if_jme.c revision 272066
1/*-
2 * Copyright (c) 2008, Pyun YongHyeon <yongari@FreeBSD.org>
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice unmodified, this list of conditions, and the following
10 *    disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25 * SUCH DAMAGE.
26 */
27
28#include <sys/cdefs.h>
29__FBSDID("$FreeBSD: head/sys/dev/jme/if_jme.c 272066 2014-09-24 11:33:43Z glebius $");
30
31#include <sys/param.h>
32#include <sys/systm.h>
33#include <sys/bus.h>
34#include <sys/endian.h>
35#include <sys/kernel.h>
36#include <sys/malloc.h>
37#include <sys/mbuf.h>
38#include <sys/rman.h>
39#include <sys/module.h>
40#include <sys/proc.h>
41#include <sys/queue.h>
42#include <sys/socket.h>
43#include <sys/sockio.h>
44#include <sys/sysctl.h>
45#include <sys/taskqueue.h>
46
47#include <net/bpf.h>
48#include <net/if.h>
49#include <net/if_var.h>
50#include <net/if_arp.h>
51#include <net/ethernet.h>
52#include <net/if_dl.h>
53#include <net/if_media.h>
54#include <net/if_types.h>
55#include <net/if_vlan_var.h>
56
57#include <netinet/in.h>
58#include <netinet/in_systm.h>
59#include <netinet/ip.h>
60#include <netinet/tcp.h>
61
62#include <dev/mii/mii.h>
63#include <dev/mii/miivar.h>
64
65#include <dev/pci/pcireg.h>
66#include <dev/pci/pcivar.h>
67
68#include <machine/bus.h>
69#include <machine/in_cksum.h>
70
71#include <dev/jme/if_jmereg.h>
72#include <dev/jme/if_jmevar.h>
73
74/* "device miibus" required.  See GENERIC if you get errors here. */
75#include "miibus_if.h"
76
77/* Define the following to disable printing Rx errors. */
78#undef	JME_SHOW_ERRORS
79
80#define	JME_CSUM_FEATURES	(CSUM_IP | CSUM_TCP | CSUM_UDP)
81
82MODULE_DEPEND(jme, pci, 1, 1, 1);
83MODULE_DEPEND(jme, ether, 1, 1, 1);
84MODULE_DEPEND(jme, miibus, 1, 1, 1);
85
86/* Tunables. */
87static int msi_disable = 0;
88static int msix_disable = 0;
89TUNABLE_INT("hw.jme.msi_disable", &msi_disable);
90TUNABLE_INT("hw.jme.msix_disable", &msix_disable);
91
92/*
93 * Devices supported by this driver.
94 */
95static struct jme_dev {
96	uint16_t	jme_vendorid;
97	uint16_t	jme_deviceid;
98	const char	*jme_name;
99} jme_devs[] = {
100	{ VENDORID_JMICRON, DEVICEID_JMC250,
101	    "JMicron Inc, JMC25x Gigabit Ethernet" },
102	{ VENDORID_JMICRON, DEVICEID_JMC260,
103	    "JMicron Inc, JMC26x Fast Ethernet" },
104};
105
106static int jme_miibus_readreg(device_t, int, int);
107static int jme_miibus_writereg(device_t, int, int, int);
108static void jme_miibus_statchg(device_t);
109static void jme_mediastatus(struct ifnet *, struct ifmediareq *);
110static int jme_mediachange(struct ifnet *);
111static int jme_probe(device_t);
112static int jme_eeprom_read_byte(struct jme_softc *, uint8_t, uint8_t *);
113static int jme_eeprom_macaddr(struct jme_softc *);
114static int jme_efuse_macaddr(struct jme_softc *);
115static void jme_reg_macaddr(struct jme_softc *);
116static void jme_set_macaddr(struct jme_softc *, uint8_t *);
117static void jme_map_intr_vector(struct jme_softc *);
118static int jme_attach(device_t);
119static int jme_detach(device_t);
120static void jme_sysctl_node(struct jme_softc *);
121static void jme_dmamap_cb(void *, bus_dma_segment_t *, int, int);
122static int jme_dma_alloc(struct jme_softc *);
123static void jme_dma_free(struct jme_softc *);
124static int jme_shutdown(device_t);
125static void jme_setlinkspeed(struct jme_softc *);
126static void jme_setwol(struct jme_softc *);
127static int jme_suspend(device_t);
128static int jme_resume(device_t);
129static int jme_encap(struct jme_softc *, struct mbuf **);
130static void jme_start(struct ifnet *);
131static void jme_start_locked(struct ifnet *);
132static void jme_watchdog(struct jme_softc *);
133static int jme_ioctl(struct ifnet *, u_long, caddr_t);
134static void jme_mac_config(struct jme_softc *);
135static void jme_link_task(void *, int);
136static int jme_intr(void *);
137static void jme_int_task(void *, int);
138static void jme_txeof(struct jme_softc *);
139static __inline void jme_discard_rxbuf(struct jme_softc *, int);
140static void jme_rxeof(struct jme_softc *);
141static int jme_rxintr(struct jme_softc *, int);
142static void jme_tick(void *);
143static void jme_reset(struct jme_softc *);
144static void jme_init(void *);
145static void jme_init_locked(struct jme_softc *);
146static void jme_stop(struct jme_softc *);
147static void jme_stop_tx(struct jme_softc *);
148static void jme_stop_rx(struct jme_softc *);
149static int jme_init_rx_ring(struct jme_softc *);
150static void jme_init_tx_ring(struct jme_softc *);
151static void jme_init_ssb(struct jme_softc *);
152static int jme_newbuf(struct jme_softc *, struct jme_rxdesc *);
153static void jme_set_vlan(struct jme_softc *);
154static void jme_set_filter(struct jme_softc *);
155static void jme_stats_clear(struct jme_softc *);
156static void jme_stats_save(struct jme_softc *);
157static void jme_stats_update(struct jme_softc *);
158static void jme_phy_down(struct jme_softc *);
159static void jme_phy_up(struct jme_softc *);
160static int sysctl_int_range(SYSCTL_HANDLER_ARGS, int, int);
161static int sysctl_hw_jme_tx_coal_to(SYSCTL_HANDLER_ARGS);
162static int sysctl_hw_jme_tx_coal_pkt(SYSCTL_HANDLER_ARGS);
163static int sysctl_hw_jme_rx_coal_to(SYSCTL_HANDLER_ARGS);
164static int sysctl_hw_jme_rx_coal_pkt(SYSCTL_HANDLER_ARGS);
165static int sysctl_hw_jme_proc_limit(SYSCTL_HANDLER_ARGS);
166
167
168static device_method_t jme_methods[] = {
169	/* Device interface. */
170	DEVMETHOD(device_probe,		jme_probe),
171	DEVMETHOD(device_attach,	jme_attach),
172	DEVMETHOD(device_detach,	jme_detach),
173	DEVMETHOD(device_shutdown,	jme_shutdown),
174	DEVMETHOD(device_suspend,	jme_suspend),
175	DEVMETHOD(device_resume,	jme_resume),
176
177	/* MII interface. */
178	DEVMETHOD(miibus_readreg,	jme_miibus_readreg),
179	DEVMETHOD(miibus_writereg,	jme_miibus_writereg),
180	DEVMETHOD(miibus_statchg,	jme_miibus_statchg),
181
182	{ NULL, NULL }
183};
184
185static driver_t jme_driver = {
186	"jme",
187	jme_methods,
188	sizeof(struct jme_softc)
189};
190
191static devclass_t jme_devclass;
192
193DRIVER_MODULE(jme, pci, jme_driver, jme_devclass, 0, 0);
194DRIVER_MODULE(miibus, jme, miibus_driver, miibus_devclass, 0, 0);
195
196static struct resource_spec jme_res_spec_mem[] = {
197	{ SYS_RES_MEMORY,	PCIR_BAR(0),	RF_ACTIVE },
198	{ -1,			0,		0 }
199};
200
201static struct resource_spec jme_irq_spec_legacy[] = {
202	{ SYS_RES_IRQ,		0,		RF_ACTIVE | RF_SHAREABLE },
203	{ -1,			0,		0 }
204};
205
206static struct resource_spec jme_irq_spec_msi[] = {
207	{ SYS_RES_IRQ,		1,		RF_ACTIVE },
208	{ -1,			0,		0 }
209};
210
211/*
212 *	Read a PHY register on the MII of the JMC250.
213 */
214static int
215jme_miibus_readreg(device_t dev, int phy, int reg)
216{
217	struct jme_softc *sc;
218	uint32_t val;
219	int i;
220
221	sc = device_get_softc(dev);
222
223	/* For FPGA version, PHY address 0 should be ignored. */
224	if ((sc->jme_flags & JME_FLAG_FPGA) != 0 && phy == 0)
225		return (0);
226
227	CSR_WRITE_4(sc, JME_SMI, SMI_OP_READ | SMI_OP_EXECUTE |
228	    SMI_PHY_ADDR(phy) | SMI_REG_ADDR(reg));
229	for (i = JME_PHY_TIMEOUT; i > 0; i--) {
230		DELAY(1);
231		if (((val = CSR_READ_4(sc, JME_SMI)) & SMI_OP_EXECUTE) == 0)
232			break;
233	}
234
235	if (i == 0) {
236		device_printf(sc->jme_dev, "phy read timeout : %d\n", reg);
237		return (0);
238	}
239
240	return ((val & SMI_DATA_MASK) >> SMI_DATA_SHIFT);
241}
242
243/*
244 *	Write a PHY register on the MII of the JMC250.
245 */
246static int
247jme_miibus_writereg(device_t dev, int phy, int reg, int val)
248{
249	struct jme_softc *sc;
250	int i;
251
252	sc = device_get_softc(dev);
253
254	/* For FPGA version, PHY address 0 should be ignored. */
255	if ((sc->jme_flags & JME_FLAG_FPGA) != 0 && phy == 0)
256		return (0);
257
258	CSR_WRITE_4(sc, JME_SMI, SMI_OP_WRITE | SMI_OP_EXECUTE |
259	    ((val << SMI_DATA_SHIFT) & SMI_DATA_MASK) |
260	    SMI_PHY_ADDR(phy) | SMI_REG_ADDR(reg));
261	for (i = JME_PHY_TIMEOUT; i > 0; i--) {
262		DELAY(1);
263		if (((val = CSR_READ_4(sc, JME_SMI)) & SMI_OP_EXECUTE) == 0)
264			break;
265	}
266
267	if (i == 0)
268		device_printf(sc->jme_dev, "phy write timeout : %d\n", reg);
269
270	return (0);
271}
272
273/*
274 *	Callback from MII layer when media changes.
275 */
276static void
277jme_miibus_statchg(device_t dev)
278{
279	struct jme_softc *sc;
280
281	sc = device_get_softc(dev);
282	taskqueue_enqueue(taskqueue_swi, &sc->jme_link_task);
283}
284
285/*
286 *	Get the current interface media status.
287 */
288static void
289jme_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
290{
291	struct jme_softc *sc;
292	struct mii_data *mii;
293
294	sc = ifp->if_softc;
295	JME_LOCK(sc);
296	if ((ifp->if_flags & IFF_UP) == 0) {
297		JME_UNLOCK(sc);
298		return;
299	}
300	mii = device_get_softc(sc->jme_miibus);
301
302	mii_pollstat(mii);
303	ifmr->ifm_status = mii->mii_media_status;
304	ifmr->ifm_active = mii->mii_media_active;
305	JME_UNLOCK(sc);
306}
307
308/*
309 *	Set hardware to newly-selected media.
310 */
311static int
312jme_mediachange(struct ifnet *ifp)
313{
314	struct jme_softc *sc;
315	struct mii_data *mii;
316	struct mii_softc *miisc;
317	int error;
318
319	sc = ifp->if_softc;
320	JME_LOCK(sc);
321	mii = device_get_softc(sc->jme_miibus);
322	LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
323		PHY_RESET(miisc);
324	error = mii_mediachg(mii);
325	JME_UNLOCK(sc);
326
327	return (error);
328}
329
330static int
331jme_probe(device_t dev)
332{
333	struct jme_dev *sp;
334	int i;
335	uint16_t vendor, devid;
336
337	vendor = pci_get_vendor(dev);
338	devid = pci_get_device(dev);
339	sp = jme_devs;
340	for (i = 0; i < sizeof(jme_devs) / sizeof(jme_devs[0]);
341	    i++, sp++) {
342		if (vendor == sp->jme_vendorid &&
343		    devid == sp->jme_deviceid) {
344			device_set_desc(dev, sp->jme_name);
345			return (BUS_PROBE_DEFAULT);
346		}
347	}
348
349	return (ENXIO);
350}
351
352static int
353jme_eeprom_read_byte(struct jme_softc *sc, uint8_t addr, uint8_t *val)
354{
355	uint32_t reg;
356	int i;
357
358	*val = 0;
359	for (i = JME_TIMEOUT; i > 0; i--) {
360		reg = CSR_READ_4(sc, JME_SMBCSR);
361		if ((reg & SMBCSR_HW_BUSY_MASK) == SMBCSR_HW_IDLE)
362			break;
363		DELAY(1);
364	}
365
366	if (i == 0) {
367		device_printf(sc->jme_dev, "EEPROM idle timeout!\n");
368		return (ETIMEDOUT);
369	}
370
371	reg = ((uint32_t)addr << SMBINTF_ADDR_SHIFT) & SMBINTF_ADDR_MASK;
372	CSR_WRITE_4(sc, JME_SMBINTF, reg | SMBINTF_RD | SMBINTF_CMD_TRIGGER);
373	for (i = JME_TIMEOUT; i > 0; i--) {
374		DELAY(1);
375		reg = CSR_READ_4(sc, JME_SMBINTF);
376		if ((reg & SMBINTF_CMD_TRIGGER) == 0)
377			break;
378	}
379
380	if (i == 0) {
381		device_printf(sc->jme_dev, "EEPROM read timeout!\n");
382		return (ETIMEDOUT);
383	}
384
385	reg = CSR_READ_4(sc, JME_SMBINTF);
386	*val = (reg & SMBINTF_RD_DATA_MASK) >> SMBINTF_RD_DATA_SHIFT;
387
388	return (0);
389}
390
391static int
392jme_eeprom_macaddr(struct jme_softc *sc)
393{
394	uint8_t eaddr[ETHER_ADDR_LEN];
395	uint8_t fup, reg, val;
396	uint32_t offset;
397	int match;
398
399	offset = 0;
400	if (jme_eeprom_read_byte(sc, offset++, &fup) != 0 ||
401	    fup != JME_EEPROM_SIG0)
402		return (ENOENT);
403	if (jme_eeprom_read_byte(sc, offset++, &fup) != 0 ||
404	    fup != JME_EEPROM_SIG1)
405		return (ENOENT);
406	match = 0;
407	do {
408		if (jme_eeprom_read_byte(sc, offset, &fup) != 0)
409			break;
410		if (JME_EEPROM_MKDESC(JME_EEPROM_FUNC0, JME_EEPROM_PAGE_BAR1) ==
411		    (fup & (JME_EEPROM_FUNC_MASK | JME_EEPROM_PAGE_MASK))) {
412			if (jme_eeprom_read_byte(sc, offset + 1, &reg) != 0)
413				break;
414			if (reg >= JME_PAR0 &&
415			    reg < JME_PAR0 + ETHER_ADDR_LEN) {
416				if (jme_eeprom_read_byte(sc, offset + 2,
417				    &val) != 0)
418					break;
419				eaddr[reg - JME_PAR0] = val;
420				match++;
421			}
422		}
423		/* Check for the end of EEPROM descriptor. */
424		if ((fup & JME_EEPROM_DESC_END) == JME_EEPROM_DESC_END)
425			break;
426		/* Try next eeprom descriptor. */
427		offset += JME_EEPROM_DESC_BYTES;
428	} while (match != ETHER_ADDR_LEN && offset < JME_EEPROM_END);
429
430	if (match == ETHER_ADDR_LEN) {
431		bcopy(eaddr, sc->jme_eaddr, ETHER_ADDR_LEN);
432		return (0);
433	}
434
435	return (ENOENT);
436}
437
438static int
439jme_efuse_macaddr(struct jme_softc *sc)
440{
441	uint32_t reg;
442	int i;
443
444	reg = pci_read_config(sc->jme_dev, JME_EFUSE_CTL1, 4);
445	if ((reg & (EFUSE_CTL1_AUTOLOAD_ERR | EFUSE_CTL1_AUTOLAOD_DONE)) !=
446	    EFUSE_CTL1_AUTOLAOD_DONE)
447		return (ENOENT);
448	/* Reset eFuse controller. */
449	reg = pci_read_config(sc->jme_dev, JME_EFUSE_CTL2, 4);
450	reg |= EFUSE_CTL2_RESET;
451	pci_write_config(sc->jme_dev, JME_EFUSE_CTL2, reg, 4);
452	reg = pci_read_config(sc->jme_dev, JME_EFUSE_CTL2, 4);
453	reg &= ~EFUSE_CTL2_RESET;
454	pci_write_config(sc->jme_dev, JME_EFUSE_CTL2, reg, 4);
455
456	/* Have eFuse reload station address to MAC controller. */
457	reg = pci_read_config(sc->jme_dev, JME_EFUSE_CTL1, 4);
458	reg &= ~EFUSE_CTL1_CMD_MASK;
459	reg |= EFUSE_CTL1_CMD_AUTOLOAD | EFUSE_CTL1_EXECUTE;
460	pci_write_config(sc->jme_dev, JME_EFUSE_CTL1, reg, 4);
461
462	/*
463	 * Verify completion of eFuse autload command.  It should be
464	 * completed within 108us.
465	 */
466	DELAY(110);
467	for (i = 10; i > 0; i--) {
468		reg = pci_read_config(sc->jme_dev, JME_EFUSE_CTL1, 4);
469		if ((reg & (EFUSE_CTL1_AUTOLOAD_ERR |
470		    EFUSE_CTL1_AUTOLAOD_DONE)) != EFUSE_CTL1_AUTOLAOD_DONE) {
471			DELAY(20);
472			continue;
473		}
474		if ((reg & EFUSE_CTL1_EXECUTE) == 0)
475			break;
476		/* Station address loading is still in progress. */
477		DELAY(20);
478	}
479	if (i == 0) {
480		device_printf(sc->jme_dev, "eFuse autoload timed out.\n");
481		return (ETIMEDOUT);
482	}
483
484	return (0);
485}
486
487static void
488jme_reg_macaddr(struct jme_softc *sc)
489{
490	uint32_t par0, par1;
491
492	/* Read station address. */
493	par0 = CSR_READ_4(sc, JME_PAR0);
494	par1 = CSR_READ_4(sc, JME_PAR1);
495	par1 &= 0xFFFF;
496	if ((par0 == 0 && par1 == 0) ||
497	    (par0 == 0xFFFFFFFF && par1 == 0xFFFF)) {
498		device_printf(sc->jme_dev,
499		    "Failed to retrieve Ethernet address.\n");
500	} else {
501		/*
502		 * For controllers that use eFuse, the station address
503		 * could also be extracted from JME_PCI_PAR0 and
504		 * JME_PCI_PAR1 registers in PCI configuration space.
505		 * Each register holds exactly half of station address(24bits)
506		 * so use JME_PAR0, JME_PAR1 registers instead.
507		 */
508		sc->jme_eaddr[0] = (par0 >> 0) & 0xFF;
509		sc->jme_eaddr[1] = (par0 >> 8) & 0xFF;
510		sc->jme_eaddr[2] = (par0 >> 16) & 0xFF;
511		sc->jme_eaddr[3] = (par0 >> 24) & 0xFF;
512		sc->jme_eaddr[4] = (par1 >> 0) & 0xFF;
513		sc->jme_eaddr[5] = (par1 >> 8) & 0xFF;
514	}
515}
516
517static void
518jme_set_macaddr(struct jme_softc *sc, uint8_t *eaddr)
519{
520	uint32_t val;
521	int i;
522
523	if ((sc->jme_flags & JME_FLAG_EFUSE) != 0) {
524		/*
525		 * Avoid reprogramming station address if the address
526		 * is the same as previous one.  Note, reprogrammed
527		 * station address is permanent as if it was written
528		 * to EEPROM. So if station address was changed by
529		 * admistrator it's possible to lose factory configured
530		 * address when driver fails to restore its address.
531		 * (e.g. reboot or system crash)
532		 */
533		if (bcmp(eaddr, sc->jme_eaddr, ETHER_ADDR_LEN) != 0) {
534			for (i = 0; i < ETHER_ADDR_LEN; i++) {
535				val = JME_EFUSE_EEPROM_FUNC0 <<
536				    JME_EFUSE_EEPROM_FUNC_SHIFT;
537				val |= JME_EFUSE_EEPROM_PAGE_BAR1 <<
538				    JME_EFUSE_EEPROM_PAGE_SHIFT;
539				val |= (JME_PAR0 + i) <<
540				    JME_EFUSE_EEPROM_ADDR_SHIFT;
541				val |= eaddr[i] << JME_EFUSE_EEPROM_DATA_SHIFT;
542				pci_write_config(sc->jme_dev, JME_EFUSE_EEPROM,
543				    val | JME_EFUSE_EEPROM_WRITE, 4);
544			}
545		}
546	} else {
547		CSR_WRITE_4(sc, JME_PAR0,
548		    eaddr[3] << 24 | eaddr[2] << 16 | eaddr[1] << 8 | eaddr[0]);
549		CSR_WRITE_4(sc, JME_PAR1, eaddr[5] << 8 | eaddr[4]);
550	}
551}
552
553static void
554jme_map_intr_vector(struct jme_softc *sc)
555{
556	uint32_t map[MSINUM_NUM_INTR_SOURCE / JME_MSI_MESSAGES];
557
558	bzero(map, sizeof(map));
559
560	/* Map Tx interrupts source to MSI/MSIX vector 2. */
561	map[MSINUM_REG_INDEX(N_INTR_TXQ0_COMP)] =
562	    MSINUM_INTR_SOURCE(2, N_INTR_TXQ0_COMP);
563	map[MSINUM_REG_INDEX(N_INTR_TXQ1_COMP)] |=
564	    MSINUM_INTR_SOURCE(2, N_INTR_TXQ1_COMP);
565	map[MSINUM_REG_INDEX(N_INTR_TXQ2_COMP)] |=
566	    MSINUM_INTR_SOURCE(2, N_INTR_TXQ2_COMP);
567	map[MSINUM_REG_INDEX(N_INTR_TXQ3_COMP)] |=
568	    MSINUM_INTR_SOURCE(2, N_INTR_TXQ3_COMP);
569	map[MSINUM_REG_INDEX(N_INTR_TXQ4_COMP)] |=
570	    MSINUM_INTR_SOURCE(2, N_INTR_TXQ4_COMP);
571	map[MSINUM_REG_INDEX(N_INTR_TXQ4_COMP)] |=
572	    MSINUM_INTR_SOURCE(2, N_INTR_TXQ5_COMP);
573	map[MSINUM_REG_INDEX(N_INTR_TXQ6_COMP)] |=
574	    MSINUM_INTR_SOURCE(2, N_INTR_TXQ6_COMP);
575	map[MSINUM_REG_INDEX(N_INTR_TXQ7_COMP)] |=
576	    MSINUM_INTR_SOURCE(2, N_INTR_TXQ7_COMP);
577	map[MSINUM_REG_INDEX(N_INTR_TXQ_COAL)] |=
578	    MSINUM_INTR_SOURCE(2, N_INTR_TXQ_COAL);
579	map[MSINUM_REG_INDEX(N_INTR_TXQ_COAL_TO)] |=
580	    MSINUM_INTR_SOURCE(2, N_INTR_TXQ_COAL_TO);
581
582	/* Map Rx interrupts source to MSI/MSIX vector 1. */
583	map[MSINUM_REG_INDEX(N_INTR_RXQ0_COMP)] =
584	    MSINUM_INTR_SOURCE(1, N_INTR_RXQ0_COMP);
585	map[MSINUM_REG_INDEX(N_INTR_RXQ1_COMP)] =
586	    MSINUM_INTR_SOURCE(1, N_INTR_RXQ1_COMP);
587	map[MSINUM_REG_INDEX(N_INTR_RXQ2_COMP)] =
588	    MSINUM_INTR_SOURCE(1, N_INTR_RXQ2_COMP);
589	map[MSINUM_REG_INDEX(N_INTR_RXQ3_COMP)] =
590	    MSINUM_INTR_SOURCE(1, N_INTR_RXQ3_COMP);
591	map[MSINUM_REG_INDEX(N_INTR_RXQ0_DESC_EMPTY)] =
592	    MSINUM_INTR_SOURCE(1, N_INTR_RXQ0_DESC_EMPTY);
593	map[MSINUM_REG_INDEX(N_INTR_RXQ1_DESC_EMPTY)] =
594	    MSINUM_INTR_SOURCE(1, N_INTR_RXQ1_DESC_EMPTY);
595	map[MSINUM_REG_INDEX(N_INTR_RXQ2_DESC_EMPTY)] =
596	    MSINUM_INTR_SOURCE(1, N_INTR_RXQ2_DESC_EMPTY);
597	map[MSINUM_REG_INDEX(N_INTR_RXQ3_DESC_EMPTY)] =
598	    MSINUM_INTR_SOURCE(1, N_INTR_RXQ3_DESC_EMPTY);
599	map[MSINUM_REG_INDEX(N_INTR_RXQ0_COAL)] =
600	    MSINUM_INTR_SOURCE(1, N_INTR_RXQ0_COAL);
601	map[MSINUM_REG_INDEX(N_INTR_RXQ1_COAL)] =
602	    MSINUM_INTR_SOURCE(1, N_INTR_RXQ1_COAL);
603	map[MSINUM_REG_INDEX(N_INTR_RXQ2_COAL)] =
604	    MSINUM_INTR_SOURCE(1, N_INTR_RXQ2_COAL);
605	map[MSINUM_REG_INDEX(N_INTR_RXQ3_COAL)] =
606	    MSINUM_INTR_SOURCE(1, N_INTR_RXQ3_COAL);
607	map[MSINUM_REG_INDEX(N_INTR_RXQ0_COAL_TO)] =
608	    MSINUM_INTR_SOURCE(1, N_INTR_RXQ0_COAL_TO);
609	map[MSINUM_REG_INDEX(N_INTR_RXQ1_COAL_TO)] =
610	    MSINUM_INTR_SOURCE(1, N_INTR_RXQ1_COAL_TO);
611	map[MSINUM_REG_INDEX(N_INTR_RXQ2_COAL_TO)] =
612	    MSINUM_INTR_SOURCE(1, N_INTR_RXQ2_COAL_TO);
613	map[MSINUM_REG_INDEX(N_INTR_RXQ3_COAL_TO)] =
614	    MSINUM_INTR_SOURCE(1, N_INTR_RXQ3_COAL_TO);
615
616	/* Map all other interrupts source to MSI/MSIX vector 0. */
617	CSR_WRITE_4(sc, JME_MSINUM_BASE + sizeof(uint32_t) * 0, map[0]);
618	CSR_WRITE_4(sc, JME_MSINUM_BASE + sizeof(uint32_t) * 1, map[1]);
619	CSR_WRITE_4(sc, JME_MSINUM_BASE + sizeof(uint32_t) * 2, map[2]);
620	CSR_WRITE_4(sc, JME_MSINUM_BASE + sizeof(uint32_t) * 3, map[3]);
621}
622
623static int
624jme_attach(device_t dev)
625{
626	struct jme_softc *sc;
627	struct ifnet *ifp;
628	struct mii_softc *miisc;
629	struct mii_data *mii;
630	uint32_t reg;
631	uint16_t burst;
632	int error, i, mii_flags, msic, msixc, pmc;
633
634	error = 0;
635	sc = device_get_softc(dev);
636	sc->jme_dev = dev;
637
638	mtx_init(&sc->jme_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
639	    MTX_DEF);
640	callout_init_mtx(&sc->jme_tick_ch, &sc->jme_mtx, 0);
641	TASK_INIT(&sc->jme_int_task, 0, jme_int_task, sc);
642	TASK_INIT(&sc->jme_link_task, 0, jme_link_task, sc);
643
644	/*
645	 * Map the device. JMC250 supports both memory mapped and I/O
646	 * register space access. Because I/O register access should
647	 * use different BARs to access registers it's waste of time
648	 * to use I/O register spce access. JMC250 uses 16K to map
649	 * entire memory space.
650	 */
651	pci_enable_busmaster(dev);
652	sc->jme_res_spec = jme_res_spec_mem;
653	sc->jme_irq_spec = jme_irq_spec_legacy;
654	error = bus_alloc_resources(dev, sc->jme_res_spec, sc->jme_res);
655	if (error != 0) {
656		device_printf(dev, "cannot allocate memory resources.\n");
657		goto fail;
658	}
659
660	/* Allocate IRQ resources. */
661	msixc = pci_msix_count(dev);
662	msic = pci_msi_count(dev);
663	if (bootverbose) {
664		device_printf(dev, "MSIX count : %d\n", msixc);
665		device_printf(dev, "MSI count : %d\n", msic);
666	}
667
668	/* Use 1 MSI/MSI-X. */
669	if (msixc > 1)
670		msixc = 1;
671	if (msic > 1)
672		msic = 1;
673	/* Prefer MSIX over MSI. */
674	if (msix_disable == 0 || msi_disable == 0) {
675		if (msix_disable == 0 && msixc > 0 &&
676		    pci_alloc_msix(dev, &msixc) == 0) {
677			if (msixc == 1) {
678				device_printf(dev, "Using %d MSIX messages.\n",
679				    msixc);
680				sc->jme_flags |= JME_FLAG_MSIX;
681				sc->jme_irq_spec = jme_irq_spec_msi;
682			} else
683				pci_release_msi(dev);
684		}
685		if (msi_disable == 0 && (sc->jme_flags & JME_FLAG_MSIX) == 0 &&
686		    msic > 0 && pci_alloc_msi(dev, &msic) == 0) {
687			if (msic == 1) {
688				device_printf(dev, "Using %d MSI messages.\n",
689				    msic);
690				sc->jme_flags |= JME_FLAG_MSI;
691				sc->jme_irq_spec = jme_irq_spec_msi;
692			} else
693				pci_release_msi(dev);
694		}
695		/* Map interrupt vector 0, 1 and 2. */
696		if ((sc->jme_flags & JME_FLAG_MSI) != 0 ||
697		    (sc->jme_flags & JME_FLAG_MSIX) != 0)
698			jme_map_intr_vector(sc);
699	}
700
701	error = bus_alloc_resources(dev, sc->jme_irq_spec, sc->jme_irq);
702	if (error != 0) {
703		device_printf(dev, "cannot allocate IRQ resources.\n");
704		goto fail;
705	}
706
707	sc->jme_rev = pci_get_device(dev);
708	if ((sc->jme_rev & DEVICEID_JMC2XX_MASK) == DEVICEID_JMC260) {
709		sc->jme_flags |= JME_FLAG_FASTETH;
710		sc->jme_flags |= JME_FLAG_NOJUMBO;
711	}
712	reg = CSR_READ_4(sc, JME_CHIPMODE);
713	sc->jme_chip_rev = (reg & CHIPMODE_REV_MASK) >> CHIPMODE_REV_SHIFT;
714	if (((reg & CHIPMODE_FPGA_REV_MASK) >> CHIPMODE_FPGA_REV_SHIFT) !=
715	    CHIPMODE_NOT_FPGA)
716		sc->jme_flags |= JME_FLAG_FPGA;
717	if (bootverbose) {
718		device_printf(dev, "PCI device revision : 0x%04x\n",
719		    sc->jme_rev);
720		device_printf(dev, "Chip revision : 0x%02x\n",
721		    sc->jme_chip_rev);
722		if ((sc->jme_flags & JME_FLAG_FPGA) != 0)
723			device_printf(dev, "FPGA revision : 0x%04x\n",
724			    (reg & CHIPMODE_FPGA_REV_MASK) >>
725			    CHIPMODE_FPGA_REV_SHIFT);
726	}
727	if (sc->jme_chip_rev == 0xFF) {
728		device_printf(dev, "Unknown chip revision : 0x%02x\n",
729		    sc->jme_rev);
730		error = ENXIO;
731		goto fail;
732	}
733
734	/* Identify controller features and bugs. */
735	if (CHIPMODE_REVFM(sc->jme_chip_rev) >= 2) {
736		if ((sc->jme_rev & DEVICEID_JMC2XX_MASK) == DEVICEID_JMC260 &&
737		    CHIPMODE_REVFM(sc->jme_chip_rev) == 2)
738			sc->jme_flags |= JME_FLAG_DMA32BIT;
739		if (CHIPMODE_REVFM(sc->jme_chip_rev) >= 5)
740			sc->jme_flags |= JME_FLAG_EFUSE | JME_FLAG_PCCPCD;
741		sc->jme_flags |= JME_FLAG_TXCLK | JME_FLAG_RXCLK;
742		sc->jme_flags |= JME_FLAG_HWMIB;
743	}
744
745	/* Reset the ethernet controller. */
746	jme_reset(sc);
747
748	/* Get station address. */
749	if ((sc->jme_flags & JME_FLAG_EFUSE) != 0) {
750		error = jme_efuse_macaddr(sc);
751		if (error == 0)
752			jme_reg_macaddr(sc);
753	} else {
754		error = ENOENT;
755		reg = CSR_READ_4(sc, JME_SMBCSR);
756		if ((reg & SMBCSR_EEPROM_PRESENT) != 0)
757			error = jme_eeprom_macaddr(sc);
758		if (error != 0 && bootverbose)
759			device_printf(sc->jme_dev,
760			    "ethernet hardware address not found in EEPROM.\n");
761		if (error != 0)
762			jme_reg_macaddr(sc);
763	}
764
765	/*
766	 * Save PHY address.
767	 * Integrated JR0211 has fixed PHY address whereas FPGA version
768	 * requires PHY probing to get correct PHY address.
769	 */
770	if ((sc->jme_flags & JME_FLAG_FPGA) == 0) {
771		sc->jme_phyaddr = CSR_READ_4(sc, JME_GPREG0) &
772		    GPREG0_PHY_ADDR_MASK;
773		if (bootverbose)
774			device_printf(dev, "PHY is at address %d.\n",
775			    sc->jme_phyaddr);
776	} else
777		sc->jme_phyaddr = 0;
778
779	/* Set max allowable DMA size. */
780	if (pci_find_cap(dev, PCIY_EXPRESS, &i) == 0) {
781		sc->jme_flags |= JME_FLAG_PCIE;
782		burst = pci_read_config(dev, i + PCIER_DEVICE_CTL, 2);
783		if (bootverbose) {
784			device_printf(dev, "Read request size : %d bytes.\n",
785			    128 << ((burst >> 12) & 0x07));
786			device_printf(dev, "TLP payload size : %d bytes.\n",
787			    128 << ((burst >> 5) & 0x07));
788		}
789		switch ((burst >> 12) & 0x07) {
790		case 0:
791			sc->jme_tx_dma_size = TXCSR_DMA_SIZE_128;
792			break;
793		case 1:
794			sc->jme_tx_dma_size = TXCSR_DMA_SIZE_256;
795			break;
796		default:
797			sc->jme_tx_dma_size = TXCSR_DMA_SIZE_512;
798			break;
799		}
800		sc->jme_rx_dma_size = RXCSR_DMA_SIZE_128;
801	} else {
802		sc->jme_tx_dma_size = TXCSR_DMA_SIZE_512;
803		sc->jme_rx_dma_size = RXCSR_DMA_SIZE_128;
804	}
805	/* Create coalescing sysctl node. */
806	jme_sysctl_node(sc);
807	if ((error = jme_dma_alloc(sc) != 0))
808		goto fail;
809
810	ifp = sc->jme_ifp = if_alloc(IFT_ETHER);
811	if (ifp == NULL) {
812		device_printf(dev, "cannot allocate ifnet structure.\n");
813		error = ENXIO;
814		goto fail;
815	}
816
817	ifp->if_softc = sc;
818	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
819	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
820	ifp->if_ioctl = jme_ioctl;
821	ifp->if_start = jme_start;
822	ifp->if_init = jme_init;
823	ifp->if_snd.ifq_drv_maxlen = JME_TX_RING_CNT - 1;
824	IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen);
825	IFQ_SET_READY(&ifp->if_snd);
826	/* JMC250 supports Tx/Rx checksum offload as well as TSO. */
827	ifp->if_capabilities = IFCAP_HWCSUM | IFCAP_TSO4;
828	ifp->if_hwassist = JME_CSUM_FEATURES | CSUM_TSO;
829	if (pci_find_cap(dev, PCIY_PMG, &pmc) == 0) {
830		sc->jme_flags |= JME_FLAG_PMCAP;
831		ifp->if_capabilities |= IFCAP_WOL_MAGIC;
832	}
833	ifp->if_capenable = ifp->if_capabilities;
834
835	/* Wakeup PHY. */
836	jme_phy_up(sc);
837	mii_flags = MIIF_DOPAUSE;
838	/* Ask PHY calibration to PHY driver. */
839	if (CHIPMODE_REVFM(sc->jme_chip_rev) >= 5)
840		mii_flags |= MIIF_MACPRIV0;
841	/* Set up MII bus. */
842	error = mii_attach(dev, &sc->jme_miibus, ifp, jme_mediachange,
843	    jme_mediastatus, BMSR_DEFCAPMASK,
844	    sc->jme_flags & JME_FLAG_FPGA ? MII_PHY_ANY : sc->jme_phyaddr,
845	    MII_OFFSET_ANY, mii_flags);
846	if (error != 0) {
847		device_printf(dev, "attaching PHYs failed\n");
848		goto fail;
849	}
850
851	/*
852	 * Force PHY to FPGA mode.
853	 */
854	if ((sc->jme_flags & JME_FLAG_FPGA) != 0) {
855		mii = device_get_softc(sc->jme_miibus);
856		if (mii->mii_instance != 0) {
857			LIST_FOREACH(miisc, &mii->mii_phys, mii_list) {
858				if (miisc->mii_phy != 0) {
859					sc->jme_phyaddr = miisc->mii_phy;
860					break;
861				}
862			}
863			if (sc->jme_phyaddr != 0) {
864				device_printf(sc->jme_dev,
865				    "FPGA PHY is at %d\n", sc->jme_phyaddr);
866				/* vendor magic. */
867				jme_miibus_writereg(dev, sc->jme_phyaddr, 27,
868				    0x0004);
869			}
870		}
871	}
872
873	ether_ifattach(ifp, sc->jme_eaddr);
874
875	/* VLAN capability setup */
876	ifp->if_capabilities |= IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING |
877	    IFCAP_VLAN_HWCSUM | IFCAP_VLAN_HWTSO;
878	ifp->if_capenable = ifp->if_capabilities;
879
880	/* Tell the upper layer(s) we support long frames. */
881	ifp->if_hdrlen = sizeof(struct ether_vlan_header);
882
883	/* Create local taskq. */
884	sc->jme_tq = taskqueue_create_fast("jme_taskq", M_WAITOK,
885	    taskqueue_thread_enqueue, &sc->jme_tq);
886	if (sc->jme_tq == NULL) {
887		device_printf(dev, "could not create taskqueue.\n");
888		ether_ifdetach(ifp);
889		error = ENXIO;
890		goto fail;
891	}
892	taskqueue_start_threads(&sc->jme_tq, 1, PI_NET, "%s taskq",
893	    device_get_nameunit(sc->jme_dev));
894
895	for (i = 0; i < 1; i++) {
896		error = bus_setup_intr(dev, sc->jme_irq[i],
897		    INTR_TYPE_NET | INTR_MPSAFE, jme_intr, NULL, sc,
898		    &sc->jme_intrhand[i]);
899		if (error != 0)
900			break;
901	}
902
903	if (error != 0) {
904		device_printf(dev, "could not set up interrupt handler.\n");
905		taskqueue_free(sc->jme_tq);
906		sc->jme_tq = NULL;
907		ether_ifdetach(ifp);
908		goto fail;
909	}
910
911fail:
912	if (error != 0)
913		jme_detach(dev);
914
915	return (error);
916}
917
918static int
919jme_detach(device_t dev)
920{
921	struct jme_softc *sc;
922	struct ifnet *ifp;
923	int i;
924
925	sc = device_get_softc(dev);
926
927	ifp = sc->jme_ifp;
928	if (device_is_attached(dev)) {
929		JME_LOCK(sc);
930		sc->jme_flags |= JME_FLAG_DETACH;
931		jme_stop(sc);
932		JME_UNLOCK(sc);
933		callout_drain(&sc->jme_tick_ch);
934		taskqueue_drain(sc->jme_tq, &sc->jme_int_task);
935		taskqueue_drain(taskqueue_swi, &sc->jme_link_task);
936		/* Restore possibly modified station address. */
937		if ((sc->jme_flags & JME_FLAG_EFUSE) != 0)
938			jme_set_macaddr(sc, sc->jme_eaddr);
939		ether_ifdetach(ifp);
940	}
941
942	if (sc->jme_tq != NULL) {
943		taskqueue_drain(sc->jme_tq, &sc->jme_int_task);
944		taskqueue_free(sc->jme_tq);
945		sc->jme_tq = NULL;
946	}
947
948	if (sc->jme_miibus != NULL) {
949		device_delete_child(dev, sc->jme_miibus);
950		sc->jme_miibus = NULL;
951	}
952	bus_generic_detach(dev);
953	jme_dma_free(sc);
954
955	if (ifp != NULL) {
956		if_free(ifp);
957		sc->jme_ifp = NULL;
958	}
959
960	for (i = 0; i < 1; i++) {
961		if (sc->jme_intrhand[i] != NULL) {
962			bus_teardown_intr(dev, sc->jme_irq[i],
963			    sc->jme_intrhand[i]);
964			sc->jme_intrhand[i] = NULL;
965		}
966	}
967
968	if (sc->jme_irq[0] != NULL)
969		bus_release_resources(dev, sc->jme_irq_spec, sc->jme_irq);
970	if ((sc->jme_flags & (JME_FLAG_MSIX | JME_FLAG_MSI)) != 0)
971		pci_release_msi(dev);
972	if (sc->jme_res[0] != NULL)
973		bus_release_resources(dev, sc->jme_res_spec, sc->jme_res);
974	mtx_destroy(&sc->jme_mtx);
975
976	return (0);
977}
978
979#define	JME_SYSCTL_STAT_ADD32(c, h, n, p, d)	\
980	    SYSCTL_ADD_UINT(c, h, OID_AUTO, n, CTLFLAG_RD, p, 0, d)
981
982static void
983jme_sysctl_node(struct jme_softc *sc)
984{
985	struct sysctl_ctx_list *ctx;
986	struct sysctl_oid_list *child, *parent;
987	struct sysctl_oid *tree;
988	struct jme_hw_stats *stats;
989	int error;
990
991	stats = &sc->jme_stats;
992	ctx = device_get_sysctl_ctx(sc->jme_dev);
993	child = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->jme_dev));
994
995	SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "tx_coal_to",
996	    CTLTYPE_INT | CTLFLAG_RW, &sc->jme_tx_coal_to, 0,
997	    sysctl_hw_jme_tx_coal_to, "I", "jme tx coalescing timeout");
998
999	SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "tx_coal_pkt",
1000	    CTLTYPE_INT | CTLFLAG_RW, &sc->jme_tx_coal_pkt, 0,
1001	    sysctl_hw_jme_tx_coal_pkt, "I", "jme tx coalescing packet");
1002
1003	SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "rx_coal_to",
1004	    CTLTYPE_INT | CTLFLAG_RW, &sc->jme_rx_coal_to, 0,
1005	    sysctl_hw_jme_rx_coal_to, "I", "jme rx coalescing timeout");
1006
1007	SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "rx_coal_pkt",
1008	    CTLTYPE_INT | CTLFLAG_RW, &sc->jme_rx_coal_pkt, 0,
1009	    sysctl_hw_jme_rx_coal_pkt, "I", "jme rx coalescing packet");
1010
1011	SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "process_limit",
1012	    CTLTYPE_INT | CTLFLAG_RW, &sc->jme_process_limit, 0,
1013	    sysctl_hw_jme_proc_limit, "I",
1014	    "max number of Rx events to process");
1015
1016	/* Pull in device tunables. */
1017	sc->jme_process_limit = JME_PROC_DEFAULT;
1018	error = resource_int_value(device_get_name(sc->jme_dev),
1019	    device_get_unit(sc->jme_dev), "process_limit",
1020	    &sc->jme_process_limit);
1021	if (error == 0) {
1022		if (sc->jme_process_limit < JME_PROC_MIN ||
1023		    sc->jme_process_limit > JME_PROC_MAX) {
1024			device_printf(sc->jme_dev,
1025			    "process_limit value out of range; "
1026			    "using default: %d\n", JME_PROC_DEFAULT);
1027			sc->jme_process_limit = JME_PROC_DEFAULT;
1028		}
1029	}
1030
1031	sc->jme_tx_coal_to = PCCTX_COAL_TO_DEFAULT;
1032	error = resource_int_value(device_get_name(sc->jme_dev),
1033	    device_get_unit(sc->jme_dev), "tx_coal_to", &sc->jme_tx_coal_to);
1034	if (error == 0) {
1035		if (sc->jme_tx_coal_to < PCCTX_COAL_TO_MIN ||
1036		    sc->jme_tx_coal_to > PCCTX_COAL_TO_MAX) {
1037			device_printf(sc->jme_dev,
1038			    "tx_coal_to value out of range; "
1039			    "using default: %d\n", PCCTX_COAL_TO_DEFAULT);
1040			sc->jme_tx_coal_to = PCCTX_COAL_TO_DEFAULT;
1041		}
1042	}
1043
1044	sc->jme_tx_coal_pkt = PCCTX_COAL_PKT_DEFAULT;
1045	error = resource_int_value(device_get_name(sc->jme_dev),
1046	    device_get_unit(sc->jme_dev), "tx_coal_pkt", &sc->jme_tx_coal_to);
1047	if (error == 0) {
1048		if (sc->jme_tx_coal_pkt < PCCTX_COAL_PKT_MIN ||
1049		    sc->jme_tx_coal_pkt > PCCTX_COAL_PKT_MAX) {
1050			device_printf(sc->jme_dev,
1051			    "tx_coal_pkt value out of range; "
1052			    "using default: %d\n", PCCTX_COAL_PKT_DEFAULT);
1053			sc->jme_tx_coal_pkt = PCCTX_COAL_PKT_DEFAULT;
1054		}
1055	}
1056
1057	sc->jme_rx_coal_to = PCCRX_COAL_TO_DEFAULT;
1058	error = resource_int_value(device_get_name(sc->jme_dev),
1059	    device_get_unit(sc->jme_dev), "rx_coal_to", &sc->jme_rx_coal_to);
1060	if (error == 0) {
1061		if (sc->jme_rx_coal_to < PCCRX_COAL_TO_MIN ||
1062		    sc->jme_rx_coal_to > PCCRX_COAL_TO_MAX) {
1063			device_printf(sc->jme_dev,
1064			    "rx_coal_to value out of range; "
1065			    "using default: %d\n", PCCRX_COAL_TO_DEFAULT);
1066			sc->jme_rx_coal_to = PCCRX_COAL_TO_DEFAULT;
1067		}
1068	}
1069
1070	sc->jme_rx_coal_pkt = PCCRX_COAL_PKT_DEFAULT;
1071	error = resource_int_value(device_get_name(sc->jme_dev),
1072	    device_get_unit(sc->jme_dev), "rx_coal_pkt", &sc->jme_rx_coal_to);
1073	if (error == 0) {
1074		if (sc->jme_rx_coal_pkt < PCCRX_COAL_PKT_MIN ||
1075		    sc->jme_rx_coal_pkt > PCCRX_COAL_PKT_MAX) {
1076			device_printf(sc->jme_dev,
1077			    "tx_coal_pkt value out of range; "
1078			    "using default: %d\n", PCCRX_COAL_PKT_DEFAULT);
1079			sc->jme_rx_coal_pkt = PCCRX_COAL_PKT_DEFAULT;
1080		}
1081	}
1082
1083	if ((sc->jme_flags & JME_FLAG_HWMIB) == 0)
1084		return;
1085
1086	tree = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "stats", CTLFLAG_RD,
1087	    NULL, "JME statistics");
1088	parent = SYSCTL_CHILDREN(tree);
1089
1090	/* Rx statistics. */
1091	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "rx", CTLFLAG_RD,
1092	    NULL, "Rx MAC statistics");
1093	child = SYSCTL_CHILDREN(tree);
1094	JME_SYSCTL_STAT_ADD32(ctx, child, "good_frames",
1095	    &stats->rx_good_frames, "Good frames");
1096	JME_SYSCTL_STAT_ADD32(ctx, child, "crc_errs",
1097	    &stats->rx_crc_errs, "CRC errors");
1098	JME_SYSCTL_STAT_ADD32(ctx, child, "mii_errs",
1099	    &stats->rx_mii_errs, "MII errors");
1100	JME_SYSCTL_STAT_ADD32(ctx, child, "fifo_oflows",
1101	    &stats->rx_fifo_oflows, "FIFO overflows");
1102	JME_SYSCTL_STAT_ADD32(ctx, child, "desc_empty",
1103	    &stats->rx_desc_empty, "Descriptor empty");
1104	JME_SYSCTL_STAT_ADD32(ctx, child, "bad_frames",
1105	    &stats->rx_bad_frames, "Bad frames");
1106
1107	/* Tx statistics. */
1108	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "tx", CTLFLAG_RD,
1109	    NULL, "Tx MAC statistics");
1110	child = SYSCTL_CHILDREN(tree);
1111	JME_SYSCTL_STAT_ADD32(ctx, child, "good_frames",
1112	    &stats->tx_good_frames, "Good frames");
1113	JME_SYSCTL_STAT_ADD32(ctx, child, "bad_frames",
1114	    &stats->tx_bad_frames, "Bad frames");
1115}
1116
1117#undef	JME_SYSCTL_STAT_ADD32
1118
1119struct jme_dmamap_arg {
1120	bus_addr_t	jme_busaddr;
1121};
1122
1123static void
1124jme_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
1125{
1126	struct jme_dmamap_arg *ctx;
1127
1128	if (error != 0)
1129		return;
1130
1131	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
1132
1133	ctx = (struct jme_dmamap_arg *)arg;
1134	ctx->jme_busaddr = segs[0].ds_addr;
1135}
1136
1137static int
1138jme_dma_alloc(struct jme_softc *sc)
1139{
1140	struct jme_dmamap_arg ctx;
1141	struct jme_txdesc *txd;
1142	struct jme_rxdesc *rxd;
1143	bus_addr_t lowaddr, rx_ring_end, tx_ring_end;
1144	int error, i;
1145
1146	lowaddr = BUS_SPACE_MAXADDR;
1147	if ((sc->jme_flags & JME_FLAG_DMA32BIT) != 0)
1148		lowaddr = BUS_SPACE_MAXADDR_32BIT;
1149
1150again:
1151	/* Create parent ring tag. */
1152	error = bus_dma_tag_create(bus_get_dma_tag(sc->jme_dev),/* parent */
1153	    1, 0,			/* algnmnt, boundary */
1154	    lowaddr,			/* lowaddr */
1155	    BUS_SPACE_MAXADDR,		/* highaddr */
1156	    NULL, NULL,			/* filter, filterarg */
1157	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
1158	    0,				/* nsegments */
1159	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
1160	    0,				/* flags */
1161	    NULL, NULL,			/* lockfunc, lockarg */
1162	    &sc->jme_cdata.jme_ring_tag);
1163	if (error != 0) {
1164		device_printf(sc->jme_dev,
1165		    "could not create parent ring DMA tag.\n");
1166		goto fail;
1167	}
1168	/* Create tag for Tx ring. */
1169	error = bus_dma_tag_create(sc->jme_cdata.jme_ring_tag,/* parent */
1170	    JME_TX_RING_ALIGN, 0,	/* algnmnt, boundary */
1171	    BUS_SPACE_MAXADDR,		/* lowaddr */
1172	    BUS_SPACE_MAXADDR,		/* highaddr */
1173	    NULL, NULL,			/* filter, filterarg */
1174	    JME_TX_RING_SIZE,		/* maxsize */
1175	    1,				/* nsegments */
1176	    JME_TX_RING_SIZE,		/* maxsegsize */
1177	    0,				/* flags */
1178	    NULL, NULL,			/* lockfunc, lockarg */
1179	    &sc->jme_cdata.jme_tx_ring_tag);
1180	if (error != 0) {
1181		device_printf(sc->jme_dev,
1182		    "could not allocate Tx ring DMA tag.\n");
1183		goto fail;
1184	}
1185
1186	/* Create tag for Rx ring. */
1187	error = bus_dma_tag_create(sc->jme_cdata.jme_ring_tag,/* parent */
1188	    JME_RX_RING_ALIGN, 0,	/* algnmnt, boundary */
1189	    lowaddr,			/* lowaddr */
1190	    BUS_SPACE_MAXADDR,		/* highaddr */
1191	    NULL, NULL,			/* filter, filterarg */
1192	    JME_RX_RING_SIZE,		/* maxsize */
1193	    1,				/* nsegments */
1194	    JME_RX_RING_SIZE,		/* maxsegsize */
1195	    0,				/* flags */
1196	    NULL, NULL,			/* lockfunc, lockarg */
1197	    &sc->jme_cdata.jme_rx_ring_tag);
1198	if (error != 0) {
1199		device_printf(sc->jme_dev,
1200		    "could not allocate Rx ring DMA tag.\n");
1201		goto fail;
1202	}
1203
1204	/* Allocate DMA'able memory and load the DMA map for Tx ring. */
1205	error = bus_dmamem_alloc(sc->jme_cdata.jme_tx_ring_tag,
1206	    (void **)&sc->jme_rdata.jme_tx_ring,
1207	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1208	    &sc->jme_cdata.jme_tx_ring_map);
1209	if (error != 0) {
1210		device_printf(sc->jme_dev,
1211		    "could not allocate DMA'able memory for Tx ring.\n");
1212		goto fail;
1213	}
1214
1215	ctx.jme_busaddr = 0;
1216	error = bus_dmamap_load(sc->jme_cdata.jme_tx_ring_tag,
1217	    sc->jme_cdata.jme_tx_ring_map, sc->jme_rdata.jme_tx_ring,
1218	    JME_TX_RING_SIZE, jme_dmamap_cb, &ctx, BUS_DMA_NOWAIT);
1219	if (error != 0 || ctx.jme_busaddr == 0) {
1220		device_printf(sc->jme_dev,
1221		    "could not load DMA'able memory for Tx ring.\n");
1222		goto fail;
1223	}
1224	sc->jme_rdata.jme_tx_ring_paddr = ctx.jme_busaddr;
1225
1226	/* Allocate DMA'able memory and load the DMA map for Rx ring. */
1227	error = bus_dmamem_alloc(sc->jme_cdata.jme_rx_ring_tag,
1228	    (void **)&sc->jme_rdata.jme_rx_ring,
1229	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1230	    &sc->jme_cdata.jme_rx_ring_map);
1231	if (error != 0) {
1232		device_printf(sc->jme_dev,
1233		    "could not allocate DMA'able memory for Rx ring.\n");
1234		goto fail;
1235	}
1236
1237	ctx.jme_busaddr = 0;
1238	error = bus_dmamap_load(sc->jme_cdata.jme_rx_ring_tag,
1239	    sc->jme_cdata.jme_rx_ring_map, sc->jme_rdata.jme_rx_ring,
1240	    JME_RX_RING_SIZE, jme_dmamap_cb, &ctx, BUS_DMA_NOWAIT);
1241	if (error != 0 || ctx.jme_busaddr == 0) {
1242		device_printf(sc->jme_dev,
1243		    "could not load DMA'able memory for Rx ring.\n");
1244		goto fail;
1245	}
1246	sc->jme_rdata.jme_rx_ring_paddr = ctx.jme_busaddr;
1247
1248	if (lowaddr != BUS_SPACE_MAXADDR_32BIT) {
1249		/* Tx/Rx descriptor queue should reside within 4GB boundary. */
1250		tx_ring_end = sc->jme_rdata.jme_tx_ring_paddr +
1251		    JME_TX_RING_SIZE;
1252		rx_ring_end = sc->jme_rdata.jme_rx_ring_paddr +
1253		    JME_RX_RING_SIZE;
1254		if ((JME_ADDR_HI(tx_ring_end) !=
1255		    JME_ADDR_HI(sc->jme_rdata.jme_tx_ring_paddr)) ||
1256		    (JME_ADDR_HI(rx_ring_end) !=
1257		     JME_ADDR_HI(sc->jme_rdata.jme_rx_ring_paddr))) {
1258			device_printf(sc->jme_dev, "4GB boundary crossed, "
1259			    "switching to 32bit DMA address mode.\n");
1260			jme_dma_free(sc);
1261			/* Limit DMA address space to 32bit and try again. */
1262			lowaddr = BUS_SPACE_MAXADDR_32BIT;
1263			goto again;
1264		}
1265	}
1266
1267	lowaddr = BUS_SPACE_MAXADDR;
1268	if ((sc->jme_flags & JME_FLAG_DMA32BIT) != 0)
1269		lowaddr = BUS_SPACE_MAXADDR_32BIT;
1270	/* Create parent buffer tag. */
1271	error = bus_dma_tag_create(bus_get_dma_tag(sc->jme_dev),/* parent */
1272	    1, 0,			/* algnmnt, boundary */
1273	    lowaddr,			/* lowaddr */
1274	    BUS_SPACE_MAXADDR,		/* highaddr */
1275	    NULL, NULL,			/* filter, filterarg */
1276	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
1277	    0,				/* nsegments */
1278	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
1279	    0,				/* flags */
1280	    NULL, NULL,			/* lockfunc, lockarg */
1281	    &sc->jme_cdata.jme_buffer_tag);
1282	if (error != 0) {
1283		device_printf(sc->jme_dev,
1284		    "could not create parent buffer DMA tag.\n");
1285		goto fail;
1286	}
1287
1288	/* Create shadow status block tag. */
1289	error = bus_dma_tag_create(sc->jme_cdata.jme_buffer_tag,/* parent */
1290	    JME_SSB_ALIGN, 0,		/* algnmnt, boundary */
1291	    BUS_SPACE_MAXADDR,		/* lowaddr */
1292	    BUS_SPACE_MAXADDR,		/* highaddr */
1293	    NULL, NULL,			/* filter, filterarg */
1294	    JME_SSB_SIZE,		/* maxsize */
1295	    1,				/* nsegments */
1296	    JME_SSB_SIZE,		/* maxsegsize */
1297	    0,				/* flags */
1298	    NULL, NULL,			/* lockfunc, lockarg */
1299	    &sc->jme_cdata.jme_ssb_tag);
1300	if (error != 0) {
1301		device_printf(sc->jme_dev,
1302		    "could not create shared status block DMA tag.\n");
1303		goto fail;
1304	}
1305
1306	/* Create tag for Tx buffers. */
1307	error = bus_dma_tag_create(sc->jme_cdata.jme_buffer_tag,/* parent */
1308	    1, 0,			/* algnmnt, boundary */
1309	    BUS_SPACE_MAXADDR,		/* lowaddr */
1310	    BUS_SPACE_MAXADDR,		/* highaddr */
1311	    NULL, NULL,			/* filter, filterarg */
1312	    JME_TSO_MAXSIZE,		/* maxsize */
1313	    JME_MAXTXSEGS,		/* nsegments */
1314	    JME_TSO_MAXSEGSIZE,		/* maxsegsize */
1315	    0,				/* flags */
1316	    NULL, NULL,			/* lockfunc, lockarg */
1317	    &sc->jme_cdata.jme_tx_tag);
1318	if (error != 0) {
1319		device_printf(sc->jme_dev, "could not create Tx DMA tag.\n");
1320		goto fail;
1321	}
1322
1323	/* Create tag for Rx buffers. */
1324	error = bus_dma_tag_create(sc->jme_cdata.jme_buffer_tag,/* parent */
1325	    JME_RX_BUF_ALIGN, 0,	/* algnmnt, boundary */
1326	    BUS_SPACE_MAXADDR,		/* lowaddr */
1327	    BUS_SPACE_MAXADDR,		/* highaddr */
1328	    NULL, NULL,			/* filter, filterarg */
1329	    MCLBYTES,			/* maxsize */
1330	    1,				/* nsegments */
1331	    MCLBYTES,			/* maxsegsize */
1332	    0,				/* flags */
1333	    NULL, NULL,			/* lockfunc, lockarg */
1334	    &sc->jme_cdata.jme_rx_tag);
1335	if (error != 0) {
1336		device_printf(sc->jme_dev, "could not create Rx DMA tag.\n");
1337		goto fail;
1338	}
1339
1340	/*
1341	 * Allocate DMA'able memory and load the DMA map for shared
1342	 * status block.
1343	 */
1344	error = bus_dmamem_alloc(sc->jme_cdata.jme_ssb_tag,
1345	    (void **)&sc->jme_rdata.jme_ssb_block,
1346	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1347	    &sc->jme_cdata.jme_ssb_map);
1348	if (error != 0) {
1349		device_printf(sc->jme_dev, "could not allocate DMA'able "
1350		    "memory for shared status block.\n");
1351		goto fail;
1352	}
1353
1354	ctx.jme_busaddr = 0;
1355	error = bus_dmamap_load(sc->jme_cdata.jme_ssb_tag,
1356	    sc->jme_cdata.jme_ssb_map, sc->jme_rdata.jme_ssb_block,
1357	    JME_SSB_SIZE, jme_dmamap_cb, &ctx, BUS_DMA_NOWAIT);
1358	if (error != 0 || ctx.jme_busaddr == 0) {
1359		device_printf(sc->jme_dev, "could not load DMA'able memory "
1360		    "for shared status block.\n");
1361		goto fail;
1362	}
1363	sc->jme_rdata.jme_ssb_block_paddr = ctx.jme_busaddr;
1364
1365	/* Create DMA maps for Tx buffers. */
1366	for (i = 0; i < JME_TX_RING_CNT; i++) {
1367		txd = &sc->jme_cdata.jme_txdesc[i];
1368		txd->tx_m = NULL;
1369		txd->tx_dmamap = NULL;
1370		error = bus_dmamap_create(sc->jme_cdata.jme_tx_tag, 0,
1371		    &txd->tx_dmamap);
1372		if (error != 0) {
1373			device_printf(sc->jme_dev,
1374			    "could not create Tx dmamap.\n");
1375			goto fail;
1376		}
1377	}
1378	/* Create DMA maps for Rx buffers. */
1379	if ((error = bus_dmamap_create(sc->jme_cdata.jme_rx_tag, 0,
1380	    &sc->jme_cdata.jme_rx_sparemap)) != 0) {
1381		device_printf(sc->jme_dev,
1382		    "could not create spare Rx dmamap.\n");
1383		goto fail;
1384	}
1385	for (i = 0; i < JME_RX_RING_CNT; i++) {
1386		rxd = &sc->jme_cdata.jme_rxdesc[i];
1387		rxd->rx_m = NULL;
1388		rxd->rx_dmamap = NULL;
1389		error = bus_dmamap_create(sc->jme_cdata.jme_rx_tag, 0,
1390		    &rxd->rx_dmamap);
1391		if (error != 0) {
1392			device_printf(sc->jme_dev,
1393			    "could not create Rx dmamap.\n");
1394			goto fail;
1395		}
1396	}
1397
1398fail:
1399	return (error);
1400}
1401
1402static void
1403jme_dma_free(struct jme_softc *sc)
1404{
1405	struct jme_txdesc *txd;
1406	struct jme_rxdesc *rxd;
1407	int i;
1408
1409	/* Tx ring */
1410	if (sc->jme_cdata.jme_tx_ring_tag != NULL) {
1411		if (sc->jme_rdata.jme_tx_ring_paddr)
1412			bus_dmamap_unload(sc->jme_cdata.jme_tx_ring_tag,
1413			    sc->jme_cdata.jme_tx_ring_map);
1414		if (sc->jme_rdata.jme_tx_ring)
1415			bus_dmamem_free(sc->jme_cdata.jme_tx_ring_tag,
1416			    sc->jme_rdata.jme_tx_ring,
1417			    sc->jme_cdata.jme_tx_ring_map);
1418		sc->jme_rdata.jme_tx_ring = NULL;
1419		sc->jme_rdata.jme_tx_ring_paddr = 0;
1420		bus_dma_tag_destroy(sc->jme_cdata.jme_tx_ring_tag);
1421		sc->jme_cdata.jme_tx_ring_tag = NULL;
1422	}
1423	/* Rx ring */
1424	if (sc->jme_cdata.jme_rx_ring_tag != NULL) {
1425		if (sc->jme_rdata.jme_rx_ring_paddr)
1426			bus_dmamap_unload(sc->jme_cdata.jme_rx_ring_tag,
1427			    sc->jme_cdata.jme_rx_ring_map);
1428		if (sc->jme_rdata.jme_rx_ring)
1429			bus_dmamem_free(sc->jme_cdata.jme_rx_ring_tag,
1430			    sc->jme_rdata.jme_rx_ring,
1431			    sc->jme_cdata.jme_rx_ring_map);
1432		sc->jme_rdata.jme_rx_ring = NULL;
1433		sc->jme_rdata.jme_rx_ring_paddr = 0;
1434		bus_dma_tag_destroy(sc->jme_cdata.jme_rx_ring_tag);
1435		sc->jme_cdata.jme_rx_ring_tag = NULL;
1436	}
1437	/* Tx buffers */
1438	if (sc->jme_cdata.jme_tx_tag != NULL) {
1439		for (i = 0; i < JME_TX_RING_CNT; i++) {
1440			txd = &sc->jme_cdata.jme_txdesc[i];
1441			if (txd->tx_dmamap != NULL) {
1442				bus_dmamap_destroy(sc->jme_cdata.jme_tx_tag,
1443				    txd->tx_dmamap);
1444				txd->tx_dmamap = NULL;
1445			}
1446		}
1447		bus_dma_tag_destroy(sc->jme_cdata.jme_tx_tag);
1448		sc->jme_cdata.jme_tx_tag = NULL;
1449	}
1450	/* Rx buffers */
1451	if (sc->jme_cdata.jme_rx_tag != NULL) {
1452		for (i = 0; i < JME_RX_RING_CNT; i++) {
1453			rxd = &sc->jme_cdata.jme_rxdesc[i];
1454			if (rxd->rx_dmamap != NULL) {
1455				bus_dmamap_destroy(sc->jme_cdata.jme_rx_tag,
1456				    rxd->rx_dmamap);
1457				rxd->rx_dmamap = NULL;
1458			}
1459		}
1460		if (sc->jme_cdata.jme_rx_sparemap != NULL) {
1461			bus_dmamap_destroy(sc->jme_cdata.jme_rx_tag,
1462			    sc->jme_cdata.jme_rx_sparemap);
1463			sc->jme_cdata.jme_rx_sparemap = NULL;
1464		}
1465		bus_dma_tag_destroy(sc->jme_cdata.jme_rx_tag);
1466		sc->jme_cdata.jme_rx_tag = NULL;
1467	}
1468
1469	/* Shared status block. */
1470	if (sc->jme_cdata.jme_ssb_tag != NULL) {
1471		if (sc->jme_rdata.jme_ssb_block_paddr)
1472			bus_dmamap_unload(sc->jme_cdata.jme_ssb_tag,
1473			    sc->jme_cdata.jme_ssb_map);
1474		if (sc->jme_rdata.jme_ssb_block)
1475			bus_dmamem_free(sc->jme_cdata.jme_ssb_tag,
1476			    sc->jme_rdata.jme_ssb_block,
1477			    sc->jme_cdata.jme_ssb_map);
1478		sc->jme_rdata.jme_ssb_block = NULL;
1479		sc->jme_rdata.jme_ssb_block_paddr = 0;
1480		bus_dma_tag_destroy(sc->jme_cdata.jme_ssb_tag);
1481		sc->jme_cdata.jme_ssb_tag = NULL;
1482	}
1483
1484	if (sc->jme_cdata.jme_buffer_tag != NULL) {
1485		bus_dma_tag_destroy(sc->jme_cdata.jme_buffer_tag);
1486		sc->jme_cdata.jme_buffer_tag = NULL;
1487	}
1488	if (sc->jme_cdata.jme_ring_tag != NULL) {
1489		bus_dma_tag_destroy(sc->jme_cdata.jme_ring_tag);
1490		sc->jme_cdata.jme_ring_tag = NULL;
1491	}
1492}
1493
1494/*
1495 *	Make sure the interface is stopped at reboot time.
1496 */
1497static int
1498jme_shutdown(device_t dev)
1499{
1500
1501	return (jme_suspend(dev));
1502}
1503
1504/*
1505 * Unlike other ethernet controllers, JMC250 requires
1506 * explicit resetting link speed to 10/100Mbps as gigabit
1507 * link will cunsume more power than 375mA.
1508 * Note, we reset the link speed to 10/100Mbps with
1509 * auto-negotiation but we don't know whether that operation
1510 * would succeed or not as we have no control after powering
1511 * off. If the renegotiation fail WOL may not work. Running
1512 * at 1Gbps draws more power than 375mA at 3.3V which is
1513 * specified in PCI specification and that would result in
1514 * complete shutdowning power to ethernet controller.
1515 *
1516 * TODO
1517 *  Save current negotiated media speed/duplex/flow-control
1518 *  to softc and restore the same link again after resuming.
1519 *  PHY handling such as power down/resetting to 100Mbps
1520 *  may be better handled in suspend method in phy driver.
1521 */
1522static void
1523jme_setlinkspeed(struct jme_softc *sc)
1524{
1525	struct mii_data *mii;
1526	int aneg, i;
1527
1528	JME_LOCK_ASSERT(sc);
1529
1530	mii = device_get_softc(sc->jme_miibus);
1531	mii_pollstat(mii);
1532	aneg = 0;
1533	if ((mii->mii_media_status & IFM_AVALID) != 0) {
1534		switch IFM_SUBTYPE(mii->mii_media_active) {
1535		case IFM_10_T:
1536		case IFM_100_TX:
1537			return;
1538		case IFM_1000_T:
1539			aneg++;
1540		default:
1541			break;
1542		}
1543	}
1544	jme_miibus_writereg(sc->jme_dev, sc->jme_phyaddr, MII_100T2CR, 0);
1545	jme_miibus_writereg(sc->jme_dev, sc->jme_phyaddr, MII_ANAR,
1546	    ANAR_TX_FD | ANAR_TX | ANAR_10_FD | ANAR_10 | ANAR_CSMA);
1547	jme_miibus_writereg(sc->jme_dev, sc->jme_phyaddr, MII_BMCR,
1548	    BMCR_AUTOEN | BMCR_STARTNEG);
1549	DELAY(1000);
1550	if (aneg != 0) {
1551		/* Poll link state until jme(4) get a 10/100 link. */
1552		for (i = 0; i < MII_ANEGTICKS_GIGE; i++) {
1553			mii_pollstat(mii);
1554			if ((mii->mii_media_status & IFM_AVALID) != 0) {
1555				switch (IFM_SUBTYPE(mii->mii_media_active)) {
1556				case IFM_10_T:
1557				case IFM_100_TX:
1558					jme_mac_config(sc);
1559					return;
1560				default:
1561					break;
1562				}
1563			}
1564			JME_UNLOCK(sc);
1565			pause("jmelnk", hz);
1566			JME_LOCK(sc);
1567		}
1568		if (i == MII_ANEGTICKS_GIGE)
1569			device_printf(sc->jme_dev, "establishing link failed, "
1570			    "WOL may not work!");
1571	}
1572	/*
1573	 * No link, force MAC to have 100Mbps, full-duplex link.
1574	 * This is the last resort and may/may not work.
1575	 */
1576	mii->mii_media_status = IFM_AVALID | IFM_ACTIVE;
1577	mii->mii_media_active = IFM_ETHER | IFM_100_TX | IFM_FDX;
1578	jme_mac_config(sc);
1579}
1580
1581static void
1582jme_setwol(struct jme_softc *sc)
1583{
1584	struct ifnet *ifp;
1585	uint32_t gpr, pmcs;
1586	uint16_t pmstat;
1587	int pmc;
1588
1589	JME_LOCK_ASSERT(sc);
1590
1591	if (pci_find_cap(sc->jme_dev, PCIY_PMG, &pmc) != 0) {
1592		/* Remove Tx MAC/offload clock to save more power. */
1593		if ((sc->jme_flags & JME_FLAG_TXCLK) != 0)
1594			CSR_WRITE_4(sc, JME_GHC, CSR_READ_4(sc, JME_GHC) &
1595			    ~(GHC_TX_OFFLD_CLK_100 | GHC_TX_MAC_CLK_100 |
1596			    GHC_TX_OFFLD_CLK_1000 | GHC_TX_MAC_CLK_1000));
1597		if ((sc->jme_flags & JME_FLAG_RXCLK) != 0)
1598			CSR_WRITE_4(sc, JME_GPREG1,
1599			    CSR_READ_4(sc, JME_GPREG1) | GPREG1_RX_MAC_CLK_DIS);
1600		/* No PME capability, PHY power down. */
1601		jme_phy_down(sc);
1602		return;
1603	}
1604
1605	ifp = sc->jme_ifp;
1606	gpr = CSR_READ_4(sc, JME_GPREG0) & ~GPREG0_PME_ENB;
1607	pmcs = CSR_READ_4(sc, JME_PMCS);
1608	pmcs &= ~PMCS_WOL_ENB_MASK;
1609	if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0) {
1610		pmcs |= PMCS_MAGIC_FRAME | PMCS_MAGIC_FRAME_ENB;
1611		/* Enable PME message. */
1612		gpr |= GPREG0_PME_ENB;
1613		/* For gigabit controllers, reset link speed to 10/100. */
1614		if ((sc->jme_flags & JME_FLAG_FASTETH) == 0)
1615			jme_setlinkspeed(sc);
1616	}
1617
1618	CSR_WRITE_4(sc, JME_PMCS, pmcs);
1619	CSR_WRITE_4(sc, JME_GPREG0, gpr);
1620	/* Remove Tx MAC/offload clock to save more power. */
1621	if ((sc->jme_flags & JME_FLAG_TXCLK) != 0)
1622		CSR_WRITE_4(sc, JME_GHC, CSR_READ_4(sc, JME_GHC) &
1623		    ~(GHC_TX_OFFLD_CLK_100 | GHC_TX_MAC_CLK_100 |
1624		    GHC_TX_OFFLD_CLK_1000 | GHC_TX_MAC_CLK_1000));
1625	/* Request PME. */
1626	pmstat = pci_read_config(sc->jme_dev, pmc + PCIR_POWER_STATUS, 2);
1627	pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
1628	if ((ifp->if_capenable & IFCAP_WOL) != 0)
1629		pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
1630	pci_write_config(sc->jme_dev, pmc + PCIR_POWER_STATUS, pmstat, 2);
1631	if ((ifp->if_capenable & IFCAP_WOL) == 0) {
1632		/* No WOL, PHY power down. */
1633		jme_phy_down(sc);
1634	}
1635}
1636
1637static int
1638jme_suspend(device_t dev)
1639{
1640	struct jme_softc *sc;
1641
1642	sc = device_get_softc(dev);
1643
1644	JME_LOCK(sc);
1645	jme_stop(sc);
1646	jme_setwol(sc);
1647	JME_UNLOCK(sc);
1648
1649	return (0);
1650}
1651
1652static int
1653jme_resume(device_t dev)
1654{
1655	struct jme_softc *sc;
1656	struct ifnet *ifp;
1657	uint16_t pmstat;
1658	int pmc;
1659
1660	sc = device_get_softc(dev);
1661
1662	JME_LOCK(sc);
1663	if (pci_find_cap(sc->jme_dev, PCIY_PMG, &pmc) == 0) {
1664		pmstat = pci_read_config(sc->jme_dev,
1665		    pmc + PCIR_POWER_STATUS, 2);
1666		/* Disable PME clear PME status. */
1667		pmstat &= ~PCIM_PSTAT_PMEENABLE;
1668		pci_write_config(sc->jme_dev,
1669		    pmc + PCIR_POWER_STATUS, pmstat, 2);
1670	}
1671	/* Wakeup PHY. */
1672	jme_phy_up(sc);
1673	ifp = sc->jme_ifp;
1674	if ((ifp->if_flags & IFF_UP) != 0) {
1675		ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1676		jme_init_locked(sc);
1677	}
1678
1679	JME_UNLOCK(sc);
1680
1681	return (0);
1682}
1683
1684static int
1685jme_encap(struct jme_softc *sc, struct mbuf **m_head)
1686{
1687	struct jme_txdesc *txd;
1688	struct jme_desc *desc;
1689	struct mbuf *m;
1690	bus_dma_segment_t txsegs[JME_MAXTXSEGS];
1691	int error, i, nsegs, prod;
1692	uint32_t cflags, tsosegsz;
1693
1694	JME_LOCK_ASSERT(sc);
1695
1696	M_ASSERTPKTHDR((*m_head));
1697
1698	if (((*m_head)->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
1699		/*
1700		 * Due to the adherence to NDIS specification JMC250
1701		 * assumes upper stack computed TCP pseudo checksum
1702		 * without including payload length. This breaks
1703		 * checksum offload for TSO case so recompute TCP
1704		 * pseudo checksum for JMC250. Hopefully this wouldn't
1705		 * be much burden on modern CPUs.
1706		 */
1707		struct ether_header *eh;
1708		struct ip *ip;
1709		struct tcphdr *tcp;
1710		uint32_t ip_off, poff;
1711
1712		if (M_WRITABLE(*m_head) == 0) {
1713			/* Get a writable copy. */
1714			m = m_dup(*m_head, M_NOWAIT);
1715			m_freem(*m_head);
1716			if (m == NULL) {
1717				*m_head = NULL;
1718				return (ENOBUFS);
1719			}
1720			*m_head = m;
1721		}
1722		ip_off = sizeof(struct ether_header);
1723		m = m_pullup(*m_head, ip_off);
1724		if (m == NULL) {
1725			*m_head = NULL;
1726			return (ENOBUFS);
1727		}
1728		eh = mtod(m, struct ether_header *);
1729		/* Check the existence of VLAN tag. */
1730		if (eh->ether_type == htons(ETHERTYPE_VLAN)) {
1731			ip_off = sizeof(struct ether_vlan_header);
1732			m = m_pullup(m, ip_off);
1733			if (m == NULL) {
1734				*m_head = NULL;
1735				return (ENOBUFS);
1736			}
1737		}
1738		m = m_pullup(m, ip_off + sizeof(struct ip));
1739		if (m == NULL) {
1740			*m_head = NULL;
1741			return (ENOBUFS);
1742		}
1743		ip = (struct ip *)(mtod(m, char *) + ip_off);
1744		poff = ip_off + (ip->ip_hl << 2);
1745		m = m_pullup(m, poff + sizeof(struct tcphdr));
1746		if (m == NULL) {
1747			*m_head = NULL;
1748			return (ENOBUFS);
1749		}
1750		/*
1751		 * Reset IP checksum and recompute TCP pseudo
1752		 * checksum that NDIS specification requires.
1753		 */
1754		ip = (struct ip *)(mtod(m, char *) + ip_off);
1755		tcp = (struct tcphdr *)(mtod(m, char *) + poff);
1756		ip->ip_sum = 0;
1757		if (poff + (tcp->th_off << 2) == m->m_pkthdr.len) {
1758			tcp->th_sum = in_pseudo(ip->ip_src.s_addr,
1759			    ip->ip_dst.s_addr,
1760			    htons((tcp->th_off << 2) + IPPROTO_TCP));
1761			/* No need to TSO, force IP checksum offload. */
1762			(*m_head)->m_pkthdr.csum_flags &= ~CSUM_TSO;
1763			(*m_head)->m_pkthdr.csum_flags |= CSUM_IP;
1764		} else
1765			tcp->th_sum = in_pseudo(ip->ip_src.s_addr,
1766			    ip->ip_dst.s_addr, htons(IPPROTO_TCP));
1767		*m_head = m;
1768	}
1769
1770	prod = sc->jme_cdata.jme_tx_prod;
1771	txd = &sc->jme_cdata.jme_txdesc[prod];
1772
1773	error = bus_dmamap_load_mbuf_sg(sc->jme_cdata.jme_tx_tag,
1774	    txd->tx_dmamap, *m_head, txsegs, &nsegs, 0);
1775	if (error == EFBIG) {
1776		m = m_collapse(*m_head, M_NOWAIT, JME_MAXTXSEGS);
1777		if (m == NULL) {
1778			m_freem(*m_head);
1779			*m_head = NULL;
1780			return (ENOMEM);
1781		}
1782		*m_head = m;
1783		error = bus_dmamap_load_mbuf_sg(sc->jme_cdata.jme_tx_tag,
1784		    txd->tx_dmamap, *m_head, txsegs, &nsegs, 0);
1785		if (error != 0) {
1786			m_freem(*m_head);
1787			*m_head = NULL;
1788			return (error);
1789		}
1790	} else if (error != 0)
1791		return (error);
1792	if (nsegs == 0) {
1793		m_freem(*m_head);
1794		*m_head = NULL;
1795		return (EIO);
1796	}
1797
1798	/*
1799	 * Check descriptor overrun. Leave one free descriptor.
1800	 * Since we always use 64bit address mode for transmitting,
1801	 * each Tx request requires one more dummy descriptor.
1802	 */
1803	if (sc->jme_cdata.jme_tx_cnt + nsegs + 1 > JME_TX_RING_CNT - 1) {
1804		bus_dmamap_unload(sc->jme_cdata.jme_tx_tag, txd->tx_dmamap);
1805		return (ENOBUFS);
1806	}
1807
1808	m = *m_head;
1809	cflags = 0;
1810	tsosegsz = 0;
1811	/* Configure checksum offload and TSO. */
1812	if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
1813		tsosegsz = (uint32_t)m->m_pkthdr.tso_segsz <<
1814		    JME_TD_MSS_SHIFT;
1815		cflags |= JME_TD_TSO;
1816	} else {
1817		if ((m->m_pkthdr.csum_flags & CSUM_IP) != 0)
1818			cflags |= JME_TD_IPCSUM;
1819		if ((m->m_pkthdr.csum_flags & CSUM_TCP) != 0)
1820			cflags |= JME_TD_TCPCSUM;
1821		if ((m->m_pkthdr.csum_flags & CSUM_UDP) != 0)
1822			cflags |= JME_TD_UDPCSUM;
1823	}
1824	/* Configure VLAN. */
1825	if ((m->m_flags & M_VLANTAG) != 0) {
1826		cflags |= (m->m_pkthdr.ether_vtag & JME_TD_VLAN_MASK);
1827		cflags |= JME_TD_VLAN_TAG;
1828	}
1829
1830	desc = &sc->jme_rdata.jme_tx_ring[prod];
1831	desc->flags = htole32(cflags);
1832	desc->buflen = htole32(tsosegsz);
1833	desc->addr_hi = htole32(m->m_pkthdr.len);
1834	desc->addr_lo = 0;
1835	sc->jme_cdata.jme_tx_cnt++;
1836	JME_DESC_INC(prod, JME_TX_RING_CNT);
1837	for (i = 0; i < nsegs; i++) {
1838		desc = &sc->jme_rdata.jme_tx_ring[prod];
1839		desc->flags = htole32(JME_TD_OWN | JME_TD_64BIT);
1840		desc->buflen = htole32(txsegs[i].ds_len);
1841		desc->addr_hi = htole32(JME_ADDR_HI(txsegs[i].ds_addr));
1842		desc->addr_lo = htole32(JME_ADDR_LO(txsegs[i].ds_addr));
1843		sc->jme_cdata.jme_tx_cnt++;
1844		JME_DESC_INC(prod, JME_TX_RING_CNT);
1845	}
1846
1847	/* Update producer index. */
1848	sc->jme_cdata.jme_tx_prod = prod;
1849	/*
1850	 * Finally request interrupt and give the first descriptor
1851	 * owenership to hardware.
1852	 */
1853	desc = txd->tx_desc;
1854	desc->flags |= htole32(JME_TD_OWN | JME_TD_INTR);
1855
1856	txd->tx_m = m;
1857	txd->tx_ndesc = nsegs + 1;
1858
1859	/* Sync descriptors. */
1860	bus_dmamap_sync(sc->jme_cdata.jme_tx_tag, txd->tx_dmamap,
1861	    BUS_DMASYNC_PREWRITE);
1862	bus_dmamap_sync(sc->jme_cdata.jme_tx_ring_tag,
1863	    sc->jme_cdata.jme_tx_ring_map,
1864	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1865
1866	return (0);
1867}
1868
1869static void
1870jme_start(struct ifnet *ifp)
1871{
1872        struct jme_softc *sc;
1873
1874	sc = ifp->if_softc;
1875	JME_LOCK(sc);
1876	jme_start_locked(ifp);
1877	JME_UNLOCK(sc);
1878}
1879
1880static void
1881jme_start_locked(struct ifnet *ifp)
1882{
1883        struct jme_softc *sc;
1884        struct mbuf *m_head;
1885	int enq;
1886
1887	sc = ifp->if_softc;
1888
1889	JME_LOCK_ASSERT(sc);
1890
1891	if (sc->jme_cdata.jme_tx_cnt >= JME_TX_DESC_HIWAT)
1892		jme_txeof(sc);
1893
1894	if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
1895	    IFF_DRV_RUNNING || (sc->jme_flags & JME_FLAG_LINK) == 0)
1896		return;
1897
1898	for (enq = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd); ) {
1899		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
1900		if (m_head == NULL)
1901			break;
1902		/*
1903		 * Pack the data into the transmit ring. If we
1904		 * don't have room, set the OACTIVE flag and wait
1905		 * for the NIC to drain the ring.
1906		 */
1907		if (jme_encap(sc, &m_head)) {
1908			if (m_head == NULL)
1909				break;
1910			IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
1911			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1912			break;
1913		}
1914
1915		enq++;
1916		/*
1917		 * If there's a BPF listener, bounce a copy of this frame
1918		 * to him.
1919		 */
1920		ETHER_BPF_MTAP(ifp, m_head);
1921	}
1922
1923	if (enq > 0) {
1924		/*
1925		 * Reading TXCSR takes very long time under heavy load
1926		 * so cache TXCSR value and writes the ORed value with
1927		 * the kick command to the TXCSR. This saves one register
1928		 * access cycle.
1929		 */
1930		CSR_WRITE_4(sc, JME_TXCSR, sc->jme_txcsr | TXCSR_TX_ENB |
1931		    TXCSR_TXQ_N_START(TXCSR_TXQ0));
1932		/* Set a timeout in case the chip goes out to lunch. */
1933		sc->jme_watchdog_timer = JME_TX_TIMEOUT;
1934	}
1935}
1936
1937static void
1938jme_watchdog(struct jme_softc *sc)
1939{
1940	struct ifnet *ifp;
1941
1942	JME_LOCK_ASSERT(sc);
1943
1944	if (sc->jme_watchdog_timer == 0 || --sc->jme_watchdog_timer)
1945		return;
1946
1947	ifp = sc->jme_ifp;
1948	if ((sc->jme_flags & JME_FLAG_LINK) == 0) {
1949		if_printf(sc->jme_ifp, "watchdog timeout (missed link)\n");
1950		if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1951		ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1952		jme_init_locked(sc);
1953		return;
1954	}
1955	jme_txeof(sc);
1956	if (sc->jme_cdata.jme_tx_cnt == 0) {
1957		if_printf(sc->jme_ifp,
1958		    "watchdog timeout (missed Tx interrupts) -- recovering\n");
1959		if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1960			jme_start_locked(ifp);
1961		return;
1962	}
1963
1964	if_printf(sc->jme_ifp, "watchdog timeout\n");
1965	if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1966	ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1967	jme_init_locked(sc);
1968	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1969		jme_start_locked(ifp);
1970}
1971
1972static int
1973jme_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1974{
1975	struct jme_softc *sc;
1976	struct ifreq *ifr;
1977	struct mii_data *mii;
1978	uint32_t reg;
1979	int error, mask;
1980
1981	sc = ifp->if_softc;
1982	ifr = (struct ifreq *)data;
1983	error = 0;
1984	switch (cmd) {
1985	case SIOCSIFMTU:
1986		if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > JME_JUMBO_MTU ||
1987		    ((sc->jme_flags & JME_FLAG_NOJUMBO) != 0 &&
1988		    ifr->ifr_mtu > JME_MAX_MTU)) {
1989			error = EINVAL;
1990			break;
1991		}
1992
1993		if (ifp->if_mtu != ifr->ifr_mtu) {
1994			/*
1995			 * No special configuration is required when interface
1996			 * MTU is changed but availability of TSO/Tx checksum
1997			 * offload should be chcked against new MTU size as
1998			 * FIFO size is just 2K.
1999			 */
2000			JME_LOCK(sc);
2001			if (ifr->ifr_mtu >= JME_TX_FIFO_SIZE) {
2002				ifp->if_capenable &=
2003				    ~(IFCAP_TXCSUM | IFCAP_TSO4);
2004				ifp->if_hwassist &=
2005				    ~(JME_CSUM_FEATURES | CSUM_TSO);
2006				VLAN_CAPABILITIES(ifp);
2007			}
2008			ifp->if_mtu = ifr->ifr_mtu;
2009			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
2010				ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2011				jme_init_locked(sc);
2012			}
2013			JME_UNLOCK(sc);
2014		}
2015		break;
2016	case SIOCSIFFLAGS:
2017		JME_LOCK(sc);
2018		if ((ifp->if_flags & IFF_UP) != 0) {
2019			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
2020				if (((ifp->if_flags ^ sc->jme_if_flags)
2021				    & (IFF_PROMISC | IFF_ALLMULTI)) != 0)
2022					jme_set_filter(sc);
2023			} else {
2024				if ((sc->jme_flags & JME_FLAG_DETACH) == 0)
2025					jme_init_locked(sc);
2026			}
2027		} else {
2028			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
2029				jme_stop(sc);
2030		}
2031		sc->jme_if_flags = ifp->if_flags;
2032		JME_UNLOCK(sc);
2033		break;
2034	case SIOCADDMULTI:
2035	case SIOCDELMULTI:
2036		JME_LOCK(sc);
2037		if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
2038			jme_set_filter(sc);
2039		JME_UNLOCK(sc);
2040		break;
2041	case SIOCSIFMEDIA:
2042	case SIOCGIFMEDIA:
2043		mii = device_get_softc(sc->jme_miibus);
2044		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd);
2045		break;
2046	case SIOCSIFCAP:
2047		JME_LOCK(sc);
2048		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
2049		if ((mask & IFCAP_TXCSUM) != 0 &&
2050		    ifp->if_mtu < JME_TX_FIFO_SIZE) {
2051			if ((IFCAP_TXCSUM & ifp->if_capabilities) != 0) {
2052				ifp->if_capenable ^= IFCAP_TXCSUM;
2053				if ((IFCAP_TXCSUM & ifp->if_capenable) != 0)
2054					ifp->if_hwassist |= JME_CSUM_FEATURES;
2055				else
2056					ifp->if_hwassist &= ~JME_CSUM_FEATURES;
2057			}
2058		}
2059		if ((mask & IFCAP_RXCSUM) != 0 &&
2060		    (IFCAP_RXCSUM & ifp->if_capabilities) != 0) {
2061			ifp->if_capenable ^= IFCAP_RXCSUM;
2062			reg = CSR_READ_4(sc, JME_RXMAC);
2063			reg &= ~RXMAC_CSUM_ENB;
2064			if ((ifp->if_capenable & IFCAP_RXCSUM) != 0)
2065				reg |= RXMAC_CSUM_ENB;
2066			CSR_WRITE_4(sc, JME_RXMAC, reg);
2067		}
2068		if ((mask & IFCAP_TSO4) != 0 &&
2069		    ifp->if_mtu < JME_TX_FIFO_SIZE) {
2070			if ((IFCAP_TSO4 & ifp->if_capabilities) != 0) {
2071				ifp->if_capenable ^= IFCAP_TSO4;
2072				if ((IFCAP_TSO4 & ifp->if_capenable) != 0)
2073					ifp->if_hwassist |= CSUM_TSO;
2074				else
2075					ifp->if_hwassist &= ~CSUM_TSO;
2076			}
2077		}
2078		if ((mask & IFCAP_WOL_MAGIC) != 0 &&
2079		    (IFCAP_WOL_MAGIC & ifp->if_capabilities) != 0)
2080			ifp->if_capenable ^= IFCAP_WOL_MAGIC;
2081		if ((mask & IFCAP_VLAN_HWCSUM) != 0 &&
2082		    (ifp->if_capabilities & IFCAP_VLAN_HWCSUM) != 0)
2083			ifp->if_capenable ^= IFCAP_VLAN_HWCSUM;
2084		if ((mask & IFCAP_VLAN_HWTSO) != 0 &&
2085		    (ifp->if_capabilities & IFCAP_VLAN_HWTSO) != 0)
2086			ifp->if_capenable ^= IFCAP_VLAN_HWTSO;
2087		if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
2088		    (IFCAP_VLAN_HWTAGGING & ifp->if_capabilities) != 0) {
2089			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
2090			jme_set_vlan(sc);
2091		}
2092		JME_UNLOCK(sc);
2093		VLAN_CAPABILITIES(ifp);
2094		break;
2095	default:
2096		error = ether_ioctl(ifp, cmd, data);
2097		break;
2098	}
2099
2100	return (error);
2101}
2102
2103static void
2104jme_mac_config(struct jme_softc *sc)
2105{
2106	struct mii_data *mii;
2107	uint32_t ghc, gpreg, rxmac, txmac, txpause;
2108	uint32_t txclk;
2109
2110	JME_LOCK_ASSERT(sc);
2111
2112	mii = device_get_softc(sc->jme_miibus);
2113
2114	CSR_WRITE_4(sc, JME_GHC, GHC_RESET);
2115	DELAY(10);
2116	CSR_WRITE_4(sc, JME_GHC, 0);
2117	ghc = 0;
2118	txclk = 0;
2119	rxmac = CSR_READ_4(sc, JME_RXMAC);
2120	rxmac &= ~RXMAC_FC_ENB;
2121	txmac = CSR_READ_4(sc, JME_TXMAC);
2122	txmac &= ~(TXMAC_CARRIER_EXT | TXMAC_FRAME_BURST);
2123	txpause = CSR_READ_4(sc, JME_TXPFC);
2124	txpause &= ~TXPFC_PAUSE_ENB;
2125	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
2126		ghc |= GHC_FULL_DUPLEX;
2127		rxmac &= ~RXMAC_COLL_DET_ENB;
2128		txmac &= ~(TXMAC_COLL_ENB | TXMAC_CARRIER_SENSE |
2129		    TXMAC_BACKOFF | TXMAC_CARRIER_EXT |
2130		    TXMAC_FRAME_BURST);
2131		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
2132			txpause |= TXPFC_PAUSE_ENB;
2133		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
2134			rxmac |= RXMAC_FC_ENB;
2135		/* Disable retry transmit timer/retry limit. */
2136		CSR_WRITE_4(sc, JME_TXTRHD, CSR_READ_4(sc, JME_TXTRHD) &
2137		    ~(TXTRHD_RT_PERIOD_ENB | TXTRHD_RT_LIMIT_ENB));
2138	} else {
2139		rxmac |= RXMAC_COLL_DET_ENB;
2140		txmac |= TXMAC_COLL_ENB | TXMAC_CARRIER_SENSE | TXMAC_BACKOFF;
2141		/* Enable retry transmit timer/retry limit. */
2142		CSR_WRITE_4(sc, JME_TXTRHD, CSR_READ_4(sc, JME_TXTRHD) |
2143		    TXTRHD_RT_PERIOD_ENB | TXTRHD_RT_LIMIT_ENB);
2144	}
2145		/* Reprogram Tx/Rx MACs with resolved speed/duplex. */
2146	switch (IFM_SUBTYPE(mii->mii_media_active)) {
2147	case IFM_10_T:
2148		ghc |= GHC_SPEED_10;
2149		txclk |= GHC_TX_OFFLD_CLK_100 | GHC_TX_MAC_CLK_100;
2150		break;
2151	case IFM_100_TX:
2152		ghc |= GHC_SPEED_100;
2153		txclk |= GHC_TX_OFFLD_CLK_100 | GHC_TX_MAC_CLK_100;
2154		break;
2155	case IFM_1000_T:
2156		if ((sc->jme_flags & JME_FLAG_FASTETH) != 0)
2157			break;
2158		ghc |= GHC_SPEED_1000;
2159		txclk |= GHC_TX_OFFLD_CLK_1000 | GHC_TX_MAC_CLK_1000;
2160		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) == 0)
2161			txmac |= TXMAC_CARRIER_EXT | TXMAC_FRAME_BURST;
2162		break;
2163	default:
2164		break;
2165	}
2166	if (sc->jme_rev == DEVICEID_JMC250 &&
2167	    sc->jme_chip_rev == DEVICEREVID_JMC250_A2) {
2168		/*
2169		 * Workaround occasional packet loss issue of JMC250 A2
2170		 * when it runs on half-duplex media.
2171		 */
2172		gpreg = CSR_READ_4(sc, JME_GPREG1);
2173		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0)
2174			gpreg &= ~GPREG1_HDPX_FIX;
2175		else
2176			gpreg |= GPREG1_HDPX_FIX;
2177		CSR_WRITE_4(sc, JME_GPREG1, gpreg);
2178		/* Workaround CRC errors at 100Mbps on JMC250 A2. */
2179		if (IFM_SUBTYPE(mii->mii_media_active) == IFM_100_TX) {
2180			/* Extend interface FIFO depth. */
2181			jme_miibus_writereg(sc->jme_dev, sc->jme_phyaddr,
2182			    0x1B, 0x0000);
2183		} else {
2184			/* Select default interface FIFO depth. */
2185			jme_miibus_writereg(sc->jme_dev, sc->jme_phyaddr,
2186			    0x1B, 0x0004);
2187		}
2188	}
2189	if ((sc->jme_flags & JME_FLAG_TXCLK) != 0)
2190		ghc |= txclk;
2191	CSR_WRITE_4(sc, JME_GHC, ghc);
2192	CSR_WRITE_4(sc, JME_RXMAC, rxmac);
2193	CSR_WRITE_4(sc, JME_TXMAC, txmac);
2194	CSR_WRITE_4(sc, JME_TXPFC, txpause);
2195}
2196
2197static void
2198jme_link_task(void *arg, int pending)
2199{
2200	struct jme_softc *sc;
2201	struct mii_data *mii;
2202	struct ifnet *ifp;
2203	struct jme_txdesc *txd;
2204	bus_addr_t paddr;
2205	int i;
2206
2207	sc = (struct jme_softc *)arg;
2208
2209	JME_LOCK(sc);
2210	mii = device_get_softc(sc->jme_miibus);
2211	ifp = sc->jme_ifp;
2212	if (mii == NULL || ifp == NULL ||
2213	    (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
2214		JME_UNLOCK(sc);
2215		return;
2216	}
2217
2218	sc->jme_flags &= ~JME_FLAG_LINK;
2219	if ((mii->mii_media_status & IFM_AVALID) != 0) {
2220		switch (IFM_SUBTYPE(mii->mii_media_active)) {
2221		case IFM_10_T:
2222		case IFM_100_TX:
2223			sc->jme_flags |= JME_FLAG_LINK;
2224			break;
2225		case IFM_1000_T:
2226			if ((sc->jme_flags & JME_FLAG_FASTETH) != 0)
2227				break;
2228			sc->jme_flags |= JME_FLAG_LINK;
2229			break;
2230		default:
2231			break;
2232		}
2233	}
2234
2235	/*
2236	 * Disabling Rx/Tx MACs have a side-effect of resetting
2237	 * JME_TXNDA/JME_RXNDA register to the first address of
2238	 * Tx/Rx descriptor address. So driver should reset its
2239	 * internal procucer/consumer pointer and reclaim any
2240	 * allocated resources. Note, just saving the value of
2241	 * JME_TXNDA and JME_RXNDA registers before stopping MAC
2242	 * and restoring JME_TXNDA/JME_RXNDA register is not
2243	 * sufficient to make sure correct MAC state because
2244	 * stopping MAC operation can take a while and hardware
2245	 * might have updated JME_TXNDA/JME_RXNDA registers
2246	 * during the stop operation.
2247	 */
2248	/* Block execution of task. */
2249	taskqueue_block(sc->jme_tq);
2250	/* Disable interrupts and stop driver. */
2251	CSR_WRITE_4(sc, JME_INTR_MASK_CLR, JME_INTRS);
2252	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
2253	callout_stop(&sc->jme_tick_ch);
2254	sc->jme_watchdog_timer = 0;
2255
2256	/* Stop receiver/transmitter. */
2257	jme_stop_rx(sc);
2258	jme_stop_tx(sc);
2259
2260	/* XXX Drain all queued tasks. */
2261	JME_UNLOCK(sc);
2262	taskqueue_drain(sc->jme_tq, &sc->jme_int_task);
2263	JME_LOCK(sc);
2264
2265	if (sc->jme_cdata.jme_rxhead != NULL)
2266		m_freem(sc->jme_cdata.jme_rxhead);
2267	JME_RXCHAIN_RESET(sc);
2268	jme_txeof(sc);
2269	if (sc->jme_cdata.jme_tx_cnt != 0) {
2270		/* Remove queued packets for transmit. */
2271		for (i = 0; i < JME_TX_RING_CNT; i++) {
2272			txd = &sc->jme_cdata.jme_txdesc[i];
2273			if (txd->tx_m != NULL) {
2274				bus_dmamap_sync(
2275				    sc->jme_cdata.jme_tx_tag,
2276				    txd->tx_dmamap,
2277				    BUS_DMASYNC_POSTWRITE);
2278				bus_dmamap_unload(
2279				    sc->jme_cdata.jme_tx_tag,
2280				    txd->tx_dmamap);
2281				m_freem(txd->tx_m);
2282				txd->tx_m = NULL;
2283				txd->tx_ndesc = 0;
2284				if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
2285			}
2286		}
2287	}
2288
2289	/*
2290	 * Reuse configured Rx descriptors and reset
2291	 * producer/consumer index.
2292	 */
2293	sc->jme_cdata.jme_rx_cons = 0;
2294	sc->jme_morework = 0;
2295	jme_init_tx_ring(sc);
2296	/* Initialize shadow status block. */
2297	jme_init_ssb(sc);
2298
2299	/* Program MAC with resolved speed/duplex/flow-control. */
2300	if ((sc->jme_flags & JME_FLAG_LINK) != 0) {
2301		jme_mac_config(sc);
2302		jme_stats_clear(sc);
2303
2304		CSR_WRITE_4(sc, JME_RXCSR, sc->jme_rxcsr);
2305		CSR_WRITE_4(sc, JME_TXCSR, sc->jme_txcsr);
2306
2307		/* Set Tx ring address to the hardware. */
2308		paddr = JME_TX_RING_ADDR(sc, 0);
2309		CSR_WRITE_4(sc, JME_TXDBA_HI, JME_ADDR_HI(paddr));
2310		CSR_WRITE_4(sc, JME_TXDBA_LO, JME_ADDR_LO(paddr));
2311
2312		/* Set Rx ring address to the hardware. */
2313		paddr = JME_RX_RING_ADDR(sc, 0);
2314		CSR_WRITE_4(sc, JME_RXDBA_HI, JME_ADDR_HI(paddr));
2315		CSR_WRITE_4(sc, JME_RXDBA_LO, JME_ADDR_LO(paddr));
2316
2317		/* Restart receiver/transmitter. */
2318		CSR_WRITE_4(sc, JME_RXCSR, sc->jme_rxcsr | RXCSR_RX_ENB |
2319		    RXCSR_RXQ_START);
2320		CSR_WRITE_4(sc, JME_TXCSR, sc->jme_txcsr | TXCSR_TX_ENB);
2321		/* Lastly enable TX/RX clock. */
2322		if ((sc->jme_flags & JME_FLAG_TXCLK) != 0)
2323			CSR_WRITE_4(sc, JME_GHC,
2324			    CSR_READ_4(sc, JME_GHC) & ~GHC_TX_MAC_CLK_DIS);
2325		if ((sc->jme_flags & JME_FLAG_RXCLK) != 0)
2326			CSR_WRITE_4(sc, JME_GPREG1,
2327			    CSR_READ_4(sc, JME_GPREG1) & ~GPREG1_RX_MAC_CLK_DIS);
2328	}
2329
2330	ifp->if_drv_flags |= IFF_DRV_RUNNING;
2331	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2332	callout_reset(&sc->jme_tick_ch, hz, jme_tick, sc);
2333	/* Unblock execution of task. */
2334	taskqueue_unblock(sc->jme_tq);
2335	/* Reenable interrupts. */
2336	CSR_WRITE_4(sc, JME_INTR_MASK_SET, JME_INTRS);
2337
2338	JME_UNLOCK(sc);
2339}
2340
2341static int
2342jme_intr(void *arg)
2343{
2344	struct jme_softc *sc;
2345	uint32_t status;
2346
2347	sc = (struct jme_softc *)arg;
2348
2349	status = CSR_READ_4(sc, JME_INTR_REQ_STATUS);
2350	if (status == 0 || status == 0xFFFFFFFF)
2351		return (FILTER_STRAY);
2352	/* Disable interrupts. */
2353	CSR_WRITE_4(sc, JME_INTR_MASK_CLR, JME_INTRS);
2354	taskqueue_enqueue(sc->jme_tq, &sc->jme_int_task);
2355
2356	return (FILTER_HANDLED);
2357}
2358
2359static void
2360jme_int_task(void *arg, int pending)
2361{
2362	struct jme_softc *sc;
2363	struct ifnet *ifp;
2364	uint32_t status;
2365	int more;
2366
2367	sc = (struct jme_softc *)arg;
2368	ifp = sc->jme_ifp;
2369
2370	JME_LOCK(sc);
2371	status = CSR_READ_4(sc, JME_INTR_STATUS);
2372	if (sc->jme_morework != 0) {
2373		sc->jme_morework = 0;
2374		status |= INTR_RXQ_COAL | INTR_RXQ_COAL_TO;
2375	}
2376	if ((status & JME_INTRS) == 0 || status == 0xFFFFFFFF)
2377		goto done;
2378	/* Reset PCC counter/timer and Ack interrupts. */
2379	status &= ~(INTR_TXQ_COMP | INTR_RXQ_COMP);
2380	if ((status & (INTR_TXQ_COAL | INTR_TXQ_COAL_TO)) != 0)
2381		status |= INTR_TXQ_COAL | INTR_TXQ_COAL_TO | INTR_TXQ_COMP;
2382	if ((status & (INTR_RXQ_COAL | INTR_RXQ_COAL_TO)) != 0)
2383		status |= INTR_RXQ_COAL | INTR_RXQ_COAL_TO | INTR_RXQ_COMP;
2384	CSR_WRITE_4(sc, JME_INTR_STATUS, status);
2385	more = 0;
2386	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
2387		if ((status & (INTR_RXQ_COAL | INTR_RXQ_COAL_TO)) != 0) {
2388			more = jme_rxintr(sc, sc->jme_process_limit);
2389			if (more != 0)
2390				sc->jme_morework = 1;
2391		}
2392		if ((status & INTR_RXQ_DESC_EMPTY) != 0) {
2393			/*
2394			 * Notify hardware availability of new Rx
2395			 * buffers.
2396			 * Reading RXCSR takes very long time under
2397			 * heavy load so cache RXCSR value and writes
2398			 * the ORed value with the kick command to
2399			 * the RXCSR. This saves one register access
2400			 * cycle.
2401			 */
2402			CSR_WRITE_4(sc, JME_RXCSR, sc->jme_rxcsr |
2403			    RXCSR_RX_ENB | RXCSR_RXQ_START);
2404		}
2405		if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
2406			jme_start_locked(ifp);
2407	}
2408
2409	if (more != 0 || (CSR_READ_4(sc, JME_INTR_STATUS) & JME_INTRS) != 0) {
2410		taskqueue_enqueue(sc->jme_tq, &sc->jme_int_task);
2411		JME_UNLOCK(sc);
2412		return;
2413	}
2414done:
2415	JME_UNLOCK(sc);
2416
2417	/* Reenable interrupts. */
2418	CSR_WRITE_4(sc, JME_INTR_MASK_SET, JME_INTRS);
2419}
2420
2421static void
2422jme_txeof(struct jme_softc *sc)
2423{
2424	struct ifnet *ifp;
2425	struct jme_txdesc *txd;
2426	uint32_t status;
2427	int cons, nsegs;
2428
2429	JME_LOCK_ASSERT(sc);
2430
2431	ifp = sc->jme_ifp;
2432
2433	cons = sc->jme_cdata.jme_tx_cons;
2434	if (cons == sc->jme_cdata.jme_tx_prod)
2435		return;
2436
2437	bus_dmamap_sync(sc->jme_cdata.jme_tx_ring_tag,
2438	    sc->jme_cdata.jme_tx_ring_map,
2439	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2440
2441	/*
2442	 * Go through our Tx list and free mbufs for those
2443	 * frames which have been transmitted.
2444	 */
2445	for (; cons != sc->jme_cdata.jme_tx_prod;) {
2446		txd = &sc->jme_cdata.jme_txdesc[cons];
2447		status = le32toh(txd->tx_desc->flags);
2448		if ((status & JME_TD_OWN) == JME_TD_OWN)
2449			break;
2450
2451		if ((status & (JME_TD_TMOUT | JME_TD_RETRY_EXP)) != 0)
2452			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
2453		else {
2454			if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
2455			if ((status & JME_TD_COLLISION) != 0)
2456				if_inc_counter(ifp, IFCOUNTER_COLLISIONS,
2457				    le32toh(txd->tx_desc->buflen) &
2458				    JME_TD_BUF_LEN_MASK);
2459		}
2460		/*
2461		 * Only the first descriptor of multi-descriptor
2462		 * transmission is updated so driver have to skip entire
2463		 * chained buffers for the transmiited frame. In other
2464		 * words, JME_TD_OWN bit is valid only at the first
2465		 * descriptor of a multi-descriptor transmission.
2466		 */
2467		for (nsegs = 0; nsegs < txd->tx_ndesc; nsegs++) {
2468			sc->jme_rdata.jme_tx_ring[cons].flags = 0;
2469			JME_DESC_INC(cons, JME_TX_RING_CNT);
2470		}
2471
2472		/* Reclaim transferred mbufs. */
2473		bus_dmamap_sync(sc->jme_cdata.jme_tx_tag, txd->tx_dmamap,
2474		    BUS_DMASYNC_POSTWRITE);
2475		bus_dmamap_unload(sc->jme_cdata.jme_tx_tag, txd->tx_dmamap);
2476
2477		KASSERT(txd->tx_m != NULL,
2478		    ("%s: freeing NULL mbuf!\n", __func__));
2479		m_freem(txd->tx_m);
2480		txd->tx_m = NULL;
2481		sc->jme_cdata.jme_tx_cnt -= txd->tx_ndesc;
2482		KASSERT(sc->jme_cdata.jme_tx_cnt >= 0,
2483		    ("%s: Active Tx desc counter was garbled\n", __func__));
2484		txd->tx_ndesc = 0;
2485		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2486	}
2487	sc->jme_cdata.jme_tx_cons = cons;
2488	/* Unarm watchog timer when there is no pending descriptors in queue. */
2489	if (sc->jme_cdata.jme_tx_cnt == 0)
2490		sc->jme_watchdog_timer = 0;
2491
2492	bus_dmamap_sync(sc->jme_cdata.jme_tx_ring_tag,
2493	    sc->jme_cdata.jme_tx_ring_map,
2494	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2495}
2496
2497static __inline void
2498jme_discard_rxbuf(struct jme_softc *sc, int cons)
2499{
2500	struct jme_desc *desc;
2501
2502	desc = &sc->jme_rdata.jme_rx_ring[cons];
2503	desc->flags = htole32(JME_RD_OWN | JME_RD_INTR | JME_RD_64BIT);
2504	desc->buflen = htole32(MCLBYTES);
2505}
2506
2507/* Receive a frame. */
2508static void
2509jme_rxeof(struct jme_softc *sc)
2510{
2511	struct ifnet *ifp;
2512	struct jme_desc *desc;
2513	struct jme_rxdesc *rxd;
2514	struct mbuf *mp, *m;
2515	uint32_t flags, status;
2516	int cons, count, nsegs;
2517
2518	JME_LOCK_ASSERT(sc);
2519
2520	ifp = sc->jme_ifp;
2521
2522	cons = sc->jme_cdata.jme_rx_cons;
2523	desc = &sc->jme_rdata.jme_rx_ring[cons];
2524	flags = le32toh(desc->flags);
2525	status = le32toh(desc->buflen);
2526	nsegs = JME_RX_NSEGS(status);
2527	sc->jme_cdata.jme_rxlen = JME_RX_BYTES(status) - JME_RX_PAD_BYTES;
2528	if ((status & JME_RX_ERR_STAT) != 0) {
2529		if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
2530		jme_discard_rxbuf(sc, sc->jme_cdata.jme_rx_cons);
2531#ifdef JME_SHOW_ERRORS
2532		device_printf(sc->jme_dev, "%s : receive error = 0x%b\n",
2533		    __func__, JME_RX_ERR(status), JME_RX_ERR_BITS);
2534#endif
2535		sc->jme_cdata.jme_rx_cons += nsegs;
2536		sc->jme_cdata.jme_rx_cons %= JME_RX_RING_CNT;
2537		return;
2538	}
2539
2540	for (count = 0; count < nsegs; count++,
2541	    JME_DESC_INC(cons, JME_RX_RING_CNT)) {
2542		rxd = &sc->jme_cdata.jme_rxdesc[cons];
2543		mp = rxd->rx_m;
2544		/* Add a new receive buffer to the ring. */
2545		if (jme_newbuf(sc, rxd) != 0) {
2546			if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
2547			/* Reuse buffer. */
2548			for (; count < nsegs; count++) {
2549				jme_discard_rxbuf(sc, cons);
2550				JME_DESC_INC(cons, JME_RX_RING_CNT);
2551			}
2552			if (sc->jme_cdata.jme_rxhead != NULL) {
2553				m_freem(sc->jme_cdata.jme_rxhead);
2554				JME_RXCHAIN_RESET(sc);
2555			}
2556			break;
2557		}
2558
2559		/*
2560		 * Assume we've received a full sized frame.
2561		 * Actual size is fixed when we encounter the end of
2562		 * multi-segmented frame.
2563		 */
2564		mp->m_len = MCLBYTES;
2565
2566		/* Chain received mbufs. */
2567		if (sc->jme_cdata.jme_rxhead == NULL) {
2568			sc->jme_cdata.jme_rxhead = mp;
2569			sc->jme_cdata.jme_rxtail = mp;
2570		} else {
2571			/*
2572			 * Receive processor can receive a maximum frame
2573			 * size of 65535 bytes.
2574			 */
2575			mp->m_flags &= ~M_PKTHDR;
2576			sc->jme_cdata.jme_rxtail->m_next = mp;
2577			sc->jme_cdata.jme_rxtail = mp;
2578		}
2579
2580		if (count == nsegs - 1) {
2581			/* Last desc. for this frame. */
2582			m = sc->jme_cdata.jme_rxhead;
2583			m->m_flags |= M_PKTHDR;
2584			m->m_pkthdr.len = sc->jme_cdata.jme_rxlen;
2585			if (nsegs > 1) {
2586				/* Set first mbuf size. */
2587				m->m_len = MCLBYTES - JME_RX_PAD_BYTES;
2588				/* Set last mbuf size. */
2589				mp->m_len = sc->jme_cdata.jme_rxlen -
2590				    ((MCLBYTES - JME_RX_PAD_BYTES) +
2591				    (MCLBYTES * (nsegs - 2)));
2592			} else
2593				m->m_len = sc->jme_cdata.jme_rxlen;
2594			m->m_pkthdr.rcvif = ifp;
2595
2596			/*
2597			 * Account for 10bytes auto padding which is used
2598			 * to align IP header on 32bit boundary. Also note,
2599			 * CRC bytes is automatically removed by the
2600			 * hardware.
2601			 */
2602			m->m_data += JME_RX_PAD_BYTES;
2603
2604			/* Set checksum information. */
2605			if ((ifp->if_capenable & IFCAP_RXCSUM) != 0 &&
2606			    (flags & JME_RD_IPV4) != 0) {
2607				m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
2608				if ((flags & JME_RD_IPCSUM) != 0)
2609					m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
2610				if (((flags & JME_RD_MORE_FRAG) == 0) &&
2611				    ((flags & (JME_RD_TCP | JME_RD_TCPCSUM)) ==
2612				    (JME_RD_TCP | JME_RD_TCPCSUM) ||
2613				    (flags & (JME_RD_UDP | JME_RD_UDPCSUM)) ==
2614				    (JME_RD_UDP | JME_RD_UDPCSUM))) {
2615					m->m_pkthdr.csum_flags |=
2616					    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
2617					m->m_pkthdr.csum_data = 0xffff;
2618				}
2619			}
2620
2621			/* Check for VLAN tagged packets. */
2622			if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0 &&
2623			    (flags & JME_RD_VLAN_TAG) != 0) {
2624				m->m_pkthdr.ether_vtag =
2625				    flags & JME_RD_VLAN_MASK;
2626				m->m_flags |= M_VLANTAG;
2627			}
2628
2629			if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
2630			/* Pass it on. */
2631			JME_UNLOCK(sc);
2632			(*ifp->if_input)(ifp, m);
2633			JME_LOCK(sc);
2634
2635			/* Reset mbuf chains. */
2636			JME_RXCHAIN_RESET(sc);
2637		}
2638	}
2639
2640	sc->jme_cdata.jme_rx_cons += nsegs;
2641	sc->jme_cdata.jme_rx_cons %= JME_RX_RING_CNT;
2642}
2643
2644static int
2645jme_rxintr(struct jme_softc *sc, int count)
2646{
2647	struct jme_desc *desc;
2648	int nsegs, prog, pktlen;
2649
2650	bus_dmamap_sync(sc->jme_cdata.jme_rx_ring_tag,
2651	    sc->jme_cdata.jme_rx_ring_map,
2652	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2653
2654	for (prog = 0; count > 0; prog++) {
2655		desc = &sc->jme_rdata.jme_rx_ring[sc->jme_cdata.jme_rx_cons];
2656		if ((le32toh(desc->flags) & JME_RD_OWN) == JME_RD_OWN)
2657			break;
2658		if ((le32toh(desc->buflen) & JME_RD_VALID) == 0)
2659			break;
2660		nsegs = JME_RX_NSEGS(le32toh(desc->buflen));
2661		/*
2662		 * Check number of segments against received bytes.
2663		 * Non-matching value would indicate that hardware
2664		 * is still trying to update Rx descriptors. I'm not
2665		 * sure whether this check is needed.
2666		 */
2667		pktlen = JME_RX_BYTES(le32toh(desc->buflen));
2668		if (nsegs != ((pktlen + (MCLBYTES - 1)) / MCLBYTES))
2669			break;
2670		prog++;
2671		/* Received a frame. */
2672		jme_rxeof(sc);
2673		count -= nsegs;
2674	}
2675
2676	if (prog > 0)
2677		bus_dmamap_sync(sc->jme_cdata.jme_rx_ring_tag,
2678		    sc->jme_cdata.jme_rx_ring_map,
2679		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2680
2681	return (count > 0 ? 0 : EAGAIN);
2682}
2683
2684static void
2685jme_tick(void *arg)
2686{
2687	struct jme_softc *sc;
2688	struct mii_data *mii;
2689
2690	sc = (struct jme_softc *)arg;
2691
2692	JME_LOCK_ASSERT(sc);
2693
2694	mii = device_get_softc(sc->jme_miibus);
2695	mii_tick(mii);
2696	/*
2697	 * Reclaim Tx buffers that have been completed. It's not
2698	 * needed here but it would release allocated mbuf chains
2699	 * faster and limit the maximum delay to a hz.
2700	 */
2701	jme_txeof(sc);
2702	jme_stats_update(sc);
2703	jme_watchdog(sc);
2704	callout_reset(&sc->jme_tick_ch, hz, jme_tick, sc);
2705}
2706
2707static void
2708jme_reset(struct jme_softc *sc)
2709{
2710	uint32_t ghc, gpreg;
2711
2712	/* Stop receiver, transmitter. */
2713	jme_stop_rx(sc);
2714	jme_stop_tx(sc);
2715
2716	/* Reset controller. */
2717	CSR_WRITE_4(sc, JME_GHC, GHC_RESET);
2718	CSR_READ_4(sc, JME_GHC);
2719	DELAY(10);
2720	/*
2721	 * Workaround Rx FIFO overruns seen under certain conditions.
2722	 * Explicitly synchorize TX/RX clock.  TX/RX clock should be
2723	 * enabled only after enabling TX/RX MACs.
2724	 */
2725	if ((sc->jme_flags & (JME_FLAG_TXCLK | JME_FLAG_RXCLK)) != 0) {
2726		/* Disable TX clock. */
2727		CSR_WRITE_4(sc, JME_GHC, GHC_RESET | GHC_TX_MAC_CLK_DIS);
2728		/* Disable RX clock. */
2729		gpreg = CSR_READ_4(sc, JME_GPREG1);
2730		CSR_WRITE_4(sc, JME_GPREG1, gpreg | GPREG1_RX_MAC_CLK_DIS);
2731		gpreg = CSR_READ_4(sc, JME_GPREG1);
2732		/* De-assert RESET but still disable TX clock. */
2733		CSR_WRITE_4(sc, JME_GHC, GHC_TX_MAC_CLK_DIS);
2734		ghc = CSR_READ_4(sc, JME_GHC);
2735
2736		/* Enable TX clock. */
2737		CSR_WRITE_4(sc, JME_GHC, ghc & ~GHC_TX_MAC_CLK_DIS);
2738		/* Enable RX clock. */
2739		CSR_WRITE_4(sc, JME_GPREG1, gpreg & ~GPREG1_RX_MAC_CLK_DIS);
2740		CSR_READ_4(sc, JME_GPREG1);
2741
2742		/* Disable TX/RX clock again. */
2743		CSR_WRITE_4(sc, JME_GHC, GHC_TX_MAC_CLK_DIS);
2744		CSR_WRITE_4(sc, JME_GPREG1, gpreg | GPREG1_RX_MAC_CLK_DIS);
2745	} else
2746		CSR_WRITE_4(sc, JME_GHC, 0);
2747	CSR_READ_4(sc, JME_GHC);
2748	DELAY(10);
2749}
2750
2751static void
2752jme_init(void *xsc)
2753{
2754	struct jme_softc *sc;
2755
2756	sc = (struct jme_softc *)xsc;
2757	JME_LOCK(sc);
2758	jme_init_locked(sc);
2759	JME_UNLOCK(sc);
2760}
2761
2762static void
2763jme_init_locked(struct jme_softc *sc)
2764{
2765	struct ifnet *ifp;
2766	struct mii_data *mii;
2767	bus_addr_t paddr;
2768	uint32_t reg;
2769	int error;
2770
2771	JME_LOCK_ASSERT(sc);
2772
2773	ifp = sc->jme_ifp;
2774	mii = device_get_softc(sc->jme_miibus);
2775
2776	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
2777		return;
2778	/*
2779	 * Cancel any pending I/O.
2780	 */
2781	jme_stop(sc);
2782
2783	/*
2784	 * Reset the chip to a known state.
2785	 */
2786	jme_reset(sc);
2787
2788	/* Init descriptors. */
2789	error = jme_init_rx_ring(sc);
2790        if (error != 0) {
2791                device_printf(sc->jme_dev,
2792                    "%s: initialization failed: no memory for Rx buffers.\n",
2793		    __func__);
2794                jme_stop(sc);
2795		return;
2796        }
2797	jme_init_tx_ring(sc);
2798	/* Initialize shadow status block. */
2799	jme_init_ssb(sc);
2800
2801	/* Reprogram the station address. */
2802	jme_set_macaddr(sc, IF_LLADDR(sc->jme_ifp));
2803
2804	/*
2805	 * Configure Tx queue.
2806	 *  Tx priority queue weight value : 0
2807	 *  Tx FIFO threshold for processing next packet : 16QW
2808	 *  Maximum Tx DMA length : 512
2809	 *  Allow Tx DMA burst.
2810	 */
2811	sc->jme_txcsr = TXCSR_TXQ_N_SEL(TXCSR_TXQ0);
2812	sc->jme_txcsr |= TXCSR_TXQ_WEIGHT(TXCSR_TXQ_WEIGHT_MIN);
2813	sc->jme_txcsr |= TXCSR_FIFO_THRESH_16QW;
2814	sc->jme_txcsr |= sc->jme_tx_dma_size;
2815	sc->jme_txcsr |= TXCSR_DMA_BURST;
2816	CSR_WRITE_4(sc, JME_TXCSR, sc->jme_txcsr);
2817
2818	/* Set Tx descriptor counter. */
2819	CSR_WRITE_4(sc, JME_TXQDC, JME_TX_RING_CNT);
2820
2821	/* Set Tx ring address to the hardware. */
2822	paddr = JME_TX_RING_ADDR(sc, 0);
2823	CSR_WRITE_4(sc, JME_TXDBA_HI, JME_ADDR_HI(paddr));
2824	CSR_WRITE_4(sc, JME_TXDBA_LO, JME_ADDR_LO(paddr));
2825
2826	/* Configure TxMAC parameters. */
2827	reg = TXMAC_IFG1_DEFAULT | TXMAC_IFG2_DEFAULT | TXMAC_IFG_ENB;
2828	reg |= TXMAC_THRESH_1_PKT;
2829	reg |= TXMAC_CRC_ENB | TXMAC_PAD_ENB;
2830	CSR_WRITE_4(sc, JME_TXMAC, reg);
2831
2832	/*
2833	 * Configure Rx queue.
2834	 *  FIFO full threshold for transmitting Tx pause packet : 128T
2835	 *  FIFO threshold for processing next packet : 128QW
2836	 *  Rx queue 0 select
2837	 *  Max Rx DMA length : 128
2838	 *  Rx descriptor retry : 32
2839	 *  Rx descriptor retry time gap : 256ns
2840	 *  Don't receive runt/bad frame.
2841	 */
2842	sc->jme_rxcsr = RXCSR_FIFO_FTHRESH_128T;
2843	/*
2844	 * Since Rx FIFO size is 4K bytes, receiving frames larger
2845	 * than 4K bytes will suffer from Rx FIFO overruns. So
2846	 * decrease FIFO threshold to reduce the FIFO overruns for
2847	 * frames larger than 4000 bytes.
2848	 * For best performance of standard MTU sized frames use
2849	 * maximum allowable FIFO threshold, 128QW. Note these do
2850	 * not hold on chip full mask verion >=2. For these
2851	 * controllers 64QW and 128QW are not valid value.
2852	 */
2853	if (CHIPMODE_REVFM(sc->jme_chip_rev) >= 2)
2854		sc->jme_rxcsr |= RXCSR_FIFO_THRESH_16QW;
2855	else {
2856		if ((ifp->if_mtu + ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN +
2857		    ETHER_CRC_LEN) > JME_RX_FIFO_SIZE)
2858			sc->jme_rxcsr |= RXCSR_FIFO_THRESH_16QW;
2859		else
2860			sc->jme_rxcsr |= RXCSR_FIFO_THRESH_128QW;
2861	}
2862	sc->jme_rxcsr |= sc->jme_rx_dma_size | RXCSR_RXQ_N_SEL(RXCSR_RXQ0);
2863	sc->jme_rxcsr |= RXCSR_DESC_RT_CNT(RXCSR_DESC_RT_CNT_DEFAULT);
2864	sc->jme_rxcsr |= RXCSR_DESC_RT_GAP_256 & RXCSR_DESC_RT_GAP_MASK;
2865	CSR_WRITE_4(sc, JME_RXCSR, sc->jme_rxcsr);
2866
2867	/* Set Rx descriptor counter. */
2868	CSR_WRITE_4(sc, JME_RXQDC, JME_RX_RING_CNT);
2869
2870	/* Set Rx ring address to the hardware. */
2871	paddr = JME_RX_RING_ADDR(sc, 0);
2872	CSR_WRITE_4(sc, JME_RXDBA_HI, JME_ADDR_HI(paddr));
2873	CSR_WRITE_4(sc, JME_RXDBA_LO, JME_ADDR_LO(paddr));
2874
2875	/* Clear receive filter. */
2876	CSR_WRITE_4(sc, JME_RXMAC, 0);
2877	/* Set up the receive filter. */
2878	jme_set_filter(sc);
2879	jme_set_vlan(sc);
2880
2881	/*
2882	 * Disable all WOL bits as WOL can interfere normal Rx
2883	 * operation. Also clear WOL detection status bits.
2884	 */
2885	reg = CSR_READ_4(sc, JME_PMCS);
2886	reg &= ~PMCS_WOL_ENB_MASK;
2887	CSR_WRITE_4(sc, JME_PMCS, reg);
2888
2889	reg = CSR_READ_4(sc, JME_RXMAC);
2890	/*
2891	 * Pad 10bytes right before received frame. This will greatly
2892	 * help Rx performance on strict-alignment architectures as
2893	 * it does not need to copy the frame to align the payload.
2894	 */
2895	reg |= RXMAC_PAD_10BYTES;
2896	if ((ifp->if_capenable & IFCAP_RXCSUM) != 0)
2897		reg |= RXMAC_CSUM_ENB;
2898	CSR_WRITE_4(sc, JME_RXMAC, reg);
2899
2900	/* Configure general purpose reg0 */
2901	reg = CSR_READ_4(sc, JME_GPREG0);
2902	reg &= ~GPREG0_PCC_UNIT_MASK;
2903	/* Set PCC timer resolution to micro-seconds unit. */
2904	reg |= GPREG0_PCC_UNIT_US;
2905	/*
2906	 * Disable all shadow register posting as we have to read
2907	 * JME_INTR_STATUS register in jme_int_task. Also it seems
2908	 * that it's hard to synchronize interrupt status between
2909	 * hardware and software with shadow posting due to
2910	 * requirements of bus_dmamap_sync(9).
2911	 */
2912	reg |= GPREG0_SH_POST_DW7_DIS | GPREG0_SH_POST_DW6_DIS |
2913	    GPREG0_SH_POST_DW5_DIS | GPREG0_SH_POST_DW4_DIS |
2914	    GPREG0_SH_POST_DW3_DIS | GPREG0_SH_POST_DW2_DIS |
2915	    GPREG0_SH_POST_DW1_DIS | GPREG0_SH_POST_DW0_DIS;
2916	/* Disable posting of DW0. */
2917	reg &= ~GPREG0_POST_DW0_ENB;
2918	/* Clear PME message. */
2919	reg &= ~GPREG0_PME_ENB;
2920	/* Set PHY address. */
2921	reg &= ~GPREG0_PHY_ADDR_MASK;
2922	reg |= sc->jme_phyaddr;
2923	CSR_WRITE_4(sc, JME_GPREG0, reg);
2924
2925	/* Configure Tx queue 0 packet completion coalescing. */
2926	reg = (sc->jme_tx_coal_to << PCCTX_COAL_TO_SHIFT) &
2927	    PCCTX_COAL_TO_MASK;
2928	reg |= (sc->jme_tx_coal_pkt << PCCTX_COAL_PKT_SHIFT) &
2929	    PCCTX_COAL_PKT_MASK;
2930	reg |= PCCTX_COAL_TXQ0;
2931	CSR_WRITE_4(sc, JME_PCCTX, reg);
2932
2933	/* Configure Rx queue 0 packet completion coalescing. */
2934	reg = (sc->jme_rx_coal_to << PCCRX_COAL_TO_SHIFT) &
2935	    PCCRX_COAL_TO_MASK;
2936	reg |= (sc->jme_rx_coal_pkt << PCCRX_COAL_PKT_SHIFT) &
2937	    PCCRX_COAL_PKT_MASK;
2938	CSR_WRITE_4(sc, JME_PCCRX0, reg);
2939
2940	/*
2941	 * Configure PCD(Packet Completion Deferring).  It seems PCD
2942	 * generates an interrupt when the time interval between two
2943	 * back-to-back incoming/outgoing packet is long enough for
2944	 * it to reach its timer value 0. The arrival of new packets
2945	 * after timer has started causes the PCD timer to restart.
2946	 * Unfortunately, it's not clear how PCD is useful at this
2947	 * moment, so just use the same of PCC parameters.
2948	 */
2949	if ((sc->jme_flags & JME_FLAG_PCCPCD) != 0) {
2950		sc->jme_rx_pcd_to = sc->jme_rx_coal_to;
2951		if (sc->jme_rx_coal_to > PCDRX_TO_MAX)
2952			sc->jme_rx_pcd_to = PCDRX_TO_MAX;
2953		sc->jme_tx_pcd_to = sc->jme_tx_coal_to;
2954		if (sc->jme_tx_coal_to > PCDTX_TO_MAX)
2955			sc->jme_tx_pcd_to = PCDTX_TO_MAX;
2956		reg = sc->jme_rx_pcd_to << PCDRX0_TO_THROTTLE_SHIFT;
2957		reg |= sc->jme_rx_pcd_to << PCDRX0_TO_SHIFT;
2958		CSR_WRITE_4(sc, PCDRX_REG(0), reg);
2959		reg = sc->jme_tx_pcd_to << PCDTX_TO_THROTTLE_SHIFT;
2960		reg |= sc->jme_tx_pcd_to << PCDTX_TO_SHIFT;
2961		CSR_WRITE_4(sc, JME_PCDTX, reg);
2962	}
2963
2964	/* Configure shadow status block but don't enable posting. */
2965	paddr = sc->jme_rdata.jme_ssb_block_paddr;
2966	CSR_WRITE_4(sc, JME_SHBASE_ADDR_HI, JME_ADDR_HI(paddr));
2967	CSR_WRITE_4(sc, JME_SHBASE_ADDR_LO, JME_ADDR_LO(paddr));
2968
2969	/* Disable Timer 1 and Timer 2. */
2970	CSR_WRITE_4(sc, JME_TIMER1, 0);
2971	CSR_WRITE_4(sc, JME_TIMER2, 0);
2972
2973	/* Configure retry transmit period, retry limit value. */
2974	CSR_WRITE_4(sc, JME_TXTRHD,
2975	    ((TXTRHD_RT_PERIOD_DEFAULT << TXTRHD_RT_PERIOD_SHIFT) &
2976	    TXTRHD_RT_PERIOD_MASK) |
2977	    ((TXTRHD_RT_LIMIT_DEFAULT << TXTRHD_RT_LIMIT_SHIFT) &
2978	    TXTRHD_RT_LIMIT_SHIFT));
2979
2980	/* Disable RSS. */
2981	CSR_WRITE_4(sc, JME_RSSC, RSSC_DIS_RSS);
2982
2983	/* Initialize the interrupt mask. */
2984	CSR_WRITE_4(sc, JME_INTR_MASK_SET, JME_INTRS);
2985	CSR_WRITE_4(sc, JME_INTR_STATUS, 0xFFFFFFFF);
2986
2987	/*
2988	 * Enabling Tx/Rx DMA engines and Rx queue processing is
2989	 * done after detection of valid link in jme_link_task.
2990	 */
2991
2992	sc->jme_flags &= ~JME_FLAG_LINK;
2993	/* Set the current media. */
2994	mii_mediachg(mii);
2995
2996	callout_reset(&sc->jme_tick_ch, hz, jme_tick, sc);
2997
2998	ifp->if_drv_flags |= IFF_DRV_RUNNING;
2999	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3000}
3001
3002static void
3003jme_stop(struct jme_softc *sc)
3004{
3005	struct ifnet *ifp;
3006	struct jme_txdesc *txd;
3007	struct jme_rxdesc *rxd;
3008	int i;
3009
3010	JME_LOCK_ASSERT(sc);
3011	/*
3012	 * Mark the interface down and cancel the watchdog timer.
3013	 */
3014	ifp = sc->jme_ifp;
3015	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
3016	sc->jme_flags &= ~JME_FLAG_LINK;
3017	callout_stop(&sc->jme_tick_ch);
3018	sc->jme_watchdog_timer = 0;
3019
3020	/*
3021	 * Disable interrupts.
3022	 */
3023	CSR_WRITE_4(sc, JME_INTR_MASK_CLR, JME_INTRS);
3024	CSR_WRITE_4(sc, JME_INTR_STATUS, 0xFFFFFFFF);
3025
3026	/* Disable updating shadow status block. */
3027	CSR_WRITE_4(sc, JME_SHBASE_ADDR_LO,
3028	    CSR_READ_4(sc, JME_SHBASE_ADDR_LO) & ~SHBASE_POST_ENB);
3029
3030	/* Stop receiver, transmitter. */
3031	jme_stop_rx(sc);
3032	jme_stop_tx(sc);
3033
3034	 /* Reclaim Rx/Tx buffers that have been completed. */
3035	jme_rxintr(sc, JME_RX_RING_CNT);
3036	if (sc->jme_cdata.jme_rxhead != NULL)
3037		m_freem(sc->jme_cdata.jme_rxhead);
3038	JME_RXCHAIN_RESET(sc);
3039	jme_txeof(sc);
3040	/*
3041	 * Free RX and TX mbufs still in the queues.
3042	 */
3043	for (i = 0; i < JME_RX_RING_CNT; i++) {
3044		rxd = &sc->jme_cdata.jme_rxdesc[i];
3045		if (rxd->rx_m != NULL) {
3046			bus_dmamap_sync(sc->jme_cdata.jme_rx_tag,
3047			    rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
3048			bus_dmamap_unload(sc->jme_cdata.jme_rx_tag,
3049			    rxd->rx_dmamap);
3050			m_freem(rxd->rx_m);
3051			rxd->rx_m = NULL;
3052		}
3053        }
3054	for (i = 0; i < JME_TX_RING_CNT; i++) {
3055		txd = &sc->jme_cdata.jme_txdesc[i];
3056		if (txd->tx_m != NULL) {
3057			bus_dmamap_sync(sc->jme_cdata.jme_tx_tag,
3058			    txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
3059			bus_dmamap_unload(sc->jme_cdata.jme_tx_tag,
3060			    txd->tx_dmamap);
3061			m_freem(txd->tx_m);
3062			txd->tx_m = NULL;
3063			txd->tx_ndesc = 0;
3064		}
3065        }
3066	jme_stats_update(sc);
3067	jme_stats_save(sc);
3068}
3069
3070static void
3071jme_stop_tx(struct jme_softc *sc)
3072{
3073	uint32_t reg;
3074	int i;
3075
3076	reg = CSR_READ_4(sc, JME_TXCSR);
3077	if ((reg & TXCSR_TX_ENB) == 0)
3078		return;
3079	reg &= ~TXCSR_TX_ENB;
3080	CSR_WRITE_4(sc, JME_TXCSR, reg);
3081	for (i = JME_TIMEOUT; i > 0; i--) {
3082		DELAY(1);
3083		if ((CSR_READ_4(sc, JME_TXCSR) & TXCSR_TX_ENB) == 0)
3084			break;
3085	}
3086	if (i == 0)
3087		device_printf(sc->jme_dev, "stopping transmitter timeout!\n");
3088}
3089
3090static void
3091jme_stop_rx(struct jme_softc *sc)
3092{
3093	uint32_t reg;
3094	int i;
3095
3096	reg = CSR_READ_4(sc, JME_RXCSR);
3097	if ((reg & RXCSR_RX_ENB) == 0)
3098		return;
3099	reg &= ~RXCSR_RX_ENB;
3100	CSR_WRITE_4(sc, JME_RXCSR, reg);
3101	for (i = JME_TIMEOUT; i > 0; i--) {
3102		DELAY(1);
3103		if ((CSR_READ_4(sc, JME_RXCSR) & RXCSR_RX_ENB) == 0)
3104			break;
3105	}
3106	if (i == 0)
3107		device_printf(sc->jme_dev, "stopping recevier timeout!\n");
3108}
3109
3110static void
3111jme_init_tx_ring(struct jme_softc *sc)
3112{
3113	struct jme_ring_data *rd;
3114	struct jme_txdesc *txd;
3115	int i;
3116
3117	sc->jme_cdata.jme_tx_prod = 0;
3118	sc->jme_cdata.jme_tx_cons = 0;
3119	sc->jme_cdata.jme_tx_cnt = 0;
3120
3121	rd = &sc->jme_rdata;
3122	bzero(rd->jme_tx_ring, JME_TX_RING_SIZE);
3123	for (i = 0; i < JME_TX_RING_CNT; i++) {
3124		txd = &sc->jme_cdata.jme_txdesc[i];
3125		txd->tx_m = NULL;
3126		txd->tx_desc = &rd->jme_tx_ring[i];
3127		txd->tx_ndesc = 0;
3128	}
3129
3130	bus_dmamap_sync(sc->jme_cdata.jme_tx_ring_tag,
3131	    sc->jme_cdata.jme_tx_ring_map,
3132	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3133}
3134
3135static void
3136jme_init_ssb(struct jme_softc *sc)
3137{
3138	struct jme_ring_data *rd;
3139
3140	rd = &sc->jme_rdata;
3141	bzero(rd->jme_ssb_block, JME_SSB_SIZE);
3142	bus_dmamap_sync(sc->jme_cdata.jme_ssb_tag, sc->jme_cdata.jme_ssb_map,
3143	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3144}
3145
3146static int
3147jme_init_rx_ring(struct jme_softc *sc)
3148{
3149	struct jme_ring_data *rd;
3150	struct jme_rxdesc *rxd;
3151	int i;
3152
3153	sc->jme_cdata.jme_rx_cons = 0;
3154	JME_RXCHAIN_RESET(sc);
3155	sc->jme_morework = 0;
3156
3157	rd = &sc->jme_rdata;
3158	bzero(rd->jme_rx_ring, JME_RX_RING_SIZE);
3159	for (i = 0; i < JME_RX_RING_CNT; i++) {
3160		rxd = &sc->jme_cdata.jme_rxdesc[i];
3161		rxd->rx_m = NULL;
3162		rxd->rx_desc = &rd->jme_rx_ring[i];
3163		if (jme_newbuf(sc, rxd) != 0)
3164			return (ENOBUFS);
3165	}
3166
3167	bus_dmamap_sync(sc->jme_cdata.jme_rx_ring_tag,
3168	    sc->jme_cdata.jme_rx_ring_map,
3169	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3170
3171	return (0);
3172}
3173
3174static int
3175jme_newbuf(struct jme_softc *sc, struct jme_rxdesc *rxd)
3176{
3177	struct jme_desc *desc;
3178	struct mbuf *m;
3179	bus_dma_segment_t segs[1];
3180	bus_dmamap_t map;
3181	int nsegs;
3182
3183	m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
3184	if (m == NULL)
3185		return (ENOBUFS);
3186	/*
3187	 * JMC250 has 64bit boundary alignment limitation so jme(4)
3188	 * takes advantage of 10 bytes padding feature of hardware
3189	 * in order not to copy entire frame to align IP header on
3190	 * 32bit boundary.
3191	 */
3192	m->m_len = m->m_pkthdr.len = MCLBYTES;
3193
3194	if (bus_dmamap_load_mbuf_sg(sc->jme_cdata.jme_rx_tag,
3195	    sc->jme_cdata.jme_rx_sparemap, m, segs, &nsegs, 0) != 0) {
3196		m_freem(m);
3197		return (ENOBUFS);
3198	}
3199	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
3200
3201	if (rxd->rx_m != NULL) {
3202		bus_dmamap_sync(sc->jme_cdata.jme_rx_tag, rxd->rx_dmamap,
3203		    BUS_DMASYNC_POSTREAD);
3204		bus_dmamap_unload(sc->jme_cdata.jme_rx_tag, rxd->rx_dmamap);
3205	}
3206	map = rxd->rx_dmamap;
3207	rxd->rx_dmamap = sc->jme_cdata.jme_rx_sparemap;
3208	sc->jme_cdata.jme_rx_sparemap = map;
3209	bus_dmamap_sync(sc->jme_cdata.jme_rx_tag, rxd->rx_dmamap,
3210	    BUS_DMASYNC_PREREAD);
3211	rxd->rx_m = m;
3212
3213	desc = rxd->rx_desc;
3214	desc->buflen = htole32(segs[0].ds_len);
3215	desc->addr_lo = htole32(JME_ADDR_LO(segs[0].ds_addr));
3216	desc->addr_hi = htole32(JME_ADDR_HI(segs[0].ds_addr));
3217	desc->flags = htole32(JME_RD_OWN | JME_RD_INTR | JME_RD_64BIT);
3218
3219	return (0);
3220}
3221
3222static void
3223jme_set_vlan(struct jme_softc *sc)
3224{
3225	struct ifnet *ifp;
3226	uint32_t reg;
3227
3228	JME_LOCK_ASSERT(sc);
3229
3230	ifp = sc->jme_ifp;
3231	reg = CSR_READ_4(sc, JME_RXMAC);
3232	reg &= ~RXMAC_VLAN_ENB;
3233	if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0)
3234		reg |= RXMAC_VLAN_ENB;
3235	CSR_WRITE_4(sc, JME_RXMAC, reg);
3236}
3237
3238static void
3239jme_set_filter(struct jme_softc *sc)
3240{
3241	struct ifnet *ifp;
3242	struct ifmultiaddr *ifma;
3243	uint32_t crc;
3244	uint32_t mchash[2];
3245	uint32_t rxcfg;
3246
3247	JME_LOCK_ASSERT(sc);
3248
3249	ifp = sc->jme_ifp;
3250
3251	rxcfg = CSR_READ_4(sc, JME_RXMAC);
3252	rxcfg &= ~ (RXMAC_BROADCAST | RXMAC_PROMISC | RXMAC_MULTICAST |
3253	    RXMAC_ALLMULTI);
3254	/* Always accept frames destined to our station address. */
3255	rxcfg |= RXMAC_UNICAST;
3256	if ((ifp->if_flags & IFF_BROADCAST) != 0)
3257		rxcfg |= RXMAC_BROADCAST;
3258	if ((ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) != 0) {
3259		if ((ifp->if_flags & IFF_PROMISC) != 0)
3260			rxcfg |= RXMAC_PROMISC;
3261		if ((ifp->if_flags & IFF_ALLMULTI) != 0)
3262			rxcfg |= RXMAC_ALLMULTI;
3263		CSR_WRITE_4(sc, JME_MAR0, 0xFFFFFFFF);
3264		CSR_WRITE_4(sc, JME_MAR1, 0xFFFFFFFF);
3265		CSR_WRITE_4(sc, JME_RXMAC, rxcfg);
3266		return;
3267	}
3268
3269	/*
3270	 * Set up the multicast address filter by passing all multicast
3271	 * addresses through a CRC generator, and then using the low-order
3272	 * 6 bits as an index into the 64 bit multicast hash table.  The
3273	 * high order bits select the register, while the rest of the bits
3274	 * select the bit within the register.
3275	 */
3276	rxcfg |= RXMAC_MULTICAST;
3277	bzero(mchash, sizeof(mchash));
3278
3279	if_maddr_rlock(ifp);
3280	TAILQ_FOREACH(ifma, &sc->jme_ifp->if_multiaddrs, ifma_link) {
3281		if (ifma->ifma_addr->sa_family != AF_LINK)
3282			continue;
3283		crc = ether_crc32_be(LLADDR((struct sockaddr_dl *)
3284		    ifma->ifma_addr), ETHER_ADDR_LEN);
3285
3286		/* Just want the 6 least significant bits. */
3287		crc &= 0x3f;
3288
3289		/* Set the corresponding bit in the hash table. */
3290		mchash[crc >> 5] |= 1 << (crc & 0x1f);
3291	}
3292	if_maddr_runlock(ifp);
3293
3294	CSR_WRITE_4(sc, JME_MAR0, mchash[0]);
3295	CSR_WRITE_4(sc, JME_MAR1, mchash[1]);
3296	CSR_WRITE_4(sc, JME_RXMAC, rxcfg);
3297}
3298
3299static void
3300jme_stats_clear(struct jme_softc *sc)
3301{
3302
3303	JME_LOCK_ASSERT(sc);
3304
3305	if ((sc->jme_flags & JME_FLAG_HWMIB) == 0)
3306		return;
3307
3308	/* Disable and clear counters. */
3309	CSR_WRITE_4(sc, JME_STATCSR, 0xFFFFFFFF);
3310	/* Activate hw counters. */
3311	CSR_WRITE_4(sc, JME_STATCSR, 0);
3312	CSR_READ_4(sc, JME_STATCSR);
3313	bzero(&sc->jme_stats, sizeof(struct jme_hw_stats));
3314}
3315
3316static void
3317jme_stats_save(struct jme_softc *sc)
3318{
3319
3320	JME_LOCK_ASSERT(sc);
3321
3322	if ((sc->jme_flags & JME_FLAG_HWMIB) == 0)
3323		return;
3324	/* Save current counters. */
3325	bcopy(&sc->jme_stats, &sc->jme_ostats, sizeof(struct jme_hw_stats));
3326	/* Disable and clear counters. */
3327	CSR_WRITE_4(sc, JME_STATCSR, 0xFFFFFFFF);
3328}
3329
3330static void
3331jme_stats_update(struct jme_softc *sc)
3332{
3333	struct jme_hw_stats *stat, *ostat;
3334	uint32_t reg;
3335
3336	JME_LOCK_ASSERT(sc);
3337
3338	if ((sc->jme_flags & JME_FLAG_HWMIB) == 0)
3339		return;
3340	stat = &sc->jme_stats;
3341	ostat = &sc->jme_ostats;
3342	stat->tx_good_frames = CSR_READ_4(sc, JME_STAT_TXGOOD);
3343	stat->rx_good_frames = CSR_READ_4(sc, JME_STAT_RXGOOD);
3344	reg = CSR_READ_4(sc, JME_STAT_CRCMII);
3345	stat->rx_crc_errs = (reg & STAT_RX_CRC_ERR_MASK) >>
3346	    STAT_RX_CRC_ERR_SHIFT;
3347	stat->rx_mii_errs = (reg & STAT_RX_MII_ERR_MASK) >>
3348	    STAT_RX_MII_ERR_SHIFT;
3349	reg = CSR_READ_4(sc, JME_STAT_RXERR);
3350	stat->rx_fifo_oflows = (reg & STAT_RXERR_OFLOW_MASK) >>
3351	    STAT_RXERR_OFLOW_SHIFT;
3352	stat->rx_desc_empty = (reg & STAT_RXERR_MPTY_MASK) >>
3353	    STAT_RXERR_MPTY_SHIFT;
3354	reg = CSR_READ_4(sc, JME_STAT_FAIL);
3355	stat->rx_bad_frames = (reg & STAT_FAIL_RX_MASK) >> STAT_FAIL_RX_SHIFT;
3356	stat->tx_bad_frames = (reg & STAT_FAIL_TX_MASK) >> STAT_FAIL_TX_SHIFT;
3357
3358	/* Account for previous counters. */
3359	stat->rx_good_frames += ostat->rx_good_frames;
3360	stat->rx_crc_errs += ostat->rx_crc_errs;
3361	stat->rx_mii_errs += ostat->rx_mii_errs;
3362	stat->rx_fifo_oflows += ostat->rx_fifo_oflows;
3363	stat->rx_desc_empty += ostat->rx_desc_empty;
3364	stat->rx_bad_frames += ostat->rx_bad_frames;
3365	stat->tx_good_frames += ostat->tx_good_frames;
3366	stat->tx_bad_frames += ostat->tx_bad_frames;
3367}
3368
3369static void
3370jme_phy_down(struct jme_softc *sc)
3371{
3372	uint32_t reg;
3373
3374	jme_miibus_writereg(sc->jme_dev, sc->jme_phyaddr, MII_BMCR, BMCR_PDOWN);
3375	if (CHIPMODE_REVFM(sc->jme_chip_rev) >= 5) {
3376		reg = CSR_READ_4(sc, JME_PHYPOWDN);
3377		reg |= 0x0000000F;
3378		CSR_WRITE_4(sc, JME_PHYPOWDN, reg);
3379		reg = pci_read_config(sc->jme_dev, JME_PCI_PE1, 4);
3380		reg &= ~PE1_GIGA_PDOWN_MASK;
3381		reg |= PE1_GIGA_PDOWN_D3;
3382		pci_write_config(sc->jme_dev, JME_PCI_PE1, reg, 4);
3383	}
3384}
3385
3386static void
3387jme_phy_up(struct jme_softc *sc)
3388{
3389	uint32_t reg;
3390	uint16_t bmcr;
3391
3392	bmcr = jme_miibus_readreg(sc->jme_dev, sc->jme_phyaddr, MII_BMCR);
3393	bmcr &= ~BMCR_PDOWN;
3394	jme_miibus_writereg(sc->jme_dev, sc->jme_phyaddr, MII_BMCR, bmcr);
3395	if (CHIPMODE_REVFM(sc->jme_chip_rev) >= 5) {
3396		reg = CSR_READ_4(sc, JME_PHYPOWDN);
3397		reg &= ~0x0000000F;
3398		CSR_WRITE_4(sc, JME_PHYPOWDN, reg);
3399		reg = pci_read_config(sc->jme_dev, JME_PCI_PE1, 4);
3400		reg &= ~PE1_GIGA_PDOWN_MASK;
3401		reg |= PE1_GIGA_PDOWN_DIS;
3402		pci_write_config(sc->jme_dev, JME_PCI_PE1, reg, 4);
3403	}
3404}
3405
3406static int
3407sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
3408{
3409	int error, value;
3410
3411	if (arg1 == NULL)
3412		return (EINVAL);
3413	value = *(int *)arg1;
3414	error = sysctl_handle_int(oidp, &value, 0, req);
3415	if (error || req->newptr == NULL)
3416		return (error);
3417	if (value < low || value > high)
3418		return (EINVAL);
3419        *(int *)arg1 = value;
3420
3421        return (0);
3422}
3423
3424static int
3425sysctl_hw_jme_tx_coal_to(SYSCTL_HANDLER_ARGS)
3426{
3427	return (sysctl_int_range(oidp, arg1, arg2, req,
3428	    PCCTX_COAL_TO_MIN, PCCTX_COAL_TO_MAX));
3429}
3430
3431static int
3432sysctl_hw_jme_tx_coal_pkt(SYSCTL_HANDLER_ARGS)
3433{
3434	return (sysctl_int_range(oidp, arg1, arg2, req,
3435	    PCCTX_COAL_PKT_MIN, PCCTX_COAL_PKT_MAX));
3436}
3437
3438static int
3439sysctl_hw_jme_rx_coal_to(SYSCTL_HANDLER_ARGS)
3440{
3441	return (sysctl_int_range(oidp, arg1, arg2, req,
3442	    PCCRX_COAL_TO_MIN, PCCRX_COAL_TO_MAX));
3443}
3444
3445static int
3446sysctl_hw_jme_rx_coal_pkt(SYSCTL_HANDLER_ARGS)
3447{
3448	return (sysctl_int_range(oidp, arg1, arg2, req,
3449	    PCCRX_COAL_PKT_MIN, PCCRX_COAL_PKT_MAX));
3450}
3451
3452static int
3453sysctl_hw_jme_proc_limit(SYSCTL_HANDLER_ARGS)
3454{
3455	return (sysctl_int_range(oidp, arg1, arg2, req,
3456	    JME_PROC_MIN, JME_PROC_MAX));
3457}
3458