if_jme.c revision 216549
1/*-
2 * Copyright (c) 2008, Pyun YongHyeon <yongari@FreeBSD.org>
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice unmodified, this list of conditions, and the following
10 *    disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25 * SUCH DAMAGE.
26 */
27
28#include <sys/cdefs.h>
29__FBSDID("$FreeBSD: head/sys/dev/jme/if_jme.c 216549 2010-12-18 23:24:59Z yongari $");
30
31#include <sys/param.h>
32#include <sys/systm.h>
33#include <sys/bus.h>
34#include <sys/endian.h>
35#include <sys/kernel.h>
36#include <sys/malloc.h>
37#include <sys/mbuf.h>
38#include <sys/rman.h>
39#include <sys/module.h>
40#include <sys/proc.h>
41#include <sys/queue.h>
42#include <sys/socket.h>
43#include <sys/sockio.h>
44#include <sys/sysctl.h>
45#include <sys/taskqueue.h>
46
47#include <net/bpf.h>
48#include <net/if.h>
49#include <net/if_arp.h>
50#include <net/ethernet.h>
51#include <net/if_dl.h>
52#include <net/if_media.h>
53#include <net/if_types.h>
54#include <net/if_vlan_var.h>
55
56#include <netinet/in.h>
57#include <netinet/in_systm.h>
58#include <netinet/ip.h>
59#include <netinet/tcp.h>
60
61#include <dev/mii/mii.h>
62#include <dev/mii/miivar.h>
63
64#include <dev/pci/pcireg.h>
65#include <dev/pci/pcivar.h>
66
67#include <machine/bus.h>
68#include <machine/in_cksum.h>
69
70#include <dev/jme/if_jmereg.h>
71#include <dev/jme/if_jmevar.h>
72
73/* "device miibus" required.  See GENERIC if you get errors here. */
74#include "miibus_if.h"
75
76/* Define the following to disable printing Rx errors. */
77#undef	JME_SHOW_ERRORS
78
79#define	JME_CSUM_FEATURES	(CSUM_IP | CSUM_TCP | CSUM_UDP)
80
81MODULE_DEPEND(jme, pci, 1, 1, 1);
82MODULE_DEPEND(jme, ether, 1, 1, 1);
83MODULE_DEPEND(jme, miibus, 1, 1, 1);
84
85/* Tunables. */
86static int msi_disable = 0;
87static int msix_disable = 0;
88TUNABLE_INT("hw.jme.msi_disable", &msi_disable);
89TUNABLE_INT("hw.jme.msix_disable", &msix_disable);
90
91/*
92 * Devices supported by this driver.
93 */
94static struct jme_dev {
95	uint16_t	jme_vendorid;
96	uint16_t	jme_deviceid;
97	const char	*jme_name;
98} jme_devs[] = {
99	{ VENDORID_JMICRON, DEVICEID_JMC250,
100	    "JMicron Inc, JMC250 Gigabit Ethernet" },
101	{ VENDORID_JMICRON, DEVICEID_JMC260,
102	    "JMicron Inc, JMC260 Fast Ethernet" },
103};
104
105static int jme_miibus_readreg(device_t, int, int);
106static int jme_miibus_writereg(device_t, int, int, int);
107static void jme_miibus_statchg(device_t);
108static void jme_mediastatus(struct ifnet *, struct ifmediareq *);
109static int jme_mediachange(struct ifnet *);
110static int jme_probe(device_t);
111static int jme_eeprom_read_byte(struct jme_softc *, uint8_t, uint8_t *);
112static int jme_eeprom_macaddr(struct jme_softc *);
113static void jme_reg_macaddr(struct jme_softc *);
114static void jme_map_intr_vector(struct jme_softc *);
115static int jme_attach(device_t);
116static int jme_detach(device_t);
117static void jme_sysctl_node(struct jme_softc *);
118static void jme_dmamap_cb(void *, bus_dma_segment_t *, int, int);
119static int jme_dma_alloc(struct jme_softc *);
120static void jme_dma_free(struct jme_softc *);
121static int jme_shutdown(device_t);
122static void jme_setlinkspeed(struct jme_softc *);
123static void jme_setwol(struct jme_softc *);
124static int jme_suspend(device_t);
125static int jme_resume(device_t);
126static int jme_encap(struct jme_softc *, struct mbuf **);
127static void jme_tx_task(void *, int);
128static void jme_start(struct ifnet *);
129static void jme_watchdog(struct jme_softc *);
130static int jme_ioctl(struct ifnet *, u_long, caddr_t);
131static void jme_mac_config(struct jme_softc *);
132static void jme_link_task(void *, int);
133static int jme_intr(void *);
134static void jme_int_task(void *, int);
135static void jme_txeof(struct jme_softc *);
136static __inline void jme_discard_rxbuf(struct jme_softc *, int);
137static void jme_rxeof(struct jme_softc *);
138static int jme_rxintr(struct jme_softc *, int);
139static void jme_tick(void *);
140static void jme_reset(struct jme_softc *);
141static void jme_init(void *);
142static void jme_init_locked(struct jme_softc *);
143static void jme_stop(struct jme_softc *);
144static void jme_stop_tx(struct jme_softc *);
145static void jme_stop_rx(struct jme_softc *);
146static int jme_init_rx_ring(struct jme_softc *);
147static void jme_init_tx_ring(struct jme_softc *);
148static void jme_init_ssb(struct jme_softc *);
149static int jme_newbuf(struct jme_softc *, struct jme_rxdesc *);
150static void jme_set_vlan(struct jme_softc *);
151static void jme_set_filter(struct jme_softc *);
152static void jme_stats_clear(struct jme_softc *);
153static void jme_stats_save(struct jme_softc *);
154static void jme_stats_update(struct jme_softc *);
155static int sysctl_int_range(SYSCTL_HANDLER_ARGS, int, int);
156static int sysctl_hw_jme_tx_coal_to(SYSCTL_HANDLER_ARGS);
157static int sysctl_hw_jme_tx_coal_pkt(SYSCTL_HANDLER_ARGS);
158static int sysctl_hw_jme_rx_coal_to(SYSCTL_HANDLER_ARGS);
159static int sysctl_hw_jme_rx_coal_pkt(SYSCTL_HANDLER_ARGS);
160static int sysctl_hw_jme_proc_limit(SYSCTL_HANDLER_ARGS);
161
162
163static device_method_t jme_methods[] = {
164	/* Device interface. */
165	DEVMETHOD(device_probe,		jme_probe),
166	DEVMETHOD(device_attach,	jme_attach),
167	DEVMETHOD(device_detach,	jme_detach),
168	DEVMETHOD(device_shutdown,	jme_shutdown),
169	DEVMETHOD(device_suspend,	jme_suspend),
170	DEVMETHOD(device_resume,	jme_resume),
171
172	/* MII interface. */
173	DEVMETHOD(miibus_readreg,	jme_miibus_readreg),
174	DEVMETHOD(miibus_writereg,	jme_miibus_writereg),
175	DEVMETHOD(miibus_statchg,	jme_miibus_statchg),
176
177	{ NULL, NULL }
178};
179
180static driver_t jme_driver = {
181	"jme",
182	jme_methods,
183	sizeof(struct jme_softc)
184};
185
186static devclass_t jme_devclass;
187
188DRIVER_MODULE(jme, pci, jme_driver, jme_devclass, 0, 0);
189DRIVER_MODULE(miibus, jme, miibus_driver, miibus_devclass, 0, 0);
190
191static struct resource_spec jme_res_spec_mem[] = {
192	{ SYS_RES_MEMORY,	PCIR_BAR(0),	RF_ACTIVE },
193	{ -1,			0,		0 }
194};
195
196static struct resource_spec jme_irq_spec_legacy[] = {
197	{ SYS_RES_IRQ,		0,		RF_ACTIVE | RF_SHAREABLE },
198	{ -1,			0,		0 }
199};
200
201static struct resource_spec jme_irq_spec_msi[] = {
202	{ SYS_RES_IRQ,		1,		RF_ACTIVE },
203	{ -1,			0,		0 }
204};
205
206/*
207 *	Read a PHY register on the MII of the JMC250.
208 */
209static int
210jme_miibus_readreg(device_t dev, int phy, int reg)
211{
212	struct jme_softc *sc;
213	uint32_t val;
214	int i;
215
216	sc = device_get_softc(dev);
217
218	/* For FPGA version, PHY address 0 should be ignored. */
219	if ((sc->jme_flags & JME_FLAG_FPGA) != 0 && phy == 0)
220		return (0);
221
222	CSR_WRITE_4(sc, JME_SMI, SMI_OP_READ | SMI_OP_EXECUTE |
223	    SMI_PHY_ADDR(phy) | SMI_REG_ADDR(reg));
224	for (i = JME_PHY_TIMEOUT; i > 0; i--) {
225		DELAY(1);
226		if (((val = CSR_READ_4(sc, JME_SMI)) & SMI_OP_EXECUTE) == 0)
227			break;
228	}
229
230	if (i == 0) {
231		device_printf(sc->jme_dev, "phy read timeout : %d\n", reg);
232		return (0);
233	}
234
235	return ((val & SMI_DATA_MASK) >> SMI_DATA_SHIFT);
236}
237
238/*
239 *	Write a PHY register on the MII of the JMC250.
240 */
241static int
242jme_miibus_writereg(device_t dev, int phy, int reg, int val)
243{
244	struct jme_softc *sc;
245	int i;
246
247	sc = device_get_softc(dev);
248
249	/* For FPGA version, PHY address 0 should be ignored. */
250	if ((sc->jme_flags & JME_FLAG_FPGA) != 0 && phy == 0)
251		return (0);
252
253	CSR_WRITE_4(sc, JME_SMI, SMI_OP_WRITE | SMI_OP_EXECUTE |
254	    ((val << SMI_DATA_SHIFT) & SMI_DATA_MASK) |
255	    SMI_PHY_ADDR(phy) | SMI_REG_ADDR(reg));
256	for (i = JME_PHY_TIMEOUT; i > 0; i--) {
257		DELAY(1);
258		if (((val = CSR_READ_4(sc, JME_SMI)) & SMI_OP_EXECUTE) == 0)
259			break;
260	}
261
262	if (i == 0)
263		device_printf(sc->jme_dev, "phy write timeout : %d\n", reg);
264
265	return (0);
266}
267
268/*
269 *	Callback from MII layer when media changes.
270 */
271static void
272jme_miibus_statchg(device_t dev)
273{
274	struct jme_softc *sc;
275
276	sc = device_get_softc(dev);
277	taskqueue_enqueue(taskqueue_swi, &sc->jme_link_task);
278}
279
280/*
281 *	Get the current interface media status.
282 */
283static void
284jme_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
285{
286	struct jme_softc *sc;
287	struct mii_data *mii;
288
289	sc = ifp->if_softc;
290	JME_LOCK(sc);
291	if ((ifp->if_flags & IFF_UP) == 0) {
292		JME_UNLOCK(sc);
293		return;
294	}
295	mii = device_get_softc(sc->jme_miibus);
296
297	mii_pollstat(mii);
298	ifmr->ifm_status = mii->mii_media_status;
299	ifmr->ifm_active = mii->mii_media_active;
300	JME_UNLOCK(sc);
301}
302
303/*
304 *	Set hardware to newly-selected media.
305 */
306static int
307jme_mediachange(struct ifnet *ifp)
308{
309	struct jme_softc *sc;
310	struct mii_data *mii;
311	struct mii_softc *miisc;
312	int error;
313
314	sc = ifp->if_softc;
315	JME_LOCK(sc);
316	mii = device_get_softc(sc->jme_miibus);
317	if (mii->mii_instance != 0) {
318		LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
319			mii_phy_reset(miisc);
320	}
321	error = mii_mediachg(mii);
322	JME_UNLOCK(sc);
323
324	return (error);
325}
326
327static int
328jme_probe(device_t dev)
329{
330	struct jme_dev *sp;
331	int i;
332	uint16_t vendor, devid;
333
334	vendor = pci_get_vendor(dev);
335	devid = pci_get_device(dev);
336	sp = jme_devs;
337	for (i = 0; i < sizeof(jme_devs) / sizeof(jme_devs[0]);
338	    i++, sp++) {
339		if (vendor == sp->jme_vendorid &&
340		    devid == sp->jme_deviceid) {
341			device_set_desc(dev, sp->jme_name);
342			return (BUS_PROBE_DEFAULT);
343		}
344	}
345
346	return (ENXIO);
347}
348
349static int
350jme_eeprom_read_byte(struct jme_softc *sc, uint8_t addr, uint8_t *val)
351{
352	uint32_t reg;
353	int i;
354
355	*val = 0;
356	for (i = JME_TIMEOUT; i > 0; i--) {
357		reg = CSR_READ_4(sc, JME_SMBCSR);
358		if ((reg & SMBCSR_HW_BUSY_MASK) == SMBCSR_HW_IDLE)
359			break;
360		DELAY(1);
361	}
362
363	if (i == 0) {
364		device_printf(sc->jme_dev, "EEPROM idle timeout!\n");
365		return (ETIMEDOUT);
366	}
367
368	reg = ((uint32_t)addr << SMBINTF_ADDR_SHIFT) & SMBINTF_ADDR_MASK;
369	CSR_WRITE_4(sc, JME_SMBINTF, reg | SMBINTF_RD | SMBINTF_CMD_TRIGGER);
370	for (i = JME_TIMEOUT; i > 0; i--) {
371		DELAY(1);
372		reg = CSR_READ_4(sc, JME_SMBINTF);
373		if ((reg & SMBINTF_CMD_TRIGGER) == 0)
374			break;
375	}
376
377	if (i == 0) {
378		device_printf(sc->jme_dev, "EEPROM read timeout!\n");
379		return (ETIMEDOUT);
380	}
381
382	reg = CSR_READ_4(sc, JME_SMBINTF);
383	*val = (reg & SMBINTF_RD_DATA_MASK) >> SMBINTF_RD_DATA_SHIFT;
384
385	return (0);
386}
387
388static int
389jme_eeprom_macaddr(struct jme_softc *sc)
390{
391	uint8_t eaddr[ETHER_ADDR_LEN];
392	uint8_t fup, reg, val;
393	uint32_t offset;
394	int match;
395
396	offset = 0;
397	if (jme_eeprom_read_byte(sc, offset++, &fup) != 0 ||
398	    fup != JME_EEPROM_SIG0)
399		return (ENOENT);
400	if (jme_eeprom_read_byte(sc, offset++, &fup) != 0 ||
401	    fup != JME_EEPROM_SIG1)
402		return (ENOENT);
403	match = 0;
404	do {
405		if (jme_eeprom_read_byte(sc, offset, &fup) != 0)
406			break;
407		if (JME_EEPROM_MKDESC(JME_EEPROM_FUNC0, JME_EEPROM_PAGE_BAR1) ==
408		    (fup & (JME_EEPROM_FUNC_MASK | JME_EEPROM_PAGE_MASK))) {
409			if (jme_eeprom_read_byte(sc, offset + 1, &reg) != 0)
410				break;
411			if (reg >= JME_PAR0 &&
412			    reg < JME_PAR0 + ETHER_ADDR_LEN) {
413				if (jme_eeprom_read_byte(sc, offset + 2,
414				    &val) != 0)
415					break;
416				eaddr[reg - JME_PAR0] = val;
417				match++;
418			}
419		}
420		/* Check for the end of EEPROM descriptor. */
421		if ((fup & JME_EEPROM_DESC_END) == JME_EEPROM_DESC_END)
422			break;
423		/* Try next eeprom descriptor. */
424		offset += JME_EEPROM_DESC_BYTES;
425	} while (match != ETHER_ADDR_LEN && offset < JME_EEPROM_END);
426
427	if (match == ETHER_ADDR_LEN) {
428		bcopy(eaddr, sc->jme_eaddr, ETHER_ADDR_LEN);
429		return (0);
430	}
431
432	return (ENOENT);
433}
434
435static void
436jme_reg_macaddr(struct jme_softc *sc)
437{
438	uint32_t par0, par1;
439
440	/* Read station address. */
441	par0 = CSR_READ_4(sc, JME_PAR0);
442	par1 = CSR_READ_4(sc, JME_PAR1);
443	par1 &= 0xFFFF;
444	if ((par0 == 0 && par1 == 0) ||
445	    (par0 == 0xFFFFFFFF && par1 == 0xFFFF)) {
446		device_printf(sc->jme_dev,
447		    "Failed to retrieve Ethernet address.\n");
448	} else {
449		sc->jme_eaddr[0] = (par0 >> 0) & 0xFF;
450		sc->jme_eaddr[1] = (par0 >> 8) & 0xFF;
451		sc->jme_eaddr[2] = (par0 >> 16) & 0xFF;
452		sc->jme_eaddr[3] = (par0 >> 24) & 0xFF;
453		sc->jme_eaddr[4] = (par1 >> 0) & 0xFF;
454		sc->jme_eaddr[5] = (par1 >> 8) & 0xFF;
455	}
456}
457
458static void
459jme_map_intr_vector(struct jme_softc *sc)
460{
461	uint32_t map[MSINUM_NUM_INTR_SOURCE / JME_MSI_MESSAGES];
462
463	bzero(map, sizeof(map));
464
465	/* Map Tx interrupts source to MSI/MSIX vector 2. */
466	map[MSINUM_REG_INDEX(N_INTR_TXQ0_COMP)] =
467	    MSINUM_INTR_SOURCE(2, N_INTR_TXQ0_COMP);
468	map[MSINUM_REG_INDEX(N_INTR_TXQ1_COMP)] |=
469	    MSINUM_INTR_SOURCE(2, N_INTR_TXQ1_COMP);
470	map[MSINUM_REG_INDEX(N_INTR_TXQ2_COMP)] |=
471	    MSINUM_INTR_SOURCE(2, N_INTR_TXQ2_COMP);
472	map[MSINUM_REG_INDEX(N_INTR_TXQ3_COMP)] |=
473	    MSINUM_INTR_SOURCE(2, N_INTR_TXQ3_COMP);
474	map[MSINUM_REG_INDEX(N_INTR_TXQ4_COMP)] |=
475	    MSINUM_INTR_SOURCE(2, N_INTR_TXQ4_COMP);
476	map[MSINUM_REG_INDEX(N_INTR_TXQ4_COMP)] |=
477	    MSINUM_INTR_SOURCE(2, N_INTR_TXQ5_COMP);
478	map[MSINUM_REG_INDEX(N_INTR_TXQ6_COMP)] |=
479	    MSINUM_INTR_SOURCE(2, N_INTR_TXQ6_COMP);
480	map[MSINUM_REG_INDEX(N_INTR_TXQ7_COMP)] |=
481	    MSINUM_INTR_SOURCE(2, N_INTR_TXQ7_COMP);
482	map[MSINUM_REG_INDEX(N_INTR_TXQ_COAL)] |=
483	    MSINUM_INTR_SOURCE(2, N_INTR_TXQ_COAL);
484	map[MSINUM_REG_INDEX(N_INTR_TXQ_COAL_TO)] |=
485	    MSINUM_INTR_SOURCE(2, N_INTR_TXQ_COAL_TO);
486
487	/* Map Rx interrupts source to MSI/MSIX vector 1. */
488	map[MSINUM_REG_INDEX(N_INTR_RXQ0_COMP)] =
489	    MSINUM_INTR_SOURCE(1, N_INTR_RXQ0_COMP);
490	map[MSINUM_REG_INDEX(N_INTR_RXQ1_COMP)] =
491	    MSINUM_INTR_SOURCE(1, N_INTR_RXQ1_COMP);
492	map[MSINUM_REG_INDEX(N_INTR_RXQ2_COMP)] =
493	    MSINUM_INTR_SOURCE(1, N_INTR_RXQ2_COMP);
494	map[MSINUM_REG_INDEX(N_INTR_RXQ3_COMP)] =
495	    MSINUM_INTR_SOURCE(1, N_INTR_RXQ3_COMP);
496	map[MSINUM_REG_INDEX(N_INTR_RXQ0_DESC_EMPTY)] =
497	    MSINUM_INTR_SOURCE(1, N_INTR_RXQ0_DESC_EMPTY);
498	map[MSINUM_REG_INDEX(N_INTR_RXQ1_DESC_EMPTY)] =
499	    MSINUM_INTR_SOURCE(1, N_INTR_RXQ1_DESC_EMPTY);
500	map[MSINUM_REG_INDEX(N_INTR_RXQ2_DESC_EMPTY)] =
501	    MSINUM_INTR_SOURCE(1, N_INTR_RXQ2_DESC_EMPTY);
502	map[MSINUM_REG_INDEX(N_INTR_RXQ3_DESC_EMPTY)] =
503	    MSINUM_INTR_SOURCE(1, N_INTR_RXQ3_DESC_EMPTY);
504	map[MSINUM_REG_INDEX(N_INTR_RXQ0_COAL)] =
505	    MSINUM_INTR_SOURCE(1, N_INTR_RXQ0_COAL);
506	map[MSINUM_REG_INDEX(N_INTR_RXQ1_COAL)] =
507	    MSINUM_INTR_SOURCE(1, N_INTR_RXQ1_COAL);
508	map[MSINUM_REG_INDEX(N_INTR_RXQ2_COAL)] =
509	    MSINUM_INTR_SOURCE(1, N_INTR_RXQ2_COAL);
510	map[MSINUM_REG_INDEX(N_INTR_RXQ3_COAL)] =
511	    MSINUM_INTR_SOURCE(1, N_INTR_RXQ3_COAL);
512	map[MSINUM_REG_INDEX(N_INTR_RXQ0_COAL_TO)] =
513	    MSINUM_INTR_SOURCE(1, N_INTR_RXQ0_COAL_TO);
514	map[MSINUM_REG_INDEX(N_INTR_RXQ1_COAL_TO)] =
515	    MSINUM_INTR_SOURCE(1, N_INTR_RXQ1_COAL_TO);
516	map[MSINUM_REG_INDEX(N_INTR_RXQ2_COAL_TO)] =
517	    MSINUM_INTR_SOURCE(1, N_INTR_RXQ2_COAL_TO);
518	map[MSINUM_REG_INDEX(N_INTR_RXQ3_COAL_TO)] =
519	    MSINUM_INTR_SOURCE(1, N_INTR_RXQ3_COAL_TO);
520
521	/* Map all other interrupts source to MSI/MSIX vector 0. */
522	CSR_WRITE_4(sc, JME_MSINUM_BASE + sizeof(uint32_t) * 0, map[0]);
523	CSR_WRITE_4(sc, JME_MSINUM_BASE + sizeof(uint32_t) * 1, map[1]);
524	CSR_WRITE_4(sc, JME_MSINUM_BASE + sizeof(uint32_t) * 2, map[2]);
525	CSR_WRITE_4(sc, JME_MSINUM_BASE + sizeof(uint32_t) * 3, map[3]);
526}
527
528static int
529jme_attach(device_t dev)
530{
531	struct jme_softc *sc;
532	struct ifnet *ifp;
533	struct mii_softc *miisc;
534	struct mii_data *mii;
535	uint32_t reg;
536	uint16_t burst;
537	int error, i, msic, msixc, pmc;
538
539	error = 0;
540	sc = device_get_softc(dev);
541	sc->jme_dev = dev;
542
543	mtx_init(&sc->jme_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
544	    MTX_DEF);
545	callout_init_mtx(&sc->jme_tick_ch, &sc->jme_mtx, 0);
546	TASK_INIT(&sc->jme_int_task, 0, jme_int_task, sc);
547	TASK_INIT(&sc->jme_link_task, 0, jme_link_task, sc);
548
549	/*
550	 * Map the device. JMC250 supports both memory mapped and I/O
551	 * register space access. Because I/O register access should
552	 * use different BARs to access registers it's waste of time
553	 * to use I/O register spce access. JMC250 uses 16K to map
554	 * entire memory space.
555	 */
556	pci_enable_busmaster(dev);
557	sc->jme_res_spec = jme_res_spec_mem;
558	sc->jme_irq_spec = jme_irq_spec_legacy;
559	error = bus_alloc_resources(dev, sc->jme_res_spec, sc->jme_res);
560	if (error != 0) {
561		device_printf(dev, "cannot allocate memory resources.\n");
562		goto fail;
563	}
564
565	/* Allocate IRQ resources. */
566	msixc = pci_msix_count(dev);
567	msic = pci_msi_count(dev);
568	if (bootverbose) {
569		device_printf(dev, "MSIX count : %d\n", msixc);
570		device_printf(dev, "MSI count : %d\n", msic);
571	}
572
573	/* Use 1 MSI/MSI-X. */
574	if (msixc > 1)
575		msixc = 1;
576	if (msic > 1)
577		msic = 1;
578	/* Prefer MSIX over MSI. */
579	if (msix_disable == 0 || msi_disable == 0) {
580		if (msix_disable == 0 && msixc > 0 &&
581		    pci_alloc_msix(dev, &msixc) == 0) {
582			if (msixc == 1) {
583				device_printf(dev, "Using %d MSIX messages.\n",
584				    msixc);
585				sc->jme_flags |= JME_FLAG_MSIX;
586				sc->jme_irq_spec = jme_irq_spec_msi;
587			} else
588				pci_release_msi(dev);
589		}
590		if (msi_disable == 0 && (sc->jme_flags & JME_FLAG_MSIX) == 0 &&
591		    msic > 0 && pci_alloc_msi(dev, &msic) == 0) {
592			if (msic == 1) {
593				device_printf(dev, "Using %d MSI messages.\n",
594				    msic);
595				sc->jme_flags |= JME_FLAG_MSI;
596				sc->jme_irq_spec = jme_irq_spec_msi;
597			} else
598				pci_release_msi(dev);
599		}
600		/* Map interrupt vector 0, 1 and 2. */
601		if ((sc->jme_flags & JME_FLAG_MSI) != 0 ||
602		    (sc->jme_flags & JME_FLAG_MSIX) != 0)
603			jme_map_intr_vector(sc);
604	}
605
606	error = bus_alloc_resources(dev, sc->jme_irq_spec, sc->jme_irq);
607	if (error != 0) {
608		device_printf(dev, "cannot allocate IRQ resources.\n");
609		goto fail;
610	}
611
612	sc->jme_rev = pci_get_device(dev);
613	if ((sc->jme_rev & DEVICEID_JMC2XX_MASK) == DEVICEID_JMC260) {
614		sc->jme_flags |= JME_FLAG_FASTETH;
615		sc->jme_flags |= JME_FLAG_NOJUMBO;
616	}
617	reg = CSR_READ_4(sc, JME_CHIPMODE);
618	sc->jme_chip_rev = (reg & CHIPMODE_REV_MASK) >> CHIPMODE_REV_SHIFT;
619	if (((reg & CHIPMODE_FPGA_REV_MASK) >> CHIPMODE_FPGA_REV_SHIFT) !=
620	    CHIPMODE_NOT_FPGA)
621		sc->jme_flags |= JME_FLAG_FPGA;
622	if (bootverbose) {
623		device_printf(dev, "PCI device revision : 0x%04x\n",
624		    sc->jme_rev);
625		device_printf(dev, "Chip revision : 0x%02x\n",
626		    sc->jme_chip_rev);
627		if ((sc->jme_flags & JME_FLAG_FPGA) != 0)
628			device_printf(dev, "FPGA revision : 0x%04x\n",
629			    (reg & CHIPMODE_FPGA_REV_MASK) >>
630			    CHIPMODE_FPGA_REV_SHIFT);
631	}
632	if (sc->jme_chip_rev == 0xFF) {
633		device_printf(dev, "Unknown chip revision : 0x%02x\n",
634		    sc->jme_rev);
635		error = ENXIO;
636		goto fail;
637	}
638
639	if (CHIPMODE_REVFM(sc->jme_chip_rev) >= 2) {
640		if ((sc->jme_rev & DEVICEID_JMC2XX_MASK) == DEVICEID_JMC260 &&
641		    CHIPMODE_REVFM(sc->jme_chip_rev) == 2)
642			sc->jme_flags |= JME_FLAG_DMA32BIT;
643		sc->jme_flags |= JME_FLAG_TXCLK;
644		sc->jme_flags |= JME_FLAG_HWMIB;
645	}
646
647	/* Reset the ethernet controller. */
648	jme_reset(sc);
649
650	/* Get station address. */
651	reg = CSR_READ_4(sc, JME_SMBCSR);
652	if ((reg & SMBCSR_EEPROM_PRESENT) != 0)
653		error = jme_eeprom_macaddr(sc);
654	if (error != 0 || (reg & SMBCSR_EEPROM_PRESENT) == 0) {
655		if (error != 0 && (bootverbose))
656			device_printf(sc->jme_dev,
657			    "ethernet hardware address not found in EEPROM.\n");
658		jme_reg_macaddr(sc);
659	}
660
661	/*
662	 * Save PHY address.
663	 * Integrated JR0211 has fixed PHY address whereas FPGA version
664	 * requires PHY probing to get correct PHY address.
665	 */
666	if ((sc->jme_flags & JME_FLAG_FPGA) == 0) {
667		sc->jme_phyaddr = CSR_READ_4(sc, JME_GPREG0) &
668		    GPREG0_PHY_ADDR_MASK;
669		if (bootverbose)
670			device_printf(dev, "PHY is at address %d.\n",
671			    sc->jme_phyaddr);
672	} else
673		sc->jme_phyaddr = 0;
674
675	/* Set max allowable DMA size. */
676	if (pci_find_extcap(dev, PCIY_EXPRESS, &i) == 0) {
677		sc->jme_flags |= JME_FLAG_PCIE;
678		burst = pci_read_config(dev, i + 0x08, 2);
679		if (bootverbose) {
680			device_printf(dev, "Read request size : %d bytes.\n",
681			    128 << ((burst >> 12) & 0x07));
682			device_printf(dev, "TLP payload size : %d bytes.\n",
683			    128 << ((burst >> 5) & 0x07));
684		}
685		switch ((burst >> 12) & 0x07) {
686		case 0:
687			sc->jme_tx_dma_size = TXCSR_DMA_SIZE_128;
688			break;
689		case 1:
690			sc->jme_tx_dma_size = TXCSR_DMA_SIZE_256;
691			break;
692		default:
693			sc->jme_tx_dma_size = TXCSR_DMA_SIZE_512;
694			break;
695		}
696		sc->jme_rx_dma_size = RXCSR_DMA_SIZE_128;
697	} else {
698		sc->jme_tx_dma_size = TXCSR_DMA_SIZE_512;
699		sc->jme_rx_dma_size = RXCSR_DMA_SIZE_128;
700	}
701	/* Create coalescing sysctl node. */
702	jme_sysctl_node(sc);
703	if ((error = jme_dma_alloc(sc) != 0))
704		goto fail;
705
706	ifp = sc->jme_ifp = if_alloc(IFT_ETHER);
707	if (ifp == NULL) {
708		device_printf(dev, "cannot allocate ifnet structure.\n");
709		error = ENXIO;
710		goto fail;
711	}
712
713	ifp->if_softc = sc;
714	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
715	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
716	ifp->if_ioctl = jme_ioctl;
717	ifp->if_start = jme_start;
718	ifp->if_init = jme_init;
719	ifp->if_snd.ifq_drv_maxlen = JME_TX_RING_CNT - 1;
720	IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen);
721	IFQ_SET_READY(&ifp->if_snd);
722	/* JMC250 supports Tx/Rx checksum offload as well as TSO. */
723	ifp->if_capabilities = IFCAP_HWCSUM | IFCAP_TSO4;
724	ifp->if_hwassist = JME_CSUM_FEATURES | CSUM_TSO;
725	if (pci_find_extcap(dev, PCIY_PMG, &pmc) == 0) {
726		sc->jme_flags |= JME_FLAG_PMCAP;
727		ifp->if_capabilities |= IFCAP_WOL_MAGIC;
728	}
729	ifp->if_capenable = ifp->if_capabilities;
730
731	/* Set up MII bus. */
732	error = mii_attach(dev, &sc->jme_miibus, ifp, jme_mediachange,
733	    jme_mediastatus, BMSR_DEFCAPMASK,
734	    sc->jme_flags & JME_FLAG_FPGA ? MII_PHY_ANY : sc->jme_phyaddr,
735	    MII_OFFSET_ANY, MIIF_DOPAUSE);
736	if (error != 0) {
737		device_printf(dev, "attaching PHYs failed\n");
738		goto fail;
739	}
740
741	/*
742	 * Force PHY to FPGA mode.
743	 */
744	if ((sc->jme_flags & JME_FLAG_FPGA) != 0) {
745		mii = device_get_softc(sc->jme_miibus);
746		if (mii->mii_instance != 0) {
747			LIST_FOREACH(miisc, &mii->mii_phys, mii_list) {
748				if (miisc->mii_phy != 0) {
749					sc->jme_phyaddr = miisc->mii_phy;
750					break;
751				}
752			}
753			if (sc->jme_phyaddr != 0) {
754				device_printf(sc->jme_dev,
755				    "FPGA PHY is at %d\n", sc->jme_phyaddr);
756				/* vendor magic. */
757				jme_miibus_writereg(dev, sc->jme_phyaddr, 27,
758				    0x0004);
759			}
760		}
761	}
762
763	ether_ifattach(ifp, sc->jme_eaddr);
764
765	/* VLAN capability setup */
766	ifp->if_capabilities |= IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING |
767	    IFCAP_VLAN_HWCSUM | IFCAP_VLAN_HWTSO;
768	ifp->if_capenable = ifp->if_capabilities;
769
770	/* Tell the upper layer(s) we support long frames. */
771	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
772
773	/* Create local taskq. */
774	TASK_INIT(&sc->jme_tx_task, 1, jme_tx_task, ifp);
775	sc->jme_tq = taskqueue_create_fast("jme_taskq", M_WAITOK,
776	    taskqueue_thread_enqueue, &sc->jme_tq);
777	if (sc->jme_tq == NULL) {
778		device_printf(dev, "could not create taskqueue.\n");
779		ether_ifdetach(ifp);
780		error = ENXIO;
781		goto fail;
782	}
783	taskqueue_start_threads(&sc->jme_tq, 1, PI_NET, "%s taskq",
784	    device_get_nameunit(sc->jme_dev));
785
786	for (i = 0; i < 1; i++) {
787		error = bus_setup_intr(dev, sc->jme_irq[i],
788		    INTR_TYPE_NET | INTR_MPSAFE, jme_intr, NULL, sc,
789		    &sc->jme_intrhand[i]);
790		if (error != 0)
791			break;
792	}
793
794	if (error != 0) {
795		device_printf(dev, "could not set up interrupt handler.\n");
796		taskqueue_free(sc->jme_tq);
797		sc->jme_tq = NULL;
798		ether_ifdetach(ifp);
799		goto fail;
800	}
801
802fail:
803	if (error != 0)
804		jme_detach(dev);
805
806	return (error);
807}
808
809static int
810jme_detach(device_t dev)
811{
812	struct jme_softc *sc;
813	struct ifnet *ifp;
814	int i;
815
816	sc = device_get_softc(dev);
817
818	ifp = sc->jme_ifp;
819	if (device_is_attached(dev)) {
820		JME_LOCK(sc);
821		sc->jme_flags |= JME_FLAG_DETACH;
822		jme_stop(sc);
823		JME_UNLOCK(sc);
824		callout_drain(&sc->jme_tick_ch);
825		taskqueue_drain(sc->jme_tq, &sc->jme_int_task);
826		taskqueue_drain(sc->jme_tq, &sc->jme_tx_task);
827		taskqueue_drain(taskqueue_swi, &sc->jme_link_task);
828		ether_ifdetach(ifp);
829	}
830
831	if (sc->jme_tq != NULL) {
832		taskqueue_drain(sc->jme_tq, &sc->jme_int_task);
833		taskqueue_free(sc->jme_tq);
834		sc->jme_tq = NULL;
835	}
836
837	if (sc->jme_miibus != NULL) {
838		device_delete_child(dev, sc->jme_miibus);
839		sc->jme_miibus = NULL;
840	}
841	bus_generic_detach(dev);
842	jme_dma_free(sc);
843
844	if (ifp != NULL) {
845		if_free(ifp);
846		sc->jme_ifp = NULL;
847	}
848
849	for (i = 0; i < 1; i++) {
850		if (sc->jme_intrhand[i] != NULL) {
851			bus_teardown_intr(dev, sc->jme_irq[i],
852			    sc->jme_intrhand[i]);
853			sc->jme_intrhand[i] = NULL;
854		}
855	}
856
857	if (sc->jme_irq[0] != NULL)
858		bus_release_resources(dev, sc->jme_irq_spec, sc->jme_irq);
859	if ((sc->jme_flags & (JME_FLAG_MSIX | JME_FLAG_MSI)) != 0)
860		pci_release_msi(dev);
861	if (sc->jme_res[0] != NULL)
862		bus_release_resources(dev, sc->jme_res_spec, sc->jme_res);
863	mtx_destroy(&sc->jme_mtx);
864
865	return (0);
866}
867
868#define	JME_SYSCTL_STAT_ADD32(c, h, n, p, d)	\
869	    SYSCTL_ADD_UINT(c, h, OID_AUTO, n, CTLFLAG_RD, p, 0, d)
870
871static void
872jme_sysctl_node(struct jme_softc *sc)
873{
874	struct sysctl_ctx_list *ctx;
875	struct sysctl_oid_list *child, *parent;
876	struct sysctl_oid *tree;
877	struct jme_hw_stats *stats;
878	int error;
879
880	stats = &sc->jme_stats;
881	ctx = device_get_sysctl_ctx(sc->jme_dev);
882	child = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->jme_dev));
883
884	SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "tx_coal_to",
885	    CTLTYPE_INT | CTLFLAG_RW, &sc->jme_tx_coal_to, 0,
886	    sysctl_hw_jme_tx_coal_to, "I", "jme tx coalescing timeout");
887
888	SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "tx_coal_pkt",
889	    CTLTYPE_INT | CTLFLAG_RW, &sc->jme_tx_coal_pkt, 0,
890	    sysctl_hw_jme_tx_coal_pkt, "I", "jme tx coalescing packet");
891
892	SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "rx_coal_to",
893	    CTLTYPE_INT | CTLFLAG_RW, &sc->jme_rx_coal_to, 0,
894	    sysctl_hw_jme_rx_coal_to, "I", "jme rx coalescing timeout");
895
896	SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "rx_coal_pkt",
897	    CTLTYPE_INT | CTLFLAG_RW, &sc->jme_rx_coal_pkt, 0,
898	    sysctl_hw_jme_rx_coal_pkt, "I", "jme rx coalescing packet");
899
900	SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "process_limit",
901	    CTLTYPE_INT | CTLFLAG_RW, &sc->jme_process_limit, 0,
902	    sysctl_hw_jme_proc_limit, "I",
903	    "max number of Rx events to process");
904
905	/* Pull in device tunables. */
906	sc->jme_process_limit = JME_PROC_DEFAULT;
907	error = resource_int_value(device_get_name(sc->jme_dev),
908	    device_get_unit(sc->jme_dev), "process_limit",
909	    &sc->jme_process_limit);
910	if (error == 0) {
911		if (sc->jme_process_limit < JME_PROC_MIN ||
912		    sc->jme_process_limit > JME_PROC_MAX) {
913			device_printf(sc->jme_dev,
914			    "process_limit value out of range; "
915			    "using default: %d\n", JME_PROC_DEFAULT);
916			sc->jme_process_limit = JME_PROC_DEFAULT;
917		}
918	}
919
920	sc->jme_tx_coal_to = PCCTX_COAL_TO_DEFAULT;
921	error = resource_int_value(device_get_name(sc->jme_dev),
922	    device_get_unit(sc->jme_dev), "tx_coal_to", &sc->jme_tx_coal_to);
923	if (error == 0) {
924		if (sc->jme_tx_coal_to < PCCTX_COAL_TO_MIN ||
925		    sc->jme_tx_coal_to > PCCTX_COAL_TO_MAX) {
926			device_printf(sc->jme_dev,
927			    "tx_coal_to value out of range; "
928			    "using default: %d\n", PCCTX_COAL_TO_DEFAULT);
929			sc->jme_tx_coal_to = PCCTX_COAL_TO_DEFAULT;
930		}
931	}
932
933	sc->jme_tx_coal_pkt = PCCTX_COAL_PKT_DEFAULT;
934	error = resource_int_value(device_get_name(sc->jme_dev),
935	    device_get_unit(sc->jme_dev), "tx_coal_pkt", &sc->jme_tx_coal_to);
936	if (error == 0) {
937		if (sc->jme_tx_coal_pkt < PCCTX_COAL_PKT_MIN ||
938		    sc->jme_tx_coal_pkt > PCCTX_COAL_PKT_MAX) {
939			device_printf(sc->jme_dev,
940			    "tx_coal_pkt value out of range; "
941			    "using default: %d\n", PCCTX_COAL_PKT_DEFAULT);
942			sc->jme_tx_coal_pkt = PCCTX_COAL_PKT_DEFAULT;
943		}
944	}
945
946	sc->jme_rx_coal_to = PCCRX_COAL_TO_DEFAULT;
947	error = resource_int_value(device_get_name(sc->jme_dev),
948	    device_get_unit(sc->jme_dev), "rx_coal_to", &sc->jme_rx_coal_to);
949	if (error == 0) {
950		if (sc->jme_rx_coal_to < PCCRX_COAL_TO_MIN ||
951		    sc->jme_rx_coal_to > PCCRX_COAL_TO_MAX) {
952			device_printf(sc->jme_dev,
953			    "rx_coal_to value out of range; "
954			    "using default: %d\n", PCCRX_COAL_TO_DEFAULT);
955			sc->jme_rx_coal_to = PCCRX_COAL_TO_DEFAULT;
956		}
957	}
958
959	sc->jme_rx_coal_pkt = PCCRX_COAL_PKT_DEFAULT;
960	error = resource_int_value(device_get_name(sc->jme_dev),
961	    device_get_unit(sc->jme_dev), "rx_coal_pkt", &sc->jme_rx_coal_to);
962	if (error == 0) {
963		if (sc->jme_rx_coal_pkt < PCCRX_COAL_PKT_MIN ||
964		    sc->jme_rx_coal_pkt > PCCRX_COAL_PKT_MAX) {
965			device_printf(sc->jme_dev,
966			    "tx_coal_pkt value out of range; "
967			    "using default: %d\n", PCCRX_COAL_PKT_DEFAULT);
968			sc->jme_rx_coal_pkt = PCCRX_COAL_PKT_DEFAULT;
969		}
970	}
971
972	if ((sc->jme_flags & JME_FLAG_HWMIB) == 0)
973		return;
974
975	tree = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "stats", CTLFLAG_RD,
976	    NULL, "JME statistics");
977	parent = SYSCTL_CHILDREN(tree);
978
979	/* Rx statistics. */
980	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "rx", CTLFLAG_RD,
981	    NULL, "Rx MAC statistics");
982	child = SYSCTL_CHILDREN(tree);
983	JME_SYSCTL_STAT_ADD32(ctx, child, "good_frames",
984	    &stats->rx_good_frames, "Good frames");
985	JME_SYSCTL_STAT_ADD32(ctx, child, "crc_errs",
986	    &stats->rx_crc_errs, "CRC errors");
987	JME_SYSCTL_STAT_ADD32(ctx, child, "mii_errs",
988	    &stats->rx_mii_errs, "MII errors");
989	JME_SYSCTL_STAT_ADD32(ctx, child, "fifo_oflows",
990	    &stats->rx_fifo_oflows, "FIFO overflows");
991	JME_SYSCTL_STAT_ADD32(ctx, child, "desc_empty",
992	    &stats->rx_desc_empty, "Descriptor empty");
993	JME_SYSCTL_STAT_ADD32(ctx, child, "bad_frames",
994	    &stats->rx_bad_frames, "Bad frames");
995
996	/* Tx statistics. */
997	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "tx", CTLFLAG_RD,
998	    NULL, "Tx MAC statistics");
999	child = SYSCTL_CHILDREN(tree);
1000	JME_SYSCTL_STAT_ADD32(ctx, child, "good_frames",
1001	    &stats->tx_good_frames, "Good frames");
1002	JME_SYSCTL_STAT_ADD32(ctx, child, "bad_frames",
1003	    &stats->tx_bad_frames, "Bad frames");
1004}
1005
1006#undef	JME_SYSCTL_STAT_ADD32
1007
1008struct jme_dmamap_arg {
1009	bus_addr_t	jme_busaddr;
1010};
1011
1012static void
1013jme_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
1014{
1015	struct jme_dmamap_arg *ctx;
1016
1017	if (error != 0)
1018		return;
1019
1020	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
1021
1022	ctx = (struct jme_dmamap_arg *)arg;
1023	ctx->jme_busaddr = segs[0].ds_addr;
1024}
1025
1026static int
1027jme_dma_alloc(struct jme_softc *sc)
1028{
1029	struct jme_dmamap_arg ctx;
1030	struct jme_txdesc *txd;
1031	struct jme_rxdesc *rxd;
1032	bus_addr_t lowaddr, rx_ring_end, tx_ring_end;
1033	int error, i;
1034
1035	lowaddr = BUS_SPACE_MAXADDR;
1036	if ((sc->jme_flags & JME_FLAG_DMA32BIT) != 0)
1037		lowaddr = BUS_SPACE_MAXADDR_32BIT;
1038
1039again:
1040	/* Create parent ring tag. */
1041	error = bus_dma_tag_create(bus_get_dma_tag(sc->jme_dev),/* parent */
1042	    1, 0,			/* algnmnt, boundary */
1043	    lowaddr,			/* lowaddr */
1044	    BUS_SPACE_MAXADDR,		/* highaddr */
1045	    NULL, NULL,			/* filter, filterarg */
1046	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
1047	    0,				/* nsegments */
1048	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
1049	    0,				/* flags */
1050	    NULL, NULL,			/* lockfunc, lockarg */
1051	    &sc->jme_cdata.jme_ring_tag);
1052	if (error != 0) {
1053		device_printf(sc->jme_dev,
1054		    "could not create parent ring DMA tag.\n");
1055		goto fail;
1056	}
1057	/* Create tag for Tx ring. */
1058	error = bus_dma_tag_create(sc->jme_cdata.jme_ring_tag,/* parent */
1059	    JME_TX_RING_ALIGN, 0,	/* algnmnt, boundary */
1060	    BUS_SPACE_MAXADDR,		/* lowaddr */
1061	    BUS_SPACE_MAXADDR,		/* highaddr */
1062	    NULL, NULL,			/* filter, filterarg */
1063	    JME_TX_RING_SIZE,		/* maxsize */
1064	    1,				/* nsegments */
1065	    JME_TX_RING_SIZE,		/* maxsegsize */
1066	    0,				/* flags */
1067	    NULL, NULL,			/* lockfunc, lockarg */
1068	    &sc->jme_cdata.jme_tx_ring_tag);
1069	if (error != 0) {
1070		device_printf(sc->jme_dev,
1071		    "could not allocate Tx ring DMA tag.\n");
1072		goto fail;
1073	}
1074
1075	/* Create tag for Rx ring. */
1076	error = bus_dma_tag_create(sc->jme_cdata.jme_ring_tag,/* parent */
1077	    JME_RX_RING_ALIGN, 0,	/* algnmnt, boundary */
1078	    lowaddr,			/* lowaddr */
1079	    BUS_SPACE_MAXADDR,		/* highaddr */
1080	    NULL, NULL,			/* filter, filterarg */
1081	    JME_RX_RING_SIZE,		/* maxsize */
1082	    1,				/* nsegments */
1083	    JME_RX_RING_SIZE,		/* maxsegsize */
1084	    0,				/* flags */
1085	    NULL, NULL,			/* lockfunc, lockarg */
1086	    &sc->jme_cdata.jme_rx_ring_tag);
1087	if (error != 0) {
1088		device_printf(sc->jme_dev,
1089		    "could not allocate Rx ring DMA tag.\n");
1090		goto fail;
1091	}
1092
1093	/* Allocate DMA'able memory and load the DMA map for Tx ring. */
1094	error = bus_dmamem_alloc(sc->jme_cdata.jme_tx_ring_tag,
1095	    (void **)&sc->jme_rdata.jme_tx_ring,
1096	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1097	    &sc->jme_cdata.jme_tx_ring_map);
1098	if (error != 0) {
1099		device_printf(sc->jme_dev,
1100		    "could not allocate DMA'able memory for Tx ring.\n");
1101		goto fail;
1102	}
1103
1104	ctx.jme_busaddr = 0;
1105	error = bus_dmamap_load(sc->jme_cdata.jme_tx_ring_tag,
1106	    sc->jme_cdata.jme_tx_ring_map, sc->jme_rdata.jme_tx_ring,
1107	    JME_TX_RING_SIZE, jme_dmamap_cb, &ctx, BUS_DMA_NOWAIT);
1108	if (error != 0 || ctx.jme_busaddr == 0) {
1109		device_printf(sc->jme_dev,
1110		    "could not load DMA'able memory for Tx ring.\n");
1111		goto fail;
1112	}
1113	sc->jme_rdata.jme_tx_ring_paddr = ctx.jme_busaddr;
1114
1115	/* Allocate DMA'able memory and load the DMA map for Rx ring. */
1116	error = bus_dmamem_alloc(sc->jme_cdata.jme_rx_ring_tag,
1117	    (void **)&sc->jme_rdata.jme_rx_ring,
1118	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1119	    &sc->jme_cdata.jme_rx_ring_map);
1120	if (error != 0) {
1121		device_printf(sc->jme_dev,
1122		    "could not allocate DMA'able memory for Rx ring.\n");
1123		goto fail;
1124	}
1125
1126	ctx.jme_busaddr = 0;
1127	error = bus_dmamap_load(sc->jme_cdata.jme_rx_ring_tag,
1128	    sc->jme_cdata.jme_rx_ring_map, sc->jme_rdata.jme_rx_ring,
1129	    JME_RX_RING_SIZE, jme_dmamap_cb, &ctx, BUS_DMA_NOWAIT);
1130	if (error != 0 || ctx.jme_busaddr == 0) {
1131		device_printf(sc->jme_dev,
1132		    "could not load DMA'able memory for Rx ring.\n");
1133		goto fail;
1134	}
1135	sc->jme_rdata.jme_rx_ring_paddr = ctx.jme_busaddr;
1136
1137	if (lowaddr != BUS_SPACE_MAXADDR_32BIT) {
1138		/* Tx/Rx descriptor queue should reside within 4GB boundary. */
1139		tx_ring_end = sc->jme_rdata.jme_tx_ring_paddr +
1140		    JME_TX_RING_SIZE;
1141		rx_ring_end = sc->jme_rdata.jme_rx_ring_paddr +
1142		    JME_RX_RING_SIZE;
1143		if ((JME_ADDR_HI(tx_ring_end) !=
1144		    JME_ADDR_HI(sc->jme_rdata.jme_tx_ring_paddr)) ||
1145		    (JME_ADDR_HI(rx_ring_end) !=
1146		     JME_ADDR_HI(sc->jme_rdata.jme_rx_ring_paddr))) {
1147			device_printf(sc->jme_dev, "4GB boundary crossed, "
1148			    "switching to 32bit DMA address mode.\n");
1149			jme_dma_free(sc);
1150			/* Limit DMA address space to 32bit and try again. */
1151			lowaddr = BUS_SPACE_MAXADDR_32BIT;
1152			goto again;
1153		}
1154	}
1155
1156	lowaddr = BUS_SPACE_MAXADDR;
1157	if ((sc->jme_flags & JME_FLAG_DMA32BIT) != 0)
1158		lowaddr = BUS_SPACE_MAXADDR_32BIT;
1159	/* Create parent buffer tag. */
1160	error = bus_dma_tag_create(bus_get_dma_tag(sc->jme_dev),/* parent */
1161	    1, 0,			/* algnmnt, boundary */
1162	    lowaddr,			/* lowaddr */
1163	    BUS_SPACE_MAXADDR,		/* highaddr */
1164	    NULL, NULL,			/* filter, filterarg */
1165	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
1166	    0,				/* nsegments */
1167	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
1168	    0,				/* flags */
1169	    NULL, NULL,			/* lockfunc, lockarg */
1170	    &sc->jme_cdata.jme_buffer_tag);
1171	if (error != 0) {
1172		device_printf(sc->jme_dev,
1173		    "could not create parent buffer DMA tag.\n");
1174		goto fail;
1175	}
1176
1177	/* Create shadow status block tag. */
1178	error = bus_dma_tag_create(sc->jme_cdata.jme_buffer_tag,/* parent */
1179	    JME_SSB_ALIGN, 0,		/* algnmnt, boundary */
1180	    BUS_SPACE_MAXADDR,		/* lowaddr */
1181	    BUS_SPACE_MAXADDR,		/* highaddr */
1182	    NULL, NULL,			/* filter, filterarg */
1183	    JME_SSB_SIZE,		/* maxsize */
1184	    1,				/* nsegments */
1185	    JME_SSB_SIZE,		/* maxsegsize */
1186	    0,				/* flags */
1187	    NULL, NULL,			/* lockfunc, lockarg */
1188	    &sc->jme_cdata.jme_ssb_tag);
1189	if (error != 0) {
1190		device_printf(sc->jme_dev,
1191		    "could not create shared status block DMA tag.\n");
1192		goto fail;
1193	}
1194
1195	/* Create tag for Tx buffers. */
1196	error = bus_dma_tag_create(sc->jme_cdata.jme_buffer_tag,/* parent */
1197	    1, 0,			/* algnmnt, boundary */
1198	    BUS_SPACE_MAXADDR,		/* lowaddr */
1199	    BUS_SPACE_MAXADDR,		/* highaddr */
1200	    NULL, NULL,			/* filter, filterarg */
1201	    JME_TSO_MAXSIZE,		/* maxsize */
1202	    JME_MAXTXSEGS,		/* nsegments */
1203	    JME_TSO_MAXSEGSIZE,		/* maxsegsize */
1204	    0,				/* flags */
1205	    NULL, NULL,			/* lockfunc, lockarg */
1206	    &sc->jme_cdata.jme_tx_tag);
1207	if (error != 0) {
1208		device_printf(sc->jme_dev, "could not create Tx DMA tag.\n");
1209		goto fail;
1210	}
1211
1212	/* Create tag for Rx buffers. */
1213	error = bus_dma_tag_create(sc->jme_cdata.jme_buffer_tag,/* parent */
1214	    JME_RX_BUF_ALIGN, 0,	/* algnmnt, boundary */
1215	    BUS_SPACE_MAXADDR,		/* lowaddr */
1216	    BUS_SPACE_MAXADDR,		/* highaddr */
1217	    NULL, NULL,			/* filter, filterarg */
1218	    MCLBYTES,			/* maxsize */
1219	    1,				/* nsegments */
1220	    MCLBYTES,			/* maxsegsize */
1221	    0,				/* flags */
1222	    NULL, NULL,			/* lockfunc, lockarg */
1223	    &sc->jme_cdata.jme_rx_tag);
1224	if (error != 0) {
1225		device_printf(sc->jme_dev, "could not create Rx DMA tag.\n");
1226		goto fail;
1227	}
1228
1229	/*
1230	 * Allocate DMA'able memory and load the DMA map for shared
1231	 * status block.
1232	 */
1233	error = bus_dmamem_alloc(sc->jme_cdata.jme_ssb_tag,
1234	    (void **)&sc->jme_rdata.jme_ssb_block,
1235	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1236	    &sc->jme_cdata.jme_ssb_map);
1237	if (error != 0) {
1238		device_printf(sc->jme_dev, "could not allocate DMA'able "
1239		    "memory for shared status block.\n");
1240		goto fail;
1241	}
1242
1243	ctx.jme_busaddr = 0;
1244	error = bus_dmamap_load(sc->jme_cdata.jme_ssb_tag,
1245	    sc->jme_cdata.jme_ssb_map, sc->jme_rdata.jme_ssb_block,
1246	    JME_SSB_SIZE, jme_dmamap_cb, &ctx, BUS_DMA_NOWAIT);
1247	if (error != 0 || ctx.jme_busaddr == 0) {
1248		device_printf(sc->jme_dev, "could not load DMA'able memory "
1249		    "for shared status block.\n");
1250		goto fail;
1251	}
1252	sc->jme_rdata.jme_ssb_block_paddr = ctx.jme_busaddr;
1253
1254	/* Create DMA maps for Tx buffers. */
1255	for (i = 0; i < JME_TX_RING_CNT; i++) {
1256		txd = &sc->jme_cdata.jme_txdesc[i];
1257		txd->tx_m = NULL;
1258		txd->tx_dmamap = NULL;
1259		error = bus_dmamap_create(sc->jme_cdata.jme_tx_tag, 0,
1260		    &txd->tx_dmamap);
1261		if (error != 0) {
1262			device_printf(sc->jme_dev,
1263			    "could not create Tx dmamap.\n");
1264			goto fail;
1265		}
1266	}
1267	/* Create DMA maps for Rx buffers. */
1268	if ((error = bus_dmamap_create(sc->jme_cdata.jme_rx_tag, 0,
1269	    &sc->jme_cdata.jme_rx_sparemap)) != 0) {
1270		device_printf(sc->jme_dev,
1271		    "could not create spare Rx dmamap.\n");
1272		goto fail;
1273	}
1274	for (i = 0; i < JME_RX_RING_CNT; i++) {
1275		rxd = &sc->jme_cdata.jme_rxdesc[i];
1276		rxd->rx_m = NULL;
1277		rxd->rx_dmamap = NULL;
1278		error = bus_dmamap_create(sc->jme_cdata.jme_rx_tag, 0,
1279		    &rxd->rx_dmamap);
1280		if (error != 0) {
1281			device_printf(sc->jme_dev,
1282			    "could not create Rx dmamap.\n");
1283			goto fail;
1284		}
1285	}
1286
1287fail:
1288	return (error);
1289}
1290
1291static void
1292jme_dma_free(struct jme_softc *sc)
1293{
1294	struct jme_txdesc *txd;
1295	struct jme_rxdesc *rxd;
1296	int i;
1297
1298	/* Tx ring */
1299	if (sc->jme_cdata.jme_tx_ring_tag != NULL) {
1300		if (sc->jme_cdata.jme_tx_ring_map)
1301			bus_dmamap_unload(sc->jme_cdata.jme_tx_ring_tag,
1302			    sc->jme_cdata.jme_tx_ring_map);
1303		if (sc->jme_cdata.jme_tx_ring_map &&
1304		    sc->jme_rdata.jme_tx_ring)
1305			bus_dmamem_free(sc->jme_cdata.jme_tx_ring_tag,
1306			    sc->jme_rdata.jme_tx_ring,
1307			    sc->jme_cdata.jme_tx_ring_map);
1308		sc->jme_rdata.jme_tx_ring = NULL;
1309		sc->jme_cdata.jme_tx_ring_map = NULL;
1310		bus_dma_tag_destroy(sc->jme_cdata.jme_tx_ring_tag);
1311		sc->jme_cdata.jme_tx_ring_tag = NULL;
1312	}
1313	/* Rx ring */
1314	if (sc->jme_cdata.jme_rx_ring_tag != NULL) {
1315		if (sc->jme_cdata.jme_rx_ring_map)
1316			bus_dmamap_unload(sc->jme_cdata.jme_rx_ring_tag,
1317			    sc->jme_cdata.jme_rx_ring_map);
1318		if (sc->jme_cdata.jme_rx_ring_map &&
1319		    sc->jme_rdata.jme_rx_ring)
1320			bus_dmamem_free(sc->jme_cdata.jme_rx_ring_tag,
1321			    sc->jme_rdata.jme_rx_ring,
1322			    sc->jme_cdata.jme_rx_ring_map);
1323		sc->jme_rdata.jme_rx_ring = NULL;
1324		sc->jme_cdata.jme_rx_ring_map = NULL;
1325		bus_dma_tag_destroy(sc->jme_cdata.jme_rx_ring_tag);
1326		sc->jme_cdata.jme_rx_ring_tag = NULL;
1327	}
1328	/* Tx buffers */
1329	if (sc->jme_cdata.jme_tx_tag != NULL) {
1330		for (i = 0; i < JME_TX_RING_CNT; i++) {
1331			txd = &sc->jme_cdata.jme_txdesc[i];
1332			if (txd->tx_dmamap != NULL) {
1333				bus_dmamap_destroy(sc->jme_cdata.jme_tx_tag,
1334				    txd->tx_dmamap);
1335				txd->tx_dmamap = NULL;
1336			}
1337		}
1338		bus_dma_tag_destroy(sc->jme_cdata.jme_tx_tag);
1339		sc->jme_cdata.jme_tx_tag = NULL;
1340	}
1341	/* Rx buffers */
1342	if (sc->jme_cdata.jme_rx_tag != NULL) {
1343		for (i = 0; i < JME_RX_RING_CNT; i++) {
1344			rxd = &sc->jme_cdata.jme_rxdesc[i];
1345			if (rxd->rx_dmamap != NULL) {
1346				bus_dmamap_destroy(sc->jme_cdata.jme_rx_tag,
1347				    rxd->rx_dmamap);
1348				rxd->rx_dmamap = NULL;
1349			}
1350		}
1351		if (sc->jme_cdata.jme_rx_sparemap != NULL) {
1352			bus_dmamap_destroy(sc->jme_cdata.jme_rx_tag,
1353			    sc->jme_cdata.jme_rx_sparemap);
1354			sc->jme_cdata.jme_rx_sparemap = NULL;
1355		}
1356		bus_dma_tag_destroy(sc->jme_cdata.jme_rx_tag);
1357		sc->jme_cdata.jme_rx_tag = NULL;
1358	}
1359
1360	/* Shared status block. */
1361	if (sc->jme_cdata.jme_ssb_tag != NULL) {
1362		if (sc->jme_cdata.jme_ssb_map)
1363			bus_dmamap_unload(sc->jme_cdata.jme_ssb_tag,
1364			    sc->jme_cdata.jme_ssb_map);
1365		if (sc->jme_cdata.jme_ssb_map && sc->jme_rdata.jme_ssb_block)
1366			bus_dmamem_free(sc->jme_cdata.jme_ssb_tag,
1367			    sc->jme_rdata.jme_ssb_block,
1368			    sc->jme_cdata.jme_ssb_map);
1369		sc->jme_rdata.jme_ssb_block = NULL;
1370		sc->jme_cdata.jme_ssb_map = NULL;
1371		bus_dma_tag_destroy(sc->jme_cdata.jme_ssb_tag);
1372		sc->jme_cdata.jme_ssb_tag = NULL;
1373	}
1374
1375	if (sc->jme_cdata.jme_buffer_tag != NULL) {
1376		bus_dma_tag_destroy(sc->jme_cdata.jme_buffer_tag);
1377		sc->jme_cdata.jme_buffer_tag = NULL;
1378	}
1379	if (sc->jme_cdata.jme_ring_tag != NULL) {
1380		bus_dma_tag_destroy(sc->jme_cdata.jme_ring_tag);
1381		sc->jme_cdata.jme_ring_tag = NULL;
1382	}
1383}
1384
1385/*
1386 *	Make sure the interface is stopped at reboot time.
1387 */
1388static int
1389jme_shutdown(device_t dev)
1390{
1391
1392	return (jme_suspend(dev));
1393}
1394
1395/*
1396 * Unlike other ethernet controllers, JMC250 requires
1397 * explicit resetting link speed to 10/100Mbps as gigabit
1398 * link will cunsume more power than 375mA.
1399 * Note, we reset the link speed to 10/100Mbps with
1400 * auto-negotiation but we don't know whether that operation
1401 * would succeed or not as we have no control after powering
1402 * off. If the renegotiation fail WOL may not work. Running
1403 * at 1Gbps draws more power than 375mA at 3.3V which is
1404 * specified in PCI specification and that would result in
1405 * complete shutdowning power to ethernet controller.
1406 *
1407 * TODO
1408 *  Save current negotiated media speed/duplex/flow-control
1409 *  to softc and restore the same link again after resuming.
1410 *  PHY handling such as power down/resetting to 100Mbps
1411 *  may be better handled in suspend method in phy driver.
1412 */
1413static void
1414jme_setlinkspeed(struct jme_softc *sc)
1415{
1416	struct mii_data *mii;
1417	int aneg, i;
1418
1419	JME_LOCK_ASSERT(sc);
1420
1421	mii = device_get_softc(sc->jme_miibus);
1422	mii_pollstat(mii);
1423	aneg = 0;
1424	if ((mii->mii_media_status & IFM_AVALID) != 0) {
1425		switch IFM_SUBTYPE(mii->mii_media_active) {
1426		case IFM_10_T:
1427		case IFM_100_TX:
1428			return;
1429		case IFM_1000_T:
1430			aneg++;
1431		default:
1432			break;
1433		}
1434	}
1435	jme_miibus_writereg(sc->jme_dev, sc->jme_phyaddr, MII_100T2CR, 0);
1436	jme_miibus_writereg(sc->jme_dev, sc->jme_phyaddr, MII_ANAR,
1437	    ANAR_TX_FD | ANAR_TX | ANAR_10_FD | ANAR_10 | ANAR_CSMA);
1438	jme_miibus_writereg(sc->jme_dev, sc->jme_phyaddr, MII_BMCR,
1439	    BMCR_AUTOEN | BMCR_STARTNEG);
1440	DELAY(1000);
1441	if (aneg != 0) {
1442		/* Poll link state until jme(4) get a 10/100 link. */
1443		for (i = 0; i < MII_ANEGTICKS_GIGE; i++) {
1444			mii_pollstat(mii);
1445			if ((mii->mii_media_status & IFM_AVALID) != 0) {
1446				switch (IFM_SUBTYPE(mii->mii_media_active)) {
1447				case IFM_10_T:
1448				case IFM_100_TX:
1449					jme_mac_config(sc);
1450					return;
1451				default:
1452					break;
1453				}
1454			}
1455			JME_UNLOCK(sc);
1456			pause("jmelnk", hz);
1457			JME_LOCK(sc);
1458		}
1459		if (i == MII_ANEGTICKS_GIGE)
1460			device_printf(sc->jme_dev, "establishing link failed, "
1461			    "WOL may not work!");
1462	}
1463	/*
1464	 * No link, force MAC to have 100Mbps, full-duplex link.
1465	 * This is the last resort and may/may not work.
1466	 */
1467	mii->mii_media_status = IFM_AVALID | IFM_ACTIVE;
1468	mii->mii_media_active = IFM_ETHER | IFM_100_TX | IFM_FDX;
1469	jme_mac_config(sc);
1470}
1471
1472static void
1473jme_setwol(struct jme_softc *sc)
1474{
1475	struct ifnet *ifp;
1476	uint32_t gpr, pmcs;
1477	uint16_t pmstat;
1478	int pmc;
1479
1480	JME_LOCK_ASSERT(sc);
1481
1482	if (pci_find_extcap(sc->jme_dev, PCIY_PMG, &pmc) != 0) {
1483		/* Remove Tx MAC/offload clock to save more power. */
1484		if ((sc->jme_flags & JME_FLAG_TXCLK) != 0)
1485			CSR_WRITE_4(sc, JME_GHC, CSR_READ_4(sc, JME_GHC) &
1486			    ~(GHC_TX_OFFLD_CLK_100 | GHC_TX_MAC_CLK_100 |
1487			    GHC_TX_OFFLD_CLK_1000 | GHC_TX_MAC_CLK_1000));
1488		/* No PME capability, PHY power down. */
1489		jme_miibus_writereg(sc->jme_dev, sc->jme_phyaddr,
1490		    MII_BMCR, BMCR_PDOWN);
1491		return;
1492	}
1493
1494	ifp = sc->jme_ifp;
1495	gpr = CSR_READ_4(sc, JME_GPREG0) & ~GPREG0_PME_ENB;
1496	pmcs = CSR_READ_4(sc, JME_PMCS);
1497	pmcs &= ~PMCS_WOL_ENB_MASK;
1498	if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0) {
1499		pmcs |= PMCS_MAGIC_FRAME | PMCS_MAGIC_FRAME_ENB;
1500		/* Enable PME message. */
1501		gpr |= GPREG0_PME_ENB;
1502		/* For gigabit controllers, reset link speed to 10/100. */
1503		if ((sc->jme_flags & JME_FLAG_FASTETH) == 0)
1504			jme_setlinkspeed(sc);
1505	}
1506
1507	CSR_WRITE_4(sc, JME_PMCS, pmcs);
1508	CSR_WRITE_4(sc, JME_GPREG0, gpr);
1509	/* Remove Tx MAC/offload clock to save more power. */
1510	if ((sc->jme_flags & JME_FLAG_TXCLK) != 0)
1511		CSR_WRITE_4(sc, JME_GHC, CSR_READ_4(sc, JME_GHC) &
1512		    ~(GHC_TX_OFFLD_CLK_100 | GHC_TX_MAC_CLK_100 |
1513		    GHC_TX_OFFLD_CLK_1000 | GHC_TX_MAC_CLK_1000));
1514	/* Request PME. */
1515	pmstat = pci_read_config(sc->jme_dev, pmc + PCIR_POWER_STATUS, 2);
1516	pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
1517	if ((ifp->if_capenable & IFCAP_WOL) != 0)
1518		pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
1519	pci_write_config(sc->jme_dev, pmc + PCIR_POWER_STATUS, pmstat, 2);
1520	if ((ifp->if_capenable & IFCAP_WOL) == 0) {
1521		/* No WOL, PHY power down. */
1522		jme_miibus_writereg(sc->jme_dev, sc->jme_phyaddr,
1523		    MII_BMCR, BMCR_PDOWN);
1524	}
1525}
1526
1527static int
1528jme_suspend(device_t dev)
1529{
1530	struct jme_softc *sc;
1531
1532	sc = device_get_softc(dev);
1533
1534	JME_LOCK(sc);
1535	jme_stop(sc);
1536	jme_setwol(sc);
1537	JME_UNLOCK(sc);
1538
1539	return (0);
1540}
1541
1542static int
1543jme_resume(device_t dev)
1544{
1545	struct jme_softc *sc;
1546	struct ifnet *ifp;
1547	uint16_t pmstat;
1548	int pmc;
1549
1550	sc = device_get_softc(dev);
1551
1552	JME_LOCK(sc);
1553	if (pci_find_extcap(sc->jme_dev, PCIY_PMG, &pmc) != 0) {
1554		pmstat = pci_read_config(sc->jme_dev,
1555		    pmc + PCIR_POWER_STATUS, 2);
1556		/* Disable PME clear PME status. */
1557		pmstat &= ~PCIM_PSTAT_PMEENABLE;
1558		pci_write_config(sc->jme_dev,
1559		    pmc + PCIR_POWER_STATUS, pmstat, 2);
1560	}
1561	ifp = sc->jme_ifp;
1562	if ((ifp->if_flags & IFF_UP) != 0) {
1563		ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1564		jme_init_locked(sc);
1565	}
1566
1567	JME_UNLOCK(sc);
1568
1569	return (0);
1570}
1571
1572static int
1573jme_encap(struct jme_softc *sc, struct mbuf **m_head)
1574{
1575	struct jme_txdesc *txd;
1576	struct jme_desc *desc;
1577	struct mbuf *m;
1578	bus_dma_segment_t txsegs[JME_MAXTXSEGS];
1579	int error, i, nsegs, prod;
1580	uint32_t cflags, tso_segsz;
1581
1582	JME_LOCK_ASSERT(sc);
1583
1584	M_ASSERTPKTHDR((*m_head));
1585
1586	if (((*m_head)->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
1587		/*
1588		 * Due to the adherence to NDIS specification JMC250
1589		 * assumes upper stack computed TCP pseudo checksum
1590		 * without including payload length. This breaks
1591		 * checksum offload for TSO case so recompute TCP
1592		 * pseudo checksum for JMC250. Hopefully this wouldn't
1593		 * be much burden on modern CPUs.
1594		 */
1595		struct ether_header *eh;
1596		struct ip *ip;
1597		struct tcphdr *tcp;
1598		uint32_t ip_off, poff;
1599
1600		if (M_WRITABLE(*m_head) == 0) {
1601			/* Get a writable copy. */
1602			m = m_dup(*m_head, M_DONTWAIT);
1603			m_freem(*m_head);
1604			if (m == NULL) {
1605				*m_head = NULL;
1606				return (ENOBUFS);
1607			}
1608			*m_head = m;
1609		}
1610		ip_off = sizeof(struct ether_header);
1611		m = m_pullup(*m_head, ip_off);
1612		if (m == NULL) {
1613			*m_head = NULL;
1614			return (ENOBUFS);
1615		}
1616		eh = mtod(m, struct ether_header *);
1617		/* Check the existence of VLAN tag. */
1618		if (eh->ether_type == htons(ETHERTYPE_VLAN)) {
1619			ip_off = sizeof(struct ether_vlan_header);
1620			m = m_pullup(m, ip_off);
1621			if (m == NULL) {
1622				*m_head = NULL;
1623				return (ENOBUFS);
1624			}
1625		}
1626		m = m_pullup(m, ip_off + sizeof(struct ip));
1627		if (m == NULL) {
1628			*m_head = NULL;
1629			return (ENOBUFS);
1630		}
1631		ip = (struct ip *)(mtod(m, char *) + ip_off);
1632		poff = ip_off + (ip->ip_hl << 2);
1633		m = m_pullup(m, poff + sizeof(struct tcphdr));
1634		if (m == NULL) {
1635			*m_head = NULL;
1636			return (ENOBUFS);
1637		}
1638		/*
1639		 * Reset IP checksum and recompute TCP pseudo
1640		 * checksum that NDIS specification requires.
1641		 */
1642		ip = (struct ip *)(mtod(m, char *) + ip_off);
1643		tcp = (struct tcphdr *)(mtod(m, char *) + poff);
1644		ip->ip_sum = 0;
1645		if (poff + (tcp->th_off << 2) == m->m_pkthdr.len) {
1646			tcp->th_sum = in_pseudo(ip->ip_src.s_addr,
1647			    ip->ip_dst.s_addr,
1648			    htons((tcp->th_off << 2) + IPPROTO_TCP));
1649			/* No need to TSO, force IP checksum offload. */
1650			(*m_head)->m_pkthdr.csum_flags &= ~CSUM_TSO;
1651			(*m_head)->m_pkthdr.csum_flags |= CSUM_IP;
1652		} else
1653			tcp->th_sum = in_pseudo(ip->ip_src.s_addr,
1654			    ip->ip_dst.s_addr, htons(IPPROTO_TCP));
1655		*m_head = m;
1656	}
1657
1658	prod = sc->jme_cdata.jme_tx_prod;
1659	txd = &sc->jme_cdata.jme_txdesc[prod];
1660
1661	error = bus_dmamap_load_mbuf_sg(sc->jme_cdata.jme_tx_tag,
1662	    txd->tx_dmamap, *m_head, txsegs, &nsegs, 0);
1663	if (error == EFBIG) {
1664		m = m_collapse(*m_head, M_DONTWAIT, JME_MAXTXSEGS);
1665		if (m == NULL) {
1666			m_freem(*m_head);
1667			*m_head = NULL;
1668			return (ENOMEM);
1669		}
1670		*m_head = m;
1671		error = bus_dmamap_load_mbuf_sg(sc->jme_cdata.jme_tx_tag,
1672		    txd->tx_dmamap, *m_head, txsegs, &nsegs, 0);
1673		if (error != 0) {
1674			m_freem(*m_head);
1675			*m_head = NULL;
1676			return (error);
1677		}
1678	} else if (error != 0)
1679		return (error);
1680	if (nsegs == 0) {
1681		m_freem(*m_head);
1682		*m_head = NULL;
1683		return (EIO);
1684	}
1685
1686	/*
1687	 * Check descriptor overrun. Leave one free descriptor.
1688	 * Since we always use 64bit address mode for transmitting,
1689	 * each Tx request requires one more dummy descriptor.
1690	 */
1691	if (sc->jme_cdata.jme_tx_cnt + nsegs + 1 > JME_TX_RING_CNT - 1) {
1692		bus_dmamap_unload(sc->jme_cdata.jme_tx_tag, txd->tx_dmamap);
1693		return (ENOBUFS);
1694	}
1695
1696	m = *m_head;
1697	cflags = 0;
1698	tso_segsz = 0;
1699	/* Configure checksum offload and TSO. */
1700	if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
1701		tso_segsz = (uint32_t)m->m_pkthdr.tso_segsz <<
1702		    JME_TD_MSS_SHIFT;
1703		cflags |= JME_TD_TSO;
1704	} else {
1705		if ((m->m_pkthdr.csum_flags & CSUM_IP) != 0)
1706			cflags |= JME_TD_IPCSUM;
1707		if ((m->m_pkthdr.csum_flags & CSUM_TCP) != 0)
1708			cflags |= JME_TD_TCPCSUM;
1709		if ((m->m_pkthdr.csum_flags & CSUM_UDP) != 0)
1710			cflags |= JME_TD_UDPCSUM;
1711	}
1712	/* Configure VLAN. */
1713	if ((m->m_flags & M_VLANTAG) != 0) {
1714		cflags |= (m->m_pkthdr.ether_vtag & JME_TD_VLAN_MASK);
1715		cflags |= JME_TD_VLAN_TAG;
1716	}
1717
1718	desc = &sc->jme_rdata.jme_tx_ring[prod];
1719	desc->flags = htole32(cflags);
1720	desc->buflen = htole32(tso_segsz);
1721	desc->addr_hi = htole32(m->m_pkthdr.len);
1722	desc->addr_lo = 0;
1723	sc->jme_cdata.jme_tx_cnt++;
1724	JME_DESC_INC(prod, JME_TX_RING_CNT);
1725	for (i = 0; i < nsegs; i++) {
1726		desc = &sc->jme_rdata.jme_tx_ring[prod];
1727		desc->flags = htole32(JME_TD_OWN | JME_TD_64BIT);
1728		desc->buflen = htole32(txsegs[i].ds_len);
1729		desc->addr_hi = htole32(JME_ADDR_HI(txsegs[i].ds_addr));
1730		desc->addr_lo = htole32(JME_ADDR_LO(txsegs[i].ds_addr));
1731		sc->jme_cdata.jme_tx_cnt++;
1732		JME_DESC_INC(prod, JME_TX_RING_CNT);
1733	}
1734
1735	/* Update producer index. */
1736	sc->jme_cdata.jme_tx_prod = prod;
1737	/*
1738	 * Finally request interrupt and give the first descriptor
1739	 * owenership to hardware.
1740	 */
1741	desc = txd->tx_desc;
1742	desc->flags |= htole32(JME_TD_OWN | JME_TD_INTR);
1743
1744	txd->tx_m = m;
1745	txd->tx_ndesc = nsegs + 1;
1746
1747	/* Sync descriptors. */
1748	bus_dmamap_sync(sc->jme_cdata.jme_tx_tag, txd->tx_dmamap,
1749	    BUS_DMASYNC_PREWRITE);
1750	bus_dmamap_sync(sc->jme_cdata.jme_tx_ring_tag,
1751	    sc->jme_cdata.jme_tx_ring_map,
1752	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1753
1754	return (0);
1755}
1756
1757static void
1758jme_tx_task(void *arg, int pending)
1759{
1760	struct ifnet *ifp;
1761
1762	ifp = (struct ifnet *)arg;
1763	jme_start(ifp);
1764}
1765
1766static void
1767jme_start(struct ifnet *ifp)
1768{
1769        struct jme_softc *sc;
1770        struct mbuf *m_head;
1771	int enq;
1772
1773	sc = ifp->if_softc;
1774
1775	JME_LOCK(sc);
1776
1777	if (sc->jme_cdata.jme_tx_cnt >= JME_TX_DESC_HIWAT)
1778		jme_txeof(sc);
1779
1780	if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
1781	    IFF_DRV_RUNNING || (sc->jme_flags & JME_FLAG_LINK) == 0) {
1782		JME_UNLOCK(sc);
1783		return;
1784	}
1785
1786	for (enq = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd); ) {
1787		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
1788		if (m_head == NULL)
1789			break;
1790		/*
1791		 * Pack the data into the transmit ring. If we
1792		 * don't have room, set the OACTIVE flag and wait
1793		 * for the NIC to drain the ring.
1794		 */
1795		if (jme_encap(sc, &m_head)) {
1796			if (m_head == NULL)
1797				break;
1798			IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
1799			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1800			break;
1801		}
1802
1803		enq++;
1804		/*
1805		 * If there's a BPF listener, bounce a copy of this frame
1806		 * to him.
1807		 */
1808		ETHER_BPF_MTAP(ifp, m_head);
1809	}
1810
1811	if (enq > 0) {
1812		/*
1813		 * Reading TXCSR takes very long time under heavy load
1814		 * so cache TXCSR value and writes the ORed value with
1815		 * the kick command to the TXCSR. This saves one register
1816		 * access cycle.
1817		 */
1818		CSR_WRITE_4(sc, JME_TXCSR, sc->jme_txcsr | TXCSR_TX_ENB |
1819		    TXCSR_TXQ_N_START(TXCSR_TXQ0));
1820		/* Set a timeout in case the chip goes out to lunch. */
1821		sc->jme_watchdog_timer = JME_TX_TIMEOUT;
1822	}
1823
1824	JME_UNLOCK(sc);
1825}
1826
1827static void
1828jme_watchdog(struct jme_softc *sc)
1829{
1830	struct ifnet *ifp;
1831
1832	JME_LOCK_ASSERT(sc);
1833
1834	if (sc->jme_watchdog_timer == 0 || --sc->jme_watchdog_timer)
1835		return;
1836
1837	ifp = sc->jme_ifp;
1838	if ((sc->jme_flags & JME_FLAG_LINK) == 0) {
1839		if_printf(sc->jme_ifp, "watchdog timeout (missed link)\n");
1840		ifp->if_oerrors++;
1841		ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1842		jme_init_locked(sc);
1843		return;
1844	}
1845	jme_txeof(sc);
1846	if (sc->jme_cdata.jme_tx_cnt == 0) {
1847		if_printf(sc->jme_ifp,
1848		    "watchdog timeout (missed Tx interrupts) -- recovering\n");
1849		if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1850			taskqueue_enqueue(sc->jme_tq, &sc->jme_tx_task);
1851		return;
1852	}
1853
1854	if_printf(sc->jme_ifp, "watchdog timeout\n");
1855	ifp->if_oerrors++;
1856	ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1857	jme_init_locked(sc);
1858	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1859		taskqueue_enqueue(sc->jme_tq, &sc->jme_tx_task);
1860}
1861
1862static int
1863jme_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1864{
1865	struct jme_softc *sc;
1866	struct ifreq *ifr;
1867	struct mii_data *mii;
1868	uint32_t reg;
1869	int error, mask;
1870
1871	sc = ifp->if_softc;
1872	ifr = (struct ifreq *)data;
1873	error = 0;
1874	switch (cmd) {
1875	case SIOCSIFMTU:
1876		if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > JME_JUMBO_MTU ||
1877		    ((sc->jme_flags & JME_FLAG_NOJUMBO) != 0 &&
1878		    ifr->ifr_mtu > JME_MAX_MTU)) {
1879			error = EINVAL;
1880			break;
1881		}
1882
1883		if (ifp->if_mtu != ifr->ifr_mtu) {
1884			/*
1885			 * No special configuration is required when interface
1886			 * MTU is changed but availability of TSO/Tx checksum
1887			 * offload should be chcked against new MTU size as
1888			 * FIFO size is just 2K.
1889			 */
1890			JME_LOCK(sc);
1891			if (ifr->ifr_mtu >= JME_TX_FIFO_SIZE) {
1892				ifp->if_capenable &=
1893				    ~(IFCAP_TXCSUM | IFCAP_TSO4);
1894				ifp->if_hwassist &=
1895				    ~(JME_CSUM_FEATURES | CSUM_TSO);
1896				VLAN_CAPABILITIES(ifp);
1897			}
1898			ifp->if_mtu = ifr->ifr_mtu;
1899			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
1900				ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1901				jme_init_locked(sc);
1902			}
1903			JME_UNLOCK(sc);
1904		}
1905		break;
1906	case SIOCSIFFLAGS:
1907		JME_LOCK(sc);
1908		if ((ifp->if_flags & IFF_UP) != 0) {
1909			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
1910				if (((ifp->if_flags ^ sc->jme_if_flags)
1911				    & (IFF_PROMISC | IFF_ALLMULTI)) != 0)
1912					jme_set_filter(sc);
1913			} else {
1914				if ((sc->jme_flags & JME_FLAG_DETACH) == 0)
1915					jme_init_locked(sc);
1916			}
1917		} else {
1918			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
1919				jme_stop(sc);
1920		}
1921		sc->jme_if_flags = ifp->if_flags;
1922		JME_UNLOCK(sc);
1923		break;
1924	case SIOCADDMULTI:
1925	case SIOCDELMULTI:
1926		JME_LOCK(sc);
1927		if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
1928			jme_set_filter(sc);
1929		JME_UNLOCK(sc);
1930		break;
1931	case SIOCSIFMEDIA:
1932	case SIOCGIFMEDIA:
1933		mii = device_get_softc(sc->jme_miibus);
1934		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd);
1935		break;
1936	case SIOCSIFCAP:
1937		JME_LOCK(sc);
1938		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
1939		if ((mask & IFCAP_TXCSUM) != 0 &&
1940		    ifp->if_mtu < JME_TX_FIFO_SIZE) {
1941			if ((IFCAP_TXCSUM & ifp->if_capabilities) != 0) {
1942				ifp->if_capenable ^= IFCAP_TXCSUM;
1943				if ((IFCAP_TXCSUM & ifp->if_capenable) != 0)
1944					ifp->if_hwassist |= JME_CSUM_FEATURES;
1945				else
1946					ifp->if_hwassist &= ~JME_CSUM_FEATURES;
1947			}
1948		}
1949		if ((mask & IFCAP_RXCSUM) != 0 &&
1950		    (IFCAP_RXCSUM & ifp->if_capabilities) != 0) {
1951			ifp->if_capenable ^= IFCAP_RXCSUM;
1952			reg = CSR_READ_4(sc, JME_RXMAC);
1953			reg &= ~RXMAC_CSUM_ENB;
1954			if ((ifp->if_capenable & IFCAP_RXCSUM) != 0)
1955				reg |= RXMAC_CSUM_ENB;
1956			CSR_WRITE_4(sc, JME_RXMAC, reg);
1957		}
1958		if ((mask & IFCAP_TSO4) != 0 &&
1959		    ifp->if_mtu < JME_TX_FIFO_SIZE) {
1960			if ((IFCAP_TSO4 & ifp->if_capabilities) != 0) {
1961				ifp->if_capenable ^= IFCAP_TSO4;
1962				if ((IFCAP_TSO4 & ifp->if_capenable) != 0)
1963					ifp->if_hwassist |= CSUM_TSO;
1964				else
1965					ifp->if_hwassist &= ~CSUM_TSO;
1966			}
1967		}
1968		if ((mask & IFCAP_WOL_MAGIC) != 0 &&
1969		    (IFCAP_WOL_MAGIC & ifp->if_capabilities) != 0)
1970			ifp->if_capenable ^= IFCAP_WOL_MAGIC;
1971		if ((mask & IFCAP_VLAN_HWCSUM) != 0 &&
1972		    (ifp->if_capabilities & IFCAP_VLAN_HWCSUM) != 0)
1973			ifp->if_capenable ^= IFCAP_VLAN_HWCSUM;
1974		if ((mask & IFCAP_VLAN_HWTSO) != 0 &&
1975		    (ifp->if_capabilities & IFCAP_VLAN_HWTSO) != 0)
1976			ifp->if_capenable ^= IFCAP_VLAN_HWTSO;
1977		if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
1978		    (IFCAP_VLAN_HWTAGGING & ifp->if_capabilities) != 0) {
1979			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
1980			jme_set_vlan(sc);
1981		}
1982		JME_UNLOCK(sc);
1983		VLAN_CAPABILITIES(ifp);
1984		break;
1985	default:
1986		error = ether_ioctl(ifp, cmd, data);
1987		break;
1988	}
1989
1990	return (error);
1991}
1992
1993static void
1994jme_mac_config(struct jme_softc *sc)
1995{
1996	struct mii_data *mii;
1997	uint32_t ghc, gpreg, rxmac, txmac, txpause;
1998	uint32_t txclk;
1999
2000	JME_LOCK_ASSERT(sc);
2001
2002	mii = device_get_softc(sc->jme_miibus);
2003
2004	CSR_WRITE_4(sc, JME_GHC, GHC_RESET);
2005	DELAY(10);
2006	CSR_WRITE_4(sc, JME_GHC, 0);
2007	ghc = 0;
2008	txclk = 0;
2009	rxmac = CSR_READ_4(sc, JME_RXMAC);
2010	rxmac &= ~RXMAC_FC_ENB;
2011	txmac = CSR_READ_4(sc, JME_TXMAC);
2012	txmac &= ~(TXMAC_CARRIER_EXT | TXMAC_FRAME_BURST);
2013	txpause = CSR_READ_4(sc, JME_TXPFC);
2014	txpause &= ~TXPFC_PAUSE_ENB;
2015	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
2016		ghc |= GHC_FULL_DUPLEX;
2017		rxmac &= ~RXMAC_COLL_DET_ENB;
2018		txmac &= ~(TXMAC_COLL_ENB | TXMAC_CARRIER_SENSE |
2019		    TXMAC_BACKOFF | TXMAC_CARRIER_EXT |
2020		    TXMAC_FRAME_BURST);
2021		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
2022			txpause |= TXPFC_PAUSE_ENB;
2023		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
2024			rxmac |= RXMAC_FC_ENB;
2025		/* Disable retry transmit timer/retry limit. */
2026		CSR_WRITE_4(sc, JME_TXTRHD, CSR_READ_4(sc, JME_TXTRHD) &
2027		    ~(TXTRHD_RT_PERIOD_ENB | TXTRHD_RT_LIMIT_ENB));
2028	} else {
2029		rxmac |= RXMAC_COLL_DET_ENB;
2030		txmac |= TXMAC_COLL_ENB | TXMAC_CARRIER_SENSE | TXMAC_BACKOFF;
2031		/* Enable retry transmit timer/retry limit. */
2032		CSR_WRITE_4(sc, JME_TXTRHD, CSR_READ_4(sc, JME_TXTRHD) |
2033		    TXTRHD_RT_PERIOD_ENB | TXTRHD_RT_LIMIT_ENB);
2034	}
2035		/* Reprogram Tx/Rx MACs with resolved speed/duplex. */
2036	switch (IFM_SUBTYPE(mii->mii_media_active)) {
2037	case IFM_10_T:
2038		ghc |= GHC_SPEED_10;
2039		txclk |= GHC_TX_OFFLD_CLK_100 | GHC_TX_MAC_CLK_100;
2040		break;
2041	case IFM_100_TX:
2042		ghc |= GHC_SPEED_100;
2043		txclk |= GHC_TX_OFFLD_CLK_100 | GHC_TX_MAC_CLK_100;
2044		break;
2045	case IFM_1000_T:
2046		if ((sc->jme_flags & JME_FLAG_FASTETH) != 0)
2047			break;
2048		ghc |= GHC_SPEED_1000;
2049		txclk |= GHC_TX_OFFLD_CLK_1000 | GHC_TX_MAC_CLK_1000;
2050		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) == 0)
2051			txmac |= TXMAC_CARRIER_EXT | TXMAC_FRAME_BURST;
2052		break;
2053	default:
2054		break;
2055	}
2056	if (sc->jme_rev == DEVICEID_JMC250 &&
2057	    sc->jme_chip_rev == DEVICEREVID_JMC250_A2) {
2058		/*
2059		 * Workaround occasional packet loss issue of JMC250 A2
2060		 * when it runs on half-duplex media.
2061		 */
2062		gpreg = CSR_READ_4(sc, JME_GPREG1);
2063		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0)
2064			gpreg &= ~GPREG1_HDPX_FIX;
2065		else
2066			gpreg |= GPREG1_HDPX_FIX;
2067		CSR_WRITE_4(sc, JME_GPREG1, gpreg);
2068		/* Workaround CRC errors at 100Mbps on JMC250 A2. */
2069		if (IFM_SUBTYPE(mii->mii_media_active) == IFM_100_TX) {
2070			/* Extend interface FIFO depth. */
2071			jme_miibus_writereg(sc->jme_dev, sc->jme_phyaddr,
2072			    0x1B, 0x0000);
2073		} else {
2074			/* Select default interface FIFO depth. */
2075			jme_miibus_writereg(sc->jme_dev, sc->jme_phyaddr,
2076			    0x1B, 0x0004);
2077		}
2078	}
2079	if ((sc->jme_flags & JME_FLAG_TXCLK) != 0)
2080		ghc |= txclk;
2081	CSR_WRITE_4(sc, JME_GHC, ghc);
2082	CSR_WRITE_4(sc, JME_RXMAC, rxmac);
2083	CSR_WRITE_4(sc, JME_TXMAC, txmac);
2084	CSR_WRITE_4(sc, JME_TXPFC, txpause);
2085}
2086
2087static void
2088jme_link_task(void *arg, int pending)
2089{
2090	struct jme_softc *sc;
2091	struct mii_data *mii;
2092	struct ifnet *ifp;
2093	struct jme_txdesc *txd;
2094	bus_addr_t paddr;
2095	int i;
2096
2097	sc = (struct jme_softc *)arg;
2098
2099	JME_LOCK(sc);
2100	mii = device_get_softc(sc->jme_miibus);
2101	ifp = sc->jme_ifp;
2102	if (mii == NULL || ifp == NULL ||
2103	    (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
2104		JME_UNLOCK(sc);
2105		return;
2106	}
2107
2108	sc->jme_flags &= ~JME_FLAG_LINK;
2109	if ((mii->mii_media_status & IFM_AVALID) != 0) {
2110		switch (IFM_SUBTYPE(mii->mii_media_active)) {
2111		case IFM_10_T:
2112		case IFM_100_TX:
2113			sc->jme_flags |= JME_FLAG_LINK;
2114			break;
2115		case IFM_1000_T:
2116			if ((sc->jme_flags & JME_FLAG_FASTETH) != 0)
2117				break;
2118			sc->jme_flags |= JME_FLAG_LINK;
2119			break;
2120		default:
2121			break;
2122		}
2123	}
2124
2125	/*
2126	 * Disabling Rx/Tx MACs have a side-effect of resetting
2127	 * JME_TXNDA/JME_RXNDA register to the first address of
2128	 * Tx/Rx descriptor address. So driver should reset its
2129	 * internal procucer/consumer pointer and reclaim any
2130	 * allocated resources. Note, just saving the value of
2131	 * JME_TXNDA and JME_RXNDA registers before stopping MAC
2132	 * and restoring JME_TXNDA/JME_RXNDA register is not
2133	 * sufficient to make sure correct MAC state because
2134	 * stopping MAC operation can take a while and hardware
2135	 * might have updated JME_TXNDA/JME_RXNDA registers
2136	 * during the stop operation.
2137	 */
2138	/* Block execution of task. */
2139	taskqueue_block(sc->jme_tq);
2140	/* Disable interrupts and stop driver. */
2141	CSR_WRITE_4(sc, JME_INTR_MASK_CLR, JME_INTRS);
2142	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
2143	callout_stop(&sc->jme_tick_ch);
2144	sc->jme_watchdog_timer = 0;
2145
2146	/* Stop receiver/transmitter. */
2147	jme_stop_rx(sc);
2148	jme_stop_tx(sc);
2149
2150	/* XXX Drain all queued tasks. */
2151	JME_UNLOCK(sc);
2152	taskqueue_drain(sc->jme_tq, &sc->jme_int_task);
2153	taskqueue_drain(sc->jme_tq, &sc->jme_tx_task);
2154	JME_LOCK(sc);
2155
2156	jme_rxintr(sc, JME_RX_RING_CNT);
2157	if (sc->jme_cdata.jme_rxhead != NULL)
2158		m_freem(sc->jme_cdata.jme_rxhead);
2159	JME_RXCHAIN_RESET(sc);
2160	jme_txeof(sc);
2161	if (sc->jme_cdata.jme_tx_cnt != 0) {
2162		/* Remove queued packets for transmit. */
2163		for (i = 0; i < JME_TX_RING_CNT; i++) {
2164			txd = &sc->jme_cdata.jme_txdesc[i];
2165			if (txd->tx_m != NULL) {
2166				bus_dmamap_sync(
2167				    sc->jme_cdata.jme_tx_tag,
2168				    txd->tx_dmamap,
2169				    BUS_DMASYNC_POSTWRITE);
2170				bus_dmamap_unload(
2171				    sc->jme_cdata.jme_tx_tag,
2172				    txd->tx_dmamap);
2173				m_freem(txd->tx_m);
2174				txd->tx_m = NULL;
2175				txd->tx_ndesc = 0;
2176				ifp->if_oerrors++;
2177			}
2178		}
2179	}
2180
2181	/*
2182	 * Reuse configured Rx descriptors and reset
2183	 * procuder/consumer index.
2184	 */
2185	sc->jme_cdata.jme_rx_cons = 0;
2186	sc->jme_morework = 0;
2187	jme_init_tx_ring(sc);
2188	/* Initialize shadow status block. */
2189	jme_init_ssb(sc);
2190
2191	/* Program MAC with resolved speed/duplex/flow-control. */
2192	if ((sc->jme_flags & JME_FLAG_LINK) != 0) {
2193		jme_mac_config(sc);
2194		jme_stats_clear(sc);
2195
2196		CSR_WRITE_4(sc, JME_RXCSR, sc->jme_rxcsr);
2197		CSR_WRITE_4(sc, JME_TXCSR, sc->jme_txcsr);
2198
2199		/* Set Tx ring address to the hardware. */
2200		paddr = JME_TX_RING_ADDR(sc, 0);
2201		CSR_WRITE_4(sc, JME_TXDBA_HI, JME_ADDR_HI(paddr));
2202		CSR_WRITE_4(sc, JME_TXDBA_LO, JME_ADDR_LO(paddr));
2203
2204		/* Set Rx ring address to the hardware. */
2205		paddr = JME_RX_RING_ADDR(sc, 0);
2206		CSR_WRITE_4(sc, JME_RXDBA_HI, JME_ADDR_HI(paddr));
2207		CSR_WRITE_4(sc, JME_RXDBA_LO, JME_ADDR_LO(paddr));
2208
2209		/* Restart receiver/transmitter. */
2210		CSR_WRITE_4(sc, JME_RXCSR, sc->jme_rxcsr | RXCSR_RX_ENB |
2211		    RXCSR_RXQ_START);
2212		CSR_WRITE_4(sc, JME_TXCSR, sc->jme_txcsr | TXCSR_TX_ENB);
2213	}
2214
2215	ifp->if_drv_flags |= IFF_DRV_RUNNING;
2216	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2217	callout_reset(&sc->jme_tick_ch, hz, jme_tick, sc);
2218	/* Unblock execution of task. */
2219	taskqueue_unblock(sc->jme_tq);
2220	/* Reenable interrupts. */
2221	CSR_WRITE_4(sc, JME_INTR_MASK_SET, JME_INTRS);
2222
2223	JME_UNLOCK(sc);
2224}
2225
2226static int
2227jme_intr(void *arg)
2228{
2229	struct jme_softc *sc;
2230	uint32_t status;
2231
2232	sc = (struct jme_softc *)arg;
2233
2234	status = CSR_READ_4(sc, JME_INTR_REQ_STATUS);
2235	if (status == 0 || status == 0xFFFFFFFF)
2236		return (FILTER_STRAY);
2237	/* Disable interrupts. */
2238	CSR_WRITE_4(sc, JME_INTR_MASK_CLR, JME_INTRS);
2239	taskqueue_enqueue(sc->jme_tq, &sc->jme_int_task);
2240
2241	return (FILTER_HANDLED);
2242}
2243
2244static void
2245jme_int_task(void *arg, int pending)
2246{
2247	struct jme_softc *sc;
2248	struct ifnet *ifp;
2249	uint32_t status;
2250	int more;
2251
2252	sc = (struct jme_softc *)arg;
2253	ifp = sc->jme_ifp;
2254
2255	status = CSR_READ_4(sc, JME_INTR_STATUS);
2256	if (sc->jme_morework != 0) {
2257		sc->jme_morework = 0;
2258		status |= INTR_RXQ_COAL | INTR_RXQ_COAL_TO;
2259	}
2260	if ((status & JME_INTRS) == 0 || status == 0xFFFFFFFF)
2261		goto done;
2262	/* Reset PCC counter/timer and Ack interrupts. */
2263	status &= ~(INTR_TXQ_COMP | INTR_RXQ_COMP);
2264	if ((status & (INTR_TXQ_COAL | INTR_TXQ_COAL_TO)) != 0)
2265		status |= INTR_TXQ_COAL | INTR_TXQ_COAL_TO | INTR_TXQ_COMP;
2266	if ((status & (INTR_RXQ_COAL | INTR_RXQ_COAL_TO)) != 0)
2267		status |= INTR_RXQ_COAL | INTR_RXQ_COAL_TO | INTR_RXQ_COMP;
2268	CSR_WRITE_4(sc, JME_INTR_STATUS, status);
2269	more = 0;
2270	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
2271		if ((status & (INTR_RXQ_COAL | INTR_RXQ_COAL_TO)) != 0) {
2272			more = jme_rxintr(sc, sc->jme_process_limit);
2273			if (more != 0)
2274				sc->jme_morework = 1;
2275		}
2276		if ((status & INTR_RXQ_DESC_EMPTY) != 0) {
2277			/*
2278			 * Notify hardware availability of new Rx
2279			 * buffers.
2280			 * Reading RXCSR takes very long time under
2281			 * heavy load so cache RXCSR value and writes
2282			 * the ORed value with the kick command to
2283			 * the RXCSR. This saves one register access
2284			 * cycle.
2285			 */
2286			CSR_WRITE_4(sc, JME_RXCSR, sc->jme_rxcsr |
2287			    RXCSR_RX_ENB | RXCSR_RXQ_START);
2288		}
2289		/*
2290		 * Reclaiming Tx buffers are deferred to make jme(4) run
2291		 * without locks held.
2292		 */
2293		if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
2294			taskqueue_enqueue(sc->jme_tq, &sc->jme_tx_task);
2295	}
2296
2297	if (more != 0 || (CSR_READ_4(sc, JME_INTR_STATUS) & JME_INTRS) != 0) {
2298		taskqueue_enqueue(sc->jme_tq, &sc->jme_int_task);
2299		return;
2300	}
2301done:
2302	/* Reenable interrupts. */
2303	CSR_WRITE_4(sc, JME_INTR_MASK_SET, JME_INTRS);
2304}
2305
2306static void
2307jme_txeof(struct jme_softc *sc)
2308{
2309	struct ifnet *ifp;
2310	struct jme_txdesc *txd;
2311	uint32_t status;
2312	int cons, nsegs;
2313
2314	JME_LOCK_ASSERT(sc);
2315
2316	ifp = sc->jme_ifp;
2317
2318	cons = sc->jme_cdata.jme_tx_cons;
2319	if (cons == sc->jme_cdata.jme_tx_prod)
2320		return;
2321
2322	bus_dmamap_sync(sc->jme_cdata.jme_tx_ring_tag,
2323	    sc->jme_cdata.jme_tx_ring_map,
2324	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2325
2326	/*
2327	 * Go through our Tx list and free mbufs for those
2328	 * frames which have been transmitted.
2329	 */
2330	for (; cons != sc->jme_cdata.jme_tx_prod;) {
2331		txd = &sc->jme_cdata.jme_txdesc[cons];
2332		status = le32toh(txd->tx_desc->flags);
2333		if ((status & JME_TD_OWN) == JME_TD_OWN)
2334			break;
2335
2336		if ((status & (JME_TD_TMOUT | JME_TD_RETRY_EXP)) != 0)
2337			ifp->if_oerrors++;
2338		else {
2339			ifp->if_opackets++;
2340			if ((status & JME_TD_COLLISION) != 0)
2341				ifp->if_collisions +=
2342				    le32toh(txd->tx_desc->buflen) &
2343				    JME_TD_BUF_LEN_MASK;
2344		}
2345		/*
2346		 * Only the first descriptor of multi-descriptor
2347		 * transmission is updated so driver have to skip entire
2348		 * chained buffers for the transmiited frame. In other
2349		 * words, JME_TD_OWN bit is valid only at the first
2350		 * descriptor of a multi-descriptor transmission.
2351		 */
2352		for (nsegs = 0; nsegs < txd->tx_ndesc; nsegs++) {
2353			sc->jme_rdata.jme_tx_ring[cons].flags = 0;
2354			JME_DESC_INC(cons, JME_TX_RING_CNT);
2355		}
2356
2357		/* Reclaim transferred mbufs. */
2358		bus_dmamap_sync(sc->jme_cdata.jme_tx_tag, txd->tx_dmamap,
2359		    BUS_DMASYNC_POSTWRITE);
2360		bus_dmamap_unload(sc->jme_cdata.jme_tx_tag, txd->tx_dmamap);
2361
2362		KASSERT(txd->tx_m != NULL,
2363		    ("%s: freeing NULL mbuf!\n", __func__));
2364		m_freem(txd->tx_m);
2365		txd->tx_m = NULL;
2366		sc->jme_cdata.jme_tx_cnt -= txd->tx_ndesc;
2367		KASSERT(sc->jme_cdata.jme_tx_cnt >= 0,
2368		    ("%s: Active Tx desc counter was garbled\n", __func__));
2369		txd->tx_ndesc = 0;
2370		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2371	}
2372	sc->jme_cdata.jme_tx_cons = cons;
2373	/* Unarm watchog timer when there is no pending descriptors in queue. */
2374	if (sc->jme_cdata.jme_tx_cnt == 0)
2375		sc->jme_watchdog_timer = 0;
2376
2377	bus_dmamap_sync(sc->jme_cdata.jme_tx_ring_tag,
2378	    sc->jme_cdata.jme_tx_ring_map,
2379	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2380}
2381
2382static __inline void
2383jme_discard_rxbuf(struct jme_softc *sc, int cons)
2384{
2385	struct jme_desc *desc;
2386
2387	desc = &sc->jme_rdata.jme_rx_ring[cons];
2388	desc->flags = htole32(JME_RD_OWN | JME_RD_INTR | JME_RD_64BIT);
2389	desc->buflen = htole32(MCLBYTES);
2390}
2391
2392/* Receive a frame. */
2393static void
2394jme_rxeof(struct jme_softc *sc)
2395{
2396	struct ifnet *ifp;
2397	struct jme_desc *desc;
2398	struct jme_rxdesc *rxd;
2399	struct mbuf *mp, *m;
2400	uint32_t flags, status;
2401	int cons, count, nsegs;
2402
2403	ifp = sc->jme_ifp;
2404
2405	cons = sc->jme_cdata.jme_rx_cons;
2406	desc = &sc->jme_rdata.jme_rx_ring[cons];
2407	flags = le32toh(desc->flags);
2408	status = le32toh(desc->buflen);
2409	nsegs = JME_RX_NSEGS(status);
2410	sc->jme_cdata.jme_rxlen = JME_RX_BYTES(status) - JME_RX_PAD_BYTES;
2411	if ((status & JME_RX_ERR_STAT) != 0) {
2412		ifp->if_ierrors++;
2413		jme_discard_rxbuf(sc, sc->jme_cdata.jme_rx_cons);
2414#ifdef JME_SHOW_ERRORS
2415		device_printf(sc->jme_dev, "%s : receive error = 0x%b\n",
2416		    __func__, JME_RX_ERR(status), JME_RX_ERR_BITS);
2417#endif
2418		sc->jme_cdata.jme_rx_cons += nsegs;
2419		sc->jme_cdata.jme_rx_cons %= JME_RX_RING_CNT;
2420		return;
2421	}
2422
2423	for (count = 0; count < nsegs; count++,
2424	    JME_DESC_INC(cons, JME_RX_RING_CNT)) {
2425		rxd = &sc->jme_cdata.jme_rxdesc[cons];
2426		mp = rxd->rx_m;
2427		/* Add a new receive buffer to the ring. */
2428		if (jme_newbuf(sc, rxd) != 0) {
2429			ifp->if_iqdrops++;
2430			/* Reuse buffer. */
2431			for (; count < nsegs; count++) {
2432				jme_discard_rxbuf(sc, cons);
2433				JME_DESC_INC(cons, JME_RX_RING_CNT);
2434			}
2435			if (sc->jme_cdata.jme_rxhead != NULL) {
2436				m_freem(sc->jme_cdata.jme_rxhead);
2437				JME_RXCHAIN_RESET(sc);
2438			}
2439			break;
2440		}
2441
2442		/*
2443		 * Assume we've received a full sized frame.
2444		 * Actual size is fixed when we encounter the end of
2445		 * multi-segmented frame.
2446		 */
2447		mp->m_len = MCLBYTES;
2448
2449		/* Chain received mbufs. */
2450		if (sc->jme_cdata.jme_rxhead == NULL) {
2451			sc->jme_cdata.jme_rxhead = mp;
2452			sc->jme_cdata.jme_rxtail = mp;
2453		} else {
2454			/*
2455			 * Receive processor can receive a maximum frame
2456			 * size of 65535 bytes.
2457			 */
2458			mp->m_flags &= ~M_PKTHDR;
2459			sc->jme_cdata.jme_rxtail->m_next = mp;
2460			sc->jme_cdata.jme_rxtail = mp;
2461		}
2462
2463		if (count == nsegs - 1) {
2464			/* Last desc. for this frame. */
2465			m = sc->jme_cdata.jme_rxhead;
2466			m->m_flags |= M_PKTHDR;
2467			m->m_pkthdr.len = sc->jme_cdata.jme_rxlen;
2468			if (nsegs > 1) {
2469				/* Set first mbuf size. */
2470				m->m_len = MCLBYTES - JME_RX_PAD_BYTES;
2471				/* Set last mbuf size. */
2472				mp->m_len = sc->jme_cdata.jme_rxlen -
2473				    ((MCLBYTES - JME_RX_PAD_BYTES) +
2474				    (MCLBYTES * (nsegs - 2)));
2475			} else
2476				m->m_len = sc->jme_cdata.jme_rxlen;
2477			m->m_pkthdr.rcvif = ifp;
2478
2479			/*
2480			 * Account for 10bytes auto padding which is used
2481			 * to align IP header on 32bit boundary. Also note,
2482			 * CRC bytes is automatically removed by the
2483			 * hardware.
2484			 */
2485			m->m_data += JME_RX_PAD_BYTES;
2486
2487			/* Set checksum information. */
2488			if ((ifp->if_capenable & IFCAP_RXCSUM) != 0 &&
2489			    (flags & JME_RD_IPV4) != 0) {
2490				m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
2491				if ((flags & JME_RD_IPCSUM) != 0)
2492					m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
2493				if (((flags & JME_RD_MORE_FRAG) == 0) &&
2494				    ((flags & (JME_RD_TCP | JME_RD_TCPCSUM)) ==
2495				    (JME_RD_TCP | JME_RD_TCPCSUM) ||
2496				    (flags & (JME_RD_UDP | JME_RD_UDPCSUM)) ==
2497				    (JME_RD_UDP | JME_RD_UDPCSUM))) {
2498					m->m_pkthdr.csum_flags |=
2499					    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
2500					m->m_pkthdr.csum_data = 0xffff;
2501				}
2502			}
2503
2504			/* Check for VLAN tagged packets. */
2505			if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0 &&
2506			    (flags & JME_RD_VLAN_TAG) != 0) {
2507				m->m_pkthdr.ether_vtag =
2508				    flags & JME_RD_VLAN_MASK;
2509				m->m_flags |= M_VLANTAG;
2510			}
2511
2512			ifp->if_ipackets++;
2513			/* Pass it on. */
2514			(*ifp->if_input)(ifp, m);
2515
2516			/* Reset mbuf chains. */
2517			JME_RXCHAIN_RESET(sc);
2518		}
2519	}
2520
2521	sc->jme_cdata.jme_rx_cons += nsegs;
2522	sc->jme_cdata.jme_rx_cons %= JME_RX_RING_CNT;
2523}
2524
2525static int
2526jme_rxintr(struct jme_softc *sc, int count)
2527{
2528	struct jme_desc *desc;
2529	int nsegs, prog, pktlen;
2530
2531	bus_dmamap_sync(sc->jme_cdata.jme_rx_ring_tag,
2532	    sc->jme_cdata.jme_rx_ring_map,
2533	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2534
2535	for (prog = 0; count > 0; prog++) {
2536		desc = &sc->jme_rdata.jme_rx_ring[sc->jme_cdata.jme_rx_cons];
2537		if ((le32toh(desc->flags) & JME_RD_OWN) == JME_RD_OWN)
2538			break;
2539		if ((le32toh(desc->buflen) & JME_RD_VALID) == 0)
2540			break;
2541		nsegs = JME_RX_NSEGS(le32toh(desc->buflen));
2542		/*
2543		 * Check number of segments against received bytes.
2544		 * Non-matching value would indicate that hardware
2545		 * is still trying to update Rx descriptors. I'm not
2546		 * sure whether this check is needed.
2547		 */
2548		pktlen = JME_RX_BYTES(le32toh(desc->buflen));
2549		if (nsegs != ((pktlen + (MCLBYTES - 1)) / MCLBYTES))
2550			break;
2551		prog++;
2552		/* Received a frame. */
2553		jme_rxeof(sc);
2554		count -= nsegs;
2555	}
2556
2557	if (prog > 0)
2558		bus_dmamap_sync(sc->jme_cdata.jme_rx_ring_tag,
2559		    sc->jme_cdata.jme_rx_ring_map,
2560		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2561
2562	return (count > 0 ? 0 : EAGAIN);
2563}
2564
2565static void
2566jme_tick(void *arg)
2567{
2568	struct jme_softc *sc;
2569	struct mii_data *mii;
2570
2571	sc = (struct jme_softc *)arg;
2572
2573	JME_LOCK_ASSERT(sc);
2574
2575	mii = device_get_softc(sc->jme_miibus);
2576	mii_tick(mii);
2577	/*
2578	 * Reclaim Tx buffers that have been completed. It's not
2579	 * needed here but it would release allocated mbuf chains
2580	 * faster and limit the maximum delay to a hz.
2581	 */
2582	jme_txeof(sc);
2583	jme_stats_update(sc);
2584	jme_watchdog(sc);
2585	callout_reset(&sc->jme_tick_ch, hz, jme_tick, sc);
2586}
2587
2588static void
2589jme_reset(struct jme_softc *sc)
2590{
2591
2592	/* Stop receiver, transmitter. */
2593	jme_stop_rx(sc);
2594	jme_stop_tx(sc);
2595	CSR_WRITE_4(sc, JME_GHC, GHC_RESET);
2596	DELAY(10);
2597	CSR_WRITE_4(sc, JME_GHC, 0);
2598}
2599
2600static void
2601jme_init(void *xsc)
2602{
2603	struct jme_softc *sc;
2604
2605	sc = (struct jme_softc *)xsc;
2606	JME_LOCK(sc);
2607	jme_init_locked(sc);
2608	JME_UNLOCK(sc);
2609}
2610
2611static void
2612jme_init_locked(struct jme_softc *sc)
2613{
2614	struct ifnet *ifp;
2615	struct mii_data *mii;
2616	uint8_t eaddr[ETHER_ADDR_LEN];
2617	bus_addr_t paddr;
2618	uint32_t reg;
2619	int error;
2620
2621	JME_LOCK_ASSERT(sc);
2622
2623	ifp = sc->jme_ifp;
2624	mii = device_get_softc(sc->jme_miibus);
2625
2626	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
2627		return;
2628	/*
2629	 * Cancel any pending I/O.
2630	 */
2631	jme_stop(sc);
2632
2633	/*
2634	 * Reset the chip to a known state.
2635	 */
2636	jme_reset(sc);
2637
2638	/* Init descriptors. */
2639	error = jme_init_rx_ring(sc);
2640        if (error != 0) {
2641                device_printf(sc->jme_dev,
2642                    "%s: initialization failed: no memory for Rx buffers.\n",
2643		    __func__);
2644                jme_stop(sc);
2645		return;
2646        }
2647	jme_init_tx_ring(sc);
2648	/* Initialize shadow status block. */
2649	jme_init_ssb(sc);
2650
2651	/* Reprogram the station address. */
2652	bcopy(IF_LLADDR(ifp), eaddr, ETHER_ADDR_LEN);
2653	CSR_WRITE_4(sc, JME_PAR0,
2654	    eaddr[3] << 24 | eaddr[2] << 16 | eaddr[1] << 8 | eaddr[0]);
2655	CSR_WRITE_4(sc, JME_PAR1, eaddr[5] << 8 | eaddr[4]);
2656
2657	/*
2658	 * Configure Tx queue.
2659	 *  Tx priority queue weight value : 0
2660	 *  Tx FIFO threshold for processing next packet : 16QW
2661	 *  Maximum Tx DMA length : 512
2662	 *  Allow Tx DMA burst.
2663	 */
2664	sc->jme_txcsr = TXCSR_TXQ_N_SEL(TXCSR_TXQ0);
2665	sc->jme_txcsr |= TXCSR_TXQ_WEIGHT(TXCSR_TXQ_WEIGHT_MIN);
2666	sc->jme_txcsr |= TXCSR_FIFO_THRESH_16QW;
2667	sc->jme_txcsr |= sc->jme_tx_dma_size;
2668	sc->jme_txcsr |= TXCSR_DMA_BURST;
2669	CSR_WRITE_4(sc, JME_TXCSR, sc->jme_txcsr);
2670
2671	/* Set Tx descriptor counter. */
2672	CSR_WRITE_4(sc, JME_TXQDC, JME_TX_RING_CNT);
2673
2674	/* Set Tx ring address to the hardware. */
2675	paddr = JME_TX_RING_ADDR(sc, 0);
2676	CSR_WRITE_4(sc, JME_TXDBA_HI, JME_ADDR_HI(paddr));
2677	CSR_WRITE_4(sc, JME_TXDBA_LO, JME_ADDR_LO(paddr));
2678
2679	/* Configure TxMAC parameters. */
2680	reg = TXMAC_IFG1_DEFAULT | TXMAC_IFG2_DEFAULT | TXMAC_IFG_ENB;
2681	reg |= TXMAC_THRESH_1_PKT;
2682	reg |= TXMAC_CRC_ENB | TXMAC_PAD_ENB;
2683	CSR_WRITE_4(sc, JME_TXMAC, reg);
2684
2685	/*
2686	 * Configure Rx queue.
2687	 *  FIFO full threshold for transmitting Tx pause packet : 128T
2688	 *  FIFO threshold for processing next packet : 128QW
2689	 *  Rx queue 0 select
2690	 *  Max Rx DMA length : 128
2691	 *  Rx descriptor retry : 32
2692	 *  Rx descriptor retry time gap : 256ns
2693	 *  Don't receive runt/bad frame.
2694	 */
2695	sc->jme_rxcsr = RXCSR_FIFO_FTHRESH_128T;
2696	/*
2697	 * Since Rx FIFO size is 4K bytes, receiving frames larger
2698	 * than 4K bytes will suffer from Rx FIFO overruns. So
2699	 * decrease FIFO threshold to reduce the FIFO overruns for
2700	 * frames larger than 4000 bytes.
2701	 * For best performance of standard MTU sized frames use
2702	 * maximum allowable FIFO threshold, 128QW. Note these do
2703	 * not hold on chip full mask verion >=2. For these
2704	 * controllers 64QW and 128QW are not valid value.
2705	 */
2706	if (CHIPMODE_REVFM(sc->jme_chip_rev) >= 2)
2707		sc->jme_rxcsr |= RXCSR_FIFO_THRESH_16QW;
2708	else {
2709		if ((ifp->if_mtu + ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN +
2710		    ETHER_CRC_LEN) > JME_RX_FIFO_SIZE)
2711			sc->jme_rxcsr |= RXCSR_FIFO_THRESH_16QW;
2712		else
2713			sc->jme_rxcsr |= RXCSR_FIFO_THRESH_128QW;
2714	}
2715	sc->jme_rxcsr |= sc->jme_rx_dma_size | RXCSR_RXQ_N_SEL(RXCSR_RXQ0);
2716	sc->jme_rxcsr |= RXCSR_DESC_RT_CNT(RXCSR_DESC_RT_CNT_DEFAULT);
2717	sc->jme_rxcsr |= RXCSR_DESC_RT_GAP_256 & RXCSR_DESC_RT_GAP_MASK;
2718	CSR_WRITE_4(sc, JME_RXCSR, sc->jme_rxcsr);
2719
2720	/* Set Rx descriptor counter. */
2721	CSR_WRITE_4(sc, JME_RXQDC, JME_RX_RING_CNT);
2722
2723	/* Set Rx ring address to the hardware. */
2724	paddr = JME_RX_RING_ADDR(sc, 0);
2725	CSR_WRITE_4(sc, JME_RXDBA_HI, JME_ADDR_HI(paddr));
2726	CSR_WRITE_4(sc, JME_RXDBA_LO, JME_ADDR_LO(paddr));
2727
2728	/* Clear receive filter. */
2729	CSR_WRITE_4(sc, JME_RXMAC, 0);
2730	/* Set up the receive filter. */
2731	jme_set_filter(sc);
2732	jme_set_vlan(sc);
2733
2734	/*
2735	 * Disable all WOL bits as WOL can interfere normal Rx
2736	 * operation. Also clear WOL detection status bits.
2737	 */
2738	reg = CSR_READ_4(sc, JME_PMCS);
2739	reg &= ~PMCS_WOL_ENB_MASK;
2740	CSR_WRITE_4(sc, JME_PMCS, reg);
2741
2742	reg = CSR_READ_4(sc, JME_RXMAC);
2743	/*
2744	 * Pad 10bytes right before received frame. This will greatly
2745	 * help Rx performance on strict-alignment architectures as
2746	 * it does not need to copy the frame to align the payload.
2747	 */
2748	reg |= RXMAC_PAD_10BYTES;
2749	if ((ifp->if_capenable & IFCAP_RXCSUM) != 0)
2750		reg |= RXMAC_CSUM_ENB;
2751	CSR_WRITE_4(sc, JME_RXMAC, reg);
2752
2753	/* Configure general purpose reg0 */
2754	reg = CSR_READ_4(sc, JME_GPREG0);
2755	reg &= ~GPREG0_PCC_UNIT_MASK;
2756	/* Set PCC timer resolution to micro-seconds unit. */
2757	reg |= GPREG0_PCC_UNIT_US;
2758	/*
2759	 * Disable all shadow register posting as we have to read
2760	 * JME_INTR_STATUS register in jme_int_task. Also it seems
2761	 * that it's hard to synchronize interrupt status between
2762	 * hardware and software with shadow posting due to
2763	 * requirements of bus_dmamap_sync(9).
2764	 */
2765	reg |= GPREG0_SH_POST_DW7_DIS | GPREG0_SH_POST_DW6_DIS |
2766	    GPREG0_SH_POST_DW5_DIS | GPREG0_SH_POST_DW4_DIS |
2767	    GPREG0_SH_POST_DW3_DIS | GPREG0_SH_POST_DW2_DIS |
2768	    GPREG0_SH_POST_DW1_DIS | GPREG0_SH_POST_DW0_DIS;
2769	/* Disable posting of DW0. */
2770	reg &= ~GPREG0_POST_DW0_ENB;
2771	/* Clear PME message. */
2772	reg &= ~GPREG0_PME_ENB;
2773	/* Set PHY address. */
2774	reg &= ~GPREG0_PHY_ADDR_MASK;
2775	reg |= sc->jme_phyaddr;
2776	CSR_WRITE_4(sc, JME_GPREG0, reg);
2777
2778	/* Configure Tx queue 0 packet completion coalescing. */
2779	reg = (sc->jme_tx_coal_to << PCCTX_COAL_TO_SHIFT) &
2780	    PCCTX_COAL_TO_MASK;
2781	reg |= (sc->jme_tx_coal_pkt << PCCTX_COAL_PKT_SHIFT) &
2782	    PCCTX_COAL_PKT_MASK;
2783	reg |= PCCTX_COAL_TXQ0;
2784	CSR_WRITE_4(sc, JME_PCCTX, reg);
2785
2786	/* Configure Rx queue 0 packet completion coalescing. */
2787	reg = (sc->jme_rx_coal_to << PCCRX_COAL_TO_SHIFT) &
2788	    PCCRX_COAL_TO_MASK;
2789	reg |= (sc->jme_rx_coal_pkt << PCCRX_COAL_PKT_SHIFT) &
2790	    PCCRX_COAL_PKT_MASK;
2791	CSR_WRITE_4(sc, JME_PCCRX0, reg);
2792
2793	/* Configure shadow status block but don't enable posting. */
2794	paddr = sc->jme_rdata.jme_ssb_block_paddr;
2795	CSR_WRITE_4(sc, JME_SHBASE_ADDR_HI, JME_ADDR_HI(paddr));
2796	CSR_WRITE_4(sc, JME_SHBASE_ADDR_LO, JME_ADDR_LO(paddr));
2797
2798	/* Disable Timer 1 and Timer 2. */
2799	CSR_WRITE_4(sc, JME_TIMER1, 0);
2800	CSR_WRITE_4(sc, JME_TIMER2, 0);
2801
2802	/* Configure retry transmit period, retry limit value. */
2803	CSR_WRITE_4(sc, JME_TXTRHD,
2804	    ((TXTRHD_RT_PERIOD_DEFAULT << TXTRHD_RT_PERIOD_SHIFT) &
2805	    TXTRHD_RT_PERIOD_MASK) |
2806	    ((TXTRHD_RT_LIMIT_DEFAULT << TXTRHD_RT_LIMIT_SHIFT) &
2807	    TXTRHD_RT_LIMIT_SHIFT));
2808
2809	/* Disable RSS. */
2810	CSR_WRITE_4(sc, JME_RSSC, RSSC_DIS_RSS);
2811
2812	/* Initialize the interrupt mask. */
2813	CSR_WRITE_4(sc, JME_INTR_MASK_SET, JME_INTRS);
2814	CSR_WRITE_4(sc, JME_INTR_STATUS, 0xFFFFFFFF);
2815
2816	/*
2817	 * Enabling Tx/Rx DMA engines and Rx queue processing is
2818	 * done after detection of valid link in jme_link_task.
2819	 */
2820
2821	sc->jme_flags &= ~JME_FLAG_LINK;
2822	/* Set the current media. */
2823	mii_mediachg(mii);
2824
2825	callout_reset(&sc->jme_tick_ch, hz, jme_tick, sc);
2826
2827	ifp->if_drv_flags |= IFF_DRV_RUNNING;
2828	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2829}
2830
2831static void
2832jme_stop(struct jme_softc *sc)
2833{
2834	struct ifnet *ifp;
2835	struct jme_txdesc *txd;
2836	struct jme_rxdesc *rxd;
2837	int i;
2838
2839	JME_LOCK_ASSERT(sc);
2840	/*
2841	 * Mark the interface down and cancel the watchdog timer.
2842	 */
2843	ifp = sc->jme_ifp;
2844	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
2845	sc->jme_flags &= ~JME_FLAG_LINK;
2846	callout_stop(&sc->jme_tick_ch);
2847	sc->jme_watchdog_timer = 0;
2848
2849	/*
2850	 * Disable interrupts.
2851	 */
2852	CSR_WRITE_4(sc, JME_INTR_MASK_CLR, JME_INTRS);
2853	CSR_WRITE_4(sc, JME_INTR_STATUS, 0xFFFFFFFF);
2854
2855	/* Disable updating shadow status block. */
2856	CSR_WRITE_4(sc, JME_SHBASE_ADDR_LO,
2857	    CSR_READ_4(sc, JME_SHBASE_ADDR_LO) & ~SHBASE_POST_ENB);
2858
2859	/* Stop receiver, transmitter. */
2860	jme_stop_rx(sc);
2861	jme_stop_tx(sc);
2862
2863	 /* Reclaim Rx/Tx buffers that have been completed. */
2864	jme_rxintr(sc, JME_RX_RING_CNT);
2865	if (sc->jme_cdata.jme_rxhead != NULL)
2866		m_freem(sc->jme_cdata.jme_rxhead);
2867	JME_RXCHAIN_RESET(sc);
2868	jme_txeof(sc);
2869	/*
2870	 * Free RX and TX mbufs still in the queues.
2871	 */
2872	for (i = 0; i < JME_RX_RING_CNT; i++) {
2873		rxd = &sc->jme_cdata.jme_rxdesc[i];
2874		if (rxd->rx_m != NULL) {
2875			bus_dmamap_sync(sc->jme_cdata.jme_rx_tag,
2876			    rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
2877			bus_dmamap_unload(sc->jme_cdata.jme_rx_tag,
2878			    rxd->rx_dmamap);
2879			m_freem(rxd->rx_m);
2880			rxd->rx_m = NULL;
2881		}
2882        }
2883	for (i = 0; i < JME_TX_RING_CNT; i++) {
2884		txd = &sc->jme_cdata.jme_txdesc[i];
2885		if (txd->tx_m != NULL) {
2886			bus_dmamap_sync(sc->jme_cdata.jme_tx_tag,
2887			    txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
2888			bus_dmamap_unload(sc->jme_cdata.jme_tx_tag,
2889			    txd->tx_dmamap);
2890			m_freem(txd->tx_m);
2891			txd->tx_m = NULL;
2892			txd->tx_ndesc = 0;
2893		}
2894        }
2895	jme_stats_update(sc);
2896	jme_stats_save(sc);
2897}
2898
2899static void
2900jme_stop_tx(struct jme_softc *sc)
2901{
2902	uint32_t reg;
2903	int i;
2904
2905	reg = CSR_READ_4(sc, JME_TXCSR);
2906	if ((reg & TXCSR_TX_ENB) == 0)
2907		return;
2908	reg &= ~TXCSR_TX_ENB;
2909	CSR_WRITE_4(sc, JME_TXCSR, reg);
2910	for (i = JME_TIMEOUT; i > 0; i--) {
2911		DELAY(1);
2912		if ((CSR_READ_4(sc, JME_TXCSR) & TXCSR_TX_ENB) == 0)
2913			break;
2914	}
2915	if (i == 0)
2916		device_printf(sc->jme_dev, "stopping transmitter timeout!\n");
2917}
2918
2919static void
2920jme_stop_rx(struct jme_softc *sc)
2921{
2922	uint32_t reg;
2923	int i;
2924
2925	reg = CSR_READ_4(sc, JME_RXCSR);
2926	if ((reg & RXCSR_RX_ENB) == 0)
2927		return;
2928	reg &= ~RXCSR_RX_ENB;
2929	CSR_WRITE_4(sc, JME_RXCSR, reg);
2930	for (i = JME_TIMEOUT; i > 0; i--) {
2931		DELAY(1);
2932		if ((CSR_READ_4(sc, JME_RXCSR) & RXCSR_RX_ENB) == 0)
2933			break;
2934	}
2935	if (i == 0)
2936		device_printf(sc->jme_dev, "stopping recevier timeout!\n");
2937}
2938
2939static void
2940jme_init_tx_ring(struct jme_softc *sc)
2941{
2942	struct jme_ring_data *rd;
2943	struct jme_txdesc *txd;
2944	int i;
2945
2946	sc->jme_cdata.jme_tx_prod = 0;
2947	sc->jme_cdata.jme_tx_cons = 0;
2948	sc->jme_cdata.jme_tx_cnt = 0;
2949
2950	rd = &sc->jme_rdata;
2951	bzero(rd->jme_tx_ring, JME_TX_RING_SIZE);
2952	for (i = 0; i < JME_TX_RING_CNT; i++) {
2953		txd = &sc->jme_cdata.jme_txdesc[i];
2954		txd->tx_m = NULL;
2955		txd->tx_desc = &rd->jme_tx_ring[i];
2956		txd->tx_ndesc = 0;
2957	}
2958
2959	bus_dmamap_sync(sc->jme_cdata.jme_tx_ring_tag,
2960	    sc->jme_cdata.jme_tx_ring_map,
2961	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2962}
2963
2964static void
2965jme_init_ssb(struct jme_softc *sc)
2966{
2967	struct jme_ring_data *rd;
2968
2969	rd = &sc->jme_rdata;
2970	bzero(rd->jme_ssb_block, JME_SSB_SIZE);
2971	bus_dmamap_sync(sc->jme_cdata.jme_ssb_tag, sc->jme_cdata.jme_ssb_map,
2972	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2973}
2974
2975static int
2976jme_init_rx_ring(struct jme_softc *sc)
2977{
2978	struct jme_ring_data *rd;
2979	struct jme_rxdesc *rxd;
2980	int i;
2981
2982	sc->jme_cdata.jme_rx_cons = 0;
2983	JME_RXCHAIN_RESET(sc);
2984	sc->jme_morework = 0;
2985
2986	rd = &sc->jme_rdata;
2987	bzero(rd->jme_rx_ring, JME_RX_RING_SIZE);
2988	for (i = 0; i < JME_RX_RING_CNT; i++) {
2989		rxd = &sc->jme_cdata.jme_rxdesc[i];
2990		rxd->rx_m = NULL;
2991		rxd->rx_desc = &rd->jme_rx_ring[i];
2992		if (jme_newbuf(sc, rxd) != 0)
2993			return (ENOBUFS);
2994	}
2995
2996	bus_dmamap_sync(sc->jme_cdata.jme_rx_ring_tag,
2997	    sc->jme_cdata.jme_rx_ring_map,
2998	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2999
3000	return (0);
3001}
3002
3003static int
3004jme_newbuf(struct jme_softc *sc, struct jme_rxdesc *rxd)
3005{
3006	struct jme_desc *desc;
3007	struct mbuf *m;
3008	bus_dma_segment_t segs[1];
3009	bus_dmamap_t map;
3010	int nsegs;
3011
3012	m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
3013	if (m == NULL)
3014		return (ENOBUFS);
3015	/*
3016	 * JMC250 has 64bit boundary alignment limitation so jme(4)
3017	 * takes advantage of 10 bytes padding feature of hardware
3018	 * in order not to copy entire frame to align IP header on
3019	 * 32bit boundary.
3020	 */
3021	m->m_len = m->m_pkthdr.len = MCLBYTES;
3022
3023	if (bus_dmamap_load_mbuf_sg(sc->jme_cdata.jme_rx_tag,
3024	    sc->jme_cdata.jme_rx_sparemap, m, segs, &nsegs, 0) != 0) {
3025		m_freem(m);
3026		return (ENOBUFS);
3027	}
3028	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
3029
3030	if (rxd->rx_m != NULL) {
3031		bus_dmamap_sync(sc->jme_cdata.jme_rx_tag, rxd->rx_dmamap,
3032		    BUS_DMASYNC_POSTREAD);
3033		bus_dmamap_unload(sc->jme_cdata.jme_rx_tag, rxd->rx_dmamap);
3034	}
3035	map = rxd->rx_dmamap;
3036	rxd->rx_dmamap = sc->jme_cdata.jme_rx_sparemap;
3037	sc->jme_cdata.jme_rx_sparemap = map;
3038	bus_dmamap_sync(sc->jme_cdata.jme_rx_tag, rxd->rx_dmamap,
3039	    BUS_DMASYNC_PREREAD);
3040	rxd->rx_m = m;
3041
3042	desc = rxd->rx_desc;
3043	desc->buflen = htole32(segs[0].ds_len);
3044	desc->addr_lo = htole32(JME_ADDR_LO(segs[0].ds_addr));
3045	desc->addr_hi = htole32(JME_ADDR_HI(segs[0].ds_addr));
3046	desc->flags = htole32(JME_RD_OWN | JME_RD_INTR | JME_RD_64BIT);
3047
3048	return (0);
3049}
3050
3051static void
3052jme_set_vlan(struct jme_softc *sc)
3053{
3054	struct ifnet *ifp;
3055	uint32_t reg;
3056
3057	JME_LOCK_ASSERT(sc);
3058
3059	ifp = sc->jme_ifp;
3060	reg = CSR_READ_4(sc, JME_RXMAC);
3061	reg &= ~RXMAC_VLAN_ENB;
3062	if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0)
3063		reg |= RXMAC_VLAN_ENB;
3064	CSR_WRITE_4(sc, JME_RXMAC, reg);
3065}
3066
3067static void
3068jme_set_filter(struct jme_softc *sc)
3069{
3070	struct ifnet *ifp;
3071	struct ifmultiaddr *ifma;
3072	uint32_t crc;
3073	uint32_t mchash[2];
3074	uint32_t rxcfg;
3075
3076	JME_LOCK_ASSERT(sc);
3077
3078	ifp = sc->jme_ifp;
3079
3080	rxcfg = CSR_READ_4(sc, JME_RXMAC);
3081	rxcfg &= ~ (RXMAC_BROADCAST | RXMAC_PROMISC | RXMAC_MULTICAST |
3082	    RXMAC_ALLMULTI);
3083	/* Always accept frames destined to our station address. */
3084	rxcfg |= RXMAC_UNICAST;
3085	if ((ifp->if_flags & IFF_BROADCAST) != 0)
3086		rxcfg |= RXMAC_BROADCAST;
3087	if ((ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) != 0) {
3088		if ((ifp->if_flags & IFF_PROMISC) != 0)
3089			rxcfg |= RXMAC_PROMISC;
3090		if ((ifp->if_flags & IFF_ALLMULTI) != 0)
3091			rxcfg |= RXMAC_ALLMULTI;
3092		CSR_WRITE_4(sc, JME_MAR0, 0xFFFFFFFF);
3093		CSR_WRITE_4(sc, JME_MAR1, 0xFFFFFFFF);
3094		CSR_WRITE_4(sc, JME_RXMAC, rxcfg);
3095		return;
3096	}
3097
3098	/*
3099	 * Set up the multicast address filter by passing all multicast
3100	 * addresses through a CRC generator, and then using the low-order
3101	 * 6 bits as an index into the 64 bit multicast hash table.  The
3102	 * high order bits select the register, while the rest of the bits
3103	 * select the bit within the register.
3104	 */
3105	rxcfg |= RXMAC_MULTICAST;
3106	bzero(mchash, sizeof(mchash));
3107
3108	if_maddr_rlock(ifp);
3109	TAILQ_FOREACH(ifma, &sc->jme_ifp->if_multiaddrs, ifma_link) {
3110		if (ifma->ifma_addr->sa_family != AF_LINK)
3111			continue;
3112		crc = ether_crc32_be(LLADDR((struct sockaddr_dl *)
3113		    ifma->ifma_addr), ETHER_ADDR_LEN);
3114
3115		/* Just want the 6 least significant bits. */
3116		crc &= 0x3f;
3117
3118		/* Set the corresponding bit in the hash table. */
3119		mchash[crc >> 5] |= 1 << (crc & 0x1f);
3120	}
3121	if_maddr_runlock(ifp);
3122
3123	CSR_WRITE_4(sc, JME_MAR0, mchash[0]);
3124	CSR_WRITE_4(sc, JME_MAR1, mchash[1]);
3125	CSR_WRITE_4(sc, JME_RXMAC, rxcfg);
3126}
3127
3128static void
3129jme_stats_clear(struct jme_softc *sc)
3130{
3131
3132	JME_LOCK_ASSERT(sc);
3133
3134	if ((sc->jme_flags & JME_FLAG_HWMIB) == 0)
3135		return;
3136
3137	/* Disable and clear counters. */
3138	CSR_WRITE_4(sc, JME_STATCSR, 0xFFFFFFFF);
3139	/* Activate hw counters. */
3140	CSR_WRITE_4(sc, JME_STATCSR, 0);
3141	CSR_READ_4(sc, JME_STATCSR);
3142	bzero(&sc->jme_stats, sizeof(struct jme_hw_stats));
3143}
3144
3145static void
3146jme_stats_save(struct jme_softc *sc)
3147{
3148
3149	JME_LOCK_ASSERT(sc);
3150
3151	if ((sc->jme_flags & JME_FLAG_HWMIB) == 0)
3152		return;
3153	/* Save current counters. */
3154	bcopy(&sc->jme_stats, &sc->jme_ostats, sizeof(struct jme_hw_stats));
3155	/* Disable and clear counters. */
3156	CSR_WRITE_4(sc, JME_STATCSR, 0xFFFFFFFF);
3157}
3158
3159static void
3160jme_stats_update(struct jme_softc *sc)
3161{
3162	struct jme_hw_stats *stat, *ostat;
3163	uint32_t reg;
3164
3165	JME_LOCK_ASSERT(sc);
3166
3167	if ((sc->jme_flags & JME_FLAG_HWMIB) == 0)
3168		return;
3169	stat = &sc->jme_stats;
3170	ostat = &sc->jme_ostats;
3171	stat->tx_good_frames = CSR_READ_4(sc, JME_STAT_TXGOOD);
3172	stat->rx_good_frames = CSR_READ_4(sc, JME_STAT_RXGOOD);
3173	reg = CSR_READ_4(sc, JME_STAT_CRCMII);
3174	stat->rx_crc_errs = (reg & STAT_RX_CRC_ERR_MASK) >>
3175	    STAT_RX_CRC_ERR_SHIFT;
3176	stat->rx_mii_errs = (reg & STAT_RX_MII_ERR_MASK) >>
3177	    STAT_RX_MII_ERR_SHIFT;
3178	reg = CSR_READ_4(sc, JME_STAT_RXERR);
3179	stat->rx_fifo_oflows = (reg & STAT_RXERR_OFLOW_MASK) >>
3180	    STAT_RXERR_OFLOW_SHIFT;
3181	stat->rx_desc_empty = (reg & STAT_RXERR_MPTY_MASK) >>
3182	    STAT_RXERR_MPTY_SHIFT;
3183	reg = CSR_READ_4(sc, JME_STAT_FAIL);
3184	stat->rx_bad_frames = (reg & STAT_FAIL_RX_MASK) >> STAT_FAIL_RX_SHIFT;
3185	stat->tx_bad_frames = (reg & STAT_FAIL_TX_MASK) >> STAT_FAIL_TX_SHIFT;
3186
3187	/* Account for previous counters. */
3188	stat->rx_good_frames += ostat->rx_good_frames;
3189	stat->rx_crc_errs += ostat->rx_crc_errs;
3190	stat->rx_mii_errs += ostat->rx_mii_errs;
3191	stat->rx_fifo_oflows += ostat->rx_fifo_oflows;
3192	stat->rx_desc_empty += ostat->rx_desc_empty;
3193	stat->rx_bad_frames += ostat->rx_bad_frames;
3194	stat->tx_good_frames += ostat->tx_good_frames;
3195	stat->tx_bad_frames += ostat->tx_bad_frames;
3196}
3197
3198static int
3199sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
3200{
3201	int error, value;
3202
3203	if (arg1 == NULL)
3204		return (EINVAL);
3205	value = *(int *)arg1;
3206	error = sysctl_handle_int(oidp, &value, 0, req);
3207	if (error || req->newptr == NULL)
3208		return (error);
3209	if (value < low || value > high)
3210		return (EINVAL);
3211        *(int *)arg1 = value;
3212
3213        return (0);
3214}
3215
3216static int
3217sysctl_hw_jme_tx_coal_to(SYSCTL_HANDLER_ARGS)
3218{
3219	return (sysctl_int_range(oidp, arg1, arg2, req,
3220	    PCCTX_COAL_TO_MIN, PCCTX_COAL_TO_MAX));
3221}
3222
3223static int
3224sysctl_hw_jme_tx_coal_pkt(SYSCTL_HANDLER_ARGS)
3225{
3226	return (sysctl_int_range(oidp, arg1, arg2, req,
3227	    PCCTX_COAL_PKT_MIN, PCCTX_COAL_PKT_MAX));
3228}
3229
3230static int
3231sysctl_hw_jme_rx_coal_to(SYSCTL_HANDLER_ARGS)
3232{
3233	return (sysctl_int_range(oidp, arg1, arg2, req,
3234	    PCCRX_COAL_TO_MIN, PCCRX_COAL_TO_MAX));
3235}
3236
3237static int
3238sysctl_hw_jme_rx_coal_pkt(SYSCTL_HANDLER_ARGS)
3239{
3240	return (sysctl_int_range(oidp, arg1, arg2, req,
3241	    PCCRX_COAL_PKT_MIN, PCCRX_COAL_PKT_MAX));
3242}
3243
3244static int
3245sysctl_hw_jme_proc_limit(SYSCTL_HANDLER_ARGS)
3246{
3247	return (sysctl_int_range(oidp, arg1, arg2, req,
3248	    JME_PROC_MIN, JME_PROC_MAX));
3249}
3250