if_jme.c revision 217353
1127668Sbms/*-
2127668Sbms * Copyright (c) 2008, Pyun YongHyeon <yongari@FreeBSD.org>
3127668Sbms * All rights reserved.
4127668Sbms *
5127668Sbms * Redistribution and use in source and binary forms, with or without
6127668Sbms * modification, are permitted provided that the following conditions
7127668Sbms * are met:
8127668Sbms * 1. Redistributions of source code must retain the above copyright
9127668Sbms *    notice unmodified, this list of conditions, and the following
10127668Sbms *    disclaimer.
11127668Sbms * 2. Redistributions in binary form must reproduce the above copyright
12127668Sbms *    notice, this list of conditions and the following disclaimer in the
13127668Sbms *    documentation and/or other materials provided with the distribution.
14127668Sbms *
15127668Sbms * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16127668Sbms * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17127668Sbms * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18127668Sbms * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19127668Sbms * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20127668Sbms * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21190207Srpaulo * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22127668Sbms * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23127668Sbms * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24127668Sbms * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25127668Sbms * SUCH DAMAGE.
26127668Sbms */
27127668Sbms
28127668Sbms#include <sys/cdefs.h>
29127668Sbms__FBSDID("$FreeBSD: head/sys/dev/jme/if_jme.c 217353 2011-01-13 14:42:43Z jhb $");
30127668Sbms
31127668Sbms#include <sys/param.h>
32127668Sbms#include <sys/systm.h>
33127668Sbms#include <sys/bus.h>
34127668Sbms#include <sys/endian.h>
35127668Sbms#include <sys/kernel.h>
36127668Sbms#include <sys/malloc.h>
37127668Sbms#include <sys/mbuf.h>
38127668Sbms#include <sys/rman.h>
39127668Sbms#include <sys/module.h>
40127668Sbms#include <sys/proc.h>
41127668Sbms#include <sys/queue.h>
42127668Sbms#include <sys/socket.h>
43127668Sbms#include <sys/sockio.h>
44127668Sbms#include <sys/sysctl.h>
45127668Sbms#include <sys/taskqueue.h>
46127668Sbms
47147899Ssam#include <net/bpf.h>
48147899Ssam#include <net/if.h>
49127668Sbms#include <net/if_arp.h>
50127668Sbms#include <net/ethernet.h>
51147899Ssam#include <net/if_dl.h>
52127668Sbms#include <net/if_media.h>
53127668Sbms#include <net/if_types.h>
54127668Sbms#include <net/if_vlan_var.h>
55127668Sbms
56127668Sbms#include <netinet/in.h>
57127668Sbms#include <netinet/in_systm.h>
58127668Sbms#include <netinet/ip.h>
59127668Sbms#include <netinet/tcp.h>
60147899Ssam
61#include <dev/mii/mii.h>
62#include <dev/mii/miivar.h>
63
64#include <dev/pci/pcireg.h>
65#include <dev/pci/pcivar.h>
66
67#include <machine/bus.h>
68#include <machine/in_cksum.h>
69
70#include <dev/jme/if_jmereg.h>
71#include <dev/jme/if_jmevar.h>
72
73/* "device miibus" required.  See GENERIC if you get errors here. */
74#include "miibus_if.h"
75
76/* Define the following to disable printing Rx errors. */
77#undef	JME_SHOW_ERRORS
78
79#define	JME_CSUM_FEATURES	(CSUM_IP | CSUM_TCP | CSUM_UDP)
80
81MODULE_DEPEND(jme, pci, 1, 1, 1);
82MODULE_DEPEND(jme, ether, 1, 1, 1);
83MODULE_DEPEND(jme, miibus, 1, 1, 1);
84
85/* Tunables. */
86static int msi_disable = 0;
87static int msix_disable = 0;
88TUNABLE_INT("hw.jme.msi_disable", &msi_disable);
89TUNABLE_INT("hw.jme.msix_disable", &msix_disable);
90
91/*
92 * Devices supported by this driver.
93 */
94static struct jme_dev {
95	uint16_t	jme_vendorid;
96	uint16_t	jme_deviceid;
97	const char	*jme_name;
98} jme_devs[] = {
99	{ VENDORID_JMICRON, DEVICEID_JMC250,
100	    "JMicron Inc, JMC25x Gigabit Ethernet" },
101	{ VENDORID_JMICRON, DEVICEID_JMC260,
102	    "JMicron Inc, JMC26x Fast Ethernet" },
103};
104
105static int jme_miibus_readreg(device_t, int, int);
106static int jme_miibus_writereg(device_t, int, int, int);
107static void jme_miibus_statchg(device_t);
108static void jme_mediastatus(struct ifnet *, struct ifmediareq *);
109static int jme_mediachange(struct ifnet *);
110static int jme_probe(device_t);
111static int jme_eeprom_read_byte(struct jme_softc *, uint8_t, uint8_t *);
112static int jme_eeprom_macaddr(struct jme_softc *);
113static int jme_efuse_macaddr(struct jme_softc *);
114static void jme_reg_macaddr(struct jme_softc *);
115static void jme_set_macaddr(struct jme_softc *, uint8_t *);
116static void jme_map_intr_vector(struct jme_softc *);
117static int jme_attach(device_t);
118static int jme_detach(device_t);
119static void jme_sysctl_node(struct jme_softc *);
120static void jme_dmamap_cb(void *, bus_dma_segment_t *, int, int);
121static int jme_dma_alloc(struct jme_softc *);
122static void jme_dma_free(struct jme_softc *);
123static int jme_shutdown(device_t);
124static void jme_setlinkspeed(struct jme_softc *);
125static void jme_setwol(struct jme_softc *);
126static int jme_suspend(device_t);
127static int jme_resume(device_t);
128static int jme_encap(struct jme_softc *, struct mbuf **);
129static void jme_start(struct ifnet *);
130static void jme_start_locked(struct ifnet *);
131static void jme_watchdog(struct jme_softc *);
132static int jme_ioctl(struct ifnet *, u_long, caddr_t);
133static void jme_mac_config(struct jme_softc *);
134static void jme_link_task(void *, int);
135static int jme_intr(void *);
136static void jme_int_task(void *, int);
137static void jme_txeof(struct jme_softc *);
138static __inline void jme_discard_rxbuf(struct jme_softc *, int);
139static void jme_rxeof(struct jme_softc *);
140static int jme_rxintr(struct jme_softc *, int);
141static void jme_tick(void *);
142static void jme_reset(struct jme_softc *);
143static void jme_init(void *);
144static void jme_init_locked(struct jme_softc *);
145static void jme_stop(struct jme_softc *);
146static void jme_stop_tx(struct jme_softc *);
147static void jme_stop_rx(struct jme_softc *);
148static int jme_init_rx_ring(struct jme_softc *);
149static void jme_init_tx_ring(struct jme_softc *);
150static void jme_init_ssb(struct jme_softc *);
151static int jme_newbuf(struct jme_softc *, struct jme_rxdesc *);
152static void jme_set_vlan(struct jme_softc *);
153static void jme_set_filter(struct jme_softc *);
154static void jme_stats_clear(struct jme_softc *);
155static void jme_stats_save(struct jme_softc *);
156static void jme_stats_update(struct jme_softc *);
157static void jme_phy_down(struct jme_softc *);
158static void jme_phy_up(struct jme_softc *);
159static int sysctl_int_range(SYSCTL_HANDLER_ARGS, int, int);
160static int sysctl_hw_jme_tx_coal_to(SYSCTL_HANDLER_ARGS);
161static int sysctl_hw_jme_tx_coal_pkt(SYSCTL_HANDLER_ARGS);
162static int sysctl_hw_jme_rx_coal_to(SYSCTL_HANDLER_ARGS);
163static int sysctl_hw_jme_rx_coal_pkt(SYSCTL_HANDLER_ARGS);
164static int sysctl_hw_jme_proc_limit(SYSCTL_HANDLER_ARGS);
165
166
167static device_method_t jme_methods[] = {
168	/* Device interface. */
169	DEVMETHOD(device_probe,		jme_probe),
170	DEVMETHOD(device_attach,	jme_attach),
171	DEVMETHOD(device_detach,	jme_detach),
172	DEVMETHOD(device_shutdown,	jme_shutdown),
173	DEVMETHOD(device_suspend,	jme_suspend),
174	DEVMETHOD(device_resume,	jme_resume),
175
176	/* MII interface. */
177	DEVMETHOD(miibus_readreg,	jme_miibus_readreg),
178	DEVMETHOD(miibus_writereg,	jme_miibus_writereg),
179	DEVMETHOD(miibus_statchg,	jme_miibus_statchg),
180
181	{ NULL, NULL }
182};
183
184static driver_t jme_driver = {
185	"jme",
186	jme_methods,
187	sizeof(struct jme_softc)
188};
189
190static devclass_t jme_devclass;
191
192DRIVER_MODULE(jme, pci, jme_driver, jme_devclass, 0, 0);
193DRIVER_MODULE(miibus, jme, miibus_driver, miibus_devclass, 0, 0);
194
195static struct resource_spec jme_res_spec_mem[] = {
196	{ SYS_RES_MEMORY,	PCIR_BAR(0),	RF_ACTIVE },
197	{ -1,			0,		0 }
198};
199
200static struct resource_spec jme_irq_spec_legacy[] = {
201	{ SYS_RES_IRQ,		0,		RF_ACTIVE | RF_SHAREABLE },
202	{ -1,			0,		0 }
203};
204
205static struct resource_spec jme_irq_spec_msi[] = {
206	{ SYS_RES_IRQ,		1,		RF_ACTIVE },
207	{ -1,			0,		0 }
208};
209
210/*
211 *	Read a PHY register on the MII of the JMC250.
212 */
213static int
214jme_miibus_readreg(device_t dev, int phy, int reg)
215{
216	struct jme_softc *sc;
217	uint32_t val;
218	int i;
219
220	sc = device_get_softc(dev);
221
222	/* For FPGA version, PHY address 0 should be ignored. */
223	if ((sc->jme_flags & JME_FLAG_FPGA) != 0 && phy == 0)
224		return (0);
225
226	CSR_WRITE_4(sc, JME_SMI, SMI_OP_READ | SMI_OP_EXECUTE |
227	    SMI_PHY_ADDR(phy) | SMI_REG_ADDR(reg));
228	for (i = JME_PHY_TIMEOUT; i > 0; i--) {
229		DELAY(1);
230		if (((val = CSR_READ_4(sc, JME_SMI)) & SMI_OP_EXECUTE) == 0)
231			break;
232	}
233
234	if (i == 0) {
235		device_printf(sc->jme_dev, "phy read timeout : %d\n", reg);
236		return (0);
237	}
238
239	return ((val & SMI_DATA_MASK) >> SMI_DATA_SHIFT);
240}
241
242/*
243 *	Write a PHY register on the MII of the JMC250.
244 */
245static int
246jme_miibus_writereg(device_t dev, int phy, int reg, int val)
247{
248	struct jme_softc *sc;
249	int i;
250
251	sc = device_get_softc(dev);
252
253	/* For FPGA version, PHY address 0 should be ignored. */
254	if ((sc->jme_flags & JME_FLAG_FPGA) != 0 && phy == 0)
255		return (0);
256
257	CSR_WRITE_4(sc, JME_SMI, SMI_OP_WRITE | SMI_OP_EXECUTE |
258	    ((val << SMI_DATA_SHIFT) & SMI_DATA_MASK) |
259	    SMI_PHY_ADDR(phy) | SMI_REG_ADDR(reg));
260	for (i = JME_PHY_TIMEOUT; i > 0; i--) {
261		DELAY(1);
262		if (((val = CSR_READ_4(sc, JME_SMI)) & SMI_OP_EXECUTE) == 0)
263			break;
264	}
265
266	if (i == 0)
267		device_printf(sc->jme_dev, "phy write timeout : %d\n", reg);
268
269	return (0);
270}
271
272/*
273 *	Callback from MII layer when media changes.
274 */
275static void
276jme_miibus_statchg(device_t dev)
277{
278	struct jme_softc *sc;
279
280	sc = device_get_softc(dev);
281	taskqueue_enqueue(taskqueue_swi, &sc->jme_link_task);
282}
283
284/*
285 *	Get the current interface media status.
286 */
287static void
288jme_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
289{
290	struct jme_softc *sc;
291	struct mii_data *mii;
292
293	sc = ifp->if_softc;
294	JME_LOCK(sc);
295	if ((ifp->if_flags & IFF_UP) == 0) {
296		JME_UNLOCK(sc);
297		return;
298	}
299	mii = device_get_softc(sc->jme_miibus);
300
301	mii_pollstat(mii);
302	ifmr->ifm_status = mii->mii_media_status;
303	ifmr->ifm_active = mii->mii_media_active;
304	JME_UNLOCK(sc);
305}
306
307/*
308 *	Set hardware to newly-selected media.
309 */
310static int
311jme_mediachange(struct ifnet *ifp)
312{
313	struct jme_softc *sc;
314	struct mii_data *mii;
315	struct mii_softc *miisc;
316	int error;
317
318	sc = ifp->if_softc;
319	JME_LOCK(sc);
320	mii = device_get_softc(sc->jme_miibus);
321	if (mii->mii_instance != 0) {
322		LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
323			mii_phy_reset(miisc);
324	}
325	error = mii_mediachg(mii);
326	JME_UNLOCK(sc);
327
328	return (error);
329}
330
331static int
332jme_probe(device_t dev)
333{
334	struct jme_dev *sp;
335	int i;
336	uint16_t vendor, devid;
337
338	vendor = pci_get_vendor(dev);
339	devid = pci_get_device(dev);
340	sp = jme_devs;
341	for (i = 0; i < sizeof(jme_devs) / sizeof(jme_devs[0]);
342	    i++, sp++) {
343		if (vendor == sp->jme_vendorid &&
344		    devid == sp->jme_deviceid) {
345			device_set_desc(dev, sp->jme_name);
346			return (BUS_PROBE_DEFAULT);
347		}
348	}
349
350	return (ENXIO);
351}
352
353static int
354jme_eeprom_read_byte(struct jme_softc *sc, uint8_t addr, uint8_t *val)
355{
356	uint32_t reg;
357	int i;
358
359	*val = 0;
360	for (i = JME_TIMEOUT; i > 0; i--) {
361		reg = CSR_READ_4(sc, JME_SMBCSR);
362		if ((reg & SMBCSR_HW_BUSY_MASK) == SMBCSR_HW_IDLE)
363			break;
364		DELAY(1);
365	}
366
367	if (i == 0) {
368		device_printf(sc->jme_dev, "EEPROM idle timeout!\n");
369		return (ETIMEDOUT);
370	}
371
372	reg = ((uint32_t)addr << SMBINTF_ADDR_SHIFT) & SMBINTF_ADDR_MASK;
373	CSR_WRITE_4(sc, JME_SMBINTF, reg | SMBINTF_RD | SMBINTF_CMD_TRIGGER);
374	for (i = JME_TIMEOUT; i > 0; i--) {
375		DELAY(1);
376		reg = CSR_READ_4(sc, JME_SMBINTF);
377		if ((reg & SMBINTF_CMD_TRIGGER) == 0)
378			break;
379	}
380
381	if (i == 0) {
382		device_printf(sc->jme_dev, "EEPROM read timeout!\n");
383		return (ETIMEDOUT);
384	}
385
386	reg = CSR_READ_4(sc, JME_SMBINTF);
387	*val = (reg & SMBINTF_RD_DATA_MASK) >> SMBINTF_RD_DATA_SHIFT;
388
389	return (0);
390}
391
392static int
393jme_eeprom_macaddr(struct jme_softc *sc)
394{
395	uint8_t eaddr[ETHER_ADDR_LEN];
396	uint8_t fup, reg, val;
397	uint32_t offset;
398	int match;
399
400	offset = 0;
401	if (jme_eeprom_read_byte(sc, offset++, &fup) != 0 ||
402	    fup != JME_EEPROM_SIG0)
403		return (ENOENT);
404	if (jme_eeprom_read_byte(sc, offset++, &fup) != 0 ||
405	    fup != JME_EEPROM_SIG1)
406		return (ENOENT);
407	match = 0;
408	do {
409		if (jme_eeprom_read_byte(sc, offset, &fup) != 0)
410			break;
411		if (JME_EEPROM_MKDESC(JME_EEPROM_FUNC0, JME_EEPROM_PAGE_BAR1) ==
412		    (fup & (JME_EEPROM_FUNC_MASK | JME_EEPROM_PAGE_MASK))) {
413			if (jme_eeprom_read_byte(sc, offset + 1, &reg) != 0)
414				break;
415			if (reg >= JME_PAR0 &&
416			    reg < JME_PAR0 + ETHER_ADDR_LEN) {
417				if (jme_eeprom_read_byte(sc, offset + 2,
418				    &val) != 0)
419					break;
420				eaddr[reg - JME_PAR0] = val;
421				match++;
422			}
423		}
424		/* Check for the end of EEPROM descriptor. */
425		if ((fup & JME_EEPROM_DESC_END) == JME_EEPROM_DESC_END)
426			break;
427		/* Try next eeprom descriptor. */
428		offset += JME_EEPROM_DESC_BYTES;
429	} while (match != ETHER_ADDR_LEN && offset < JME_EEPROM_END);
430
431	if (match == ETHER_ADDR_LEN) {
432		bcopy(eaddr, sc->jme_eaddr, ETHER_ADDR_LEN);
433		return (0);
434	}
435
436	return (ENOENT);
437}
438
439static int
440jme_efuse_macaddr(struct jme_softc *sc)
441{
442	uint32_t reg;
443	int i;
444
445	reg = pci_read_config(sc->jme_dev, JME_EFUSE_CTL1, 4);
446	if ((reg & (EFUSE_CTL1_AUTOLOAD_ERR | EFUSE_CTL1_AUTOLAOD_DONE)) !=
447	    EFUSE_CTL1_AUTOLAOD_DONE)
448		return (ENOENT);
449	/* Reset eFuse controller. */
450	reg = pci_read_config(sc->jme_dev, JME_EFUSE_CTL2, 4);
451	reg |= EFUSE_CTL2_RESET;
452	pci_write_config(sc->jme_dev, JME_EFUSE_CTL2, reg, 4);
453	reg = pci_read_config(sc->jme_dev, JME_EFUSE_CTL2, 4);
454	reg &= ~EFUSE_CTL2_RESET;
455	pci_write_config(sc->jme_dev, JME_EFUSE_CTL2, reg, 4);
456
457	/* Have eFuse reload station address to MAC controller. */
458	reg = pci_read_config(sc->jme_dev, JME_EFUSE_CTL1, 4);
459	reg &= ~EFUSE_CTL1_CMD_MASK;
460	reg |= EFUSE_CTL1_CMD_AUTOLOAD | EFUSE_CTL1_EXECUTE;
461	pci_write_config(sc->jme_dev, JME_EFUSE_CTL1, reg, 4);
462
463	/*
464	 * Verify completion of eFuse autload command.  It should be
465	 * completed within 108us.
466	 */
467	DELAY(110);
468	for (i = 10; i > 0; i--) {
469		reg = pci_read_config(sc->jme_dev, JME_EFUSE_CTL1, 4);
470		if ((reg & (EFUSE_CTL1_AUTOLOAD_ERR |
471		    EFUSE_CTL1_AUTOLAOD_DONE)) != EFUSE_CTL1_AUTOLAOD_DONE) {
472			DELAY(20);
473			continue;
474		}
475		if ((reg & EFUSE_CTL1_EXECUTE) == 0)
476			break;
477		/* Station address loading is still in progress. */
478		DELAY(20);
479	}
480	if (i == 0) {
481		device_printf(sc->jme_dev, "eFuse autoload timed out.\n");
482		return (ETIMEDOUT);
483	}
484
485	return (0);
486}
487
488static void
489jme_reg_macaddr(struct jme_softc *sc)
490{
491	uint32_t par0, par1;
492
493	/* Read station address. */
494	par0 = CSR_READ_4(sc, JME_PAR0);
495	par1 = CSR_READ_4(sc, JME_PAR1);
496	par1 &= 0xFFFF;
497	if ((par0 == 0 && par1 == 0) ||
498	    (par0 == 0xFFFFFFFF && par1 == 0xFFFF)) {
499		device_printf(sc->jme_dev,
500		    "Failed to retrieve Ethernet address.\n");
501	} else {
502		/*
503		 * For controllers that use eFuse, the station address
504		 * could also be extracted from JME_PCI_PAR0 and
505		 * JME_PCI_PAR1 registers in PCI configuration space.
506		 * Each register holds exactly half of station address(24bits)
507		 * so use JME_PAR0, JME_PAR1 registers instead.
508		 */
509		sc->jme_eaddr[0] = (par0 >> 0) & 0xFF;
510		sc->jme_eaddr[1] = (par0 >> 8) & 0xFF;
511		sc->jme_eaddr[2] = (par0 >> 16) & 0xFF;
512		sc->jme_eaddr[3] = (par0 >> 24) & 0xFF;
513		sc->jme_eaddr[4] = (par1 >> 0) & 0xFF;
514		sc->jme_eaddr[5] = (par1 >> 8) & 0xFF;
515	}
516}
517
518static void
519jme_set_macaddr(struct jme_softc *sc, uint8_t *eaddr)
520{
521	uint32_t val;
522	int i;
523
524	if ((sc->jme_flags & JME_FLAG_EFUSE) != 0) {
525		/*
526		 * Avoid reprogramming station address if the address
527		 * is the same as previous one.  Note, reprogrammed
528		 * station address is permanent as if it was written
529		 * to EEPROM. So if station address was changed by
530		 * admistrator it's possible to lose factory configured
531		 * address when driver fails to restore its address.
532		 * (e.g. reboot or system crash)
533		 */
534		if (bcmp(eaddr, sc->jme_eaddr, ETHER_ADDR_LEN) != 0) {
535			for (i = 0; i < ETHER_ADDR_LEN; i++) {
536				val = JME_EFUSE_EEPROM_FUNC0 <<
537				    JME_EFUSE_EEPROM_FUNC_SHIFT;
538				val |= JME_EFUSE_EEPROM_PAGE_BAR1 <<
539				    JME_EFUSE_EEPROM_PAGE_SHIFT;
540				val |= (JME_PAR0 + i) <<
541				    JME_EFUSE_EEPROM_ADDR_SHIFT;
542				val |= eaddr[i] << JME_EFUSE_EEPROM_DATA_SHIFT;
543				pci_write_config(sc->jme_dev, JME_EFUSE_EEPROM,
544				    val | JME_EFUSE_EEPROM_WRITE, 4);
545			}
546		}
547	} else {
548		CSR_WRITE_4(sc, JME_PAR0,
549		    eaddr[3] << 24 | eaddr[2] << 16 | eaddr[1] << 8 | eaddr[0]);
550		CSR_WRITE_4(sc, JME_PAR1, eaddr[5] << 8 | eaddr[4]);
551	}
552}
553
554static void
555jme_map_intr_vector(struct jme_softc *sc)
556{
557	uint32_t map[MSINUM_NUM_INTR_SOURCE / JME_MSI_MESSAGES];
558
559	bzero(map, sizeof(map));
560
561	/* Map Tx interrupts source to MSI/MSIX vector 2. */
562	map[MSINUM_REG_INDEX(N_INTR_TXQ0_COMP)] =
563	    MSINUM_INTR_SOURCE(2, N_INTR_TXQ0_COMP);
564	map[MSINUM_REG_INDEX(N_INTR_TXQ1_COMP)] |=
565	    MSINUM_INTR_SOURCE(2, N_INTR_TXQ1_COMP);
566	map[MSINUM_REG_INDEX(N_INTR_TXQ2_COMP)] |=
567	    MSINUM_INTR_SOURCE(2, N_INTR_TXQ2_COMP);
568	map[MSINUM_REG_INDEX(N_INTR_TXQ3_COMP)] |=
569	    MSINUM_INTR_SOURCE(2, N_INTR_TXQ3_COMP);
570	map[MSINUM_REG_INDEX(N_INTR_TXQ4_COMP)] |=
571	    MSINUM_INTR_SOURCE(2, N_INTR_TXQ4_COMP);
572	map[MSINUM_REG_INDEX(N_INTR_TXQ4_COMP)] |=
573	    MSINUM_INTR_SOURCE(2, N_INTR_TXQ5_COMP);
574	map[MSINUM_REG_INDEX(N_INTR_TXQ6_COMP)] |=
575	    MSINUM_INTR_SOURCE(2, N_INTR_TXQ6_COMP);
576	map[MSINUM_REG_INDEX(N_INTR_TXQ7_COMP)] |=
577	    MSINUM_INTR_SOURCE(2, N_INTR_TXQ7_COMP);
578	map[MSINUM_REG_INDEX(N_INTR_TXQ_COAL)] |=
579	    MSINUM_INTR_SOURCE(2, N_INTR_TXQ_COAL);
580	map[MSINUM_REG_INDEX(N_INTR_TXQ_COAL_TO)] |=
581	    MSINUM_INTR_SOURCE(2, N_INTR_TXQ_COAL_TO);
582
583	/* Map Rx interrupts source to MSI/MSIX vector 1. */
584	map[MSINUM_REG_INDEX(N_INTR_RXQ0_COMP)] =
585	    MSINUM_INTR_SOURCE(1, N_INTR_RXQ0_COMP);
586	map[MSINUM_REG_INDEX(N_INTR_RXQ1_COMP)] =
587	    MSINUM_INTR_SOURCE(1, N_INTR_RXQ1_COMP);
588	map[MSINUM_REG_INDEX(N_INTR_RXQ2_COMP)] =
589	    MSINUM_INTR_SOURCE(1, N_INTR_RXQ2_COMP);
590	map[MSINUM_REG_INDEX(N_INTR_RXQ3_COMP)] =
591	    MSINUM_INTR_SOURCE(1, N_INTR_RXQ3_COMP);
592	map[MSINUM_REG_INDEX(N_INTR_RXQ0_DESC_EMPTY)] =
593	    MSINUM_INTR_SOURCE(1, N_INTR_RXQ0_DESC_EMPTY);
594	map[MSINUM_REG_INDEX(N_INTR_RXQ1_DESC_EMPTY)] =
595	    MSINUM_INTR_SOURCE(1, N_INTR_RXQ1_DESC_EMPTY);
596	map[MSINUM_REG_INDEX(N_INTR_RXQ2_DESC_EMPTY)] =
597	    MSINUM_INTR_SOURCE(1, N_INTR_RXQ2_DESC_EMPTY);
598	map[MSINUM_REG_INDEX(N_INTR_RXQ3_DESC_EMPTY)] =
599	    MSINUM_INTR_SOURCE(1, N_INTR_RXQ3_DESC_EMPTY);
600	map[MSINUM_REG_INDEX(N_INTR_RXQ0_COAL)] =
601	    MSINUM_INTR_SOURCE(1, N_INTR_RXQ0_COAL);
602	map[MSINUM_REG_INDEX(N_INTR_RXQ1_COAL)] =
603	    MSINUM_INTR_SOURCE(1, N_INTR_RXQ1_COAL);
604	map[MSINUM_REG_INDEX(N_INTR_RXQ2_COAL)] =
605	    MSINUM_INTR_SOURCE(1, N_INTR_RXQ2_COAL);
606	map[MSINUM_REG_INDEX(N_INTR_RXQ3_COAL)] =
607	    MSINUM_INTR_SOURCE(1, N_INTR_RXQ3_COAL);
608	map[MSINUM_REG_INDEX(N_INTR_RXQ0_COAL_TO)] =
609	    MSINUM_INTR_SOURCE(1, N_INTR_RXQ0_COAL_TO);
610	map[MSINUM_REG_INDEX(N_INTR_RXQ1_COAL_TO)] =
611	    MSINUM_INTR_SOURCE(1, N_INTR_RXQ1_COAL_TO);
612	map[MSINUM_REG_INDEX(N_INTR_RXQ2_COAL_TO)] =
613	    MSINUM_INTR_SOURCE(1, N_INTR_RXQ2_COAL_TO);
614	map[MSINUM_REG_INDEX(N_INTR_RXQ3_COAL_TO)] =
615	    MSINUM_INTR_SOURCE(1, N_INTR_RXQ3_COAL_TO);
616
617	/* Map all other interrupts source to MSI/MSIX vector 0. */
618	CSR_WRITE_4(sc, JME_MSINUM_BASE + sizeof(uint32_t) * 0, map[0]);
619	CSR_WRITE_4(sc, JME_MSINUM_BASE + sizeof(uint32_t) * 1, map[1]);
620	CSR_WRITE_4(sc, JME_MSINUM_BASE + sizeof(uint32_t) * 2, map[2]);
621	CSR_WRITE_4(sc, JME_MSINUM_BASE + sizeof(uint32_t) * 3, map[3]);
622}
623
624static int
625jme_attach(device_t dev)
626{
627	struct jme_softc *sc;
628	struct ifnet *ifp;
629	struct mii_softc *miisc;
630	struct mii_data *mii;
631	uint32_t reg;
632	uint16_t burst;
633	int error, i, mii_flags, msic, msixc, pmc;
634
635	error = 0;
636	sc = device_get_softc(dev);
637	sc->jme_dev = dev;
638
639	mtx_init(&sc->jme_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
640	    MTX_DEF);
641	callout_init_mtx(&sc->jme_tick_ch, &sc->jme_mtx, 0);
642	TASK_INIT(&sc->jme_int_task, 0, jme_int_task, sc);
643	TASK_INIT(&sc->jme_link_task, 0, jme_link_task, sc);
644
645	/*
646	 * Map the device. JMC250 supports both memory mapped and I/O
647	 * register space access. Because I/O register access should
648	 * use different BARs to access registers it's waste of time
649	 * to use I/O register spce access. JMC250 uses 16K to map
650	 * entire memory space.
651	 */
652	pci_enable_busmaster(dev);
653	sc->jme_res_spec = jme_res_spec_mem;
654	sc->jme_irq_spec = jme_irq_spec_legacy;
655	error = bus_alloc_resources(dev, sc->jme_res_spec, sc->jme_res);
656	if (error != 0) {
657		device_printf(dev, "cannot allocate memory resources.\n");
658		goto fail;
659	}
660
661	/* Allocate IRQ resources. */
662	msixc = pci_msix_count(dev);
663	msic = pci_msi_count(dev);
664	if (bootverbose) {
665		device_printf(dev, "MSIX count : %d\n", msixc);
666		device_printf(dev, "MSI count : %d\n", msic);
667	}
668
669	/* Use 1 MSI/MSI-X. */
670	if (msixc > 1)
671		msixc = 1;
672	if (msic > 1)
673		msic = 1;
674	/* Prefer MSIX over MSI. */
675	if (msix_disable == 0 || msi_disable == 0) {
676		if (msix_disable == 0 && msixc > 0 &&
677		    pci_alloc_msix(dev, &msixc) == 0) {
678			if (msixc == 1) {
679				device_printf(dev, "Using %d MSIX messages.\n",
680				    msixc);
681				sc->jme_flags |= JME_FLAG_MSIX;
682				sc->jme_irq_spec = jme_irq_spec_msi;
683			} else
684				pci_release_msi(dev);
685		}
686		if (msi_disable == 0 && (sc->jme_flags & JME_FLAG_MSIX) == 0 &&
687		    msic > 0 && pci_alloc_msi(dev, &msic) == 0) {
688			if (msic == 1) {
689				device_printf(dev, "Using %d MSI messages.\n",
690				    msic);
691				sc->jme_flags |= JME_FLAG_MSI;
692				sc->jme_irq_spec = jme_irq_spec_msi;
693			} else
694				pci_release_msi(dev);
695		}
696		/* Map interrupt vector 0, 1 and 2. */
697		if ((sc->jme_flags & JME_FLAG_MSI) != 0 ||
698		    (sc->jme_flags & JME_FLAG_MSIX) != 0)
699			jme_map_intr_vector(sc);
700	}
701
702	error = bus_alloc_resources(dev, sc->jme_irq_spec, sc->jme_irq);
703	if (error != 0) {
704		device_printf(dev, "cannot allocate IRQ resources.\n");
705		goto fail;
706	}
707
708	sc->jme_rev = pci_get_device(dev);
709	if ((sc->jme_rev & DEVICEID_JMC2XX_MASK) == DEVICEID_JMC260) {
710		sc->jme_flags |= JME_FLAG_FASTETH;
711		sc->jme_flags |= JME_FLAG_NOJUMBO;
712	}
713	reg = CSR_READ_4(sc, JME_CHIPMODE);
714	sc->jme_chip_rev = (reg & CHIPMODE_REV_MASK) >> CHIPMODE_REV_SHIFT;
715	if (((reg & CHIPMODE_FPGA_REV_MASK) >> CHIPMODE_FPGA_REV_SHIFT) !=
716	    CHIPMODE_NOT_FPGA)
717		sc->jme_flags |= JME_FLAG_FPGA;
718	if (bootverbose) {
719		device_printf(dev, "PCI device revision : 0x%04x\n",
720		    sc->jme_rev);
721		device_printf(dev, "Chip revision : 0x%02x\n",
722		    sc->jme_chip_rev);
723		if ((sc->jme_flags & JME_FLAG_FPGA) != 0)
724			device_printf(dev, "FPGA revision : 0x%04x\n",
725			    (reg & CHIPMODE_FPGA_REV_MASK) >>
726			    CHIPMODE_FPGA_REV_SHIFT);
727	}
728	if (sc->jme_chip_rev == 0xFF) {
729		device_printf(dev, "Unknown chip revision : 0x%02x\n",
730		    sc->jme_rev);
731		error = ENXIO;
732		goto fail;
733	}
734
735	/* Identify controller features and bugs. */
736	if (CHIPMODE_REVFM(sc->jme_chip_rev) >= 2) {
737		if ((sc->jme_rev & DEVICEID_JMC2XX_MASK) == DEVICEID_JMC260 &&
738		    CHIPMODE_REVFM(sc->jme_chip_rev) == 2)
739			sc->jme_flags |= JME_FLAG_DMA32BIT;
740		if (CHIPMODE_REVFM(sc->jme_chip_rev) >= 5)
741			sc->jme_flags |= JME_FLAG_EFUSE | JME_FLAG_PCCPCD;
742		sc->jme_flags |= JME_FLAG_TXCLK | JME_FLAG_RXCLK;
743		sc->jme_flags |= JME_FLAG_HWMIB;
744	}
745
746	/* Reset the ethernet controller. */
747	jme_reset(sc);
748
749	/* Get station address. */
750	if ((sc->jme_flags & JME_FLAG_EFUSE) != 0) {
751		error = jme_efuse_macaddr(sc);
752		if (error == 0)
753			jme_reg_macaddr(sc);
754	} else {
755		error = ENOENT;
756		reg = CSR_READ_4(sc, JME_SMBCSR);
757		if ((reg & SMBCSR_EEPROM_PRESENT) != 0)
758			error = jme_eeprom_macaddr(sc);
759		if (error != 0 && bootverbose)
760			device_printf(sc->jme_dev,
761			    "ethernet hardware address not found in EEPROM.\n");
762		if (error != 0)
763			jme_reg_macaddr(sc);
764	}
765
766	/*
767	 * Save PHY address.
768	 * Integrated JR0211 has fixed PHY address whereas FPGA version
769	 * requires PHY probing to get correct PHY address.
770	 */
771	if ((sc->jme_flags & JME_FLAG_FPGA) == 0) {
772		sc->jme_phyaddr = CSR_READ_4(sc, JME_GPREG0) &
773		    GPREG0_PHY_ADDR_MASK;
774		if (bootverbose)
775			device_printf(dev, "PHY is at address %d.\n",
776			    sc->jme_phyaddr);
777	} else
778		sc->jme_phyaddr = 0;
779
780	/* Set max allowable DMA size. */
781	if (pci_find_extcap(dev, PCIY_EXPRESS, &i) == 0) {
782		sc->jme_flags |= JME_FLAG_PCIE;
783		burst = pci_read_config(dev, i + PCIR_EXPRESS_DEVICE_CTL, 2);
784		if (bootverbose) {
785			device_printf(dev, "Read request size : %d bytes.\n",
786			    128 << ((burst >> 12) & 0x07));
787			device_printf(dev, "TLP payload size : %d bytes.\n",
788			    128 << ((burst >> 5) & 0x07));
789		}
790		switch ((burst >> 12) & 0x07) {
791		case 0:
792			sc->jme_tx_dma_size = TXCSR_DMA_SIZE_128;
793			break;
794		case 1:
795			sc->jme_tx_dma_size = TXCSR_DMA_SIZE_256;
796			break;
797		default:
798			sc->jme_tx_dma_size = TXCSR_DMA_SIZE_512;
799			break;
800		}
801		sc->jme_rx_dma_size = RXCSR_DMA_SIZE_128;
802	} else {
803		sc->jme_tx_dma_size = TXCSR_DMA_SIZE_512;
804		sc->jme_rx_dma_size = RXCSR_DMA_SIZE_128;
805	}
806	/* Create coalescing sysctl node. */
807	jme_sysctl_node(sc);
808	if ((error = jme_dma_alloc(sc) != 0))
809		goto fail;
810
811	ifp = sc->jme_ifp = if_alloc(IFT_ETHER);
812	if (ifp == NULL) {
813		device_printf(dev, "cannot allocate ifnet structure.\n");
814		error = ENXIO;
815		goto fail;
816	}
817
818	ifp->if_softc = sc;
819	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
820	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
821	ifp->if_ioctl = jme_ioctl;
822	ifp->if_start = jme_start;
823	ifp->if_init = jme_init;
824	ifp->if_snd.ifq_drv_maxlen = JME_TX_RING_CNT - 1;
825	IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen);
826	IFQ_SET_READY(&ifp->if_snd);
827	/* JMC250 supports Tx/Rx checksum offload as well as TSO. */
828	ifp->if_capabilities = IFCAP_HWCSUM | IFCAP_TSO4;
829	ifp->if_hwassist = JME_CSUM_FEATURES | CSUM_TSO;
830	if (pci_find_extcap(dev, PCIY_PMG, &pmc) == 0) {
831		sc->jme_flags |= JME_FLAG_PMCAP;
832		ifp->if_capabilities |= IFCAP_WOL_MAGIC;
833	}
834	ifp->if_capenable = ifp->if_capabilities;
835
836	/* Wakeup PHY. */
837	jme_phy_up(sc);
838	mii_flags = MIIF_DOPAUSE;
839	/* Ask PHY calibration to PHY driver. */
840	if (CHIPMODE_REVFM(sc->jme_chip_rev) >= 5)
841		mii_flags |= MIIF_MACPRIV0;
842	/* Set up MII bus. */
843	error = mii_attach(dev, &sc->jme_miibus, ifp, jme_mediachange,
844	    jme_mediastatus, BMSR_DEFCAPMASK,
845	    sc->jme_flags & JME_FLAG_FPGA ? MII_PHY_ANY : sc->jme_phyaddr,
846	    MII_OFFSET_ANY, mii_flags);
847	if (error != 0) {
848		device_printf(dev, "attaching PHYs failed\n");
849		goto fail;
850	}
851
852	/*
853	 * Force PHY to FPGA mode.
854	 */
855	if ((sc->jme_flags & JME_FLAG_FPGA) != 0) {
856		mii = device_get_softc(sc->jme_miibus);
857		if (mii->mii_instance != 0) {
858			LIST_FOREACH(miisc, &mii->mii_phys, mii_list) {
859				if (miisc->mii_phy != 0) {
860					sc->jme_phyaddr = miisc->mii_phy;
861					break;
862				}
863			}
864			if (sc->jme_phyaddr != 0) {
865				device_printf(sc->jme_dev,
866				    "FPGA PHY is at %d\n", sc->jme_phyaddr);
867				/* vendor magic. */
868				jme_miibus_writereg(dev, sc->jme_phyaddr, 27,
869				    0x0004);
870			}
871		}
872	}
873
874	ether_ifattach(ifp, sc->jme_eaddr);
875
876	/* VLAN capability setup */
877	ifp->if_capabilities |= IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING |
878	    IFCAP_VLAN_HWCSUM | IFCAP_VLAN_HWTSO;
879	ifp->if_capenable = ifp->if_capabilities;
880
881	/* Tell the upper layer(s) we support long frames. */
882	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
883
884	/* Create local taskq. */
885	sc->jme_tq = taskqueue_create_fast("jme_taskq", M_WAITOK,
886	    taskqueue_thread_enqueue, &sc->jme_tq);
887	if (sc->jme_tq == NULL) {
888		device_printf(dev, "could not create taskqueue.\n");
889		ether_ifdetach(ifp);
890		error = ENXIO;
891		goto fail;
892	}
893	taskqueue_start_threads(&sc->jme_tq, 1, PI_NET, "%s taskq",
894	    device_get_nameunit(sc->jme_dev));
895
896	for (i = 0; i < 1; i++) {
897		error = bus_setup_intr(dev, sc->jme_irq[i],
898		    INTR_TYPE_NET | INTR_MPSAFE, jme_intr, NULL, sc,
899		    &sc->jme_intrhand[i]);
900		if (error != 0)
901			break;
902	}
903
904	if (error != 0) {
905		device_printf(dev, "could not set up interrupt handler.\n");
906		taskqueue_free(sc->jme_tq);
907		sc->jme_tq = NULL;
908		ether_ifdetach(ifp);
909		goto fail;
910	}
911
912fail:
913	if (error != 0)
914		jme_detach(dev);
915
916	return (error);
917}
918
919static int
920jme_detach(device_t dev)
921{
922	struct jme_softc *sc;
923	struct ifnet *ifp;
924	int i;
925
926	sc = device_get_softc(dev);
927
928	ifp = sc->jme_ifp;
929	if (device_is_attached(dev)) {
930		JME_LOCK(sc);
931		sc->jme_flags |= JME_FLAG_DETACH;
932		jme_stop(sc);
933		JME_UNLOCK(sc);
934		callout_drain(&sc->jme_tick_ch);
935		taskqueue_drain(sc->jme_tq, &sc->jme_int_task);
936		taskqueue_drain(taskqueue_swi, &sc->jme_link_task);
937		/* Restore possibly modified station address. */
938		if ((sc->jme_flags & JME_FLAG_EFUSE) != 0)
939			jme_set_macaddr(sc, sc->jme_eaddr);
940		ether_ifdetach(ifp);
941	}
942
943	if (sc->jme_tq != NULL) {
944		taskqueue_drain(sc->jme_tq, &sc->jme_int_task);
945		taskqueue_free(sc->jme_tq);
946		sc->jme_tq = NULL;
947	}
948
949	if (sc->jme_miibus != NULL) {
950		device_delete_child(dev, sc->jme_miibus);
951		sc->jme_miibus = NULL;
952	}
953	bus_generic_detach(dev);
954	jme_dma_free(sc);
955
956	if (ifp != NULL) {
957		if_free(ifp);
958		sc->jme_ifp = NULL;
959	}
960
961	for (i = 0; i < 1; i++) {
962		if (sc->jme_intrhand[i] != NULL) {
963			bus_teardown_intr(dev, sc->jme_irq[i],
964			    sc->jme_intrhand[i]);
965			sc->jme_intrhand[i] = NULL;
966		}
967	}
968
969	if (sc->jme_irq[0] != NULL)
970		bus_release_resources(dev, sc->jme_irq_spec, sc->jme_irq);
971	if ((sc->jme_flags & (JME_FLAG_MSIX | JME_FLAG_MSI)) != 0)
972		pci_release_msi(dev);
973	if (sc->jme_res[0] != NULL)
974		bus_release_resources(dev, sc->jme_res_spec, sc->jme_res);
975	mtx_destroy(&sc->jme_mtx);
976
977	return (0);
978}
979
980#define	JME_SYSCTL_STAT_ADD32(c, h, n, p, d)	\
981	    SYSCTL_ADD_UINT(c, h, OID_AUTO, n, CTLFLAG_RD, p, 0, d)
982
983static void
984jme_sysctl_node(struct jme_softc *sc)
985{
986	struct sysctl_ctx_list *ctx;
987	struct sysctl_oid_list *child, *parent;
988	struct sysctl_oid *tree;
989	struct jme_hw_stats *stats;
990	int error;
991
992	stats = &sc->jme_stats;
993	ctx = device_get_sysctl_ctx(sc->jme_dev);
994	child = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->jme_dev));
995
996	SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "tx_coal_to",
997	    CTLTYPE_INT | CTLFLAG_RW, &sc->jme_tx_coal_to, 0,
998	    sysctl_hw_jme_tx_coal_to, "I", "jme tx coalescing timeout");
999
1000	SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "tx_coal_pkt",
1001	    CTLTYPE_INT | CTLFLAG_RW, &sc->jme_tx_coal_pkt, 0,
1002	    sysctl_hw_jme_tx_coal_pkt, "I", "jme tx coalescing packet");
1003
1004	SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "rx_coal_to",
1005	    CTLTYPE_INT | CTLFLAG_RW, &sc->jme_rx_coal_to, 0,
1006	    sysctl_hw_jme_rx_coal_to, "I", "jme rx coalescing timeout");
1007
1008	SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "rx_coal_pkt",
1009	    CTLTYPE_INT | CTLFLAG_RW, &sc->jme_rx_coal_pkt, 0,
1010	    sysctl_hw_jme_rx_coal_pkt, "I", "jme rx coalescing packet");
1011
1012	SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "process_limit",
1013	    CTLTYPE_INT | CTLFLAG_RW, &sc->jme_process_limit, 0,
1014	    sysctl_hw_jme_proc_limit, "I",
1015	    "max number of Rx events to process");
1016
1017	/* Pull in device tunables. */
1018	sc->jme_process_limit = JME_PROC_DEFAULT;
1019	error = resource_int_value(device_get_name(sc->jme_dev),
1020	    device_get_unit(sc->jme_dev), "process_limit",
1021	    &sc->jme_process_limit);
1022	if (error == 0) {
1023		if (sc->jme_process_limit < JME_PROC_MIN ||
1024		    sc->jme_process_limit > JME_PROC_MAX) {
1025			device_printf(sc->jme_dev,
1026			    "process_limit value out of range; "
1027			    "using default: %d\n", JME_PROC_DEFAULT);
1028			sc->jme_process_limit = JME_PROC_DEFAULT;
1029		}
1030	}
1031
1032	sc->jme_tx_coal_to = PCCTX_COAL_TO_DEFAULT;
1033	error = resource_int_value(device_get_name(sc->jme_dev),
1034	    device_get_unit(sc->jme_dev), "tx_coal_to", &sc->jme_tx_coal_to);
1035	if (error == 0) {
1036		if (sc->jme_tx_coal_to < PCCTX_COAL_TO_MIN ||
1037		    sc->jme_tx_coal_to > PCCTX_COAL_TO_MAX) {
1038			device_printf(sc->jme_dev,
1039			    "tx_coal_to value out of range; "
1040			    "using default: %d\n", PCCTX_COAL_TO_DEFAULT);
1041			sc->jme_tx_coal_to = PCCTX_COAL_TO_DEFAULT;
1042		}
1043	}
1044
1045	sc->jme_tx_coal_pkt = PCCTX_COAL_PKT_DEFAULT;
1046	error = resource_int_value(device_get_name(sc->jme_dev),
1047	    device_get_unit(sc->jme_dev), "tx_coal_pkt", &sc->jme_tx_coal_to);
1048	if (error == 0) {
1049		if (sc->jme_tx_coal_pkt < PCCTX_COAL_PKT_MIN ||
1050		    sc->jme_tx_coal_pkt > PCCTX_COAL_PKT_MAX) {
1051			device_printf(sc->jme_dev,
1052			    "tx_coal_pkt value out of range; "
1053			    "using default: %d\n", PCCTX_COAL_PKT_DEFAULT);
1054			sc->jme_tx_coal_pkt = PCCTX_COAL_PKT_DEFAULT;
1055		}
1056	}
1057
1058	sc->jme_rx_coal_to = PCCRX_COAL_TO_DEFAULT;
1059	error = resource_int_value(device_get_name(sc->jme_dev),
1060	    device_get_unit(sc->jme_dev), "rx_coal_to", &sc->jme_rx_coal_to);
1061	if (error == 0) {
1062		if (sc->jme_rx_coal_to < PCCRX_COAL_TO_MIN ||
1063		    sc->jme_rx_coal_to > PCCRX_COAL_TO_MAX) {
1064			device_printf(sc->jme_dev,
1065			    "rx_coal_to value out of range; "
1066			    "using default: %d\n", PCCRX_COAL_TO_DEFAULT);
1067			sc->jme_rx_coal_to = PCCRX_COAL_TO_DEFAULT;
1068		}
1069	}
1070
1071	sc->jme_rx_coal_pkt = PCCRX_COAL_PKT_DEFAULT;
1072	error = resource_int_value(device_get_name(sc->jme_dev),
1073	    device_get_unit(sc->jme_dev), "rx_coal_pkt", &sc->jme_rx_coal_to);
1074	if (error == 0) {
1075		if (sc->jme_rx_coal_pkt < PCCRX_COAL_PKT_MIN ||
1076		    sc->jme_rx_coal_pkt > PCCRX_COAL_PKT_MAX) {
1077			device_printf(sc->jme_dev,
1078			    "tx_coal_pkt value out of range; "
1079			    "using default: %d\n", PCCRX_COAL_PKT_DEFAULT);
1080			sc->jme_rx_coal_pkt = PCCRX_COAL_PKT_DEFAULT;
1081		}
1082	}
1083
1084	if ((sc->jme_flags & JME_FLAG_HWMIB) == 0)
1085		return;
1086
1087	tree = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "stats", CTLFLAG_RD,
1088	    NULL, "JME statistics");
1089	parent = SYSCTL_CHILDREN(tree);
1090
1091	/* Rx statistics. */
1092	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "rx", CTLFLAG_RD,
1093	    NULL, "Rx MAC statistics");
1094	child = SYSCTL_CHILDREN(tree);
1095	JME_SYSCTL_STAT_ADD32(ctx, child, "good_frames",
1096	    &stats->rx_good_frames, "Good frames");
1097	JME_SYSCTL_STAT_ADD32(ctx, child, "crc_errs",
1098	    &stats->rx_crc_errs, "CRC errors");
1099	JME_SYSCTL_STAT_ADD32(ctx, child, "mii_errs",
1100	    &stats->rx_mii_errs, "MII errors");
1101	JME_SYSCTL_STAT_ADD32(ctx, child, "fifo_oflows",
1102	    &stats->rx_fifo_oflows, "FIFO overflows");
1103	JME_SYSCTL_STAT_ADD32(ctx, child, "desc_empty",
1104	    &stats->rx_desc_empty, "Descriptor empty");
1105	JME_SYSCTL_STAT_ADD32(ctx, child, "bad_frames",
1106	    &stats->rx_bad_frames, "Bad frames");
1107
1108	/* Tx statistics. */
1109	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "tx", CTLFLAG_RD,
1110	    NULL, "Tx MAC statistics");
1111	child = SYSCTL_CHILDREN(tree);
1112	JME_SYSCTL_STAT_ADD32(ctx, child, "good_frames",
1113	    &stats->tx_good_frames, "Good frames");
1114	JME_SYSCTL_STAT_ADD32(ctx, child, "bad_frames",
1115	    &stats->tx_bad_frames, "Bad frames");
1116}
1117
1118#undef	JME_SYSCTL_STAT_ADD32
1119
1120struct jme_dmamap_arg {
1121	bus_addr_t	jme_busaddr;
1122};
1123
1124static void
1125jme_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
1126{
1127	struct jme_dmamap_arg *ctx;
1128
1129	if (error != 0)
1130		return;
1131
1132	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
1133
1134	ctx = (struct jme_dmamap_arg *)arg;
1135	ctx->jme_busaddr = segs[0].ds_addr;
1136}
1137
1138static int
1139jme_dma_alloc(struct jme_softc *sc)
1140{
1141	struct jme_dmamap_arg ctx;
1142	struct jme_txdesc *txd;
1143	struct jme_rxdesc *rxd;
1144	bus_addr_t lowaddr, rx_ring_end, tx_ring_end;
1145	int error, i;
1146
1147	lowaddr = BUS_SPACE_MAXADDR;
1148	if ((sc->jme_flags & JME_FLAG_DMA32BIT) != 0)
1149		lowaddr = BUS_SPACE_MAXADDR_32BIT;
1150
1151again:
1152	/* Create parent ring tag. */
1153	error = bus_dma_tag_create(bus_get_dma_tag(sc->jme_dev),/* parent */
1154	    1, 0,			/* algnmnt, boundary */
1155	    lowaddr,			/* lowaddr */
1156	    BUS_SPACE_MAXADDR,		/* highaddr */
1157	    NULL, NULL,			/* filter, filterarg */
1158	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
1159	    0,				/* nsegments */
1160	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
1161	    0,				/* flags */
1162	    NULL, NULL,			/* lockfunc, lockarg */
1163	    &sc->jme_cdata.jme_ring_tag);
1164	if (error != 0) {
1165		device_printf(sc->jme_dev,
1166		    "could not create parent ring DMA tag.\n");
1167		goto fail;
1168	}
1169	/* Create tag for Tx ring. */
1170	error = bus_dma_tag_create(sc->jme_cdata.jme_ring_tag,/* parent */
1171	    JME_TX_RING_ALIGN, 0,	/* algnmnt, boundary */
1172	    BUS_SPACE_MAXADDR,		/* lowaddr */
1173	    BUS_SPACE_MAXADDR,		/* highaddr */
1174	    NULL, NULL,			/* filter, filterarg */
1175	    JME_TX_RING_SIZE,		/* maxsize */
1176	    1,				/* nsegments */
1177	    JME_TX_RING_SIZE,		/* maxsegsize */
1178	    0,				/* flags */
1179	    NULL, NULL,			/* lockfunc, lockarg */
1180	    &sc->jme_cdata.jme_tx_ring_tag);
1181	if (error != 0) {
1182		device_printf(sc->jme_dev,
1183		    "could not allocate Tx ring DMA tag.\n");
1184		goto fail;
1185	}
1186
1187	/* Create tag for Rx ring. */
1188	error = bus_dma_tag_create(sc->jme_cdata.jme_ring_tag,/* parent */
1189	    JME_RX_RING_ALIGN, 0,	/* algnmnt, boundary */
1190	    lowaddr,			/* lowaddr */
1191	    BUS_SPACE_MAXADDR,		/* highaddr */
1192	    NULL, NULL,			/* filter, filterarg */
1193	    JME_RX_RING_SIZE,		/* maxsize */
1194	    1,				/* nsegments */
1195	    JME_RX_RING_SIZE,		/* maxsegsize */
1196	    0,				/* flags */
1197	    NULL, NULL,			/* lockfunc, lockarg */
1198	    &sc->jme_cdata.jme_rx_ring_tag);
1199	if (error != 0) {
1200		device_printf(sc->jme_dev,
1201		    "could not allocate Rx ring DMA tag.\n");
1202		goto fail;
1203	}
1204
1205	/* Allocate DMA'able memory and load the DMA map for Tx ring. */
1206	error = bus_dmamem_alloc(sc->jme_cdata.jme_tx_ring_tag,
1207	    (void **)&sc->jme_rdata.jme_tx_ring,
1208	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1209	    &sc->jme_cdata.jme_tx_ring_map);
1210	if (error != 0) {
1211		device_printf(sc->jme_dev,
1212		    "could not allocate DMA'able memory for Tx ring.\n");
1213		goto fail;
1214	}
1215
1216	ctx.jme_busaddr = 0;
1217	error = bus_dmamap_load(sc->jme_cdata.jme_tx_ring_tag,
1218	    sc->jme_cdata.jme_tx_ring_map, sc->jme_rdata.jme_tx_ring,
1219	    JME_TX_RING_SIZE, jme_dmamap_cb, &ctx, BUS_DMA_NOWAIT);
1220	if (error != 0 || ctx.jme_busaddr == 0) {
1221		device_printf(sc->jme_dev,
1222		    "could not load DMA'able memory for Tx ring.\n");
1223		goto fail;
1224	}
1225	sc->jme_rdata.jme_tx_ring_paddr = ctx.jme_busaddr;
1226
1227	/* Allocate DMA'able memory and load the DMA map for Rx ring. */
1228	error = bus_dmamem_alloc(sc->jme_cdata.jme_rx_ring_tag,
1229	    (void **)&sc->jme_rdata.jme_rx_ring,
1230	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1231	    &sc->jme_cdata.jme_rx_ring_map);
1232	if (error != 0) {
1233		device_printf(sc->jme_dev,
1234		    "could not allocate DMA'able memory for Rx ring.\n");
1235		goto fail;
1236	}
1237
1238	ctx.jme_busaddr = 0;
1239	error = bus_dmamap_load(sc->jme_cdata.jme_rx_ring_tag,
1240	    sc->jme_cdata.jme_rx_ring_map, sc->jme_rdata.jme_rx_ring,
1241	    JME_RX_RING_SIZE, jme_dmamap_cb, &ctx, BUS_DMA_NOWAIT);
1242	if (error != 0 || ctx.jme_busaddr == 0) {
1243		device_printf(sc->jme_dev,
1244		    "could not load DMA'able memory for Rx ring.\n");
1245		goto fail;
1246	}
1247	sc->jme_rdata.jme_rx_ring_paddr = ctx.jme_busaddr;
1248
1249	if (lowaddr != BUS_SPACE_MAXADDR_32BIT) {
1250		/* Tx/Rx descriptor queue should reside within 4GB boundary. */
1251		tx_ring_end = sc->jme_rdata.jme_tx_ring_paddr +
1252		    JME_TX_RING_SIZE;
1253		rx_ring_end = sc->jme_rdata.jme_rx_ring_paddr +
1254		    JME_RX_RING_SIZE;
1255		if ((JME_ADDR_HI(tx_ring_end) !=
1256		    JME_ADDR_HI(sc->jme_rdata.jme_tx_ring_paddr)) ||
1257		    (JME_ADDR_HI(rx_ring_end) !=
1258		     JME_ADDR_HI(sc->jme_rdata.jme_rx_ring_paddr))) {
1259			device_printf(sc->jme_dev, "4GB boundary crossed, "
1260			    "switching to 32bit DMA address mode.\n");
1261			jme_dma_free(sc);
1262			/* Limit DMA address space to 32bit and try again. */
1263			lowaddr = BUS_SPACE_MAXADDR_32BIT;
1264			goto again;
1265		}
1266	}
1267
1268	lowaddr = BUS_SPACE_MAXADDR;
1269	if ((sc->jme_flags & JME_FLAG_DMA32BIT) != 0)
1270		lowaddr = BUS_SPACE_MAXADDR_32BIT;
1271	/* Create parent buffer tag. */
1272	error = bus_dma_tag_create(bus_get_dma_tag(sc->jme_dev),/* parent */
1273	    1, 0,			/* algnmnt, boundary */
1274	    lowaddr,			/* lowaddr */
1275	    BUS_SPACE_MAXADDR,		/* highaddr */
1276	    NULL, NULL,			/* filter, filterarg */
1277	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
1278	    0,				/* nsegments */
1279	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
1280	    0,				/* flags */
1281	    NULL, NULL,			/* lockfunc, lockarg */
1282	    &sc->jme_cdata.jme_buffer_tag);
1283	if (error != 0) {
1284		device_printf(sc->jme_dev,
1285		    "could not create parent buffer DMA tag.\n");
1286		goto fail;
1287	}
1288
1289	/* Create shadow status block tag. */
1290	error = bus_dma_tag_create(sc->jme_cdata.jme_buffer_tag,/* parent */
1291	    JME_SSB_ALIGN, 0,		/* algnmnt, boundary */
1292	    BUS_SPACE_MAXADDR,		/* lowaddr */
1293	    BUS_SPACE_MAXADDR,		/* highaddr */
1294	    NULL, NULL,			/* filter, filterarg */
1295	    JME_SSB_SIZE,		/* maxsize */
1296	    1,				/* nsegments */
1297	    JME_SSB_SIZE,		/* maxsegsize */
1298	    0,				/* flags */
1299	    NULL, NULL,			/* lockfunc, lockarg */
1300	    &sc->jme_cdata.jme_ssb_tag);
1301	if (error != 0) {
1302		device_printf(sc->jme_dev,
1303		    "could not create shared status block DMA tag.\n");
1304		goto fail;
1305	}
1306
1307	/* Create tag for Tx buffers. */
1308	error = bus_dma_tag_create(sc->jme_cdata.jme_buffer_tag,/* parent */
1309	    1, 0,			/* algnmnt, boundary */
1310	    BUS_SPACE_MAXADDR,		/* lowaddr */
1311	    BUS_SPACE_MAXADDR,		/* highaddr */
1312	    NULL, NULL,			/* filter, filterarg */
1313	    JME_TSO_MAXSIZE,		/* maxsize */
1314	    JME_MAXTXSEGS,		/* nsegments */
1315	    JME_TSO_MAXSEGSIZE,		/* maxsegsize */
1316	    0,				/* flags */
1317	    NULL, NULL,			/* lockfunc, lockarg */
1318	    &sc->jme_cdata.jme_tx_tag);
1319	if (error != 0) {
1320		device_printf(sc->jme_dev, "could not create Tx DMA tag.\n");
1321		goto fail;
1322	}
1323
1324	/* Create tag for Rx buffers. */
1325	error = bus_dma_tag_create(sc->jme_cdata.jme_buffer_tag,/* parent */
1326	    JME_RX_BUF_ALIGN, 0,	/* algnmnt, boundary */
1327	    BUS_SPACE_MAXADDR,		/* lowaddr */
1328	    BUS_SPACE_MAXADDR,		/* highaddr */
1329	    NULL, NULL,			/* filter, filterarg */
1330	    MCLBYTES,			/* maxsize */
1331	    1,				/* nsegments */
1332	    MCLBYTES,			/* maxsegsize */
1333	    0,				/* flags */
1334	    NULL, NULL,			/* lockfunc, lockarg */
1335	    &sc->jme_cdata.jme_rx_tag);
1336	if (error != 0) {
1337		device_printf(sc->jme_dev, "could not create Rx DMA tag.\n");
1338		goto fail;
1339	}
1340
1341	/*
1342	 * Allocate DMA'able memory and load the DMA map for shared
1343	 * status block.
1344	 */
1345	error = bus_dmamem_alloc(sc->jme_cdata.jme_ssb_tag,
1346	    (void **)&sc->jme_rdata.jme_ssb_block,
1347	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1348	    &sc->jme_cdata.jme_ssb_map);
1349	if (error != 0) {
1350		device_printf(sc->jme_dev, "could not allocate DMA'able "
1351		    "memory for shared status block.\n");
1352		goto fail;
1353	}
1354
1355	ctx.jme_busaddr = 0;
1356	error = bus_dmamap_load(sc->jme_cdata.jme_ssb_tag,
1357	    sc->jme_cdata.jme_ssb_map, sc->jme_rdata.jme_ssb_block,
1358	    JME_SSB_SIZE, jme_dmamap_cb, &ctx, BUS_DMA_NOWAIT);
1359	if (error != 0 || ctx.jme_busaddr == 0) {
1360		device_printf(sc->jme_dev, "could not load DMA'able memory "
1361		    "for shared status block.\n");
1362		goto fail;
1363	}
1364	sc->jme_rdata.jme_ssb_block_paddr = ctx.jme_busaddr;
1365
1366	/* Create DMA maps for Tx buffers. */
1367	for (i = 0; i < JME_TX_RING_CNT; i++) {
1368		txd = &sc->jme_cdata.jme_txdesc[i];
1369		txd->tx_m = NULL;
1370		txd->tx_dmamap = NULL;
1371		error = bus_dmamap_create(sc->jme_cdata.jme_tx_tag, 0,
1372		    &txd->tx_dmamap);
1373		if (error != 0) {
1374			device_printf(sc->jme_dev,
1375			    "could not create Tx dmamap.\n");
1376			goto fail;
1377		}
1378	}
1379	/* Create DMA maps for Rx buffers. */
1380	if ((error = bus_dmamap_create(sc->jme_cdata.jme_rx_tag, 0,
1381	    &sc->jme_cdata.jme_rx_sparemap)) != 0) {
1382		device_printf(sc->jme_dev,
1383		    "could not create spare Rx dmamap.\n");
1384		goto fail;
1385	}
1386	for (i = 0; i < JME_RX_RING_CNT; i++) {
1387		rxd = &sc->jme_cdata.jme_rxdesc[i];
1388		rxd->rx_m = NULL;
1389		rxd->rx_dmamap = NULL;
1390		error = bus_dmamap_create(sc->jme_cdata.jme_rx_tag, 0,
1391		    &rxd->rx_dmamap);
1392		if (error != 0) {
1393			device_printf(sc->jme_dev,
1394			    "could not create Rx dmamap.\n");
1395			goto fail;
1396		}
1397	}
1398
1399fail:
1400	return (error);
1401}
1402
1403static void
1404jme_dma_free(struct jme_softc *sc)
1405{
1406	struct jme_txdesc *txd;
1407	struct jme_rxdesc *rxd;
1408	int i;
1409
1410	/* Tx ring */
1411	if (sc->jme_cdata.jme_tx_ring_tag != NULL) {
1412		if (sc->jme_cdata.jme_tx_ring_map)
1413			bus_dmamap_unload(sc->jme_cdata.jme_tx_ring_tag,
1414			    sc->jme_cdata.jme_tx_ring_map);
1415		if (sc->jme_cdata.jme_tx_ring_map &&
1416		    sc->jme_rdata.jme_tx_ring)
1417			bus_dmamem_free(sc->jme_cdata.jme_tx_ring_tag,
1418			    sc->jme_rdata.jme_tx_ring,
1419			    sc->jme_cdata.jme_tx_ring_map);
1420		sc->jme_rdata.jme_tx_ring = NULL;
1421		sc->jme_cdata.jme_tx_ring_map = NULL;
1422		bus_dma_tag_destroy(sc->jme_cdata.jme_tx_ring_tag);
1423		sc->jme_cdata.jme_tx_ring_tag = NULL;
1424	}
1425	/* Rx ring */
1426	if (sc->jme_cdata.jme_rx_ring_tag != NULL) {
1427		if (sc->jme_cdata.jme_rx_ring_map)
1428			bus_dmamap_unload(sc->jme_cdata.jme_rx_ring_tag,
1429			    sc->jme_cdata.jme_rx_ring_map);
1430		if (sc->jme_cdata.jme_rx_ring_map &&
1431		    sc->jme_rdata.jme_rx_ring)
1432			bus_dmamem_free(sc->jme_cdata.jme_rx_ring_tag,
1433			    sc->jme_rdata.jme_rx_ring,
1434			    sc->jme_cdata.jme_rx_ring_map);
1435		sc->jme_rdata.jme_rx_ring = NULL;
1436		sc->jme_cdata.jme_rx_ring_map = NULL;
1437		bus_dma_tag_destroy(sc->jme_cdata.jme_rx_ring_tag);
1438		sc->jme_cdata.jme_rx_ring_tag = NULL;
1439	}
1440	/* Tx buffers */
1441	if (sc->jme_cdata.jme_tx_tag != NULL) {
1442		for (i = 0; i < JME_TX_RING_CNT; i++) {
1443			txd = &sc->jme_cdata.jme_txdesc[i];
1444			if (txd->tx_dmamap != NULL) {
1445				bus_dmamap_destroy(sc->jme_cdata.jme_tx_tag,
1446				    txd->tx_dmamap);
1447				txd->tx_dmamap = NULL;
1448			}
1449		}
1450		bus_dma_tag_destroy(sc->jme_cdata.jme_tx_tag);
1451		sc->jme_cdata.jme_tx_tag = NULL;
1452	}
1453	/* Rx buffers */
1454	if (sc->jme_cdata.jme_rx_tag != NULL) {
1455		for (i = 0; i < JME_RX_RING_CNT; i++) {
1456			rxd = &sc->jme_cdata.jme_rxdesc[i];
1457			if (rxd->rx_dmamap != NULL) {
1458				bus_dmamap_destroy(sc->jme_cdata.jme_rx_tag,
1459				    rxd->rx_dmamap);
1460				rxd->rx_dmamap = NULL;
1461			}
1462		}
1463		if (sc->jme_cdata.jme_rx_sparemap != NULL) {
1464			bus_dmamap_destroy(sc->jme_cdata.jme_rx_tag,
1465			    sc->jme_cdata.jme_rx_sparemap);
1466			sc->jme_cdata.jme_rx_sparemap = NULL;
1467		}
1468		bus_dma_tag_destroy(sc->jme_cdata.jme_rx_tag);
1469		sc->jme_cdata.jme_rx_tag = NULL;
1470	}
1471
1472	/* Shared status block. */
1473	if (sc->jme_cdata.jme_ssb_tag != NULL) {
1474		if (sc->jme_cdata.jme_ssb_map)
1475			bus_dmamap_unload(sc->jme_cdata.jme_ssb_tag,
1476			    sc->jme_cdata.jme_ssb_map);
1477		if (sc->jme_cdata.jme_ssb_map && sc->jme_rdata.jme_ssb_block)
1478			bus_dmamem_free(sc->jme_cdata.jme_ssb_tag,
1479			    sc->jme_rdata.jme_ssb_block,
1480			    sc->jme_cdata.jme_ssb_map);
1481		sc->jme_rdata.jme_ssb_block = NULL;
1482		sc->jme_cdata.jme_ssb_map = NULL;
1483		bus_dma_tag_destroy(sc->jme_cdata.jme_ssb_tag);
1484		sc->jme_cdata.jme_ssb_tag = NULL;
1485	}
1486
1487	if (sc->jme_cdata.jme_buffer_tag != NULL) {
1488		bus_dma_tag_destroy(sc->jme_cdata.jme_buffer_tag);
1489		sc->jme_cdata.jme_buffer_tag = NULL;
1490	}
1491	if (sc->jme_cdata.jme_ring_tag != NULL) {
1492		bus_dma_tag_destroy(sc->jme_cdata.jme_ring_tag);
1493		sc->jme_cdata.jme_ring_tag = NULL;
1494	}
1495}
1496
1497/*
1498 *	Make sure the interface is stopped at reboot time.
1499 */
1500static int
1501jme_shutdown(device_t dev)
1502{
1503
1504	return (jme_suspend(dev));
1505}
1506
1507/*
1508 * Unlike other ethernet controllers, JMC250 requires
1509 * explicit resetting link speed to 10/100Mbps as gigabit
1510 * link will cunsume more power than 375mA.
1511 * Note, we reset the link speed to 10/100Mbps with
1512 * auto-negotiation but we don't know whether that operation
1513 * would succeed or not as we have no control after powering
1514 * off. If the renegotiation fail WOL may not work. Running
1515 * at 1Gbps draws more power than 375mA at 3.3V which is
1516 * specified in PCI specification and that would result in
1517 * complete shutdowning power to ethernet controller.
1518 *
1519 * TODO
1520 *  Save current negotiated media speed/duplex/flow-control
1521 *  to softc and restore the same link again after resuming.
1522 *  PHY handling such as power down/resetting to 100Mbps
1523 *  may be better handled in suspend method in phy driver.
1524 */
1525static void
1526jme_setlinkspeed(struct jme_softc *sc)
1527{
1528	struct mii_data *mii;
1529	int aneg, i;
1530
1531	JME_LOCK_ASSERT(sc);
1532
1533	mii = device_get_softc(sc->jme_miibus);
1534	mii_pollstat(mii);
1535	aneg = 0;
1536	if ((mii->mii_media_status & IFM_AVALID) != 0) {
1537		switch IFM_SUBTYPE(mii->mii_media_active) {
1538		case IFM_10_T:
1539		case IFM_100_TX:
1540			return;
1541		case IFM_1000_T:
1542			aneg++;
1543		default:
1544			break;
1545		}
1546	}
1547	jme_miibus_writereg(sc->jme_dev, sc->jme_phyaddr, MII_100T2CR, 0);
1548	jme_miibus_writereg(sc->jme_dev, sc->jme_phyaddr, MII_ANAR,
1549	    ANAR_TX_FD | ANAR_TX | ANAR_10_FD | ANAR_10 | ANAR_CSMA);
1550	jme_miibus_writereg(sc->jme_dev, sc->jme_phyaddr, MII_BMCR,
1551	    BMCR_AUTOEN | BMCR_STARTNEG);
1552	DELAY(1000);
1553	if (aneg != 0) {
1554		/* Poll link state until jme(4) get a 10/100 link. */
1555		for (i = 0; i < MII_ANEGTICKS_GIGE; i++) {
1556			mii_pollstat(mii);
1557			if ((mii->mii_media_status & IFM_AVALID) != 0) {
1558				switch (IFM_SUBTYPE(mii->mii_media_active)) {
1559				case IFM_10_T:
1560				case IFM_100_TX:
1561					jme_mac_config(sc);
1562					return;
1563				default:
1564					break;
1565				}
1566			}
1567			JME_UNLOCK(sc);
1568			pause("jmelnk", hz);
1569			JME_LOCK(sc);
1570		}
1571		if (i == MII_ANEGTICKS_GIGE)
1572			device_printf(sc->jme_dev, "establishing link failed, "
1573			    "WOL may not work!");
1574	}
1575	/*
1576	 * No link, force MAC to have 100Mbps, full-duplex link.
1577	 * This is the last resort and may/may not work.
1578	 */
1579	mii->mii_media_status = IFM_AVALID | IFM_ACTIVE;
1580	mii->mii_media_active = IFM_ETHER | IFM_100_TX | IFM_FDX;
1581	jme_mac_config(sc);
1582}
1583
1584static void
1585jme_setwol(struct jme_softc *sc)
1586{
1587	struct ifnet *ifp;
1588	uint32_t gpr, pmcs;
1589	uint16_t pmstat;
1590	int pmc;
1591
1592	JME_LOCK_ASSERT(sc);
1593
1594	if (pci_find_extcap(sc->jme_dev, PCIY_PMG, &pmc) != 0) {
1595		/* Remove Tx MAC/offload clock to save more power. */
1596		if ((sc->jme_flags & JME_FLAG_TXCLK) != 0)
1597			CSR_WRITE_4(sc, JME_GHC, CSR_READ_4(sc, JME_GHC) &
1598			    ~(GHC_TX_OFFLD_CLK_100 | GHC_TX_MAC_CLK_100 |
1599			    GHC_TX_OFFLD_CLK_1000 | GHC_TX_MAC_CLK_1000));
1600		if ((sc->jme_flags & JME_FLAG_RXCLK) != 0)
1601			CSR_WRITE_4(sc, JME_GPREG1,
1602			    CSR_READ_4(sc, JME_GPREG1) | GPREG1_RX_MAC_CLK_DIS);
1603		/* No PME capability, PHY power down. */
1604		jme_phy_down(sc);
1605		return;
1606	}
1607
1608	ifp = sc->jme_ifp;
1609	gpr = CSR_READ_4(sc, JME_GPREG0) & ~GPREG0_PME_ENB;
1610	pmcs = CSR_READ_4(sc, JME_PMCS);
1611	pmcs &= ~PMCS_WOL_ENB_MASK;
1612	if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0) {
1613		pmcs |= PMCS_MAGIC_FRAME | PMCS_MAGIC_FRAME_ENB;
1614		/* Enable PME message. */
1615		gpr |= GPREG0_PME_ENB;
1616		/* For gigabit controllers, reset link speed to 10/100. */
1617		if ((sc->jme_flags & JME_FLAG_FASTETH) == 0)
1618			jme_setlinkspeed(sc);
1619	}
1620
1621	CSR_WRITE_4(sc, JME_PMCS, pmcs);
1622	CSR_WRITE_4(sc, JME_GPREG0, gpr);
1623	/* Remove Tx MAC/offload clock to save more power. */
1624	if ((sc->jme_flags & JME_FLAG_TXCLK) != 0)
1625		CSR_WRITE_4(sc, JME_GHC, CSR_READ_4(sc, JME_GHC) &
1626		    ~(GHC_TX_OFFLD_CLK_100 | GHC_TX_MAC_CLK_100 |
1627		    GHC_TX_OFFLD_CLK_1000 | GHC_TX_MAC_CLK_1000));
1628	/* Request PME. */
1629	pmstat = pci_read_config(sc->jme_dev, pmc + PCIR_POWER_STATUS, 2);
1630	pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
1631	if ((ifp->if_capenable & IFCAP_WOL) != 0)
1632		pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
1633	pci_write_config(sc->jme_dev, pmc + PCIR_POWER_STATUS, pmstat, 2);
1634	if ((ifp->if_capenable & IFCAP_WOL) == 0) {
1635		/* No WOL, PHY power down. */
1636		jme_phy_down(sc);
1637	}
1638}
1639
1640static int
1641jme_suspend(device_t dev)
1642{
1643	struct jme_softc *sc;
1644
1645	sc = device_get_softc(dev);
1646
1647	JME_LOCK(sc);
1648	jme_stop(sc);
1649	jme_setwol(sc);
1650	JME_UNLOCK(sc);
1651
1652	return (0);
1653}
1654
1655static int
1656jme_resume(device_t dev)
1657{
1658	struct jme_softc *sc;
1659	struct ifnet *ifp;
1660	uint16_t pmstat;
1661	int pmc;
1662
1663	sc = device_get_softc(dev);
1664
1665	JME_LOCK(sc);
1666	if (pci_find_extcap(sc->jme_dev, PCIY_PMG, &pmc) != 0) {
1667		pmstat = pci_read_config(sc->jme_dev,
1668		    pmc + PCIR_POWER_STATUS, 2);
1669		/* Disable PME clear PME status. */
1670		pmstat &= ~PCIM_PSTAT_PMEENABLE;
1671		pci_write_config(sc->jme_dev,
1672		    pmc + PCIR_POWER_STATUS, pmstat, 2);
1673	}
1674	/* Wakeup PHY. */
1675	jme_phy_up(sc);
1676	ifp = sc->jme_ifp;
1677	if ((ifp->if_flags & IFF_UP) != 0) {
1678		ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1679		jme_init_locked(sc);
1680	}
1681
1682	JME_UNLOCK(sc);
1683
1684	return (0);
1685}
1686
1687static int
1688jme_encap(struct jme_softc *sc, struct mbuf **m_head)
1689{
1690	struct jme_txdesc *txd;
1691	struct jme_desc *desc;
1692	struct mbuf *m;
1693	bus_dma_segment_t txsegs[JME_MAXTXSEGS];
1694	int error, i, nsegs, prod;
1695	uint32_t cflags, tso_segsz;
1696
1697	JME_LOCK_ASSERT(sc);
1698
1699	M_ASSERTPKTHDR((*m_head));
1700
1701	if (((*m_head)->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
1702		/*
1703		 * Due to the adherence to NDIS specification JMC250
1704		 * assumes upper stack computed TCP pseudo checksum
1705		 * without including payload length. This breaks
1706		 * checksum offload for TSO case so recompute TCP
1707		 * pseudo checksum for JMC250. Hopefully this wouldn't
1708		 * be much burden on modern CPUs.
1709		 */
1710		struct ether_header *eh;
1711		struct ip *ip;
1712		struct tcphdr *tcp;
1713		uint32_t ip_off, poff;
1714
1715		if (M_WRITABLE(*m_head) == 0) {
1716			/* Get a writable copy. */
1717			m = m_dup(*m_head, M_DONTWAIT);
1718			m_freem(*m_head);
1719			if (m == NULL) {
1720				*m_head = NULL;
1721				return (ENOBUFS);
1722			}
1723			*m_head = m;
1724		}
1725		ip_off = sizeof(struct ether_header);
1726		m = m_pullup(*m_head, ip_off);
1727		if (m == NULL) {
1728			*m_head = NULL;
1729			return (ENOBUFS);
1730		}
1731		eh = mtod(m, struct ether_header *);
1732		/* Check the existence of VLAN tag. */
1733		if (eh->ether_type == htons(ETHERTYPE_VLAN)) {
1734			ip_off = sizeof(struct ether_vlan_header);
1735			m = m_pullup(m, ip_off);
1736			if (m == NULL) {
1737				*m_head = NULL;
1738				return (ENOBUFS);
1739			}
1740		}
1741		m = m_pullup(m, ip_off + sizeof(struct ip));
1742		if (m == NULL) {
1743			*m_head = NULL;
1744			return (ENOBUFS);
1745		}
1746		ip = (struct ip *)(mtod(m, char *) + ip_off);
1747		poff = ip_off + (ip->ip_hl << 2);
1748		m = m_pullup(m, poff + sizeof(struct tcphdr));
1749		if (m == NULL) {
1750			*m_head = NULL;
1751			return (ENOBUFS);
1752		}
1753		/*
1754		 * Reset IP checksum and recompute TCP pseudo
1755		 * checksum that NDIS specification requires.
1756		 */
1757		ip = (struct ip *)(mtod(m, char *) + ip_off);
1758		tcp = (struct tcphdr *)(mtod(m, char *) + poff);
1759		ip->ip_sum = 0;
1760		if (poff + (tcp->th_off << 2) == m->m_pkthdr.len) {
1761			tcp->th_sum = in_pseudo(ip->ip_src.s_addr,
1762			    ip->ip_dst.s_addr,
1763			    htons((tcp->th_off << 2) + IPPROTO_TCP));
1764			/* No need to TSO, force IP checksum offload. */
1765			(*m_head)->m_pkthdr.csum_flags &= ~CSUM_TSO;
1766			(*m_head)->m_pkthdr.csum_flags |= CSUM_IP;
1767		} else
1768			tcp->th_sum = in_pseudo(ip->ip_src.s_addr,
1769			    ip->ip_dst.s_addr, htons(IPPROTO_TCP));
1770		*m_head = m;
1771	}
1772
1773	prod = sc->jme_cdata.jme_tx_prod;
1774	txd = &sc->jme_cdata.jme_txdesc[prod];
1775
1776	error = bus_dmamap_load_mbuf_sg(sc->jme_cdata.jme_tx_tag,
1777	    txd->tx_dmamap, *m_head, txsegs, &nsegs, 0);
1778	if (error == EFBIG) {
1779		m = m_collapse(*m_head, M_DONTWAIT, JME_MAXTXSEGS);
1780		if (m == NULL) {
1781			m_freem(*m_head);
1782			*m_head = NULL;
1783			return (ENOMEM);
1784		}
1785		*m_head = m;
1786		error = bus_dmamap_load_mbuf_sg(sc->jme_cdata.jme_tx_tag,
1787		    txd->tx_dmamap, *m_head, txsegs, &nsegs, 0);
1788		if (error != 0) {
1789			m_freem(*m_head);
1790			*m_head = NULL;
1791			return (error);
1792		}
1793	} else if (error != 0)
1794		return (error);
1795	if (nsegs == 0) {
1796		m_freem(*m_head);
1797		*m_head = NULL;
1798		return (EIO);
1799	}
1800
1801	/*
1802	 * Check descriptor overrun. Leave one free descriptor.
1803	 * Since we always use 64bit address mode for transmitting,
1804	 * each Tx request requires one more dummy descriptor.
1805	 */
1806	if (sc->jme_cdata.jme_tx_cnt + nsegs + 1 > JME_TX_RING_CNT - 1) {
1807		bus_dmamap_unload(sc->jme_cdata.jme_tx_tag, txd->tx_dmamap);
1808		return (ENOBUFS);
1809	}
1810
1811	m = *m_head;
1812	cflags = 0;
1813	tso_segsz = 0;
1814	/* Configure checksum offload and TSO. */
1815	if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
1816		tso_segsz = (uint32_t)m->m_pkthdr.tso_segsz <<
1817		    JME_TD_MSS_SHIFT;
1818		cflags |= JME_TD_TSO;
1819	} else {
1820		if ((m->m_pkthdr.csum_flags & CSUM_IP) != 0)
1821			cflags |= JME_TD_IPCSUM;
1822		if ((m->m_pkthdr.csum_flags & CSUM_TCP) != 0)
1823			cflags |= JME_TD_TCPCSUM;
1824		if ((m->m_pkthdr.csum_flags & CSUM_UDP) != 0)
1825			cflags |= JME_TD_UDPCSUM;
1826	}
1827	/* Configure VLAN. */
1828	if ((m->m_flags & M_VLANTAG) != 0) {
1829		cflags |= (m->m_pkthdr.ether_vtag & JME_TD_VLAN_MASK);
1830		cflags |= JME_TD_VLAN_TAG;
1831	}
1832
1833	desc = &sc->jme_rdata.jme_tx_ring[prod];
1834	desc->flags = htole32(cflags);
1835	desc->buflen = htole32(tso_segsz);
1836	desc->addr_hi = htole32(m->m_pkthdr.len);
1837	desc->addr_lo = 0;
1838	sc->jme_cdata.jme_tx_cnt++;
1839	JME_DESC_INC(prod, JME_TX_RING_CNT);
1840	for (i = 0; i < nsegs; i++) {
1841		desc = &sc->jme_rdata.jme_tx_ring[prod];
1842		desc->flags = htole32(JME_TD_OWN | JME_TD_64BIT);
1843		desc->buflen = htole32(txsegs[i].ds_len);
1844		desc->addr_hi = htole32(JME_ADDR_HI(txsegs[i].ds_addr));
1845		desc->addr_lo = htole32(JME_ADDR_LO(txsegs[i].ds_addr));
1846		sc->jme_cdata.jme_tx_cnt++;
1847		JME_DESC_INC(prod, JME_TX_RING_CNT);
1848	}
1849
1850	/* Update producer index. */
1851	sc->jme_cdata.jme_tx_prod = prod;
1852	/*
1853	 * Finally request interrupt and give the first descriptor
1854	 * owenership to hardware.
1855	 */
1856	desc = txd->tx_desc;
1857	desc->flags |= htole32(JME_TD_OWN | JME_TD_INTR);
1858
1859	txd->tx_m = m;
1860	txd->tx_ndesc = nsegs + 1;
1861
1862	/* Sync descriptors. */
1863	bus_dmamap_sync(sc->jme_cdata.jme_tx_tag, txd->tx_dmamap,
1864	    BUS_DMASYNC_PREWRITE);
1865	bus_dmamap_sync(sc->jme_cdata.jme_tx_ring_tag,
1866	    sc->jme_cdata.jme_tx_ring_map,
1867	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1868
1869	return (0);
1870}
1871
1872static void
1873jme_start(struct ifnet *ifp)
1874{
1875        struct jme_softc *sc;
1876
1877	sc = ifp->if_softc;
1878	JME_LOCK(sc);
1879	jme_start_locked(ifp);
1880	JME_UNLOCK(sc);
1881}
1882
1883static void
1884jme_start_locked(struct ifnet *ifp)
1885{
1886        struct jme_softc *sc;
1887        struct mbuf *m_head;
1888	int enq;
1889
1890	sc = ifp->if_softc;
1891
1892	JME_LOCK_ASSERT(sc);
1893
1894	if (sc->jme_cdata.jme_tx_cnt >= JME_TX_DESC_HIWAT)
1895		jme_txeof(sc);
1896
1897	if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
1898	    IFF_DRV_RUNNING || (sc->jme_flags & JME_FLAG_LINK) == 0)
1899		return;
1900
1901	for (enq = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd); ) {
1902		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
1903		if (m_head == NULL)
1904			break;
1905		/*
1906		 * Pack the data into the transmit ring. If we
1907		 * don't have room, set the OACTIVE flag and wait
1908		 * for the NIC to drain the ring.
1909		 */
1910		if (jme_encap(sc, &m_head)) {
1911			if (m_head == NULL)
1912				break;
1913			IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
1914			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1915			break;
1916		}
1917
1918		enq++;
1919		/*
1920		 * If there's a BPF listener, bounce a copy of this frame
1921		 * to him.
1922		 */
1923		ETHER_BPF_MTAP(ifp, m_head);
1924	}
1925
1926	if (enq > 0) {
1927		/*
1928		 * Reading TXCSR takes very long time under heavy load
1929		 * so cache TXCSR value and writes the ORed value with
1930		 * the kick command to the TXCSR. This saves one register
1931		 * access cycle.
1932		 */
1933		CSR_WRITE_4(sc, JME_TXCSR, sc->jme_txcsr | TXCSR_TX_ENB |
1934		    TXCSR_TXQ_N_START(TXCSR_TXQ0));
1935		/* Set a timeout in case the chip goes out to lunch. */
1936		sc->jme_watchdog_timer = JME_TX_TIMEOUT;
1937	}
1938}
1939
1940static void
1941jme_watchdog(struct jme_softc *sc)
1942{
1943	struct ifnet *ifp;
1944
1945	JME_LOCK_ASSERT(sc);
1946
1947	if (sc->jme_watchdog_timer == 0 || --sc->jme_watchdog_timer)
1948		return;
1949
1950	ifp = sc->jme_ifp;
1951	if ((sc->jme_flags & JME_FLAG_LINK) == 0) {
1952		if_printf(sc->jme_ifp, "watchdog timeout (missed link)\n");
1953		ifp->if_oerrors++;
1954		ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1955		jme_init_locked(sc);
1956		return;
1957	}
1958	jme_txeof(sc);
1959	if (sc->jme_cdata.jme_tx_cnt == 0) {
1960		if_printf(sc->jme_ifp,
1961		    "watchdog timeout (missed Tx interrupts) -- recovering\n");
1962		if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1963			jme_start_locked(ifp);
1964		return;
1965	}
1966
1967	if_printf(sc->jme_ifp, "watchdog timeout\n");
1968	ifp->if_oerrors++;
1969	ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1970	jme_init_locked(sc);
1971	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1972		jme_start_locked(ifp);
1973}
1974
1975static int
1976jme_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1977{
1978	struct jme_softc *sc;
1979	struct ifreq *ifr;
1980	struct mii_data *mii;
1981	uint32_t reg;
1982	int error, mask;
1983
1984	sc = ifp->if_softc;
1985	ifr = (struct ifreq *)data;
1986	error = 0;
1987	switch (cmd) {
1988	case SIOCSIFMTU:
1989		if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > JME_JUMBO_MTU ||
1990		    ((sc->jme_flags & JME_FLAG_NOJUMBO) != 0 &&
1991		    ifr->ifr_mtu > JME_MAX_MTU)) {
1992			error = EINVAL;
1993			break;
1994		}
1995
1996		if (ifp->if_mtu != ifr->ifr_mtu) {
1997			/*
1998			 * No special configuration is required when interface
1999			 * MTU is changed but availability of TSO/Tx checksum
2000			 * offload should be chcked against new MTU size as
2001			 * FIFO size is just 2K.
2002			 */
2003			JME_LOCK(sc);
2004			if (ifr->ifr_mtu >= JME_TX_FIFO_SIZE) {
2005				ifp->if_capenable &=
2006				    ~(IFCAP_TXCSUM | IFCAP_TSO4);
2007				ifp->if_hwassist &=
2008				    ~(JME_CSUM_FEATURES | CSUM_TSO);
2009				VLAN_CAPABILITIES(ifp);
2010			}
2011			ifp->if_mtu = ifr->ifr_mtu;
2012			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
2013				ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2014				jme_init_locked(sc);
2015			}
2016			JME_UNLOCK(sc);
2017		}
2018		break;
2019	case SIOCSIFFLAGS:
2020		JME_LOCK(sc);
2021		if ((ifp->if_flags & IFF_UP) != 0) {
2022			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
2023				if (((ifp->if_flags ^ sc->jme_if_flags)
2024				    & (IFF_PROMISC | IFF_ALLMULTI)) != 0)
2025					jme_set_filter(sc);
2026			} else {
2027				if ((sc->jme_flags & JME_FLAG_DETACH) == 0)
2028					jme_init_locked(sc);
2029			}
2030		} else {
2031			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
2032				jme_stop(sc);
2033		}
2034		sc->jme_if_flags = ifp->if_flags;
2035		JME_UNLOCK(sc);
2036		break;
2037	case SIOCADDMULTI:
2038	case SIOCDELMULTI:
2039		JME_LOCK(sc);
2040		if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
2041			jme_set_filter(sc);
2042		JME_UNLOCK(sc);
2043		break;
2044	case SIOCSIFMEDIA:
2045	case SIOCGIFMEDIA:
2046		mii = device_get_softc(sc->jme_miibus);
2047		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd);
2048		break;
2049	case SIOCSIFCAP:
2050		JME_LOCK(sc);
2051		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
2052		if ((mask & IFCAP_TXCSUM) != 0 &&
2053		    ifp->if_mtu < JME_TX_FIFO_SIZE) {
2054			if ((IFCAP_TXCSUM & ifp->if_capabilities) != 0) {
2055				ifp->if_capenable ^= IFCAP_TXCSUM;
2056				if ((IFCAP_TXCSUM & ifp->if_capenable) != 0)
2057					ifp->if_hwassist |= JME_CSUM_FEATURES;
2058				else
2059					ifp->if_hwassist &= ~JME_CSUM_FEATURES;
2060			}
2061		}
2062		if ((mask & IFCAP_RXCSUM) != 0 &&
2063		    (IFCAP_RXCSUM & ifp->if_capabilities) != 0) {
2064			ifp->if_capenable ^= IFCAP_RXCSUM;
2065			reg = CSR_READ_4(sc, JME_RXMAC);
2066			reg &= ~RXMAC_CSUM_ENB;
2067			if ((ifp->if_capenable & IFCAP_RXCSUM) != 0)
2068				reg |= RXMAC_CSUM_ENB;
2069			CSR_WRITE_4(sc, JME_RXMAC, reg);
2070		}
2071		if ((mask & IFCAP_TSO4) != 0 &&
2072		    ifp->if_mtu < JME_TX_FIFO_SIZE) {
2073			if ((IFCAP_TSO4 & ifp->if_capabilities) != 0) {
2074				ifp->if_capenable ^= IFCAP_TSO4;
2075				if ((IFCAP_TSO4 & ifp->if_capenable) != 0)
2076					ifp->if_hwassist |= CSUM_TSO;
2077				else
2078					ifp->if_hwassist &= ~CSUM_TSO;
2079			}
2080		}
2081		if ((mask & IFCAP_WOL_MAGIC) != 0 &&
2082		    (IFCAP_WOL_MAGIC & ifp->if_capabilities) != 0)
2083			ifp->if_capenable ^= IFCAP_WOL_MAGIC;
2084		if ((mask & IFCAP_VLAN_HWCSUM) != 0 &&
2085		    (ifp->if_capabilities & IFCAP_VLAN_HWCSUM) != 0)
2086			ifp->if_capenable ^= IFCAP_VLAN_HWCSUM;
2087		if ((mask & IFCAP_VLAN_HWTSO) != 0 &&
2088		    (ifp->if_capabilities & IFCAP_VLAN_HWTSO) != 0)
2089			ifp->if_capenable ^= IFCAP_VLAN_HWTSO;
2090		if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
2091		    (IFCAP_VLAN_HWTAGGING & ifp->if_capabilities) != 0) {
2092			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
2093			jme_set_vlan(sc);
2094		}
2095		JME_UNLOCK(sc);
2096		VLAN_CAPABILITIES(ifp);
2097		break;
2098	default:
2099		error = ether_ioctl(ifp, cmd, data);
2100		break;
2101	}
2102
2103	return (error);
2104}
2105
2106static void
2107jme_mac_config(struct jme_softc *sc)
2108{
2109	struct mii_data *mii;
2110	uint32_t ghc, gpreg, rxmac, txmac, txpause;
2111	uint32_t txclk;
2112
2113	JME_LOCK_ASSERT(sc);
2114
2115	mii = device_get_softc(sc->jme_miibus);
2116
2117	CSR_WRITE_4(sc, JME_GHC, GHC_RESET);
2118	DELAY(10);
2119	CSR_WRITE_4(sc, JME_GHC, 0);
2120	ghc = 0;
2121	txclk = 0;
2122	rxmac = CSR_READ_4(sc, JME_RXMAC);
2123	rxmac &= ~RXMAC_FC_ENB;
2124	txmac = CSR_READ_4(sc, JME_TXMAC);
2125	txmac &= ~(TXMAC_CARRIER_EXT | TXMAC_FRAME_BURST);
2126	txpause = CSR_READ_4(sc, JME_TXPFC);
2127	txpause &= ~TXPFC_PAUSE_ENB;
2128	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
2129		ghc |= GHC_FULL_DUPLEX;
2130		rxmac &= ~RXMAC_COLL_DET_ENB;
2131		txmac &= ~(TXMAC_COLL_ENB | TXMAC_CARRIER_SENSE |
2132		    TXMAC_BACKOFF | TXMAC_CARRIER_EXT |
2133		    TXMAC_FRAME_BURST);
2134		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
2135			txpause |= TXPFC_PAUSE_ENB;
2136		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
2137			rxmac |= RXMAC_FC_ENB;
2138		/* Disable retry transmit timer/retry limit. */
2139		CSR_WRITE_4(sc, JME_TXTRHD, CSR_READ_4(sc, JME_TXTRHD) &
2140		    ~(TXTRHD_RT_PERIOD_ENB | TXTRHD_RT_LIMIT_ENB));
2141	} else {
2142		rxmac |= RXMAC_COLL_DET_ENB;
2143		txmac |= TXMAC_COLL_ENB | TXMAC_CARRIER_SENSE | TXMAC_BACKOFF;
2144		/* Enable retry transmit timer/retry limit. */
2145		CSR_WRITE_4(sc, JME_TXTRHD, CSR_READ_4(sc, JME_TXTRHD) |
2146		    TXTRHD_RT_PERIOD_ENB | TXTRHD_RT_LIMIT_ENB);
2147	}
2148		/* Reprogram Tx/Rx MACs with resolved speed/duplex. */
2149	switch (IFM_SUBTYPE(mii->mii_media_active)) {
2150	case IFM_10_T:
2151		ghc |= GHC_SPEED_10;
2152		txclk |= GHC_TX_OFFLD_CLK_100 | GHC_TX_MAC_CLK_100;
2153		break;
2154	case IFM_100_TX:
2155		ghc |= GHC_SPEED_100;
2156		txclk |= GHC_TX_OFFLD_CLK_100 | GHC_TX_MAC_CLK_100;
2157		break;
2158	case IFM_1000_T:
2159		if ((sc->jme_flags & JME_FLAG_FASTETH) != 0)
2160			break;
2161		ghc |= GHC_SPEED_1000;
2162		txclk |= GHC_TX_OFFLD_CLK_1000 | GHC_TX_MAC_CLK_1000;
2163		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) == 0)
2164			txmac |= TXMAC_CARRIER_EXT | TXMAC_FRAME_BURST;
2165		break;
2166	default:
2167		break;
2168	}
2169	if (sc->jme_rev == DEVICEID_JMC250 &&
2170	    sc->jme_chip_rev == DEVICEREVID_JMC250_A2) {
2171		/*
2172		 * Workaround occasional packet loss issue of JMC250 A2
2173		 * when it runs on half-duplex media.
2174		 */
2175		gpreg = CSR_READ_4(sc, JME_GPREG1);
2176		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0)
2177			gpreg &= ~GPREG1_HDPX_FIX;
2178		else
2179			gpreg |= GPREG1_HDPX_FIX;
2180		CSR_WRITE_4(sc, JME_GPREG1, gpreg);
2181		/* Workaround CRC errors at 100Mbps on JMC250 A2. */
2182		if (IFM_SUBTYPE(mii->mii_media_active) == IFM_100_TX) {
2183			/* Extend interface FIFO depth. */
2184			jme_miibus_writereg(sc->jme_dev, sc->jme_phyaddr,
2185			    0x1B, 0x0000);
2186		} else {
2187			/* Select default interface FIFO depth. */
2188			jme_miibus_writereg(sc->jme_dev, sc->jme_phyaddr,
2189			    0x1B, 0x0004);
2190		}
2191	}
2192	if ((sc->jme_flags & JME_FLAG_TXCLK) != 0)
2193		ghc |= txclk;
2194	CSR_WRITE_4(sc, JME_GHC, ghc);
2195	CSR_WRITE_4(sc, JME_RXMAC, rxmac);
2196	CSR_WRITE_4(sc, JME_TXMAC, txmac);
2197	CSR_WRITE_4(sc, JME_TXPFC, txpause);
2198}
2199
2200static void
2201jme_link_task(void *arg, int pending)
2202{
2203	struct jme_softc *sc;
2204	struct mii_data *mii;
2205	struct ifnet *ifp;
2206	struct jme_txdesc *txd;
2207	bus_addr_t paddr;
2208	int i;
2209
2210	sc = (struct jme_softc *)arg;
2211
2212	JME_LOCK(sc);
2213	mii = device_get_softc(sc->jme_miibus);
2214	ifp = sc->jme_ifp;
2215	if (mii == NULL || ifp == NULL ||
2216	    (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
2217		JME_UNLOCK(sc);
2218		return;
2219	}
2220
2221	sc->jme_flags &= ~JME_FLAG_LINK;
2222	if ((mii->mii_media_status & IFM_AVALID) != 0) {
2223		switch (IFM_SUBTYPE(mii->mii_media_active)) {
2224		case IFM_10_T:
2225		case IFM_100_TX:
2226			sc->jme_flags |= JME_FLAG_LINK;
2227			break;
2228		case IFM_1000_T:
2229			if ((sc->jme_flags & JME_FLAG_FASTETH) != 0)
2230				break;
2231			sc->jme_flags |= JME_FLAG_LINK;
2232			break;
2233		default:
2234			break;
2235		}
2236	}
2237
2238	/*
2239	 * Disabling Rx/Tx MACs have a side-effect of resetting
2240	 * JME_TXNDA/JME_RXNDA register to the first address of
2241	 * Tx/Rx descriptor address. So driver should reset its
2242	 * internal procucer/consumer pointer and reclaim any
2243	 * allocated resources. Note, just saving the value of
2244	 * JME_TXNDA and JME_RXNDA registers before stopping MAC
2245	 * and restoring JME_TXNDA/JME_RXNDA register is not
2246	 * sufficient to make sure correct MAC state because
2247	 * stopping MAC operation can take a while and hardware
2248	 * might have updated JME_TXNDA/JME_RXNDA registers
2249	 * during the stop operation.
2250	 */
2251	/* Block execution of task. */
2252	taskqueue_block(sc->jme_tq);
2253	/* Disable interrupts and stop driver. */
2254	CSR_WRITE_4(sc, JME_INTR_MASK_CLR, JME_INTRS);
2255	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
2256	callout_stop(&sc->jme_tick_ch);
2257	sc->jme_watchdog_timer = 0;
2258
2259	/* Stop receiver/transmitter. */
2260	jme_stop_rx(sc);
2261	jme_stop_tx(sc);
2262
2263	/* XXX Drain all queued tasks. */
2264	JME_UNLOCK(sc);
2265	taskqueue_drain(sc->jme_tq, &sc->jme_int_task);
2266	JME_LOCK(sc);
2267
2268	if (sc->jme_cdata.jme_rxhead != NULL)
2269		m_freem(sc->jme_cdata.jme_rxhead);
2270	JME_RXCHAIN_RESET(sc);
2271	jme_txeof(sc);
2272	if (sc->jme_cdata.jme_tx_cnt != 0) {
2273		/* Remove queued packets for transmit. */
2274		for (i = 0; i < JME_TX_RING_CNT; i++) {
2275			txd = &sc->jme_cdata.jme_txdesc[i];
2276			if (txd->tx_m != NULL) {
2277				bus_dmamap_sync(
2278				    sc->jme_cdata.jme_tx_tag,
2279				    txd->tx_dmamap,
2280				    BUS_DMASYNC_POSTWRITE);
2281				bus_dmamap_unload(
2282				    sc->jme_cdata.jme_tx_tag,
2283				    txd->tx_dmamap);
2284				m_freem(txd->tx_m);
2285				txd->tx_m = NULL;
2286				txd->tx_ndesc = 0;
2287				ifp->if_oerrors++;
2288			}
2289		}
2290	}
2291
2292	/*
2293	 * Reuse configured Rx descriptors and reset
2294	 * producer/consumer index.
2295	 */
2296	sc->jme_cdata.jme_rx_cons = 0;
2297	sc->jme_morework = 0;
2298	jme_init_tx_ring(sc);
2299	/* Initialize shadow status block. */
2300	jme_init_ssb(sc);
2301
2302	/* Program MAC with resolved speed/duplex/flow-control. */
2303	if ((sc->jme_flags & JME_FLAG_LINK) != 0) {
2304		jme_mac_config(sc);
2305		jme_stats_clear(sc);
2306
2307		CSR_WRITE_4(sc, JME_RXCSR, sc->jme_rxcsr);
2308		CSR_WRITE_4(sc, JME_TXCSR, sc->jme_txcsr);
2309
2310		/* Set Tx ring address to the hardware. */
2311		paddr = JME_TX_RING_ADDR(sc, 0);
2312		CSR_WRITE_4(sc, JME_TXDBA_HI, JME_ADDR_HI(paddr));
2313		CSR_WRITE_4(sc, JME_TXDBA_LO, JME_ADDR_LO(paddr));
2314
2315		/* Set Rx ring address to the hardware. */
2316		paddr = JME_RX_RING_ADDR(sc, 0);
2317		CSR_WRITE_4(sc, JME_RXDBA_HI, JME_ADDR_HI(paddr));
2318		CSR_WRITE_4(sc, JME_RXDBA_LO, JME_ADDR_LO(paddr));
2319
2320		/* Restart receiver/transmitter. */
2321		CSR_WRITE_4(sc, JME_RXCSR, sc->jme_rxcsr | RXCSR_RX_ENB |
2322		    RXCSR_RXQ_START);
2323		CSR_WRITE_4(sc, JME_TXCSR, sc->jme_txcsr | TXCSR_TX_ENB);
2324		/* Lastly enable TX/RX clock. */
2325		if ((sc->jme_flags & JME_FLAG_TXCLK) != 0)
2326			CSR_WRITE_4(sc, JME_GHC,
2327			    CSR_READ_4(sc, JME_GHC) & ~GHC_TX_MAC_CLK_DIS);
2328		if ((sc->jme_flags & JME_FLAG_RXCLK) != 0)
2329			CSR_WRITE_4(sc, JME_GPREG1,
2330			    CSR_READ_4(sc, JME_GPREG1) & ~GPREG1_RX_MAC_CLK_DIS);
2331	}
2332
2333	ifp->if_drv_flags |= IFF_DRV_RUNNING;
2334	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2335	callout_reset(&sc->jme_tick_ch, hz, jme_tick, sc);
2336	/* Unblock execution of task. */
2337	taskqueue_unblock(sc->jme_tq);
2338	/* Reenable interrupts. */
2339	CSR_WRITE_4(sc, JME_INTR_MASK_SET, JME_INTRS);
2340
2341	JME_UNLOCK(sc);
2342}
2343
2344static int
2345jme_intr(void *arg)
2346{
2347	struct jme_softc *sc;
2348	uint32_t status;
2349
2350	sc = (struct jme_softc *)arg;
2351
2352	status = CSR_READ_4(sc, JME_INTR_REQ_STATUS);
2353	if (status == 0 || status == 0xFFFFFFFF)
2354		return (FILTER_STRAY);
2355	/* Disable interrupts. */
2356	CSR_WRITE_4(sc, JME_INTR_MASK_CLR, JME_INTRS);
2357	taskqueue_enqueue(sc->jme_tq, &sc->jme_int_task);
2358
2359	return (FILTER_HANDLED);
2360}
2361
2362static void
2363jme_int_task(void *arg, int pending)
2364{
2365	struct jme_softc *sc;
2366	struct ifnet *ifp;
2367	uint32_t status;
2368	int more;
2369
2370	sc = (struct jme_softc *)arg;
2371	ifp = sc->jme_ifp;
2372
2373	JME_LOCK(sc);
2374	status = CSR_READ_4(sc, JME_INTR_STATUS);
2375	if (sc->jme_morework != 0) {
2376		sc->jme_morework = 0;
2377		status |= INTR_RXQ_COAL | INTR_RXQ_COAL_TO;
2378	}
2379	if ((status & JME_INTRS) == 0 || status == 0xFFFFFFFF)
2380		goto done;
2381	/* Reset PCC counter/timer and Ack interrupts. */
2382	status &= ~(INTR_TXQ_COMP | INTR_RXQ_COMP);
2383	if ((status & (INTR_TXQ_COAL | INTR_TXQ_COAL_TO)) != 0)
2384		status |= INTR_TXQ_COAL | INTR_TXQ_COAL_TO | INTR_TXQ_COMP;
2385	if ((status & (INTR_RXQ_COAL | INTR_RXQ_COAL_TO)) != 0)
2386		status |= INTR_RXQ_COAL | INTR_RXQ_COAL_TO | INTR_RXQ_COMP;
2387	CSR_WRITE_4(sc, JME_INTR_STATUS, status);
2388	more = 0;
2389	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
2390		if ((status & (INTR_RXQ_COAL | INTR_RXQ_COAL_TO)) != 0) {
2391			more = jme_rxintr(sc, sc->jme_process_limit);
2392			if (more != 0)
2393				sc->jme_morework = 1;
2394		}
2395		if ((status & INTR_RXQ_DESC_EMPTY) != 0) {
2396			/*
2397			 * Notify hardware availability of new Rx
2398			 * buffers.
2399			 * Reading RXCSR takes very long time under
2400			 * heavy load so cache RXCSR value and writes
2401			 * the ORed value with the kick command to
2402			 * the RXCSR. This saves one register access
2403			 * cycle.
2404			 */
2405			CSR_WRITE_4(sc, JME_RXCSR, sc->jme_rxcsr |
2406			    RXCSR_RX_ENB | RXCSR_RXQ_START);
2407		}
2408		if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
2409			jme_start_locked(ifp);
2410	}
2411
2412	if (more != 0 || (CSR_READ_4(sc, JME_INTR_STATUS) & JME_INTRS) != 0) {
2413		taskqueue_enqueue(sc->jme_tq, &sc->jme_int_task);
2414		JME_UNLOCK(sc);
2415		return;
2416	}
2417done:
2418	JME_UNLOCK(sc);
2419
2420	/* Reenable interrupts. */
2421	CSR_WRITE_4(sc, JME_INTR_MASK_SET, JME_INTRS);
2422}
2423
2424static void
2425jme_txeof(struct jme_softc *sc)
2426{
2427	struct ifnet *ifp;
2428	struct jme_txdesc *txd;
2429	uint32_t status;
2430	int cons, nsegs;
2431
2432	JME_LOCK_ASSERT(sc);
2433
2434	ifp = sc->jme_ifp;
2435
2436	cons = sc->jme_cdata.jme_tx_cons;
2437	if (cons == sc->jme_cdata.jme_tx_prod)
2438		return;
2439
2440	bus_dmamap_sync(sc->jme_cdata.jme_tx_ring_tag,
2441	    sc->jme_cdata.jme_tx_ring_map,
2442	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2443
2444	/*
2445	 * Go through our Tx list and free mbufs for those
2446	 * frames which have been transmitted.
2447	 */
2448	for (; cons != sc->jme_cdata.jme_tx_prod;) {
2449		txd = &sc->jme_cdata.jme_txdesc[cons];
2450		status = le32toh(txd->tx_desc->flags);
2451		if ((status & JME_TD_OWN) == JME_TD_OWN)
2452			break;
2453
2454		if ((status & (JME_TD_TMOUT | JME_TD_RETRY_EXP)) != 0)
2455			ifp->if_oerrors++;
2456		else {
2457			ifp->if_opackets++;
2458			if ((status & JME_TD_COLLISION) != 0)
2459				ifp->if_collisions +=
2460				    le32toh(txd->tx_desc->buflen) &
2461				    JME_TD_BUF_LEN_MASK;
2462		}
2463		/*
2464		 * Only the first descriptor of multi-descriptor
2465		 * transmission is updated so driver have to skip entire
2466		 * chained buffers for the transmiited frame. In other
2467		 * words, JME_TD_OWN bit is valid only at the first
2468		 * descriptor of a multi-descriptor transmission.
2469		 */
2470		for (nsegs = 0; nsegs < txd->tx_ndesc; nsegs++) {
2471			sc->jme_rdata.jme_tx_ring[cons].flags = 0;
2472			JME_DESC_INC(cons, JME_TX_RING_CNT);
2473		}
2474
2475		/* Reclaim transferred mbufs. */
2476		bus_dmamap_sync(sc->jme_cdata.jme_tx_tag, txd->tx_dmamap,
2477		    BUS_DMASYNC_POSTWRITE);
2478		bus_dmamap_unload(sc->jme_cdata.jme_tx_tag, txd->tx_dmamap);
2479
2480		KASSERT(txd->tx_m != NULL,
2481		    ("%s: freeing NULL mbuf!\n", __func__));
2482		m_freem(txd->tx_m);
2483		txd->tx_m = NULL;
2484		sc->jme_cdata.jme_tx_cnt -= txd->tx_ndesc;
2485		KASSERT(sc->jme_cdata.jme_tx_cnt >= 0,
2486		    ("%s: Active Tx desc counter was garbled\n", __func__));
2487		txd->tx_ndesc = 0;
2488		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2489	}
2490	sc->jme_cdata.jme_tx_cons = cons;
2491	/* Unarm watchog timer when there is no pending descriptors in queue. */
2492	if (sc->jme_cdata.jme_tx_cnt == 0)
2493		sc->jme_watchdog_timer = 0;
2494
2495	bus_dmamap_sync(sc->jme_cdata.jme_tx_ring_tag,
2496	    sc->jme_cdata.jme_tx_ring_map,
2497	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2498}
2499
2500static __inline void
2501jme_discard_rxbuf(struct jme_softc *sc, int cons)
2502{
2503	struct jme_desc *desc;
2504
2505	desc = &sc->jme_rdata.jme_rx_ring[cons];
2506	desc->flags = htole32(JME_RD_OWN | JME_RD_INTR | JME_RD_64BIT);
2507	desc->buflen = htole32(MCLBYTES);
2508}
2509
2510/* Receive a frame. */
2511static void
2512jme_rxeof(struct jme_softc *sc)
2513{
2514	struct ifnet *ifp;
2515	struct jme_desc *desc;
2516	struct jme_rxdesc *rxd;
2517	struct mbuf *mp, *m;
2518	uint32_t flags, status;
2519	int cons, count, nsegs;
2520
2521	JME_LOCK_ASSERT(sc);
2522
2523	ifp = sc->jme_ifp;
2524
2525	cons = sc->jme_cdata.jme_rx_cons;
2526	desc = &sc->jme_rdata.jme_rx_ring[cons];
2527	flags = le32toh(desc->flags);
2528	status = le32toh(desc->buflen);
2529	nsegs = JME_RX_NSEGS(status);
2530	sc->jme_cdata.jme_rxlen = JME_RX_BYTES(status) - JME_RX_PAD_BYTES;
2531	if ((status & JME_RX_ERR_STAT) != 0) {
2532		ifp->if_ierrors++;
2533		jme_discard_rxbuf(sc, sc->jme_cdata.jme_rx_cons);
2534#ifdef JME_SHOW_ERRORS
2535		device_printf(sc->jme_dev, "%s : receive error = 0x%b\n",
2536		    __func__, JME_RX_ERR(status), JME_RX_ERR_BITS);
2537#endif
2538		sc->jme_cdata.jme_rx_cons += nsegs;
2539		sc->jme_cdata.jme_rx_cons %= JME_RX_RING_CNT;
2540		return;
2541	}
2542
2543	for (count = 0; count < nsegs; count++,
2544	    JME_DESC_INC(cons, JME_RX_RING_CNT)) {
2545		rxd = &sc->jme_cdata.jme_rxdesc[cons];
2546		mp = rxd->rx_m;
2547		/* Add a new receive buffer to the ring. */
2548		if (jme_newbuf(sc, rxd) != 0) {
2549			ifp->if_iqdrops++;
2550			/* Reuse buffer. */
2551			for (; count < nsegs; count++) {
2552				jme_discard_rxbuf(sc, cons);
2553				JME_DESC_INC(cons, JME_RX_RING_CNT);
2554			}
2555			if (sc->jme_cdata.jme_rxhead != NULL) {
2556				m_freem(sc->jme_cdata.jme_rxhead);
2557				JME_RXCHAIN_RESET(sc);
2558			}
2559			break;
2560		}
2561
2562		/*
2563		 * Assume we've received a full sized frame.
2564		 * Actual size is fixed when we encounter the end of
2565		 * multi-segmented frame.
2566		 */
2567		mp->m_len = MCLBYTES;
2568
2569		/* Chain received mbufs. */
2570		if (sc->jme_cdata.jme_rxhead == NULL) {
2571			sc->jme_cdata.jme_rxhead = mp;
2572			sc->jme_cdata.jme_rxtail = mp;
2573		} else {
2574			/*
2575			 * Receive processor can receive a maximum frame
2576			 * size of 65535 bytes.
2577			 */
2578			mp->m_flags &= ~M_PKTHDR;
2579			sc->jme_cdata.jme_rxtail->m_next = mp;
2580			sc->jme_cdata.jme_rxtail = mp;
2581		}
2582
2583		if (count == nsegs - 1) {
2584			/* Last desc. for this frame. */
2585			m = sc->jme_cdata.jme_rxhead;
2586			m->m_flags |= M_PKTHDR;
2587			m->m_pkthdr.len = sc->jme_cdata.jme_rxlen;
2588			if (nsegs > 1) {
2589				/* Set first mbuf size. */
2590				m->m_len = MCLBYTES - JME_RX_PAD_BYTES;
2591				/* Set last mbuf size. */
2592				mp->m_len = sc->jme_cdata.jme_rxlen -
2593				    ((MCLBYTES - JME_RX_PAD_BYTES) +
2594				    (MCLBYTES * (nsegs - 2)));
2595			} else
2596				m->m_len = sc->jme_cdata.jme_rxlen;
2597			m->m_pkthdr.rcvif = ifp;
2598
2599			/*
2600			 * Account for 10bytes auto padding which is used
2601			 * to align IP header on 32bit boundary. Also note,
2602			 * CRC bytes is automatically removed by the
2603			 * hardware.
2604			 */
2605			m->m_data += JME_RX_PAD_BYTES;
2606
2607			/* Set checksum information. */
2608			if ((ifp->if_capenable & IFCAP_RXCSUM) != 0 &&
2609			    (flags & JME_RD_IPV4) != 0) {
2610				m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
2611				if ((flags & JME_RD_IPCSUM) != 0)
2612					m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
2613				if (((flags & JME_RD_MORE_FRAG) == 0) &&
2614				    ((flags & (JME_RD_TCP | JME_RD_TCPCSUM)) ==
2615				    (JME_RD_TCP | JME_RD_TCPCSUM) ||
2616				    (flags & (JME_RD_UDP | JME_RD_UDPCSUM)) ==
2617				    (JME_RD_UDP | JME_RD_UDPCSUM))) {
2618					m->m_pkthdr.csum_flags |=
2619					    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
2620					m->m_pkthdr.csum_data = 0xffff;
2621				}
2622			}
2623
2624			/* Check for VLAN tagged packets. */
2625			if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0 &&
2626			    (flags & JME_RD_VLAN_TAG) != 0) {
2627				m->m_pkthdr.ether_vtag =
2628				    flags & JME_RD_VLAN_MASK;
2629				m->m_flags |= M_VLANTAG;
2630			}
2631
2632			ifp->if_ipackets++;
2633			/* Pass it on. */
2634			JME_UNLOCK(sc);
2635			(*ifp->if_input)(ifp, m);
2636			JME_LOCK(sc);
2637
2638			/* Reset mbuf chains. */
2639			JME_RXCHAIN_RESET(sc);
2640		}
2641	}
2642
2643	sc->jme_cdata.jme_rx_cons += nsegs;
2644	sc->jme_cdata.jme_rx_cons %= JME_RX_RING_CNT;
2645}
2646
2647static int
2648jme_rxintr(struct jme_softc *sc, int count)
2649{
2650	struct jme_desc *desc;
2651	int nsegs, prog, pktlen;
2652
2653	bus_dmamap_sync(sc->jme_cdata.jme_rx_ring_tag,
2654	    sc->jme_cdata.jme_rx_ring_map,
2655	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2656
2657	for (prog = 0; count > 0; prog++) {
2658		desc = &sc->jme_rdata.jme_rx_ring[sc->jme_cdata.jme_rx_cons];
2659		if ((le32toh(desc->flags) & JME_RD_OWN) == JME_RD_OWN)
2660			break;
2661		if ((le32toh(desc->buflen) & JME_RD_VALID) == 0)
2662			break;
2663		nsegs = JME_RX_NSEGS(le32toh(desc->buflen));
2664		/*
2665		 * Check number of segments against received bytes.
2666		 * Non-matching value would indicate that hardware
2667		 * is still trying to update Rx descriptors. I'm not
2668		 * sure whether this check is needed.
2669		 */
2670		pktlen = JME_RX_BYTES(le32toh(desc->buflen));
2671		if (nsegs != ((pktlen + (MCLBYTES - 1)) / MCLBYTES))
2672			break;
2673		prog++;
2674		/* Received a frame. */
2675		jme_rxeof(sc);
2676		count -= nsegs;
2677	}
2678
2679	if (prog > 0)
2680		bus_dmamap_sync(sc->jme_cdata.jme_rx_ring_tag,
2681		    sc->jme_cdata.jme_rx_ring_map,
2682		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2683
2684	return (count > 0 ? 0 : EAGAIN);
2685}
2686
2687static void
2688jme_tick(void *arg)
2689{
2690	struct jme_softc *sc;
2691	struct mii_data *mii;
2692
2693	sc = (struct jme_softc *)arg;
2694
2695	JME_LOCK_ASSERT(sc);
2696
2697	mii = device_get_softc(sc->jme_miibus);
2698	mii_tick(mii);
2699	/*
2700	 * Reclaim Tx buffers that have been completed. It's not
2701	 * needed here but it would release allocated mbuf chains
2702	 * faster and limit the maximum delay to a hz.
2703	 */
2704	jme_txeof(sc);
2705	jme_stats_update(sc);
2706	jme_watchdog(sc);
2707	callout_reset(&sc->jme_tick_ch, hz, jme_tick, sc);
2708}
2709
2710static void
2711jme_reset(struct jme_softc *sc)
2712{
2713	uint32_t ghc, gpreg;
2714
2715	/* Stop receiver, transmitter. */
2716	jme_stop_rx(sc);
2717	jme_stop_tx(sc);
2718
2719	/* Reset controller. */
2720	CSR_WRITE_4(sc, JME_GHC, GHC_RESET);
2721	CSR_READ_4(sc, JME_GHC);
2722	DELAY(10);
2723	/*
2724	 * Workaround Rx FIFO overruns seen under certain conditions.
2725	 * Explicitly synchorize TX/RX clock.  TX/RX clock should be
2726	 * enabled only after enabling TX/RX MACs.
2727	 */
2728	if ((sc->jme_flags & (JME_FLAG_TXCLK | JME_FLAG_RXCLK)) != 0) {
2729		/* Disable TX clock. */
2730		CSR_WRITE_4(sc, JME_GHC, GHC_RESET | GHC_TX_MAC_CLK_DIS);
2731		/* Disable RX clock. */
2732		gpreg = CSR_READ_4(sc, JME_GPREG1);
2733		CSR_WRITE_4(sc, JME_GPREG1, gpreg | GPREG1_RX_MAC_CLK_DIS);
2734		gpreg = CSR_READ_4(sc, JME_GPREG1);
2735		/* De-assert RESET but still disable TX clock. */
2736		CSR_WRITE_4(sc, JME_GHC, GHC_TX_MAC_CLK_DIS);
2737		ghc = CSR_READ_4(sc, JME_GHC);
2738
2739		/* Enable TX clock. */
2740		CSR_WRITE_4(sc, JME_GHC, ghc & ~GHC_TX_MAC_CLK_DIS);
2741		/* Enable RX clock. */
2742		CSR_WRITE_4(sc, JME_GPREG1, gpreg & ~GPREG1_RX_MAC_CLK_DIS);
2743		CSR_READ_4(sc, JME_GPREG1);
2744
2745		/* Disable TX/RX clock again. */
2746		CSR_WRITE_4(sc, JME_GHC, GHC_TX_MAC_CLK_DIS);
2747		CSR_WRITE_4(sc, JME_GPREG1, gpreg | GPREG1_RX_MAC_CLK_DIS);
2748	} else
2749		CSR_WRITE_4(sc, JME_GHC, 0);
2750	CSR_READ_4(sc, JME_GHC);
2751	DELAY(10);
2752}
2753
2754static void
2755jme_init(void *xsc)
2756{
2757	struct jme_softc *sc;
2758
2759	sc = (struct jme_softc *)xsc;
2760	JME_LOCK(sc);
2761	jme_init_locked(sc);
2762	JME_UNLOCK(sc);
2763}
2764
2765static void
2766jme_init_locked(struct jme_softc *sc)
2767{
2768	struct ifnet *ifp;
2769	struct mii_data *mii;
2770	bus_addr_t paddr;
2771	uint32_t reg;
2772	int error;
2773
2774	JME_LOCK_ASSERT(sc);
2775
2776	ifp = sc->jme_ifp;
2777	mii = device_get_softc(sc->jme_miibus);
2778
2779	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
2780		return;
2781	/*
2782	 * Cancel any pending I/O.
2783	 */
2784	jme_stop(sc);
2785
2786	/*
2787	 * Reset the chip to a known state.
2788	 */
2789	jme_reset(sc);
2790
2791	/* Init descriptors. */
2792	error = jme_init_rx_ring(sc);
2793        if (error != 0) {
2794                device_printf(sc->jme_dev,
2795                    "%s: initialization failed: no memory for Rx buffers.\n",
2796		    __func__);
2797                jme_stop(sc);
2798		return;
2799        }
2800	jme_init_tx_ring(sc);
2801	/* Initialize shadow status block. */
2802	jme_init_ssb(sc);
2803
2804	/* Reprogram the station address. */
2805	jme_set_macaddr(sc, IF_LLADDR(sc->jme_ifp));
2806
2807	/*
2808	 * Configure Tx queue.
2809	 *  Tx priority queue weight value : 0
2810	 *  Tx FIFO threshold for processing next packet : 16QW
2811	 *  Maximum Tx DMA length : 512
2812	 *  Allow Tx DMA burst.
2813	 */
2814	sc->jme_txcsr = TXCSR_TXQ_N_SEL(TXCSR_TXQ0);
2815	sc->jme_txcsr |= TXCSR_TXQ_WEIGHT(TXCSR_TXQ_WEIGHT_MIN);
2816	sc->jme_txcsr |= TXCSR_FIFO_THRESH_16QW;
2817	sc->jme_txcsr |= sc->jme_tx_dma_size;
2818	sc->jme_txcsr |= TXCSR_DMA_BURST;
2819	CSR_WRITE_4(sc, JME_TXCSR, sc->jme_txcsr);
2820
2821	/* Set Tx descriptor counter. */
2822	CSR_WRITE_4(sc, JME_TXQDC, JME_TX_RING_CNT);
2823
2824	/* Set Tx ring address to the hardware. */
2825	paddr = JME_TX_RING_ADDR(sc, 0);
2826	CSR_WRITE_4(sc, JME_TXDBA_HI, JME_ADDR_HI(paddr));
2827	CSR_WRITE_4(sc, JME_TXDBA_LO, JME_ADDR_LO(paddr));
2828
2829	/* Configure TxMAC parameters. */
2830	reg = TXMAC_IFG1_DEFAULT | TXMAC_IFG2_DEFAULT | TXMAC_IFG_ENB;
2831	reg |= TXMAC_THRESH_1_PKT;
2832	reg |= TXMAC_CRC_ENB | TXMAC_PAD_ENB;
2833	CSR_WRITE_4(sc, JME_TXMAC, reg);
2834
2835	/*
2836	 * Configure Rx queue.
2837	 *  FIFO full threshold for transmitting Tx pause packet : 128T
2838	 *  FIFO threshold for processing next packet : 128QW
2839	 *  Rx queue 0 select
2840	 *  Max Rx DMA length : 128
2841	 *  Rx descriptor retry : 32
2842	 *  Rx descriptor retry time gap : 256ns
2843	 *  Don't receive runt/bad frame.
2844	 */
2845	sc->jme_rxcsr = RXCSR_FIFO_FTHRESH_128T;
2846	/*
2847	 * Since Rx FIFO size is 4K bytes, receiving frames larger
2848	 * than 4K bytes will suffer from Rx FIFO overruns. So
2849	 * decrease FIFO threshold to reduce the FIFO overruns for
2850	 * frames larger than 4000 bytes.
2851	 * For best performance of standard MTU sized frames use
2852	 * maximum allowable FIFO threshold, 128QW. Note these do
2853	 * not hold on chip full mask verion >=2. For these
2854	 * controllers 64QW and 128QW are not valid value.
2855	 */
2856	if (CHIPMODE_REVFM(sc->jme_chip_rev) >= 2)
2857		sc->jme_rxcsr |= RXCSR_FIFO_THRESH_16QW;
2858	else {
2859		if ((ifp->if_mtu + ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN +
2860		    ETHER_CRC_LEN) > JME_RX_FIFO_SIZE)
2861			sc->jme_rxcsr |= RXCSR_FIFO_THRESH_16QW;
2862		else
2863			sc->jme_rxcsr |= RXCSR_FIFO_THRESH_128QW;
2864	}
2865	sc->jme_rxcsr |= sc->jme_rx_dma_size | RXCSR_RXQ_N_SEL(RXCSR_RXQ0);
2866	sc->jme_rxcsr |= RXCSR_DESC_RT_CNT(RXCSR_DESC_RT_CNT_DEFAULT);
2867	sc->jme_rxcsr |= RXCSR_DESC_RT_GAP_256 & RXCSR_DESC_RT_GAP_MASK;
2868	CSR_WRITE_4(sc, JME_RXCSR, sc->jme_rxcsr);
2869
2870	/* Set Rx descriptor counter. */
2871	CSR_WRITE_4(sc, JME_RXQDC, JME_RX_RING_CNT);
2872
2873	/* Set Rx ring address to the hardware. */
2874	paddr = JME_RX_RING_ADDR(sc, 0);
2875	CSR_WRITE_4(sc, JME_RXDBA_HI, JME_ADDR_HI(paddr));
2876	CSR_WRITE_4(sc, JME_RXDBA_LO, JME_ADDR_LO(paddr));
2877
2878	/* Clear receive filter. */
2879	CSR_WRITE_4(sc, JME_RXMAC, 0);
2880	/* Set up the receive filter. */
2881	jme_set_filter(sc);
2882	jme_set_vlan(sc);
2883
2884	/*
2885	 * Disable all WOL bits as WOL can interfere normal Rx
2886	 * operation. Also clear WOL detection status bits.
2887	 */
2888	reg = CSR_READ_4(sc, JME_PMCS);
2889	reg &= ~PMCS_WOL_ENB_MASK;
2890	CSR_WRITE_4(sc, JME_PMCS, reg);
2891
2892	reg = CSR_READ_4(sc, JME_RXMAC);
2893	/*
2894	 * Pad 10bytes right before received frame. This will greatly
2895	 * help Rx performance on strict-alignment architectures as
2896	 * it does not need to copy the frame to align the payload.
2897	 */
2898	reg |= RXMAC_PAD_10BYTES;
2899	if ((ifp->if_capenable & IFCAP_RXCSUM) != 0)
2900		reg |= RXMAC_CSUM_ENB;
2901	CSR_WRITE_4(sc, JME_RXMAC, reg);
2902
2903	/* Configure general purpose reg0 */
2904	reg = CSR_READ_4(sc, JME_GPREG0);
2905	reg &= ~GPREG0_PCC_UNIT_MASK;
2906	/* Set PCC timer resolution to micro-seconds unit. */
2907	reg |= GPREG0_PCC_UNIT_US;
2908	/*
2909	 * Disable all shadow register posting as we have to read
2910	 * JME_INTR_STATUS register in jme_int_task. Also it seems
2911	 * that it's hard to synchronize interrupt status between
2912	 * hardware and software with shadow posting due to
2913	 * requirements of bus_dmamap_sync(9).
2914	 */
2915	reg |= GPREG0_SH_POST_DW7_DIS | GPREG0_SH_POST_DW6_DIS |
2916	    GPREG0_SH_POST_DW5_DIS | GPREG0_SH_POST_DW4_DIS |
2917	    GPREG0_SH_POST_DW3_DIS | GPREG0_SH_POST_DW2_DIS |
2918	    GPREG0_SH_POST_DW1_DIS | GPREG0_SH_POST_DW0_DIS;
2919	/* Disable posting of DW0. */
2920	reg &= ~GPREG0_POST_DW0_ENB;
2921	/* Clear PME message. */
2922	reg &= ~GPREG0_PME_ENB;
2923	/* Set PHY address. */
2924	reg &= ~GPREG0_PHY_ADDR_MASK;
2925	reg |= sc->jme_phyaddr;
2926	CSR_WRITE_4(sc, JME_GPREG0, reg);
2927
2928	/* Configure Tx queue 0 packet completion coalescing. */
2929	reg = (sc->jme_tx_coal_to << PCCTX_COAL_TO_SHIFT) &
2930	    PCCTX_COAL_TO_MASK;
2931	reg |= (sc->jme_tx_coal_pkt << PCCTX_COAL_PKT_SHIFT) &
2932	    PCCTX_COAL_PKT_MASK;
2933	reg |= PCCTX_COAL_TXQ0;
2934	CSR_WRITE_4(sc, JME_PCCTX, reg);
2935
2936	/* Configure Rx queue 0 packet completion coalescing. */
2937	reg = (sc->jme_rx_coal_to << PCCRX_COAL_TO_SHIFT) &
2938	    PCCRX_COAL_TO_MASK;
2939	reg |= (sc->jme_rx_coal_pkt << PCCRX_COAL_PKT_SHIFT) &
2940	    PCCRX_COAL_PKT_MASK;
2941	CSR_WRITE_4(sc, JME_PCCRX0, reg);
2942
2943	/*
2944	 * Configure PCD(Packet Completion Deferring).  It seems PCD
2945	 * generates an interrupt when the time interval between two
2946	 * back-to-back incoming/outgoing packet is long enough for
2947	 * it to reach its timer value 0. The arrival of new packets
2948	 * after timer has started causes the PCD timer to restart.
2949	 * Unfortunately, it's not clear how PCD is useful at this
2950	 * moment, so just use the same of PCC parameters.
2951	 */
2952	if ((sc->jme_flags & JME_FLAG_PCCPCD) != 0) {
2953		sc->jme_rx_pcd_to = sc->jme_rx_coal_to;
2954		if (sc->jme_rx_coal_to > PCDRX_TO_MAX)
2955			sc->jme_rx_pcd_to = PCDRX_TO_MAX;
2956		sc->jme_tx_pcd_to = sc->jme_tx_coal_to;
2957		if (sc->jme_tx_coal_to > PCDTX_TO_MAX)
2958			sc->jme_tx_pcd_to = PCDTX_TO_MAX;
2959		reg = sc->jme_rx_pcd_to << PCDRX0_TO_THROTTLE_SHIFT;
2960		reg |= sc->jme_rx_pcd_to << PCDRX0_TO_SHIFT;
2961		CSR_WRITE_4(sc, PCDRX_REG(0), reg);
2962		reg = sc->jme_tx_pcd_to << PCDTX_TO_THROTTLE_SHIFT;
2963		reg |= sc->jme_tx_pcd_to << PCDTX_TO_SHIFT;
2964		CSR_WRITE_4(sc, JME_PCDTX, reg);
2965	}
2966
2967	/* Configure shadow status block but don't enable posting. */
2968	paddr = sc->jme_rdata.jme_ssb_block_paddr;
2969	CSR_WRITE_4(sc, JME_SHBASE_ADDR_HI, JME_ADDR_HI(paddr));
2970	CSR_WRITE_4(sc, JME_SHBASE_ADDR_LO, JME_ADDR_LO(paddr));
2971
2972	/* Disable Timer 1 and Timer 2. */
2973	CSR_WRITE_4(sc, JME_TIMER1, 0);
2974	CSR_WRITE_4(sc, JME_TIMER2, 0);
2975
2976	/* Configure retry transmit period, retry limit value. */
2977	CSR_WRITE_4(sc, JME_TXTRHD,
2978	    ((TXTRHD_RT_PERIOD_DEFAULT << TXTRHD_RT_PERIOD_SHIFT) &
2979	    TXTRHD_RT_PERIOD_MASK) |
2980	    ((TXTRHD_RT_LIMIT_DEFAULT << TXTRHD_RT_LIMIT_SHIFT) &
2981	    TXTRHD_RT_LIMIT_SHIFT));
2982
2983	/* Disable RSS. */
2984	CSR_WRITE_4(sc, JME_RSSC, RSSC_DIS_RSS);
2985
2986	/* Initialize the interrupt mask. */
2987	CSR_WRITE_4(sc, JME_INTR_MASK_SET, JME_INTRS);
2988	CSR_WRITE_4(sc, JME_INTR_STATUS, 0xFFFFFFFF);
2989
2990	/*
2991	 * Enabling Tx/Rx DMA engines and Rx queue processing is
2992	 * done after detection of valid link in jme_link_task.
2993	 */
2994
2995	sc->jme_flags &= ~JME_FLAG_LINK;
2996	/* Set the current media. */
2997	mii_mediachg(mii);
2998
2999	callout_reset(&sc->jme_tick_ch, hz, jme_tick, sc);
3000
3001	ifp->if_drv_flags |= IFF_DRV_RUNNING;
3002	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3003}
3004
3005static void
3006jme_stop(struct jme_softc *sc)
3007{
3008	struct ifnet *ifp;
3009	struct jme_txdesc *txd;
3010	struct jme_rxdesc *rxd;
3011	int i;
3012
3013	JME_LOCK_ASSERT(sc);
3014	/*
3015	 * Mark the interface down and cancel the watchdog timer.
3016	 */
3017	ifp = sc->jme_ifp;
3018	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
3019	sc->jme_flags &= ~JME_FLAG_LINK;
3020	callout_stop(&sc->jme_tick_ch);
3021	sc->jme_watchdog_timer = 0;
3022
3023	/*
3024	 * Disable interrupts.
3025	 */
3026	CSR_WRITE_4(sc, JME_INTR_MASK_CLR, JME_INTRS);
3027	CSR_WRITE_4(sc, JME_INTR_STATUS, 0xFFFFFFFF);
3028
3029	/* Disable updating shadow status block. */
3030	CSR_WRITE_4(sc, JME_SHBASE_ADDR_LO,
3031	    CSR_READ_4(sc, JME_SHBASE_ADDR_LO) & ~SHBASE_POST_ENB);
3032
3033	/* Stop receiver, transmitter. */
3034	jme_stop_rx(sc);
3035	jme_stop_tx(sc);
3036
3037	 /* Reclaim Rx/Tx buffers that have been completed. */
3038	jme_rxintr(sc, JME_RX_RING_CNT);
3039	if (sc->jme_cdata.jme_rxhead != NULL)
3040		m_freem(sc->jme_cdata.jme_rxhead);
3041	JME_RXCHAIN_RESET(sc);
3042	jme_txeof(sc);
3043	/*
3044	 * Free RX and TX mbufs still in the queues.
3045	 */
3046	for (i = 0; i < JME_RX_RING_CNT; i++) {
3047		rxd = &sc->jme_cdata.jme_rxdesc[i];
3048		if (rxd->rx_m != NULL) {
3049			bus_dmamap_sync(sc->jme_cdata.jme_rx_tag,
3050			    rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
3051			bus_dmamap_unload(sc->jme_cdata.jme_rx_tag,
3052			    rxd->rx_dmamap);
3053			m_freem(rxd->rx_m);
3054			rxd->rx_m = NULL;
3055		}
3056        }
3057	for (i = 0; i < JME_TX_RING_CNT; i++) {
3058		txd = &sc->jme_cdata.jme_txdesc[i];
3059		if (txd->tx_m != NULL) {
3060			bus_dmamap_sync(sc->jme_cdata.jme_tx_tag,
3061			    txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
3062			bus_dmamap_unload(sc->jme_cdata.jme_tx_tag,
3063			    txd->tx_dmamap);
3064			m_freem(txd->tx_m);
3065			txd->tx_m = NULL;
3066			txd->tx_ndesc = 0;
3067		}
3068        }
3069	jme_stats_update(sc);
3070	jme_stats_save(sc);
3071}
3072
3073static void
3074jme_stop_tx(struct jme_softc *sc)
3075{
3076	uint32_t reg;
3077	int i;
3078
3079	reg = CSR_READ_4(sc, JME_TXCSR);
3080	if ((reg & TXCSR_TX_ENB) == 0)
3081		return;
3082	reg &= ~TXCSR_TX_ENB;
3083	CSR_WRITE_4(sc, JME_TXCSR, reg);
3084	for (i = JME_TIMEOUT; i > 0; i--) {
3085		DELAY(1);
3086		if ((CSR_READ_4(sc, JME_TXCSR) & TXCSR_TX_ENB) == 0)
3087			break;
3088	}
3089	if (i == 0)
3090		device_printf(sc->jme_dev, "stopping transmitter timeout!\n");
3091}
3092
3093static void
3094jme_stop_rx(struct jme_softc *sc)
3095{
3096	uint32_t reg;
3097	int i;
3098
3099	reg = CSR_READ_4(sc, JME_RXCSR);
3100	if ((reg & RXCSR_RX_ENB) == 0)
3101		return;
3102	reg &= ~RXCSR_RX_ENB;
3103	CSR_WRITE_4(sc, JME_RXCSR, reg);
3104	for (i = JME_TIMEOUT; i > 0; i--) {
3105		DELAY(1);
3106		if ((CSR_READ_4(sc, JME_RXCSR) & RXCSR_RX_ENB) == 0)
3107			break;
3108	}
3109	if (i == 0)
3110		device_printf(sc->jme_dev, "stopping recevier timeout!\n");
3111}
3112
3113static void
3114jme_init_tx_ring(struct jme_softc *sc)
3115{
3116	struct jme_ring_data *rd;
3117	struct jme_txdesc *txd;
3118	int i;
3119
3120	sc->jme_cdata.jme_tx_prod = 0;
3121	sc->jme_cdata.jme_tx_cons = 0;
3122	sc->jme_cdata.jme_tx_cnt = 0;
3123
3124	rd = &sc->jme_rdata;
3125	bzero(rd->jme_tx_ring, JME_TX_RING_SIZE);
3126	for (i = 0; i < JME_TX_RING_CNT; i++) {
3127		txd = &sc->jme_cdata.jme_txdesc[i];
3128		txd->tx_m = NULL;
3129		txd->tx_desc = &rd->jme_tx_ring[i];
3130		txd->tx_ndesc = 0;
3131	}
3132
3133	bus_dmamap_sync(sc->jme_cdata.jme_tx_ring_tag,
3134	    sc->jme_cdata.jme_tx_ring_map,
3135	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3136}
3137
3138static void
3139jme_init_ssb(struct jme_softc *sc)
3140{
3141	struct jme_ring_data *rd;
3142
3143	rd = &sc->jme_rdata;
3144	bzero(rd->jme_ssb_block, JME_SSB_SIZE);
3145	bus_dmamap_sync(sc->jme_cdata.jme_ssb_tag, sc->jme_cdata.jme_ssb_map,
3146	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3147}
3148
3149static int
3150jme_init_rx_ring(struct jme_softc *sc)
3151{
3152	struct jme_ring_data *rd;
3153	struct jme_rxdesc *rxd;
3154	int i;
3155
3156	sc->jme_cdata.jme_rx_cons = 0;
3157	JME_RXCHAIN_RESET(sc);
3158	sc->jme_morework = 0;
3159
3160	rd = &sc->jme_rdata;
3161	bzero(rd->jme_rx_ring, JME_RX_RING_SIZE);
3162	for (i = 0; i < JME_RX_RING_CNT; i++) {
3163		rxd = &sc->jme_cdata.jme_rxdesc[i];
3164		rxd->rx_m = NULL;
3165		rxd->rx_desc = &rd->jme_rx_ring[i];
3166		if (jme_newbuf(sc, rxd) != 0)
3167			return (ENOBUFS);
3168	}
3169
3170	bus_dmamap_sync(sc->jme_cdata.jme_rx_ring_tag,
3171	    sc->jme_cdata.jme_rx_ring_map,
3172	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3173
3174	return (0);
3175}
3176
3177static int
3178jme_newbuf(struct jme_softc *sc, struct jme_rxdesc *rxd)
3179{
3180	struct jme_desc *desc;
3181	struct mbuf *m;
3182	bus_dma_segment_t segs[1];
3183	bus_dmamap_t map;
3184	int nsegs;
3185
3186	m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
3187	if (m == NULL)
3188		return (ENOBUFS);
3189	/*
3190	 * JMC250 has 64bit boundary alignment limitation so jme(4)
3191	 * takes advantage of 10 bytes padding feature of hardware
3192	 * in order not to copy entire frame to align IP header on
3193	 * 32bit boundary.
3194	 */
3195	m->m_len = m->m_pkthdr.len = MCLBYTES;
3196
3197	if (bus_dmamap_load_mbuf_sg(sc->jme_cdata.jme_rx_tag,
3198	    sc->jme_cdata.jme_rx_sparemap, m, segs, &nsegs, 0) != 0) {
3199		m_freem(m);
3200		return (ENOBUFS);
3201	}
3202	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
3203
3204	if (rxd->rx_m != NULL) {
3205		bus_dmamap_sync(sc->jme_cdata.jme_rx_tag, rxd->rx_dmamap,
3206		    BUS_DMASYNC_POSTREAD);
3207		bus_dmamap_unload(sc->jme_cdata.jme_rx_tag, rxd->rx_dmamap);
3208	}
3209	map = rxd->rx_dmamap;
3210	rxd->rx_dmamap = sc->jme_cdata.jme_rx_sparemap;
3211	sc->jme_cdata.jme_rx_sparemap = map;
3212	bus_dmamap_sync(sc->jme_cdata.jme_rx_tag, rxd->rx_dmamap,
3213	    BUS_DMASYNC_PREREAD);
3214	rxd->rx_m = m;
3215
3216	desc = rxd->rx_desc;
3217	desc->buflen = htole32(segs[0].ds_len);
3218	desc->addr_lo = htole32(JME_ADDR_LO(segs[0].ds_addr));
3219	desc->addr_hi = htole32(JME_ADDR_HI(segs[0].ds_addr));
3220	desc->flags = htole32(JME_RD_OWN | JME_RD_INTR | JME_RD_64BIT);
3221
3222	return (0);
3223}
3224
3225static void
3226jme_set_vlan(struct jme_softc *sc)
3227{
3228	struct ifnet *ifp;
3229	uint32_t reg;
3230
3231	JME_LOCK_ASSERT(sc);
3232
3233	ifp = sc->jme_ifp;
3234	reg = CSR_READ_4(sc, JME_RXMAC);
3235	reg &= ~RXMAC_VLAN_ENB;
3236	if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0)
3237		reg |= RXMAC_VLAN_ENB;
3238	CSR_WRITE_4(sc, JME_RXMAC, reg);
3239}
3240
3241static void
3242jme_set_filter(struct jme_softc *sc)
3243{
3244	struct ifnet *ifp;
3245	struct ifmultiaddr *ifma;
3246	uint32_t crc;
3247	uint32_t mchash[2];
3248	uint32_t rxcfg;
3249
3250	JME_LOCK_ASSERT(sc);
3251
3252	ifp = sc->jme_ifp;
3253
3254	rxcfg = CSR_READ_4(sc, JME_RXMAC);
3255	rxcfg &= ~ (RXMAC_BROADCAST | RXMAC_PROMISC | RXMAC_MULTICAST |
3256	    RXMAC_ALLMULTI);
3257	/* Always accept frames destined to our station address. */
3258	rxcfg |= RXMAC_UNICAST;
3259	if ((ifp->if_flags & IFF_BROADCAST) != 0)
3260		rxcfg |= RXMAC_BROADCAST;
3261	if ((ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) != 0) {
3262		if ((ifp->if_flags & IFF_PROMISC) != 0)
3263			rxcfg |= RXMAC_PROMISC;
3264		if ((ifp->if_flags & IFF_ALLMULTI) != 0)
3265			rxcfg |= RXMAC_ALLMULTI;
3266		CSR_WRITE_4(sc, JME_MAR0, 0xFFFFFFFF);
3267		CSR_WRITE_4(sc, JME_MAR1, 0xFFFFFFFF);
3268		CSR_WRITE_4(sc, JME_RXMAC, rxcfg);
3269		return;
3270	}
3271
3272	/*
3273	 * Set up the multicast address filter by passing all multicast
3274	 * addresses through a CRC generator, and then using the low-order
3275	 * 6 bits as an index into the 64 bit multicast hash table.  The
3276	 * high order bits select the register, while the rest of the bits
3277	 * select the bit within the register.
3278	 */
3279	rxcfg |= RXMAC_MULTICAST;
3280	bzero(mchash, sizeof(mchash));
3281
3282	if_maddr_rlock(ifp);
3283	TAILQ_FOREACH(ifma, &sc->jme_ifp->if_multiaddrs, ifma_link) {
3284		if (ifma->ifma_addr->sa_family != AF_LINK)
3285			continue;
3286		crc = ether_crc32_be(LLADDR((struct sockaddr_dl *)
3287		    ifma->ifma_addr), ETHER_ADDR_LEN);
3288
3289		/* Just want the 6 least significant bits. */
3290		crc &= 0x3f;
3291
3292		/* Set the corresponding bit in the hash table. */
3293		mchash[crc >> 5] |= 1 << (crc & 0x1f);
3294	}
3295	if_maddr_runlock(ifp);
3296
3297	CSR_WRITE_4(sc, JME_MAR0, mchash[0]);
3298	CSR_WRITE_4(sc, JME_MAR1, mchash[1]);
3299	CSR_WRITE_4(sc, JME_RXMAC, rxcfg);
3300}
3301
3302static void
3303jme_stats_clear(struct jme_softc *sc)
3304{
3305
3306	JME_LOCK_ASSERT(sc);
3307
3308	if ((sc->jme_flags & JME_FLAG_HWMIB) == 0)
3309		return;
3310
3311	/* Disable and clear counters. */
3312	CSR_WRITE_4(sc, JME_STATCSR, 0xFFFFFFFF);
3313	/* Activate hw counters. */
3314	CSR_WRITE_4(sc, JME_STATCSR, 0);
3315	CSR_READ_4(sc, JME_STATCSR);
3316	bzero(&sc->jme_stats, sizeof(struct jme_hw_stats));
3317}
3318
3319static void
3320jme_stats_save(struct jme_softc *sc)
3321{
3322
3323	JME_LOCK_ASSERT(sc);
3324
3325	if ((sc->jme_flags & JME_FLAG_HWMIB) == 0)
3326		return;
3327	/* Save current counters. */
3328	bcopy(&sc->jme_stats, &sc->jme_ostats, sizeof(struct jme_hw_stats));
3329	/* Disable and clear counters. */
3330	CSR_WRITE_4(sc, JME_STATCSR, 0xFFFFFFFF);
3331}
3332
3333static void
3334jme_stats_update(struct jme_softc *sc)
3335{
3336	struct jme_hw_stats *stat, *ostat;
3337	uint32_t reg;
3338
3339	JME_LOCK_ASSERT(sc);
3340
3341	if ((sc->jme_flags & JME_FLAG_HWMIB) == 0)
3342		return;
3343	stat = &sc->jme_stats;
3344	ostat = &sc->jme_ostats;
3345	stat->tx_good_frames = CSR_READ_4(sc, JME_STAT_TXGOOD);
3346	stat->rx_good_frames = CSR_READ_4(sc, JME_STAT_RXGOOD);
3347	reg = CSR_READ_4(sc, JME_STAT_CRCMII);
3348	stat->rx_crc_errs = (reg & STAT_RX_CRC_ERR_MASK) >>
3349	    STAT_RX_CRC_ERR_SHIFT;
3350	stat->rx_mii_errs = (reg & STAT_RX_MII_ERR_MASK) >>
3351	    STAT_RX_MII_ERR_SHIFT;
3352	reg = CSR_READ_4(sc, JME_STAT_RXERR);
3353	stat->rx_fifo_oflows = (reg & STAT_RXERR_OFLOW_MASK) >>
3354	    STAT_RXERR_OFLOW_SHIFT;
3355	stat->rx_desc_empty = (reg & STAT_RXERR_MPTY_MASK) >>
3356	    STAT_RXERR_MPTY_SHIFT;
3357	reg = CSR_READ_4(sc, JME_STAT_FAIL);
3358	stat->rx_bad_frames = (reg & STAT_FAIL_RX_MASK) >> STAT_FAIL_RX_SHIFT;
3359	stat->tx_bad_frames = (reg & STAT_FAIL_TX_MASK) >> STAT_FAIL_TX_SHIFT;
3360
3361	/* Account for previous counters. */
3362	stat->rx_good_frames += ostat->rx_good_frames;
3363	stat->rx_crc_errs += ostat->rx_crc_errs;
3364	stat->rx_mii_errs += ostat->rx_mii_errs;
3365	stat->rx_fifo_oflows += ostat->rx_fifo_oflows;
3366	stat->rx_desc_empty += ostat->rx_desc_empty;
3367	stat->rx_bad_frames += ostat->rx_bad_frames;
3368	stat->tx_good_frames += ostat->tx_good_frames;
3369	stat->tx_bad_frames += ostat->tx_bad_frames;
3370}
3371
3372static void
3373jme_phy_down(struct jme_softc *sc)
3374{
3375	uint32_t reg;
3376
3377	jme_miibus_writereg(sc->jme_dev, sc->jme_phyaddr, MII_BMCR, BMCR_PDOWN);
3378	if (CHIPMODE_REVFM(sc->jme_chip_rev) >= 5) {
3379		reg = CSR_READ_4(sc, JME_PHYPOWDN);
3380		reg |= 0x0000000F;
3381		CSR_WRITE_4(sc, JME_PHYPOWDN, reg);
3382		reg = pci_read_config(sc->jme_dev, JME_PCI_PE1, 4);
3383		reg &= ~PE1_GIGA_PDOWN_MASK;
3384		reg |= PE1_GIGA_PDOWN_D3;
3385		pci_write_config(sc->jme_dev, JME_PCI_PE1, reg, 4);
3386	}
3387}
3388
3389static void
3390jme_phy_up(struct jme_softc *sc)
3391{
3392	uint32_t reg;
3393	uint16_t bmcr;
3394
3395	bmcr = jme_miibus_readreg(sc->jme_dev, sc->jme_phyaddr, MII_BMCR);
3396	bmcr &= ~BMCR_PDOWN;
3397	jme_miibus_writereg(sc->jme_dev, sc->jme_phyaddr, MII_BMCR, bmcr);
3398	if (CHIPMODE_REVFM(sc->jme_chip_rev) >= 5) {
3399		reg = CSR_READ_4(sc, JME_PHYPOWDN);
3400		reg &= ~0x0000000F;
3401		CSR_WRITE_4(sc, JME_PHYPOWDN, reg);
3402		reg = pci_read_config(sc->jme_dev, JME_PCI_PE1, 4);
3403		reg &= ~PE1_GIGA_PDOWN_MASK;
3404		reg |= PE1_GIGA_PDOWN_DIS;
3405		pci_write_config(sc->jme_dev, JME_PCI_PE1, reg, 4);
3406	}
3407}
3408
3409static int
3410sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
3411{
3412	int error, value;
3413
3414	if (arg1 == NULL)
3415		return (EINVAL);
3416	value = *(int *)arg1;
3417	error = sysctl_handle_int(oidp, &value, 0, req);
3418	if (error || req->newptr == NULL)
3419		return (error);
3420	if (value < low || value > high)
3421		return (EINVAL);
3422        *(int *)arg1 = value;
3423
3424        return (0);
3425}
3426
3427static int
3428sysctl_hw_jme_tx_coal_to(SYSCTL_HANDLER_ARGS)
3429{
3430	return (sysctl_int_range(oidp, arg1, arg2, req,
3431	    PCCTX_COAL_TO_MIN, PCCTX_COAL_TO_MAX));
3432}
3433
3434static int
3435sysctl_hw_jme_tx_coal_pkt(SYSCTL_HANDLER_ARGS)
3436{
3437	return (sysctl_int_range(oidp, arg1, arg2, req,
3438	    PCCTX_COAL_PKT_MIN, PCCTX_COAL_PKT_MAX));
3439}
3440
3441static int
3442sysctl_hw_jme_rx_coal_to(SYSCTL_HANDLER_ARGS)
3443{
3444	return (sysctl_int_range(oidp, arg1, arg2, req,
3445	    PCCRX_COAL_TO_MIN, PCCRX_COAL_TO_MAX));
3446}
3447
3448static int
3449sysctl_hw_jme_rx_coal_pkt(SYSCTL_HANDLER_ARGS)
3450{
3451	return (sysctl_int_range(oidp, arg1, arg2, req,
3452	    PCCRX_COAL_PKT_MIN, PCCRX_COAL_PKT_MAX));
3453}
3454
3455static int
3456sysctl_hw_jme_proc_limit(SYSCTL_HANDLER_ARGS)
3457{
3458	return (sysctl_int_range(oidp, arg1, arg2, req,
3459	    JME_PROC_MIN, JME_PROC_MAX));
3460}
3461