1/*-
2 * Copyright (c) 2008, Pyun YongHyeon <yongari@FreeBSD.org>
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice unmodified, this list of conditions, and the following
10 *    disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25 * SUCH DAMAGE.
26 */
27
28#include <sys/cdefs.h>
29__FBSDID("$FreeBSD$");
30
31#include <sys/param.h>
32#include <sys/systm.h>
33#include <sys/bus.h>
34#include <sys/endian.h>
35#include <sys/kernel.h>
36#include <sys/malloc.h>
37#include <sys/mbuf.h>
38#include <sys/rman.h>
39#include <sys/module.h>
40#include <sys/proc.h>
41#include <sys/queue.h>
42#include <sys/socket.h>
43#include <sys/sockio.h>
44#include <sys/sysctl.h>
45#include <sys/taskqueue.h>
46
47#include <net/bpf.h>
48#include <net/if.h>
49#include <net/if_var.h>
50#include <net/if_arp.h>
51#include <net/ethernet.h>
52#include <net/if_dl.h>
53#include <net/if_media.h>
54#include <net/if_types.h>
55#include <net/if_vlan_var.h>
56
57#include <netinet/in.h>
58#include <netinet/in_systm.h>
59#include <netinet/ip.h>
60#include <netinet/tcp.h>
61
62#include <dev/mii/mii.h>
63#include <dev/mii/miivar.h>
64
65#include <dev/pci/pcireg.h>
66#include <dev/pci/pcivar.h>
67
68#include <machine/bus.h>
69#include <machine/in_cksum.h>
70
71#include <dev/jme/if_jmereg.h>
72#include <dev/jme/if_jmevar.h>
73
74/* "device miibus" required.  See GENERIC if you get errors here. */
75#include "miibus_if.h"
76
77/* Define the following to disable printing Rx errors. */
78#undef	JME_SHOW_ERRORS
79
80#define	JME_CSUM_FEATURES	(CSUM_IP | CSUM_TCP | CSUM_UDP)
81
82MODULE_DEPEND(jme, pci, 1, 1, 1);
83MODULE_DEPEND(jme, ether, 1, 1, 1);
84MODULE_DEPEND(jme, miibus, 1, 1, 1);
85
86/* Tunables. */
87static int msi_disable = 0;
88static int msix_disable = 0;
89TUNABLE_INT("hw.jme.msi_disable", &msi_disable);
90TUNABLE_INT("hw.jme.msix_disable", &msix_disable);
91
92/*
93 * Devices supported by this driver.
94 */
95static struct jme_dev {
96	uint16_t	jme_vendorid;
97	uint16_t	jme_deviceid;
98	const char	*jme_name;
99} jme_devs[] = {
100	{ VENDORID_JMICRON, DEVICEID_JMC250,
101	    "JMicron Inc, JMC25x Gigabit Ethernet" },
102	{ VENDORID_JMICRON, DEVICEID_JMC260,
103	    "JMicron Inc, JMC26x Fast Ethernet" },
104};
105
106static int jme_miibus_readreg(device_t, int, int);
107static int jme_miibus_writereg(device_t, int, int, int);
108static void jme_miibus_statchg(device_t);
109static void jme_mediastatus(struct ifnet *, struct ifmediareq *);
110static int jme_mediachange(struct ifnet *);
111static int jme_probe(device_t);
112static int jme_eeprom_read_byte(struct jme_softc *, uint8_t, uint8_t *);
113static int jme_eeprom_macaddr(struct jme_softc *);
114static int jme_efuse_macaddr(struct jme_softc *);
115static void jme_reg_macaddr(struct jme_softc *);
116static void jme_set_macaddr(struct jme_softc *, uint8_t *);
117static void jme_map_intr_vector(struct jme_softc *);
118static int jme_attach(device_t);
119static int jme_detach(device_t);
120static void jme_sysctl_node(struct jme_softc *);
121static void jme_dmamap_cb(void *, bus_dma_segment_t *, int, int);
122static int jme_dma_alloc(struct jme_softc *);
123static void jme_dma_free(struct jme_softc *);
124static int jme_shutdown(device_t);
125static void jme_setlinkspeed(struct jme_softc *);
126static void jme_setwol(struct jme_softc *);
127static int jme_suspend(device_t);
128static int jme_resume(device_t);
129static int jme_encap(struct jme_softc *, struct mbuf **);
130static void jme_start(struct ifnet *);
131static void jme_start_locked(struct ifnet *);
132static void jme_watchdog(struct jme_softc *);
133static int jme_ioctl(struct ifnet *, u_long, caddr_t);
134static void jme_mac_config(struct jme_softc *);
135static void jme_link_task(void *, int);
136static int jme_intr(void *);
137static void jme_int_task(void *, int);
138static void jme_txeof(struct jme_softc *);
139static __inline void jme_discard_rxbuf(struct jme_softc *, int);
140static void jme_rxeof(struct jme_softc *);
141static int jme_rxintr(struct jme_softc *, int);
142static void jme_tick(void *);
143static void jme_reset(struct jme_softc *);
144static void jme_init(void *);
145static void jme_init_locked(struct jme_softc *);
146static void jme_stop(struct jme_softc *);
147static void jme_stop_tx(struct jme_softc *);
148static void jme_stop_rx(struct jme_softc *);
149static int jme_init_rx_ring(struct jme_softc *);
150static void jme_init_tx_ring(struct jme_softc *);
151static void jme_init_ssb(struct jme_softc *);
152static int jme_newbuf(struct jme_softc *, struct jme_rxdesc *);
153static void jme_set_vlan(struct jme_softc *);
154static void jme_set_filter(struct jme_softc *);
155static void jme_stats_clear(struct jme_softc *);
156static void jme_stats_save(struct jme_softc *);
157static void jme_stats_update(struct jme_softc *);
158static void jme_phy_down(struct jme_softc *);
159static void jme_phy_up(struct jme_softc *);
160static int sysctl_int_range(SYSCTL_HANDLER_ARGS, int, int);
161static int sysctl_hw_jme_tx_coal_to(SYSCTL_HANDLER_ARGS);
162static int sysctl_hw_jme_tx_coal_pkt(SYSCTL_HANDLER_ARGS);
163static int sysctl_hw_jme_rx_coal_to(SYSCTL_HANDLER_ARGS);
164static int sysctl_hw_jme_rx_coal_pkt(SYSCTL_HANDLER_ARGS);
165static int sysctl_hw_jme_proc_limit(SYSCTL_HANDLER_ARGS);
166
167
168static device_method_t jme_methods[] = {
169	/* Device interface. */
170	DEVMETHOD(device_probe,		jme_probe),
171	DEVMETHOD(device_attach,	jme_attach),
172	DEVMETHOD(device_detach,	jme_detach),
173	DEVMETHOD(device_shutdown,	jme_shutdown),
174	DEVMETHOD(device_suspend,	jme_suspend),
175	DEVMETHOD(device_resume,	jme_resume),
176
177	/* MII interface. */
178	DEVMETHOD(miibus_readreg,	jme_miibus_readreg),
179	DEVMETHOD(miibus_writereg,	jme_miibus_writereg),
180	DEVMETHOD(miibus_statchg,	jme_miibus_statchg),
181
182	{ NULL, NULL }
183};
184
185static driver_t jme_driver = {
186	"jme",
187	jme_methods,
188	sizeof(struct jme_softc)
189};
190
191static devclass_t jme_devclass;
192
193DRIVER_MODULE(jme, pci, jme_driver, jme_devclass, 0, 0);
194DRIVER_MODULE(miibus, jme, miibus_driver, miibus_devclass, 0, 0);
195
196static struct resource_spec jme_res_spec_mem[] = {
197	{ SYS_RES_MEMORY,	PCIR_BAR(0),	RF_ACTIVE },
198	{ -1,			0,		0 }
199};
200
201static struct resource_spec jme_irq_spec_legacy[] = {
202	{ SYS_RES_IRQ,		0,		RF_ACTIVE | RF_SHAREABLE },
203	{ -1,			0,		0 }
204};
205
206static struct resource_spec jme_irq_spec_msi[] = {
207	{ SYS_RES_IRQ,		1,		RF_ACTIVE },
208	{ -1,			0,		0 }
209};
210
211/*
212 *	Read a PHY register on the MII of the JMC250.
213 */
214static int
215jme_miibus_readreg(device_t dev, int phy, int reg)
216{
217	struct jme_softc *sc;
218	uint32_t val;
219	int i;
220
221	sc = device_get_softc(dev);
222
223	/* For FPGA version, PHY address 0 should be ignored. */
224	if ((sc->jme_flags & JME_FLAG_FPGA) != 0 && phy == 0)
225		return (0);
226
227	CSR_WRITE_4(sc, JME_SMI, SMI_OP_READ | SMI_OP_EXECUTE |
228	    SMI_PHY_ADDR(phy) | SMI_REG_ADDR(reg));
229	for (i = JME_PHY_TIMEOUT; i > 0; i--) {
230		DELAY(1);
231		if (((val = CSR_READ_4(sc, JME_SMI)) & SMI_OP_EXECUTE) == 0)
232			break;
233	}
234
235	if (i == 0) {
236		device_printf(sc->jme_dev, "phy read timeout : %d\n", reg);
237		return (0);
238	}
239
240	return ((val & SMI_DATA_MASK) >> SMI_DATA_SHIFT);
241}
242
243/*
244 *	Write a PHY register on the MII of the JMC250.
245 */
246static int
247jme_miibus_writereg(device_t dev, int phy, int reg, int val)
248{
249	struct jme_softc *sc;
250	int i;
251
252	sc = device_get_softc(dev);
253
254	/* For FPGA version, PHY address 0 should be ignored. */
255	if ((sc->jme_flags & JME_FLAG_FPGA) != 0 && phy == 0)
256		return (0);
257
258	CSR_WRITE_4(sc, JME_SMI, SMI_OP_WRITE | SMI_OP_EXECUTE |
259	    ((val << SMI_DATA_SHIFT) & SMI_DATA_MASK) |
260	    SMI_PHY_ADDR(phy) | SMI_REG_ADDR(reg));
261	for (i = JME_PHY_TIMEOUT; i > 0; i--) {
262		DELAY(1);
263		if (((val = CSR_READ_4(sc, JME_SMI)) & SMI_OP_EXECUTE) == 0)
264			break;
265	}
266
267	if (i == 0)
268		device_printf(sc->jme_dev, "phy write timeout : %d\n", reg);
269
270	return (0);
271}
272
273/*
274 *	Callback from MII layer when media changes.
275 */
276static void
277jme_miibus_statchg(device_t dev)
278{
279	struct jme_softc *sc;
280
281	sc = device_get_softc(dev);
282	taskqueue_enqueue(taskqueue_swi, &sc->jme_link_task);
283}
284
285/*
286 *	Get the current interface media status.
287 */
288static void
289jme_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
290{
291	struct jme_softc *sc;
292	struct mii_data *mii;
293
294	sc = ifp->if_softc;
295	JME_LOCK(sc);
296	if ((ifp->if_flags & IFF_UP) == 0) {
297		JME_UNLOCK(sc);
298		return;
299	}
300	mii = device_get_softc(sc->jme_miibus);
301
302	mii_pollstat(mii);
303	ifmr->ifm_status = mii->mii_media_status;
304	ifmr->ifm_active = mii->mii_media_active;
305	JME_UNLOCK(sc);
306}
307
308/*
309 *	Set hardware to newly-selected media.
310 */
311static int
312jme_mediachange(struct ifnet *ifp)
313{
314	struct jme_softc *sc;
315	struct mii_data *mii;
316	struct mii_softc *miisc;
317	int error;
318
319	sc = ifp->if_softc;
320	JME_LOCK(sc);
321	mii = device_get_softc(sc->jme_miibus);
322	LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
323		PHY_RESET(miisc);
324	error = mii_mediachg(mii);
325	JME_UNLOCK(sc);
326
327	return (error);
328}
329
330static int
331jme_probe(device_t dev)
332{
333	struct jme_dev *sp;
334	int i;
335	uint16_t vendor, devid;
336
337	vendor = pci_get_vendor(dev);
338	devid = pci_get_device(dev);
339	sp = jme_devs;
340	for (i = 0; i < nitems(jme_devs); i++, sp++) {
341		if (vendor == sp->jme_vendorid &&
342		    devid == sp->jme_deviceid) {
343			device_set_desc(dev, sp->jme_name);
344			return (BUS_PROBE_DEFAULT);
345		}
346	}
347
348	return (ENXIO);
349}
350
351static int
352jme_eeprom_read_byte(struct jme_softc *sc, uint8_t addr, uint8_t *val)
353{
354	uint32_t reg;
355	int i;
356
357	*val = 0;
358	for (i = JME_TIMEOUT; i > 0; i--) {
359		reg = CSR_READ_4(sc, JME_SMBCSR);
360		if ((reg & SMBCSR_HW_BUSY_MASK) == SMBCSR_HW_IDLE)
361			break;
362		DELAY(1);
363	}
364
365	if (i == 0) {
366		device_printf(sc->jme_dev, "EEPROM idle timeout!\n");
367		return (ETIMEDOUT);
368	}
369
370	reg = ((uint32_t)addr << SMBINTF_ADDR_SHIFT) & SMBINTF_ADDR_MASK;
371	CSR_WRITE_4(sc, JME_SMBINTF, reg | SMBINTF_RD | SMBINTF_CMD_TRIGGER);
372	for (i = JME_TIMEOUT; i > 0; i--) {
373		DELAY(1);
374		reg = CSR_READ_4(sc, JME_SMBINTF);
375		if ((reg & SMBINTF_CMD_TRIGGER) == 0)
376			break;
377	}
378
379	if (i == 0) {
380		device_printf(sc->jme_dev, "EEPROM read timeout!\n");
381		return (ETIMEDOUT);
382	}
383
384	reg = CSR_READ_4(sc, JME_SMBINTF);
385	*val = (reg & SMBINTF_RD_DATA_MASK) >> SMBINTF_RD_DATA_SHIFT;
386
387	return (0);
388}
389
390static int
391jme_eeprom_macaddr(struct jme_softc *sc)
392{
393	uint8_t eaddr[ETHER_ADDR_LEN];
394	uint8_t fup, reg, val;
395	uint32_t offset;
396	int match;
397
398	offset = 0;
399	if (jme_eeprom_read_byte(sc, offset++, &fup) != 0 ||
400	    fup != JME_EEPROM_SIG0)
401		return (ENOENT);
402	if (jme_eeprom_read_byte(sc, offset++, &fup) != 0 ||
403	    fup != JME_EEPROM_SIG1)
404		return (ENOENT);
405	match = 0;
406	do {
407		if (jme_eeprom_read_byte(sc, offset, &fup) != 0)
408			break;
409		if (JME_EEPROM_MKDESC(JME_EEPROM_FUNC0, JME_EEPROM_PAGE_BAR1) ==
410		    (fup & (JME_EEPROM_FUNC_MASK | JME_EEPROM_PAGE_MASK))) {
411			if (jme_eeprom_read_byte(sc, offset + 1, &reg) != 0)
412				break;
413			if (reg >= JME_PAR0 &&
414			    reg < JME_PAR0 + ETHER_ADDR_LEN) {
415				if (jme_eeprom_read_byte(sc, offset + 2,
416				    &val) != 0)
417					break;
418				eaddr[reg - JME_PAR0] = val;
419				match++;
420			}
421		}
422		/* Check for the end of EEPROM descriptor. */
423		if ((fup & JME_EEPROM_DESC_END) == JME_EEPROM_DESC_END)
424			break;
425		/* Try next eeprom descriptor. */
426		offset += JME_EEPROM_DESC_BYTES;
427	} while (match != ETHER_ADDR_LEN && offset < JME_EEPROM_END);
428
429	if (match == ETHER_ADDR_LEN) {
430		bcopy(eaddr, sc->jme_eaddr, ETHER_ADDR_LEN);
431		return (0);
432	}
433
434	return (ENOENT);
435}
436
437static int
438jme_efuse_macaddr(struct jme_softc *sc)
439{
440	uint32_t reg;
441	int i;
442
443	reg = pci_read_config(sc->jme_dev, JME_EFUSE_CTL1, 4);
444	if ((reg & (EFUSE_CTL1_AUTOLOAD_ERR | EFUSE_CTL1_AUTOLAOD_DONE)) !=
445	    EFUSE_CTL1_AUTOLAOD_DONE)
446		return (ENOENT);
447	/* Reset eFuse controller. */
448	reg = pci_read_config(sc->jme_dev, JME_EFUSE_CTL2, 4);
449	reg |= EFUSE_CTL2_RESET;
450	pci_write_config(sc->jme_dev, JME_EFUSE_CTL2, reg, 4);
451	reg = pci_read_config(sc->jme_dev, JME_EFUSE_CTL2, 4);
452	reg &= ~EFUSE_CTL2_RESET;
453	pci_write_config(sc->jme_dev, JME_EFUSE_CTL2, reg, 4);
454
455	/* Have eFuse reload station address to MAC controller. */
456	reg = pci_read_config(sc->jme_dev, JME_EFUSE_CTL1, 4);
457	reg &= ~EFUSE_CTL1_CMD_MASK;
458	reg |= EFUSE_CTL1_CMD_AUTOLOAD | EFUSE_CTL1_EXECUTE;
459	pci_write_config(sc->jme_dev, JME_EFUSE_CTL1, reg, 4);
460
461	/*
462	 * Verify completion of eFuse autload command.  It should be
463	 * completed within 108us.
464	 */
465	DELAY(110);
466	for (i = 10; i > 0; i--) {
467		reg = pci_read_config(sc->jme_dev, JME_EFUSE_CTL1, 4);
468		if ((reg & (EFUSE_CTL1_AUTOLOAD_ERR |
469		    EFUSE_CTL1_AUTOLAOD_DONE)) != EFUSE_CTL1_AUTOLAOD_DONE) {
470			DELAY(20);
471			continue;
472		}
473		if ((reg & EFUSE_CTL1_EXECUTE) == 0)
474			break;
475		/* Station address loading is still in progress. */
476		DELAY(20);
477	}
478	if (i == 0) {
479		device_printf(sc->jme_dev, "eFuse autoload timed out.\n");
480		return (ETIMEDOUT);
481	}
482
483	return (0);
484}
485
486static void
487jme_reg_macaddr(struct jme_softc *sc)
488{
489	uint32_t par0, par1;
490
491	/* Read station address. */
492	par0 = CSR_READ_4(sc, JME_PAR0);
493	par1 = CSR_READ_4(sc, JME_PAR1);
494	par1 &= 0xFFFF;
495	if ((par0 == 0 && par1 == 0) ||
496	    (par0 == 0xFFFFFFFF && par1 == 0xFFFF)) {
497		device_printf(sc->jme_dev,
498		    "Failed to retrieve Ethernet address.\n");
499	} else {
500		/*
501		 * For controllers that use eFuse, the station address
502		 * could also be extracted from JME_PCI_PAR0 and
503		 * JME_PCI_PAR1 registers in PCI configuration space.
504		 * Each register holds exactly half of station address(24bits)
505		 * so use JME_PAR0, JME_PAR1 registers instead.
506		 */
507		sc->jme_eaddr[0] = (par0 >> 0) & 0xFF;
508		sc->jme_eaddr[1] = (par0 >> 8) & 0xFF;
509		sc->jme_eaddr[2] = (par0 >> 16) & 0xFF;
510		sc->jme_eaddr[3] = (par0 >> 24) & 0xFF;
511		sc->jme_eaddr[4] = (par1 >> 0) & 0xFF;
512		sc->jme_eaddr[5] = (par1 >> 8) & 0xFF;
513	}
514}
515
516static void
517jme_set_macaddr(struct jme_softc *sc, uint8_t *eaddr)
518{
519	uint32_t val;
520	int i;
521
522	if ((sc->jme_flags & JME_FLAG_EFUSE) != 0) {
523		/*
524		 * Avoid reprogramming station address if the address
525		 * is the same as previous one.  Note, reprogrammed
526		 * station address is permanent as if it was written
527		 * to EEPROM. So if station address was changed by
528		 * admistrator it's possible to lose factory configured
529		 * address when driver fails to restore its address.
530		 * (e.g. reboot or system crash)
531		 */
532		if (bcmp(eaddr, sc->jme_eaddr, ETHER_ADDR_LEN) != 0) {
533			for (i = 0; i < ETHER_ADDR_LEN; i++) {
534				val = JME_EFUSE_EEPROM_FUNC0 <<
535				    JME_EFUSE_EEPROM_FUNC_SHIFT;
536				val |= JME_EFUSE_EEPROM_PAGE_BAR1 <<
537				    JME_EFUSE_EEPROM_PAGE_SHIFT;
538				val |= (JME_PAR0 + i) <<
539				    JME_EFUSE_EEPROM_ADDR_SHIFT;
540				val |= eaddr[i] << JME_EFUSE_EEPROM_DATA_SHIFT;
541				pci_write_config(sc->jme_dev, JME_EFUSE_EEPROM,
542				    val | JME_EFUSE_EEPROM_WRITE, 4);
543			}
544		}
545	} else {
546		CSR_WRITE_4(sc, JME_PAR0,
547		    eaddr[3] << 24 | eaddr[2] << 16 | eaddr[1] << 8 | eaddr[0]);
548		CSR_WRITE_4(sc, JME_PAR1, eaddr[5] << 8 | eaddr[4]);
549	}
550}
551
552static void
553jme_map_intr_vector(struct jme_softc *sc)
554{
555	uint32_t map[MSINUM_NUM_INTR_SOURCE / JME_MSI_MESSAGES];
556
557	bzero(map, sizeof(map));
558
559	/* Map Tx interrupts source to MSI/MSIX vector 2. */
560	map[MSINUM_REG_INDEX(N_INTR_TXQ0_COMP)] =
561	    MSINUM_INTR_SOURCE(2, N_INTR_TXQ0_COMP);
562	map[MSINUM_REG_INDEX(N_INTR_TXQ1_COMP)] |=
563	    MSINUM_INTR_SOURCE(2, N_INTR_TXQ1_COMP);
564	map[MSINUM_REG_INDEX(N_INTR_TXQ2_COMP)] |=
565	    MSINUM_INTR_SOURCE(2, N_INTR_TXQ2_COMP);
566	map[MSINUM_REG_INDEX(N_INTR_TXQ3_COMP)] |=
567	    MSINUM_INTR_SOURCE(2, N_INTR_TXQ3_COMP);
568	map[MSINUM_REG_INDEX(N_INTR_TXQ4_COMP)] |=
569	    MSINUM_INTR_SOURCE(2, N_INTR_TXQ4_COMP);
570	map[MSINUM_REG_INDEX(N_INTR_TXQ4_COMP)] |=
571	    MSINUM_INTR_SOURCE(2, N_INTR_TXQ5_COMP);
572	map[MSINUM_REG_INDEX(N_INTR_TXQ6_COMP)] |=
573	    MSINUM_INTR_SOURCE(2, N_INTR_TXQ6_COMP);
574	map[MSINUM_REG_INDEX(N_INTR_TXQ7_COMP)] |=
575	    MSINUM_INTR_SOURCE(2, N_INTR_TXQ7_COMP);
576	map[MSINUM_REG_INDEX(N_INTR_TXQ_COAL)] |=
577	    MSINUM_INTR_SOURCE(2, N_INTR_TXQ_COAL);
578	map[MSINUM_REG_INDEX(N_INTR_TXQ_COAL_TO)] |=
579	    MSINUM_INTR_SOURCE(2, N_INTR_TXQ_COAL_TO);
580
581	/* Map Rx interrupts source to MSI/MSIX vector 1. */
582	map[MSINUM_REG_INDEX(N_INTR_RXQ0_COMP)] =
583	    MSINUM_INTR_SOURCE(1, N_INTR_RXQ0_COMP);
584	map[MSINUM_REG_INDEX(N_INTR_RXQ1_COMP)] =
585	    MSINUM_INTR_SOURCE(1, N_INTR_RXQ1_COMP);
586	map[MSINUM_REG_INDEX(N_INTR_RXQ2_COMP)] =
587	    MSINUM_INTR_SOURCE(1, N_INTR_RXQ2_COMP);
588	map[MSINUM_REG_INDEX(N_INTR_RXQ3_COMP)] =
589	    MSINUM_INTR_SOURCE(1, N_INTR_RXQ3_COMP);
590	map[MSINUM_REG_INDEX(N_INTR_RXQ0_DESC_EMPTY)] =
591	    MSINUM_INTR_SOURCE(1, N_INTR_RXQ0_DESC_EMPTY);
592	map[MSINUM_REG_INDEX(N_INTR_RXQ1_DESC_EMPTY)] =
593	    MSINUM_INTR_SOURCE(1, N_INTR_RXQ1_DESC_EMPTY);
594	map[MSINUM_REG_INDEX(N_INTR_RXQ2_DESC_EMPTY)] =
595	    MSINUM_INTR_SOURCE(1, N_INTR_RXQ2_DESC_EMPTY);
596	map[MSINUM_REG_INDEX(N_INTR_RXQ3_DESC_EMPTY)] =
597	    MSINUM_INTR_SOURCE(1, N_INTR_RXQ3_DESC_EMPTY);
598	map[MSINUM_REG_INDEX(N_INTR_RXQ0_COAL)] =
599	    MSINUM_INTR_SOURCE(1, N_INTR_RXQ0_COAL);
600	map[MSINUM_REG_INDEX(N_INTR_RXQ1_COAL)] =
601	    MSINUM_INTR_SOURCE(1, N_INTR_RXQ1_COAL);
602	map[MSINUM_REG_INDEX(N_INTR_RXQ2_COAL)] =
603	    MSINUM_INTR_SOURCE(1, N_INTR_RXQ2_COAL);
604	map[MSINUM_REG_INDEX(N_INTR_RXQ3_COAL)] =
605	    MSINUM_INTR_SOURCE(1, N_INTR_RXQ3_COAL);
606	map[MSINUM_REG_INDEX(N_INTR_RXQ0_COAL_TO)] =
607	    MSINUM_INTR_SOURCE(1, N_INTR_RXQ0_COAL_TO);
608	map[MSINUM_REG_INDEX(N_INTR_RXQ1_COAL_TO)] =
609	    MSINUM_INTR_SOURCE(1, N_INTR_RXQ1_COAL_TO);
610	map[MSINUM_REG_INDEX(N_INTR_RXQ2_COAL_TO)] =
611	    MSINUM_INTR_SOURCE(1, N_INTR_RXQ2_COAL_TO);
612	map[MSINUM_REG_INDEX(N_INTR_RXQ3_COAL_TO)] =
613	    MSINUM_INTR_SOURCE(1, N_INTR_RXQ3_COAL_TO);
614
615	/* Map all other interrupts source to MSI/MSIX vector 0. */
616	CSR_WRITE_4(sc, JME_MSINUM_BASE + sizeof(uint32_t) * 0, map[0]);
617	CSR_WRITE_4(sc, JME_MSINUM_BASE + sizeof(uint32_t) * 1, map[1]);
618	CSR_WRITE_4(sc, JME_MSINUM_BASE + sizeof(uint32_t) * 2, map[2]);
619	CSR_WRITE_4(sc, JME_MSINUM_BASE + sizeof(uint32_t) * 3, map[3]);
620}
621
622static int
623jme_attach(device_t dev)
624{
625	struct jme_softc *sc;
626	struct ifnet *ifp;
627	struct mii_softc *miisc;
628	struct mii_data *mii;
629	uint32_t reg;
630	uint16_t burst;
631	int error, i, mii_flags, msic, msixc, pmc;
632
633	error = 0;
634	sc = device_get_softc(dev);
635	sc->jme_dev = dev;
636
637	mtx_init(&sc->jme_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
638	    MTX_DEF);
639	callout_init_mtx(&sc->jme_tick_ch, &sc->jme_mtx, 0);
640	TASK_INIT(&sc->jme_int_task, 0, jme_int_task, sc);
641	TASK_INIT(&sc->jme_link_task, 0, jme_link_task, sc);
642
643	/*
644	 * Map the device. JMC250 supports both memory mapped and I/O
645	 * register space access. Because I/O register access should
646	 * use different BARs to access registers it's waste of time
647	 * to use I/O register spce access. JMC250 uses 16K to map
648	 * entire memory space.
649	 */
650	pci_enable_busmaster(dev);
651	sc->jme_res_spec = jme_res_spec_mem;
652	sc->jme_irq_spec = jme_irq_spec_legacy;
653	error = bus_alloc_resources(dev, sc->jme_res_spec, sc->jme_res);
654	if (error != 0) {
655		device_printf(dev, "cannot allocate memory resources.\n");
656		goto fail;
657	}
658
659	/* Allocate IRQ resources. */
660	msixc = pci_msix_count(dev);
661	msic = pci_msi_count(dev);
662	if (bootverbose) {
663		device_printf(dev, "MSIX count : %d\n", msixc);
664		device_printf(dev, "MSI count : %d\n", msic);
665	}
666
667	/* Use 1 MSI/MSI-X. */
668	if (msixc > 1)
669		msixc = 1;
670	if (msic > 1)
671		msic = 1;
672	/* Prefer MSIX over MSI. */
673	if (msix_disable == 0 || msi_disable == 0) {
674		if (msix_disable == 0 && msixc > 0 &&
675		    pci_alloc_msix(dev, &msixc) == 0) {
676			if (msixc == 1) {
677				device_printf(dev, "Using %d MSIX messages.\n",
678				    msixc);
679				sc->jme_flags |= JME_FLAG_MSIX;
680				sc->jme_irq_spec = jme_irq_spec_msi;
681			} else
682				pci_release_msi(dev);
683		}
684		if (msi_disable == 0 && (sc->jme_flags & JME_FLAG_MSIX) == 0 &&
685		    msic > 0 && pci_alloc_msi(dev, &msic) == 0) {
686			if (msic == 1) {
687				device_printf(dev, "Using %d MSI messages.\n",
688				    msic);
689				sc->jme_flags |= JME_FLAG_MSI;
690				sc->jme_irq_spec = jme_irq_spec_msi;
691			} else
692				pci_release_msi(dev);
693		}
694		/* Map interrupt vector 0, 1 and 2. */
695		if ((sc->jme_flags & JME_FLAG_MSI) != 0 ||
696		    (sc->jme_flags & JME_FLAG_MSIX) != 0)
697			jme_map_intr_vector(sc);
698	}
699
700	error = bus_alloc_resources(dev, sc->jme_irq_spec, sc->jme_irq);
701	if (error != 0) {
702		device_printf(dev, "cannot allocate IRQ resources.\n");
703		goto fail;
704	}
705
706	sc->jme_rev = pci_get_device(dev);
707	if ((sc->jme_rev & DEVICEID_JMC2XX_MASK) == DEVICEID_JMC260) {
708		sc->jme_flags |= JME_FLAG_FASTETH;
709		sc->jme_flags |= JME_FLAG_NOJUMBO;
710	}
711	reg = CSR_READ_4(sc, JME_CHIPMODE);
712	sc->jme_chip_rev = (reg & CHIPMODE_REV_MASK) >> CHIPMODE_REV_SHIFT;
713	if (((reg & CHIPMODE_FPGA_REV_MASK) >> CHIPMODE_FPGA_REV_SHIFT) !=
714	    CHIPMODE_NOT_FPGA)
715		sc->jme_flags |= JME_FLAG_FPGA;
716	if (bootverbose) {
717		device_printf(dev, "PCI device revision : 0x%04x\n",
718		    sc->jme_rev);
719		device_printf(dev, "Chip revision : 0x%02x\n",
720		    sc->jme_chip_rev);
721		if ((sc->jme_flags & JME_FLAG_FPGA) != 0)
722			device_printf(dev, "FPGA revision : 0x%04x\n",
723			    (reg & CHIPMODE_FPGA_REV_MASK) >>
724			    CHIPMODE_FPGA_REV_SHIFT);
725	}
726	if (sc->jme_chip_rev == 0xFF) {
727		device_printf(dev, "Unknown chip revision : 0x%02x\n",
728		    sc->jme_rev);
729		error = ENXIO;
730		goto fail;
731	}
732
733	/* Identify controller features and bugs. */
734	if (CHIPMODE_REVFM(sc->jme_chip_rev) >= 2) {
735		if ((sc->jme_rev & DEVICEID_JMC2XX_MASK) == DEVICEID_JMC260 &&
736		    CHIPMODE_REVFM(sc->jme_chip_rev) == 2)
737			sc->jme_flags |= JME_FLAG_DMA32BIT;
738		if (CHIPMODE_REVFM(sc->jme_chip_rev) >= 5)
739			sc->jme_flags |= JME_FLAG_EFUSE | JME_FLAG_PCCPCD;
740		sc->jme_flags |= JME_FLAG_TXCLK | JME_FLAG_RXCLK;
741		sc->jme_flags |= JME_FLAG_HWMIB;
742	}
743
744	/* Reset the ethernet controller. */
745	jme_reset(sc);
746
747	/* Get station address. */
748	if ((sc->jme_flags & JME_FLAG_EFUSE) != 0) {
749		error = jme_efuse_macaddr(sc);
750		if (error == 0)
751			jme_reg_macaddr(sc);
752	} else {
753		error = ENOENT;
754		reg = CSR_READ_4(sc, JME_SMBCSR);
755		if ((reg & SMBCSR_EEPROM_PRESENT) != 0)
756			error = jme_eeprom_macaddr(sc);
757		if (error != 0 && bootverbose)
758			device_printf(sc->jme_dev,
759			    "ethernet hardware address not found in EEPROM.\n");
760		if (error != 0)
761			jme_reg_macaddr(sc);
762	}
763
764	/*
765	 * Save PHY address.
766	 * Integrated JR0211 has fixed PHY address whereas FPGA version
767	 * requires PHY probing to get correct PHY address.
768	 */
769	if ((sc->jme_flags & JME_FLAG_FPGA) == 0) {
770		sc->jme_phyaddr = CSR_READ_4(sc, JME_GPREG0) &
771		    GPREG0_PHY_ADDR_MASK;
772		if (bootverbose)
773			device_printf(dev, "PHY is at address %d.\n",
774			    sc->jme_phyaddr);
775	} else
776		sc->jme_phyaddr = 0;
777
778	/* Set max allowable DMA size. */
779	if (pci_find_cap(dev, PCIY_EXPRESS, &i) == 0) {
780		sc->jme_flags |= JME_FLAG_PCIE;
781		burst = pci_read_config(dev, i + PCIER_DEVICE_CTL, 2);
782		if (bootverbose) {
783			device_printf(dev, "Read request size : %d bytes.\n",
784			    128 << ((burst >> 12) & 0x07));
785			device_printf(dev, "TLP payload size : %d bytes.\n",
786			    128 << ((burst >> 5) & 0x07));
787		}
788		switch ((burst >> 12) & 0x07) {
789		case 0:
790			sc->jme_tx_dma_size = TXCSR_DMA_SIZE_128;
791			break;
792		case 1:
793			sc->jme_tx_dma_size = TXCSR_DMA_SIZE_256;
794			break;
795		default:
796			sc->jme_tx_dma_size = TXCSR_DMA_SIZE_512;
797			break;
798		}
799		sc->jme_rx_dma_size = RXCSR_DMA_SIZE_128;
800	} else {
801		sc->jme_tx_dma_size = TXCSR_DMA_SIZE_512;
802		sc->jme_rx_dma_size = RXCSR_DMA_SIZE_128;
803	}
804	/* Create coalescing sysctl node. */
805	jme_sysctl_node(sc);
806	if ((error = jme_dma_alloc(sc)) != 0)
807		goto fail;
808
809	ifp = sc->jme_ifp = if_alloc(IFT_ETHER);
810	if (ifp == NULL) {
811		device_printf(dev, "cannot allocate ifnet structure.\n");
812		error = ENXIO;
813		goto fail;
814	}
815
816	ifp->if_softc = sc;
817	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
818	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
819	ifp->if_ioctl = jme_ioctl;
820	ifp->if_start = jme_start;
821	ifp->if_init = jme_init;
822	ifp->if_snd.ifq_drv_maxlen = JME_TX_RING_CNT - 1;
823	IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen);
824	IFQ_SET_READY(&ifp->if_snd);
825	/* JMC250 supports Tx/Rx checksum offload as well as TSO. */
826	ifp->if_capabilities = IFCAP_HWCSUM | IFCAP_TSO4;
827	ifp->if_hwassist = JME_CSUM_FEATURES | CSUM_TSO;
828	if (pci_find_cap(dev, PCIY_PMG, &pmc) == 0) {
829		sc->jme_flags |= JME_FLAG_PMCAP;
830		ifp->if_capabilities |= IFCAP_WOL_MAGIC;
831	}
832	ifp->if_capenable = ifp->if_capabilities;
833
834	/* Wakeup PHY. */
835	jme_phy_up(sc);
836	mii_flags = MIIF_DOPAUSE;
837	/* Ask PHY calibration to PHY driver. */
838	if (CHIPMODE_REVFM(sc->jme_chip_rev) >= 5)
839		mii_flags |= MIIF_MACPRIV0;
840	/* Set up MII bus. */
841	error = mii_attach(dev, &sc->jme_miibus, ifp, jme_mediachange,
842	    jme_mediastatus, BMSR_DEFCAPMASK,
843	    sc->jme_flags & JME_FLAG_FPGA ? MII_PHY_ANY : sc->jme_phyaddr,
844	    MII_OFFSET_ANY, mii_flags);
845	if (error != 0) {
846		device_printf(dev, "attaching PHYs failed\n");
847		goto fail;
848	}
849
850	/*
851	 * Force PHY to FPGA mode.
852	 */
853	if ((sc->jme_flags & JME_FLAG_FPGA) != 0) {
854		mii = device_get_softc(sc->jme_miibus);
855		if (mii->mii_instance != 0) {
856			LIST_FOREACH(miisc, &mii->mii_phys, mii_list) {
857				if (miisc->mii_phy != 0) {
858					sc->jme_phyaddr = miisc->mii_phy;
859					break;
860				}
861			}
862			if (sc->jme_phyaddr != 0) {
863				device_printf(sc->jme_dev,
864				    "FPGA PHY is at %d\n", sc->jme_phyaddr);
865				/* vendor magic. */
866				jme_miibus_writereg(dev, sc->jme_phyaddr, 27,
867				    0x0004);
868			}
869		}
870	}
871
872	ether_ifattach(ifp, sc->jme_eaddr);
873
874	/* VLAN capability setup */
875	ifp->if_capabilities |= IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING |
876	    IFCAP_VLAN_HWCSUM | IFCAP_VLAN_HWTSO;
877	ifp->if_capenable = ifp->if_capabilities;
878
879	/* Tell the upper layer(s) we support long frames. */
880	ifp->if_hdrlen = sizeof(struct ether_vlan_header);
881
882	/* Create local taskq. */
883	sc->jme_tq = taskqueue_create_fast("jme_taskq", M_WAITOK,
884	    taskqueue_thread_enqueue, &sc->jme_tq);
885	if (sc->jme_tq == NULL) {
886		device_printf(dev, "could not create taskqueue.\n");
887		ether_ifdetach(ifp);
888		error = ENXIO;
889		goto fail;
890	}
891	taskqueue_start_threads(&sc->jme_tq, 1, PI_NET, "%s taskq",
892	    device_get_nameunit(sc->jme_dev));
893
894	for (i = 0; i < 1; i++) {
895		error = bus_setup_intr(dev, sc->jme_irq[i],
896		    INTR_TYPE_NET | INTR_MPSAFE, jme_intr, NULL, sc,
897		    &sc->jme_intrhand[i]);
898		if (error != 0)
899			break;
900	}
901
902	if (error != 0) {
903		device_printf(dev, "could not set up interrupt handler.\n");
904		taskqueue_free(sc->jme_tq);
905		sc->jme_tq = NULL;
906		ether_ifdetach(ifp);
907		goto fail;
908	}
909
910fail:
911	if (error != 0)
912		jme_detach(dev);
913
914	return (error);
915}
916
917static int
918jme_detach(device_t dev)
919{
920	struct jme_softc *sc;
921	struct ifnet *ifp;
922	int i;
923
924	sc = device_get_softc(dev);
925
926	ifp = sc->jme_ifp;
927	if (device_is_attached(dev)) {
928		JME_LOCK(sc);
929		sc->jme_flags |= JME_FLAG_DETACH;
930		jme_stop(sc);
931		JME_UNLOCK(sc);
932		callout_drain(&sc->jme_tick_ch);
933		taskqueue_drain(sc->jme_tq, &sc->jme_int_task);
934		taskqueue_drain(taskqueue_swi, &sc->jme_link_task);
935		/* Restore possibly modified station address. */
936		if ((sc->jme_flags & JME_FLAG_EFUSE) != 0)
937			jme_set_macaddr(sc, sc->jme_eaddr);
938		ether_ifdetach(ifp);
939	}
940
941	if (sc->jme_tq != NULL) {
942		taskqueue_drain(sc->jme_tq, &sc->jme_int_task);
943		taskqueue_free(sc->jme_tq);
944		sc->jme_tq = NULL;
945	}
946
947	if (sc->jme_miibus != NULL) {
948		device_delete_child(dev, sc->jme_miibus);
949		sc->jme_miibus = NULL;
950	}
951	bus_generic_detach(dev);
952	jme_dma_free(sc);
953
954	if (ifp != NULL) {
955		if_free(ifp);
956		sc->jme_ifp = NULL;
957	}
958
959	for (i = 0; i < 1; i++) {
960		if (sc->jme_intrhand[i] != NULL) {
961			bus_teardown_intr(dev, sc->jme_irq[i],
962			    sc->jme_intrhand[i]);
963			sc->jme_intrhand[i] = NULL;
964		}
965	}
966
967	if (sc->jme_irq[0] != NULL)
968		bus_release_resources(dev, sc->jme_irq_spec, sc->jme_irq);
969	if ((sc->jme_flags & (JME_FLAG_MSIX | JME_FLAG_MSI)) != 0)
970		pci_release_msi(dev);
971	if (sc->jme_res[0] != NULL)
972		bus_release_resources(dev, sc->jme_res_spec, sc->jme_res);
973	mtx_destroy(&sc->jme_mtx);
974
975	return (0);
976}
977
978#define	JME_SYSCTL_STAT_ADD32(c, h, n, p, d)	\
979	    SYSCTL_ADD_UINT(c, h, OID_AUTO, n, CTLFLAG_RD, p, 0, d)
980
981static void
982jme_sysctl_node(struct jme_softc *sc)
983{
984	struct sysctl_ctx_list *ctx;
985	struct sysctl_oid_list *child, *parent;
986	struct sysctl_oid *tree;
987	struct jme_hw_stats *stats;
988	int error;
989
990	stats = &sc->jme_stats;
991	ctx = device_get_sysctl_ctx(sc->jme_dev);
992	child = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->jme_dev));
993
994	SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "tx_coal_to",
995	    CTLTYPE_INT | CTLFLAG_RW, &sc->jme_tx_coal_to, 0,
996	    sysctl_hw_jme_tx_coal_to, "I", "jme tx coalescing timeout");
997
998	SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "tx_coal_pkt",
999	    CTLTYPE_INT | CTLFLAG_RW, &sc->jme_tx_coal_pkt, 0,
1000	    sysctl_hw_jme_tx_coal_pkt, "I", "jme tx coalescing packet");
1001
1002	SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "rx_coal_to",
1003	    CTLTYPE_INT | CTLFLAG_RW, &sc->jme_rx_coal_to, 0,
1004	    sysctl_hw_jme_rx_coal_to, "I", "jme rx coalescing timeout");
1005
1006	SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "rx_coal_pkt",
1007	    CTLTYPE_INT | CTLFLAG_RW, &sc->jme_rx_coal_pkt, 0,
1008	    sysctl_hw_jme_rx_coal_pkt, "I", "jme rx coalescing packet");
1009
1010	SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "process_limit",
1011	    CTLTYPE_INT | CTLFLAG_RW, &sc->jme_process_limit, 0,
1012	    sysctl_hw_jme_proc_limit, "I",
1013	    "max number of Rx events to process");
1014
1015	/* Pull in device tunables. */
1016	sc->jme_process_limit = JME_PROC_DEFAULT;
1017	error = resource_int_value(device_get_name(sc->jme_dev),
1018	    device_get_unit(sc->jme_dev), "process_limit",
1019	    &sc->jme_process_limit);
1020	if (error == 0) {
1021		if (sc->jme_process_limit < JME_PROC_MIN ||
1022		    sc->jme_process_limit > JME_PROC_MAX) {
1023			device_printf(sc->jme_dev,
1024			    "process_limit value out of range; "
1025			    "using default: %d\n", JME_PROC_DEFAULT);
1026			sc->jme_process_limit = JME_PROC_DEFAULT;
1027		}
1028	}
1029
1030	sc->jme_tx_coal_to = PCCTX_COAL_TO_DEFAULT;
1031	error = resource_int_value(device_get_name(sc->jme_dev),
1032	    device_get_unit(sc->jme_dev), "tx_coal_to", &sc->jme_tx_coal_to);
1033	if (error == 0) {
1034		if (sc->jme_tx_coal_to < PCCTX_COAL_TO_MIN ||
1035		    sc->jme_tx_coal_to > PCCTX_COAL_TO_MAX) {
1036			device_printf(sc->jme_dev,
1037			    "tx_coal_to value out of range; "
1038			    "using default: %d\n", PCCTX_COAL_TO_DEFAULT);
1039			sc->jme_tx_coal_to = PCCTX_COAL_TO_DEFAULT;
1040		}
1041	}
1042
1043	sc->jme_tx_coal_pkt = PCCTX_COAL_PKT_DEFAULT;
1044	error = resource_int_value(device_get_name(sc->jme_dev),
1045	    device_get_unit(sc->jme_dev), "tx_coal_pkt", &sc->jme_tx_coal_to);
1046	if (error == 0) {
1047		if (sc->jme_tx_coal_pkt < PCCTX_COAL_PKT_MIN ||
1048		    sc->jme_tx_coal_pkt > PCCTX_COAL_PKT_MAX) {
1049			device_printf(sc->jme_dev,
1050			    "tx_coal_pkt value out of range; "
1051			    "using default: %d\n", PCCTX_COAL_PKT_DEFAULT);
1052			sc->jme_tx_coal_pkt = PCCTX_COAL_PKT_DEFAULT;
1053		}
1054	}
1055
1056	sc->jme_rx_coal_to = PCCRX_COAL_TO_DEFAULT;
1057	error = resource_int_value(device_get_name(sc->jme_dev),
1058	    device_get_unit(sc->jme_dev), "rx_coal_to", &sc->jme_rx_coal_to);
1059	if (error == 0) {
1060		if (sc->jme_rx_coal_to < PCCRX_COAL_TO_MIN ||
1061		    sc->jme_rx_coal_to > PCCRX_COAL_TO_MAX) {
1062			device_printf(sc->jme_dev,
1063			    "rx_coal_to value out of range; "
1064			    "using default: %d\n", PCCRX_COAL_TO_DEFAULT);
1065			sc->jme_rx_coal_to = PCCRX_COAL_TO_DEFAULT;
1066		}
1067	}
1068
1069	sc->jme_rx_coal_pkt = PCCRX_COAL_PKT_DEFAULT;
1070	error = resource_int_value(device_get_name(sc->jme_dev),
1071	    device_get_unit(sc->jme_dev), "rx_coal_pkt", &sc->jme_rx_coal_to);
1072	if (error == 0) {
1073		if (sc->jme_rx_coal_pkt < PCCRX_COAL_PKT_MIN ||
1074		    sc->jme_rx_coal_pkt > PCCRX_COAL_PKT_MAX) {
1075			device_printf(sc->jme_dev,
1076			    "tx_coal_pkt value out of range; "
1077			    "using default: %d\n", PCCRX_COAL_PKT_DEFAULT);
1078			sc->jme_rx_coal_pkt = PCCRX_COAL_PKT_DEFAULT;
1079		}
1080	}
1081
1082	if ((sc->jme_flags & JME_FLAG_HWMIB) == 0)
1083		return;
1084
1085	tree = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "stats", CTLFLAG_RD,
1086	    NULL, "JME statistics");
1087	parent = SYSCTL_CHILDREN(tree);
1088
1089	/* Rx statistics. */
1090	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "rx", CTLFLAG_RD,
1091	    NULL, "Rx MAC statistics");
1092	child = SYSCTL_CHILDREN(tree);
1093	JME_SYSCTL_STAT_ADD32(ctx, child, "good_frames",
1094	    &stats->rx_good_frames, "Good frames");
1095	JME_SYSCTL_STAT_ADD32(ctx, child, "crc_errs",
1096	    &stats->rx_crc_errs, "CRC errors");
1097	JME_SYSCTL_STAT_ADD32(ctx, child, "mii_errs",
1098	    &stats->rx_mii_errs, "MII errors");
1099	JME_SYSCTL_STAT_ADD32(ctx, child, "fifo_oflows",
1100	    &stats->rx_fifo_oflows, "FIFO overflows");
1101	JME_SYSCTL_STAT_ADD32(ctx, child, "desc_empty",
1102	    &stats->rx_desc_empty, "Descriptor empty");
1103	JME_SYSCTL_STAT_ADD32(ctx, child, "bad_frames",
1104	    &stats->rx_bad_frames, "Bad frames");
1105
1106	/* Tx statistics. */
1107	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "tx", CTLFLAG_RD,
1108	    NULL, "Tx MAC statistics");
1109	child = SYSCTL_CHILDREN(tree);
1110	JME_SYSCTL_STAT_ADD32(ctx, child, "good_frames",
1111	    &stats->tx_good_frames, "Good frames");
1112	JME_SYSCTL_STAT_ADD32(ctx, child, "bad_frames",
1113	    &stats->tx_bad_frames, "Bad frames");
1114}
1115
1116#undef	JME_SYSCTL_STAT_ADD32
1117
1118struct jme_dmamap_arg {
1119	bus_addr_t	jme_busaddr;
1120};
1121
1122static void
1123jme_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
1124{
1125	struct jme_dmamap_arg *ctx;
1126
1127	if (error != 0)
1128		return;
1129
1130	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
1131
1132	ctx = (struct jme_dmamap_arg *)arg;
1133	ctx->jme_busaddr = segs[0].ds_addr;
1134}
1135
1136static int
1137jme_dma_alloc(struct jme_softc *sc)
1138{
1139	struct jme_dmamap_arg ctx;
1140	struct jme_txdesc *txd;
1141	struct jme_rxdesc *rxd;
1142	bus_addr_t lowaddr, rx_ring_end, tx_ring_end;
1143	int error, i;
1144
1145	lowaddr = BUS_SPACE_MAXADDR;
1146	if ((sc->jme_flags & JME_FLAG_DMA32BIT) != 0)
1147		lowaddr = BUS_SPACE_MAXADDR_32BIT;
1148
1149again:
1150	/* Create parent ring tag. */
1151	error = bus_dma_tag_create(bus_get_dma_tag(sc->jme_dev),/* parent */
1152	    1, 0,			/* algnmnt, boundary */
1153	    lowaddr,			/* lowaddr */
1154	    BUS_SPACE_MAXADDR,		/* highaddr */
1155	    NULL, NULL,			/* filter, filterarg */
1156	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
1157	    0,				/* nsegments */
1158	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
1159	    0,				/* flags */
1160	    NULL, NULL,			/* lockfunc, lockarg */
1161	    &sc->jme_cdata.jme_ring_tag);
1162	if (error != 0) {
1163		device_printf(sc->jme_dev,
1164		    "could not create parent ring DMA tag.\n");
1165		goto fail;
1166	}
1167	/* Create tag for Tx ring. */
1168	error = bus_dma_tag_create(sc->jme_cdata.jme_ring_tag,/* parent */
1169	    JME_TX_RING_ALIGN, 0,	/* algnmnt, boundary */
1170	    BUS_SPACE_MAXADDR,		/* lowaddr */
1171	    BUS_SPACE_MAXADDR,		/* highaddr */
1172	    NULL, NULL,			/* filter, filterarg */
1173	    JME_TX_RING_SIZE,		/* maxsize */
1174	    1,				/* nsegments */
1175	    JME_TX_RING_SIZE,		/* maxsegsize */
1176	    0,				/* flags */
1177	    NULL, NULL,			/* lockfunc, lockarg */
1178	    &sc->jme_cdata.jme_tx_ring_tag);
1179	if (error != 0) {
1180		device_printf(sc->jme_dev,
1181		    "could not allocate Tx ring DMA tag.\n");
1182		goto fail;
1183	}
1184
1185	/* Create tag for Rx ring. */
1186	error = bus_dma_tag_create(sc->jme_cdata.jme_ring_tag,/* parent */
1187	    JME_RX_RING_ALIGN, 0,	/* algnmnt, boundary */
1188	    lowaddr,			/* lowaddr */
1189	    BUS_SPACE_MAXADDR,		/* highaddr */
1190	    NULL, NULL,			/* filter, filterarg */
1191	    JME_RX_RING_SIZE,		/* maxsize */
1192	    1,				/* nsegments */
1193	    JME_RX_RING_SIZE,		/* maxsegsize */
1194	    0,				/* flags */
1195	    NULL, NULL,			/* lockfunc, lockarg */
1196	    &sc->jme_cdata.jme_rx_ring_tag);
1197	if (error != 0) {
1198		device_printf(sc->jme_dev,
1199		    "could not allocate Rx ring DMA tag.\n");
1200		goto fail;
1201	}
1202
1203	/* Allocate DMA'able memory and load the DMA map for Tx ring. */
1204	error = bus_dmamem_alloc(sc->jme_cdata.jme_tx_ring_tag,
1205	    (void **)&sc->jme_rdata.jme_tx_ring,
1206	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1207	    &sc->jme_cdata.jme_tx_ring_map);
1208	if (error != 0) {
1209		device_printf(sc->jme_dev,
1210		    "could not allocate DMA'able memory for Tx ring.\n");
1211		goto fail;
1212	}
1213
1214	ctx.jme_busaddr = 0;
1215	error = bus_dmamap_load(sc->jme_cdata.jme_tx_ring_tag,
1216	    sc->jme_cdata.jme_tx_ring_map, sc->jme_rdata.jme_tx_ring,
1217	    JME_TX_RING_SIZE, jme_dmamap_cb, &ctx, BUS_DMA_NOWAIT);
1218	if (error != 0 || ctx.jme_busaddr == 0) {
1219		device_printf(sc->jme_dev,
1220		    "could not load DMA'able memory for Tx ring.\n");
1221		goto fail;
1222	}
1223	sc->jme_rdata.jme_tx_ring_paddr = ctx.jme_busaddr;
1224
1225	/* Allocate DMA'able memory and load the DMA map for Rx ring. */
1226	error = bus_dmamem_alloc(sc->jme_cdata.jme_rx_ring_tag,
1227	    (void **)&sc->jme_rdata.jme_rx_ring,
1228	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1229	    &sc->jme_cdata.jme_rx_ring_map);
1230	if (error != 0) {
1231		device_printf(sc->jme_dev,
1232		    "could not allocate DMA'able memory for Rx ring.\n");
1233		goto fail;
1234	}
1235
1236	ctx.jme_busaddr = 0;
1237	error = bus_dmamap_load(sc->jme_cdata.jme_rx_ring_tag,
1238	    sc->jme_cdata.jme_rx_ring_map, sc->jme_rdata.jme_rx_ring,
1239	    JME_RX_RING_SIZE, jme_dmamap_cb, &ctx, BUS_DMA_NOWAIT);
1240	if (error != 0 || ctx.jme_busaddr == 0) {
1241		device_printf(sc->jme_dev,
1242		    "could not load DMA'able memory for Rx ring.\n");
1243		goto fail;
1244	}
1245	sc->jme_rdata.jme_rx_ring_paddr = ctx.jme_busaddr;
1246
1247	if (lowaddr != BUS_SPACE_MAXADDR_32BIT) {
1248		/* Tx/Rx descriptor queue should reside within 4GB boundary. */
1249		tx_ring_end = sc->jme_rdata.jme_tx_ring_paddr +
1250		    JME_TX_RING_SIZE;
1251		rx_ring_end = sc->jme_rdata.jme_rx_ring_paddr +
1252		    JME_RX_RING_SIZE;
1253		if ((JME_ADDR_HI(tx_ring_end) !=
1254		    JME_ADDR_HI(sc->jme_rdata.jme_tx_ring_paddr)) ||
1255		    (JME_ADDR_HI(rx_ring_end) !=
1256		     JME_ADDR_HI(sc->jme_rdata.jme_rx_ring_paddr))) {
1257			device_printf(sc->jme_dev, "4GB boundary crossed, "
1258			    "switching to 32bit DMA address mode.\n");
1259			jme_dma_free(sc);
1260			/* Limit DMA address space to 32bit and try again. */
1261			lowaddr = BUS_SPACE_MAXADDR_32BIT;
1262			goto again;
1263		}
1264	}
1265
1266	lowaddr = BUS_SPACE_MAXADDR;
1267	if ((sc->jme_flags & JME_FLAG_DMA32BIT) != 0)
1268		lowaddr = BUS_SPACE_MAXADDR_32BIT;
1269	/* Create parent buffer tag. */
1270	error = bus_dma_tag_create(bus_get_dma_tag(sc->jme_dev),/* parent */
1271	    1, 0,			/* algnmnt, boundary */
1272	    lowaddr,			/* lowaddr */
1273	    BUS_SPACE_MAXADDR,		/* highaddr */
1274	    NULL, NULL,			/* filter, filterarg */
1275	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
1276	    0,				/* nsegments */
1277	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
1278	    0,				/* flags */
1279	    NULL, NULL,			/* lockfunc, lockarg */
1280	    &sc->jme_cdata.jme_buffer_tag);
1281	if (error != 0) {
1282		device_printf(sc->jme_dev,
1283		    "could not create parent buffer DMA tag.\n");
1284		goto fail;
1285	}
1286
1287	/* Create shadow status block tag. */
1288	error = bus_dma_tag_create(sc->jme_cdata.jme_buffer_tag,/* parent */
1289	    JME_SSB_ALIGN, 0,		/* algnmnt, boundary */
1290	    BUS_SPACE_MAXADDR,		/* lowaddr */
1291	    BUS_SPACE_MAXADDR,		/* highaddr */
1292	    NULL, NULL,			/* filter, filterarg */
1293	    JME_SSB_SIZE,		/* maxsize */
1294	    1,				/* nsegments */
1295	    JME_SSB_SIZE,		/* maxsegsize */
1296	    0,				/* flags */
1297	    NULL, NULL,			/* lockfunc, lockarg */
1298	    &sc->jme_cdata.jme_ssb_tag);
1299	if (error != 0) {
1300		device_printf(sc->jme_dev,
1301		    "could not create shared status block DMA tag.\n");
1302		goto fail;
1303	}
1304
1305	/* Create tag for Tx buffers. */
1306	error = bus_dma_tag_create(sc->jme_cdata.jme_buffer_tag,/* parent */
1307	    1, 0,			/* algnmnt, boundary */
1308	    BUS_SPACE_MAXADDR,		/* lowaddr */
1309	    BUS_SPACE_MAXADDR,		/* highaddr */
1310	    NULL, NULL,			/* filter, filterarg */
1311	    JME_TSO_MAXSIZE,		/* maxsize */
1312	    JME_MAXTXSEGS,		/* nsegments */
1313	    JME_TSO_MAXSEGSIZE,		/* maxsegsize */
1314	    0,				/* flags */
1315	    NULL, NULL,			/* lockfunc, lockarg */
1316	    &sc->jme_cdata.jme_tx_tag);
1317	if (error != 0) {
1318		device_printf(sc->jme_dev, "could not create Tx DMA tag.\n");
1319		goto fail;
1320	}
1321
1322	/* Create tag for Rx buffers. */
1323	error = bus_dma_tag_create(sc->jme_cdata.jme_buffer_tag,/* parent */
1324	    JME_RX_BUF_ALIGN, 0,	/* algnmnt, boundary */
1325	    BUS_SPACE_MAXADDR,		/* lowaddr */
1326	    BUS_SPACE_MAXADDR,		/* highaddr */
1327	    NULL, NULL,			/* filter, filterarg */
1328	    MCLBYTES,			/* maxsize */
1329	    1,				/* nsegments */
1330	    MCLBYTES,			/* maxsegsize */
1331	    0,				/* flags */
1332	    NULL, NULL,			/* lockfunc, lockarg */
1333	    &sc->jme_cdata.jme_rx_tag);
1334	if (error != 0) {
1335		device_printf(sc->jme_dev, "could not create Rx DMA tag.\n");
1336		goto fail;
1337	}
1338
1339	/*
1340	 * Allocate DMA'able memory and load the DMA map for shared
1341	 * status block.
1342	 */
1343	error = bus_dmamem_alloc(sc->jme_cdata.jme_ssb_tag,
1344	    (void **)&sc->jme_rdata.jme_ssb_block,
1345	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1346	    &sc->jme_cdata.jme_ssb_map);
1347	if (error != 0) {
1348		device_printf(sc->jme_dev, "could not allocate DMA'able "
1349		    "memory for shared status block.\n");
1350		goto fail;
1351	}
1352
1353	ctx.jme_busaddr = 0;
1354	error = bus_dmamap_load(sc->jme_cdata.jme_ssb_tag,
1355	    sc->jme_cdata.jme_ssb_map, sc->jme_rdata.jme_ssb_block,
1356	    JME_SSB_SIZE, jme_dmamap_cb, &ctx, BUS_DMA_NOWAIT);
1357	if (error != 0 || ctx.jme_busaddr == 0) {
1358		device_printf(sc->jme_dev, "could not load DMA'able memory "
1359		    "for shared status block.\n");
1360		goto fail;
1361	}
1362	sc->jme_rdata.jme_ssb_block_paddr = ctx.jme_busaddr;
1363
1364	/* Create DMA maps for Tx buffers. */
1365	for (i = 0; i < JME_TX_RING_CNT; i++) {
1366		txd = &sc->jme_cdata.jme_txdesc[i];
1367		txd->tx_m = NULL;
1368		txd->tx_dmamap = NULL;
1369		error = bus_dmamap_create(sc->jme_cdata.jme_tx_tag, 0,
1370		    &txd->tx_dmamap);
1371		if (error != 0) {
1372			device_printf(sc->jme_dev,
1373			    "could not create Tx dmamap.\n");
1374			goto fail;
1375		}
1376	}
1377	/* Create DMA maps for Rx buffers. */
1378	if ((error = bus_dmamap_create(sc->jme_cdata.jme_rx_tag, 0,
1379	    &sc->jme_cdata.jme_rx_sparemap)) != 0) {
1380		device_printf(sc->jme_dev,
1381		    "could not create spare Rx dmamap.\n");
1382		goto fail;
1383	}
1384	for (i = 0; i < JME_RX_RING_CNT; i++) {
1385		rxd = &sc->jme_cdata.jme_rxdesc[i];
1386		rxd->rx_m = NULL;
1387		rxd->rx_dmamap = NULL;
1388		error = bus_dmamap_create(sc->jme_cdata.jme_rx_tag, 0,
1389		    &rxd->rx_dmamap);
1390		if (error != 0) {
1391			device_printf(sc->jme_dev,
1392			    "could not create Rx dmamap.\n");
1393			goto fail;
1394		}
1395	}
1396
1397fail:
1398	return (error);
1399}
1400
1401static void
1402jme_dma_free(struct jme_softc *sc)
1403{
1404	struct jme_txdesc *txd;
1405	struct jme_rxdesc *rxd;
1406	int i;
1407
1408	/* Tx ring */
1409	if (sc->jme_cdata.jme_tx_ring_tag != NULL) {
1410		if (sc->jme_rdata.jme_tx_ring_paddr)
1411			bus_dmamap_unload(sc->jme_cdata.jme_tx_ring_tag,
1412			    sc->jme_cdata.jme_tx_ring_map);
1413		if (sc->jme_rdata.jme_tx_ring)
1414			bus_dmamem_free(sc->jme_cdata.jme_tx_ring_tag,
1415			    sc->jme_rdata.jme_tx_ring,
1416			    sc->jme_cdata.jme_tx_ring_map);
1417		sc->jme_rdata.jme_tx_ring = NULL;
1418		sc->jme_rdata.jme_tx_ring_paddr = 0;
1419		bus_dma_tag_destroy(sc->jme_cdata.jme_tx_ring_tag);
1420		sc->jme_cdata.jme_tx_ring_tag = NULL;
1421	}
1422	/* Rx ring */
1423	if (sc->jme_cdata.jme_rx_ring_tag != NULL) {
1424		if (sc->jme_rdata.jme_rx_ring_paddr)
1425			bus_dmamap_unload(sc->jme_cdata.jme_rx_ring_tag,
1426			    sc->jme_cdata.jme_rx_ring_map);
1427		if (sc->jme_rdata.jme_rx_ring)
1428			bus_dmamem_free(sc->jme_cdata.jme_rx_ring_tag,
1429			    sc->jme_rdata.jme_rx_ring,
1430			    sc->jme_cdata.jme_rx_ring_map);
1431		sc->jme_rdata.jme_rx_ring = NULL;
1432		sc->jme_rdata.jme_rx_ring_paddr = 0;
1433		bus_dma_tag_destroy(sc->jme_cdata.jme_rx_ring_tag);
1434		sc->jme_cdata.jme_rx_ring_tag = NULL;
1435	}
1436	/* Tx buffers */
1437	if (sc->jme_cdata.jme_tx_tag != NULL) {
1438		for (i = 0; i < JME_TX_RING_CNT; i++) {
1439			txd = &sc->jme_cdata.jme_txdesc[i];
1440			if (txd->tx_dmamap != NULL) {
1441				bus_dmamap_destroy(sc->jme_cdata.jme_tx_tag,
1442				    txd->tx_dmamap);
1443				txd->tx_dmamap = NULL;
1444			}
1445		}
1446		bus_dma_tag_destroy(sc->jme_cdata.jme_tx_tag);
1447		sc->jme_cdata.jme_tx_tag = NULL;
1448	}
1449	/* Rx buffers */
1450	if (sc->jme_cdata.jme_rx_tag != NULL) {
1451		for (i = 0; i < JME_RX_RING_CNT; i++) {
1452			rxd = &sc->jme_cdata.jme_rxdesc[i];
1453			if (rxd->rx_dmamap != NULL) {
1454				bus_dmamap_destroy(sc->jme_cdata.jme_rx_tag,
1455				    rxd->rx_dmamap);
1456				rxd->rx_dmamap = NULL;
1457			}
1458		}
1459		if (sc->jme_cdata.jme_rx_sparemap != NULL) {
1460			bus_dmamap_destroy(sc->jme_cdata.jme_rx_tag,
1461			    sc->jme_cdata.jme_rx_sparemap);
1462			sc->jme_cdata.jme_rx_sparemap = NULL;
1463		}
1464		bus_dma_tag_destroy(sc->jme_cdata.jme_rx_tag);
1465		sc->jme_cdata.jme_rx_tag = NULL;
1466	}
1467
1468	/* Shared status block. */
1469	if (sc->jme_cdata.jme_ssb_tag != NULL) {
1470		if (sc->jme_rdata.jme_ssb_block_paddr)
1471			bus_dmamap_unload(sc->jme_cdata.jme_ssb_tag,
1472			    sc->jme_cdata.jme_ssb_map);
1473		if (sc->jme_rdata.jme_ssb_block)
1474			bus_dmamem_free(sc->jme_cdata.jme_ssb_tag,
1475			    sc->jme_rdata.jme_ssb_block,
1476			    sc->jme_cdata.jme_ssb_map);
1477		sc->jme_rdata.jme_ssb_block = NULL;
1478		sc->jme_rdata.jme_ssb_block_paddr = 0;
1479		bus_dma_tag_destroy(sc->jme_cdata.jme_ssb_tag);
1480		sc->jme_cdata.jme_ssb_tag = NULL;
1481	}
1482
1483	if (sc->jme_cdata.jme_buffer_tag != NULL) {
1484		bus_dma_tag_destroy(sc->jme_cdata.jme_buffer_tag);
1485		sc->jme_cdata.jme_buffer_tag = NULL;
1486	}
1487	if (sc->jme_cdata.jme_ring_tag != NULL) {
1488		bus_dma_tag_destroy(sc->jme_cdata.jme_ring_tag);
1489		sc->jme_cdata.jme_ring_tag = NULL;
1490	}
1491}
1492
1493/*
1494 *	Make sure the interface is stopped at reboot time.
1495 */
1496static int
1497jme_shutdown(device_t dev)
1498{
1499
1500	return (jme_suspend(dev));
1501}
1502
1503/*
1504 * Unlike other ethernet controllers, JMC250 requires
1505 * explicit resetting link speed to 10/100Mbps as gigabit
1506 * link will cunsume more power than 375mA.
1507 * Note, we reset the link speed to 10/100Mbps with
1508 * auto-negotiation but we don't know whether that operation
1509 * would succeed or not as we have no control after powering
1510 * off. If the renegotiation fail WOL may not work. Running
1511 * at 1Gbps draws more power than 375mA at 3.3V which is
1512 * specified in PCI specification and that would result in
1513 * complete shutdowning power to ethernet controller.
1514 *
1515 * TODO
1516 *  Save current negotiated media speed/duplex/flow-control
1517 *  to softc and restore the same link again after resuming.
1518 *  PHY handling such as power down/resetting to 100Mbps
1519 *  may be better handled in suspend method in phy driver.
1520 */
1521static void
1522jme_setlinkspeed(struct jme_softc *sc)
1523{
1524	struct mii_data *mii;
1525	int aneg, i;
1526
1527	JME_LOCK_ASSERT(sc);
1528
1529	mii = device_get_softc(sc->jme_miibus);
1530	mii_pollstat(mii);
1531	aneg = 0;
1532	if ((mii->mii_media_status & IFM_AVALID) != 0) {
1533		switch IFM_SUBTYPE(mii->mii_media_active) {
1534		case IFM_10_T:
1535		case IFM_100_TX:
1536			return;
1537		case IFM_1000_T:
1538			aneg++;
1539		default:
1540			break;
1541		}
1542	}
1543	jme_miibus_writereg(sc->jme_dev, sc->jme_phyaddr, MII_100T2CR, 0);
1544	jme_miibus_writereg(sc->jme_dev, sc->jme_phyaddr, MII_ANAR,
1545	    ANAR_TX_FD | ANAR_TX | ANAR_10_FD | ANAR_10 | ANAR_CSMA);
1546	jme_miibus_writereg(sc->jme_dev, sc->jme_phyaddr, MII_BMCR,
1547	    BMCR_AUTOEN | BMCR_STARTNEG);
1548	DELAY(1000);
1549	if (aneg != 0) {
1550		/* Poll link state until jme(4) get a 10/100 link. */
1551		for (i = 0; i < MII_ANEGTICKS_GIGE; i++) {
1552			mii_pollstat(mii);
1553			if ((mii->mii_media_status & IFM_AVALID) != 0) {
1554				switch (IFM_SUBTYPE(mii->mii_media_active)) {
1555				case IFM_10_T:
1556				case IFM_100_TX:
1557					jme_mac_config(sc);
1558					return;
1559				default:
1560					break;
1561				}
1562			}
1563			JME_UNLOCK(sc);
1564			pause("jmelnk", hz);
1565			JME_LOCK(sc);
1566		}
1567		if (i == MII_ANEGTICKS_GIGE)
1568			device_printf(sc->jme_dev, "establishing link failed, "
1569			    "WOL may not work!");
1570	}
1571	/*
1572	 * No link, force MAC to have 100Mbps, full-duplex link.
1573	 * This is the last resort and may/may not work.
1574	 */
1575	mii->mii_media_status = IFM_AVALID | IFM_ACTIVE;
1576	mii->mii_media_active = IFM_ETHER | IFM_100_TX | IFM_FDX;
1577	jme_mac_config(sc);
1578}
1579
1580static void
1581jme_setwol(struct jme_softc *sc)
1582{
1583	struct ifnet *ifp;
1584	uint32_t gpr, pmcs;
1585	uint16_t pmstat;
1586	int pmc;
1587
1588	JME_LOCK_ASSERT(sc);
1589
1590	if (pci_find_cap(sc->jme_dev, PCIY_PMG, &pmc) != 0) {
1591		/* Remove Tx MAC/offload clock to save more power. */
1592		if ((sc->jme_flags & JME_FLAG_TXCLK) != 0)
1593			CSR_WRITE_4(sc, JME_GHC, CSR_READ_4(sc, JME_GHC) &
1594			    ~(GHC_TX_OFFLD_CLK_100 | GHC_TX_MAC_CLK_100 |
1595			    GHC_TX_OFFLD_CLK_1000 | GHC_TX_MAC_CLK_1000));
1596		if ((sc->jme_flags & JME_FLAG_RXCLK) != 0)
1597			CSR_WRITE_4(sc, JME_GPREG1,
1598			    CSR_READ_4(sc, JME_GPREG1) | GPREG1_RX_MAC_CLK_DIS);
1599		/* No PME capability, PHY power down. */
1600		jme_phy_down(sc);
1601		return;
1602	}
1603
1604	ifp = sc->jme_ifp;
1605	gpr = CSR_READ_4(sc, JME_GPREG0) & ~GPREG0_PME_ENB;
1606	pmcs = CSR_READ_4(sc, JME_PMCS);
1607	pmcs &= ~PMCS_WOL_ENB_MASK;
1608	if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0) {
1609		pmcs |= PMCS_MAGIC_FRAME | PMCS_MAGIC_FRAME_ENB;
1610		/* Enable PME message. */
1611		gpr |= GPREG0_PME_ENB;
1612		/* For gigabit controllers, reset link speed to 10/100. */
1613		if ((sc->jme_flags & JME_FLAG_FASTETH) == 0)
1614			jme_setlinkspeed(sc);
1615	}
1616
1617	CSR_WRITE_4(sc, JME_PMCS, pmcs);
1618	CSR_WRITE_4(sc, JME_GPREG0, gpr);
1619	/* Remove Tx MAC/offload clock to save more power. */
1620	if ((sc->jme_flags & JME_FLAG_TXCLK) != 0)
1621		CSR_WRITE_4(sc, JME_GHC, CSR_READ_4(sc, JME_GHC) &
1622		    ~(GHC_TX_OFFLD_CLK_100 | GHC_TX_MAC_CLK_100 |
1623		    GHC_TX_OFFLD_CLK_1000 | GHC_TX_MAC_CLK_1000));
1624	/* Request PME. */
1625	pmstat = pci_read_config(sc->jme_dev, pmc + PCIR_POWER_STATUS, 2);
1626	pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
1627	if ((ifp->if_capenable & IFCAP_WOL) != 0)
1628		pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
1629	pci_write_config(sc->jme_dev, pmc + PCIR_POWER_STATUS, pmstat, 2);
1630	if ((ifp->if_capenable & IFCAP_WOL) == 0) {
1631		/* No WOL, PHY power down. */
1632		jme_phy_down(sc);
1633	}
1634}
1635
1636static int
1637jme_suspend(device_t dev)
1638{
1639	struct jme_softc *sc;
1640
1641	sc = device_get_softc(dev);
1642
1643	JME_LOCK(sc);
1644	jme_stop(sc);
1645	jme_setwol(sc);
1646	JME_UNLOCK(sc);
1647
1648	return (0);
1649}
1650
1651static int
1652jme_resume(device_t dev)
1653{
1654	struct jme_softc *sc;
1655	struct ifnet *ifp;
1656	uint16_t pmstat;
1657	int pmc;
1658
1659	sc = device_get_softc(dev);
1660
1661	JME_LOCK(sc);
1662	if (pci_find_cap(sc->jme_dev, PCIY_PMG, &pmc) == 0) {
1663		pmstat = pci_read_config(sc->jme_dev,
1664		    pmc + PCIR_POWER_STATUS, 2);
1665		/* Disable PME clear PME status. */
1666		pmstat &= ~PCIM_PSTAT_PMEENABLE;
1667		pci_write_config(sc->jme_dev,
1668		    pmc + PCIR_POWER_STATUS, pmstat, 2);
1669	}
1670	/* Wakeup PHY. */
1671	jme_phy_up(sc);
1672	ifp = sc->jme_ifp;
1673	if ((ifp->if_flags & IFF_UP) != 0) {
1674		ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1675		jme_init_locked(sc);
1676	}
1677
1678	JME_UNLOCK(sc);
1679
1680	return (0);
1681}
1682
1683static int
1684jme_encap(struct jme_softc *sc, struct mbuf **m_head)
1685{
1686	struct jme_txdesc *txd;
1687	struct jme_desc *desc;
1688	struct mbuf *m;
1689	bus_dma_segment_t txsegs[JME_MAXTXSEGS];
1690	int error, i, nsegs, prod;
1691	uint32_t cflags, tsosegsz;
1692
1693	JME_LOCK_ASSERT(sc);
1694
1695	M_ASSERTPKTHDR((*m_head));
1696
1697	if (((*m_head)->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
1698		/*
1699		 * Due to the adherence to NDIS specification JMC250
1700		 * assumes upper stack computed TCP pseudo checksum
1701		 * without including payload length. This breaks
1702		 * checksum offload for TSO case so recompute TCP
1703		 * pseudo checksum for JMC250. Hopefully this wouldn't
1704		 * be much burden on modern CPUs.
1705		 */
1706		struct ether_header *eh;
1707		struct ip *ip;
1708		struct tcphdr *tcp;
1709		uint32_t ip_off, poff;
1710
1711		if (M_WRITABLE(*m_head) == 0) {
1712			/* Get a writable copy. */
1713			m = m_dup(*m_head, M_NOWAIT);
1714			m_freem(*m_head);
1715			if (m == NULL) {
1716				*m_head = NULL;
1717				return (ENOBUFS);
1718			}
1719			*m_head = m;
1720		}
1721		ip_off = sizeof(struct ether_header);
1722		m = m_pullup(*m_head, ip_off);
1723		if (m == NULL) {
1724			*m_head = NULL;
1725			return (ENOBUFS);
1726		}
1727		eh = mtod(m, struct ether_header *);
1728		/* Check the existence of VLAN tag. */
1729		if (eh->ether_type == htons(ETHERTYPE_VLAN)) {
1730			ip_off = sizeof(struct ether_vlan_header);
1731			m = m_pullup(m, ip_off);
1732			if (m == NULL) {
1733				*m_head = NULL;
1734				return (ENOBUFS);
1735			}
1736		}
1737		m = m_pullup(m, ip_off + sizeof(struct ip));
1738		if (m == NULL) {
1739			*m_head = NULL;
1740			return (ENOBUFS);
1741		}
1742		ip = (struct ip *)(mtod(m, char *) + ip_off);
1743		poff = ip_off + (ip->ip_hl << 2);
1744		m = m_pullup(m, poff + sizeof(struct tcphdr));
1745		if (m == NULL) {
1746			*m_head = NULL;
1747			return (ENOBUFS);
1748		}
1749		/*
1750		 * Reset IP checksum and recompute TCP pseudo
1751		 * checksum that NDIS specification requires.
1752		 */
1753		ip = (struct ip *)(mtod(m, char *) + ip_off);
1754		tcp = (struct tcphdr *)(mtod(m, char *) + poff);
1755		ip->ip_sum = 0;
1756		if (poff + (tcp->th_off << 2) == m->m_pkthdr.len) {
1757			tcp->th_sum = in_pseudo(ip->ip_src.s_addr,
1758			    ip->ip_dst.s_addr,
1759			    htons((tcp->th_off << 2) + IPPROTO_TCP));
1760			/* No need to TSO, force IP checksum offload. */
1761			(*m_head)->m_pkthdr.csum_flags &= ~CSUM_TSO;
1762			(*m_head)->m_pkthdr.csum_flags |= CSUM_IP;
1763		} else
1764			tcp->th_sum = in_pseudo(ip->ip_src.s_addr,
1765			    ip->ip_dst.s_addr, htons(IPPROTO_TCP));
1766		*m_head = m;
1767	}
1768
1769	prod = sc->jme_cdata.jme_tx_prod;
1770	txd = &sc->jme_cdata.jme_txdesc[prod];
1771
1772	error = bus_dmamap_load_mbuf_sg(sc->jme_cdata.jme_tx_tag,
1773	    txd->tx_dmamap, *m_head, txsegs, &nsegs, 0);
1774	if (error == EFBIG) {
1775		m = m_collapse(*m_head, M_NOWAIT, JME_MAXTXSEGS);
1776		if (m == NULL) {
1777			m_freem(*m_head);
1778			*m_head = NULL;
1779			return (ENOMEM);
1780		}
1781		*m_head = m;
1782		error = bus_dmamap_load_mbuf_sg(sc->jme_cdata.jme_tx_tag,
1783		    txd->tx_dmamap, *m_head, txsegs, &nsegs, 0);
1784		if (error != 0) {
1785			m_freem(*m_head);
1786			*m_head = NULL;
1787			return (error);
1788		}
1789	} else if (error != 0)
1790		return (error);
1791	if (nsegs == 0) {
1792		m_freem(*m_head);
1793		*m_head = NULL;
1794		return (EIO);
1795	}
1796
1797	/*
1798	 * Check descriptor overrun. Leave one free descriptor.
1799	 * Since we always use 64bit address mode for transmitting,
1800	 * each Tx request requires one more dummy descriptor.
1801	 */
1802	if (sc->jme_cdata.jme_tx_cnt + nsegs + 1 > JME_TX_RING_CNT - 1) {
1803		bus_dmamap_unload(sc->jme_cdata.jme_tx_tag, txd->tx_dmamap);
1804		return (ENOBUFS);
1805	}
1806
1807	m = *m_head;
1808	cflags = 0;
1809	tsosegsz = 0;
1810	/* Configure checksum offload and TSO. */
1811	if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
1812		tsosegsz = (uint32_t)m->m_pkthdr.tso_segsz <<
1813		    JME_TD_MSS_SHIFT;
1814		cflags |= JME_TD_TSO;
1815	} else {
1816		if ((m->m_pkthdr.csum_flags & CSUM_IP) != 0)
1817			cflags |= JME_TD_IPCSUM;
1818		if ((m->m_pkthdr.csum_flags & CSUM_TCP) != 0)
1819			cflags |= JME_TD_TCPCSUM;
1820		if ((m->m_pkthdr.csum_flags & CSUM_UDP) != 0)
1821			cflags |= JME_TD_UDPCSUM;
1822	}
1823	/* Configure VLAN. */
1824	if ((m->m_flags & M_VLANTAG) != 0) {
1825		cflags |= (m->m_pkthdr.ether_vtag & JME_TD_VLAN_MASK);
1826		cflags |= JME_TD_VLAN_TAG;
1827	}
1828
1829	desc = &sc->jme_rdata.jme_tx_ring[prod];
1830	desc->flags = htole32(cflags);
1831	desc->buflen = htole32(tsosegsz);
1832	desc->addr_hi = htole32(m->m_pkthdr.len);
1833	desc->addr_lo = 0;
1834	sc->jme_cdata.jme_tx_cnt++;
1835	JME_DESC_INC(prod, JME_TX_RING_CNT);
1836	for (i = 0; i < nsegs; i++) {
1837		desc = &sc->jme_rdata.jme_tx_ring[prod];
1838		desc->flags = htole32(JME_TD_OWN | JME_TD_64BIT);
1839		desc->buflen = htole32(txsegs[i].ds_len);
1840		desc->addr_hi = htole32(JME_ADDR_HI(txsegs[i].ds_addr));
1841		desc->addr_lo = htole32(JME_ADDR_LO(txsegs[i].ds_addr));
1842		sc->jme_cdata.jme_tx_cnt++;
1843		JME_DESC_INC(prod, JME_TX_RING_CNT);
1844	}
1845
1846	/* Update producer index. */
1847	sc->jme_cdata.jme_tx_prod = prod;
1848	/*
1849	 * Finally request interrupt and give the first descriptor
1850	 * owenership to hardware.
1851	 */
1852	desc = txd->tx_desc;
1853	desc->flags |= htole32(JME_TD_OWN | JME_TD_INTR);
1854
1855	txd->tx_m = m;
1856	txd->tx_ndesc = nsegs + 1;
1857
1858	/* Sync descriptors. */
1859	bus_dmamap_sync(sc->jme_cdata.jme_tx_tag, txd->tx_dmamap,
1860	    BUS_DMASYNC_PREWRITE);
1861	bus_dmamap_sync(sc->jme_cdata.jme_tx_ring_tag,
1862	    sc->jme_cdata.jme_tx_ring_map,
1863	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1864
1865	return (0);
1866}
1867
1868static void
1869jme_start(struct ifnet *ifp)
1870{
1871        struct jme_softc *sc;
1872
1873	sc = ifp->if_softc;
1874	JME_LOCK(sc);
1875	jme_start_locked(ifp);
1876	JME_UNLOCK(sc);
1877}
1878
1879static void
1880jme_start_locked(struct ifnet *ifp)
1881{
1882        struct jme_softc *sc;
1883        struct mbuf *m_head;
1884	int enq;
1885
1886	sc = ifp->if_softc;
1887
1888	JME_LOCK_ASSERT(sc);
1889
1890	if (sc->jme_cdata.jme_tx_cnt >= JME_TX_DESC_HIWAT)
1891		jme_txeof(sc);
1892
1893	if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
1894	    IFF_DRV_RUNNING || (sc->jme_flags & JME_FLAG_LINK) == 0)
1895		return;
1896
1897	for (enq = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd); ) {
1898		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
1899		if (m_head == NULL)
1900			break;
1901		/*
1902		 * Pack the data into the transmit ring. If we
1903		 * don't have room, set the OACTIVE flag and wait
1904		 * for the NIC to drain the ring.
1905		 */
1906		if (jme_encap(sc, &m_head)) {
1907			if (m_head == NULL)
1908				break;
1909			IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
1910			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1911			break;
1912		}
1913
1914		enq++;
1915		/*
1916		 * If there's a BPF listener, bounce a copy of this frame
1917		 * to him.
1918		 */
1919		ETHER_BPF_MTAP(ifp, m_head);
1920	}
1921
1922	if (enq > 0) {
1923		/*
1924		 * Reading TXCSR takes very long time under heavy load
1925		 * so cache TXCSR value and writes the ORed value with
1926		 * the kick command to the TXCSR. This saves one register
1927		 * access cycle.
1928		 */
1929		CSR_WRITE_4(sc, JME_TXCSR, sc->jme_txcsr | TXCSR_TX_ENB |
1930		    TXCSR_TXQ_N_START(TXCSR_TXQ0));
1931		/* Set a timeout in case the chip goes out to lunch. */
1932		sc->jme_watchdog_timer = JME_TX_TIMEOUT;
1933	}
1934}
1935
1936static void
1937jme_watchdog(struct jme_softc *sc)
1938{
1939	struct ifnet *ifp;
1940
1941	JME_LOCK_ASSERT(sc);
1942
1943	if (sc->jme_watchdog_timer == 0 || --sc->jme_watchdog_timer)
1944		return;
1945
1946	ifp = sc->jme_ifp;
1947	if ((sc->jme_flags & JME_FLAG_LINK) == 0) {
1948		if_printf(sc->jme_ifp, "watchdog timeout (missed link)\n");
1949		if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1950		ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1951		jme_init_locked(sc);
1952		return;
1953	}
1954	jme_txeof(sc);
1955	if (sc->jme_cdata.jme_tx_cnt == 0) {
1956		if_printf(sc->jme_ifp,
1957		    "watchdog timeout (missed Tx interrupts) -- recovering\n");
1958		if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1959			jme_start_locked(ifp);
1960		return;
1961	}
1962
1963	if_printf(sc->jme_ifp, "watchdog timeout\n");
1964	if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1965	ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1966	jme_init_locked(sc);
1967	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1968		jme_start_locked(ifp);
1969}
1970
1971static int
1972jme_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1973{
1974	struct jme_softc *sc;
1975	struct ifreq *ifr;
1976	struct mii_data *mii;
1977	uint32_t reg;
1978	int error, mask;
1979
1980	sc = ifp->if_softc;
1981	ifr = (struct ifreq *)data;
1982	error = 0;
1983	switch (cmd) {
1984	case SIOCSIFMTU:
1985		if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > JME_JUMBO_MTU ||
1986		    ((sc->jme_flags & JME_FLAG_NOJUMBO) != 0 &&
1987		    ifr->ifr_mtu > JME_MAX_MTU)) {
1988			error = EINVAL;
1989			break;
1990		}
1991
1992		if (ifp->if_mtu != ifr->ifr_mtu) {
1993			/*
1994			 * No special configuration is required when interface
1995			 * MTU is changed but availability of TSO/Tx checksum
1996			 * offload should be chcked against new MTU size as
1997			 * FIFO size is just 2K.
1998			 */
1999			JME_LOCK(sc);
2000			if (ifr->ifr_mtu >= JME_TX_FIFO_SIZE) {
2001				ifp->if_capenable &=
2002				    ~(IFCAP_TXCSUM | IFCAP_TSO4);
2003				ifp->if_hwassist &=
2004				    ~(JME_CSUM_FEATURES | CSUM_TSO);
2005				VLAN_CAPABILITIES(ifp);
2006			}
2007			ifp->if_mtu = ifr->ifr_mtu;
2008			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
2009				ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2010				jme_init_locked(sc);
2011			}
2012			JME_UNLOCK(sc);
2013		}
2014		break;
2015	case SIOCSIFFLAGS:
2016		JME_LOCK(sc);
2017		if ((ifp->if_flags & IFF_UP) != 0) {
2018			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
2019				if (((ifp->if_flags ^ sc->jme_if_flags)
2020				    & (IFF_PROMISC | IFF_ALLMULTI)) != 0)
2021					jme_set_filter(sc);
2022			} else {
2023				if ((sc->jme_flags & JME_FLAG_DETACH) == 0)
2024					jme_init_locked(sc);
2025			}
2026		} else {
2027			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
2028				jme_stop(sc);
2029		}
2030		sc->jme_if_flags = ifp->if_flags;
2031		JME_UNLOCK(sc);
2032		break;
2033	case SIOCADDMULTI:
2034	case SIOCDELMULTI:
2035		JME_LOCK(sc);
2036		if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
2037			jme_set_filter(sc);
2038		JME_UNLOCK(sc);
2039		break;
2040	case SIOCSIFMEDIA:
2041	case SIOCGIFMEDIA:
2042		mii = device_get_softc(sc->jme_miibus);
2043		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd);
2044		break;
2045	case SIOCSIFCAP:
2046		JME_LOCK(sc);
2047		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
2048		if ((mask & IFCAP_TXCSUM) != 0 &&
2049		    ifp->if_mtu < JME_TX_FIFO_SIZE) {
2050			if ((IFCAP_TXCSUM & ifp->if_capabilities) != 0) {
2051				ifp->if_capenable ^= IFCAP_TXCSUM;
2052				if ((IFCAP_TXCSUM & ifp->if_capenable) != 0)
2053					ifp->if_hwassist |= JME_CSUM_FEATURES;
2054				else
2055					ifp->if_hwassist &= ~JME_CSUM_FEATURES;
2056			}
2057		}
2058		if ((mask & IFCAP_RXCSUM) != 0 &&
2059		    (IFCAP_RXCSUM & ifp->if_capabilities) != 0) {
2060			ifp->if_capenable ^= IFCAP_RXCSUM;
2061			reg = CSR_READ_4(sc, JME_RXMAC);
2062			reg &= ~RXMAC_CSUM_ENB;
2063			if ((ifp->if_capenable & IFCAP_RXCSUM) != 0)
2064				reg |= RXMAC_CSUM_ENB;
2065			CSR_WRITE_4(sc, JME_RXMAC, reg);
2066		}
2067		if ((mask & IFCAP_TSO4) != 0 &&
2068		    ifp->if_mtu < JME_TX_FIFO_SIZE) {
2069			if ((IFCAP_TSO4 & ifp->if_capabilities) != 0) {
2070				ifp->if_capenable ^= IFCAP_TSO4;
2071				if ((IFCAP_TSO4 & ifp->if_capenable) != 0)
2072					ifp->if_hwassist |= CSUM_TSO;
2073				else
2074					ifp->if_hwassist &= ~CSUM_TSO;
2075			}
2076		}
2077		if ((mask & IFCAP_WOL_MAGIC) != 0 &&
2078		    (IFCAP_WOL_MAGIC & ifp->if_capabilities) != 0)
2079			ifp->if_capenable ^= IFCAP_WOL_MAGIC;
2080		if ((mask & IFCAP_VLAN_HWCSUM) != 0 &&
2081		    (ifp->if_capabilities & IFCAP_VLAN_HWCSUM) != 0)
2082			ifp->if_capenable ^= IFCAP_VLAN_HWCSUM;
2083		if ((mask & IFCAP_VLAN_HWTSO) != 0 &&
2084		    (ifp->if_capabilities & IFCAP_VLAN_HWTSO) != 0)
2085			ifp->if_capenable ^= IFCAP_VLAN_HWTSO;
2086		if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
2087		    (IFCAP_VLAN_HWTAGGING & ifp->if_capabilities) != 0) {
2088			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
2089			jme_set_vlan(sc);
2090		}
2091		JME_UNLOCK(sc);
2092		VLAN_CAPABILITIES(ifp);
2093		break;
2094	default:
2095		error = ether_ioctl(ifp, cmd, data);
2096		break;
2097	}
2098
2099	return (error);
2100}
2101
2102static void
2103jme_mac_config(struct jme_softc *sc)
2104{
2105	struct mii_data *mii;
2106	uint32_t ghc, gpreg, rxmac, txmac, txpause;
2107	uint32_t txclk;
2108
2109	JME_LOCK_ASSERT(sc);
2110
2111	mii = device_get_softc(sc->jme_miibus);
2112
2113	CSR_WRITE_4(sc, JME_GHC, GHC_RESET);
2114	DELAY(10);
2115	CSR_WRITE_4(sc, JME_GHC, 0);
2116	ghc = 0;
2117	txclk = 0;
2118	rxmac = CSR_READ_4(sc, JME_RXMAC);
2119	rxmac &= ~RXMAC_FC_ENB;
2120	txmac = CSR_READ_4(sc, JME_TXMAC);
2121	txmac &= ~(TXMAC_CARRIER_EXT | TXMAC_FRAME_BURST);
2122	txpause = CSR_READ_4(sc, JME_TXPFC);
2123	txpause &= ~TXPFC_PAUSE_ENB;
2124	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
2125		ghc |= GHC_FULL_DUPLEX;
2126		rxmac &= ~RXMAC_COLL_DET_ENB;
2127		txmac &= ~(TXMAC_COLL_ENB | TXMAC_CARRIER_SENSE |
2128		    TXMAC_BACKOFF | TXMAC_CARRIER_EXT |
2129		    TXMAC_FRAME_BURST);
2130		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
2131			txpause |= TXPFC_PAUSE_ENB;
2132		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
2133			rxmac |= RXMAC_FC_ENB;
2134		/* Disable retry transmit timer/retry limit. */
2135		CSR_WRITE_4(sc, JME_TXTRHD, CSR_READ_4(sc, JME_TXTRHD) &
2136		    ~(TXTRHD_RT_PERIOD_ENB | TXTRHD_RT_LIMIT_ENB));
2137	} else {
2138		rxmac |= RXMAC_COLL_DET_ENB;
2139		txmac |= TXMAC_COLL_ENB | TXMAC_CARRIER_SENSE | TXMAC_BACKOFF;
2140		/* Enable retry transmit timer/retry limit. */
2141		CSR_WRITE_4(sc, JME_TXTRHD, CSR_READ_4(sc, JME_TXTRHD) |
2142		    TXTRHD_RT_PERIOD_ENB | TXTRHD_RT_LIMIT_ENB);
2143	}
2144		/* Reprogram Tx/Rx MACs with resolved speed/duplex. */
2145	switch (IFM_SUBTYPE(mii->mii_media_active)) {
2146	case IFM_10_T:
2147		ghc |= GHC_SPEED_10;
2148		txclk |= GHC_TX_OFFLD_CLK_100 | GHC_TX_MAC_CLK_100;
2149		break;
2150	case IFM_100_TX:
2151		ghc |= GHC_SPEED_100;
2152		txclk |= GHC_TX_OFFLD_CLK_100 | GHC_TX_MAC_CLK_100;
2153		break;
2154	case IFM_1000_T:
2155		if ((sc->jme_flags & JME_FLAG_FASTETH) != 0)
2156			break;
2157		ghc |= GHC_SPEED_1000;
2158		txclk |= GHC_TX_OFFLD_CLK_1000 | GHC_TX_MAC_CLK_1000;
2159		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) == 0)
2160			txmac |= TXMAC_CARRIER_EXT | TXMAC_FRAME_BURST;
2161		break;
2162	default:
2163		break;
2164	}
2165	if (sc->jme_rev == DEVICEID_JMC250 &&
2166	    sc->jme_chip_rev == DEVICEREVID_JMC250_A2) {
2167		/*
2168		 * Workaround occasional packet loss issue of JMC250 A2
2169		 * when it runs on half-duplex media.
2170		 */
2171		gpreg = CSR_READ_4(sc, JME_GPREG1);
2172		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0)
2173			gpreg &= ~GPREG1_HDPX_FIX;
2174		else
2175			gpreg |= GPREG1_HDPX_FIX;
2176		CSR_WRITE_4(sc, JME_GPREG1, gpreg);
2177		/* Workaround CRC errors at 100Mbps on JMC250 A2. */
2178		if (IFM_SUBTYPE(mii->mii_media_active) == IFM_100_TX) {
2179			/* Extend interface FIFO depth. */
2180			jme_miibus_writereg(sc->jme_dev, sc->jme_phyaddr,
2181			    0x1B, 0x0000);
2182		} else {
2183			/* Select default interface FIFO depth. */
2184			jme_miibus_writereg(sc->jme_dev, sc->jme_phyaddr,
2185			    0x1B, 0x0004);
2186		}
2187	}
2188	if ((sc->jme_flags & JME_FLAG_TXCLK) != 0)
2189		ghc |= txclk;
2190	CSR_WRITE_4(sc, JME_GHC, ghc);
2191	CSR_WRITE_4(sc, JME_RXMAC, rxmac);
2192	CSR_WRITE_4(sc, JME_TXMAC, txmac);
2193	CSR_WRITE_4(sc, JME_TXPFC, txpause);
2194}
2195
2196static void
2197jme_link_task(void *arg, int pending)
2198{
2199	struct jme_softc *sc;
2200	struct mii_data *mii;
2201	struct ifnet *ifp;
2202	struct jme_txdesc *txd;
2203	bus_addr_t paddr;
2204	int i;
2205
2206	sc = (struct jme_softc *)arg;
2207
2208	JME_LOCK(sc);
2209	mii = device_get_softc(sc->jme_miibus);
2210	ifp = sc->jme_ifp;
2211	if (mii == NULL || ifp == NULL ||
2212	    (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
2213		JME_UNLOCK(sc);
2214		return;
2215	}
2216
2217	sc->jme_flags &= ~JME_FLAG_LINK;
2218	if ((mii->mii_media_status & IFM_AVALID) != 0) {
2219		switch (IFM_SUBTYPE(mii->mii_media_active)) {
2220		case IFM_10_T:
2221		case IFM_100_TX:
2222			sc->jme_flags |= JME_FLAG_LINK;
2223			break;
2224		case IFM_1000_T:
2225			if ((sc->jme_flags & JME_FLAG_FASTETH) != 0)
2226				break;
2227			sc->jme_flags |= JME_FLAG_LINK;
2228			break;
2229		default:
2230			break;
2231		}
2232	}
2233
2234	/*
2235	 * Disabling Rx/Tx MACs have a side-effect of resetting
2236	 * JME_TXNDA/JME_RXNDA register to the first address of
2237	 * Tx/Rx descriptor address. So driver should reset its
2238	 * internal procucer/consumer pointer and reclaim any
2239	 * allocated resources. Note, just saving the value of
2240	 * JME_TXNDA and JME_RXNDA registers before stopping MAC
2241	 * and restoring JME_TXNDA/JME_RXNDA register is not
2242	 * sufficient to make sure correct MAC state because
2243	 * stopping MAC operation can take a while and hardware
2244	 * might have updated JME_TXNDA/JME_RXNDA registers
2245	 * during the stop operation.
2246	 */
2247	/* Block execution of task. */
2248	taskqueue_block(sc->jme_tq);
2249	/* Disable interrupts and stop driver. */
2250	CSR_WRITE_4(sc, JME_INTR_MASK_CLR, JME_INTRS);
2251	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
2252	callout_stop(&sc->jme_tick_ch);
2253	sc->jme_watchdog_timer = 0;
2254
2255	/* Stop receiver/transmitter. */
2256	jme_stop_rx(sc);
2257	jme_stop_tx(sc);
2258
2259	/* XXX Drain all queued tasks. */
2260	JME_UNLOCK(sc);
2261	taskqueue_drain(sc->jme_tq, &sc->jme_int_task);
2262	JME_LOCK(sc);
2263
2264	if (sc->jme_cdata.jme_rxhead != NULL)
2265		m_freem(sc->jme_cdata.jme_rxhead);
2266	JME_RXCHAIN_RESET(sc);
2267	jme_txeof(sc);
2268	if (sc->jme_cdata.jme_tx_cnt != 0) {
2269		/* Remove queued packets for transmit. */
2270		for (i = 0; i < JME_TX_RING_CNT; i++) {
2271			txd = &sc->jme_cdata.jme_txdesc[i];
2272			if (txd->tx_m != NULL) {
2273				bus_dmamap_sync(
2274				    sc->jme_cdata.jme_tx_tag,
2275				    txd->tx_dmamap,
2276				    BUS_DMASYNC_POSTWRITE);
2277				bus_dmamap_unload(
2278				    sc->jme_cdata.jme_tx_tag,
2279				    txd->tx_dmamap);
2280				m_freem(txd->tx_m);
2281				txd->tx_m = NULL;
2282				txd->tx_ndesc = 0;
2283				if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
2284			}
2285		}
2286	}
2287
2288	/*
2289	 * Reuse configured Rx descriptors and reset
2290	 * producer/consumer index.
2291	 */
2292	sc->jme_cdata.jme_rx_cons = 0;
2293	sc->jme_morework = 0;
2294	jme_init_tx_ring(sc);
2295	/* Initialize shadow status block. */
2296	jme_init_ssb(sc);
2297
2298	/* Program MAC with resolved speed/duplex/flow-control. */
2299	if ((sc->jme_flags & JME_FLAG_LINK) != 0) {
2300		jme_mac_config(sc);
2301		jme_stats_clear(sc);
2302
2303		CSR_WRITE_4(sc, JME_RXCSR, sc->jme_rxcsr);
2304		CSR_WRITE_4(sc, JME_TXCSR, sc->jme_txcsr);
2305
2306		/* Set Tx ring address to the hardware. */
2307		paddr = JME_TX_RING_ADDR(sc, 0);
2308		CSR_WRITE_4(sc, JME_TXDBA_HI, JME_ADDR_HI(paddr));
2309		CSR_WRITE_4(sc, JME_TXDBA_LO, JME_ADDR_LO(paddr));
2310
2311		/* Set Rx ring address to the hardware. */
2312		paddr = JME_RX_RING_ADDR(sc, 0);
2313		CSR_WRITE_4(sc, JME_RXDBA_HI, JME_ADDR_HI(paddr));
2314		CSR_WRITE_4(sc, JME_RXDBA_LO, JME_ADDR_LO(paddr));
2315
2316		/* Restart receiver/transmitter. */
2317		CSR_WRITE_4(sc, JME_RXCSR, sc->jme_rxcsr | RXCSR_RX_ENB |
2318		    RXCSR_RXQ_START);
2319		CSR_WRITE_4(sc, JME_TXCSR, sc->jme_txcsr | TXCSR_TX_ENB);
2320		/* Lastly enable TX/RX clock. */
2321		if ((sc->jme_flags & JME_FLAG_TXCLK) != 0)
2322			CSR_WRITE_4(sc, JME_GHC,
2323			    CSR_READ_4(sc, JME_GHC) & ~GHC_TX_MAC_CLK_DIS);
2324		if ((sc->jme_flags & JME_FLAG_RXCLK) != 0)
2325			CSR_WRITE_4(sc, JME_GPREG1,
2326			    CSR_READ_4(sc, JME_GPREG1) & ~GPREG1_RX_MAC_CLK_DIS);
2327	}
2328
2329	ifp->if_drv_flags |= IFF_DRV_RUNNING;
2330	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2331	callout_reset(&sc->jme_tick_ch, hz, jme_tick, sc);
2332	/* Unblock execution of task. */
2333	taskqueue_unblock(sc->jme_tq);
2334	/* Reenable interrupts. */
2335	CSR_WRITE_4(sc, JME_INTR_MASK_SET, JME_INTRS);
2336
2337	JME_UNLOCK(sc);
2338}
2339
2340static int
2341jme_intr(void *arg)
2342{
2343	struct jme_softc *sc;
2344	uint32_t status;
2345
2346	sc = (struct jme_softc *)arg;
2347
2348	status = CSR_READ_4(sc, JME_INTR_REQ_STATUS);
2349	if (status == 0 || status == 0xFFFFFFFF)
2350		return (FILTER_STRAY);
2351	/* Disable interrupts. */
2352	CSR_WRITE_4(sc, JME_INTR_MASK_CLR, JME_INTRS);
2353	taskqueue_enqueue(sc->jme_tq, &sc->jme_int_task);
2354
2355	return (FILTER_HANDLED);
2356}
2357
2358static void
2359jme_int_task(void *arg, int pending)
2360{
2361	struct jme_softc *sc;
2362	struct ifnet *ifp;
2363	uint32_t status;
2364	int more;
2365
2366	sc = (struct jme_softc *)arg;
2367	ifp = sc->jme_ifp;
2368
2369	JME_LOCK(sc);
2370	status = CSR_READ_4(sc, JME_INTR_STATUS);
2371	if (sc->jme_morework != 0) {
2372		sc->jme_morework = 0;
2373		status |= INTR_RXQ_COAL | INTR_RXQ_COAL_TO;
2374	}
2375	if ((status & JME_INTRS) == 0 || status == 0xFFFFFFFF)
2376		goto done;
2377	/* Reset PCC counter/timer and Ack interrupts. */
2378	status &= ~(INTR_TXQ_COMP | INTR_RXQ_COMP);
2379	if ((status & (INTR_TXQ_COAL | INTR_TXQ_COAL_TO)) != 0)
2380		status |= INTR_TXQ_COAL | INTR_TXQ_COAL_TO | INTR_TXQ_COMP;
2381	if ((status & (INTR_RXQ_COAL | INTR_RXQ_COAL_TO)) != 0)
2382		status |= INTR_RXQ_COAL | INTR_RXQ_COAL_TO | INTR_RXQ_COMP;
2383	CSR_WRITE_4(sc, JME_INTR_STATUS, status);
2384	more = 0;
2385	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
2386		if ((status & (INTR_RXQ_COAL | INTR_RXQ_COAL_TO)) != 0) {
2387			more = jme_rxintr(sc, sc->jme_process_limit);
2388			if (more != 0)
2389				sc->jme_morework = 1;
2390		}
2391		if ((status & INTR_RXQ_DESC_EMPTY) != 0) {
2392			/*
2393			 * Notify hardware availability of new Rx
2394			 * buffers.
2395			 * Reading RXCSR takes very long time under
2396			 * heavy load so cache RXCSR value and writes
2397			 * the ORed value with the kick command to
2398			 * the RXCSR. This saves one register access
2399			 * cycle.
2400			 */
2401			CSR_WRITE_4(sc, JME_RXCSR, sc->jme_rxcsr |
2402			    RXCSR_RX_ENB | RXCSR_RXQ_START);
2403		}
2404		if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
2405			jme_start_locked(ifp);
2406	}
2407
2408	if (more != 0 || (CSR_READ_4(sc, JME_INTR_STATUS) & JME_INTRS) != 0) {
2409		taskqueue_enqueue(sc->jme_tq, &sc->jme_int_task);
2410		JME_UNLOCK(sc);
2411		return;
2412	}
2413done:
2414	JME_UNLOCK(sc);
2415
2416	/* Reenable interrupts. */
2417	CSR_WRITE_4(sc, JME_INTR_MASK_SET, JME_INTRS);
2418}
2419
2420static void
2421jme_txeof(struct jme_softc *sc)
2422{
2423	struct ifnet *ifp;
2424	struct jme_txdesc *txd;
2425	uint32_t status;
2426	int cons, nsegs;
2427
2428	JME_LOCK_ASSERT(sc);
2429
2430	ifp = sc->jme_ifp;
2431
2432	cons = sc->jme_cdata.jme_tx_cons;
2433	if (cons == sc->jme_cdata.jme_tx_prod)
2434		return;
2435
2436	bus_dmamap_sync(sc->jme_cdata.jme_tx_ring_tag,
2437	    sc->jme_cdata.jme_tx_ring_map,
2438	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2439
2440	/*
2441	 * Go through our Tx list and free mbufs for those
2442	 * frames which have been transmitted.
2443	 */
2444	for (; cons != sc->jme_cdata.jme_tx_prod;) {
2445		txd = &sc->jme_cdata.jme_txdesc[cons];
2446		status = le32toh(txd->tx_desc->flags);
2447		if ((status & JME_TD_OWN) == JME_TD_OWN)
2448			break;
2449
2450		if ((status & (JME_TD_TMOUT | JME_TD_RETRY_EXP)) != 0)
2451			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
2452		else {
2453			if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
2454			if ((status & JME_TD_COLLISION) != 0)
2455				if_inc_counter(ifp, IFCOUNTER_COLLISIONS,
2456				    le32toh(txd->tx_desc->buflen) &
2457				    JME_TD_BUF_LEN_MASK);
2458		}
2459		/*
2460		 * Only the first descriptor of multi-descriptor
2461		 * transmission is updated so driver have to skip entire
2462		 * chained buffers for the transmiited frame. In other
2463		 * words, JME_TD_OWN bit is valid only at the first
2464		 * descriptor of a multi-descriptor transmission.
2465		 */
2466		for (nsegs = 0; nsegs < txd->tx_ndesc; nsegs++) {
2467			sc->jme_rdata.jme_tx_ring[cons].flags = 0;
2468			JME_DESC_INC(cons, JME_TX_RING_CNT);
2469		}
2470
2471		/* Reclaim transferred mbufs. */
2472		bus_dmamap_sync(sc->jme_cdata.jme_tx_tag, txd->tx_dmamap,
2473		    BUS_DMASYNC_POSTWRITE);
2474		bus_dmamap_unload(sc->jme_cdata.jme_tx_tag, txd->tx_dmamap);
2475
2476		KASSERT(txd->tx_m != NULL,
2477		    ("%s: freeing NULL mbuf!\n", __func__));
2478		m_freem(txd->tx_m);
2479		txd->tx_m = NULL;
2480		sc->jme_cdata.jme_tx_cnt -= txd->tx_ndesc;
2481		KASSERT(sc->jme_cdata.jme_tx_cnt >= 0,
2482		    ("%s: Active Tx desc counter was garbled\n", __func__));
2483		txd->tx_ndesc = 0;
2484		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2485	}
2486	sc->jme_cdata.jme_tx_cons = cons;
2487	/* Unarm watchog timer when there is no pending descriptors in queue. */
2488	if (sc->jme_cdata.jme_tx_cnt == 0)
2489		sc->jme_watchdog_timer = 0;
2490
2491	bus_dmamap_sync(sc->jme_cdata.jme_tx_ring_tag,
2492	    sc->jme_cdata.jme_tx_ring_map,
2493	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2494}
2495
2496static __inline void
2497jme_discard_rxbuf(struct jme_softc *sc, int cons)
2498{
2499	struct jme_desc *desc;
2500
2501	desc = &sc->jme_rdata.jme_rx_ring[cons];
2502	desc->flags = htole32(JME_RD_OWN | JME_RD_INTR | JME_RD_64BIT);
2503	desc->buflen = htole32(MCLBYTES);
2504}
2505
2506/* Receive a frame. */
2507static void
2508jme_rxeof(struct jme_softc *sc)
2509{
2510	struct ifnet *ifp;
2511	struct jme_desc *desc;
2512	struct jme_rxdesc *rxd;
2513	struct mbuf *mp, *m;
2514	uint32_t flags, status;
2515	int cons, count, nsegs;
2516
2517	JME_LOCK_ASSERT(sc);
2518
2519	ifp = sc->jme_ifp;
2520
2521	cons = sc->jme_cdata.jme_rx_cons;
2522	desc = &sc->jme_rdata.jme_rx_ring[cons];
2523	flags = le32toh(desc->flags);
2524	status = le32toh(desc->buflen);
2525	nsegs = JME_RX_NSEGS(status);
2526	sc->jme_cdata.jme_rxlen = JME_RX_BYTES(status) - JME_RX_PAD_BYTES;
2527	if ((status & JME_RX_ERR_STAT) != 0) {
2528		if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
2529		jme_discard_rxbuf(sc, sc->jme_cdata.jme_rx_cons);
2530#ifdef JME_SHOW_ERRORS
2531		device_printf(sc->jme_dev, "%s : receive error = 0x%b\n",
2532		    __func__, JME_RX_ERR(status), JME_RX_ERR_BITS);
2533#endif
2534		sc->jme_cdata.jme_rx_cons += nsegs;
2535		sc->jme_cdata.jme_rx_cons %= JME_RX_RING_CNT;
2536		return;
2537	}
2538
2539	for (count = 0; count < nsegs; count++,
2540	    JME_DESC_INC(cons, JME_RX_RING_CNT)) {
2541		rxd = &sc->jme_cdata.jme_rxdesc[cons];
2542		mp = rxd->rx_m;
2543		/* Add a new receive buffer to the ring. */
2544		if (jme_newbuf(sc, rxd) != 0) {
2545			if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
2546			/* Reuse buffer. */
2547			for (; count < nsegs; count++) {
2548				jme_discard_rxbuf(sc, cons);
2549				JME_DESC_INC(cons, JME_RX_RING_CNT);
2550			}
2551			if (sc->jme_cdata.jme_rxhead != NULL) {
2552				m_freem(sc->jme_cdata.jme_rxhead);
2553				JME_RXCHAIN_RESET(sc);
2554			}
2555			break;
2556		}
2557
2558		/*
2559		 * Assume we've received a full sized frame.
2560		 * Actual size is fixed when we encounter the end of
2561		 * multi-segmented frame.
2562		 */
2563		mp->m_len = MCLBYTES;
2564
2565		/* Chain received mbufs. */
2566		if (sc->jme_cdata.jme_rxhead == NULL) {
2567			sc->jme_cdata.jme_rxhead = mp;
2568			sc->jme_cdata.jme_rxtail = mp;
2569		} else {
2570			/*
2571			 * Receive processor can receive a maximum frame
2572			 * size of 65535 bytes.
2573			 */
2574			mp->m_flags &= ~M_PKTHDR;
2575			sc->jme_cdata.jme_rxtail->m_next = mp;
2576			sc->jme_cdata.jme_rxtail = mp;
2577		}
2578
2579		if (count == nsegs - 1) {
2580			/* Last desc. for this frame. */
2581			m = sc->jme_cdata.jme_rxhead;
2582			m->m_flags |= M_PKTHDR;
2583			m->m_pkthdr.len = sc->jme_cdata.jme_rxlen;
2584			if (nsegs > 1) {
2585				/* Set first mbuf size. */
2586				m->m_len = MCLBYTES - JME_RX_PAD_BYTES;
2587				/* Set last mbuf size. */
2588				mp->m_len = sc->jme_cdata.jme_rxlen -
2589				    ((MCLBYTES - JME_RX_PAD_BYTES) +
2590				    (MCLBYTES * (nsegs - 2)));
2591			} else
2592				m->m_len = sc->jme_cdata.jme_rxlen;
2593			m->m_pkthdr.rcvif = ifp;
2594
2595			/*
2596			 * Account for 10bytes auto padding which is used
2597			 * to align IP header on 32bit boundary. Also note,
2598			 * CRC bytes is automatically removed by the
2599			 * hardware.
2600			 */
2601			m->m_data += JME_RX_PAD_BYTES;
2602
2603			/* Set checksum information. */
2604			if ((ifp->if_capenable & IFCAP_RXCSUM) != 0 &&
2605			    (flags & JME_RD_IPV4) != 0) {
2606				m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
2607				if ((flags & JME_RD_IPCSUM) != 0)
2608					m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
2609				if (((flags & JME_RD_MORE_FRAG) == 0) &&
2610				    ((flags & (JME_RD_TCP | JME_RD_TCPCSUM)) ==
2611				    (JME_RD_TCP | JME_RD_TCPCSUM) ||
2612				    (flags & (JME_RD_UDP | JME_RD_UDPCSUM)) ==
2613				    (JME_RD_UDP | JME_RD_UDPCSUM))) {
2614					m->m_pkthdr.csum_flags |=
2615					    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
2616					m->m_pkthdr.csum_data = 0xffff;
2617				}
2618			}
2619
2620			/* Check for VLAN tagged packets. */
2621			if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0 &&
2622			    (flags & JME_RD_VLAN_TAG) != 0) {
2623				m->m_pkthdr.ether_vtag =
2624				    flags & JME_RD_VLAN_MASK;
2625				m->m_flags |= M_VLANTAG;
2626			}
2627
2628			if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
2629			/* Pass it on. */
2630			JME_UNLOCK(sc);
2631			(*ifp->if_input)(ifp, m);
2632			JME_LOCK(sc);
2633
2634			/* Reset mbuf chains. */
2635			JME_RXCHAIN_RESET(sc);
2636		}
2637	}
2638
2639	sc->jme_cdata.jme_rx_cons += nsegs;
2640	sc->jme_cdata.jme_rx_cons %= JME_RX_RING_CNT;
2641}
2642
2643static int
2644jme_rxintr(struct jme_softc *sc, int count)
2645{
2646	struct jme_desc *desc;
2647	int nsegs, prog, pktlen;
2648
2649	bus_dmamap_sync(sc->jme_cdata.jme_rx_ring_tag,
2650	    sc->jme_cdata.jme_rx_ring_map,
2651	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2652
2653	for (prog = 0; count > 0; prog++) {
2654		desc = &sc->jme_rdata.jme_rx_ring[sc->jme_cdata.jme_rx_cons];
2655		if ((le32toh(desc->flags) & JME_RD_OWN) == JME_RD_OWN)
2656			break;
2657		if ((le32toh(desc->buflen) & JME_RD_VALID) == 0)
2658			break;
2659		nsegs = JME_RX_NSEGS(le32toh(desc->buflen));
2660		/*
2661		 * Check number of segments against received bytes.
2662		 * Non-matching value would indicate that hardware
2663		 * is still trying to update Rx descriptors. I'm not
2664		 * sure whether this check is needed.
2665		 */
2666		pktlen = JME_RX_BYTES(le32toh(desc->buflen));
2667		if (nsegs != howmany(pktlen, MCLBYTES))
2668			break;
2669		prog++;
2670		/* Received a frame. */
2671		jme_rxeof(sc);
2672		count -= nsegs;
2673	}
2674
2675	if (prog > 0)
2676		bus_dmamap_sync(sc->jme_cdata.jme_rx_ring_tag,
2677		    sc->jme_cdata.jme_rx_ring_map,
2678		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2679
2680	return (count > 0 ? 0 : EAGAIN);
2681}
2682
2683static void
2684jme_tick(void *arg)
2685{
2686	struct jme_softc *sc;
2687	struct mii_data *mii;
2688
2689	sc = (struct jme_softc *)arg;
2690
2691	JME_LOCK_ASSERT(sc);
2692
2693	mii = device_get_softc(sc->jme_miibus);
2694	mii_tick(mii);
2695	/*
2696	 * Reclaim Tx buffers that have been completed. It's not
2697	 * needed here but it would release allocated mbuf chains
2698	 * faster and limit the maximum delay to a hz.
2699	 */
2700	jme_txeof(sc);
2701	jme_stats_update(sc);
2702	jme_watchdog(sc);
2703	callout_reset(&sc->jme_tick_ch, hz, jme_tick, sc);
2704}
2705
2706static void
2707jme_reset(struct jme_softc *sc)
2708{
2709	uint32_t ghc, gpreg;
2710
2711	/* Stop receiver, transmitter. */
2712	jme_stop_rx(sc);
2713	jme_stop_tx(sc);
2714
2715	/* Reset controller. */
2716	CSR_WRITE_4(sc, JME_GHC, GHC_RESET);
2717	CSR_READ_4(sc, JME_GHC);
2718	DELAY(10);
2719	/*
2720	 * Workaround Rx FIFO overruns seen under certain conditions.
2721	 * Explicitly synchorize TX/RX clock.  TX/RX clock should be
2722	 * enabled only after enabling TX/RX MACs.
2723	 */
2724	if ((sc->jme_flags & (JME_FLAG_TXCLK | JME_FLAG_RXCLK)) != 0) {
2725		/* Disable TX clock. */
2726		CSR_WRITE_4(sc, JME_GHC, GHC_RESET | GHC_TX_MAC_CLK_DIS);
2727		/* Disable RX clock. */
2728		gpreg = CSR_READ_4(sc, JME_GPREG1);
2729		CSR_WRITE_4(sc, JME_GPREG1, gpreg | GPREG1_RX_MAC_CLK_DIS);
2730		gpreg = CSR_READ_4(sc, JME_GPREG1);
2731		/* De-assert RESET but still disable TX clock. */
2732		CSR_WRITE_4(sc, JME_GHC, GHC_TX_MAC_CLK_DIS);
2733		ghc = CSR_READ_4(sc, JME_GHC);
2734
2735		/* Enable TX clock. */
2736		CSR_WRITE_4(sc, JME_GHC, ghc & ~GHC_TX_MAC_CLK_DIS);
2737		/* Enable RX clock. */
2738		CSR_WRITE_4(sc, JME_GPREG1, gpreg & ~GPREG1_RX_MAC_CLK_DIS);
2739		CSR_READ_4(sc, JME_GPREG1);
2740
2741		/* Disable TX/RX clock again. */
2742		CSR_WRITE_4(sc, JME_GHC, GHC_TX_MAC_CLK_DIS);
2743		CSR_WRITE_4(sc, JME_GPREG1, gpreg | GPREG1_RX_MAC_CLK_DIS);
2744	} else
2745		CSR_WRITE_4(sc, JME_GHC, 0);
2746	CSR_READ_4(sc, JME_GHC);
2747	DELAY(10);
2748}
2749
2750static void
2751jme_init(void *xsc)
2752{
2753	struct jme_softc *sc;
2754
2755	sc = (struct jme_softc *)xsc;
2756	JME_LOCK(sc);
2757	jme_init_locked(sc);
2758	JME_UNLOCK(sc);
2759}
2760
2761static void
2762jme_init_locked(struct jme_softc *sc)
2763{
2764	struct ifnet *ifp;
2765	struct mii_data *mii;
2766	bus_addr_t paddr;
2767	uint32_t reg;
2768	int error;
2769
2770	JME_LOCK_ASSERT(sc);
2771
2772	ifp = sc->jme_ifp;
2773	mii = device_get_softc(sc->jme_miibus);
2774
2775	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
2776		return;
2777	/*
2778	 * Cancel any pending I/O.
2779	 */
2780	jme_stop(sc);
2781
2782	/*
2783	 * Reset the chip to a known state.
2784	 */
2785	jme_reset(sc);
2786
2787	/* Init descriptors. */
2788	error = jme_init_rx_ring(sc);
2789        if (error != 0) {
2790                device_printf(sc->jme_dev,
2791                    "%s: initialization failed: no memory for Rx buffers.\n",
2792		    __func__);
2793                jme_stop(sc);
2794		return;
2795        }
2796	jme_init_tx_ring(sc);
2797	/* Initialize shadow status block. */
2798	jme_init_ssb(sc);
2799
2800	/* Reprogram the station address. */
2801	jme_set_macaddr(sc, IF_LLADDR(sc->jme_ifp));
2802
2803	/*
2804	 * Configure Tx queue.
2805	 *  Tx priority queue weight value : 0
2806	 *  Tx FIFO threshold for processing next packet : 16QW
2807	 *  Maximum Tx DMA length : 512
2808	 *  Allow Tx DMA burst.
2809	 */
2810	sc->jme_txcsr = TXCSR_TXQ_N_SEL(TXCSR_TXQ0);
2811	sc->jme_txcsr |= TXCSR_TXQ_WEIGHT(TXCSR_TXQ_WEIGHT_MIN);
2812	sc->jme_txcsr |= TXCSR_FIFO_THRESH_16QW;
2813	sc->jme_txcsr |= sc->jme_tx_dma_size;
2814	sc->jme_txcsr |= TXCSR_DMA_BURST;
2815	CSR_WRITE_4(sc, JME_TXCSR, sc->jme_txcsr);
2816
2817	/* Set Tx descriptor counter. */
2818	CSR_WRITE_4(sc, JME_TXQDC, JME_TX_RING_CNT);
2819
2820	/* Set Tx ring address to the hardware. */
2821	paddr = JME_TX_RING_ADDR(sc, 0);
2822	CSR_WRITE_4(sc, JME_TXDBA_HI, JME_ADDR_HI(paddr));
2823	CSR_WRITE_4(sc, JME_TXDBA_LO, JME_ADDR_LO(paddr));
2824
2825	/* Configure TxMAC parameters. */
2826	reg = TXMAC_IFG1_DEFAULT | TXMAC_IFG2_DEFAULT | TXMAC_IFG_ENB;
2827	reg |= TXMAC_THRESH_1_PKT;
2828	reg |= TXMAC_CRC_ENB | TXMAC_PAD_ENB;
2829	CSR_WRITE_4(sc, JME_TXMAC, reg);
2830
2831	/*
2832	 * Configure Rx queue.
2833	 *  FIFO full threshold for transmitting Tx pause packet : 128T
2834	 *  FIFO threshold for processing next packet : 128QW
2835	 *  Rx queue 0 select
2836	 *  Max Rx DMA length : 128
2837	 *  Rx descriptor retry : 32
2838	 *  Rx descriptor retry time gap : 256ns
2839	 *  Don't receive runt/bad frame.
2840	 */
2841	sc->jme_rxcsr = RXCSR_FIFO_FTHRESH_128T;
2842	/*
2843	 * Since Rx FIFO size is 4K bytes, receiving frames larger
2844	 * than 4K bytes will suffer from Rx FIFO overruns. So
2845	 * decrease FIFO threshold to reduce the FIFO overruns for
2846	 * frames larger than 4000 bytes.
2847	 * For best performance of standard MTU sized frames use
2848	 * maximum allowable FIFO threshold, 128QW. Note these do
2849	 * not hold on chip full mask verion >=2. For these
2850	 * controllers 64QW and 128QW are not valid value.
2851	 */
2852	if (CHIPMODE_REVFM(sc->jme_chip_rev) >= 2)
2853		sc->jme_rxcsr |= RXCSR_FIFO_THRESH_16QW;
2854	else {
2855		if ((ifp->if_mtu + ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN +
2856		    ETHER_CRC_LEN) > JME_RX_FIFO_SIZE)
2857			sc->jme_rxcsr |= RXCSR_FIFO_THRESH_16QW;
2858		else
2859			sc->jme_rxcsr |= RXCSR_FIFO_THRESH_128QW;
2860	}
2861	sc->jme_rxcsr |= sc->jme_rx_dma_size | RXCSR_RXQ_N_SEL(RXCSR_RXQ0);
2862	sc->jme_rxcsr |= RXCSR_DESC_RT_CNT(RXCSR_DESC_RT_CNT_DEFAULT);
2863	sc->jme_rxcsr |= RXCSR_DESC_RT_GAP_256 & RXCSR_DESC_RT_GAP_MASK;
2864	CSR_WRITE_4(sc, JME_RXCSR, sc->jme_rxcsr);
2865
2866	/* Set Rx descriptor counter. */
2867	CSR_WRITE_4(sc, JME_RXQDC, JME_RX_RING_CNT);
2868
2869	/* Set Rx ring address to the hardware. */
2870	paddr = JME_RX_RING_ADDR(sc, 0);
2871	CSR_WRITE_4(sc, JME_RXDBA_HI, JME_ADDR_HI(paddr));
2872	CSR_WRITE_4(sc, JME_RXDBA_LO, JME_ADDR_LO(paddr));
2873
2874	/* Clear receive filter. */
2875	CSR_WRITE_4(sc, JME_RXMAC, 0);
2876	/* Set up the receive filter. */
2877	jme_set_filter(sc);
2878	jme_set_vlan(sc);
2879
2880	/*
2881	 * Disable all WOL bits as WOL can interfere normal Rx
2882	 * operation. Also clear WOL detection status bits.
2883	 */
2884	reg = CSR_READ_4(sc, JME_PMCS);
2885	reg &= ~PMCS_WOL_ENB_MASK;
2886	CSR_WRITE_4(sc, JME_PMCS, reg);
2887
2888	reg = CSR_READ_4(sc, JME_RXMAC);
2889	/*
2890	 * Pad 10bytes right before received frame. This will greatly
2891	 * help Rx performance on strict-alignment architectures as
2892	 * it does not need to copy the frame to align the payload.
2893	 */
2894	reg |= RXMAC_PAD_10BYTES;
2895	if ((ifp->if_capenable & IFCAP_RXCSUM) != 0)
2896		reg |= RXMAC_CSUM_ENB;
2897	CSR_WRITE_4(sc, JME_RXMAC, reg);
2898
2899	/* Configure general purpose reg0 */
2900	reg = CSR_READ_4(sc, JME_GPREG0);
2901	reg &= ~GPREG0_PCC_UNIT_MASK;
2902	/* Set PCC timer resolution to micro-seconds unit. */
2903	reg |= GPREG0_PCC_UNIT_US;
2904	/*
2905	 * Disable all shadow register posting as we have to read
2906	 * JME_INTR_STATUS register in jme_int_task. Also it seems
2907	 * that it's hard to synchronize interrupt status between
2908	 * hardware and software with shadow posting due to
2909	 * requirements of bus_dmamap_sync(9).
2910	 */
2911	reg |= GPREG0_SH_POST_DW7_DIS | GPREG0_SH_POST_DW6_DIS |
2912	    GPREG0_SH_POST_DW5_DIS | GPREG0_SH_POST_DW4_DIS |
2913	    GPREG0_SH_POST_DW3_DIS | GPREG0_SH_POST_DW2_DIS |
2914	    GPREG0_SH_POST_DW1_DIS | GPREG0_SH_POST_DW0_DIS;
2915	/* Disable posting of DW0. */
2916	reg &= ~GPREG0_POST_DW0_ENB;
2917	/* Clear PME message. */
2918	reg &= ~GPREG0_PME_ENB;
2919	/* Set PHY address. */
2920	reg &= ~GPREG0_PHY_ADDR_MASK;
2921	reg |= sc->jme_phyaddr;
2922	CSR_WRITE_4(sc, JME_GPREG0, reg);
2923
2924	/* Configure Tx queue 0 packet completion coalescing. */
2925	reg = (sc->jme_tx_coal_to << PCCTX_COAL_TO_SHIFT) &
2926	    PCCTX_COAL_TO_MASK;
2927	reg |= (sc->jme_tx_coal_pkt << PCCTX_COAL_PKT_SHIFT) &
2928	    PCCTX_COAL_PKT_MASK;
2929	reg |= PCCTX_COAL_TXQ0;
2930	CSR_WRITE_4(sc, JME_PCCTX, reg);
2931
2932	/* Configure Rx queue 0 packet completion coalescing. */
2933	reg = (sc->jme_rx_coal_to << PCCRX_COAL_TO_SHIFT) &
2934	    PCCRX_COAL_TO_MASK;
2935	reg |= (sc->jme_rx_coal_pkt << PCCRX_COAL_PKT_SHIFT) &
2936	    PCCRX_COAL_PKT_MASK;
2937	CSR_WRITE_4(sc, JME_PCCRX0, reg);
2938
2939	/*
2940	 * Configure PCD(Packet Completion Deferring).  It seems PCD
2941	 * generates an interrupt when the time interval between two
2942	 * back-to-back incoming/outgoing packet is long enough for
2943	 * it to reach its timer value 0. The arrival of new packets
2944	 * after timer has started causes the PCD timer to restart.
2945	 * Unfortunately, it's not clear how PCD is useful at this
2946	 * moment, so just use the same of PCC parameters.
2947	 */
2948	if ((sc->jme_flags & JME_FLAG_PCCPCD) != 0) {
2949		sc->jme_rx_pcd_to = sc->jme_rx_coal_to;
2950		if (sc->jme_rx_coal_to > PCDRX_TO_MAX)
2951			sc->jme_rx_pcd_to = PCDRX_TO_MAX;
2952		sc->jme_tx_pcd_to = sc->jme_tx_coal_to;
2953		if (sc->jme_tx_coal_to > PCDTX_TO_MAX)
2954			sc->jme_tx_pcd_to = PCDTX_TO_MAX;
2955		reg = sc->jme_rx_pcd_to << PCDRX0_TO_THROTTLE_SHIFT;
2956		reg |= sc->jme_rx_pcd_to << PCDRX0_TO_SHIFT;
2957		CSR_WRITE_4(sc, PCDRX_REG(0), reg);
2958		reg = sc->jme_tx_pcd_to << PCDTX_TO_THROTTLE_SHIFT;
2959		reg |= sc->jme_tx_pcd_to << PCDTX_TO_SHIFT;
2960		CSR_WRITE_4(sc, JME_PCDTX, reg);
2961	}
2962
2963	/* Configure shadow status block but don't enable posting. */
2964	paddr = sc->jme_rdata.jme_ssb_block_paddr;
2965	CSR_WRITE_4(sc, JME_SHBASE_ADDR_HI, JME_ADDR_HI(paddr));
2966	CSR_WRITE_4(sc, JME_SHBASE_ADDR_LO, JME_ADDR_LO(paddr));
2967
2968	/* Disable Timer 1 and Timer 2. */
2969	CSR_WRITE_4(sc, JME_TIMER1, 0);
2970	CSR_WRITE_4(sc, JME_TIMER2, 0);
2971
2972	/* Configure retry transmit period, retry limit value. */
2973	CSR_WRITE_4(sc, JME_TXTRHD,
2974	    ((TXTRHD_RT_PERIOD_DEFAULT << TXTRHD_RT_PERIOD_SHIFT) &
2975	    TXTRHD_RT_PERIOD_MASK) |
2976	    ((TXTRHD_RT_LIMIT_DEFAULT << TXTRHD_RT_LIMIT_SHIFT) &
2977	    TXTRHD_RT_LIMIT_SHIFT));
2978
2979	/* Disable RSS. */
2980	CSR_WRITE_4(sc, JME_RSSC, RSSC_DIS_RSS);
2981
2982	/* Initialize the interrupt mask. */
2983	CSR_WRITE_4(sc, JME_INTR_MASK_SET, JME_INTRS);
2984	CSR_WRITE_4(sc, JME_INTR_STATUS, 0xFFFFFFFF);
2985
2986	/*
2987	 * Enabling Tx/Rx DMA engines and Rx queue processing is
2988	 * done after detection of valid link in jme_link_task.
2989	 */
2990
2991	sc->jme_flags &= ~JME_FLAG_LINK;
2992	/* Set the current media. */
2993	mii_mediachg(mii);
2994
2995	callout_reset(&sc->jme_tick_ch, hz, jme_tick, sc);
2996
2997	ifp->if_drv_flags |= IFF_DRV_RUNNING;
2998	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2999}
3000
3001static void
3002jme_stop(struct jme_softc *sc)
3003{
3004	struct ifnet *ifp;
3005	struct jme_txdesc *txd;
3006	struct jme_rxdesc *rxd;
3007	int i;
3008
3009	JME_LOCK_ASSERT(sc);
3010	/*
3011	 * Mark the interface down and cancel the watchdog timer.
3012	 */
3013	ifp = sc->jme_ifp;
3014	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
3015	sc->jme_flags &= ~JME_FLAG_LINK;
3016	callout_stop(&sc->jme_tick_ch);
3017	sc->jme_watchdog_timer = 0;
3018
3019	/*
3020	 * Disable interrupts.
3021	 */
3022	CSR_WRITE_4(sc, JME_INTR_MASK_CLR, JME_INTRS);
3023	CSR_WRITE_4(sc, JME_INTR_STATUS, 0xFFFFFFFF);
3024
3025	/* Disable updating shadow status block. */
3026	CSR_WRITE_4(sc, JME_SHBASE_ADDR_LO,
3027	    CSR_READ_4(sc, JME_SHBASE_ADDR_LO) & ~SHBASE_POST_ENB);
3028
3029	/* Stop receiver, transmitter. */
3030	jme_stop_rx(sc);
3031	jme_stop_tx(sc);
3032
3033	 /* Reclaim Rx/Tx buffers that have been completed. */
3034	jme_rxintr(sc, JME_RX_RING_CNT);
3035	if (sc->jme_cdata.jme_rxhead != NULL)
3036		m_freem(sc->jme_cdata.jme_rxhead);
3037	JME_RXCHAIN_RESET(sc);
3038	jme_txeof(sc);
3039	/*
3040	 * Free RX and TX mbufs still in the queues.
3041	 */
3042	for (i = 0; i < JME_RX_RING_CNT; i++) {
3043		rxd = &sc->jme_cdata.jme_rxdesc[i];
3044		if (rxd->rx_m != NULL) {
3045			bus_dmamap_sync(sc->jme_cdata.jme_rx_tag,
3046			    rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
3047			bus_dmamap_unload(sc->jme_cdata.jme_rx_tag,
3048			    rxd->rx_dmamap);
3049			m_freem(rxd->rx_m);
3050			rxd->rx_m = NULL;
3051		}
3052        }
3053	for (i = 0; i < JME_TX_RING_CNT; i++) {
3054		txd = &sc->jme_cdata.jme_txdesc[i];
3055		if (txd->tx_m != NULL) {
3056			bus_dmamap_sync(sc->jme_cdata.jme_tx_tag,
3057			    txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
3058			bus_dmamap_unload(sc->jme_cdata.jme_tx_tag,
3059			    txd->tx_dmamap);
3060			m_freem(txd->tx_m);
3061			txd->tx_m = NULL;
3062			txd->tx_ndesc = 0;
3063		}
3064        }
3065	jme_stats_update(sc);
3066	jme_stats_save(sc);
3067}
3068
3069static void
3070jme_stop_tx(struct jme_softc *sc)
3071{
3072	uint32_t reg;
3073	int i;
3074
3075	reg = CSR_READ_4(sc, JME_TXCSR);
3076	if ((reg & TXCSR_TX_ENB) == 0)
3077		return;
3078	reg &= ~TXCSR_TX_ENB;
3079	CSR_WRITE_4(sc, JME_TXCSR, reg);
3080	for (i = JME_TIMEOUT; i > 0; i--) {
3081		DELAY(1);
3082		if ((CSR_READ_4(sc, JME_TXCSR) & TXCSR_TX_ENB) == 0)
3083			break;
3084	}
3085	if (i == 0)
3086		device_printf(sc->jme_dev, "stopping transmitter timeout!\n");
3087}
3088
3089static void
3090jme_stop_rx(struct jme_softc *sc)
3091{
3092	uint32_t reg;
3093	int i;
3094
3095	reg = CSR_READ_4(sc, JME_RXCSR);
3096	if ((reg & RXCSR_RX_ENB) == 0)
3097		return;
3098	reg &= ~RXCSR_RX_ENB;
3099	CSR_WRITE_4(sc, JME_RXCSR, reg);
3100	for (i = JME_TIMEOUT; i > 0; i--) {
3101		DELAY(1);
3102		if ((CSR_READ_4(sc, JME_RXCSR) & RXCSR_RX_ENB) == 0)
3103			break;
3104	}
3105	if (i == 0)
3106		device_printf(sc->jme_dev, "stopping recevier timeout!\n");
3107}
3108
3109static void
3110jme_init_tx_ring(struct jme_softc *sc)
3111{
3112	struct jme_ring_data *rd;
3113	struct jme_txdesc *txd;
3114	int i;
3115
3116	sc->jme_cdata.jme_tx_prod = 0;
3117	sc->jme_cdata.jme_tx_cons = 0;
3118	sc->jme_cdata.jme_tx_cnt = 0;
3119
3120	rd = &sc->jme_rdata;
3121	bzero(rd->jme_tx_ring, JME_TX_RING_SIZE);
3122	for (i = 0; i < JME_TX_RING_CNT; i++) {
3123		txd = &sc->jme_cdata.jme_txdesc[i];
3124		txd->tx_m = NULL;
3125		txd->tx_desc = &rd->jme_tx_ring[i];
3126		txd->tx_ndesc = 0;
3127	}
3128
3129	bus_dmamap_sync(sc->jme_cdata.jme_tx_ring_tag,
3130	    sc->jme_cdata.jme_tx_ring_map,
3131	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3132}
3133
3134static void
3135jme_init_ssb(struct jme_softc *sc)
3136{
3137	struct jme_ring_data *rd;
3138
3139	rd = &sc->jme_rdata;
3140	bzero(rd->jme_ssb_block, JME_SSB_SIZE);
3141	bus_dmamap_sync(sc->jme_cdata.jme_ssb_tag, sc->jme_cdata.jme_ssb_map,
3142	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3143}
3144
3145static int
3146jme_init_rx_ring(struct jme_softc *sc)
3147{
3148	struct jme_ring_data *rd;
3149	struct jme_rxdesc *rxd;
3150	int i;
3151
3152	sc->jme_cdata.jme_rx_cons = 0;
3153	JME_RXCHAIN_RESET(sc);
3154	sc->jme_morework = 0;
3155
3156	rd = &sc->jme_rdata;
3157	bzero(rd->jme_rx_ring, JME_RX_RING_SIZE);
3158	for (i = 0; i < JME_RX_RING_CNT; i++) {
3159		rxd = &sc->jme_cdata.jme_rxdesc[i];
3160		rxd->rx_m = NULL;
3161		rxd->rx_desc = &rd->jme_rx_ring[i];
3162		if (jme_newbuf(sc, rxd) != 0)
3163			return (ENOBUFS);
3164	}
3165
3166	bus_dmamap_sync(sc->jme_cdata.jme_rx_ring_tag,
3167	    sc->jme_cdata.jme_rx_ring_map,
3168	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3169
3170	return (0);
3171}
3172
3173static int
3174jme_newbuf(struct jme_softc *sc, struct jme_rxdesc *rxd)
3175{
3176	struct jme_desc *desc;
3177	struct mbuf *m;
3178	bus_dma_segment_t segs[1];
3179	bus_dmamap_t map;
3180	int nsegs;
3181
3182	m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
3183	if (m == NULL)
3184		return (ENOBUFS);
3185	/*
3186	 * JMC250 has 64bit boundary alignment limitation so jme(4)
3187	 * takes advantage of 10 bytes padding feature of hardware
3188	 * in order not to copy entire frame to align IP header on
3189	 * 32bit boundary.
3190	 */
3191	m->m_len = m->m_pkthdr.len = MCLBYTES;
3192
3193	if (bus_dmamap_load_mbuf_sg(sc->jme_cdata.jme_rx_tag,
3194	    sc->jme_cdata.jme_rx_sparemap, m, segs, &nsegs, 0) != 0) {
3195		m_freem(m);
3196		return (ENOBUFS);
3197	}
3198	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
3199
3200	if (rxd->rx_m != NULL) {
3201		bus_dmamap_sync(sc->jme_cdata.jme_rx_tag, rxd->rx_dmamap,
3202		    BUS_DMASYNC_POSTREAD);
3203		bus_dmamap_unload(sc->jme_cdata.jme_rx_tag, rxd->rx_dmamap);
3204	}
3205	map = rxd->rx_dmamap;
3206	rxd->rx_dmamap = sc->jme_cdata.jme_rx_sparemap;
3207	sc->jme_cdata.jme_rx_sparemap = map;
3208	bus_dmamap_sync(sc->jme_cdata.jme_rx_tag, rxd->rx_dmamap,
3209	    BUS_DMASYNC_PREREAD);
3210	rxd->rx_m = m;
3211
3212	desc = rxd->rx_desc;
3213	desc->buflen = htole32(segs[0].ds_len);
3214	desc->addr_lo = htole32(JME_ADDR_LO(segs[0].ds_addr));
3215	desc->addr_hi = htole32(JME_ADDR_HI(segs[0].ds_addr));
3216	desc->flags = htole32(JME_RD_OWN | JME_RD_INTR | JME_RD_64BIT);
3217
3218	return (0);
3219}
3220
3221static void
3222jme_set_vlan(struct jme_softc *sc)
3223{
3224	struct ifnet *ifp;
3225	uint32_t reg;
3226
3227	JME_LOCK_ASSERT(sc);
3228
3229	ifp = sc->jme_ifp;
3230	reg = CSR_READ_4(sc, JME_RXMAC);
3231	reg &= ~RXMAC_VLAN_ENB;
3232	if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0)
3233		reg |= RXMAC_VLAN_ENB;
3234	CSR_WRITE_4(sc, JME_RXMAC, reg);
3235}
3236
3237static void
3238jme_set_filter(struct jme_softc *sc)
3239{
3240	struct ifnet *ifp;
3241	struct ifmultiaddr *ifma;
3242	uint32_t crc;
3243	uint32_t mchash[2];
3244	uint32_t rxcfg;
3245
3246	JME_LOCK_ASSERT(sc);
3247
3248	ifp = sc->jme_ifp;
3249
3250	rxcfg = CSR_READ_4(sc, JME_RXMAC);
3251	rxcfg &= ~ (RXMAC_BROADCAST | RXMAC_PROMISC | RXMAC_MULTICAST |
3252	    RXMAC_ALLMULTI);
3253	/* Always accept frames destined to our station address. */
3254	rxcfg |= RXMAC_UNICAST;
3255	if ((ifp->if_flags & IFF_BROADCAST) != 0)
3256		rxcfg |= RXMAC_BROADCAST;
3257	if ((ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) != 0) {
3258		if ((ifp->if_flags & IFF_PROMISC) != 0)
3259			rxcfg |= RXMAC_PROMISC;
3260		if ((ifp->if_flags & IFF_ALLMULTI) != 0)
3261			rxcfg |= RXMAC_ALLMULTI;
3262		CSR_WRITE_4(sc, JME_MAR0, 0xFFFFFFFF);
3263		CSR_WRITE_4(sc, JME_MAR1, 0xFFFFFFFF);
3264		CSR_WRITE_4(sc, JME_RXMAC, rxcfg);
3265		return;
3266	}
3267
3268	/*
3269	 * Set up the multicast address filter by passing all multicast
3270	 * addresses through a CRC generator, and then using the low-order
3271	 * 6 bits as an index into the 64 bit multicast hash table.  The
3272	 * high order bits select the register, while the rest of the bits
3273	 * select the bit within the register.
3274	 */
3275	rxcfg |= RXMAC_MULTICAST;
3276	bzero(mchash, sizeof(mchash));
3277
3278	if_maddr_rlock(ifp);
3279	TAILQ_FOREACH(ifma, &sc->jme_ifp->if_multiaddrs, ifma_link) {
3280		if (ifma->ifma_addr->sa_family != AF_LINK)
3281			continue;
3282		crc = ether_crc32_be(LLADDR((struct sockaddr_dl *)
3283		    ifma->ifma_addr), ETHER_ADDR_LEN);
3284
3285		/* Just want the 6 least significant bits. */
3286		crc &= 0x3f;
3287
3288		/* Set the corresponding bit in the hash table. */
3289		mchash[crc >> 5] |= 1 << (crc & 0x1f);
3290	}
3291	if_maddr_runlock(ifp);
3292
3293	CSR_WRITE_4(sc, JME_MAR0, mchash[0]);
3294	CSR_WRITE_4(sc, JME_MAR1, mchash[1]);
3295	CSR_WRITE_4(sc, JME_RXMAC, rxcfg);
3296}
3297
3298static void
3299jme_stats_clear(struct jme_softc *sc)
3300{
3301
3302	JME_LOCK_ASSERT(sc);
3303
3304	if ((sc->jme_flags & JME_FLAG_HWMIB) == 0)
3305		return;
3306
3307	/* Disable and clear counters. */
3308	CSR_WRITE_4(sc, JME_STATCSR, 0xFFFFFFFF);
3309	/* Activate hw counters. */
3310	CSR_WRITE_4(sc, JME_STATCSR, 0);
3311	CSR_READ_4(sc, JME_STATCSR);
3312	bzero(&sc->jme_stats, sizeof(struct jme_hw_stats));
3313}
3314
3315static void
3316jme_stats_save(struct jme_softc *sc)
3317{
3318
3319	JME_LOCK_ASSERT(sc);
3320
3321	if ((sc->jme_flags & JME_FLAG_HWMIB) == 0)
3322		return;
3323	/* Save current counters. */
3324	bcopy(&sc->jme_stats, &sc->jme_ostats, sizeof(struct jme_hw_stats));
3325	/* Disable and clear counters. */
3326	CSR_WRITE_4(sc, JME_STATCSR, 0xFFFFFFFF);
3327}
3328
3329static void
3330jme_stats_update(struct jme_softc *sc)
3331{
3332	struct jme_hw_stats *stat, *ostat;
3333	uint32_t reg;
3334
3335	JME_LOCK_ASSERT(sc);
3336
3337	if ((sc->jme_flags & JME_FLAG_HWMIB) == 0)
3338		return;
3339	stat = &sc->jme_stats;
3340	ostat = &sc->jme_ostats;
3341	stat->tx_good_frames = CSR_READ_4(sc, JME_STAT_TXGOOD);
3342	stat->rx_good_frames = CSR_READ_4(sc, JME_STAT_RXGOOD);
3343	reg = CSR_READ_4(sc, JME_STAT_CRCMII);
3344	stat->rx_crc_errs = (reg & STAT_RX_CRC_ERR_MASK) >>
3345	    STAT_RX_CRC_ERR_SHIFT;
3346	stat->rx_mii_errs = (reg & STAT_RX_MII_ERR_MASK) >>
3347	    STAT_RX_MII_ERR_SHIFT;
3348	reg = CSR_READ_4(sc, JME_STAT_RXERR);
3349	stat->rx_fifo_oflows = (reg & STAT_RXERR_OFLOW_MASK) >>
3350	    STAT_RXERR_OFLOW_SHIFT;
3351	stat->rx_desc_empty = (reg & STAT_RXERR_MPTY_MASK) >>
3352	    STAT_RXERR_MPTY_SHIFT;
3353	reg = CSR_READ_4(sc, JME_STAT_FAIL);
3354	stat->rx_bad_frames = (reg & STAT_FAIL_RX_MASK) >> STAT_FAIL_RX_SHIFT;
3355	stat->tx_bad_frames = (reg & STAT_FAIL_TX_MASK) >> STAT_FAIL_TX_SHIFT;
3356
3357	/* Account for previous counters. */
3358	stat->rx_good_frames += ostat->rx_good_frames;
3359	stat->rx_crc_errs += ostat->rx_crc_errs;
3360	stat->rx_mii_errs += ostat->rx_mii_errs;
3361	stat->rx_fifo_oflows += ostat->rx_fifo_oflows;
3362	stat->rx_desc_empty += ostat->rx_desc_empty;
3363	stat->rx_bad_frames += ostat->rx_bad_frames;
3364	stat->tx_good_frames += ostat->tx_good_frames;
3365	stat->tx_bad_frames += ostat->tx_bad_frames;
3366}
3367
3368static void
3369jme_phy_down(struct jme_softc *sc)
3370{
3371	uint32_t reg;
3372
3373	jme_miibus_writereg(sc->jme_dev, sc->jme_phyaddr, MII_BMCR, BMCR_PDOWN);
3374	if (CHIPMODE_REVFM(sc->jme_chip_rev) >= 5) {
3375		reg = CSR_READ_4(sc, JME_PHYPOWDN);
3376		reg |= 0x0000000F;
3377		CSR_WRITE_4(sc, JME_PHYPOWDN, reg);
3378		reg = pci_read_config(sc->jme_dev, JME_PCI_PE1, 4);
3379		reg &= ~PE1_GIGA_PDOWN_MASK;
3380		reg |= PE1_GIGA_PDOWN_D3;
3381		pci_write_config(sc->jme_dev, JME_PCI_PE1, reg, 4);
3382	}
3383}
3384
3385static void
3386jme_phy_up(struct jme_softc *sc)
3387{
3388	uint32_t reg;
3389	uint16_t bmcr;
3390
3391	bmcr = jme_miibus_readreg(sc->jme_dev, sc->jme_phyaddr, MII_BMCR);
3392	bmcr &= ~BMCR_PDOWN;
3393	jme_miibus_writereg(sc->jme_dev, sc->jme_phyaddr, MII_BMCR, bmcr);
3394	if (CHIPMODE_REVFM(sc->jme_chip_rev) >= 5) {
3395		reg = CSR_READ_4(sc, JME_PHYPOWDN);
3396		reg &= ~0x0000000F;
3397		CSR_WRITE_4(sc, JME_PHYPOWDN, reg);
3398		reg = pci_read_config(sc->jme_dev, JME_PCI_PE1, 4);
3399		reg &= ~PE1_GIGA_PDOWN_MASK;
3400		reg |= PE1_GIGA_PDOWN_DIS;
3401		pci_write_config(sc->jme_dev, JME_PCI_PE1, reg, 4);
3402	}
3403}
3404
3405static int
3406sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
3407{
3408	int error, value;
3409
3410	if (arg1 == NULL)
3411		return (EINVAL);
3412	value = *(int *)arg1;
3413	error = sysctl_handle_int(oidp, &value, 0, req);
3414	if (error || req->newptr == NULL)
3415		return (error);
3416	if (value < low || value > high)
3417		return (EINVAL);
3418        *(int *)arg1 = value;
3419
3420        return (0);
3421}
3422
3423static int
3424sysctl_hw_jme_tx_coal_to(SYSCTL_HANDLER_ARGS)
3425{
3426	return (sysctl_int_range(oidp, arg1, arg2, req,
3427	    PCCTX_COAL_TO_MIN, PCCTX_COAL_TO_MAX));
3428}
3429
3430static int
3431sysctl_hw_jme_tx_coal_pkt(SYSCTL_HANDLER_ARGS)
3432{
3433	return (sysctl_int_range(oidp, arg1, arg2, req,
3434	    PCCTX_COAL_PKT_MIN, PCCTX_COAL_PKT_MAX));
3435}
3436
3437static int
3438sysctl_hw_jme_rx_coal_to(SYSCTL_HANDLER_ARGS)
3439{
3440	return (sysctl_int_range(oidp, arg1, arg2, req,
3441	    PCCRX_COAL_TO_MIN, PCCRX_COAL_TO_MAX));
3442}
3443
3444static int
3445sysctl_hw_jme_rx_coal_pkt(SYSCTL_HANDLER_ARGS)
3446{
3447	return (sysctl_int_range(oidp, arg1, arg2, req,
3448	    PCCRX_COAL_PKT_MIN, PCCRX_COAL_PKT_MAX));
3449}
3450
3451static int
3452sysctl_hw_jme_proc_limit(SYSCTL_HANDLER_ARGS)
3453{
3454	return (sysctl_int_range(oidp, arg1, arg2, req,
3455	    JME_PROC_MIN, JME_PROC_MAX));
3456}
3457