1/*-
2 * Copyright (c) 2007-2009 Sam Leffler, Errno Consulting
3 * Copyright (c) 2007-2008 Marvell Semiconductor, Inc.
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 *    notice, this list of conditions and the following disclaimer,
11 *    without modification.
12 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
13 *    similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
14 *    redistribution must be conditioned upon including a substantially
15 *    similar Disclaimer requirement for further binary redistribution.
16 *
17 * NO WARRANTY
18 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20 * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
21 * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
22 * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
23 * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
24 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
25 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
26 * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
27 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
28 * THE POSSIBILITY OF SUCH DAMAGES.
29 */
30
31#include <sys/cdefs.h>
32__FBSDID("$FreeBSD: stable/11/sys/dev/mwl/if_mwl.c 344969 2019-03-09 12:54:10Z avos $");
33
34/*
35 * Driver for the Marvell 88W8363 Wireless LAN controller.
36 */
37
38#include "opt_inet.h"
39#include "opt_mwl.h"
40#include "opt_wlan.h"
41
42#include <sys/param.h>
43#include <sys/systm.h>
44#include <sys/sysctl.h>
45#include <sys/mbuf.h>
46#include <sys/malloc.h>
47#include <sys/lock.h>
48#include <sys/mutex.h>
49#include <sys/kernel.h>
50#include <sys/socket.h>
51#include <sys/sockio.h>
52#include <sys/errno.h>
53#include <sys/callout.h>
54#include <sys/bus.h>
55#include <sys/endian.h>
56#include <sys/kthread.h>
57#include <sys/taskqueue.h>
58
59#include <machine/bus.h>
60
61#include <net/if.h>
62#include <net/if_var.h>
63#include <net/if_dl.h>
64#include <net/if_media.h>
65#include <net/if_types.h>
66#include <net/if_arp.h>
67#include <net/ethernet.h>
68#include <net/if_llc.h>
69
70#include <net/bpf.h>
71
72#include <net80211/ieee80211_var.h>
73#include <net80211/ieee80211_input.h>
74#include <net80211/ieee80211_regdomain.h>
75
76#ifdef INET
77#include <netinet/in.h>
78#include <netinet/if_ether.h>
79#endif /* INET */
80
81#include <dev/mwl/if_mwlvar.h>
82#include <dev/mwl/mwldiag.h>
83
84/* idiomatic shorthands: MS = mask+shift, SM = shift+mask */
85#define	MS(v,x)	(((v) & x) >> x##_S)
86#define	SM(v,x)	(((v) << x##_S) & x)
87
88static struct ieee80211vap *mwl_vap_create(struct ieee80211com *,
89		    const char [IFNAMSIZ], int, enum ieee80211_opmode, int,
90		    const uint8_t [IEEE80211_ADDR_LEN],
91		    const uint8_t [IEEE80211_ADDR_LEN]);
92static void	mwl_vap_delete(struct ieee80211vap *);
93static int	mwl_setupdma(struct mwl_softc *);
94static int	mwl_hal_reset(struct mwl_softc *sc);
95static int	mwl_init(struct mwl_softc *);
96static void	mwl_parent(struct ieee80211com *);
97static int	mwl_reset(struct ieee80211vap *, u_long);
98static void	mwl_stop(struct mwl_softc *);
99static void	mwl_start(struct mwl_softc *);
100static int	mwl_transmit(struct ieee80211com *, struct mbuf *);
101static int	mwl_raw_xmit(struct ieee80211_node *, struct mbuf *,
102			const struct ieee80211_bpf_params *);
103static int	mwl_media_change(struct ifnet *);
104static void	mwl_watchdog(void *);
105static int	mwl_ioctl(struct ieee80211com *, u_long, void *);
106static void	mwl_radar_proc(void *, int);
107static void	mwl_chanswitch_proc(void *, int);
108static void	mwl_bawatchdog_proc(void *, int);
109static int	mwl_key_alloc(struct ieee80211vap *,
110			struct ieee80211_key *,
111			ieee80211_keyix *, ieee80211_keyix *);
112static int	mwl_key_delete(struct ieee80211vap *,
113			const struct ieee80211_key *);
114static int	mwl_key_set(struct ieee80211vap *,
115			const struct ieee80211_key *);
116static int	_mwl_key_set(struct ieee80211vap *,
117			const struct ieee80211_key *,
118			const uint8_t mac[IEEE80211_ADDR_LEN]);
119static int	mwl_mode_init(struct mwl_softc *);
120static void	mwl_update_mcast(struct ieee80211com *);
121static void	mwl_update_promisc(struct ieee80211com *);
122static void	mwl_updateslot(struct ieee80211com *);
123static int	mwl_beacon_setup(struct ieee80211vap *);
124static void	mwl_beacon_update(struct ieee80211vap *, int);
125#ifdef MWL_HOST_PS_SUPPORT
126static void	mwl_update_ps(struct ieee80211vap *, int);
127static int	mwl_set_tim(struct ieee80211_node *, int);
128#endif
129static int	mwl_dma_setup(struct mwl_softc *);
130static void	mwl_dma_cleanup(struct mwl_softc *);
131static struct ieee80211_node *mwl_node_alloc(struct ieee80211vap *,
132		    const uint8_t [IEEE80211_ADDR_LEN]);
133static void	mwl_node_cleanup(struct ieee80211_node *);
134static void	mwl_node_drain(struct ieee80211_node *);
135static void	mwl_node_getsignal(const struct ieee80211_node *,
136			int8_t *, int8_t *);
137static void	mwl_node_getmimoinfo(const struct ieee80211_node *,
138			struct ieee80211_mimo_info *);
139static int	mwl_rxbuf_init(struct mwl_softc *, struct mwl_rxbuf *);
140static void	mwl_rx_proc(void *, int);
141static void	mwl_txq_init(struct mwl_softc *sc, struct mwl_txq *, int);
142static int	mwl_tx_setup(struct mwl_softc *, int, int);
143static int	mwl_wme_update(struct ieee80211com *);
144static void	mwl_tx_cleanupq(struct mwl_softc *, struct mwl_txq *);
145static void	mwl_tx_cleanup(struct mwl_softc *);
146static uint16_t	mwl_calcformat(uint8_t rate, const struct ieee80211_node *);
147static int	mwl_tx_start(struct mwl_softc *, struct ieee80211_node *,
148			     struct mwl_txbuf *, struct mbuf *);
149static void	mwl_tx_proc(void *, int);
150static int	mwl_chan_set(struct mwl_softc *, struct ieee80211_channel *);
151static void	mwl_draintxq(struct mwl_softc *);
152static void	mwl_cleartxq(struct mwl_softc *, struct ieee80211vap *);
153static int	mwl_recv_action(struct ieee80211_node *,
154			const struct ieee80211_frame *,
155			const uint8_t *, const uint8_t *);
156static int	mwl_addba_request(struct ieee80211_node *,
157			struct ieee80211_tx_ampdu *, int dialogtoken,
158			int baparamset, int batimeout);
159static int	mwl_addba_response(struct ieee80211_node *,
160			struct ieee80211_tx_ampdu *, int status,
161			int baparamset, int batimeout);
162static void	mwl_addba_stop(struct ieee80211_node *,
163			struct ieee80211_tx_ampdu *);
164static int	mwl_startrecv(struct mwl_softc *);
165static MWL_HAL_APMODE mwl_getapmode(const struct ieee80211vap *,
166			struct ieee80211_channel *);
167static int	mwl_setapmode(struct ieee80211vap *, struct ieee80211_channel*);
168static void	mwl_scan_start(struct ieee80211com *);
169static void	mwl_scan_end(struct ieee80211com *);
170static void	mwl_set_channel(struct ieee80211com *);
171static int	mwl_peerstadb(struct ieee80211_node *,
172			int aid, int staid, MWL_HAL_PEERINFO *pi);
173static int	mwl_localstadb(struct ieee80211vap *);
174static int	mwl_newstate(struct ieee80211vap *, enum ieee80211_state, int);
175static int	allocstaid(struct mwl_softc *sc, int aid);
176static void	delstaid(struct mwl_softc *sc, int staid);
177static void	mwl_newassoc(struct ieee80211_node *, int);
178static void	mwl_agestations(void *);
179static int	mwl_setregdomain(struct ieee80211com *,
180			struct ieee80211_regdomain *, int,
181			struct ieee80211_channel []);
182static void	mwl_getradiocaps(struct ieee80211com *, int, int *,
183			struct ieee80211_channel []);
184static int	mwl_getchannels(struct mwl_softc *);
185
186static void	mwl_sysctlattach(struct mwl_softc *);
187static void	mwl_announce(struct mwl_softc *);
188
189SYSCTL_NODE(_hw, OID_AUTO, mwl, CTLFLAG_RD, 0, "Marvell driver parameters");
190
191static	int mwl_rxdesc = MWL_RXDESC;		/* # rx desc's to allocate */
192SYSCTL_INT(_hw_mwl, OID_AUTO, rxdesc, CTLFLAG_RW, &mwl_rxdesc,
193	    0, "rx descriptors allocated");
194static	int mwl_rxbuf = MWL_RXBUF;		/* # rx buffers to allocate */
195SYSCTL_INT(_hw_mwl, OID_AUTO, rxbuf, CTLFLAG_RWTUN, &mwl_rxbuf,
196	    0, "rx buffers allocated");
197static	int mwl_txbuf = MWL_TXBUF;		/* # tx buffers to allocate */
198SYSCTL_INT(_hw_mwl, OID_AUTO, txbuf, CTLFLAG_RWTUN, &mwl_txbuf,
199	    0, "tx buffers allocated");
200static	int mwl_txcoalesce = 8;		/* # tx packets to q before poking f/w*/
201SYSCTL_INT(_hw_mwl, OID_AUTO, txcoalesce, CTLFLAG_RWTUN, &mwl_txcoalesce,
202	    0, "tx buffers to send at once");
203static	int mwl_rxquota = MWL_RXBUF;		/* # max buffers to process */
204SYSCTL_INT(_hw_mwl, OID_AUTO, rxquota, CTLFLAG_RWTUN, &mwl_rxquota,
205	    0, "max rx buffers to process per interrupt");
206static	int mwl_rxdmalow = 3;			/* # min buffers for wakeup */
207SYSCTL_INT(_hw_mwl, OID_AUTO, rxdmalow, CTLFLAG_RWTUN, &mwl_rxdmalow,
208	    0, "min free rx buffers before restarting traffic");
209
210#ifdef MWL_DEBUG
211static	int mwl_debug = 0;
212SYSCTL_INT(_hw_mwl, OID_AUTO, debug, CTLFLAG_RWTUN, &mwl_debug,
213	    0, "control debugging printfs");
214enum {
215	MWL_DEBUG_XMIT		= 0x00000001,	/* basic xmit operation */
216	MWL_DEBUG_XMIT_DESC	= 0x00000002,	/* xmit descriptors */
217	MWL_DEBUG_RECV		= 0x00000004,	/* basic recv operation */
218	MWL_DEBUG_RECV_DESC	= 0x00000008,	/* recv descriptors */
219	MWL_DEBUG_RESET		= 0x00000010,	/* reset processing */
220	MWL_DEBUG_BEACON 	= 0x00000020,	/* beacon handling */
221	MWL_DEBUG_INTR		= 0x00000040,	/* ISR */
222	MWL_DEBUG_TX_PROC	= 0x00000080,	/* tx ISR proc */
223	MWL_DEBUG_RX_PROC	= 0x00000100,	/* rx ISR proc */
224	MWL_DEBUG_KEYCACHE	= 0x00000200,	/* key cache management */
225	MWL_DEBUG_STATE		= 0x00000400,	/* 802.11 state transitions */
226	MWL_DEBUG_NODE		= 0x00000800,	/* node management */
227	MWL_DEBUG_RECV_ALL	= 0x00001000,	/* trace all frames (beacons) */
228	MWL_DEBUG_TSO		= 0x00002000,	/* TSO processing */
229	MWL_DEBUG_AMPDU		= 0x00004000,	/* BA stream handling */
230	MWL_DEBUG_ANY		= 0xffffffff
231};
232#define	IS_BEACON(wh) \
233    ((wh->i_fc[0] & (IEEE80211_FC0_TYPE_MASK|IEEE80211_FC0_SUBTYPE_MASK)) == \
234	 (IEEE80211_FC0_TYPE_MGT|IEEE80211_FC0_SUBTYPE_BEACON))
235#define	IFF_DUMPPKTS_RECV(sc, wh) \
236    ((sc->sc_debug & MWL_DEBUG_RECV) && \
237      ((sc->sc_debug & MWL_DEBUG_RECV_ALL) || !IS_BEACON(wh)))
238#define	IFF_DUMPPKTS_XMIT(sc) \
239	(sc->sc_debug & MWL_DEBUG_XMIT)
240
241#define	DPRINTF(sc, m, fmt, ...) do {				\
242	if (sc->sc_debug & (m))					\
243		printf(fmt, __VA_ARGS__);			\
244} while (0)
245#define	KEYPRINTF(sc, hk, mac) do {				\
246	if (sc->sc_debug & MWL_DEBUG_KEYCACHE)			\
247		mwl_keyprint(sc, __func__, hk, mac);		\
248} while (0)
249static	void mwl_printrxbuf(const struct mwl_rxbuf *bf, u_int ix);
250static	void mwl_printtxbuf(const struct mwl_txbuf *bf, u_int qnum, u_int ix);
251#else
252#define	IFF_DUMPPKTS_RECV(sc, wh)	0
253#define	IFF_DUMPPKTS_XMIT(sc)		0
254#define	DPRINTF(sc, m, fmt, ...)	do { (void )sc; } while (0)
255#define	KEYPRINTF(sc, k, mac)		do { (void )sc; } while (0)
256#endif
257
258static MALLOC_DEFINE(M_MWLDEV, "mwldev", "mwl driver dma buffers");
259
260/*
261 * Each packet has fixed front matter: a 2-byte length
262 * of the payload, followed by a 4-address 802.11 header
263 * (regardless of the actual header and always w/o any
264 * QoS header).  The payload then follows.
265 */
266struct mwltxrec {
267	uint16_t fwlen;
268	struct ieee80211_frame_addr4 wh;
269} __packed;
270
271/*
272 * Read/Write shorthands for accesses to BAR 0.  Note
273 * that all BAR 1 operations are done in the "hal" and
274 * there should be no reference to them here.
275 */
276#ifdef MWL_DEBUG
277static __inline uint32_t
278RD4(struct mwl_softc *sc, bus_size_t off)
279{
280	return bus_space_read_4(sc->sc_io0t, sc->sc_io0h, off);
281}
282#endif
283
284static __inline void
285WR4(struct mwl_softc *sc, bus_size_t off, uint32_t val)
286{
287	bus_space_write_4(sc->sc_io0t, sc->sc_io0h, off, val);
288}
289
290int
291mwl_attach(uint16_t devid, struct mwl_softc *sc)
292{
293	struct ieee80211com *ic = &sc->sc_ic;
294	struct mwl_hal *mh;
295	int error = 0;
296
297	DPRINTF(sc, MWL_DEBUG_ANY, "%s: devid 0x%x\n", __func__, devid);
298
299	/*
300	 * Setup the RX free list lock early, so it can be consistently
301	 * removed.
302	 */
303	MWL_RXFREE_INIT(sc);
304
305	mh = mwl_hal_attach(sc->sc_dev, devid,
306	    sc->sc_io1h, sc->sc_io1t, sc->sc_dmat);
307	if (mh == NULL) {
308		device_printf(sc->sc_dev, "unable to attach HAL\n");
309		error = EIO;
310		goto bad;
311	}
312	sc->sc_mh = mh;
313	/*
314	 * Load firmware so we can get setup.  We arbitrarily
315	 * pick station firmware; we'll re-load firmware as
316	 * needed so setting up the wrong mode isn't a big deal.
317	 */
318	if (mwl_hal_fwload(mh, NULL) != 0) {
319		device_printf(sc->sc_dev, "unable to setup builtin firmware\n");
320		error = EIO;
321		goto bad1;
322	}
323	if (mwl_hal_gethwspecs(mh, &sc->sc_hwspecs) != 0) {
324		device_printf(sc->sc_dev, "unable to fetch h/w specs\n");
325		error = EIO;
326		goto bad1;
327	}
328	error = mwl_getchannels(sc);
329	if (error != 0)
330		goto bad1;
331
332	sc->sc_txantenna = 0;		/* h/w default */
333	sc->sc_rxantenna = 0;		/* h/w default */
334	sc->sc_invalid = 0;		/* ready to go, enable int handling */
335	sc->sc_ageinterval = MWL_AGEINTERVAL;
336
337	/*
338	 * Allocate tx+rx descriptors and populate the lists.
339	 * We immediately push the information to the firmware
340	 * as otherwise it gets upset.
341	 */
342	error = mwl_dma_setup(sc);
343	if (error != 0) {
344		device_printf(sc->sc_dev, "failed to setup descriptors: %d\n",
345		    error);
346		goto bad1;
347	}
348	error = mwl_setupdma(sc);	/* push to firmware */
349	if (error != 0)			/* NB: mwl_setupdma prints msg */
350		goto bad1;
351
352	callout_init(&sc->sc_timer, 1);
353	callout_init_mtx(&sc->sc_watchdog, &sc->sc_mtx, 0);
354	mbufq_init(&sc->sc_snd, ifqmaxlen);
355
356	sc->sc_tq = taskqueue_create("mwl_taskq", M_NOWAIT,
357		taskqueue_thread_enqueue, &sc->sc_tq);
358	taskqueue_start_threads(&sc->sc_tq, 1, PI_NET,
359		"%s taskq", device_get_nameunit(sc->sc_dev));
360
361	TASK_INIT(&sc->sc_rxtask, 0, mwl_rx_proc, sc);
362	TASK_INIT(&sc->sc_radartask, 0, mwl_radar_proc, sc);
363	TASK_INIT(&sc->sc_chanswitchtask, 0, mwl_chanswitch_proc, sc);
364	TASK_INIT(&sc->sc_bawatchdogtask, 0, mwl_bawatchdog_proc, sc);
365
366	/* NB: insure BK queue is the lowest priority h/w queue */
367	if (!mwl_tx_setup(sc, WME_AC_BK, MWL_WME_AC_BK)) {
368		device_printf(sc->sc_dev,
369		    "unable to setup xmit queue for %s traffic!\n",
370		     ieee80211_wme_acnames[WME_AC_BK]);
371		error = EIO;
372		goto bad2;
373	}
374	if (!mwl_tx_setup(sc, WME_AC_BE, MWL_WME_AC_BE) ||
375	    !mwl_tx_setup(sc, WME_AC_VI, MWL_WME_AC_VI) ||
376	    !mwl_tx_setup(sc, WME_AC_VO, MWL_WME_AC_VO)) {
377		/*
378		 * Not enough hardware tx queues to properly do WME;
379		 * just punt and assign them all to the same h/w queue.
380		 * We could do a better job of this if, for example,
381		 * we allocate queues when we switch from station to
382		 * AP mode.
383		 */
384		if (sc->sc_ac2q[WME_AC_VI] != NULL)
385			mwl_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_VI]);
386		if (sc->sc_ac2q[WME_AC_BE] != NULL)
387			mwl_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_BE]);
388		sc->sc_ac2q[WME_AC_BE] = sc->sc_ac2q[WME_AC_BK];
389		sc->sc_ac2q[WME_AC_VI] = sc->sc_ac2q[WME_AC_BK];
390		sc->sc_ac2q[WME_AC_VO] = sc->sc_ac2q[WME_AC_BK];
391	}
392	TASK_INIT(&sc->sc_txtask, 0, mwl_tx_proc, sc);
393
394	ic->ic_softc = sc;
395	ic->ic_name = device_get_nameunit(sc->sc_dev);
396	/* XXX not right but it's not used anywhere important */
397	ic->ic_phytype = IEEE80211_T_OFDM;
398	ic->ic_opmode = IEEE80211_M_STA;
399	ic->ic_caps =
400		  IEEE80211_C_STA		/* station mode supported */
401		| IEEE80211_C_HOSTAP		/* hostap mode */
402		| IEEE80211_C_MONITOR		/* monitor mode */
403#if 0
404		| IEEE80211_C_IBSS		/* ibss, nee adhoc, mode */
405		| IEEE80211_C_AHDEMO		/* adhoc demo mode */
406#endif
407		| IEEE80211_C_MBSS		/* mesh point link mode */
408		| IEEE80211_C_WDS		/* WDS supported */
409		| IEEE80211_C_SHPREAMBLE	/* short preamble supported */
410		| IEEE80211_C_SHSLOT		/* short slot time supported */
411		| IEEE80211_C_WME		/* WME/WMM supported */
412		| IEEE80211_C_BURST		/* xmit bursting supported */
413		| IEEE80211_C_WPA		/* capable of WPA1+WPA2 */
414		| IEEE80211_C_BGSCAN		/* capable of bg scanning */
415		| IEEE80211_C_TXFRAG		/* handle tx frags */
416		| IEEE80211_C_TXPMGT		/* capable of txpow mgt */
417		| IEEE80211_C_DFS		/* DFS supported */
418		;
419
420	ic->ic_htcaps =
421		  IEEE80211_HTCAP_SMPS_ENA	/* SM PS mode enabled */
422		| IEEE80211_HTCAP_CHWIDTH40	/* 40MHz channel width */
423		| IEEE80211_HTCAP_SHORTGI20	/* short GI in 20MHz */
424		| IEEE80211_HTCAP_SHORTGI40	/* short GI in 40MHz */
425		| IEEE80211_HTCAP_RXSTBC_2STREAM/* 1-2 spatial streams */
426#if MWL_AGGR_SIZE == 7935
427		| IEEE80211_HTCAP_MAXAMSDU_7935	/* max A-MSDU length */
428#else
429		| IEEE80211_HTCAP_MAXAMSDU_3839	/* max A-MSDU length */
430#endif
431#if 0
432		| IEEE80211_HTCAP_PSMP		/* PSMP supported */
433		| IEEE80211_HTCAP_40INTOLERANT	/* 40MHz intolerant */
434#endif
435		/* s/w capabilities */
436		| IEEE80211_HTC_HT		/* HT operation */
437		| IEEE80211_HTC_AMPDU		/* tx A-MPDU */
438		| IEEE80211_HTC_AMSDU		/* tx A-MSDU */
439		| IEEE80211_HTC_SMPS		/* SMPS available */
440		;
441
442	/*
443	 * Mark h/w crypto support.
444	 * XXX no way to query h/w support.
445	 */
446	ic->ic_cryptocaps |= IEEE80211_CRYPTO_WEP
447			  |  IEEE80211_CRYPTO_AES_CCM
448			  |  IEEE80211_CRYPTO_TKIP
449			  |  IEEE80211_CRYPTO_TKIPMIC
450			  ;
451	/*
452	 * Transmit requires space in the packet for a special
453	 * format transmit record and optional padding between
454	 * this record and the payload.  Ask the net80211 layer
455	 * to arrange this when encapsulating packets so we can
456	 * add it efficiently.
457	 */
458	ic->ic_headroom = sizeof(struct mwltxrec) -
459		sizeof(struct ieee80211_frame);
460
461	IEEE80211_ADDR_COPY(ic->ic_macaddr, sc->sc_hwspecs.macAddr);
462
463	/* call MI attach routine. */
464	ieee80211_ifattach(ic);
465	ic->ic_setregdomain = mwl_setregdomain;
466	ic->ic_getradiocaps = mwl_getradiocaps;
467	/* override default methods */
468	ic->ic_raw_xmit = mwl_raw_xmit;
469	ic->ic_newassoc = mwl_newassoc;
470	ic->ic_updateslot = mwl_updateslot;
471	ic->ic_update_mcast = mwl_update_mcast;
472	ic->ic_update_promisc = mwl_update_promisc;
473	ic->ic_wme.wme_update = mwl_wme_update;
474	ic->ic_transmit = mwl_transmit;
475	ic->ic_ioctl = mwl_ioctl;
476	ic->ic_parent = mwl_parent;
477
478	ic->ic_node_alloc = mwl_node_alloc;
479	sc->sc_node_cleanup = ic->ic_node_cleanup;
480	ic->ic_node_cleanup = mwl_node_cleanup;
481	sc->sc_node_drain = ic->ic_node_drain;
482	ic->ic_node_drain = mwl_node_drain;
483	ic->ic_node_getsignal = mwl_node_getsignal;
484	ic->ic_node_getmimoinfo = mwl_node_getmimoinfo;
485
486	ic->ic_scan_start = mwl_scan_start;
487	ic->ic_scan_end = mwl_scan_end;
488	ic->ic_set_channel = mwl_set_channel;
489
490	sc->sc_recv_action = ic->ic_recv_action;
491	ic->ic_recv_action = mwl_recv_action;
492	sc->sc_addba_request = ic->ic_addba_request;
493	ic->ic_addba_request = mwl_addba_request;
494	sc->sc_addba_response = ic->ic_addba_response;
495	ic->ic_addba_response = mwl_addba_response;
496	sc->sc_addba_stop = ic->ic_addba_stop;
497	ic->ic_addba_stop = mwl_addba_stop;
498
499	ic->ic_vap_create = mwl_vap_create;
500	ic->ic_vap_delete = mwl_vap_delete;
501
502	ieee80211_radiotap_attach(ic,
503	    &sc->sc_tx_th.wt_ihdr, sizeof(sc->sc_tx_th),
504		MWL_TX_RADIOTAP_PRESENT,
505	    &sc->sc_rx_th.wr_ihdr, sizeof(sc->sc_rx_th),
506		MWL_RX_RADIOTAP_PRESENT);
507	/*
508	 * Setup dynamic sysctl's now that country code and
509	 * regdomain are available from the hal.
510	 */
511	mwl_sysctlattach(sc);
512
513	if (bootverbose)
514		ieee80211_announce(ic);
515	mwl_announce(sc);
516	return 0;
517bad2:
518	mwl_dma_cleanup(sc);
519bad1:
520	mwl_hal_detach(mh);
521bad:
522	MWL_RXFREE_DESTROY(sc);
523	sc->sc_invalid = 1;
524	return error;
525}
526
527int
528mwl_detach(struct mwl_softc *sc)
529{
530	struct ieee80211com *ic = &sc->sc_ic;
531
532	MWL_LOCK(sc);
533	mwl_stop(sc);
534	MWL_UNLOCK(sc);
535	/*
536	 * NB: the order of these is important:
537	 * o call the 802.11 layer before detaching the hal to
538	 *   insure callbacks into the driver to delete global
539	 *   key cache entries can be handled
540	 * o reclaim the tx queue data structures after calling
541	 *   the 802.11 layer as we'll get called back to reclaim
542	 *   node state and potentially want to use them
543	 * o to cleanup the tx queues the hal is called, so detach
544	 *   it last
545	 * Other than that, it's straightforward...
546	 */
547	ieee80211_ifdetach(ic);
548	callout_drain(&sc->sc_watchdog);
549	mwl_dma_cleanup(sc);
550	MWL_RXFREE_DESTROY(sc);
551	mwl_tx_cleanup(sc);
552	mwl_hal_detach(sc->sc_mh);
553	mbufq_drain(&sc->sc_snd);
554
555	return 0;
556}
557
558/*
559 * MAC address handling for multiple BSS on the same radio.
560 * The first vap uses the MAC address from the EEPROM.  For
561 * subsequent vap's we set the U/L bit (bit 1) in the MAC
562 * address and use the next six bits as an index.
563 */
564static void
565assign_address(struct mwl_softc *sc, uint8_t mac[IEEE80211_ADDR_LEN], int clone)
566{
567	int i;
568
569	if (clone && mwl_hal_ismbsscapable(sc->sc_mh)) {
570		/* NB: we only do this if h/w supports multiple bssid */
571		for (i = 0; i < 32; i++)
572			if ((sc->sc_bssidmask & (1<<i)) == 0)
573				break;
574		if (i != 0)
575			mac[0] |= (i << 2)|0x2;
576	} else
577		i = 0;
578	sc->sc_bssidmask |= 1<<i;
579	if (i == 0)
580		sc->sc_nbssid0++;
581}
582
583static void
584reclaim_address(struct mwl_softc *sc, const uint8_t mac[IEEE80211_ADDR_LEN])
585{
586	int i = mac[0] >> 2;
587	if (i != 0 || --sc->sc_nbssid0 == 0)
588		sc->sc_bssidmask &= ~(1<<i);
589}
590
591static struct ieee80211vap *
592mwl_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit,
593    enum ieee80211_opmode opmode, int flags,
594    const uint8_t bssid[IEEE80211_ADDR_LEN],
595    const uint8_t mac0[IEEE80211_ADDR_LEN])
596{
597	struct mwl_softc *sc = ic->ic_softc;
598	struct mwl_hal *mh = sc->sc_mh;
599	struct ieee80211vap *vap, *apvap;
600	struct mwl_hal_vap *hvap;
601	struct mwl_vap *mvp;
602	uint8_t mac[IEEE80211_ADDR_LEN];
603
604	IEEE80211_ADDR_COPY(mac, mac0);
605	switch (opmode) {
606	case IEEE80211_M_HOSTAP:
607	case IEEE80211_M_MBSS:
608		if ((flags & IEEE80211_CLONE_MACADDR) == 0)
609			assign_address(sc, mac, flags & IEEE80211_CLONE_BSSID);
610		hvap = mwl_hal_newvap(mh, MWL_HAL_AP, mac);
611		if (hvap == NULL) {
612			if ((flags & IEEE80211_CLONE_MACADDR) == 0)
613				reclaim_address(sc, mac);
614			return NULL;
615		}
616		break;
617	case IEEE80211_M_STA:
618		if ((flags & IEEE80211_CLONE_MACADDR) == 0)
619			assign_address(sc, mac, flags & IEEE80211_CLONE_BSSID);
620		hvap = mwl_hal_newvap(mh, MWL_HAL_STA, mac);
621		if (hvap == NULL) {
622			if ((flags & IEEE80211_CLONE_MACADDR) == 0)
623				reclaim_address(sc, mac);
624			return NULL;
625		}
626		/* no h/w beacon miss support; always use s/w */
627		flags |= IEEE80211_CLONE_NOBEACONS;
628		break;
629	case IEEE80211_M_WDS:
630		hvap = NULL;		/* NB: we use associated AP vap */
631		if (sc->sc_napvaps == 0)
632			return NULL;	/* no existing AP vap */
633		break;
634	case IEEE80211_M_MONITOR:
635		hvap = NULL;
636		break;
637	case IEEE80211_M_IBSS:
638	case IEEE80211_M_AHDEMO:
639	default:
640		return NULL;
641	}
642
643	mvp = malloc(sizeof(struct mwl_vap), M_80211_VAP, M_WAITOK | M_ZERO);
644	mvp->mv_hvap = hvap;
645	if (opmode == IEEE80211_M_WDS) {
646		/*
647		 * WDS vaps must have an associated AP vap; find one.
648		 * XXX not right.
649		 */
650		TAILQ_FOREACH(apvap, &ic->ic_vaps, iv_next)
651			if (apvap->iv_opmode == IEEE80211_M_HOSTAP) {
652				mvp->mv_ap_hvap = MWL_VAP(apvap)->mv_hvap;
653				break;
654			}
655		KASSERT(mvp->mv_ap_hvap != NULL, ("no ap vap"));
656	}
657	vap = &mvp->mv_vap;
658	ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid);
659	/* override with driver methods */
660	mvp->mv_newstate = vap->iv_newstate;
661	vap->iv_newstate = mwl_newstate;
662	vap->iv_max_keyix = 0;	/* XXX */
663	vap->iv_key_alloc = mwl_key_alloc;
664	vap->iv_key_delete = mwl_key_delete;
665	vap->iv_key_set = mwl_key_set;
666#ifdef MWL_HOST_PS_SUPPORT
667	if (opmode == IEEE80211_M_HOSTAP || opmode == IEEE80211_M_MBSS) {
668		vap->iv_update_ps = mwl_update_ps;
669		mvp->mv_set_tim = vap->iv_set_tim;
670		vap->iv_set_tim = mwl_set_tim;
671	}
672#endif
673	vap->iv_reset = mwl_reset;
674	vap->iv_update_beacon = mwl_beacon_update;
675
676	/* override max aid so sta's cannot assoc when we're out of sta id's */
677	vap->iv_max_aid = MWL_MAXSTAID;
678	/* override default A-MPDU rx parameters */
679	vap->iv_ampdu_rxmax = IEEE80211_HTCAP_MAXRXAMPDU_64K;
680	vap->iv_ampdu_density = IEEE80211_HTCAP_MPDUDENSITY_4;
681
682	/* complete setup */
683	ieee80211_vap_attach(vap, mwl_media_change, ieee80211_media_status,
684	    mac);
685
686	switch (vap->iv_opmode) {
687	case IEEE80211_M_HOSTAP:
688	case IEEE80211_M_MBSS:
689	case IEEE80211_M_STA:
690		/*
691		 * Setup sta db entry for local address.
692		 */
693		mwl_localstadb(vap);
694		if (vap->iv_opmode == IEEE80211_M_HOSTAP ||
695		    vap->iv_opmode == IEEE80211_M_MBSS)
696			sc->sc_napvaps++;
697		else
698			sc->sc_nstavaps++;
699		break;
700	case IEEE80211_M_WDS:
701		sc->sc_nwdsvaps++;
702		break;
703	default:
704		break;
705	}
706	/*
707	 * Setup overall operating mode.
708	 */
709	if (sc->sc_napvaps)
710		ic->ic_opmode = IEEE80211_M_HOSTAP;
711	else if (sc->sc_nstavaps)
712		ic->ic_opmode = IEEE80211_M_STA;
713	else
714		ic->ic_opmode = opmode;
715
716	return vap;
717}
718
719static void
720mwl_vap_delete(struct ieee80211vap *vap)
721{
722	struct mwl_vap *mvp = MWL_VAP(vap);
723	struct mwl_softc *sc = vap->iv_ic->ic_softc;
724	struct mwl_hal *mh = sc->sc_mh;
725	struct mwl_hal_vap *hvap = mvp->mv_hvap;
726	enum ieee80211_opmode opmode = vap->iv_opmode;
727
728	/* XXX disallow ap vap delete if WDS still present */
729	if (sc->sc_running) {
730		/* quiesce h/w while we remove the vap */
731		mwl_hal_intrset(mh, 0);		/* disable interrupts */
732	}
733	ieee80211_vap_detach(vap);
734	switch (opmode) {
735	case IEEE80211_M_HOSTAP:
736	case IEEE80211_M_MBSS:
737	case IEEE80211_M_STA:
738		KASSERT(hvap != NULL, ("no hal vap handle"));
739		(void) mwl_hal_delstation(hvap, vap->iv_myaddr);
740		mwl_hal_delvap(hvap);
741		if (opmode == IEEE80211_M_HOSTAP || opmode == IEEE80211_M_MBSS)
742			sc->sc_napvaps--;
743		else
744			sc->sc_nstavaps--;
745		/* XXX don't do it for IEEE80211_CLONE_MACADDR */
746		reclaim_address(sc, vap->iv_myaddr);
747		break;
748	case IEEE80211_M_WDS:
749		sc->sc_nwdsvaps--;
750		break;
751	default:
752		break;
753	}
754	mwl_cleartxq(sc, vap);
755	free(mvp, M_80211_VAP);
756	if (sc->sc_running)
757		mwl_hal_intrset(mh, sc->sc_imask);
758}
759
760void
761mwl_suspend(struct mwl_softc *sc)
762{
763
764	MWL_LOCK(sc);
765	mwl_stop(sc);
766	MWL_UNLOCK(sc);
767}
768
769void
770mwl_resume(struct mwl_softc *sc)
771{
772	int error = EDOOFUS;
773
774	MWL_LOCK(sc);
775	if (sc->sc_ic.ic_nrunning > 0)
776		error = mwl_init(sc);
777	MWL_UNLOCK(sc);
778
779	if (error == 0)
780		ieee80211_start_all(&sc->sc_ic);	/* start all vap's */
781}
782
783void
784mwl_shutdown(void *arg)
785{
786	struct mwl_softc *sc = arg;
787
788	MWL_LOCK(sc);
789	mwl_stop(sc);
790	MWL_UNLOCK(sc);
791}
792
793/*
794 * Interrupt handler.  Most of the actual processing is deferred.
795 */
796void
797mwl_intr(void *arg)
798{
799	struct mwl_softc *sc = arg;
800	struct mwl_hal *mh = sc->sc_mh;
801	uint32_t status;
802
803	if (sc->sc_invalid) {
804		/*
805		 * The hardware is not ready/present, don't touch anything.
806		 * Note this can happen early on if the IRQ is shared.
807		 */
808		DPRINTF(sc, MWL_DEBUG_ANY, "%s: invalid; ignored\n", __func__);
809		return;
810	}
811	/*
812	 * Figure out the reason(s) for the interrupt.
813	 */
814	mwl_hal_getisr(mh, &status);		/* NB: clears ISR too */
815	if (status == 0)			/* must be a shared irq */
816		return;
817
818	DPRINTF(sc, MWL_DEBUG_INTR, "%s: status 0x%x imask 0x%x\n",
819	    __func__, status, sc->sc_imask);
820	if (status & MACREG_A2HRIC_BIT_RX_RDY)
821		taskqueue_enqueue(sc->sc_tq, &sc->sc_rxtask);
822	if (status & MACREG_A2HRIC_BIT_TX_DONE)
823		taskqueue_enqueue(sc->sc_tq, &sc->sc_txtask);
824	if (status & MACREG_A2HRIC_BIT_BA_WATCHDOG)
825		taskqueue_enqueue(sc->sc_tq, &sc->sc_bawatchdogtask);
826	if (status & MACREG_A2HRIC_BIT_OPC_DONE)
827		mwl_hal_cmddone(mh);
828	if (status & MACREG_A2HRIC_BIT_MAC_EVENT) {
829		;
830	}
831	if (status & MACREG_A2HRIC_BIT_ICV_ERROR) {
832		/* TKIP ICV error */
833		sc->sc_stats.mst_rx_badtkipicv++;
834	}
835	if (status & MACREG_A2HRIC_BIT_QUEUE_EMPTY) {
836		/* 11n aggregation queue is empty, re-fill */
837		;
838	}
839	if (status & MACREG_A2HRIC_BIT_QUEUE_FULL) {
840		;
841	}
842	if (status & MACREG_A2HRIC_BIT_RADAR_DETECT) {
843		/* radar detected, process event */
844		taskqueue_enqueue(sc->sc_tq, &sc->sc_radartask);
845	}
846	if (status & MACREG_A2HRIC_BIT_CHAN_SWITCH) {
847		/* DFS channel switch */
848		taskqueue_enqueue(sc->sc_tq, &sc->sc_chanswitchtask);
849	}
850}
851
852static void
853mwl_radar_proc(void *arg, int pending)
854{
855	struct mwl_softc *sc = arg;
856	struct ieee80211com *ic = &sc->sc_ic;
857
858	DPRINTF(sc, MWL_DEBUG_ANY, "%s: radar detected, pending %u\n",
859	    __func__, pending);
860
861	sc->sc_stats.mst_radardetect++;
862	/* XXX stop h/w BA streams? */
863
864	IEEE80211_LOCK(ic);
865	ieee80211_dfs_notify_radar(ic, ic->ic_curchan);
866	IEEE80211_UNLOCK(ic);
867}
868
869static void
870mwl_chanswitch_proc(void *arg, int pending)
871{
872	struct mwl_softc *sc = arg;
873	struct ieee80211com *ic = &sc->sc_ic;
874
875	DPRINTF(sc, MWL_DEBUG_ANY, "%s: channel switch notice, pending %u\n",
876	    __func__, pending);
877
878	IEEE80211_LOCK(ic);
879	sc->sc_csapending = 0;
880	ieee80211_csa_completeswitch(ic);
881	IEEE80211_UNLOCK(ic);
882}
883
884static void
885mwl_bawatchdog(const MWL_HAL_BASTREAM *sp)
886{
887	struct ieee80211_node *ni = sp->data[0];
888
889	/* send DELBA and drop the stream */
890	ieee80211_ampdu_stop(ni, sp->data[1], IEEE80211_REASON_UNSPECIFIED);
891}
892
893static void
894mwl_bawatchdog_proc(void *arg, int pending)
895{
896	struct mwl_softc *sc = arg;
897	struct mwl_hal *mh = sc->sc_mh;
898	const MWL_HAL_BASTREAM *sp;
899	uint8_t bitmap, n;
900
901	sc->sc_stats.mst_bawatchdog++;
902
903	if (mwl_hal_getwatchdogbitmap(mh, &bitmap) != 0) {
904		DPRINTF(sc, MWL_DEBUG_AMPDU,
905		    "%s: could not get bitmap\n", __func__);
906		sc->sc_stats.mst_bawatchdog_failed++;
907		return;
908	}
909	DPRINTF(sc, MWL_DEBUG_AMPDU, "%s: bitmap 0x%x\n", __func__, bitmap);
910	if (bitmap == 0xff) {
911		n = 0;
912		/* disable all ba streams */
913		for (bitmap = 0; bitmap < 8; bitmap++) {
914			sp = mwl_hal_bastream_lookup(mh, bitmap);
915			if (sp != NULL) {
916				mwl_bawatchdog(sp);
917				n++;
918			}
919		}
920		if (n == 0) {
921			DPRINTF(sc, MWL_DEBUG_AMPDU,
922			    "%s: no BA streams found\n", __func__);
923			sc->sc_stats.mst_bawatchdog_empty++;
924		}
925	} else if (bitmap != 0xaa) {
926		/* disable a single ba stream */
927		sp = mwl_hal_bastream_lookup(mh, bitmap);
928		if (sp != NULL) {
929			mwl_bawatchdog(sp);
930		} else {
931			DPRINTF(sc, MWL_DEBUG_AMPDU,
932			    "%s: no BA stream %d\n", __func__, bitmap);
933			sc->sc_stats.mst_bawatchdog_notfound++;
934		}
935	}
936}
937
938/*
939 * Convert net80211 channel to a HAL channel.
940 */
941static void
942mwl_mapchan(MWL_HAL_CHANNEL *hc, const struct ieee80211_channel *chan)
943{
944	hc->channel = chan->ic_ieee;
945
946	*(uint32_t *)&hc->channelFlags = 0;
947	if (IEEE80211_IS_CHAN_2GHZ(chan))
948		hc->channelFlags.FreqBand = MWL_FREQ_BAND_2DOT4GHZ;
949	else if (IEEE80211_IS_CHAN_5GHZ(chan))
950		hc->channelFlags.FreqBand = MWL_FREQ_BAND_5GHZ;
951	if (IEEE80211_IS_CHAN_HT40(chan)) {
952		hc->channelFlags.ChnlWidth = MWL_CH_40_MHz_WIDTH;
953		if (IEEE80211_IS_CHAN_HT40U(chan))
954			hc->channelFlags.ExtChnlOffset = MWL_EXT_CH_ABOVE_CTRL_CH;
955		else
956			hc->channelFlags.ExtChnlOffset = MWL_EXT_CH_BELOW_CTRL_CH;
957	} else
958		hc->channelFlags.ChnlWidth = MWL_CH_20_MHz_WIDTH;
959	/* XXX 10MHz channels */
960}
961
962/*
963 * Inform firmware of our tx/rx dma setup.  The BAR 0
964 * writes below are for compatibility with older firmware.
965 * For current firmware we send this information with a
966 * cmd block via mwl_hal_sethwdma.
967 */
968static int
969mwl_setupdma(struct mwl_softc *sc)
970{
971	int error, i;
972
973	sc->sc_hwdma.rxDescRead = sc->sc_rxdma.dd_desc_paddr;
974	WR4(sc, sc->sc_hwspecs.rxDescRead, sc->sc_hwdma.rxDescRead);
975	WR4(sc, sc->sc_hwspecs.rxDescWrite, sc->sc_hwdma.rxDescRead);
976
977	for (i = 0; i < MWL_NUM_TX_QUEUES-MWL_NUM_ACK_QUEUES; i++) {
978		struct mwl_txq *txq = &sc->sc_txq[i];
979		sc->sc_hwdma.wcbBase[i] = txq->dma.dd_desc_paddr;
980		WR4(sc, sc->sc_hwspecs.wcbBase[i], sc->sc_hwdma.wcbBase[i]);
981	}
982	sc->sc_hwdma.maxNumTxWcb = mwl_txbuf;
983	sc->sc_hwdma.maxNumWCB = MWL_NUM_TX_QUEUES-MWL_NUM_ACK_QUEUES;
984
985	error = mwl_hal_sethwdma(sc->sc_mh, &sc->sc_hwdma);
986	if (error != 0) {
987		device_printf(sc->sc_dev,
988		    "unable to setup tx/rx dma; hal status %u\n", error);
989		/* XXX */
990	}
991	return error;
992}
993
994/*
995 * Inform firmware of tx rate parameters.
996 * Called after a channel change.
997 */
998static int
999mwl_setcurchanrates(struct mwl_softc *sc)
1000{
1001	struct ieee80211com *ic = &sc->sc_ic;
1002	const struct ieee80211_rateset *rs;
1003	MWL_HAL_TXRATE rates;
1004
1005	memset(&rates, 0, sizeof(rates));
1006	rs = ieee80211_get_suprates(ic, ic->ic_curchan);
1007	/* rate used to send management frames */
1008	rates.MgtRate = rs->rs_rates[0] & IEEE80211_RATE_VAL;
1009	/* rate used to send multicast frames */
1010	rates.McastRate = rates.MgtRate;
1011
1012	return mwl_hal_settxrate_auto(sc->sc_mh, &rates);
1013}
1014
1015/*
1016 * Inform firmware of tx rate parameters.  Called whenever
1017 * user-settable params change and after a channel change.
1018 */
1019static int
1020mwl_setrates(struct ieee80211vap *vap)
1021{
1022	struct mwl_vap *mvp = MWL_VAP(vap);
1023	struct ieee80211_node *ni = vap->iv_bss;
1024	const struct ieee80211_txparam *tp = ni->ni_txparms;
1025	MWL_HAL_TXRATE rates;
1026
1027	KASSERT(vap->iv_state == IEEE80211_S_RUN, ("state %d", vap->iv_state));
1028
1029	/*
1030	 * Update the h/w rate map.
1031	 * NB: 0x80 for MCS is passed through unchanged
1032	 */
1033	memset(&rates, 0, sizeof(rates));
1034	/* rate used to send management frames */
1035	rates.MgtRate = tp->mgmtrate;
1036	/* rate used to send multicast frames */
1037	rates.McastRate = tp->mcastrate;
1038
1039	/* while here calculate EAPOL fixed rate cookie */
1040	mvp->mv_eapolformat = htole16(mwl_calcformat(rates.MgtRate, ni));
1041
1042	return mwl_hal_settxrate(mvp->mv_hvap,
1043	    tp->ucastrate != IEEE80211_FIXED_RATE_NONE ?
1044		RATE_FIXED : RATE_AUTO, &rates);
1045}
1046
1047/*
1048 * Setup a fixed xmit rate cookie for EAPOL frames.
1049 */
1050static void
1051mwl_seteapolformat(struct ieee80211vap *vap)
1052{
1053	struct mwl_vap *mvp = MWL_VAP(vap);
1054	struct ieee80211_node *ni = vap->iv_bss;
1055	enum ieee80211_phymode mode;
1056	uint8_t rate;
1057
1058	KASSERT(vap->iv_state == IEEE80211_S_RUN, ("state %d", vap->iv_state));
1059
1060	mode = ieee80211_chan2mode(ni->ni_chan);
1061	/*
1062	 * Use legacy rates when operating a mixed HT+non-HT bss.
1063	 * NB: this may violate POLA for sta and wds vap's.
1064	 */
1065	if (mode == IEEE80211_MODE_11NA &&
1066	    (vap->iv_flags_ht & IEEE80211_FHT_PUREN) == 0)
1067		rate = vap->iv_txparms[IEEE80211_MODE_11A].mgmtrate;
1068	else if (mode == IEEE80211_MODE_11NG &&
1069	    (vap->iv_flags_ht & IEEE80211_FHT_PUREN) == 0)
1070		rate = vap->iv_txparms[IEEE80211_MODE_11G].mgmtrate;
1071	else
1072		rate = vap->iv_txparms[mode].mgmtrate;
1073
1074	mvp->mv_eapolformat = htole16(mwl_calcformat(rate, ni));
1075}
1076
1077/*
1078 * Map SKU+country code to region code for radar bin'ing.
1079 */
1080static int
1081mwl_map2regioncode(const struct ieee80211_regdomain *rd)
1082{
1083	switch (rd->regdomain) {
1084	case SKU_FCC:
1085	case SKU_FCC3:
1086		return DOMAIN_CODE_FCC;
1087	case SKU_CA:
1088		return DOMAIN_CODE_IC;
1089	case SKU_ETSI:
1090	case SKU_ETSI2:
1091	case SKU_ETSI3:
1092		if (rd->country == CTRY_SPAIN)
1093			return DOMAIN_CODE_SPAIN;
1094		if (rd->country == CTRY_FRANCE || rd->country == CTRY_FRANCE2)
1095			return DOMAIN_CODE_FRANCE;
1096		/* XXX force 1.3.1 radar type */
1097		return DOMAIN_CODE_ETSI_131;
1098	case SKU_JAPAN:
1099		return DOMAIN_CODE_MKK;
1100	case SKU_ROW:
1101		return DOMAIN_CODE_DGT;	/* Taiwan */
1102	case SKU_APAC:
1103	case SKU_APAC2:
1104	case SKU_APAC3:
1105		return DOMAIN_CODE_AUS;	/* Australia */
1106	}
1107	/* XXX KOREA? */
1108	return DOMAIN_CODE_FCC;			/* XXX? */
1109}
1110
1111static int
1112mwl_hal_reset(struct mwl_softc *sc)
1113{
1114	struct ieee80211com *ic = &sc->sc_ic;
1115	struct mwl_hal *mh = sc->sc_mh;
1116
1117	mwl_hal_setantenna(mh, WL_ANTENNATYPE_RX, sc->sc_rxantenna);
1118	mwl_hal_setantenna(mh, WL_ANTENNATYPE_TX, sc->sc_txantenna);
1119	mwl_hal_setradio(mh, 1, WL_AUTO_PREAMBLE);
1120	mwl_hal_setwmm(sc->sc_mh, (ic->ic_flags & IEEE80211_F_WME) != 0);
1121	mwl_chan_set(sc, ic->ic_curchan);
1122	/* NB: RF/RA performance tuned for indoor mode */
1123	mwl_hal_setrateadaptmode(mh, 0);
1124	mwl_hal_setoptimizationlevel(mh,
1125	    (ic->ic_flags & IEEE80211_F_BURST) != 0);
1126
1127	mwl_hal_setregioncode(mh, mwl_map2regioncode(&ic->ic_regdomain));
1128
1129	mwl_hal_setaggampduratemode(mh, 1, 80);		/* XXX */
1130	mwl_hal_setcfend(mh, 0);			/* XXX */
1131
1132	return 1;
1133}
1134
1135static int
1136mwl_init(struct mwl_softc *sc)
1137{
1138	struct mwl_hal *mh = sc->sc_mh;
1139	int error = 0;
1140
1141	MWL_LOCK_ASSERT(sc);
1142
1143	/*
1144	 * Stop anything previously setup.  This is safe
1145	 * whether this is the first time through or not.
1146	 */
1147	mwl_stop(sc);
1148
1149	/*
1150	 * Push vap-independent state to the firmware.
1151	 */
1152	if (!mwl_hal_reset(sc)) {
1153		device_printf(sc->sc_dev, "unable to reset hardware\n");
1154		return EIO;
1155	}
1156
1157	/*
1158	 * Setup recv (once); transmit is already good to go.
1159	 */
1160	error = mwl_startrecv(sc);
1161	if (error != 0) {
1162		device_printf(sc->sc_dev, "unable to start recv logic\n");
1163		return error;
1164	}
1165
1166	/*
1167	 * Enable interrupts.
1168	 */
1169	sc->sc_imask = MACREG_A2HRIC_BIT_RX_RDY
1170		     | MACREG_A2HRIC_BIT_TX_DONE
1171		     | MACREG_A2HRIC_BIT_OPC_DONE
1172#if 0
1173		     | MACREG_A2HRIC_BIT_MAC_EVENT
1174#endif
1175		     | MACREG_A2HRIC_BIT_ICV_ERROR
1176		     | MACREG_A2HRIC_BIT_RADAR_DETECT
1177		     | MACREG_A2HRIC_BIT_CHAN_SWITCH
1178#if 0
1179		     | MACREG_A2HRIC_BIT_QUEUE_EMPTY
1180#endif
1181		     | MACREG_A2HRIC_BIT_BA_WATCHDOG
1182		     | MACREQ_A2HRIC_BIT_TX_ACK
1183		     ;
1184
1185	sc->sc_running = 1;
1186	mwl_hal_intrset(mh, sc->sc_imask);
1187	callout_reset(&sc->sc_watchdog, hz, mwl_watchdog, sc);
1188
1189	return 0;
1190}
1191
1192static void
1193mwl_stop(struct mwl_softc *sc)
1194{
1195
1196	MWL_LOCK_ASSERT(sc);
1197	if (sc->sc_running) {
1198		/*
1199		 * Shutdown the hardware and driver.
1200		 */
1201		sc->sc_running = 0;
1202		callout_stop(&sc->sc_watchdog);
1203		sc->sc_tx_timer = 0;
1204		mwl_draintxq(sc);
1205	}
1206}
1207
1208static int
1209mwl_reset_vap(struct ieee80211vap *vap, int state)
1210{
1211	struct mwl_hal_vap *hvap = MWL_VAP(vap)->mv_hvap;
1212	struct ieee80211com *ic = vap->iv_ic;
1213
1214	if (state == IEEE80211_S_RUN)
1215		mwl_setrates(vap);
1216	/* XXX off by 1? */
1217	mwl_hal_setrtsthreshold(hvap, vap->iv_rtsthreshold);
1218	/* XXX auto? 20/40 split? */
1219	mwl_hal_sethtgi(hvap, (vap->iv_flags_ht &
1220	    (IEEE80211_FHT_SHORTGI20|IEEE80211_FHT_SHORTGI40)) ? 1 : 0);
1221	mwl_hal_setnprot(hvap, ic->ic_htprotmode == IEEE80211_PROT_NONE ?
1222	    HTPROTECT_NONE : HTPROTECT_AUTO);
1223	/* XXX txpower cap */
1224
1225	/* re-setup beacons */
1226	if (state == IEEE80211_S_RUN &&
1227	    (vap->iv_opmode == IEEE80211_M_HOSTAP ||
1228	     vap->iv_opmode == IEEE80211_M_MBSS ||
1229	     vap->iv_opmode == IEEE80211_M_IBSS)) {
1230		mwl_setapmode(vap, vap->iv_bss->ni_chan);
1231		mwl_hal_setnprotmode(hvap,
1232		    MS(ic->ic_curhtprotmode, IEEE80211_HTINFO_OPMODE));
1233		return mwl_beacon_setup(vap);
1234	}
1235	return 0;
1236}
1237
1238/*
1239 * Reset the hardware w/o losing operational state.
1240 * Used to reset or reload hardware state for a vap.
1241 */
1242static int
1243mwl_reset(struct ieee80211vap *vap, u_long cmd)
1244{
1245	struct mwl_hal_vap *hvap = MWL_VAP(vap)->mv_hvap;
1246	int error = 0;
1247
1248	if (hvap != NULL) {			/* WDS, MONITOR, etc. */
1249		struct ieee80211com *ic = vap->iv_ic;
1250		struct mwl_softc *sc = ic->ic_softc;
1251		struct mwl_hal *mh = sc->sc_mh;
1252
1253		/* XXX handle DWDS sta vap change */
1254		/* XXX do we need to disable interrupts? */
1255		mwl_hal_intrset(mh, 0);		/* disable interrupts */
1256		error = mwl_reset_vap(vap, vap->iv_state);
1257		mwl_hal_intrset(mh, sc->sc_imask);
1258	}
1259	return error;
1260}
1261
1262/*
1263 * Allocate a tx buffer for sending a frame.  The
1264 * packet is assumed to have the WME AC stored so
1265 * we can use it to select the appropriate h/w queue.
1266 */
1267static struct mwl_txbuf *
1268mwl_gettxbuf(struct mwl_softc *sc, struct mwl_txq *txq)
1269{
1270	struct mwl_txbuf *bf;
1271
1272	/*
1273	 * Grab a TX buffer and associated resources.
1274	 */
1275	MWL_TXQ_LOCK(txq);
1276	bf = STAILQ_FIRST(&txq->free);
1277	if (bf != NULL) {
1278		STAILQ_REMOVE_HEAD(&txq->free, bf_list);
1279		txq->nfree--;
1280	}
1281	MWL_TXQ_UNLOCK(txq);
1282	if (bf == NULL)
1283		DPRINTF(sc, MWL_DEBUG_XMIT,
1284		    "%s: out of xmit buffers on q %d\n", __func__, txq->qnum);
1285	return bf;
1286}
1287
1288/*
1289 * Return a tx buffer to the queue it came from.  Note there
1290 * are two cases because we must preserve the order of buffers
1291 * as it reflects the fixed order of descriptors in memory
1292 * (the firmware pre-fetches descriptors so we cannot reorder).
1293 */
1294static void
1295mwl_puttxbuf_head(struct mwl_txq *txq, struct mwl_txbuf *bf)
1296{
1297	bf->bf_m = NULL;
1298	bf->bf_node = NULL;
1299	MWL_TXQ_LOCK(txq);
1300	STAILQ_INSERT_HEAD(&txq->free, bf, bf_list);
1301	txq->nfree++;
1302	MWL_TXQ_UNLOCK(txq);
1303}
1304
1305static void
1306mwl_puttxbuf_tail(struct mwl_txq *txq, struct mwl_txbuf *bf)
1307{
1308	bf->bf_m = NULL;
1309	bf->bf_node = NULL;
1310	MWL_TXQ_LOCK(txq);
1311	STAILQ_INSERT_TAIL(&txq->free, bf, bf_list);
1312	txq->nfree++;
1313	MWL_TXQ_UNLOCK(txq);
1314}
1315
1316static int
1317mwl_transmit(struct ieee80211com *ic, struct mbuf *m)
1318{
1319	struct mwl_softc *sc = ic->ic_softc;
1320	int error;
1321
1322	MWL_LOCK(sc);
1323	if (!sc->sc_running) {
1324		MWL_UNLOCK(sc);
1325		return (ENXIO);
1326	}
1327	error = mbufq_enqueue(&sc->sc_snd, m);
1328	if (error) {
1329		MWL_UNLOCK(sc);
1330		return (error);
1331	}
1332	mwl_start(sc);
1333	MWL_UNLOCK(sc);
1334	return (0);
1335}
1336
1337static void
1338mwl_start(struct mwl_softc *sc)
1339{
1340	struct ieee80211_node *ni;
1341	struct mwl_txbuf *bf;
1342	struct mbuf *m;
1343	struct mwl_txq *txq = NULL;	/* XXX silence gcc */
1344	int nqueued;
1345
1346	MWL_LOCK_ASSERT(sc);
1347	if (!sc->sc_running || sc->sc_invalid)
1348		return;
1349	nqueued = 0;
1350	while ((m = mbufq_dequeue(&sc->sc_snd)) != NULL) {
1351		/*
1352		 * Grab the node for the destination.
1353		 */
1354		ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
1355		KASSERT(ni != NULL, ("no node"));
1356		m->m_pkthdr.rcvif = NULL;	/* committed, clear ref */
1357		/*
1358		 * Grab a TX buffer and associated resources.
1359		 * We honor the classification by the 802.11 layer.
1360		 */
1361		txq = sc->sc_ac2q[M_WME_GETAC(m)];
1362		bf = mwl_gettxbuf(sc, txq);
1363		if (bf == NULL) {
1364			m_freem(m);
1365			ieee80211_free_node(ni);
1366#ifdef MWL_TX_NODROP
1367			sc->sc_stats.mst_tx_qstop++;
1368			break;
1369#else
1370			DPRINTF(sc, MWL_DEBUG_XMIT,
1371			    "%s: tail drop on q %d\n", __func__, txq->qnum);
1372			sc->sc_stats.mst_tx_qdrop++;
1373			continue;
1374#endif /* MWL_TX_NODROP */
1375		}
1376
1377		/*
1378		 * Pass the frame to the h/w for transmission.
1379		 */
1380		if (mwl_tx_start(sc, ni, bf, m)) {
1381			if_inc_counter(ni->ni_vap->iv_ifp,
1382			    IFCOUNTER_OERRORS, 1);
1383			mwl_puttxbuf_head(txq, bf);
1384			ieee80211_free_node(ni);
1385			continue;
1386		}
1387		nqueued++;
1388		if (nqueued >= mwl_txcoalesce) {
1389			/*
1390			 * Poke the firmware to process queued frames;
1391			 * see below about (lack of) locking.
1392			 */
1393			nqueued = 0;
1394			mwl_hal_txstart(sc->sc_mh, 0/*XXX*/);
1395		}
1396	}
1397	if (nqueued) {
1398		/*
1399		 * NB: We don't need to lock against tx done because
1400		 * this just prods the firmware to check the transmit
1401		 * descriptors.  The firmware will also start fetching
1402		 * descriptors by itself if it notices new ones are
1403		 * present when it goes to deliver a tx done interrupt
1404		 * to the host. So if we race with tx done processing
1405		 * it's ok.  Delivering the kick here rather than in
1406		 * mwl_tx_start is an optimization to avoid poking the
1407		 * firmware for each packet.
1408		 *
1409		 * NB: the queue id isn't used so 0 is ok.
1410		 */
1411		mwl_hal_txstart(sc->sc_mh, 0/*XXX*/);
1412	}
1413}
1414
1415static int
1416mwl_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
1417	const struct ieee80211_bpf_params *params)
1418{
1419	struct ieee80211com *ic = ni->ni_ic;
1420	struct mwl_softc *sc = ic->ic_softc;
1421	struct mwl_txbuf *bf;
1422	struct mwl_txq *txq;
1423
1424	if (!sc->sc_running || sc->sc_invalid) {
1425		m_freem(m);
1426		return ENETDOWN;
1427	}
1428	/*
1429	 * Grab a TX buffer and associated resources.
1430	 * Note that we depend on the classification
1431	 * by the 802.11 layer to get to the right h/w
1432	 * queue.  Management frames must ALWAYS go on
1433	 * queue 1 but we cannot just force that here
1434	 * because we may receive non-mgt frames.
1435	 */
1436	txq = sc->sc_ac2q[M_WME_GETAC(m)];
1437	bf = mwl_gettxbuf(sc, txq);
1438	if (bf == NULL) {
1439		sc->sc_stats.mst_tx_qstop++;
1440		m_freem(m);
1441		return ENOBUFS;
1442	}
1443	/*
1444	 * Pass the frame to the h/w for transmission.
1445	 */
1446	if (mwl_tx_start(sc, ni, bf, m)) {
1447		mwl_puttxbuf_head(txq, bf);
1448
1449		return EIO;		/* XXX */
1450	}
1451	/*
1452	 * NB: We don't need to lock against tx done because
1453	 * this just prods the firmware to check the transmit
1454	 * descriptors.  The firmware will also start fetching
1455	 * descriptors by itself if it notices new ones are
1456	 * present when it goes to deliver a tx done interrupt
1457	 * to the host. So if we race with tx done processing
1458	 * it's ok.  Delivering the kick here rather than in
1459	 * mwl_tx_start is an optimization to avoid poking the
1460	 * firmware for each packet.
1461	 *
1462	 * NB: the queue id isn't used so 0 is ok.
1463	 */
1464	mwl_hal_txstart(sc->sc_mh, 0/*XXX*/);
1465	return 0;
1466}
1467
1468static int
1469mwl_media_change(struct ifnet *ifp)
1470{
1471	struct ieee80211vap *vap = ifp->if_softc;
1472	int error;
1473
1474	error = ieee80211_media_change(ifp);
1475	/* NB: only the fixed rate can change and that doesn't need a reset */
1476	if (error == ENETRESET) {
1477		mwl_setrates(vap);
1478		error = 0;
1479	}
1480	return error;
1481}
1482
1483#ifdef MWL_DEBUG
1484static void
1485mwl_keyprint(struct mwl_softc *sc, const char *tag,
1486	const MWL_HAL_KEYVAL *hk, const uint8_t mac[IEEE80211_ADDR_LEN])
1487{
1488	static const char *ciphers[] = {
1489		"WEP",
1490		"TKIP",
1491		"AES-CCM",
1492	};
1493	int i, n;
1494
1495	printf("%s: [%u] %-7s", tag, hk->keyIndex, ciphers[hk->keyTypeId]);
1496	for (i = 0, n = hk->keyLen; i < n; i++)
1497		printf(" %02x", hk->key.aes[i]);
1498	printf(" mac %s", ether_sprintf(mac));
1499	if (hk->keyTypeId == KEY_TYPE_ID_TKIP) {
1500		printf(" %s", "rxmic");
1501		for (i = 0; i < sizeof(hk->key.tkip.rxMic); i++)
1502			printf(" %02x", hk->key.tkip.rxMic[i]);
1503		printf(" txmic");
1504		for (i = 0; i < sizeof(hk->key.tkip.txMic); i++)
1505			printf(" %02x", hk->key.tkip.txMic[i]);
1506	}
1507	printf(" flags 0x%x\n", hk->keyFlags);
1508}
1509#endif
1510
1511/*
1512 * Allocate a key cache slot for a unicast key.  The
1513 * firmware handles key allocation and every station is
1514 * guaranteed key space so we are always successful.
1515 */
1516static int
1517mwl_key_alloc(struct ieee80211vap *vap, struct ieee80211_key *k,
1518	ieee80211_keyix *keyix, ieee80211_keyix *rxkeyix)
1519{
1520	struct mwl_softc *sc = vap->iv_ic->ic_softc;
1521
1522	if (k->wk_keyix != IEEE80211_KEYIX_NONE ||
1523	    (k->wk_flags & IEEE80211_KEY_GROUP)) {
1524		if (!(&vap->iv_nw_keys[0] <= k &&
1525		      k < &vap->iv_nw_keys[IEEE80211_WEP_NKID])) {
1526			/* should not happen */
1527			DPRINTF(sc, MWL_DEBUG_KEYCACHE,
1528				"%s: bogus group key\n", __func__);
1529			return 0;
1530		}
1531		/* give the caller what they requested */
1532		*keyix = *rxkeyix = k - vap->iv_nw_keys;
1533	} else {
1534		/*
1535		 * Firmware handles key allocation.
1536		 */
1537		*keyix = *rxkeyix = 0;
1538	}
1539	return 1;
1540}
1541
1542/*
1543 * Delete a key entry allocated by mwl_key_alloc.
1544 */
1545static int
1546mwl_key_delete(struct ieee80211vap *vap, const struct ieee80211_key *k)
1547{
1548	struct mwl_softc *sc = vap->iv_ic->ic_softc;
1549	struct mwl_hal_vap *hvap = MWL_VAP(vap)->mv_hvap;
1550	MWL_HAL_KEYVAL hk;
1551	const uint8_t bcastaddr[IEEE80211_ADDR_LEN] =
1552	    { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
1553
1554	if (hvap == NULL) {
1555		if (vap->iv_opmode != IEEE80211_M_WDS) {
1556			/* XXX monitor mode? */
1557			DPRINTF(sc, MWL_DEBUG_KEYCACHE,
1558			    "%s: no hvap for opmode %d\n", __func__,
1559			    vap->iv_opmode);
1560			return 0;
1561		}
1562		hvap = MWL_VAP(vap)->mv_ap_hvap;
1563	}
1564
1565	DPRINTF(sc, MWL_DEBUG_KEYCACHE, "%s: delete key %u\n",
1566	    __func__, k->wk_keyix);
1567
1568	memset(&hk, 0, sizeof(hk));
1569	hk.keyIndex = k->wk_keyix;
1570	switch (k->wk_cipher->ic_cipher) {
1571	case IEEE80211_CIPHER_WEP:
1572		hk.keyTypeId = KEY_TYPE_ID_WEP;
1573		break;
1574	case IEEE80211_CIPHER_TKIP:
1575		hk.keyTypeId = KEY_TYPE_ID_TKIP;
1576		break;
1577	case IEEE80211_CIPHER_AES_CCM:
1578		hk.keyTypeId = KEY_TYPE_ID_AES;
1579		break;
1580	default:
1581		/* XXX should not happen */
1582		DPRINTF(sc, MWL_DEBUG_KEYCACHE, "%s: unknown cipher %d\n",
1583		    __func__, k->wk_cipher->ic_cipher);
1584		return 0;
1585	}
1586	return (mwl_hal_keyreset(hvap, &hk, bcastaddr) == 0);	/*XXX*/
1587}
1588
1589static __inline int
1590addgroupflags(MWL_HAL_KEYVAL *hk, const struct ieee80211_key *k)
1591{
1592	if (k->wk_flags & IEEE80211_KEY_GROUP) {
1593		if (k->wk_flags & IEEE80211_KEY_XMIT)
1594			hk->keyFlags |= KEY_FLAG_TXGROUPKEY;
1595		if (k->wk_flags & IEEE80211_KEY_RECV)
1596			hk->keyFlags |= KEY_FLAG_RXGROUPKEY;
1597		return 1;
1598	} else
1599		return 0;
1600}
1601
1602/*
1603 * Set the key cache contents for the specified key.  Key cache
1604 * slot(s) must already have been allocated by mwl_key_alloc.
1605 */
1606static int
1607mwl_key_set(struct ieee80211vap *vap, const struct ieee80211_key *k)
1608{
1609	return (_mwl_key_set(vap, k, k->wk_macaddr));
1610}
1611
1612static int
1613_mwl_key_set(struct ieee80211vap *vap, const struct ieee80211_key *k,
1614	const uint8_t mac[IEEE80211_ADDR_LEN])
1615{
1616#define	GRPXMIT	(IEEE80211_KEY_XMIT | IEEE80211_KEY_GROUP)
1617/* NB: static wep keys are marked GROUP+tx/rx; GTK will be tx or rx */
1618#define	IEEE80211_IS_STATICKEY(k) \
1619	(((k)->wk_flags & (GRPXMIT|IEEE80211_KEY_RECV)) == \
1620	 (GRPXMIT|IEEE80211_KEY_RECV))
1621	struct mwl_softc *sc = vap->iv_ic->ic_softc;
1622	struct mwl_hal_vap *hvap = MWL_VAP(vap)->mv_hvap;
1623	const struct ieee80211_cipher *cip = k->wk_cipher;
1624	const uint8_t *macaddr;
1625	MWL_HAL_KEYVAL hk;
1626
1627	KASSERT((k->wk_flags & IEEE80211_KEY_SWCRYPT) == 0,
1628		("s/w crypto set?"));
1629
1630	if (hvap == NULL) {
1631		if (vap->iv_opmode != IEEE80211_M_WDS) {
1632			/* XXX monitor mode? */
1633			DPRINTF(sc, MWL_DEBUG_KEYCACHE,
1634			    "%s: no hvap for opmode %d\n", __func__,
1635			    vap->iv_opmode);
1636			return 0;
1637		}
1638		hvap = MWL_VAP(vap)->mv_ap_hvap;
1639	}
1640	memset(&hk, 0, sizeof(hk));
1641	hk.keyIndex = k->wk_keyix;
1642	switch (cip->ic_cipher) {
1643	case IEEE80211_CIPHER_WEP:
1644		hk.keyTypeId = KEY_TYPE_ID_WEP;
1645		hk.keyLen = k->wk_keylen;
1646		if (k->wk_keyix == vap->iv_def_txkey)
1647			hk.keyFlags = KEY_FLAG_WEP_TXKEY;
1648		if (!IEEE80211_IS_STATICKEY(k)) {
1649			/* NB: WEP is never used for the PTK */
1650			(void) addgroupflags(&hk, k);
1651		}
1652		break;
1653	case IEEE80211_CIPHER_TKIP:
1654		hk.keyTypeId = KEY_TYPE_ID_TKIP;
1655		hk.key.tkip.tsc.high = (uint32_t)(k->wk_keytsc >> 16);
1656		hk.key.tkip.tsc.low = (uint16_t)k->wk_keytsc;
1657		hk.keyFlags = KEY_FLAG_TSC_VALID | KEY_FLAG_MICKEY_VALID;
1658		hk.keyLen = k->wk_keylen + IEEE80211_MICBUF_SIZE;
1659		if (!addgroupflags(&hk, k))
1660			hk.keyFlags |= KEY_FLAG_PAIRWISE;
1661		break;
1662	case IEEE80211_CIPHER_AES_CCM:
1663		hk.keyTypeId = KEY_TYPE_ID_AES;
1664		hk.keyLen = k->wk_keylen;
1665		if (!addgroupflags(&hk, k))
1666			hk.keyFlags |= KEY_FLAG_PAIRWISE;
1667		break;
1668	default:
1669		/* XXX should not happen */
1670		DPRINTF(sc, MWL_DEBUG_KEYCACHE, "%s: unknown cipher %d\n",
1671		    __func__, k->wk_cipher->ic_cipher);
1672		return 0;
1673	}
1674	/*
1675	 * NB: tkip mic keys get copied here too; the layout
1676	 *     just happens to match that in ieee80211_key.
1677	 */
1678	memcpy(hk.key.aes, k->wk_key, hk.keyLen);
1679
1680	/*
1681	 * Locate address of sta db entry for writing key;
1682	 * the convention unfortunately is somewhat different
1683	 * than how net80211, hostapd, and wpa_supplicant think.
1684	 */
1685	if (vap->iv_opmode == IEEE80211_M_STA) {
1686		/*
1687		 * NB: keys plumbed before the sta reaches AUTH state
1688		 * will be discarded or written to the wrong sta db
1689		 * entry because iv_bss is meaningless.  This is ok
1690		 * (right now) because we handle deferred plumbing of
1691		 * WEP keys when the sta reaches AUTH state.
1692		 */
1693		macaddr = vap->iv_bss->ni_bssid;
1694		if ((k->wk_flags & IEEE80211_KEY_GROUP) == 0) {
1695			/* XXX plumb to local sta db too for static key wep */
1696			mwl_hal_keyset(hvap, &hk, vap->iv_myaddr);
1697		}
1698	} else if (vap->iv_opmode == IEEE80211_M_WDS &&
1699	    vap->iv_state != IEEE80211_S_RUN) {
1700		/*
1701		 * Prior to RUN state a WDS vap will not it's BSS node
1702		 * setup so we will plumb the key to the wrong mac
1703		 * address (it'll be our local address).  Workaround
1704		 * this for the moment by grabbing the correct address.
1705		 */
1706		macaddr = vap->iv_des_bssid;
1707	} else if ((k->wk_flags & GRPXMIT) == GRPXMIT)
1708		macaddr = vap->iv_myaddr;
1709	else
1710		macaddr = mac;
1711	KEYPRINTF(sc, &hk, macaddr);
1712	return (mwl_hal_keyset(hvap, &hk, macaddr) == 0);
1713#undef IEEE80211_IS_STATICKEY
1714#undef GRPXMIT
1715}
1716
1717/*
1718 * Set the multicast filter contents into the hardware.
1719 * XXX f/w has no support; just defer to the os.
1720 */
1721static void
1722mwl_setmcastfilter(struct mwl_softc *sc)
1723{
1724#if 0
1725	struct ether_multi *enm;
1726	struct ether_multistep estep;
1727	uint8_t macs[IEEE80211_ADDR_LEN*MWL_HAL_MCAST_MAX];/* XXX stack use */
1728	uint8_t *mp;
1729	int nmc;
1730
1731	mp = macs;
1732	nmc = 0;
1733	ETHER_FIRST_MULTI(estep, &sc->sc_ec, enm);
1734	while (enm != NULL) {
1735		/* XXX Punt on ranges. */
1736		if (nmc == MWL_HAL_MCAST_MAX ||
1737		    !IEEE80211_ADDR_EQ(enm->enm_addrlo, enm->enm_addrhi)) {
1738			ifp->if_flags |= IFF_ALLMULTI;
1739			return;
1740		}
1741		IEEE80211_ADDR_COPY(mp, enm->enm_addrlo);
1742		mp += IEEE80211_ADDR_LEN, nmc++;
1743		ETHER_NEXT_MULTI(estep, enm);
1744	}
1745	ifp->if_flags &= ~IFF_ALLMULTI;
1746	mwl_hal_setmcast(sc->sc_mh, nmc, macs);
1747#endif
1748}
1749
1750static int
1751mwl_mode_init(struct mwl_softc *sc)
1752{
1753	struct ieee80211com *ic = &sc->sc_ic;
1754	struct mwl_hal *mh = sc->sc_mh;
1755
1756	mwl_hal_setpromisc(mh, ic->ic_promisc > 0);
1757	mwl_setmcastfilter(sc);
1758
1759	return 0;
1760}
1761
1762/*
1763 * Callback from the 802.11 layer after a multicast state change.
1764 */
1765static void
1766mwl_update_mcast(struct ieee80211com *ic)
1767{
1768	struct mwl_softc *sc = ic->ic_softc;
1769
1770	mwl_setmcastfilter(sc);
1771}
1772
1773/*
1774 * Callback from the 802.11 layer after a promiscuous mode change.
1775 * Note this interface does not check the operating mode as this
1776 * is an internal callback and we are expected to honor the current
1777 * state (e.g. this is used for setting the interface in promiscuous
1778 * mode when operating in hostap mode to do ACS).
1779 */
1780static void
1781mwl_update_promisc(struct ieee80211com *ic)
1782{
1783	struct mwl_softc *sc = ic->ic_softc;
1784
1785	mwl_hal_setpromisc(sc->sc_mh, ic->ic_promisc > 0);
1786}
1787
1788/*
1789 * Callback from the 802.11 layer to update the slot time
1790 * based on the current setting.  We use it to notify the
1791 * firmware of ERP changes and the f/w takes care of things
1792 * like slot time and preamble.
1793 */
1794static void
1795mwl_updateslot(struct ieee80211com *ic)
1796{
1797	struct mwl_softc *sc = ic->ic_softc;
1798	struct mwl_hal *mh = sc->sc_mh;
1799	int prot;
1800
1801	/* NB: can be called early; suppress needless cmds */
1802	if (!sc->sc_running)
1803		return;
1804
1805	/*
1806	 * Calculate the ERP flags.  The firwmare will use
1807	 * this to carry out the appropriate measures.
1808	 */
1809	prot = 0;
1810	if (IEEE80211_IS_CHAN_ANYG(ic->ic_curchan)) {
1811		if ((ic->ic_flags & IEEE80211_F_SHSLOT) == 0)
1812			prot |= IEEE80211_ERP_NON_ERP_PRESENT;
1813		if (ic->ic_flags & IEEE80211_F_USEPROT)
1814			prot |= IEEE80211_ERP_USE_PROTECTION;
1815		if (ic->ic_flags & IEEE80211_F_USEBARKER)
1816			prot |= IEEE80211_ERP_LONG_PREAMBLE;
1817	}
1818
1819	DPRINTF(sc, MWL_DEBUG_RESET,
1820	    "%s: chan %u MHz/flags 0x%x %s slot, (prot 0x%x ic_flags 0x%x)\n",
1821	    __func__, ic->ic_curchan->ic_freq, ic->ic_curchan->ic_flags,
1822	    ic->ic_flags & IEEE80211_F_SHSLOT ? "short" : "long", prot,
1823	    ic->ic_flags);
1824
1825	mwl_hal_setgprot(mh, prot);
1826}
1827
1828/*
1829 * Setup the beacon frame.
1830 */
1831static int
1832mwl_beacon_setup(struct ieee80211vap *vap)
1833{
1834	struct mwl_hal_vap *hvap = MWL_VAP(vap)->mv_hvap;
1835	struct ieee80211_node *ni = vap->iv_bss;
1836	struct mbuf *m;
1837
1838	m = ieee80211_beacon_alloc(ni);
1839	if (m == NULL)
1840		return ENOBUFS;
1841	mwl_hal_setbeacon(hvap, mtod(m, const void *), m->m_len);
1842	m_free(m);
1843
1844	return 0;
1845}
1846
1847/*
1848 * Update the beacon frame in response to a change.
1849 */
1850static void
1851mwl_beacon_update(struct ieee80211vap *vap, int item)
1852{
1853	struct mwl_hal_vap *hvap = MWL_VAP(vap)->mv_hvap;
1854	struct ieee80211com *ic = vap->iv_ic;
1855
1856	KASSERT(hvap != NULL, ("no beacon"));
1857	switch (item) {
1858	case IEEE80211_BEACON_ERP:
1859		mwl_updateslot(ic);
1860		break;
1861	case IEEE80211_BEACON_HTINFO:
1862		mwl_hal_setnprotmode(hvap,
1863		    MS(ic->ic_curhtprotmode, IEEE80211_HTINFO_OPMODE));
1864		break;
1865	case IEEE80211_BEACON_CAPS:
1866	case IEEE80211_BEACON_WME:
1867	case IEEE80211_BEACON_APPIE:
1868	case IEEE80211_BEACON_CSA:
1869		break;
1870	case IEEE80211_BEACON_TIM:
1871		/* NB: firmware always forms TIM */
1872		return;
1873	}
1874	/* XXX retain beacon frame and update */
1875	mwl_beacon_setup(vap);
1876}
1877
1878static void
1879mwl_load_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
1880{
1881	bus_addr_t *paddr = (bus_addr_t*) arg;
1882	KASSERT(error == 0, ("error %u on bus_dma callback", error));
1883	*paddr = segs->ds_addr;
1884}
1885
1886#ifdef MWL_HOST_PS_SUPPORT
1887/*
1888 * Handle power save station occupancy changes.
1889 */
1890static void
1891mwl_update_ps(struct ieee80211vap *vap, int nsta)
1892{
1893	struct mwl_vap *mvp = MWL_VAP(vap);
1894
1895	if (nsta == 0 || mvp->mv_last_ps_sta == 0)
1896		mwl_hal_setpowersave_bss(mvp->mv_hvap, nsta);
1897	mvp->mv_last_ps_sta = nsta;
1898}
1899
1900/*
1901 * Handle associated station power save state changes.
1902 */
1903static int
1904mwl_set_tim(struct ieee80211_node *ni, int set)
1905{
1906	struct ieee80211vap *vap = ni->ni_vap;
1907	struct mwl_vap *mvp = MWL_VAP(vap);
1908
1909	if (mvp->mv_set_tim(ni, set)) {		/* NB: state change */
1910		mwl_hal_setpowersave_sta(mvp->mv_hvap,
1911		    IEEE80211_AID(ni->ni_associd), set);
1912		return 1;
1913	} else
1914		return 0;
1915}
1916#endif /* MWL_HOST_PS_SUPPORT */
1917
1918static int
1919mwl_desc_setup(struct mwl_softc *sc, const char *name,
1920	struct mwl_descdma *dd,
1921	int nbuf, size_t bufsize, int ndesc, size_t descsize)
1922{
1923	uint8_t *ds;
1924	int error;
1925
1926	DPRINTF(sc, MWL_DEBUG_RESET,
1927	    "%s: %s DMA: %u bufs (%ju) %u desc/buf (%ju)\n",
1928	    __func__, name, nbuf, (uintmax_t) bufsize,
1929	    ndesc, (uintmax_t) descsize);
1930
1931	dd->dd_name = name;
1932	dd->dd_desc_len = nbuf * ndesc * descsize;
1933
1934	/*
1935	 * Setup DMA descriptor area.
1936	 */
1937	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev),	/* parent */
1938		       PAGE_SIZE, 0,		/* alignment, bounds */
1939		       BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
1940		       BUS_SPACE_MAXADDR,	/* highaddr */
1941		       NULL, NULL,		/* filter, filterarg */
1942		       dd->dd_desc_len,		/* maxsize */
1943		       1,			/* nsegments */
1944		       dd->dd_desc_len,		/* maxsegsize */
1945		       BUS_DMA_ALLOCNOW,	/* flags */
1946		       NULL,			/* lockfunc */
1947		       NULL,			/* lockarg */
1948		       &dd->dd_dmat);
1949	if (error != 0) {
1950		device_printf(sc->sc_dev, "cannot allocate %s DMA tag\n", dd->dd_name);
1951		return error;
1952	}
1953
1954	/* allocate descriptors */
1955	error = bus_dmamem_alloc(dd->dd_dmat, (void**) &dd->dd_desc,
1956				 BUS_DMA_NOWAIT | BUS_DMA_COHERENT,
1957				 &dd->dd_dmamap);
1958	if (error != 0) {
1959		device_printf(sc->sc_dev, "unable to alloc memory for %u %s descriptors, "
1960			"error %u\n", nbuf * ndesc, dd->dd_name, error);
1961		goto fail1;
1962	}
1963
1964	error = bus_dmamap_load(dd->dd_dmat, dd->dd_dmamap,
1965				dd->dd_desc, dd->dd_desc_len,
1966				mwl_load_cb, &dd->dd_desc_paddr,
1967				BUS_DMA_NOWAIT);
1968	if (error != 0) {
1969		device_printf(sc->sc_dev, "unable to map %s descriptors, error %u\n",
1970			dd->dd_name, error);
1971		goto fail2;
1972	}
1973
1974	ds = dd->dd_desc;
1975	memset(ds, 0, dd->dd_desc_len);
1976	DPRINTF(sc, MWL_DEBUG_RESET,
1977	    "%s: %s DMA map: %p (%lu) -> 0x%jx (%lu)\n",
1978	    __func__, dd->dd_name, ds, (u_long) dd->dd_desc_len,
1979	    (uintmax_t) dd->dd_desc_paddr, /*XXX*/ (u_long) dd->dd_desc_len);
1980
1981	return 0;
1982fail2:
1983	bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap);
1984fail1:
1985	bus_dma_tag_destroy(dd->dd_dmat);
1986	memset(dd, 0, sizeof(*dd));
1987	return error;
1988#undef DS2PHYS
1989}
1990
1991static void
1992mwl_desc_cleanup(struct mwl_softc *sc, struct mwl_descdma *dd)
1993{
1994	bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
1995	bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap);
1996	bus_dma_tag_destroy(dd->dd_dmat);
1997
1998	memset(dd, 0, sizeof(*dd));
1999}
2000
2001/*
2002 * Construct a tx q's free list.  The order of entries on
2003 * the list must reflect the physical layout of tx descriptors
2004 * because the firmware pre-fetches descriptors.
2005 *
2006 * XXX might be better to use indices into the buffer array.
2007 */
2008static void
2009mwl_txq_reset(struct mwl_softc *sc, struct mwl_txq *txq)
2010{
2011	struct mwl_txbuf *bf;
2012	int i;
2013
2014	bf = txq->dma.dd_bufptr;
2015	STAILQ_INIT(&txq->free);
2016	for (i = 0; i < mwl_txbuf; i++, bf++)
2017		STAILQ_INSERT_TAIL(&txq->free, bf, bf_list);
2018	txq->nfree = i;
2019}
2020
2021#define	DS2PHYS(_dd, _ds) \
2022	((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc))
2023
2024static int
2025mwl_txdma_setup(struct mwl_softc *sc, struct mwl_txq *txq)
2026{
2027	int error, bsize, i;
2028	struct mwl_txbuf *bf;
2029	struct mwl_txdesc *ds;
2030
2031	error = mwl_desc_setup(sc, "tx", &txq->dma,
2032			mwl_txbuf, sizeof(struct mwl_txbuf),
2033			MWL_TXDESC, sizeof(struct mwl_txdesc));
2034	if (error != 0)
2035		return error;
2036
2037	/* allocate and setup tx buffers */
2038	bsize = mwl_txbuf * sizeof(struct mwl_txbuf);
2039	bf = malloc(bsize, M_MWLDEV, M_NOWAIT | M_ZERO);
2040	if (bf == NULL) {
2041		device_printf(sc->sc_dev, "malloc of %u tx buffers failed\n",
2042			mwl_txbuf);
2043		return ENOMEM;
2044	}
2045	txq->dma.dd_bufptr = bf;
2046
2047	ds = txq->dma.dd_desc;
2048	for (i = 0; i < mwl_txbuf; i++, bf++, ds += MWL_TXDESC) {
2049		bf->bf_desc = ds;
2050		bf->bf_daddr = DS2PHYS(&txq->dma, ds);
2051		error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT,
2052				&bf->bf_dmamap);
2053		if (error != 0) {
2054			device_printf(sc->sc_dev, "unable to create dmamap for tx "
2055				"buffer %u, error %u\n", i, error);
2056			return error;
2057		}
2058	}
2059	mwl_txq_reset(sc, txq);
2060	return 0;
2061}
2062
2063static void
2064mwl_txdma_cleanup(struct mwl_softc *sc, struct mwl_txq *txq)
2065{
2066	struct mwl_txbuf *bf;
2067	int i;
2068
2069	bf = txq->dma.dd_bufptr;
2070	for (i = 0; i < mwl_txbuf; i++, bf++) {
2071		KASSERT(bf->bf_m == NULL, ("mbuf on free list"));
2072		KASSERT(bf->bf_node == NULL, ("node on free list"));
2073		if (bf->bf_dmamap != NULL)
2074			bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap);
2075	}
2076	STAILQ_INIT(&txq->free);
2077	txq->nfree = 0;
2078	if (txq->dma.dd_bufptr != NULL) {
2079		free(txq->dma.dd_bufptr, M_MWLDEV);
2080		txq->dma.dd_bufptr = NULL;
2081	}
2082	if (txq->dma.dd_desc_len != 0)
2083		mwl_desc_cleanup(sc, &txq->dma);
2084}
2085
2086static int
2087mwl_rxdma_setup(struct mwl_softc *sc)
2088{
2089	int error, jumbosize, bsize, i;
2090	struct mwl_rxbuf *bf;
2091	struct mwl_jumbo *rbuf;
2092	struct mwl_rxdesc *ds;
2093	caddr_t data;
2094
2095	error = mwl_desc_setup(sc, "rx", &sc->sc_rxdma,
2096			mwl_rxdesc, sizeof(struct mwl_rxbuf),
2097			1, sizeof(struct mwl_rxdesc));
2098	if (error != 0)
2099		return error;
2100
2101	/*
2102	 * Receive is done to a private pool of jumbo buffers.
2103	 * This allows us to attach to mbuf's and avoid re-mapping
2104	 * memory on each rx we post.  We allocate a large chunk
2105	 * of memory and manage it in the driver.  The mbuf free
2106	 * callback method is used to reclaim frames after sending
2107	 * them up the stack.  By default we allocate 2x the number of
2108	 * rx descriptors configured so we have some slop to hold
2109	 * us while frames are processed.
2110	 */
2111	if (mwl_rxbuf < 2*mwl_rxdesc) {
2112		device_printf(sc->sc_dev,
2113		    "too few rx dma buffers (%d); increasing to %d\n",
2114		    mwl_rxbuf, 2*mwl_rxdesc);
2115		mwl_rxbuf = 2*mwl_rxdesc;
2116	}
2117	jumbosize = roundup(MWL_AGGR_SIZE, PAGE_SIZE);
2118	sc->sc_rxmemsize = mwl_rxbuf*jumbosize;
2119
2120	error = bus_dma_tag_create(sc->sc_dmat,	/* parent */
2121		       PAGE_SIZE, 0,		/* alignment, bounds */
2122		       BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
2123		       BUS_SPACE_MAXADDR,	/* highaddr */
2124		       NULL, NULL,		/* filter, filterarg */
2125		       sc->sc_rxmemsize,	/* maxsize */
2126		       1,			/* nsegments */
2127		       sc->sc_rxmemsize,	/* maxsegsize */
2128		       BUS_DMA_ALLOCNOW,	/* flags */
2129		       NULL,			/* lockfunc */
2130		       NULL,			/* lockarg */
2131		       &sc->sc_rxdmat);
2132	if (error != 0) {
2133		device_printf(sc->sc_dev, "could not create rx DMA tag\n");
2134		return error;
2135	}
2136
2137	error = bus_dmamem_alloc(sc->sc_rxdmat, (void**) &sc->sc_rxmem,
2138				 BUS_DMA_NOWAIT | BUS_DMA_COHERENT,
2139				 &sc->sc_rxmap);
2140	if (error != 0) {
2141		device_printf(sc->sc_dev, "could not alloc %ju bytes of rx DMA memory\n",
2142		    (uintmax_t) sc->sc_rxmemsize);
2143		return error;
2144	}
2145
2146	error = bus_dmamap_load(sc->sc_rxdmat, sc->sc_rxmap,
2147				sc->sc_rxmem, sc->sc_rxmemsize,
2148				mwl_load_cb, &sc->sc_rxmem_paddr,
2149				BUS_DMA_NOWAIT);
2150	if (error != 0) {
2151		device_printf(sc->sc_dev, "could not load rx DMA map\n");
2152		return error;
2153	}
2154
2155	/*
2156	 * Allocate rx buffers and set them up.
2157	 */
2158	bsize = mwl_rxdesc * sizeof(struct mwl_rxbuf);
2159	bf = malloc(bsize, M_MWLDEV, M_NOWAIT | M_ZERO);
2160	if (bf == NULL) {
2161		device_printf(sc->sc_dev, "malloc of %u rx buffers failed\n", bsize);
2162		return error;
2163	}
2164	sc->sc_rxdma.dd_bufptr = bf;
2165
2166	STAILQ_INIT(&sc->sc_rxbuf);
2167	ds = sc->sc_rxdma.dd_desc;
2168	for (i = 0; i < mwl_rxdesc; i++, bf++, ds++) {
2169		bf->bf_desc = ds;
2170		bf->bf_daddr = DS2PHYS(&sc->sc_rxdma, ds);
2171		/* pre-assign dma buffer */
2172		bf->bf_data = ((uint8_t *)sc->sc_rxmem) + (i*jumbosize);
2173		/* NB: tail is intentional to preserve descriptor order */
2174		STAILQ_INSERT_TAIL(&sc->sc_rxbuf, bf, bf_list);
2175	}
2176
2177	/*
2178	 * Place remainder of dma memory buffers on the free list.
2179	 */
2180	SLIST_INIT(&sc->sc_rxfree);
2181	for (; i < mwl_rxbuf; i++) {
2182		data = ((uint8_t *)sc->sc_rxmem) + (i*jumbosize);
2183		rbuf = MWL_JUMBO_DATA2BUF(data);
2184		SLIST_INSERT_HEAD(&sc->sc_rxfree, rbuf, next);
2185		sc->sc_nrxfree++;
2186	}
2187	return 0;
2188}
2189#undef DS2PHYS
2190
2191static void
2192mwl_rxdma_cleanup(struct mwl_softc *sc)
2193{
2194	if (sc->sc_rxmem_paddr != 0) {
2195		bus_dmamap_unload(sc->sc_rxdmat, sc->sc_rxmap);
2196		sc->sc_rxmem_paddr = 0;
2197	}
2198	if (sc->sc_rxmem != NULL) {
2199		bus_dmamem_free(sc->sc_rxdmat, sc->sc_rxmem, sc->sc_rxmap);
2200		sc->sc_rxmem = NULL;
2201	}
2202	if (sc->sc_rxdma.dd_bufptr != NULL) {
2203		free(sc->sc_rxdma.dd_bufptr, M_MWLDEV);
2204		sc->sc_rxdma.dd_bufptr = NULL;
2205	}
2206	if (sc->sc_rxdma.dd_desc_len != 0)
2207		mwl_desc_cleanup(sc, &sc->sc_rxdma);
2208}
2209
2210static int
2211mwl_dma_setup(struct mwl_softc *sc)
2212{
2213	int error, i;
2214
2215	error = mwl_rxdma_setup(sc);
2216	if (error != 0) {
2217		mwl_rxdma_cleanup(sc);
2218		return error;
2219	}
2220
2221	for (i = 0; i < MWL_NUM_TX_QUEUES; i++) {
2222		error = mwl_txdma_setup(sc, &sc->sc_txq[i]);
2223		if (error != 0) {
2224			mwl_dma_cleanup(sc);
2225			return error;
2226		}
2227	}
2228	return 0;
2229}
2230
2231static void
2232mwl_dma_cleanup(struct mwl_softc *sc)
2233{
2234	int i;
2235
2236	for (i = 0; i < MWL_NUM_TX_QUEUES; i++)
2237		mwl_txdma_cleanup(sc, &sc->sc_txq[i]);
2238	mwl_rxdma_cleanup(sc);
2239}
2240
2241static struct ieee80211_node *
2242mwl_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN])
2243{
2244	struct ieee80211com *ic = vap->iv_ic;
2245	struct mwl_softc *sc = ic->ic_softc;
2246	const size_t space = sizeof(struct mwl_node);
2247	struct mwl_node *mn;
2248
2249	mn = malloc(space, M_80211_NODE, M_NOWAIT|M_ZERO);
2250	if (mn == NULL) {
2251		/* XXX stat+msg */
2252		return NULL;
2253	}
2254	DPRINTF(sc, MWL_DEBUG_NODE, "%s: mn %p\n", __func__, mn);
2255	return &mn->mn_node;
2256}
2257
2258static void
2259mwl_node_cleanup(struct ieee80211_node *ni)
2260{
2261	struct ieee80211com *ic = ni->ni_ic;
2262        struct mwl_softc *sc = ic->ic_softc;
2263	struct mwl_node *mn = MWL_NODE(ni);
2264
2265	DPRINTF(sc, MWL_DEBUG_NODE, "%s: ni %p ic %p staid %d\n",
2266	    __func__, ni, ni->ni_ic, mn->mn_staid);
2267
2268	if (mn->mn_staid != 0) {
2269		struct ieee80211vap *vap = ni->ni_vap;
2270
2271		if (mn->mn_hvap != NULL) {
2272			if (vap->iv_opmode == IEEE80211_M_STA)
2273				mwl_hal_delstation(mn->mn_hvap, vap->iv_myaddr);
2274			else
2275				mwl_hal_delstation(mn->mn_hvap, ni->ni_macaddr);
2276		}
2277		/*
2278		 * NB: legacy WDS peer sta db entry is installed using
2279		 * the associate ap's hvap; use it again to delete it.
2280		 * XXX can vap be NULL?
2281		 */
2282		else if (vap->iv_opmode == IEEE80211_M_WDS &&
2283		    MWL_VAP(vap)->mv_ap_hvap != NULL)
2284			mwl_hal_delstation(MWL_VAP(vap)->mv_ap_hvap,
2285			    ni->ni_macaddr);
2286		delstaid(sc, mn->mn_staid);
2287		mn->mn_staid = 0;
2288	}
2289	sc->sc_node_cleanup(ni);
2290}
2291
2292/*
2293 * Reclaim rx dma buffers from packets sitting on the ampdu
2294 * reorder queue for a station.  We replace buffers with a
2295 * system cluster (if available).
2296 */
2297static void
2298mwl_ampdu_rxdma_reclaim(struct ieee80211_rx_ampdu *rap)
2299{
2300#if 0
2301	int i, n, off;
2302	struct mbuf *m;
2303	void *cl;
2304
2305	n = rap->rxa_qframes;
2306	for (i = 0; i < rap->rxa_wnd && n > 0; i++) {
2307		m = rap->rxa_m[i];
2308		if (m == NULL)
2309			continue;
2310		n--;
2311		/* our dma buffers have a well-known free routine */
2312		if ((m->m_flags & M_EXT) == 0 ||
2313		    m->m_ext.ext_free != mwl_ext_free)
2314			continue;
2315		/*
2316		 * Try to allocate a cluster and move the data.
2317		 */
2318		off = m->m_data - m->m_ext.ext_buf;
2319		if (off + m->m_pkthdr.len > MCLBYTES) {
2320			/* XXX no AMSDU for now */
2321			continue;
2322		}
2323		cl = pool_cache_get_paddr(&mclpool_cache, 0,
2324		    &m->m_ext.ext_paddr);
2325		if (cl != NULL) {
2326			/*
2327			 * Copy the existing data to the cluster, remove
2328			 * the rx dma buffer, and attach the cluster in
2329			 * its place.  Note we preserve the offset to the
2330			 * data so frames being bridged can still prepend
2331			 * their headers without adding another mbuf.
2332			 */
2333			memcpy((caddr_t) cl + off, m->m_data, m->m_pkthdr.len);
2334			MEXTREMOVE(m);
2335			MEXTADD(m, cl, MCLBYTES, 0, NULL, &mclpool_cache);
2336			/* setup mbuf like _MCLGET does */
2337			m->m_flags |= M_CLUSTER | M_EXT_RW;
2338			_MOWNERREF(m, M_EXT | M_CLUSTER);
2339			/* NB: m_data is clobbered by MEXTADDR, adjust */
2340			m->m_data += off;
2341		}
2342	}
2343#endif
2344}
2345
2346/*
2347 * Callback to reclaim resources.  We first let the
2348 * net80211 layer do it's thing, then if we are still
2349 * blocked by a lack of rx dma buffers we walk the ampdu
2350 * reorder q's to reclaim buffers by copying to a system
2351 * cluster.
2352 */
2353static void
2354mwl_node_drain(struct ieee80211_node *ni)
2355{
2356	struct ieee80211com *ic = ni->ni_ic;
2357        struct mwl_softc *sc = ic->ic_softc;
2358	struct mwl_node *mn = MWL_NODE(ni);
2359
2360	DPRINTF(sc, MWL_DEBUG_NODE, "%s: ni %p vap %p staid %d\n",
2361	    __func__, ni, ni->ni_vap, mn->mn_staid);
2362
2363	/* NB: call up first to age out ampdu q's */
2364	sc->sc_node_drain(ni);
2365
2366	/* XXX better to not check low water mark? */
2367	if (sc->sc_rxblocked && mn->mn_staid != 0 &&
2368	    (ni->ni_flags & IEEE80211_NODE_HT)) {
2369		uint8_t tid;
2370		/*
2371		 * Walk the reorder q and reclaim rx dma buffers by copying
2372		 * the packet contents into clusters.
2373		 */
2374		for (tid = 0; tid < WME_NUM_TID; tid++) {
2375			struct ieee80211_rx_ampdu *rap;
2376
2377			rap = &ni->ni_rx_ampdu[tid];
2378			if ((rap->rxa_flags & IEEE80211_AGGR_XCHGPEND) == 0)
2379				continue;
2380			if (rap->rxa_qframes)
2381				mwl_ampdu_rxdma_reclaim(rap);
2382		}
2383	}
2384}
2385
2386static void
2387mwl_node_getsignal(const struct ieee80211_node *ni, int8_t *rssi, int8_t *noise)
2388{
2389	*rssi = ni->ni_ic->ic_node_getrssi(ni);
2390#ifdef MWL_ANT_INFO_SUPPORT
2391#if 0
2392	/* XXX need to smooth data */
2393	*noise = -MWL_NODE_CONST(ni)->mn_ai.nf;
2394#else
2395	*noise = -95;		/* XXX */
2396#endif
2397#else
2398	*noise = -95;		/* XXX */
2399#endif
2400}
2401
2402/*
2403 * Convert Hardware per-antenna rssi info to common format:
2404 * Let a1, a2, a3 represent the amplitudes per chain
2405 * Let amax represent max[a1, a2, a3]
2406 * Rssi1_dBm = RSSI_dBm + 20*log10(a1/amax)
2407 * Rssi1_dBm = RSSI_dBm + 20*log10(a1) - 20*log10(amax)
2408 * We store a table that is 4*20*log10(idx) - the extra 4 is to store or
2409 * maintain some extra precision.
2410 *
2411 * Values are stored in .5 db format capped at 127.
2412 */
2413static void
2414mwl_node_getmimoinfo(const struct ieee80211_node *ni,
2415	struct ieee80211_mimo_info *mi)
2416{
2417#define	CVT(_dst, _src) do {						\
2418	(_dst) = rssi + ((logdbtbl[_src] - logdbtbl[rssi_max]) >> 2);	\
2419	(_dst) = (_dst) > 64 ? 127 : ((_dst) << 1);			\
2420} while (0)
2421	static const int8_t logdbtbl[32] = {
2422	       0,   0,  24,  38,  48,  56,  62,  68,
2423	      72,  76,  80,  83,  86,  89,  92,  94,
2424	      96,  98, 100, 102, 104, 106, 107, 109,
2425	     110, 112, 113, 115, 116, 117, 118, 119
2426	};
2427	const struct mwl_node *mn = MWL_NODE_CONST(ni);
2428	uint8_t rssi = mn->mn_ai.rsvd1/2;		/* XXX */
2429	uint32_t rssi_max;
2430
2431	rssi_max = mn->mn_ai.rssi_a;
2432	if (mn->mn_ai.rssi_b > rssi_max)
2433		rssi_max = mn->mn_ai.rssi_b;
2434	if (mn->mn_ai.rssi_c > rssi_max)
2435		rssi_max = mn->mn_ai.rssi_c;
2436
2437	CVT(mi->rssi[0], mn->mn_ai.rssi_a);
2438	CVT(mi->rssi[1], mn->mn_ai.rssi_b);
2439	CVT(mi->rssi[2], mn->mn_ai.rssi_c);
2440
2441	mi->noise[0] = mn->mn_ai.nf_a;
2442	mi->noise[1] = mn->mn_ai.nf_b;
2443	mi->noise[2] = mn->mn_ai.nf_c;
2444#undef CVT
2445}
2446
2447static __inline void *
2448mwl_getrxdma(struct mwl_softc *sc)
2449{
2450	struct mwl_jumbo *buf;
2451	void *data;
2452
2453	/*
2454	 * Allocate from jumbo pool.
2455	 */
2456	MWL_RXFREE_LOCK(sc);
2457	buf = SLIST_FIRST(&sc->sc_rxfree);
2458	if (buf == NULL) {
2459		DPRINTF(sc, MWL_DEBUG_ANY,
2460		    "%s: out of rx dma buffers\n", __func__);
2461		sc->sc_stats.mst_rx_nodmabuf++;
2462		data = NULL;
2463	} else {
2464		SLIST_REMOVE_HEAD(&sc->sc_rxfree, next);
2465		sc->sc_nrxfree--;
2466		data = MWL_JUMBO_BUF2DATA(buf);
2467	}
2468	MWL_RXFREE_UNLOCK(sc);
2469	return data;
2470}
2471
2472static __inline void
2473mwl_putrxdma(struct mwl_softc *sc, void *data)
2474{
2475	struct mwl_jumbo *buf;
2476
2477	/* XXX bounds check data */
2478	MWL_RXFREE_LOCK(sc);
2479	buf = MWL_JUMBO_DATA2BUF(data);
2480	SLIST_INSERT_HEAD(&sc->sc_rxfree, buf, next);
2481	sc->sc_nrxfree++;
2482	MWL_RXFREE_UNLOCK(sc);
2483}
2484
2485static int
2486mwl_rxbuf_init(struct mwl_softc *sc, struct mwl_rxbuf *bf)
2487{
2488	struct mwl_rxdesc *ds;
2489
2490	ds = bf->bf_desc;
2491	if (bf->bf_data == NULL) {
2492		bf->bf_data = mwl_getrxdma(sc);
2493		if (bf->bf_data == NULL) {
2494			/* mark descriptor to be skipped */
2495			ds->RxControl = EAGLE_RXD_CTRL_OS_OWN;
2496			/* NB: don't need PREREAD */
2497			MWL_RXDESC_SYNC(sc, ds, BUS_DMASYNC_PREWRITE);
2498			sc->sc_stats.mst_rxbuf_failed++;
2499			return ENOMEM;
2500		}
2501	}
2502	/*
2503	 * NB: DMA buffer contents is known to be unmodified
2504	 *     so there's no need to flush the data cache.
2505	 */
2506
2507	/*
2508	 * Setup descriptor.
2509	 */
2510	ds->QosCtrl = 0;
2511	ds->RSSI = 0;
2512	ds->Status = EAGLE_RXD_STATUS_IDLE;
2513	ds->Channel = 0;
2514	ds->PktLen = htole16(MWL_AGGR_SIZE);
2515	ds->SQ2 = 0;
2516	ds->pPhysBuffData = htole32(MWL_JUMBO_DMA_ADDR(sc, bf->bf_data));
2517	/* NB: don't touch pPhysNext, set once */
2518	ds->RxControl = EAGLE_RXD_CTRL_DRIVER_OWN;
2519	MWL_RXDESC_SYNC(sc, ds, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2520
2521	return 0;
2522}
2523
2524static void
2525mwl_ext_free(struct mbuf *m, void *data, void *arg)
2526{
2527	struct mwl_softc *sc = arg;
2528
2529	/* XXX bounds check data */
2530	mwl_putrxdma(sc, data);
2531	/*
2532	 * If we were previously blocked by a lack of rx dma buffers
2533	 * check if we now have enough to restart rx interrupt handling.
2534	 * NB: we know we are called at splvm which is above splnet.
2535	 */
2536	if (sc->sc_rxblocked && sc->sc_nrxfree > mwl_rxdmalow) {
2537		sc->sc_rxblocked = 0;
2538		mwl_hal_intrset(sc->sc_mh, sc->sc_imask);
2539	}
2540}
2541
2542struct mwl_frame_bar {
2543	u_int8_t	i_fc[2];
2544	u_int8_t	i_dur[2];
2545	u_int8_t	i_ra[IEEE80211_ADDR_LEN];
2546	u_int8_t	i_ta[IEEE80211_ADDR_LEN];
2547	/* ctl, seq, FCS */
2548} __packed;
2549
2550/*
2551 * Like ieee80211_anyhdrsize, but handles BAR frames
2552 * specially so the logic below to piece the 802.11
2553 * header together works.
2554 */
2555static __inline int
2556mwl_anyhdrsize(const void *data)
2557{
2558	const struct ieee80211_frame *wh = data;
2559
2560	if ((wh->i_fc[0]&IEEE80211_FC0_TYPE_MASK) == IEEE80211_FC0_TYPE_CTL) {
2561		switch (wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) {
2562		case IEEE80211_FC0_SUBTYPE_CTS:
2563		case IEEE80211_FC0_SUBTYPE_ACK:
2564			return sizeof(struct ieee80211_frame_ack);
2565		case IEEE80211_FC0_SUBTYPE_BAR:
2566			return sizeof(struct mwl_frame_bar);
2567		}
2568		return sizeof(struct ieee80211_frame_min);
2569	} else
2570		return ieee80211_hdrsize(data);
2571}
2572
2573static void
2574mwl_handlemicerror(struct ieee80211com *ic, const uint8_t *data)
2575{
2576	const struct ieee80211_frame *wh;
2577	struct ieee80211_node *ni;
2578
2579	wh = (const struct ieee80211_frame *)(data + sizeof(uint16_t));
2580	ni = ieee80211_find_rxnode(ic, (const struct ieee80211_frame_min *) wh);
2581	if (ni != NULL) {
2582		ieee80211_notify_michael_failure(ni->ni_vap, wh, 0);
2583		ieee80211_free_node(ni);
2584	}
2585}
2586
2587/*
2588 * Convert hardware signal strength to rssi.  The value
2589 * provided by the device has the noise floor added in;
2590 * we need to compensate for this but we don't have that
2591 * so we use a fixed value.
2592 *
2593 * The offset of 8 is good for both 2.4 and 5GHz.  The LNA
2594 * offset is already set as part of the initial gain.  This
2595 * will give at least +/- 3dB for 2.4GHz and +/- 5dB for 5GHz.
2596 */
2597static __inline int
2598cvtrssi(uint8_t ssi)
2599{
2600	int rssi = (int) ssi + 8;
2601	/* XXX hack guess until we have a real noise floor */
2602	rssi = 2*(87 - rssi);	/* NB: .5 dBm units */
2603	return (rssi < 0 ? 0 : rssi > 127 ? 127 : rssi);
2604}
2605
2606static void
2607mwl_rx_proc(void *arg, int npending)
2608{
2609	struct mwl_softc *sc = arg;
2610	struct ieee80211com *ic = &sc->sc_ic;
2611	struct mwl_rxbuf *bf;
2612	struct mwl_rxdesc *ds;
2613	struct mbuf *m;
2614	struct ieee80211_qosframe *wh;
2615	struct ieee80211_node *ni;
2616	struct mwl_node *mn;
2617	int off, len, hdrlen, pktlen, rssi, ntodo;
2618	uint8_t *data, status;
2619	void *newdata;
2620	int16_t nf;
2621
2622	DPRINTF(sc, MWL_DEBUG_RX_PROC, "%s: pending %u rdptr 0x%x wrptr 0x%x\n",
2623	    __func__, npending, RD4(sc, sc->sc_hwspecs.rxDescRead),
2624	    RD4(sc, sc->sc_hwspecs.rxDescWrite));
2625	nf = -96;			/* XXX */
2626	bf = sc->sc_rxnext;
2627	for (ntodo = mwl_rxquota; ntodo > 0; ntodo--) {
2628		if (bf == NULL)
2629			bf = STAILQ_FIRST(&sc->sc_rxbuf);
2630		ds = bf->bf_desc;
2631		data = bf->bf_data;
2632		if (data == NULL) {
2633			/*
2634			 * If data allocation failed previously there
2635			 * will be no buffer; try again to re-populate it.
2636			 * Note the firmware will not advance to the next
2637			 * descriptor with a dma buffer so we must mimic
2638			 * this or we'll get out of sync.
2639			 */
2640			DPRINTF(sc, MWL_DEBUG_ANY,
2641			    "%s: rx buf w/o dma memory\n", __func__);
2642			(void) mwl_rxbuf_init(sc, bf);
2643			sc->sc_stats.mst_rx_dmabufmissing++;
2644			break;
2645		}
2646		MWL_RXDESC_SYNC(sc, ds,
2647		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2648		if (ds->RxControl != EAGLE_RXD_CTRL_DMA_OWN)
2649			break;
2650#ifdef MWL_DEBUG
2651		if (sc->sc_debug & MWL_DEBUG_RECV_DESC)
2652			mwl_printrxbuf(bf, 0);
2653#endif
2654		status = ds->Status;
2655		if (status & EAGLE_RXD_STATUS_DECRYPT_ERR_MASK) {
2656			counter_u64_add(ic->ic_ierrors, 1);
2657			sc->sc_stats.mst_rx_crypto++;
2658			/*
2659			 * NB: Check EAGLE_RXD_STATUS_GENERAL_DECRYPT_ERR
2660			 *     for backwards compatibility.
2661			 */
2662			if (status != EAGLE_RXD_STATUS_GENERAL_DECRYPT_ERR &&
2663			    (status & EAGLE_RXD_STATUS_TKIP_MIC_DECRYPT_ERR)) {
2664				/*
2665				 * MIC error, notify upper layers.
2666				 */
2667				bus_dmamap_sync(sc->sc_rxdmat, sc->sc_rxmap,
2668				    BUS_DMASYNC_POSTREAD);
2669				mwl_handlemicerror(ic, data);
2670				sc->sc_stats.mst_rx_tkipmic++;
2671			}
2672			/* XXX too painful to tap packets */
2673			goto rx_next;
2674		}
2675		/*
2676		 * Sync the data buffer.
2677		 */
2678		len = le16toh(ds->PktLen);
2679		bus_dmamap_sync(sc->sc_rxdmat, sc->sc_rxmap, BUS_DMASYNC_POSTREAD);
2680		/*
2681		 * The 802.11 header is provided all or in part at the front;
2682		 * use it to calculate the true size of the header that we'll
2683		 * construct below.  We use this to figure out where to copy
2684		 * payload prior to constructing the header.
2685		 */
2686		hdrlen = mwl_anyhdrsize(data + sizeof(uint16_t));
2687		off = sizeof(uint16_t) + sizeof(struct ieee80211_frame_addr4);
2688
2689		/* calculate rssi early so we can re-use for each aggregate */
2690		rssi = cvtrssi(ds->RSSI);
2691
2692		pktlen = hdrlen + (len - off);
2693		/*
2694		 * NB: we know our frame is at least as large as
2695		 * IEEE80211_MIN_LEN because there is a 4-address
2696		 * frame at the front.  Hence there's no need to
2697		 * vet the packet length.  If the frame in fact
2698		 * is too small it should be discarded at the
2699		 * net80211 layer.
2700		 */
2701
2702		/*
2703		 * Attach dma buffer to an mbuf.  We tried
2704		 * doing this based on the packet size (i.e.
2705		 * copying small packets) but it turns out to
2706		 * be a net loss.  The tradeoff might be system
2707		 * dependent (cache architecture is important).
2708		 */
2709		MGETHDR(m, M_NOWAIT, MT_DATA);
2710		if (m == NULL) {
2711			DPRINTF(sc, MWL_DEBUG_ANY,
2712			    "%s: no rx mbuf\n", __func__);
2713			sc->sc_stats.mst_rx_nombuf++;
2714			goto rx_next;
2715		}
2716		/*
2717		 * Acquire the replacement dma buffer before
2718		 * processing the frame.  If we're out of dma
2719		 * buffers we disable rx interrupts and wait
2720		 * for the free pool to reach mlw_rxdmalow buffers
2721		 * before starting to do work again.  If the firmware
2722		 * runs out of descriptors then it will toss frames
2723		 * which is better than our doing it as that can
2724		 * starve our processing.  It is also important that
2725		 * we always process rx'd frames in case they are
2726		 * A-MPDU as otherwise the host's view of the BA
2727		 * window may get out of sync with the firmware.
2728		 */
2729		newdata = mwl_getrxdma(sc);
2730		if (newdata == NULL) {
2731			/* NB: stat+msg in mwl_getrxdma */
2732			m_free(m);
2733			/* disable RX interrupt and mark state */
2734			mwl_hal_intrset(sc->sc_mh,
2735			    sc->sc_imask &~ MACREG_A2HRIC_BIT_RX_RDY);
2736			sc->sc_rxblocked = 1;
2737			ieee80211_drain(ic);
2738			/* XXX check rxblocked and immediately start again? */
2739			goto rx_stop;
2740		}
2741		bf->bf_data = newdata;
2742		/*
2743		 * Attach the dma buffer to the mbuf;
2744		 * mwl_rxbuf_init will re-setup the rx
2745		 * descriptor using the replacement dma
2746		 * buffer we just installed above.
2747		 */
2748		MEXTADD(m, data, MWL_AGGR_SIZE, mwl_ext_free,
2749		    data, sc, 0, EXT_NET_DRV);
2750		m->m_data += off - hdrlen;
2751		m->m_pkthdr.len = m->m_len = pktlen;
2752		/* NB: dma buffer assumed read-only */
2753
2754		/*
2755		 * Piece 802.11 header together.
2756		 */
2757		wh = mtod(m, struct ieee80211_qosframe *);
2758		/* NB: don't need to do this sometimes but ... */
2759		/* XXX special case so we can memcpy after m_devget? */
2760		ovbcopy(data + sizeof(uint16_t), wh, hdrlen);
2761		if (IEEE80211_QOS_HAS_SEQ(wh))
2762			*(uint16_t *)ieee80211_getqos(wh) = ds->QosCtrl;
2763		/*
2764		 * The f/w strips WEP header but doesn't clear
2765		 * the WEP bit; mark the packet with M_WEP so
2766		 * net80211 will treat the data as decrypted.
2767		 * While here also clear the PWR_MGT bit since
2768		 * power save is handled by the firmware and
2769		 * passing this up will potentially cause the
2770		 * upper layer to put a station in power save
2771		 * (except when configured with MWL_HOST_PS_SUPPORT).
2772		 */
2773		if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED)
2774			m->m_flags |= M_WEP;
2775#ifdef MWL_HOST_PS_SUPPORT
2776		wh->i_fc[1] &= ~IEEE80211_FC1_PROTECTED;
2777#else
2778		wh->i_fc[1] &= ~(IEEE80211_FC1_PROTECTED |
2779		    IEEE80211_FC1_PWR_MGT);
2780#endif
2781
2782		if (ieee80211_radiotap_active(ic)) {
2783			struct mwl_rx_radiotap_header *tap = &sc->sc_rx_th;
2784
2785			tap->wr_flags = 0;
2786			tap->wr_rate = ds->Rate;
2787			tap->wr_antsignal = rssi + nf;
2788			tap->wr_antnoise = nf;
2789		}
2790		if (IFF_DUMPPKTS_RECV(sc, wh)) {
2791			ieee80211_dump_pkt(ic, mtod(m, caddr_t),
2792			    len, ds->Rate, rssi);
2793		}
2794		/* dispatch */
2795		ni = ieee80211_find_rxnode(ic,
2796		    (const struct ieee80211_frame_min *) wh);
2797		if (ni != NULL) {
2798			mn = MWL_NODE(ni);
2799#ifdef MWL_ANT_INFO_SUPPORT
2800			mn->mn_ai.rssi_a = ds->ai.rssi_a;
2801			mn->mn_ai.rssi_b = ds->ai.rssi_b;
2802			mn->mn_ai.rssi_c = ds->ai.rssi_c;
2803			mn->mn_ai.rsvd1 = rssi;
2804#endif
2805			/* tag AMPDU aggregates for reorder processing */
2806			if (ni->ni_flags & IEEE80211_NODE_HT)
2807				m->m_flags |= M_AMPDU;
2808			(void) ieee80211_input(ni, m, rssi, nf);
2809			ieee80211_free_node(ni);
2810		} else
2811			(void) ieee80211_input_all(ic, m, rssi, nf);
2812rx_next:
2813		/* NB: ignore ENOMEM so we process more descriptors */
2814		(void) mwl_rxbuf_init(sc, bf);
2815		bf = STAILQ_NEXT(bf, bf_list);
2816	}
2817rx_stop:
2818	sc->sc_rxnext = bf;
2819
2820	if (mbufq_first(&sc->sc_snd) != NULL) {
2821		/* NB: kick fw; the tx thread may have been preempted */
2822		mwl_hal_txstart(sc->sc_mh, 0);
2823		mwl_start(sc);
2824	}
2825}
2826
2827static void
2828mwl_txq_init(struct mwl_softc *sc, struct mwl_txq *txq, int qnum)
2829{
2830	struct mwl_txbuf *bf, *bn;
2831	struct mwl_txdesc *ds;
2832
2833	MWL_TXQ_LOCK_INIT(sc, txq);
2834	txq->qnum = qnum;
2835	txq->txpri = 0;	/* XXX */
2836#if 0
2837	/* NB: q setup by mwl_txdma_setup XXX */
2838	STAILQ_INIT(&txq->free);
2839#endif
2840	STAILQ_FOREACH(bf, &txq->free, bf_list) {
2841		bf->bf_txq = txq;
2842
2843		ds = bf->bf_desc;
2844		bn = STAILQ_NEXT(bf, bf_list);
2845		if (bn == NULL)
2846			bn = STAILQ_FIRST(&txq->free);
2847		ds->pPhysNext = htole32(bn->bf_daddr);
2848	}
2849	STAILQ_INIT(&txq->active);
2850}
2851
2852/*
2853 * Setup a hardware data transmit queue for the specified
2854 * access control.  We record the mapping from ac's
2855 * to h/w queues for use by mwl_tx_start.
2856 */
2857static int
2858mwl_tx_setup(struct mwl_softc *sc, int ac, int mvtype)
2859{
2860	struct mwl_txq *txq;
2861
2862	if (ac >= nitems(sc->sc_ac2q)) {
2863		device_printf(sc->sc_dev, "AC %u out of range, max %zu!\n",
2864			ac, nitems(sc->sc_ac2q));
2865		return 0;
2866	}
2867	if (mvtype >= MWL_NUM_TX_QUEUES) {
2868		device_printf(sc->sc_dev, "mvtype %u out of range, max %u!\n",
2869			mvtype, MWL_NUM_TX_QUEUES);
2870		return 0;
2871	}
2872	txq = &sc->sc_txq[mvtype];
2873	mwl_txq_init(sc, txq, mvtype);
2874	sc->sc_ac2q[ac] = txq;
2875	return 1;
2876}
2877
2878/*
2879 * Update WME parameters for a transmit queue.
2880 */
2881static int
2882mwl_txq_update(struct mwl_softc *sc, int ac)
2883{
2884#define	MWL_EXPONENT_TO_VALUE(v)	((1<<v)-1)
2885	struct ieee80211com *ic = &sc->sc_ic;
2886	struct mwl_txq *txq = sc->sc_ac2q[ac];
2887	struct wmeParams *wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
2888	struct mwl_hal *mh = sc->sc_mh;
2889	int aifs, cwmin, cwmax, txoplim;
2890
2891	aifs = wmep->wmep_aifsn;
2892	/* XXX in sta mode need to pass log values for cwmin/max */
2893	cwmin = MWL_EXPONENT_TO_VALUE(wmep->wmep_logcwmin);
2894	cwmax = MWL_EXPONENT_TO_VALUE(wmep->wmep_logcwmax);
2895	txoplim = wmep->wmep_txopLimit;		/* NB: units of 32us */
2896
2897	if (mwl_hal_setedcaparams(mh, txq->qnum, cwmin, cwmax, aifs, txoplim)) {
2898		device_printf(sc->sc_dev, "unable to update hardware queue "
2899			"parameters for %s traffic!\n",
2900			ieee80211_wme_acnames[ac]);
2901		return 0;
2902	}
2903	return 1;
2904#undef MWL_EXPONENT_TO_VALUE
2905}
2906
2907/*
2908 * Callback from the 802.11 layer to update WME parameters.
2909 */
2910static int
2911mwl_wme_update(struct ieee80211com *ic)
2912{
2913	struct mwl_softc *sc = ic->ic_softc;
2914
2915	return !mwl_txq_update(sc, WME_AC_BE) ||
2916	    !mwl_txq_update(sc, WME_AC_BK) ||
2917	    !mwl_txq_update(sc, WME_AC_VI) ||
2918	    !mwl_txq_update(sc, WME_AC_VO) ? EIO : 0;
2919}
2920
2921/*
2922 * Reclaim resources for a setup queue.
2923 */
2924static void
2925mwl_tx_cleanupq(struct mwl_softc *sc, struct mwl_txq *txq)
2926{
2927	/* XXX hal work? */
2928	MWL_TXQ_LOCK_DESTROY(txq);
2929}
2930
2931/*
2932 * Reclaim all tx queue resources.
2933 */
2934static void
2935mwl_tx_cleanup(struct mwl_softc *sc)
2936{
2937	int i;
2938
2939	for (i = 0; i < MWL_NUM_TX_QUEUES; i++)
2940		mwl_tx_cleanupq(sc, &sc->sc_txq[i]);
2941}
2942
2943static int
2944mwl_tx_dmasetup(struct mwl_softc *sc, struct mwl_txbuf *bf, struct mbuf *m0)
2945{
2946	struct mbuf *m;
2947	int error;
2948
2949	/*
2950	 * Load the DMA map so any coalescing is done.  This
2951	 * also calculates the number of descriptors we need.
2952	 */
2953	error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m0,
2954				     bf->bf_segs, &bf->bf_nseg,
2955				     BUS_DMA_NOWAIT);
2956	if (error == EFBIG) {
2957		/* XXX packet requires too many descriptors */
2958		bf->bf_nseg = MWL_TXDESC+1;
2959	} else if (error != 0) {
2960		sc->sc_stats.mst_tx_busdma++;
2961		m_freem(m0);
2962		return error;
2963	}
2964	/*
2965	 * Discard null packets and check for packets that
2966	 * require too many TX descriptors.  We try to convert
2967	 * the latter to a cluster.
2968	 */
2969	if (error == EFBIG) {		/* too many desc's, linearize */
2970		sc->sc_stats.mst_tx_linear++;
2971#if MWL_TXDESC > 1
2972		m = m_collapse(m0, M_NOWAIT, MWL_TXDESC);
2973#else
2974		m = m_defrag(m0, M_NOWAIT);
2975#endif
2976		if (m == NULL) {
2977			m_freem(m0);
2978			sc->sc_stats.mst_tx_nombuf++;
2979			return ENOMEM;
2980		}
2981		m0 = m;
2982		error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m0,
2983					     bf->bf_segs, &bf->bf_nseg,
2984					     BUS_DMA_NOWAIT);
2985		if (error != 0) {
2986			sc->sc_stats.mst_tx_busdma++;
2987			m_freem(m0);
2988			return error;
2989		}
2990		KASSERT(bf->bf_nseg <= MWL_TXDESC,
2991		    ("too many segments after defrag; nseg %u", bf->bf_nseg));
2992	} else if (bf->bf_nseg == 0) {		/* null packet, discard */
2993		sc->sc_stats.mst_tx_nodata++;
2994		m_freem(m0);
2995		return EIO;
2996	}
2997	DPRINTF(sc, MWL_DEBUG_XMIT, "%s: m %p len %u\n",
2998		__func__, m0, m0->m_pkthdr.len);
2999	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREWRITE);
3000	bf->bf_m = m0;
3001
3002	return 0;
3003}
3004
3005static __inline int
3006mwl_cvtlegacyrate(int rate)
3007{
3008	switch (rate) {
3009	case 2:	 return 0;
3010	case 4:	 return 1;
3011	case 11: return 2;
3012	case 22: return 3;
3013	case 44: return 4;
3014	case 12: return 5;
3015	case 18: return 6;
3016	case 24: return 7;
3017	case 36: return 8;
3018	case 48: return 9;
3019	case 72: return 10;
3020	case 96: return 11;
3021	case 108:return 12;
3022	}
3023	return 0;
3024}
3025
3026/*
3027 * Calculate fixed tx rate information per client state;
3028 * this value is suitable for writing to the Format field
3029 * of a tx descriptor.
3030 */
3031static uint16_t
3032mwl_calcformat(uint8_t rate, const struct ieee80211_node *ni)
3033{
3034	uint16_t fmt;
3035
3036	fmt = SM(3, EAGLE_TXD_ANTENNA)
3037	    | (IEEE80211_IS_CHAN_HT40D(ni->ni_chan) ?
3038		EAGLE_TXD_EXTCHAN_LO : EAGLE_TXD_EXTCHAN_HI);
3039	if (rate & IEEE80211_RATE_MCS) {	/* HT MCS */
3040		fmt |= EAGLE_TXD_FORMAT_HT
3041		    /* NB: 0x80 implicitly stripped from ucastrate */
3042		    | SM(rate, EAGLE_TXD_RATE);
3043		/* XXX short/long GI may be wrong; re-check */
3044		if (IEEE80211_IS_CHAN_HT40(ni->ni_chan)) {
3045			fmt |= EAGLE_TXD_CHW_40
3046			    | (ni->ni_htcap & IEEE80211_HTCAP_SHORTGI40 ?
3047			        EAGLE_TXD_GI_SHORT : EAGLE_TXD_GI_LONG);
3048		} else {
3049			fmt |= EAGLE_TXD_CHW_20
3050			    | (ni->ni_htcap & IEEE80211_HTCAP_SHORTGI20 ?
3051			        EAGLE_TXD_GI_SHORT : EAGLE_TXD_GI_LONG);
3052		}
3053	} else {			/* legacy rate */
3054		fmt |= EAGLE_TXD_FORMAT_LEGACY
3055		    | SM(mwl_cvtlegacyrate(rate), EAGLE_TXD_RATE)
3056		    | EAGLE_TXD_CHW_20
3057		    /* XXX iv_flags & IEEE80211_F_SHPREAMBLE? */
3058		    | (ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_PREAMBLE ?
3059			EAGLE_TXD_PREAMBLE_SHORT : EAGLE_TXD_PREAMBLE_LONG);
3060	}
3061	return fmt;
3062}
3063
3064static int
3065mwl_tx_start(struct mwl_softc *sc, struct ieee80211_node *ni, struct mwl_txbuf *bf,
3066    struct mbuf *m0)
3067{
3068	struct ieee80211com *ic = &sc->sc_ic;
3069	struct ieee80211vap *vap = ni->ni_vap;
3070	int error, iswep, ismcast;
3071	int hdrlen, copyhdrlen, pktlen;
3072	struct mwl_txdesc *ds;
3073	struct mwl_txq *txq;
3074	struct ieee80211_frame *wh;
3075	struct mwltxrec *tr;
3076	struct mwl_node *mn;
3077	uint16_t qos;
3078#if MWL_TXDESC > 1
3079	int i;
3080#endif
3081
3082	wh = mtod(m0, struct ieee80211_frame *);
3083	iswep = wh->i_fc[1] & IEEE80211_FC1_PROTECTED;
3084	ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
3085	hdrlen = ieee80211_anyhdrsize(wh);
3086	copyhdrlen = hdrlen;
3087	pktlen = m0->m_pkthdr.len;
3088	if (IEEE80211_QOS_HAS_SEQ(wh)) {
3089		qos = *(uint16_t *)ieee80211_getqos(wh);
3090		if (IEEE80211_IS_DSTODS(wh))
3091			copyhdrlen -= sizeof(qos);
3092	} else
3093		qos = 0;
3094
3095	if (iswep) {
3096		const struct ieee80211_cipher *cip;
3097		struct ieee80211_key *k;
3098
3099		/*
3100		 * Construct the 802.11 header+trailer for an encrypted
3101		 * frame. The only reason this can fail is because of an
3102		 * unknown or unsupported cipher/key type.
3103		 *
3104		 * NB: we do this even though the firmware will ignore
3105		 *     what we've done for WEP and TKIP as we need the
3106		 *     ExtIV filled in for CCMP and this also adjusts
3107		 *     the headers which simplifies our work below.
3108		 */
3109		k = ieee80211_crypto_encap(ni, m0);
3110		if (k == NULL) {
3111			/*
3112			 * This can happen when the key is yanked after the
3113			 * frame was queued.  Just discard the frame; the
3114			 * 802.11 layer counts failures and provides
3115			 * debugging/diagnostics.
3116			 */
3117			m_freem(m0);
3118			return EIO;
3119		}
3120		/*
3121		 * Adjust the packet length for the crypto additions
3122		 * done during encap and any other bits that the f/w
3123		 * will add later on.
3124		 */
3125		cip = k->wk_cipher;
3126		pktlen += cip->ic_header + cip->ic_miclen + cip->ic_trailer;
3127
3128		/* packet header may have moved, reset our local pointer */
3129		wh = mtod(m0, struct ieee80211_frame *);
3130	}
3131
3132	if (ieee80211_radiotap_active_vap(vap)) {
3133		sc->sc_tx_th.wt_flags = 0;	/* XXX */
3134		if (iswep)
3135			sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_WEP;
3136#if 0
3137		sc->sc_tx_th.wt_rate = ds->DataRate;
3138#endif
3139		sc->sc_tx_th.wt_txpower = ni->ni_txpower;
3140		sc->sc_tx_th.wt_antenna = sc->sc_txantenna;
3141
3142		ieee80211_radiotap_tx(vap, m0);
3143	}
3144	/*
3145	 * Copy up/down the 802.11 header; the firmware requires
3146	 * we present a 2-byte payload length followed by a
3147	 * 4-address header (w/o QoS), followed (optionally) by
3148	 * any WEP/ExtIV header (but only filled in for CCMP).
3149	 * We are assured the mbuf has sufficient headroom to
3150	 * prepend in-place by the setup of ic_headroom in
3151	 * mwl_attach.
3152	 */
3153	if (hdrlen < sizeof(struct mwltxrec)) {
3154		const int space = sizeof(struct mwltxrec) - hdrlen;
3155		if (M_LEADINGSPACE(m0) < space) {
3156			/* NB: should never happen */
3157			device_printf(sc->sc_dev,
3158			    "not enough headroom, need %d found %zd, "
3159			    "m_flags 0x%x m_len %d\n",
3160			    space, M_LEADINGSPACE(m0), m0->m_flags, m0->m_len);
3161			ieee80211_dump_pkt(ic,
3162			    mtod(m0, const uint8_t *), m0->m_len, 0, -1);
3163			m_freem(m0);
3164			sc->sc_stats.mst_tx_noheadroom++;
3165			return EIO;
3166		}
3167		M_PREPEND(m0, space, M_NOWAIT);
3168	}
3169	tr = mtod(m0, struct mwltxrec *);
3170	if (wh != (struct ieee80211_frame *) &tr->wh)
3171		ovbcopy(wh, &tr->wh, hdrlen);
3172	/*
3173	 * Note: the "firmware length" is actually the length
3174	 * of the fully formed "802.11 payload".  That is, it's
3175	 * everything except for the 802.11 header.  In particular
3176	 * this includes all crypto material including the MIC!
3177	 */
3178	tr->fwlen = htole16(pktlen - hdrlen);
3179
3180	/*
3181	 * Load the DMA map so any coalescing is done.  This
3182	 * also calculates the number of descriptors we need.
3183	 */
3184	error = mwl_tx_dmasetup(sc, bf, m0);
3185	if (error != 0) {
3186		/* NB: stat collected in mwl_tx_dmasetup */
3187		DPRINTF(sc, MWL_DEBUG_XMIT,
3188		    "%s: unable to setup dma\n", __func__);
3189		return error;
3190	}
3191	bf->bf_node = ni;			/* NB: held reference */
3192	m0 = bf->bf_m;				/* NB: may have changed */
3193	tr = mtod(m0, struct mwltxrec *);
3194	wh = (struct ieee80211_frame *)&tr->wh;
3195
3196	/*
3197	 * Formulate tx descriptor.
3198	 */
3199	ds = bf->bf_desc;
3200	txq = bf->bf_txq;
3201
3202	ds->QosCtrl = qos;			/* NB: already little-endian */
3203#if MWL_TXDESC == 1
3204	/*
3205	 * NB: multiframes should be zero because the descriptors
3206	 *     are initialized to zero.  This should handle the case
3207	 *     where the driver is built with MWL_TXDESC=1 but we are
3208	 *     using firmware with multi-segment support.
3209	 */
3210	ds->PktPtr = htole32(bf->bf_segs[0].ds_addr);
3211	ds->PktLen = htole16(bf->bf_segs[0].ds_len);
3212#else
3213	ds->multiframes = htole32(bf->bf_nseg);
3214	ds->PktLen = htole16(m0->m_pkthdr.len);
3215	for (i = 0; i < bf->bf_nseg; i++) {
3216		ds->PktPtrArray[i] = htole32(bf->bf_segs[i].ds_addr);
3217		ds->PktLenArray[i] = htole16(bf->bf_segs[i].ds_len);
3218	}
3219#endif
3220	/* NB: pPhysNext, DataRate, and SapPktInfo setup once, don't touch */
3221	ds->Format = 0;
3222	ds->pad = 0;
3223	ds->ack_wcb_addr = 0;
3224
3225	mn = MWL_NODE(ni);
3226	/*
3227	 * Select transmit rate.
3228	 */
3229	switch (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) {
3230	case IEEE80211_FC0_TYPE_MGT:
3231		sc->sc_stats.mst_tx_mgmt++;
3232		/* fall thru... */
3233	case IEEE80211_FC0_TYPE_CTL:
3234		/* NB: assign to BE q to avoid bursting */
3235		ds->TxPriority = MWL_WME_AC_BE;
3236		break;
3237	case IEEE80211_FC0_TYPE_DATA:
3238		if (!ismcast) {
3239			const struct ieee80211_txparam *tp = ni->ni_txparms;
3240			/*
3241			 * EAPOL frames get forced to a fixed rate and w/o
3242			 * aggregation; otherwise check for any fixed rate
3243			 * for the client (may depend on association state).
3244			 */
3245			if (m0->m_flags & M_EAPOL) {
3246				const struct mwl_vap *mvp = MWL_VAP_CONST(vap);
3247				ds->Format = mvp->mv_eapolformat;
3248				ds->pad = htole16(
3249				    EAGLE_TXD_FIXED_RATE | EAGLE_TXD_DONT_AGGR);
3250			} else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE) {
3251				/* XXX pre-calculate per node */
3252				ds->Format = htole16(
3253				    mwl_calcformat(tp->ucastrate, ni));
3254				ds->pad = htole16(EAGLE_TXD_FIXED_RATE);
3255			}
3256			/* NB: EAPOL frames will never have qos set */
3257			if (qos == 0)
3258				ds->TxPriority = txq->qnum;
3259#if MWL_MAXBA > 3
3260			else if (mwl_bastream_match(&mn->mn_ba[3], qos))
3261				ds->TxPriority = mn->mn_ba[3].txq;
3262#endif
3263#if MWL_MAXBA > 2
3264			else if (mwl_bastream_match(&mn->mn_ba[2], qos))
3265				ds->TxPriority = mn->mn_ba[2].txq;
3266#endif
3267#if MWL_MAXBA > 1
3268			else if (mwl_bastream_match(&mn->mn_ba[1], qos))
3269				ds->TxPriority = mn->mn_ba[1].txq;
3270#endif
3271#if MWL_MAXBA > 0
3272			else if (mwl_bastream_match(&mn->mn_ba[0], qos))
3273				ds->TxPriority = mn->mn_ba[0].txq;
3274#endif
3275			else
3276				ds->TxPriority = txq->qnum;
3277		} else
3278			ds->TxPriority = txq->qnum;
3279		break;
3280	default:
3281		device_printf(sc->sc_dev, "bogus frame type 0x%x (%s)\n",
3282			wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK, __func__);
3283		sc->sc_stats.mst_tx_badframetype++;
3284		m_freem(m0);
3285		return EIO;
3286	}
3287
3288	if (IFF_DUMPPKTS_XMIT(sc))
3289		ieee80211_dump_pkt(ic,
3290		    mtod(m0, const uint8_t *)+sizeof(uint16_t),
3291		    m0->m_len - sizeof(uint16_t), ds->DataRate, -1);
3292
3293	MWL_TXQ_LOCK(txq);
3294	ds->Status = htole32(EAGLE_TXD_STATUS_FW_OWNED);
3295	STAILQ_INSERT_TAIL(&txq->active, bf, bf_list);
3296	MWL_TXDESC_SYNC(txq, ds, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3297
3298	sc->sc_tx_timer = 5;
3299	MWL_TXQ_UNLOCK(txq);
3300
3301	return 0;
3302}
3303
3304static __inline int
3305mwl_cvtlegacyrix(int rix)
3306{
3307	static const int ieeerates[] =
3308	    { 2, 4, 11, 22, 44, 12, 18, 24, 36, 48, 72, 96, 108 };
3309	return (rix < nitems(ieeerates) ? ieeerates[rix] : 0);
3310}
3311
3312/*
3313 * Process completed xmit descriptors from the specified queue.
3314 */
3315static int
3316mwl_tx_processq(struct mwl_softc *sc, struct mwl_txq *txq)
3317{
3318#define	EAGLE_TXD_STATUS_MCAST \
3319	(EAGLE_TXD_STATUS_MULTICAST_TX | EAGLE_TXD_STATUS_BROADCAST_TX)
3320	struct ieee80211com *ic = &sc->sc_ic;
3321	struct mwl_txbuf *bf;
3322	struct mwl_txdesc *ds;
3323	struct ieee80211_node *ni;
3324	struct mwl_node *an;
3325	int nreaped;
3326	uint32_t status;
3327
3328	DPRINTF(sc, MWL_DEBUG_TX_PROC, "%s: tx queue %u\n", __func__, txq->qnum);
3329	for (nreaped = 0;; nreaped++) {
3330		MWL_TXQ_LOCK(txq);
3331		bf = STAILQ_FIRST(&txq->active);
3332		if (bf == NULL) {
3333			MWL_TXQ_UNLOCK(txq);
3334			break;
3335		}
3336		ds = bf->bf_desc;
3337		MWL_TXDESC_SYNC(txq, ds,
3338		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
3339		if (ds->Status & htole32(EAGLE_TXD_STATUS_FW_OWNED)) {
3340			MWL_TXQ_UNLOCK(txq);
3341			break;
3342		}
3343		STAILQ_REMOVE_HEAD(&txq->active, bf_list);
3344		MWL_TXQ_UNLOCK(txq);
3345
3346#ifdef MWL_DEBUG
3347		if (sc->sc_debug & MWL_DEBUG_XMIT_DESC)
3348			mwl_printtxbuf(bf, txq->qnum, nreaped);
3349#endif
3350		ni = bf->bf_node;
3351		if (ni != NULL) {
3352			an = MWL_NODE(ni);
3353			status = le32toh(ds->Status);
3354			if (status & EAGLE_TXD_STATUS_OK) {
3355				uint16_t Format = le16toh(ds->Format);
3356				uint8_t txant = MS(Format, EAGLE_TXD_ANTENNA);
3357
3358				sc->sc_stats.mst_ant_tx[txant]++;
3359				if (status & EAGLE_TXD_STATUS_OK_RETRY)
3360					sc->sc_stats.mst_tx_retries++;
3361				if (status & EAGLE_TXD_STATUS_OK_MORE_RETRY)
3362					sc->sc_stats.mst_tx_mretries++;
3363				if (txq->qnum >= MWL_WME_AC_VO)
3364					ic->ic_wme.wme_hipri_traffic++;
3365				ni->ni_txrate = MS(Format, EAGLE_TXD_RATE);
3366				if ((Format & EAGLE_TXD_FORMAT_HT) == 0) {
3367					ni->ni_txrate = mwl_cvtlegacyrix(
3368					    ni->ni_txrate);
3369				} else
3370					ni->ni_txrate |= IEEE80211_RATE_MCS;
3371				sc->sc_stats.mst_tx_rate = ni->ni_txrate;
3372			} else {
3373				if (status & EAGLE_TXD_STATUS_FAILED_LINK_ERROR)
3374					sc->sc_stats.mst_tx_linkerror++;
3375				if (status & EAGLE_TXD_STATUS_FAILED_XRETRY)
3376					sc->sc_stats.mst_tx_xretries++;
3377				if (status & EAGLE_TXD_STATUS_FAILED_AGING)
3378					sc->sc_stats.mst_tx_aging++;
3379				if (bf->bf_m->m_flags & M_FF)
3380					sc->sc_stats.mst_ff_txerr++;
3381			}
3382			if (bf->bf_m->m_flags & M_TXCB)
3383				/* XXX strip fw len in case header inspected */
3384				m_adj(bf->bf_m, sizeof(uint16_t));
3385			ieee80211_tx_complete(ni, bf->bf_m,
3386			    (status & EAGLE_TXD_STATUS_OK) == 0);
3387		} else
3388			m_freem(bf->bf_m);
3389		ds->Status = htole32(EAGLE_TXD_STATUS_IDLE);
3390
3391		bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
3392		    BUS_DMASYNC_POSTWRITE);
3393		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
3394
3395		mwl_puttxbuf_tail(txq, bf);
3396	}
3397	return nreaped;
3398#undef EAGLE_TXD_STATUS_MCAST
3399}
3400
3401/*
3402 * Deferred processing of transmit interrupt; special-cased
3403 * for four hardware queues, 0-3.
3404 */
3405static void
3406mwl_tx_proc(void *arg, int npending)
3407{
3408	struct mwl_softc *sc = arg;
3409	int nreaped;
3410
3411	/*
3412	 * Process each active queue.
3413	 */
3414	nreaped = 0;
3415	if (!STAILQ_EMPTY(&sc->sc_txq[0].active))
3416		nreaped += mwl_tx_processq(sc, &sc->sc_txq[0]);
3417	if (!STAILQ_EMPTY(&sc->sc_txq[1].active))
3418		nreaped += mwl_tx_processq(sc, &sc->sc_txq[1]);
3419	if (!STAILQ_EMPTY(&sc->sc_txq[2].active))
3420		nreaped += mwl_tx_processq(sc, &sc->sc_txq[2]);
3421	if (!STAILQ_EMPTY(&sc->sc_txq[3].active))
3422		nreaped += mwl_tx_processq(sc, &sc->sc_txq[3]);
3423
3424	if (nreaped != 0) {
3425		sc->sc_tx_timer = 0;
3426		if (mbufq_first(&sc->sc_snd) != NULL) {
3427			/* NB: kick fw; the tx thread may have been preempted */
3428			mwl_hal_txstart(sc->sc_mh, 0);
3429			mwl_start(sc);
3430		}
3431	}
3432}
3433
3434static void
3435mwl_tx_draintxq(struct mwl_softc *sc, struct mwl_txq *txq)
3436{
3437	struct ieee80211_node *ni;
3438	struct mwl_txbuf *bf;
3439	u_int ix;
3440
3441	/*
3442	 * NB: this assumes output has been stopped and
3443	 *     we do not need to block mwl_tx_tasklet
3444	 */
3445	for (ix = 0;; ix++) {
3446		MWL_TXQ_LOCK(txq);
3447		bf = STAILQ_FIRST(&txq->active);
3448		if (bf == NULL) {
3449			MWL_TXQ_UNLOCK(txq);
3450			break;
3451		}
3452		STAILQ_REMOVE_HEAD(&txq->active, bf_list);
3453		MWL_TXQ_UNLOCK(txq);
3454#ifdef MWL_DEBUG
3455		if (sc->sc_debug & MWL_DEBUG_RESET) {
3456			struct ieee80211com *ic = &sc->sc_ic;
3457			const struct mwltxrec *tr =
3458			    mtod(bf->bf_m, const struct mwltxrec *);
3459			mwl_printtxbuf(bf, txq->qnum, ix);
3460			ieee80211_dump_pkt(ic, (const uint8_t *)&tr->wh,
3461				bf->bf_m->m_len - sizeof(tr->fwlen), 0, -1);
3462		}
3463#endif /* MWL_DEBUG */
3464		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
3465		ni = bf->bf_node;
3466		if (ni != NULL) {
3467			/*
3468			 * Reclaim node reference.
3469			 */
3470			ieee80211_free_node(ni);
3471		}
3472		m_freem(bf->bf_m);
3473
3474		mwl_puttxbuf_tail(txq, bf);
3475	}
3476}
3477
3478/*
3479 * Drain the transmit queues and reclaim resources.
3480 */
3481static void
3482mwl_draintxq(struct mwl_softc *sc)
3483{
3484	int i;
3485
3486	for (i = 0; i < MWL_NUM_TX_QUEUES; i++)
3487		mwl_tx_draintxq(sc, &sc->sc_txq[i]);
3488	sc->sc_tx_timer = 0;
3489}
3490
3491#ifdef MWL_DIAGAPI
3492/*
3493 * Reset the transmit queues to a pristine state after a fw download.
3494 */
3495static void
3496mwl_resettxq(struct mwl_softc *sc)
3497{
3498	int i;
3499
3500	for (i = 0; i < MWL_NUM_TX_QUEUES; i++)
3501		mwl_txq_reset(sc, &sc->sc_txq[i]);
3502}
3503#endif /* MWL_DIAGAPI */
3504
3505/*
3506 * Clear the transmit queues of any frames submitted for the
3507 * specified vap.  This is done when the vap is deleted so we
3508 * don't potentially reference the vap after it is gone.
3509 * Note we cannot remove the frames; we only reclaim the node
3510 * reference.
3511 */
3512static void
3513mwl_cleartxq(struct mwl_softc *sc, struct ieee80211vap *vap)
3514{
3515	struct mwl_txq *txq;
3516	struct mwl_txbuf *bf;
3517	int i;
3518
3519	for (i = 0; i < MWL_NUM_TX_QUEUES; i++) {
3520		txq = &sc->sc_txq[i];
3521		MWL_TXQ_LOCK(txq);
3522		STAILQ_FOREACH(bf, &txq->active, bf_list) {
3523			struct ieee80211_node *ni = bf->bf_node;
3524			if (ni != NULL && ni->ni_vap == vap) {
3525				bf->bf_node = NULL;
3526				ieee80211_free_node(ni);
3527			}
3528		}
3529		MWL_TXQ_UNLOCK(txq);
3530	}
3531}
3532
3533static int
3534mwl_recv_action(struct ieee80211_node *ni, const struct ieee80211_frame *wh,
3535	const uint8_t *frm, const uint8_t *efrm)
3536{
3537	struct mwl_softc *sc = ni->ni_ic->ic_softc;
3538	const struct ieee80211_action *ia;
3539
3540	ia = (const struct ieee80211_action *) frm;
3541	if (ia->ia_category == IEEE80211_ACTION_CAT_HT &&
3542	    ia->ia_action == IEEE80211_ACTION_HT_MIMOPWRSAVE) {
3543		const struct ieee80211_action_ht_mimopowersave *mps =
3544		    (const struct ieee80211_action_ht_mimopowersave *) ia;
3545
3546		mwl_hal_setmimops(sc->sc_mh, ni->ni_macaddr,
3547		    mps->am_control & IEEE80211_A_HT_MIMOPWRSAVE_ENA,
3548		    MS(mps->am_control, IEEE80211_A_HT_MIMOPWRSAVE_MODE));
3549		return 0;
3550	} else
3551		return sc->sc_recv_action(ni, wh, frm, efrm);
3552}
3553
3554static int
3555mwl_addba_request(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap,
3556	int dialogtoken, int baparamset, int batimeout)
3557{
3558	struct mwl_softc *sc = ni->ni_ic->ic_softc;
3559	struct ieee80211vap *vap = ni->ni_vap;
3560	struct mwl_node *mn = MWL_NODE(ni);
3561	struct mwl_bastate *bas;
3562
3563	bas = tap->txa_private;
3564	if (bas == NULL) {
3565		const MWL_HAL_BASTREAM *sp;
3566		/*
3567		 * Check for a free BA stream slot.
3568		 */
3569#if MWL_MAXBA > 3
3570		if (mn->mn_ba[3].bastream == NULL)
3571			bas = &mn->mn_ba[3];
3572		else
3573#endif
3574#if MWL_MAXBA > 2
3575		if (mn->mn_ba[2].bastream == NULL)
3576			bas = &mn->mn_ba[2];
3577		else
3578#endif
3579#if MWL_MAXBA > 1
3580		if (mn->mn_ba[1].bastream == NULL)
3581			bas = &mn->mn_ba[1];
3582		else
3583#endif
3584#if MWL_MAXBA > 0
3585		if (mn->mn_ba[0].bastream == NULL)
3586			bas = &mn->mn_ba[0];
3587		else
3588#endif
3589		{
3590			/* sta already has max BA streams */
3591			/* XXX assign BA stream to highest priority tid */
3592			DPRINTF(sc, MWL_DEBUG_AMPDU,
3593			    "%s: already has max bastreams\n", __func__);
3594			sc->sc_stats.mst_ampdu_reject++;
3595			return 0;
3596		}
3597		/* NB: no held reference to ni */
3598		sp = mwl_hal_bastream_alloc(MWL_VAP(vap)->mv_hvap,
3599		    (baparamset & IEEE80211_BAPS_POLICY_IMMEDIATE) != 0,
3600		    ni->ni_macaddr, tap->txa_tid, ni->ni_htparam,
3601		    ni, tap);
3602		if (sp == NULL) {
3603			/*
3604			 * No available stream, return 0 so no
3605			 * a-mpdu aggregation will be done.
3606			 */
3607			DPRINTF(sc, MWL_DEBUG_AMPDU,
3608			    "%s: no bastream available\n", __func__);
3609			sc->sc_stats.mst_ampdu_nostream++;
3610			return 0;
3611		}
3612		DPRINTF(sc, MWL_DEBUG_AMPDU, "%s: alloc bastream %p\n",
3613		    __func__, sp);
3614		/* NB: qos is left zero so we won't match in mwl_tx_start */
3615		bas->bastream = sp;
3616		tap->txa_private = bas;
3617	}
3618	/* fetch current seq# from the firmware; if available */
3619	if (mwl_hal_bastream_get_seqno(sc->sc_mh, bas->bastream,
3620	    vap->iv_opmode == IEEE80211_M_STA ? vap->iv_myaddr : ni->ni_macaddr,
3621	    &tap->txa_start) != 0)
3622		tap->txa_start = 0;
3623	return sc->sc_addba_request(ni, tap, dialogtoken, baparamset, batimeout);
3624}
3625
3626static int
3627mwl_addba_response(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap,
3628	int code, int baparamset, int batimeout)
3629{
3630	struct mwl_softc *sc = ni->ni_ic->ic_softc;
3631	struct mwl_bastate *bas;
3632
3633	bas = tap->txa_private;
3634	if (bas == NULL) {
3635		/* XXX should not happen */
3636		DPRINTF(sc, MWL_DEBUG_AMPDU,
3637		    "%s: no BA stream allocated, TID %d\n",
3638		    __func__, tap->txa_tid);
3639		sc->sc_stats.mst_addba_nostream++;
3640		return 0;
3641	}
3642	if (code == IEEE80211_STATUS_SUCCESS) {
3643		struct ieee80211vap *vap = ni->ni_vap;
3644		int bufsiz, error;
3645
3646		/*
3647		 * Tell the firmware to setup the BA stream;
3648		 * we know resources are available because we
3649		 * pre-allocated one before forming the request.
3650		 */
3651		bufsiz = MS(baparamset, IEEE80211_BAPS_BUFSIZ);
3652		if (bufsiz == 0)
3653			bufsiz = IEEE80211_AGGR_BAWMAX;
3654		error = mwl_hal_bastream_create(MWL_VAP(vap)->mv_hvap,
3655		    bas->bastream, bufsiz, bufsiz, tap->txa_start);
3656		if (error != 0) {
3657			/*
3658			 * Setup failed, return immediately so no a-mpdu
3659			 * aggregation will be done.
3660			 */
3661			mwl_hal_bastream_destroy(sc->sc_mh, bas->bastream);
3662			mwl_bastream_free(bas);
3663			tap->txa_private = NULL;
3664
3665			DPRINTF(sc, MWL_DEBUG_AMPDU,
3666			    "%s: create failed, error %d, bufsiz %d TID %d "
3667			    "htparam 0x%x\n", __func__, error, bufsiz,
3668			    tap->txa_tid, ni->ni_htparam);
3669			sc->sc_stats.mst_bacreate_failed++;
3670			return 0;
3671		}
3672		/* NB: cache txq to avoid ptr indirect */
3673		mwl_bastream_setup(bas, tap->txa_tid, bas->bastream->txq);
3674		DPRINTF(sc, MWL_DEBUG_AMPDU,
3675		    "%s: bastream %p assigned to txq %d TID %d bufsiz %d "
3676		    "htparam 0x%x\n", __func__, bas->bastream,
3677		    bas->txq, tap->txa_tid, bufsiz, ni->ni_htparam);
3678	} else {
3679		/*
3680		 * Other side NAK'd us; return the resources.
3681		 */
3682		DPRINTF(sc, MWL_DEBUG_AMPDU,
3683		    "%s: request failed with code %d, destroy bastream %p\n",
3684		    __func__, code, bas->bastream);
3685		mwl_hal_bastream_destroy(sc->sc_mh, bas->bastream);
3686		mwl_bastream_free(bas);
3687		tap->txa_private = NULL;
3688	}
3689	/* NB: firmware sends BAR so we don't need to */
3690	return sc->sc_addba_response(ni, tap, code, baparamset, batimeout);
3691}
3692
3693static void
3694mwl_addba_stop(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap)
3695{
3696	struct mwl_softc *sc = ni->ni_ic->ic_softc;
3697	struct mwl_bastate *bas;
3698
3699	bas = tap->txa_private;
3700	if (bas != NULL) {
3701		DPRINTF(sc, MWL_DEBUG_AMPDU, "%s: destroy bastream %p\n",
3702		    __func__, bas->bastream);
3703		mwl_hal_bastream_destroy(sc->sc_mh, bas->bastream);
3704		mwl_bastream_free(bas);
3705		tap->txa_private = NULL;
3706	}
3707	sc->sc_addba_stop(ni, tap);
3708}
3709
3710/*
3711 * Setup the rx data structures.  This should only be
3712 * done once or we may get out of sync with the firmware.
3713 */
3714static int
3715mwl_startrecv(struct mwl_softc *sc)
3716{
3717	if (!sc->sc_recvsetup) {
3718		struct mwl_rxbuf *bf, *prev;
3719		struct mwl_rxdesc *ds;
3720
3721		prev = NULL;
3722		STAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
3723			int error = mwl_rxbuf_init(sc, bf);
3724			if (error != 0) {
3725				DPRINTF(sc, MWL_DEBUG_RECV,
3726					"%s: mwl_rxbuf_init failed %d\n",
3727					__func__, error);
3728				return error;
3729			}
3730			if (prev != NULL) {
3731				ds = prev->bf_desc;
3732				ds->pPhysNext = htole32(bf->bf_daddr);
3733			}
3734			prev = bf;
3735		}
3736		if (prev != NULL) {
3737			ds = prev->bf_desc;
3738			ds->pPhysNext =
3739			    htole32(STAILQ_FIRST(&sc->sc_rxbuf)->bf_daddr);
3740		}
3741		sc->sc_recvsetup = 1;
3742	}
3743	mwl_mode_init(sc);		/* set filters, etc. */
3744	return 0;
3745}
3746
3747static MWL_HAL_APMODE
3748mwl_getapmode(const struct ieee80211vap *vap, struct ieee80211_channel *chan)
3749{
3750	MWL_HAL_APMODE mode;
3751
3752	if (IEEE80211_IS_CHAN_HT(chan)) {
3753		if (vap->iv_flags_ht & IEEE80211_FHT_PUREN)
3754			mode = AP_MODE_N_ONLY;
3755		else if (IEEE80211_IS_CHAN_5GHZ(chan))
3756			mode = AP_MODE_AandN;
3757		else if (vap->iv_flags & IEEE80211_F_PUREG)
3758			mode = AP_MODE_GandN;
3759		else
3760			mode = AP_MODE_BandGandN;
3761	} else if (IEEE80211_IS_CHAN_ANYG(chan)) {
3762		if (vap->iv_flags & IEEE80211_F_PUREG)
3763			mode = AP_MODE_G_ONLY;
3764		else
3765			mode = AP_MODE_MIXED;
3766	} else if (IEEE80211_IS_CHAN_B(chan))
3767		mode = AP_MODE_B_ONLY;
3768	else if (IEEE80211_IS_CHAN_A(chan))
3769		mode = AP_MODE_A_ONLY;
3770	else
3771		mode = AP_MODE_MIXED;		/* XXX should not happen? */
3772	return mode;
3773}
3774
3775static int
3776mwl_setapmode(struct ieee80211vap *vap, struct ieee80211_channel *chan)
3777{
3778	struct mwl_hal_vap *hvap = MWL_VAP(vap)->mv_hvap;
3779	return mwl_hal_setapmode(hvap, mwl_getapmode(vap, chan));
3780}
3781
3782/*
3783 * Set/change channels.
3784 */
3785static int
3786mwl_chan_set(struct mwl_softc *sc, struct ieee80211_channel *chan)
3787{
3788	struct mwl_hal *mh = sc->sc_mh;
3789	struct ieee80211com *ic = &sc->sc_ic;
3790	MWL_HAL_CHANNEL hchan;
3791	int maxtxpow;
3792
3793	DPRINTF(sc, MWL_DEBUG_RESET, "%s: chan %u MHz/flags 0x%x\n",
3794	    __func__, chan->ic_freq, chan->ic_flags);
3795
3796	/*
3797	 * Convert to a HAL channel description with
3798	 * the flags constrained to reflect the current
3799	 * operating mode.
3800	 */
3801	mwl_mapchan(&hchan, chan);
3802	mwl_hal_intrset(mh, 0);		/* disable interrupts */
3803#if 0
3804	mwl_draintxq(sc);		/* clear pending tx frames */
3805#endif
3806	mwl_hal_setchannel(mh, &hchan);
3807	/*
3808	 * Tx power is cap'd by the regulatory setting and
3809	 * possibly a user-set limit.  We pass the min of
3810	 * these to the hal to apply them to the cal data
3811	 * for this channel.
3812	 * XXX min bound?
3813	 */
3814	maxtxpow = 2*chan->ic_maxregpower;
3815	if (maxtxpow > ic->ic_txpowlimit)
3816		maxtxpow = ic->ic_txpowlimit;
3817	mwl_hal_settxpower(mh, &hchan, maxtxpow / 2);
3818	/* NB: potentially change mcast/mgt rates */
3819	mwl_setcurchanrates(sc);
3820
3821	/*
3822	 * Update internal state.
3823	 */
3824	sc->sc_tx_th.wt_chan_freq = htole16(chan->ic_freq);
3825	sc->sc_rx_th.wr_chan_freq = htole16(chan->ic_freq);
3826	if (IEEE80211_IS_CHAN_A(chan)) {
3827		sc->sc_tx_th.wt_chan_flags = htole16(IEEE80211_CHAN_A);
3828		sc->sc_rx_th.wr_chan_flags = htole16(IEEE80211_CHAN_A);
3829	} else if (IEEE80211_IS_CHAN_ANYG(chan)) {
3830		sc->sc_tx_th.wt_chan_flags = htole16(IEEE80211_CHAN_G);
3831		sc->sc_rx_th.wr_chan_flags = htole16(IEEE80211_CHAN_G);
3832	} else {
3833		sc->sc_tx_th.wt_chan_flags = htole16(IEEE80211_CHAN_B);
3834		sc->sc_rx_th.wr_chan_flags = htole16(IEEE80211_CHAN_B);
3835	}
3836	sc->sc_curchan = hchan;
3837	mwl_hal_intrset(mh, sc->sc_imask);
3838
3839	return 0;
3840}
3841
3842static void
3843mwl_scan_start(struct ieee80211com *ic)
3844{
3845	struct mwl_softc *sc = ic->ic_softc;
3846
3847	DPRINTF(sc, MWL_DEBUG_STATE, "%s\n", __func__);
3848}
3849
3850static void
3851mwl_scan_end(struct ieee80211com *ic)
3852{
3853	struct mwl_softc *sc = ic->ic_softc;
3854
3855	DPRINTF(sc, MWL_DEBUG_STATE, "%s\n", __func__);
3856}
3857
3858static void
3859mwl_set_channel(struct ieee80211com *ic)
3860{
3861	struct mwl_softc *sc = ic->ic_softc;
3862
3863	(void) mwl_chan_set(sc, ic->ic_curchan);
3864}
3865
3866/*
3867 * Handle a channel switch request.  We inform the firmware
3868 * and mark the global state to suppress various actions.
3869 * NB: we issue only one request to the fw; we may be called
3870 * multiple times if there are multiple vap's.
3871 */
3872static void
3873mwl_startcsa(struct ieee80211vap *vap)
3874{
3875	struct ieee80211com *ic = vap->iv_ic;
3876	struct mwl_softc *sc = ic->ic_softc;
3877	MWL_HAL_CHANNEL hchan;
3878
3879	if (sc->sc_csapending)
3880		return;
3881
3882	mwl_mapchan(&hchan, ic->ic_csa_newchan);
3883	/* 1 =>'s quiet channel */
3884	mwl_hal_setchannelswitchie(sc->sc_mh, &hchan, 1, ic->ic_csa_count);
3885	sc->sc_csapending = 1;
3886}
3887
3888/*
3889 * Plumb any static WEP key for the station.  This is
3890 * necessary as we must propagate the key from the
3891 * global key table of the vap to each sta db entry.
3892 */
3893static void
3894mwl_setanywepkey(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN])
3895{
3896	if ((vap->iv_flags & (IEEE80211_F_PRIVACY|IEEE80211_F_WPA)) ==
3897		IEEE80211_F_PRIVACY &&
3898	    vap->iv_def_txkey != IEEE80211_KEYIX_NONE &&
3899	    vap->iv_nw_keys[vap->iv_def_txkey].wk_keyix != IEEE80211_KEYIX_NONE)
3900		(void) _mwl_key_set(vap, &vap->iv_nw_keys[vap->iv_def_txkey],
3901				    mac);
3902}
3903
3904static int
3905mwl_peerstadb(struct ieee80211_node *ni, int aid, int staid, MWL_HAL_PEERINFO *pi)
3906{
3907#define	WME(ie) ((const struct ieee80211_wme_info *) ie)
3908	struct ieee80211vap *vap = ni->ni_vap;
3909	struct mwl_hal_vap *hvap;
3910	int error;
3911
3912	if (vap->iv_opmode == IEEE80211_M_WDS) {
3913		/*
3914		 * WDS vap's do not have a f/w vap; instead they piggyback
3915		 * on an AP vap and we must install the sta db entry and
3916		 * crypto state using that AP's handle (the WDS vap has none).
3917		 */
3918		hvap = MWL_VAP(vap)->mv_ap_hvap;
3919	} else
3920		hvap = MWL_VAP(vap)->mv_hvap;
3921	error = mwl_hal_newstation(hvap, ni->ni_macaddr,
3922	    aid, staid, pi,
3923	    ni->ni_flags & (IEEE80211_NODE_QOS | IEEE80211_NODE_HT),
3924	    ni->ni_ies.wme_ie != NULL ? WME(ni->ni_ies.wme_ie)->wme_info : 0);
3925	if (error == 0) {
3926		/*
3927		 * Setup security for this station.  For sta mode this is
3928		 * needed even though do the same thing on transition to
3929		 * AUTH state because the call to mwl_hal_newstation
3930		 * clobbers the crypto state we setup.
3931		 */
3932		mwl_setanywepkey(vap, ni->ni_macaddr);
3933	}
3934	return error;
3935#undef WME
3936}
3937
3938static void
3939mwl_setglobalkeys(struct ieee80211vap *vap)
3940{
3941	struct ieee80211_key *wk;
3942
3943	wk = &vap->iv_nw_keys[0];
3944	for (; wk < &vap->iv_nw_keys[IEEE80211_WEP_NKID]; wk++)
3945		if (wk->wk_keyix != IEEE80211_KEYIX_NONE)
3946			(void) _mwl_key_set(vap, wk, vap->iv_myaddr);
3947}
3948
3949/*
3950 * Convert a legacy rate set to a firmware bitmask.
3951 */
3952static uint32_t
3953get_rate_bitmap(const struct ieee80211_rateset *rs)
3954{
3955	uint32_t rates;
3956	int i;
3957
3958	rates = 0;
3959	for (i = 0; i < rs->rs_nrates; i++)
3960		switch (rs->rs_rates[i] & IEEE80211_RATE_VAL) {
3961		case 2:	  rates |= 0x001; break;
3962		case 4:	  rates |= 0x002; break;
3963		case 11:  rates |= 0x004; break;
3964		case 22:  rates |= 0x008; break;
3965		case 44:  rates |= 0x010; break;
3966		case 12:  rates |= 0x020; break;
3967		case 18:  rates |= 0x040; break;
3968		case 24:  rates |= 0x080; break;
3969		case 36:  rates |= 0x100; break;
3970		case 48:  rates |= 0x200; break;
3971		case 72:  rates |= 0x400; break;
3972		case 96:  rates |= 0x800; break;
3973		case 108: rates |= 0x1000; break;
3974		}
3975	return rates;
3976}
3977
3978/*
3979 * Construct an HT firmware bitmask from an HT rate set.
3980 */
3981static uint32_t
3982get_htrate_bitmap(const struct ieee80211_htrateset *rs)
3983{
3984	uint32_t rates;
3985	int i;
3986
3987	rates = 0;
3988	for (i = 0; i < rs->rs_nrates; i++) {
3989		if (rs->rs_rates[i] < 16)
3990			rates |= 1<<rs->rs_rates[i];
3991	}
3992	return rates;
3993}
3994
3995/*
3996 * Craft station database entry for station.
3997 * NB: use host byte order here, the hal handles byte swapping.
3998 */
3999static MWL_HAL_PEERINFO *
4000mkpeerinfo(MWL_HAL_PEERINFO *pi, const struct ieee80211_node *ni)
4001{
4002	const struct ieee80211vap *vap = ni->ni_vap;
4003
4004	memset(pi, 0, sizeof(*pi));
4005	pi->LegacyRateBitMap = get_rate_bitmap(&ni->ni_rates);
4006	pi->CapInfo = ni->ni_capinfo;
4007	if (ni->ni_flags & IEEE80211_NODE_HT) {
4008		/* HT capabilities, etc */
4009		pi->HTCapabilitiesInfo = ni->ni_htcap;
4010		/* XXX pi.HTCapabilitiesInfo */
4011	        pi->MacHTParamInfo = ni->ni_htparam;
4012		pi->HTRateBitMap = get_htrate_bitmap(&ni->ni_htrates);
4013		pi->AddHtInfo.ControlChan = ni->ni_htctlchan;
4014		pi->AddHtInfo.AddChan = ni->ni_ht2ndchan;
4015		pi->AddHtInfo.OpMode = ni->ni_htopmode;
4016		pi->AddHtInfo.stbc = ni->ni_htstbc;
4017
4018		/* constrain according to local configuration */
4019		if ((vap->iv_flags_ht & IEEE80211_FHT_SHORTGI40) == 0)
4020			pi->HTCapabilitiesInfo &= ~IEEE80211_HTCAP_SHORTGI40;
4021		if ((vap->iv_flags_ht & IEEE80211_FHT_SHORTGI20) == 0)
4022			pi->HTCapabilitiesInfo &= ~IEEE80211_HTCAP_SHORTGI20;
4023		if (ni->ni_chw != 40)
4024			pi->HTCapabilitiesInfo &= ~IEEE80211_HTCAP_CHWIDTH40;
4025	}
4026	return pi;
4027}
4028
4029/*
4030 * Re-create the local sta db entry for a vap to ensure
4031 * up to date WME state is pushed to the firmware.  Because
4032 * this resets crypto state this must be followed by a
4033 * reload of any keys in the global key table.
4034 */
4035static int
4036mwl_localstadb(struct ieee80211vap *vap)
4037{
4038#define	WME(ie) ((const struct ieee80211_wme_info *) ie)
4039	struct mwl_hal_vap *hvap = MWL_VAP(vap)->mv_hvap;
4040	struct ieee80211_node *bss;
4041	MWL_HAL_PEERINFO pi;
4042	int error;
4043
4044	switch (vap->iv_opmode) {
4045	case IEEE80211_M_STA:
4046		bss = vap->iv_bss;
4047		error = mwl_hal_newstation(hvap, vap->iv_myaddr, 0, 0,
4048		    vap->iv_state == IEEE80211_S_RUN ?
4049			mkpeerinfo(&pi, bss) : NULL,
4050		    (bss->ni_flags & (IEEE80211_NODE_QOS | IEEE80211_NODE_HT)),
4051		    bss->ni_ies.wme_ie != NULL ?
4052			WME(bss->ni_ies.wme_ie)->wme_info : 0);
4053		if (error == 0)
4054			mwl_setglobalkeys(vap);
4055		break;
4056	case IEEE80211_M_HOSTAP:
4057	case IEEE80211_M_MBSS:
4058		error = mwl_hal_newstation(hvap, vap->iv_myaddr,
4059		    0, 0, NULL, vap->iv_flags & IEEE80211_F_WME, 0);
4060		if (error == 0)
4061			mwl_setglobalkeys(vap);
4062		break;
4063	default:
4064		error = 0;
4065		break;
4066	}
4067	return error;
4068#undef WME
4069}
4070
4071static int
4072mwl_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
4073{
4074	struct mwl_vap *mvp = MWL_VAP(vap);
4075	struct mwl_hal_vap *hvap = mvp->mv_hvap;
4076	struct ieee80211com *ic = vap->iv_ic;
4077	struct ieee80211_node *ni = NULL;
4078	struct mwl_softc *sc = ic->ic_softc;
4079	struct mwl_hal *mh = sc->sc_mh;
4080	enum ieee80211_state ostate = vap->iv_state;
4081	int error;
4082
4083	DPRINTF(sc, MWL_DEBUG_STATE, "%s: %s: %s -> %s\n",
4084	    vap->iv_ifp->if_xname, __func__,
4085	    ieee80211_state_name[ostate], ieee80211_state_name[nstate]);
4086
4087	callout_stop(&sc->sc_timer);
4088	/*
4089	 * Clear current radar detection state.
4090	 */
4091	if (ostate == IEEE80211_S_CAC) {
4092		/* stop quiet mode radar detection */
4093		mwl_hal_setradardetection(mh, DR_CHK_CHANNEL_AVAILABLE_STOP);
4094	} else if (sc->sc_radarena) {
4095		/* stop in-service radar detection */
4096		mwl_hal_setradardetection(mh, DR_DFS_DISABLE);
4097		sc->sc_radarena = 0;
4098	}
4099	/*
4100	 * Carry out per-state actions before doing net80211 work.
4101	 */
4102	if (nstate == IEEE80211_S_INIT) {
4103		/* NB: only ap+sta vap's have a fw entity */
4104		if (hvap != NULL)
4105			mwl_hal_stop(hvap);
4106	} else if (nstate == IEEE80211_S_SCAN) {
4107		mwl_hal_start(hvap);
4108		/* NB: this disables beacon frames */
4109		mwl_hal_setinframode(hvap);
4110	} else if (nstate == IEEE80211_S_AUTH) {
4111		/*
4112		 * Must create a sta db entry in case a WEP key needs to
4113		 * be plumbed.  This entry will be overwritten if we
4114		 * associate; otherwise it will be reclaimed on node free.
4115		 */
4116		ni = vap->iv_bss;
4117		MWL_NODE(ni)->mn_hvap = hvap;
4118		(void) mwl_peerstadb(ni, 0, 0, NULL);
4119	} else if (nstate == IEEE80211_S_CSA) {
4120		/* XXX move to below? */
4121		if (vap->iv_opmode == IEEE80211_M_HOSTAP ||
4122		    vap->iv_opmode == IEEE80211_M_MBSS)
4123			mwl_startcsa(vap);
4124	} else if (nstate == IEEE80211_S_CAC) {
4125		/* XXX move to below? */
4126		/* stop ap xmit and enable quiet mode radar detection */
4127		mwl_hal_setradardetection(mh, DR_CHK_CHANNEL_AVAILABLE_START);
4128	}
4129
4130	/*
4131	 * Invoke the parent method to do net80211 work.
4132	 */
4133	error = mvp->mv_newstate(vap, nstate, arg);
4134
4135	/*
4136	 * Carry out work that must be done after net80211 runs;
4137	 * this work requires up to date state (e.g. iv_bss).
4138	 */
4139	if (error == 0 && nstate == IEEE80211_S_RUN) {
4140		/* NB: collect bss node again, it may have changed */
4141		ni = vap->iv_bss;
4142
4143		DPRINTF(sc, MWL_DEBUG_STATE,
4144		    "%s: %s(RUN): iv_flags 0x%08x bintvl %d bssid %s "
4145		    "capinfo 0x%04x chan %d\n",
4146		    vap->iv_ifp->if_xname, __func__, vap->iv_flags,
4147		    ni->ni_intval, ether_sprintf(ni->ni_bssid), ni->ni_capinfo,
4148		    ieee80211_chan2ieee(ic, ic->ic_curchan));
4149
4150		/*
4151		 * Recreate local sta db entry to update WME/HT state.
4152		 */
4153		mwl_localstadb(vap);
4154		switch (vap->iv_opmode) {
4155		case IEEE80211_M_HOSTAP:
4156		case IEEE80211_M_MBSS:
4157			if (ostate == IEEE80211_S_CAC) {
4158				/* enable in-service radar detection */
4159				mwl_hal_setradardetection(mh,
4160				    DR_IN_SERVICE_MONITOR_START);
4161				sc->sc_radarena = 1;
4162			}
4163			/*
4164			 * Allocate and setup the beacon frame
4165			 * (and related state).
4166			 */
4167			error = mwl_reset_vap(vap, IEEE80211_S_RUN);
4168			if (error != 0) {
4169				DPRINTF(sc, MWL_DEBUG_STATE,
4170				    "%s: beacon setup failed, error %d\n",
4171				    __func__, error);
4172				goto bad;
4173			}
4174			/* NB: must be after setting up beacon */
4175			mwl_hal_start(hvap);
4176			break;
4177		case IEEE80211_M_STA:
4178			DPRINTF(sc, MWL_DEBUG_STATE, "%s: %s: aid 0x%x\n",
4179			    vap->iv_ifp->if_xname, __func__, ni->ni_associd);
4180			/*
4181			 * Set state now that we're associated.
4182			 */
4183			mwl_hal_setassocid(hvap, ni->ni_bssid, ni->ni_associd);
4184			mwl_setrates(vap);
4185			mwl_hal_setrtsthreshold(hvap, vap->iv_rtsthreshold);
4186			if ((vap->iv_flags & IEEE80211_F_DWDS) &&
4187			    sc->sc_ndwdsvaps++ == 0)
4188				mwl_hal_setdwds(mh, 1);
4189			break;
4190		case IEEE80211_M_WDS:
4191			DPRINTF(sc, MWL_DEBUG_STATE, "%s: %s: bssid %s\n",
4192			    vap->iv_ifp->if_xname, __func__,
4193			    ether_sprintf(ni->ni_bssid));
4194			mwl_seteapolformat(vap);
4195			break;
4196		default:
4197			break;
4198		}
4199		/*
4200		 * Set CS mode according to operating channel;
4201		 * this mostly an optimization for 5GHz.
4202		 *
4203		 * NB: must follow mwl_hal_start which resets csmode
4204		 */
4205		if (IEEE80211_IS_CHAN_5GHZ(ic->ic_bsschan))
4206			mwl_hal_setcsmode(mh, CSMODE_AGGRESSIVE);
4207		else
4208			mwl_hal_setcsmode(mh, CSMODE_AUTO_ENA);
4209		/*
4210		 * Start timer to prod firmware.
4211		 */
4212		if (sc->sc_ageinterval != 0)
4213			callout_reset(&sc->sc_timer, sc->sc_ageinterval*hz,
4214			    mwl_agestations, sc);
4215	} else if (nstate == IEEE80211_S_SLEEP) {
4216		/* XXX set chip in power save */
4217	} else if ((vap->iv_flags & IEEE80211_F_DWDS) &&
4218	    --sc->sc_ndwdsvaps == 0)
4219		mwl_hal_setdwds(mh, 0);
4220bad:
4221	return error;
4222}
4223
4224/*
4225 * Manage station id's; these are separate from AID's
4226 * as AID's may have values out of the range of possible
4227 * station id's acceptable to the firmware.
4228 */
4229static int
4230allocstaid(struct mwl_softc *sc, int aid)
4231{
4232	int staid;
4233
4234	if (!(0 < aid && aid < MWL_MAXSTAID) || isset(sc->sc_staid, aid)) {
4235		/* NB: don't use 0 */
4236		for (staid = 1; staid < MWL_MAXSTAID; staid++)
4237			if (isclr(sc->sc_staid, staid))
4238				break;
4239	} else
4240		staid = aid;
4241	setbit(sc->sc_staid, staid);
4242	return staid;
4243}
4244
4245static void
4246delstaid(struct mwl_softc *sc, int staid)
4247{
4248	clrbit(sc->sc_staid, staid);
4249}
4250
4251/*
4252 * Setup driver-specific state for a newly associated node.
4253 * Note that we're called also on a re-associate, the isnew
4254 * param tells us if this is the first time or not.
4255 */
4256static void
4257mwl_newassoc(struct ieee80211_node *ni, int isnew)
4258{
4259	struct ieee80211vap *vap = ni->ni_vap;
4260        struct mwl_softc *sc = vap->iv_ic->ic_softc;
4261	struct mwl_node *mn = MWL_NODE(ni);
4262	MWL_HAL_PEERINFO pi;
4263	uint16_t aid;
4264	int error;
4265
4266	aid = IEEE80211_AID(ni->ni_associd);
4267	if (isnew) {
4268		mn->mn_staid = allocstaid(sc, aid);
4269		mn->mn_hvap = MWL_VAP(vap)->mv_hvap;
4270	} else {
4271		mn = MWL_NODE(ni);
4272		/* XXX reset BA stream? */
4273	}
4274	DPRINTF(sc, MWL_DEBUG_NODE, "%s: mac %s isnew %d aid %d staid %d\n",
4275	    __func__, ether_sprintf(ni->ni_macaddr), isnew, aid, mn->mn_staid);
4276	error = mwl_peerstadb(ni, aid, mn->mn_staid, mkpeerinfo(&pi, ni));
4277	if (error != 0) {
4278		DPRINTF(sc, MWL_DEBUG_NODE,
4279		    "%s: error %d creating sta db entry\n",
4280		    __func__, error);
4281		/* XXX how to deal with error? */
4282	}
4283}
4284
4285/*
4286 * Periodically poke the firmware to age out station state
4287 * (power save queues, pending tx aggregates).
4288 */
4289static void
4290mwl_agestations(void *arg)
4291{
4292	struct mwl_softc *sc = arg;
4293
4294	mwl_hal_setkeepalive(sc->sc_mh);
4295	if (sc->sc_ageinterval != 0)		/* NB: catch dynamic changes */
4296		callout_schedule(&sc->sc_timer, sc->sc_ageinterval*hz);
4297}
4298
4299static const struct mwl_hal_channel *
4300findhalchannel(const MWL_HAL_CHANNELINFO *ci, int ieee)
4301{
4302	int i;
4303
4304	for (i = 0; i < ci->nchannels; i++) {
4305		const struct mwl_hal_channel *hc = &ci->channels[i];
4306		if (hc->ieee == ieee)
4307			return hc;
4308	}
4309	return NULL;
4310}
4311
4312static int
4313mwl_setregdomain(struct ieee80211com *ic, struct ieee80211_regdomain *rd,
4314	int nchan, struct ieee80211_channel chans[])
4315{
4316	struct mwl_softc *sc = ic->ic_softc;
4317	struct mwl_hal *mh = sc->sc_mh;
4318	const MWL_HAL_CHANNELINFO *ci;
4319	int i;
4320
4321	for (i = 0; i < nchan; i++) {
4322		struct ieee80211_channel *c = &chans[i];
4323		const struct mwl_hal_channel *hc;
4324
4325		if (IEEE80211_IS_CHAN_2GHZ(c)) {
4326			mwl_hal_getchannelinfo(mh, MWL_FREQ_BAND_2DOT4GHZ,
4327			    IEEE80211_IS_CHAN_HT40(c) ?
4328				MWL_CH_40_MHz_WIDTH : MWL_CH_20_MHz_WIDTH, &ci);
4329		} else if (IEEE80211_IS_CHAN_5GHZ(c)) {
4330			mwl_hal_getchannelinfo(mh, MWL_FREQ_BAND_5GHZ,
4331			    IEEE80211_IS_CHAN_HT40(c) ?
4332				MWL_CH_40_MHz_WIDTH : MWL_CH_20_MHz_WIDTH, &ci);
4333		} else {
4334			device_printf(sc->sc_dev,
4335			    "%s: channel %u freq %u/0x%x not 2.4/5GHz\n",
4336			    __func__, c->ic_ieee, c->ic_freq, c->ic_flags);
4337			return EINVAL;
4338		}
4339		/*
4340		 * Verify channel has cal data and cap tx power.
4341		 */
4342		hc = findhalchannel(ci, c->ic_ieee);
4343		if (hc != NULL) {
4344			if (c->ic_maxpower > 2*hc->maxTxPow)
4345				c->ic_maxpower = 2*hc->maxTxPow;
4346			goto next;
4347		}
4348		if (IEEE80211_IS_CHAN_HT40(c)) {
4349			/*
4350			 * Look for the extension channel since the
4351			 * hal table only has the primary channel.
4352			 */
4353			hc = findhalchannel(ci, c->ic_extieee);
4354			if (hc != NULL) {
4355				if (c->ic_maxpower > 2*hc->maxTxPow)
4356					c->ic_maxpower = 2*hc->maxTxPow;
4357				goto next;
4358			}
4359		}
4360		device_printf(sc->sc_dev,
4361		    "%s: no cal data for channel %u ext %u freq %u/0x%x\n",
4362		    __func__, c->ic_ieee, c->ic_extieee,
4363		    c->ic_freq, c->ic_flags);
4364		return EINVAL;
4365	next:
4366		;
4367	}
4368	return 0;
4369}
4370
4371#define	IEEE80211_CHAN_HTG	(IEEE80211_CHAN_HT|IEEE80211_CHAN_G)
4372#define	IEEE80211_CHAN_HTA	(IEEE80211_CHAN_HT|IEEE80211_CHAN_A)
4373
4374static void
4375addht40channels(struct ieee80211_channel chans[], int maxchans, int *nchans,
4376	const MWL_HAL_CHANNELINFO *ci, int flags)
4377{
4378	int i, error;
4379
4380	for (i = 0; i < ci->nchannels; i++) {
4381		const struct mwl_hal_channel *hc = &ci->channels[i];
4382
4383		error = ieee80211_add_channel_ht40(chans, maxchans, nchans,
4384		    hc->ieee, hc->maxTxPow, flags);
4385		if (error != 0 && error != ENOENT)
4386			break;
4387	}
4388}
4389
4390static void
4391addchannels(struct ieee80211_channel chans[], int maxchans, int *nchans,
4392	const MWL_HAL_CHANNELINFO *ci, const uint8_t bands[])
4393{
4394	int i, error;
4395
4396	error = 0;
4397	for (i = 0; i < ci->nchannels && error == 0; i++) {
4398		const struct mwl_hal_channel *hc = &ci->channels[i];
4399
4400		error = ieee80211_add_channel(chans, maxchans, nchans,
4401		    hc->ieee, hc->freq, hc->maxTxPow, 0, bands);
4402	}
4403}
4404
4405static void
4406getchannels(struct mwl_softc *sc, int maxchans, int *nchans,
4407	struct ieee80211_channel chans[])
4408{
4409	const MWL_HAL_CHANNELINFO *ci;
4410	uint8_t bands[IEEE80211_MODE_BYTES];
4411
4412	/*
4413	 * Use the channel info from the hal to craft the
4414	 * channel list.  Note that we pass back an unsorted
4415	 * list; the caller is required to sort it for us
4416	 * (if desired).
4417	 */
4418	*nchans = 0;
4419	if (mwl_hal_getchannelinfo(sc->sc_mh,
4420	    MWL_FREQ_BAND_2DOT4GHZ, MWL_CH_20_MHz_WIDTH, &ci) == 0) {
4421		memset(bands, 0, sizeof(bands));
4422		setbit(bands, IEEE80211_MODE_11B);
4423		setbit(bands, IEEE80211_MODE_11G);
4424		setbit(bands, IEEE80211_MODE_11NG);
4425		addchannels(chans, maxchans, nchans, ci, bands);
4426	}
4427	if (mwl_hal_getchannelinfo(sc->sc_mh,
4428	    MWL_FREQ_BAND_5GHZ, MWL_CH_20_MHz_WIDTH, &ci) == 0) {
4429		memset(bands, 0, sizeof(bands));
4430		setbit(bands, IEEE80211_MODE_11A);
4431		setbit(bands, IEEE80211_MODE_11NA);
4432		addchannels(chans, maxchans, nchans, ci, bands);
4433	}
4434	if (mwl_hal_getchannelinfo(sc->sc_mh,
4435	    MWL_FREQ_BAND_2DOT4GHZ, MWL_CH_40_MHz_WIDTH, &ci) == 0)
4436		addht40channels(chans, maxchans, nchans, ci, IEEE80211_CHAN_HTG);
4437	if (mwl_hal_getchannelinfo(sc->sc_mh,
4438	    MWL_FREQ_BAND_5GHZ, MWL_CH_40_MHz_WIDTH, &ci) == 0)
4439		addht40channels(chans, maxchans, nchans, ci, IEEE80211_CHAN_HTA);
4440}
4441
4442static void
4443mwl_getradiocaps(struct ieee80211com *ic,
4444	int maxchans, int *nchans, struct ieee80211_channel chans[])
4445{
4446	struct mwl_softc *sc = ic->ic_softc;
4447
4448	getchannels(sc, maxchans, nchans, chans);
4449}
4450
4451static int
4452mwl_getchannels(struct mwl_softc *sc)
4453{
4454	struct ieee80211com *ic = &sc->sc_ic;
4455
4456	/*
4457	 * Use the channel info from the hal to craft the
4458	 * channel list for net80211.  Note that we pass up
4459	 * an unsorted list; net80211 will sort it for us.
4460	 */
4461	memset(ic->ic_channels, 0, sizeof(ic->ic_channels));
4462	ic->ic_nchans = 0;
4463	getchannels(sc, IEEE80211_CHAN_MAX, &ic->ic_nchans, ic->ic_channels);
4464
4465	ic->ic_regdomain.regdomain = SKU_DEBUG;
4466	ic->ic_regdomain.country = CTRY_DEFAULT;
4467	ic->ic_regdomain.location = 'I';
4468	ic->ic_regdomain.isocc[0] = ' ';	/* XXX? */
4469	ic->ic_regdomain.isocc[1] = ' ';
4470	return (ic->ic_nchans == 0 ? EIO : 0);
4471}
4472#undef IEEE80211_CHAN_HTA
4473#undef IEEE80211_CHAN_HTG
4474
4475#ifdef MWL_DEBUG
4476static void
4477mwl_printrxbuf(const struct mwl_rxbuf *bf, u_int ix)
4478{
4479	const struct mwl_rxdesc *ds = bf->bf_desc;
4480	uint32_t status = le32toh(ds->Status);
4481
4482	printf("R[%2u] (DS.V:%p DS.P:0x%jx) NEXT:%08x DATA:%08x RC:%02x%s\n"
4483	       "      STAT:%02x LEN:%04x RSSI:%02x CHAN:%02x RATE:%02x QOS:%04x HT:%04x\n",
4484	    ix, ds, (uintmax_t)bf->bf_daddr, le32toh(ds->pPhysNext),
4485	    le32toh(ds->pPhysBuffData), ds->RxControl,
4486	    ds->RxControl != EAGLE_RXD_CTRL_DRIVER_OWN ?
4487	        "" : (status & EAGLE_RXD_STATUS_OK) ? " *" : " !",
4488	    ds->Status, le16toh(ds->PktLen), ds->RSSI, ds->Channel,
4489	    ds->Rate, le16toh(ds->QosCtrl), le16toh(ds->HtSig2));
4490}
4491
4492static void
4493mwl_printtxbuf(const struct mwl_txbuf *bf, u_int qnum, u_int ix)
4494{
4495	const struct mwl_txdesc *ds = bf->bf_desc;
4496	uint32_t status = le32toh(ds->Status);
4497
4498	printf("Q%u[%3u]", qnum, ix);
4499	printf(" (DS.V:%p DS.P:0x%jx)\n", ds, (uintmax_t)bf->bf_daddr);
4500	printf("    NEXT:%08x DATA:%08x LEN:%04x STAT:%08x%s\n",
4501	    le32toh(ds->pPhysNext),
4502	    le32toh(ds->PktPtr), le16toh(ds->PktLen), status,
4503	    status & EAGLE_TXD_STATUS_USED ?
4504		"" : (status & 3) != 0 ? " *" : " !");
4505	printf("    RATE:%02x PRI:%x QOS:%04x SAP:%08x FORMAT:%04x\n",
4506	    ds->DataRate, ds->TxPriority, le16toh(ds->QosCtrl),
4507	    le32toh(ds->SapPktInfo), le16toh(ds->Format));
4508#if MWL_TXDESC > 1
4509	printf("    MULTIFRAMES:%u LEN:%04x %04x %04x %04x %04x %04x\n"
4510	    , le32toh(ds->multiframes)
4511	    , le16toh(ds->PktLenArray[0]), le16toh(ds->PktLenArray[1])
4512	    , le16toh(ds->PktLenArray[2]), le16toh(ds->PktLenArray[3])
4513	    , le16toh(ds->PktLenArray[4]), le16toh(ds->PktLenArray[5])
4514	);
4515	printf("    DATA:%08x %08x %08x %08x %08x %08x\n"
4516	    , le32toh(ds->PktPtrArray[0]), le32toh(ds->PktPtrArray[1])
4517	    , le32toh(ds->PktPtrArray[2]), le32toh(ds->PktPtrArray[3])
4518	    , le32toh(ds->PktPtrArray[4]), le32toh(ds->PktPtrArray[5])
4519	);
4520#endif
4521#if 0
4522{ const uint8_t *cp = (const uint8_t *) ds;
4523  int i;
4524  for (i = 0; i < sizeof(struct mwl_txdesc); i++) {
4525	printf("%02x ", cp[i]);
4526	if (((i+1) % 16) == 0)
4527		printf("\n");
4528  }
4529  printf("\n");
4530}
4531#endif
4532}
4533#endif /* MWL_DEBUG */
4534
4535#if 0
4536static void
4537mwl_txq_dump(struct mwl_txq *txq)
4538{
4539	struct mwl_txbuf *bf;
4540	int i = 0;
4541
4542	MWL_TXQ_LOCK(txq);
4543	STAILQ_FOREACH(bf, &txq->active, bf_list) {
4544		struct mwl_txdesc *ds = bf->bf_desc;
4545		MWL_TXDESC_SYNC(txq, ds,
4546		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
4547#ifdef MWL_DEBUG
4548		mwl_printtxbuf(bf, txq->qnum, i);
4549#endif
4550		i++;
4551	}
4552	MWL_TXQ_UNLOCK(txq);
4553}
4554#endif
4555
4556static void
4557mwl_watchdog(void *arg)
4558{
4559	struct mwl_softc *sc = arg;
4560
4561	callout_reset(&sc->sc_watchdog, hz, mwl_watchdog, sc);
4562	if (sc->sc_tx_timer == 0 || --sc->sc_tx_timer > 0)
4563		return;
4564
4565	if (sc->sc_running && !sc->sc_invalid) {
4566		if (mwl_hal_setkeepalive(sc->sc_mh))
4567			device_printf(sc->sc_dev,
4568			    "transmit timeout (firmware hung?)\n");
4569		else
4570			device_printf(sc->sc_dev,
4571			    "transmit timeout\n");
4572#if 0
4573		mwl_reset(sc);
4574mwl_txq_dump(&sc->sc_txq[0]);/*XXX*/
4575#endif
4576		counter_u64_add(sc->sc_ic.ic_oerrors, 1);
4577		sc->sc_stats.mst_watchdog++;
4578	}
4579}
4580
4581#ifdef MWL_DIAGAPI
4582/*
4583 * Diagnostic interface to the HAL.  This is used by various
4584 * tools to do things like retrieve register contents for
4585 * debugging.  The mechanism is intentionally opaque so that
4586 * it can change frequently w/o concern for compatibility.
4587 */
4588static int
4589mwl_ioctl_diag(struct mwl_softc *sc, struct mwl_diag *md)
4590{
4591	struct mwl_hal *mh = sc->sc_mh;
4592	u_int id = md->md_id & MWL_DIAG_ID;
4593	void *indata = NULL;
4594	void *outdata = NULL;
4595	u_int32_t insize = md->md_in_size;
4596	u_int32_t outsize = md->md_out_size;
4597	int error = 0;
4598
4599	if (md->md_id & MWL_DIAG_IN) {
4600		/*
4601		 * Copy in data.
4602		 */
4603		indata = malloc(insize, M_TEMP, M_NOWAIT);
4604		if (indata == NULL) {
4605			error = ENOMEM;
4606			goto bad;
4607		}
4608		error = copyin(md->md_in_data, indata, insize);
4609		if (error)
4610			goto bad;
4611	}
4612	if (md->md_id & MWL_DIAG_DYN) {
4613		/*
4614		 * Allocate a buffer for the results (otherwise the HAL
4615		 * returns a pointer to a buffer where we can read the
4616		 * results).  Note that we depend on the HAL leaving this
4617		 * pointer for us to use below in reclaiming the buffer;
4618		 * may want to be more defensive.
4619		 */
4620		outdata = malloc(outsize, M_TEMP, M_NOWAIT);
4621		if (outdata == NULL) {
4622			error = ENOMEM;
4623			goto bad;
4624		}
4625	}
4626	if (mwl_hal_getdiagstate(mh, id, indata, insize, &outdata, &outsize)) {
4627		if (outsize < md->md_out_size)
4628			md->md_out_size = outsize;
4629		if (outdata != NULL)
4630			error = copyout(outdata, md->md_out_data,
4631					md->md_out_size);
4632	} else {
4633		error = EINVAL;
4634	}
4635bad:
4636	if ((md->md_id & MWL_DIAG_IN) && indata != NULL)
4637		free(indata, M_TEMP);
4638	if ((md->md_id & MWL_DIAG_DYN) && outdata != NULL)
4639		free(outdata, M_TEMP);
4640	return error;
4641}
4642
4643static int
4644mwl_ioctl_reset(struct mwl_softc *sc, struct mwl_diag *md)
4645{
4646	struct mwl_hal *mh = sc->sc_mh;
4647	int error;
4648
4649	MWL_LOCK_ASSERT(sc);
4650
4651	if (md->md_id == 0 && mwl_hal_fwload(mh, NULL) != 0) {
4652		device_printf(sc->sc_dev, "unable to load firmware\n");
4653		return EIO;
4654	}
4655	if (mwl_hal_gethwspecs(mh, &sc->sc_hwspecs) != 0) {
4656		device_printf(sc->sc_dev, "unable to fetch h/w specs\n");
4657		return EIO;
4658	}
4659	error = mwl_setupdma(sc);
4660	if (error != 0) {
4661		/* NB: mwl_setupdma prints a msg */
4662		return error;
4663	}
4664	/*
4665	 * Reset tx/rx data structures; after reload we must
4666	 * re-start the driver's notion of the next xmit/recv.
4667	 */
4668	mwl_draintxq(sc);		/* clear pending frames */
4669	mwl_resettxq(sc);		/* rebuild tx q lists */
4670	sc->sc_rxnext = NULL;		/* force rx to start at the list head */
4671	return 0;
4672}
4673#endif /* MWL_DIAGAPI */
4674
4675static void
4676mwl_parent(struct ieee80211com *ic)
4677{
4678	struct mwl_softc *sc = ic->ic_softc;
4679	int startall = 0;
4680
4681	MWL_LOCK(sc);
4682	if (ic->ic_nrunning > 0) {
4683		if (sc->sc_running) {
4684			/*
4685			 * To avoid rescanning another access point,
4686			 * do not call mwl_init() here.  Instead,
4687			 * only reflect promisc mode settings.
4688			 */
4689			mwl_mode_init(sc);
4690		} else {
4691			/*
4692			 * Beware of being called during attach/detach
4693			 * to reset promiscuous mode.  In that case we
4694			 * will still be marked UP but not RUNNING.
4695			 * However trying to re-init the interface
4696			 * is the wrong thing to do as we've already
4697			 * torn down much of our state.  There's
4698			 * probably a better way to deal with this.
4699			 */
4700			if (!sc->sc_invalid) {
4701				mwl_init(sc);	/* XXX lose error */
4702				startall = 1;
4703			}
4704		}
4705	} else
4706		mwl_stop(sc);
4707	MWL_UNLOCK(sc);
4708	if (startall)
4709		ieee80211_start_all(ic);
4710}
4711
4712static int
4713mwl_ioctl(struct ieee80211com *ic, u_long cmd, void *data)
4714{
4715	struct mwl_softc *sc = ic->ic_softc;
4716	struct ifreq *ifr = data;
4717	int error = 0;
4718
4719	switch (cmd) {
4720	case SIOCGMVSTATS:
4721		mwl_hal_gethwstats(sc->sc_mh, &sc->sc_stats.hw_stats);
4722#if 0
4723		/* NB: embed these numbers to get a consistent view */
4724		sc->sc_stats.mst_tx_packets =
4725		    ifp->if_get_counter(ifp, IFCOUNTER_OPACKETS);
4726		sc->sc_stats.mst_rx_packets =
4727		    ifp->if_get_counter(ifp, IFCOUNTER_IPACKETS);
4728#endif
4729		/*
4730		 * NB: Drop the softc lock in case of a page fault;
4731		 * we'll accept any potential inconsisentcy in the
4732		 * statistics.  The alternative is to copy the data
4733		 * to a local structure.
4734		 */
4735		return (copyout(&sc->sc_stats, ifr_data_get_ptr(ifr),
4736		    sizeof (sc->sc_stats)));
4737#ifdef MWL_DIAGAPI
4738	case SIOCGMVDIAG:
4739		/* XXX check privs */
4740		return mwl_ioctl_diag(sc, (struct mwl_diag *) ifr);
4741	case SIOCGMVRESET:
4742		/* XXX check privs */
4743		MWL_LOCK(sc);
4744		error = mwl_ioctl_reset(sc,(struct mwl_diag *) ifr);
4745		MWL_UNLOCK(sc);
4746		break;
4747#endif /* MWL_DIAGAPI */
4748	default:
4749		error = ENOTTY;
4750		break;
4751	}
4752	return (error);
4753}
4754
4755#ifdef	MWL_DEBUG
4756static int
4757mwl_sysctl_debug(SYSCTL_HANDLER_ARGS)
4758{
4759	struct mwl_softc *sc = arg1;
4760	int debug, error;
4761
4762	debug = sc->sc_debug | (mwl_hal_getdebug(sc->sc_mh) << 24);
4763	error = sysctl_handle_int(oidp, &debug, 0, req);
4764	if (error || !req->newptr)
4765		return error;
4766	mwl_hal_setdebug(sc->sc_mh, debug >> 24);
4767	sc->sc_debug = debug & 0x00ffffff;
4768	return 0;
4769}
4770#endif /* MWL_DEBUG */
4771
4772static void
4773mwl_sysctlattach(struct mwl_softc *sc)
4774{
4775#ifdef	MWL_DEBUG
4776	struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(sc->sc_dev);
4777	struct sysctl_oid *tree = device_get_sysctl_tree(sc->sc_dev);
4778
4779	sc->sc_debug = mwl_debug;
4780	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
4781		"debug", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
4782		mwl_sysctl_debug, "I", "control debugging printfs");
4783#endif
4784}
4785
4786/*
4787 * Announce various information on device/driver attach.
4788 */
4789static void
4790mwl_announce(struct mwl_softc *sc)
4791{
4792
4793	device_printf(sc->sc_dev, "Rev A%d hardware, v%d.%d.%d.%d firmware (regioncode %d)\n",
4794		sc->sc_hwspecs.hwVersion,
4795		(sc->sc_hwspecs.fwReleaseNumber>>24) & 0xff,
4796		(sc->sc_hwspecs.fwReleaseNumber>>16) & 0xff,
4797		(sc->sc_hwspecs.fwReleaseNumber>>8) & 0xff,
4798		(sc->sc_hwspecs.fwReleaseNumber>>0) & 0xff,
4799		sc->sc_hwspecs.regionCode);
4800	sc->sc_fwrelease = sc->sc_hwspecs.fwReleaseNumber;
4801
4802	if (bootverbose) {
4803		int i;
4804		for (i = 0; i <= WME_AC_VO; i++) {
4805			struct mwl_txq *txq = sc->sc_ac2q[i];
4806			device_printf(sc->sc_dev, "Use hw queue %u for %s traffic\n",
4807				txq->qnum, ieee80211_wme_acnames[i]);
4808		}
4809	}
4810	if (bootverbose || mwl_rxdesc != MWL_RXDESC)
4811		device_printf(sc->sc_dev, "using %u rx descriptors\n", mwl_rxdesc);
4812	if (bootverbose || mwl_rxbuf != MWL_RXBUF)
4813		device_printf(sc->sc_dev, "using %u rx buffers\n", mwl_rxbuf);
4814	if (bootverbose || mwl_txbuf != MWL_TXBUF)
4815		device_printf(sc->sc_dev, "using %u tx buffers\n", mwl_txbuf);
4816	if (bootverbose && mwl_hal_ismbsscapable(sc->sc_mh))
4817		device_printf(sc->sc_dev, "multi-bss support\n");
4818#ifdef MWL_TX_NODROP
4819	if (bootverbose)
4820		device_printf(sc->sc_dev, "no tx drop\n");
4821#endif
4822}
4823