			break;
4593		addchan(c, hc->freq, flags, hc->ieee, hc->maxTxPow);
4594		c++, (*nchans)++;
4595		if (flags == IEEE80211_CHAN_G || flags == IEEE80211_CHAN_HTG) {
4596			/* g channel have a separate b-only entry */
4597			if (*nchans >= maxchans)
4598				break;
4599			c[0] = c[-1];
4600			c[-1].ic_flags = IEEE80211_CHAN_B;
4601			c++, (*nchans)++;
4602		}
4603		if (flags == IEEE80211_CHAN_HTG) {
4604			/* HT g channel have a separate g-only entry */
4605			if (*nchans >= maxchans)
4606				break;
4607			c[-1].ic_flags = IEEE80211_CHAN_G;
4608			c[0] = c[-1];
4609			c[0].ic_flags &= ~IEEE80211_CHAN_HT;
4610			c[0].ic_flags |= IEEE80211_CHAN_HT20;	/* HT20 */
4611			c++, (*nchans)++;
4612		}
4613		if (flags == IEEE80211_CHAN_HTA) {
4614			/* HT a channel have a separate a-only entry */
4615			if (*nchans >= maxchans)
4616				break;
4617			c[-1].ic_flags = IEEE80211_CHAN_A;
4618			c[0] = c[-1];
4619			c[0].ic_flags &= ~IEEE80211_CHAN_HT;
4620			c[0].ic_flags |= IEEE80211_CHAN_HT20;	/* HT20 */
4621			c++, (*nchans)++;
4622		}
4623	}
4624}
4625
4626static void
4627getchannels(struct mwl_softc *sc, int maxchans, int *nchans,
4628	struct ieee80211_channel chans[])
4629{
4630	const MWL_HAL_CHANNELINFO *ci;
4631
4632	/*
4633	 * Use the channel info from the hal to craft the
4634	 * channel list.  Note that we pass back an unsorted
4635	 * list; the caller is required to sort it for us
4636	 * (if desired).
4637	 */
4638	*nchans = 0;
4639	if (mwl_hal_getchannelinfo(sc->sc_mh,
4640	    MWL_FREQ_BAND_2DOT4GHZ, MWL_CH_20_MHz_WIDTH, &ci) == 0)
4641		addchannels(chans, maxchans, nchans, ci, IEEE80211_CHAN_HTG);
4642	if (mwl_hal_getchannelinfo(sc->sc_mh,
4643	    MWL_FREQ_BAND_5GHZ, MWL_CH_20_MHz_WIDTH, &ci) == 0)
4644		addchannels(chans, maxchans, nchans, ci, IEEE80211_CHAN_HTA);
4645	if (mwl_hal_getchannelinfo(sc->sc_mh,
4646	    MWL_FREQ_BAND_2DOT4GHZ, MWL_CH_40_MHz_WIDTH, &ci) == 0)
4647		addht40channels(chans, maxchans, nchans, ci, IEEE80211_CHAN_HTG);
4648	if (mwl_hal_getchannelinfo(sc->sc_mh,
4649	    MWL_FREQ_BAND_5GHZ, MWL_CH_40_MHz_WIDTH, &ci) == 0)
4650		addht40channels(chans, maxchans, nchans, ci, IEEE80211_CHAN_HTA);
4651}
4652
4653static void
4654mwl_getradiocaps(struct ieee80211com *ic,
4655	int maxchans, int *nchans, struct ieee80211_channel chans[])
4656{
4657	struct mwl_softc *sc = ic->ic_ifp->if_softc;
4658
4659	getchannels(sc, maxchans, nchans, chans);
4660}
4661
4662static int
4663mwl_getchannels(struct mwl_softc *sc)
4664{
4665	struct ifnet *ifp = sc->sc_ifp;
4666	struct ieee80211com *ic = ifp->if_l2com;
4667
4668	/*
4669	 * Use the channel info from the hal to craft the
4670	 * channel list for net80211.  Note that we pass up
4671	 * an unsorted list; net80211 will sort it for us.
4672	 */
4673	memset(ic->ic_channels, 0, sizeof(ic->ic_channels));
4674	ic->ic_nchans = 0;
4675	getchannels(sc, IEEE80211_CHAN_MAX, &ic->ic_nchans, ic->ic_channels);
4676
4677	ic->ic_regdomain.regdomain = SKU_DEBUG;
4678	ic->ic_regdomain.country = CTRY_DEFAULT;
4679	ic->ic_regdomain.location = 'I';
4680	ic->ic_regdomain.isocc[0] = ' ';	/* XXX? */
4681	ic->ic_regdomain.isocc[1] = ' ';
4682	return (ic->ic_nchans == 0 ? EIO : 0);
4683}
4684#undef IEEE80211_CHAN_HTA
4685#undef IEEE80211_CHAN_HTG
4686
4687#ifdef MWL_DEBUG
4688static void
4689mwl_printrxbuf(const struct mwl_rxbuf *bf, u_int ix)
4690{
4691	const struct mwl_rxdesc *ds = bf->bf_desc;
4692	uint32_t status = le32toh(ds->Status);
4693
4694	printf("R[%2u] (DS.V:%p DS.P:%p) NEXT:%08x DATA:%08x RC:%02x%s\n"
4695	       "      STAT:%02x LEN:%04x RSSI:%02x CHAN:%02x RATE:%02x QOS:%04x HT:%04x\n",
4696	    ix, ds, (const struct mwl_desc *)bf->bf_daddr,
4697	    le32toh(ds->pPhysNext), le32toh(ds->pPhysBuffData),
4698	    ds->RxControl,
4699	    ds->RxControl != EAGLE_RXD_CTRL_DRIVER_OWN ?
4700	        "" : (status & EAGLE_RXD_STATUS_OK) ? " *" : " !",
4701	    ds->Status, le16toh(ds->PktLen), ds->RSSI, ds->Channel,
4702	    ds->Rate, le16toh(ds->QosCtrl), le16toh(ds->HtSig2));
4703}
4704
4705static void
4706mwl_printtxbuf(const struct mwl_txbuf *bf, u_int qnum, u_int ix)
4707{
4708	const struct mwl_txdesc *ds = bf->bf_desc;
4709	uint32_t status = le32toh(ds->Status);
4710
4711	printf("Q%u[%3u]", qnum, ix);
4712	printf(" (DS.V:%p DS.P:%p)\n",
4713	    ds, (const struct mwl_txdesc *)bf->bf_daddr);
4714	printf("    NEXT:%08x DATA:%08x LEN:%04x STAT:%08x%s\n",
4715	    le32toh(ds->pPhysNext),
4716	    le32toh(ds->PktPtr), le16toh(ds->PktLen), status,
4717	    status & EAGLE_TXD_STATUS_USED ?
4718		"" : (status & 3) != 0 ? " *" : " !");
4719	printf("    RATE:%02x PRI:%x QOS:%04x SAP:%08x FORMAT:%04x\n",
4720	    ds->DataRate, ds->TxPriority, le16toh(ds->QosCtrl),
4721	    le32toh(ds->SapPktInfo), le16toh(ds->Format));
4722#if MWL_TXDESC > 1
4723	printf("    MULTIFRAMES:%u LEN:%04x %04x %04x %04x %04x %04x\n"
4724	    , le32toh(ds->multiframes)
4725	    , le16toh(ds->PktLenArray[0]), le16toh(ds->PktLenArray[1])
4726	    , le16toh(ds->PktLenArray[2]), le16toh(ds->PktLenArray[3])
4727	    , le16toh(ds->PktLenArray[4]), le16toh(ds->PktLenArray[5])
4728	);
4729	printf("    DATA:%08x %08x %08x %08x %08x %08x\n"
4730	    , le32toh(ds->PktPtrArray[0]), le32toh(ds->PktPtrArray[1])
4731	    , le32toh(ds->PktPtrArray[2]), le32toh(ds->PktPtrArray[3])
4732	    , le32toh(ds->PktPtrArray[4]), le32toh(ds->PktPtrArray[5])
4733	);
4734#endif
4735#if 0
4736{ const uint8_t *cp = (const uint8_t *) ds;
4737  int i;
4738  for (i = 0; i < sizeof(struct mwl_txdesc); i++) {
4739	printf("%02x ", cp[i]);
4740	if (((i+1) % 16) == 0)
4741		printf("\n");
4742  }
4743  printf("\n");
4744}
4745#endif
4746}
4747#endif /* MWL_DEBUG */
4748
4749#if 0
4750static void
4751mwl_txq_dump(struct mwl_txq *txq)
4752{
4753	struct mwl_txbuf *bf;
4754	int i = 0;
4755
4756	MWL_TXQ_LOCK(txq);
4757	STAILQ_FOREACH(bf, &txq->active, bf_list) {
4758		struct mwl_txdesc *ds = bf->bf_desc;
4759		MWL_TXDESC_SYNC(txq, ds,
4760		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
4761#ifdef MWL_DEBUG
4762		mwl_printtxbuf(bf, txq->qnum, i);
4763#endif
4764		i++;
4765	}
4766	MWL_TXQ_UNLOCK(txq);
4767}
4768#endif
4769
4770static void
4771mwl_watchdog(struct ifnet *ifp)
4772{
4773	struct mwl_softc *sc = ifp->if_softc;
4774
4775	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) && !sc->sc_invalid) {
4776		if (mwl_hal_setkeepalive(sc->sc_mh))
4777			if_printf(ifp, "transmit timeout (firmware hung?)\n");
4778		else
4779			if_printf(ifp, "transmit timeout\n");
4780#if 0
4781		mwl_reset(ifp);
4782mwl_txq_dump(&sc->sc_txq[0]);/*XXX*/
4783#endif
4784		ifp->if_oerrors++;
4785		sc->sc_stats.mst_watchdog++;
4786	}
4787}
4788
4789#ifdef MWL_DIAGAPI
4790/*
4791 * Diagnostic interface to the HAL.  This is used by various
4792 * tools to do things like retrieve register contents for
4793 * debugging.  The mechanism is intentionally opaque so that
4794 * it can change frequently w/o concern for compatiblity.
4795 */
4796static int
4797mwl_ioctl_diag(struct mwl_softc *sc, struct mwl_diag *md)
4798{
4799	struct mwl_hal *mh = sc->sc_mh;
4800	u_int id = md->md_id & MWL_DIAG_ID;
4801	void *indata = NULL;
4802	void *outdata = NULL;
4803	u_int32_t insize = md->md_in_size;
4804	u_int32_t outsize = md->md_out_size;
4805	int error = 0;
4806
4807	if (md->md_id & MWL_DIAG_IN) {
4808		/*
4809		 * Copy in data.
4810		 */
4811		indata = malloc(insize, M_TEMP, M_NOWAIT);
4812		if (indata == NULL) {
4813			error = ENOMEM;
4814			goto bad;
4815		}
4816		error = copyin(md->md_in_data, indata, insize);
4817		if (error)
4818			goto bad;
4819	}
4820	if (md->md_id & MWL_DIAG_DYN) {
4821		/*
4822		 * Allocate a buffer for the results (otherwise the HAL
4823		 * returns a pointer to a buffer where we can read the
4824		 * results).  Note that we depend on the HAL leaving this
4825		 * pointer for us to use below in reclaiming the buffer;
4826		 * may want to be more defensive.
4827		 */
4828		outdata = malloc(outsize, M_TEMP, M_NOWAIT);
4829		if (outdata == NULL) {
4830			error = ENOMEM;
4831			goto bad;
4832		}
4833	}
4834	if (mwl_hal_getdiagstate(mh, id, indata, insize, &outdata, &outsize)) {
4835		if (outsize < md->md_out_size)
4836			md->md_out_size = outsize;
4837		if (outdata != NULL)
4838			error = copyout(outdata, md->md_out_data,
4839					md->md_out_size);
4840	} else {
4841		error = EINVAL;
4842	}
4843bad:
4844	if ((md->md_id & MWL_DIAG_IN) && indata != NULL)
4845		free(indata, M_TEMP);
4846	if ((md->md_id & MWL_DIAG_DYN) && outdata != NULL)
4847		free(outdata, M_TEMP);
4848	return error;
4849}
4850
4851static int
4852mwl_ioctl_reset(struct mwl_softc *sc, struct mwl_diag *md)
4853{
4854	struct mwl_hal *mh = sc->sc_mh;
4855	int error;
4856
4857	MWL_LOCK_ASSERT(sc);
4858
4859	if (md->md_id == 0 && mwl_hal_fwload(mh, NULL) != 0) {
4860		device_printf(sc->sc_dev, "unable to load firmware\n");
4861		return EIO;
4862	}
4863	if (mwl_hal_gethwspecs(mh, &sc->sc_hwspecs) != 0) {
4864		device_printf(sc->sc_dev, "unable to fetch h/w specs\n");
4865		return EIO;
4866	}
4867	error = mwl_setupdma(sc);
4868	if (error != 0) {
4869		/* NB: mwl_setupdma prints a msg */
4870		return error;
4871	}
4872	/*
4873	 * Reset tx/rx data structures; after reload we must
4874	 * re-start the driver's notion of the next xmit/recv.
4875	 */
4876	mwl_draintxq(sc);		/* clear pending frames */
4877	mwl_resettxq(sc);		/* rebuild tx q lists */
4878	sc->sc_rxnext = NULL;		/* force rx to start at the list head */
4879	return 0;
4880}
4881#endif /* MWL_DIAGAPI */
4882
4883static int
4884mwl_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
4885{
4886#define	IS_RUNNING(ifp) \
4887	((ifp->if_flags & IFF_UP) && (ifp->if_drv_flags & IFF_DRV_RUNNING))
4888	struct mwl_softc *sc = ifp->if_softc;
4889	struct ieee80211com *ic = ifp->if_l2com;
4890	struct ifreq *ifr = (struct ifreq *)data;
4891	int error = 0, startall;
4892
4893	switch (cmd) {
4894	case SIOCSIFFLAGS:
4895		MWL_LOCK(sc);
4896		startall = 0;
4897		if (IS_RUNNING(ifp)) {
4898			/*
4899			 * To avoid rescanning another access point,
4900			 * do not call mwl_init() here.  Instead,
4901			 * only reflect promisc mode settings.
4902			 */
4903			mwl_mode_init(sc);
4904		} else if (ifp->if_flags & IFF_UP) {
4905			/*
4906			 * Beware of being called during attach/detach
4907			 * to reset promiscuous mode.  In that case we
4908			 * will still be marked UP but not RUNNING.
4909			 * However trying to re-init the interface
4910			 * is the wrong thing to do as we've already
4911			 * torn down much of our state.  There's
4912			 * probably a better way to deal with this.
4913			 */
4914			if (!sc->sc_invalid) {
4915				mwl_init_locked(sc);	/* XXX lose error */
4916				startall = 1;
4917			}
4918		} else
4919			mwl_stop_locked(ifp, 1);
4920		MWL_UNLOCK(sc);
4921		if (startall)
4922			ieee80211_start_all(ic);
4923		break;
4924	case SIOCGMVSTATS:
4925		mwl_hal_gethwstats(sc->sc_mh, &sc->sc_stats.hw_stats);
4926		/* NB: embed these numbers to get a consistent view */
4927		sc->sc_stats.mst_tx_packets = ifp->if_opackets;
4928		sc->sc_stats.mst_rx_packets = ifp->if_ipackets;
4929		/*
4930		 * NB: Drop the softc lock in case of a page fault;
4931		 * we'll accept any potential inconsisentcy in the
4932		 * statistics.  The alternative is to copy the data
4933		 * to a local structure.
4934		 */
4935		return copyout(&sc->sc_stats,
4936				ifr->ifr_data, sizeof (sc->sc_stats));
4937#ifdef MWL_DIAGAPI
4938	case SIOCGMVDIAG:
4939		/* XXX check privs */
4940		return mwl_ioctl_diag(sc, (struct mwl_diag *) ifr);
4941	case SIOCGMVRESET:
4942		/* XXX check privs */
4943		MWL_LOCK(sc);
4944		error = mwl_ioctl_reset(sc,(struct mwl_diag *) ifr);
4945		MWL_UNLOCK(sc);
4946		break;
4947#endif /* MWL_DIAGAPI */
4948	case SIOCGIFMEDIA:
4949		error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd);
4950		break;
4951	case SIOCGIFADDR:
4952		error = ether_ioctl(ifp, cmd, data);
4953		break;
4954	default:
4955		error = EINVAL;
4956		break;
4957	}
4958	return error;
4959#undef IS_RUNNING
4960}
4961
4962#ifdef	MWL_DEBUG
4963static int
4964mwl_sysctl_debug(SYSCTL_HANDLER_ARGS)
4965{
4966	struct mwl_softc *sc = arg1;
4967	int debug, error;
4968
4969	debug = sc->sc_debug | (mwl_hal_getdebug(sc->sc_mh) << 24);
4970	error = sysctl_handle_int(oidp, &debug, 0, req);
4971	if (error || !req->newptr)
4972		return error;
4973	mwl_hal_setdebug(sc->sc_mh, debug >> 24);
4974	sc->sc_debug = debug & 0x00ffffff;
4975	return 0;
4976}
4977#endif /* MWL_DEBUG */
4978
4979static void
4980mwl_sysctlattach(struct mwl_softc *sc)
4981{
4982#ifdef	MWL_DEBUG
4983	struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(sc->sc_dev);
4984	struct sysctl_oid *tree = device_get_sysctl_tree(sc->sc_dev);
4985
4986	sc->sc_debug = mwl_debug;
4987	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
4988		"debug", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
4989		mwl_sysctl_debug, "I", "control debugging printfs");
4990#endif
4991}
4992
4993/*
4994 * Announce various information on device/driver attach.
4995 */
4996static void
4997mwl_announce(struct mwl_softc *sc)
4998{
4999	struct ifnet *ifp = sc->sc_ifp;
5000
5001	if_printf(ifp, "Rev A%d hardware, v%d.%d.%d.%d firmware (regioncode %d)\n",
5002		sc->sc_hwspecs.hwVersion,
5003		(sc->sc_hwspecs.fwReleaseNumber>>24) & 0xff,
5004		(sc->sc_hwspecs.fwReleaseNumber>>16) & 0xff,
5005		(sc->sc_hwspecs.fwReleaseNumber>>8) & 0xff,
5006		(sc->sc_hwspecs.fwReleaseNumber>>0) & 0xff,
5007		sc->sc_hwspecs.regionCode);
5008	sc->sc_fwrelease = sc->sc_hwspecs.fwReleaseNumber;
5009
5010	if (bootverbose) {
5011		int i;
5012		for (i = 0; i <= WME_AC_VO; i++) {
5013			struct mwl_txq *txq = sc->sc_ac2q[i];
5014			if_printf(ifp, "Use hw queue %u for %s traffic\n",
5015				txq->qnum, ieee80211_wme_acnames[i]);
5016		}
5017	}
5018	if (bootverbose || mwl_rxdesc != MWL_RXDESC)
5019		if_printf(ifp, "using %u rx descriptors\n", mwl_rxdesc);
5020	if (bootverbose || mwl_rxbuf != MWL_RXBUF)
5021		if_printf(ifp, "using %u rx buffers\n", mwl_rxbuf);
5022	if (bootverbose || mwl_txbuf != MWL_TXBUF)
5023		if_printf(ifp, "using %u tx buffers\n", mwl_txbuf);
5024	if (bootverbose && mwl_hal_ismbsscapable(sc->sc_mh))
5025		if_printf(ifp, "multi-bss support\n");
5026#ifdef MWL_TX_NODROP
5027	if (bootverbose)
5028		if_printf(ifp, "no tx drop\n");
5029#endif
5030}
5031