if_jme.c revision 182887
1/*-
2 * Copyright (c) 2008, Pyun YongHyeon <yongari@FreeBSD.org>
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice unmodified, this list of conditions, and the following
10 *    disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25 * SUCH DAMAGE.
26 */
27
28#include <sys/cdefs.h>
29__FBSDID("$FreeBSD: head/sys/dev/jme/if_jme.c 182887 2008-09-09 10:10:03Z yongari $");
30
31#include <sys/param.h>
32#include <sys/systm.h>
33#include <sys/bus.h>
34#include <sys/endian.h>
35#include <sys/kernel.h>
36#include <sys/malloc.h>
37#include <sys/mbuf.h>
38#include <sys/rman.h>
39#include <sys/module.h>
40#include <sys/proc.h>
41#include <sys/queue.h>
42#include <sys/socket.h>
43#include <sys/sockio.h>
44#include <sys/sysctl.h>
45#include <sys/taskqueue.h>
46
47#include <net/bpf.h>
48#include <net/if.h>
49#include <net/if_arp.h>
50#include <net/ethernet.h>
51#include <net/if_dl.h>
52#include <net/if_media.h>
53#include <net/if_types.h>
54#include <net/if_vlan_var.h>
55
56#include <netinet/in.h>
57#include <netinet/in_systm.h>
58#include <netinet/ip.h>
59#include <netinet/tcp.h>
60
61#include <dev/mii/mii.h>
62#include <dev/mii/miivar.h>
63
64#include <dev/pci/pcireg.h>
65#include <dev/pci/pcivar.h>
66
67#include <machine/atomic.h>
68#include <machine/bus.h>
69#include <machine/in_cksum.h>
70
71#include <dev/jme/if_jmereg.h>
72#include <dev/jme/if_jmevar.h>
73
74/* "device miibus" required.  See GENERIC if you get errors here. */
75#include "miibus_if.h"
76
77/* Define the following to disable printing Rx errors. */
78#undef	JME_SHOW_ERRORS
79
80#define	JME_CSUM_FEATURES	(CSUM_IP | CSUM_TCP | CSUM_UDP)
81
82MODULE_DEPEND(jme, pci, 1, 1, 1);
83MODULE_DEPEND(jme, ether, 1, 1, 1);
84MODULE_DEPEND(jme, miibus, 1, 1, 1);
85
86/* Tunables. */
87static int msi_disable = 0;
88static int msix_disable = 0;
89TUNABLE_INT("hw.jme.msi_disable", &msi_disable);
90TUNABLE_INT("hw.jme.msix_disable", &msix_disable);
91
92/*
93 * Devices supported by this driver.
94 */
95static struct jme_dev {
96	uint16_t	jme_vendorid;
97	uint16_t	jme_deviceid;
98	const char	*jme_name;
99} jme_devs[] = {
100	{ VENDORID_JMICRON, DEVICEID_JMC250,
101	    "JMicron Inc, JMC250 Gigabit Ethernet" },
102	{ VENDORID_JMICRON, DEVICEID_JMC260,
103	    "JMicron Inc, JMC260 Fast Ethernet" },
104};
105
106static int jme_miibus_readreg(device_t, int, int);
107static int jme_miibus_writereg(device_t, int, int, int);
108static void jme_miibus_statchg(device_t);
109static void jme_mediastatus(struct ifnet *, struct ifmediareq *);
110static int jme_mediachange(struct ifnet *);
111static int jme_probe(device_t);
112static int jme_eeprom_read_byte(struct jme_softc *, uint8_t, uint8_t *);
113static int jme_eeprom_macaddr(struct jme_softc *);
114static void jme_reg_macaddr(struct jme_softc *);
115static void jme_map_intr_vector(struct jme_softc *);
116static int jme_attach(device_t);
117static int jme_detach(device_t);
118static void jme_sysctl_node(struct jme_softc *);
119static void jme_dmamap_cb(void *, bus_dma_segment_t *, int, int);
120static int jme_dma_alloc(struct jme_softc *);
121static void jme_dma_free(struct jme_softc *);
122static int jme_shutdown(device_t);
123static void jme_setlinkspeed(struct jme_softc *);
124static void jme_setwol(struct jme_softc *);
125static int jme_suspend(device_t);
126static int jme_resume(device_t);
127static int jme_encap(struct jme_softc *, struct mbuf **);
128static void jme_tx_task(void *, int);
129static void jme_start(struct ifnet *);
130static void jme_watchdog(struct jme_softc *);
131static int jme_ioctl(struct ifnet *, u_long, caddr_t);
132static void jme_mac_config(struct jme_softc *);
133static void jme_link_task(void *, int);
134static int jme_intr(void *);
135static void jme_int_task(void *, int);
136static void jme_txeof(struct jme_softc *);
137static __inline void jme_discard_rxbuf(struct jme_softc *, int);
138static void jme_rxeof(struct jme_softc *);
139static int jme_rxintr(struct jme_softc *, int);
140static void jme_tick(void *);
141static void jme_reset(struct jme_softc *);
142static void jme_init(void *);
143static void jme_init_locked(struct jme_softc *);
144static void jme_stop(struct jme_softc *);
145static void jme_stop_tx(struct jme_softc *);
146static void jme_stop_rx(struct jme_softc *);
147static int jme_init_rx_ring(struct jme_softc *);
148static void jme_init_tx_ring(struct jme_softc *);
149static void jme_init_ssb(struct jme_softc *);
150static int jme_newbuf(struct jme_softc *, struct jme_rxdesc *);
151static void jme_set_vlan(struct jme_softc *);
152static void jme_set_filter(struct jme_softc *);
153static int sysctl_int_range(SYSCTL_HANDLER_ARGS, int, int);
154static int sysctl_hw_jme_tx_coal_to(SYSCTL_HANDLER_ARGS);
155static int sysctl_hw_jme_tx_coal_pkt(SYSCTL_HANDLER_ARGS);
156static int sysctl_hw_jme_rx_coal_to(SYSCTL_HANDLER_ARGS);
157static int sysctl_hw_jme_rx_coal_pkt(SYSCTL_HANDLER_ARGS);
158static int sysctl_hw_jme_proc_limit(SYSCTL_HANDLER_ARGS);
159
160
161static device_method_t jme_methods[] = {
162	/* Device interface. */
163	DEVMETHOD(device_probe,		jme_probe),
164	DEVMETHOD(device_attach,	jme_attach),
165	DEVMETHOD(device_detach,	jme_detach),
166	DEVMETHOD(device_shutdown,	jme_shutdown),
167	DEVMETHOD(device_suspend,	jme_suspend),
168	DEVMETHOD(device_resume,	jme_resume),
169
170	/* MII interface. */
171	DEVMETHOD(miibus_readreg,	jme_miibus_readreg),
172	DEVMETHOD(miibus_writereg,	jme_miibus_writereg),
173	DEVMETHOD(miibus_statchg,	jme_miibus_statchg),
174
175	{ NULL, NULL }
176};
177
178static driver_t jme_driver = {
179	"jme",
180	jme_methods,
181	sizeof(struct jme_softc)
182};
183
184static devclass_t jme_devclass;
185
186DRIVER_MODULE(jme, pci, jme_driver, jme_devclass, 0, 0);
187DRIVER_MODULE(miibus, jme, miibus_driver, miibus_devclass, 0, 0);
188
189static struct resource_spec jme_res_spec_mem[] = {
190	{ SYS_RES_MEMORY,	PCIR_BAR(0),	RF_ACTIVE },
191	{ -1,			0,		0 }
192};
193
194static struct resource_spec jme_irq_spec_legacy[] = {
195	{ SYS_RES_IRQ,		0,		RF_ACTIVE | RF_SHAREABLE },
196	{ -1,			0,		0 }
197};
198
199static struct resource_spec jme_irq_spec_msi[] = {
200	{ SYS_RES_IRQ,		1,		RF_ACTIVE },
201	{ SYS_RES_IRQ,		2,		RF_ACTIVE },
202	{ SYS_RES_IRQ,		3,		RF_ACTIVE },
203	{ SYS_RES_IRQ,		4,		RF_ACTIVE },
204	{ SYS_RES_IRQ,		5,		RF_ACTIVE },
205	{ SYS_RES_IRQ,		6,		RF_ACTIVE },
206	{ SYS_RES_IRQ,		7,		RF_ACTIVE },
207	{ SYS_RES_IRQ,		8,		RF_ACTIVE },
208	{ -1,			0,		0 }
209};
210
211/*
212 *	Read a PHY register on the MII of the JMC250.
213 */
214static int
215jme_miibus_readreg(device_t dev, int phy, int reg)
216{
217	struct jme_softc *sc;
218	uint32_t val;
219	int i;
220
221	sc = device_get_softc(dev);
222
223	/* For FPGA version, PHY address 0 should be ignored. */
224	if ((sc->jme_flags & JME_FLAG_FPGA) != 0) {
225		if (phy == 0)
226			return (0);
227	} else {
228		if (sc->jme_phyaddr != phy)
229			return (0);
230	}
231
232	CSR_WRITE_4(sc, JME_SMI, SMI_OP_READ | SMI_OP_EXECUTE |
233	    SMI_PHY_ADDR(phy) | SMI_REG_ADDR(reg));
234	for (i = JME_PHY_TIMEOUT; i > 0; i--) {
235		DELAY(1);
236		if (((val = CSR_READ_4(sc, JME_SMI)) & SMI_OP_EXECUTE) == 0)
237			break;
238	}
239
240	if (i == 0) {
241		device_printf(sc->jme_dev, "phy read timeout : %d\n", reg);
242		return (0);
243	}
244
245	return ((val & SMI_DATA_MASK) >> SMI_DATA_SHIFT);
246}
247
248/*
249 *	Write a PHY register on the MII of the JMC250.
250 */
251static int
252jme_miibus_writereg(device_t dev, int phy, int reg, int val)
253{
254	struct jme_softc *sc;
255	int i;
256
257	sc = device_get_softc(dev);
258
259	/* For FPGA version, PHY address 0 should be ignored. */
260	if ((sc->jme_flags & JME_FLAG_FPGA) != 0) {
261		if (phy == 0)
262			return (0);
263	} else {
264		if (sc->jme_phyaddr != phy)
265			return (0);
266	}
267
268	CSR_WRITE_4(sc, JME_SMI, SMI_OP_WRITE | SMI_OP_EXECUTE |
269	    ((val << SMI_DATA_SHIFT) & SMI_DATA_MASK) |
270	    SMI_PHY_ADDR(phy) | SMI_REG_ADDR(reg));
271	for (i = JME_PHY_TIMEOUT; i > 0; i--) {
272		DELAY(1);
273		if (((val = CSR_READ_4(sc, JME_SMI)) & SMI_OP_EXECUTE) == 0)
274			break;
275	}
276
277	if (i == 0)
278		device_printf(sc->jme_dev, "phy write timeout : %d\n", reg);
279
280	return (0);
281}
282
283/*
284 *	Callback from MII layer when media changes.
285 */
286static void
287jme_miibus_statchg(device_t dev)
288{
289	struct jme_softc *sc;
290
291	sc = device_get_softc(dev);
292	taskqueue_enqueue(taskqueue_swi, &sc->jme_link_task);
293}
294
295/*
296 *	Get the current interface media status.
297 */
298static void
299jme_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
300{
301	struct jme_softc *sc;
302	struct mii_data *mii;
303
304	sc = ifp->if_softc;
305	JME_LOCK(sc);
306	mii = device_get_softc(sc->jme_miibus);
307
308	mii_pollstat(mii);
309	ifmr->ifm_status = mii->mii_media_status;
310	ifmr->ifm_active = mii->mii_media_active;
311	JME_UNLOCK(sc);
312}
313
314/*
315 *	Set hardware to newly-selected media.
316 */
317static int
318jme_mediachange(struct ifnet *ifp)
319{
320	struct jme_softc *sc;
321	struct mii_data *mii;
322	struct mii_softc *miisc;
323	int error;
324
325	sc = ifp->if_softc;
326	JME_LOCK(sc);
327	mii = device_get_softc(sc->jme_miibus);
328	if (mii->mii_instance != 0) {
329		LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
330			mii_phy_reset(miisc);
331	}
332	error = mii_mediachg(mii);
333	JME_UNLOCK(sc);
334
335	return (error);
336}
337
338static int
339jme_probe(device_t dev)
340{
341	struct jme_dev *sp;
342	int i;
343	uint16_t vendor, devid;
344
345	vendor = pci_get_vendor(dev);
346	devid = pci_get_device(dev);
347	sp = jme_devs;
348	for (i = 0; i < sizeof(jme_devs) / sizeof(jme_devs[0]);
349	    i++, sp++) {
350		if (vendor == sp->jme_vendorid &&
351		    devid == sp->jme_deviceid) {
352			device_set_desc(dev, sp->jme_name);
353			return (BUS_PROBE_DEFAULT);
354		}
355	}
356
357	return (ENXIO);
358}
359
360static int
361jme_eeprom_read_byte(struct jme_softc *sc, uint8_t addr, uint8_t *val)
362{
363	uint32_t reg;
364	int i;
365
366	*val = 0;
367	for (i = JME_TIMEOUT; i > 0; i--) {
368		reg = CSR_READ_4(sc, JME_SMBCSR);
369		if ((reg & SMBCSR_HW_BUSY_MASK) == SMBCSR_HW_IDLE)
370			break;
371		DELAY(1);
372	}
373
374	if (i == 0) {
375		device_printf(sc->jme_dev, "EEPROM idle timeout!\n");
376		return (ETIMEDOUT);
377	}
378
379	reg = ((uint32_t)addr << SMBINTF_ADDR_SHIFT) & SMBINTF_ADDR_MASK;
380	CSR_WRITE_4(sc, JME_SMBINTF, reg | SMBINTF_RD | SMBINTF_CMD_TRIGGER);
381	for (i = JME_TIMEOUT; i > 0; i--) {
382		DELAY(1);
383		reg = CSR_READ_4(sc, JME_SMBINTF);
384		if ((reg & SMBINTF_CMD_TRIGGER) == 0)
385			break;
386	}
387
388	if (i == 0) {
389		device_printf(sc->jme_dev, "EEPROM read timeout!\n");
390		return (ETIMEDOUT);
391	}
392
393	reg = CSR_READ_4(sc, JME_SMBINTF);
394	*val = (reg & SMBINTF_RD_DATA_MASK) >> SMBINTF_RD_DATA_SHIFT;
395
396	return (0);
397}
398
399static int
400jme_eeprom_macaddr(struct jme_softc *sc)
401{
402	uint8_t eaddr[ETHER_ADDR_LEN];
403	uint8_t fup, reg, val;
404	uint32_t offset;
405	int match;
406
407	offset = 0;
408	if (jme_eeprom_read_byte(sc, offset++, &fup) != 0 ||
409	    fup != JME_EEPROM_SIG0)
410		return (ENOENT);
411	if (jme_eeprom_read_byte(sc, offset++, &fup) != 0 ||
412	    fup != JME_EEPROM_SIG1)
413		return (ENOENT);
414	match = 0;
415	do {
416		if (jme_eeprom_read_byte(sc, offset, &fup) != 0)
417			break;
418		/* Check for the end of EEPROM descriptor. */
419		if ((fup & JME_EEPROM_DESC_END) == JME_EEPROM_DESC_END)
420			break;
421		if ((uint8_t)JME_EEPROM_MKDESC(JME_EEPROM_FUNC0,
422		    JME_EEPROM_PAGE_BAR1) == fup) {
423			if (jme_eeprom_read_byte(sc, offset + 1, &reg) != 0)
424				break;
425			if (reg >= JME_PAR0 &&
426			    reg < JME_PAR0 + ETHER_ADDR_LEN) {
427				if (jme_eeprom_read_byte(sc, offset + 2,
428				    &val) != 0)
429					break;
430				eaddr[reg - JME_PAR0] = val;
431				match++;
432			}
433		}
434		/* Try next eeprom descriptor. */
435		offset += JME_EEPROM_DESC_BYTES;
436	} while (match != ETHER_ADDR_LEN && offset < JME_EEPROM_END);
437
438	if (match == ETHER_ADDR_LEN) {
439		bcopy(eaddr, sc->jme_eaddr, ETHER_ADDR_LEN);
440		return (0);
441	}
442
443	return (ENOENT);
444}
445
446static void
447jme_reg_macaddr(struct jme_softc *sc)
448{
449	uint32_t par0, par1;
450
451	/* Read station address. */
452	par0 = CSR_READ_4(sc, JME_PAR0);
453	par1 = CSR_READ_4(sc, JME_PAR1);
454	par1 &= 0xFFFF;
455	if ((par0 == 0 && par1 == 0) ||
456	    (par0 == 0xFFFFFFFF && par1 == 0xFFFF)) {
457		device_printf(sc->jme_dev,
458		    "generating fake ethernet address.\n");
459		par0 = arc4random();
460		/* Set OUI to JMicron. */
461		sc->jme_eaddr[0] = 0x00;
462		sc->jme_eaddr[1] = 0x1B;
463		sc->jme_eaddr[2] = 0x8C;
464		sc->jme_eaddr[3] = (par0 >> 16) & 0xff;
465		sc->jme_eaddr[4] = (par0 >> 8) & 0xff;
466		sc->jme_eaddr[5] = par0 & 0xff;
467	} else {
468		sc->jme_eaddr[0] = (par0 >> 0) & 0xFF;
469		sc->jme_eaddr[1] = (par0 >> 8) & 0xFF;
470		sc->jme_eaddr[2] = (par0 >> 16) & 0xFF;
471		sc->jme_eaddr[3] = (par0 >> 24) & 0xFF;
472		sc->jme_eaddr[4] = (par1 >> 0) & 0xFF;
473		sc->jme_eaddr[5] = (par1 >> 8) & 0xFF;
474	}
475}
476
477static void
478jme_map_intr_vector(struct jme_softc *sc)
479{
480	uint32_t map[MSINUM_NUM_INTR_SOURCE / JME_MSI_MESSAGES];
481
482	bzero(map, sizeof(map));
483
484	/* Map Tx interrupts source to MSI/MSIX vector 2. */
485	map[MSINUM_REG_INDEX(N_INTR_TXQ0_COMP)] =
486	    MSINUM_INTR_SOURCE(2, N_INTR_TXQ0_COMP);
487	map[MSINUM_REG_INDEX(N_INTR_TXQ1_COMP)] |=
488	    MSINUM_INTR_SOURCE(2, N_INTR_TXQ1_COMP);
489	map[MSINUM_REG_INDEX(N_INTR_TXQ2_COMP)] |=
490	    MSINUM_INTR_SOURCE(2, N_INTR_TXQ2_COMP);
491	map[MSINUM_REG_INDEX(N_INTR_TXQ3_COMP)] |=
492	    MSINUM_INTR_SOURCE(2, N_INTR_TXQ3_COMP);
493	map[MSINUM_REG_INDEX(N_INTR_TXQ4_COMP)] |=
494	    MSINUM_INTR_SOURCE(2, N_INTR_TXQ4_COMP);
495	map[MSINUM_REG_INDEX(N_INTR_TXQ4_COMP)] |=
496	    MSINUM_INTR_SOURCE(2, N_INTR_TXQ5_COMP);
497	map[MSINUM_REG_INDEX(N_INTR_TXQ6_COMP)] |=
498	    MSINUM_INTR_SOURCE(2, N_INTR_TXQ6_COMP);
499	map[MSINUM_REG_INDEX(N_INTR_TXQ7_COMP)] |=
500	    MSINUM_INTR_SOURCE(2, N_INTR_TXQ7_COMP);
501	map[MSINUM_REG_INDEX(N_INTR_TXQ_COAL)] |=
502	    MSINUM_INTR_SOURCE(2, N_INTR_TXQ_COAL);
503	map[MSINUM_REG_INDEX(N_INTR_TXQ_COAL_TO)] |=
504	    MSINUM_INTR_SOURCE(2, N_INTR_TXQ_COAL_TO);
505
506	/* Map Rx interrupts source to MSI/MSIX vector 1. */
507	map[MSINUM_REG_INDEX(N_INTR_RXQ0_COMP)] =
508	    MSINUM_INTR_SOURCE(1, N_INTR_RXQ0_COMP);
509	map[MSINUM_REG_INDEX(N_INTR_RXQ1_COMP)] =
510	    MSINUM_INTR_SOURCE(1, N_INTR_RXQ1_COMP);
511	map[MSINUM_REG_INDEX(N_INTR_RXQ2_COMP)] =
512	    MSINUM_INTR_SOURCE(1, N_INTR_RXQ2_COMP);
513	map[MSINUM_REG_INDEX(N_INTR_RXQ3_COMP)] =
514	    MSINUM_INTR_SOURCE(1, N_INTR_RXQ3_COMP);
515	map[MSINUM_REG_INDEX(N_INTR_RXQ0_DESC_EMPTY)] =
516	    MSINUM_INTR_SOURCE(1, N_INTR_RXQ0_DESC_EMPTY);
517	map[MSINUM_REG_INDEX(N_INTR_RXQ1_DESC_EMPTY)] =
518	    MSINUM_INTR_SOURCE(1, N_INTR_RXQ1_DESC_EMPTY);
519	map[MSINUM_REG_INDEX(N_INTR_RXQ2_DESC_EMPTY)] =
520	    MSINUM_INTR_SOURCE(1, N_INTR_RXQ2_DESC_EMPTY);
521	map[MSINUM_REG_INDEX(N_INTR_RXQ3_DESC_EMPTY)] =
522	    MSINUM_INTR_SOURCE(1, N_INTR_RXQ3_DESC_EMPTY);
523	map[MSINUM_REG_INDEX(N_INTR_RXQ0_COAL)] =
524	    MSINUM_INTR_SOURCE(1, N_INTR_RXQ0_COAL);
525	map[MSINUM_REG_INDEX(N_INTR_RXQ1_COAL)] =
526	    MSINUM_INTR_SOURCE(1, N_INTR_RXQ1_COAL);
527	map[MSINUM_REG_INDEX(N_INTR_RXQ2_COAL)] =
528	    MSINUM_INTR_SOURCE(1, N_INTR_RXQ2_COAL);
529	map[MSINUM_REG_INDEX(N_INTR_RXQ3_COAL)] =
530	    MSINUM_INTR_SOURCE(1, N_INTR_RXQ3_COAL);
531	map[MSINUM_REG_INDEX(N_INTR_RXQ0_COAL_TO)] =
532	    MSINUM_INTR_SOURCE(1, N_INTR_RXQ0_COAL_TO);
533	map[MSINUM_REG_INDEX(N_INTR_RXQ1_COAL_TO)] =
534	    MSINUM_INTR_SOURCE(1, N_INTR_RXQ1_COAL_TO);
535	map[MSINUM_REG_INDEX(N_INTR_RXQ2_COAL_TO)] =
536	    MSINUM_INTR_SOURCE(1, N_INTR_RXQ2_COAL_TO);
537	map[MSINUM_REG_INDEX(N_INTR_RXQ3_COAL_TO)] =
538	    MSINUM_INTR_SOURCE(1, N_INTR_RXQ3_COAL_TO);
539
540	/* Map all other interrupts source to MSI/MSIX vector 0. */
541	CSR_WRITE_4(sc, JME_MSINUM_BASE + sizeof(uint32_t) * 0, map[0]);
542	CSR_WRITE_4(sc, JME_MSINUM_BASE + sizeof(uint32_t) * 1, map[1]);
543	CSR_WRITE_4(sc, JME_MSINUM_BASE + sizeof(uint32_t) * 2, map[2]);
544	CSR_WRITE_4(sc, JME_MSINUM_BASE + sizeof(uint32_t) * 3, map[3]);
545}
546
547static int
548jme_attach(device_t dev)
549{
550	struct jme_softc *sc;
551	struct ifnet *ifp;
552	struct mii_softc *miisc;
553	struct mii_data *mii;
554	uint32_t reg;
555	uint16_t burst;
556	int error, i, msic, msixc, pmc;
557
558	error = 0;
559	sc = device_get_softc(dev);
560	sc->jme_dev = dev;
561
562	mtx_init(&sc->jme_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
563	    MTX_DEF);
564	callout_init_mtx(&sc->jme_tick_ch, &sc->jme_mtx, 0);
565	TASK_INIT(&sc->jme_int_task, 0, jme_int_task, sc);
566	TASK_INIT(&sc->jme_link_task, 0, jme_link_task, sc);
567
568	/*
569	 * Map the device. JMC250 supports both memory mapped and I/O
570	 * register space access. Because I/O register access should
571	 * use different BARs to access registers it's waste of time
572	 * to use I/O register spce access. JMC250 uses 16K to map
573	 * entire memory space.
574	 */
575	pci_enable_busmaster(dev);
576	sc->jme_res_spec = jme_res_spec_mem;
577	sc->jme_irq_spec = jme_irq_spec_legacy;
578	error = bus_alloc_resources(dev, sc->jme_res_spec, sc->jme_res);
579	if (error != 0) {
580		device_printf(dev, "cannot allocate memory resources.\n");
581		goto fail;
582	}
583
584	/* Allocate IRQ resources. */
585	msixc = pci_msix_count(dev);
586	msic = pci_msi_count(dev);
587	if (bootverbose) {
588		device_printf(dev, "MSIX count : %d\n", msixc);
589		device_printf(dev, "MSI count : %d\n", msic);
590	}
591
592	/* Prefer MSIX over MSI. */
593	if (msix_disable == 0 || msi_disable == 0) {
594		if (msix_disable == 0 && msixc == JME_MSIX_MESSAGES &&
595		    pci_alloc_msix(dev, &msixc) == 0) {
596			if (msic == JME_MSIX_MESSAGES) {
597				device_printf(dev, "Using %d MSIX messages.\n",
598				    msixc);
599				sc->jme_flags |= JME_FLAG_MSIX;
600				sc->jme_irq_spec = jme_irq_spec_msi;
601			} else
602				pci_release_msi(dev);
603		}
604		if (msi_disable == 0 && (sc->jme_flags & JME_FLAG_MSIX) == 0 &&
605		    msic == JME_MSI_MESSAGES &&
606		    pci_alloc_msi(dev, &msic) == 0) {
607			if (msic == JME_MSI_MESSAGES) {
608				device_printf(dev, "Using %d MSI messages.\n",
609				    msic);
610				sc->jme_flags |= JME_FLAG_MSI;
611				sc->jme_irq_spec = jme_irq_spec_msi;
612			} else
613				pci_release_msi(dev);
614		}
615		/* Map interrupt vector 0, 1 and 2. */
616		if ((sc->jme_flags & JME_FLAG_MSI) != 0 ||
617		    (sc->jme_flags & JME_FLAG_MSIX) != 0)
618			jme_map_intr_vector(sc);
619	}
620
621	error = bus_alloc_resources(dev, sc->jme_irq_spec, sc->jme_irq);
622	if (error != 0) {
623		device_printf(dev, "cannot allocate IRQ resources.\n");
624		goto fail;
625	}
626
627	sc->jme_rev = pci_get_revid(dev);
628	if (sc->jme_rev == DEVICEID_JMC260) {
629		sc->jme_flags |= JME_FLAG_FASTETH;
630		sc->jme_flags |= JME_FLAG_NOJUMBO;
631	}
632	reg = CSR_READ_4(sc, JME_CHIPMODE);
633	sc->jme_chip_rev = (reg & CHIPMODE_REV_MASK) >> CHIPMODE_REV_SHIFT;
634	if (((reg & CHIPMODE_FPGA_REV_MASK) >> CHIPMODE_FPGA_REV_SHIFT) !=
635	    CHIPMODE_NOT_FPGA)
636		sc->jme_flags |= JME_FLAG_FPGA;
637	if (bootverbose) {
638		device_printf(dev, "PCI device revision : 0x%04x\n",
639		    sc->jme_rev);
640		device_printf(dev, "Chip revision : 0x%02x\n",
641		    sc->jme_chip_rev);
642		if ((sc->jme_flags & JME_FLAG_FPGA) != 0)
643			device_printf(dev, "FPGA revision : 0x%04x\n",
644			    (reg & CHIPMODE_FPGA_REV_MASK) >>
645			    CHIPMODE_FPGA_REV_SHIFT);
646	}
647	if (sc->jme_chip_rev == 0xFF) {
648		device_printf(dev, "Unknown chip revision : 0x%02x\n",
649		    sc->jme_rev);
650		error = ENXIO;
651		goto fail;
652	}
653
654	/* Reset the ethernet controller. */
655	jme_reset(sc);
656
657	/* Get station address. */
658	reg = CSR_READ_4(sc, JME_SMBCSR);
659	if ((reg & SMBCSR_EEPROM_PRESENT) != 0)
660		error = jme_eeprom_macaddr(sc);
661	if (error != 0 || (reg & SMBCSR_EEPROM_PRESENT) == 0) {
662		if (error != 0 && (bootverbose))
663			device_printf(sc->jme_dev,
664			    "ethernet hardware address not found in EEPROM.\n");
665		jme_reg_macaddr(sc);
666	}
667
668	/*
669	 * Save PHY address.
670	 * Integrated JR0211 has fixed PHY address whereas FPGA version
671	 * requires PHY probing to get correct PHY address.
672	 */
673	if ((sc->jme_flags & JME_FLAG_FPGA) == 0) {
674		sc->jme_phyaddr = CSR_READ_4(sc, JME_GPREG0) &
675		    GPREG0_PHY_ADDR_MASK;
676		if (bootverbose)
677			device_printf(dev, "PHY is at address %d.\n",
678			    sc->jme_phyaddr);
679	} else
680		sc->jme_phyaddr = 0;
681
682	/* Set max allowable DMA size. */
683	if (pci_find_extcap(dev, PCIY_EXPRESS, &i) == 0) {
684		sc->jme_flags |= JME_FLAG_PCIE;
685		burst = pci_read_config(dev, i + 0x08, 2);
686		if (bootverbose) {
687			device_printf(dev, "Read request size : %d bytes.\n",
688			    128 << ((burst >> 12) & 0x07));
689			device_printf(dev, "TLP payload size : %d bytes.\n",
690			    128 << ((burst >> 5) & 0x07));
691		}
692		switch ((burst >> 12) & 0x07) {
693		case 0:
694			sc->jme_tx_dma_size = TXCSR_DMA_SIZE_128;
695			break;
696		case 1:
697			sc->jme_tx_dma_size = TXCSR_DMA_SIZE_256;
698			break;
699		default:
700			sc->jme_tx_dma_size = TXCSR_DMA_SIZE_512;
701			break;
702		}
703		sc->jme_rx_dma_size = RXCSR_DMA_SIZE_128;
704	} else {
705		sc->jme_tx_dma_size = TXCSR_DMA_SIZE_512;
706		sc->jme_rx_dma_size = RXCSR_DMA_SIZE_128;
707	}
708	/* Create coalescing sysctl node. */
709	jme_sysctl_node(sc);
710	if ((error = jme_dma_alloc(sc) != 0))
711		goto fail;
712
713	ifp = sc->jme_ifp = if_alloc(IFT_ETHER);
714	if (ifp == NULL) {
715		device_printf(dev, "cannot allocate ifnet structure.\n");
716		error = ENXIO;
717		goto fail;
718	}
719
720	ifp->if_softc = sc;
721	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
722	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
723	ifp->if_ioctl = jme_ioctl;
724	ifp->if_start = jme_start;
725	ifp->if_init = jme_init;
726	ifp->if_snd.ifq_drv_maxlen = JME_TX_RING_CNT - 1;
727	IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen);
728	IFQ_SET_READY(&ifp->if_snd);
729	/* JMC250 supports Tx/Rx checksum offload as well as TSO. */
730	ifp->if_capabilities = IFCAP_HWCSUM | IFCAP_TSO4;
731	ifp->if_hwassist = JME_CSUM_FEATURES | CSUM_TSO;
732	if (pci_find_extcap(dev, PCIY_PMG, &pmc) == 0) {
733		sc->jme_flags |= JME_FLAG_PMCAP;
734		ifp->if_capabilities |= IFCAP_WOL_MAGIC;
735	}
736	ifp->if_capenable = ifp->if_capabilities;
737
738	/* Set up MII bus. */
739	if ((error = mii_phy_probe(dev, &sc->jme_miibus, jme_mediachange,
740	    jme_mediastatus)) != 0) {
741		device_printf(dev, "no PHY found!\n");
742		goto fail;
743	}
744
745	/*
746	 * Force PHY to FPGA mode.
747	 */
748	if ((sc->jme_flags & JME_FLAG_FPGA) != 0) {
749		mii = device_get_softc(sc->jme_miibus);
750		if (mii->mii_instance != 0) {
751			LIST_FOREACH(miisc, &mii->mii_phys, mii_list) {
752				if (miisc->mii_phy != 0) {
753					sc->jme_phyaddr = miisc->mii_phy;
754					break;
755				}
756			}
757			if (sc->jme_phyaddr != 0) {
758				device_printf(sc->jme_dev,
759				    "FPGA PHY is at %d\n", sc->jme_phyaddr);
760				/* vendor magic. */
761				jme_miibus_writereg(dev, sc->jme_phyaddr, 27,
762				    0x0004);
763			}
764		}
765	}
766
767	ether_ifattach(ifp, sc->jme_eaddr);
768
769	/* VLAN capability setup */
770	ifp->if_capabilities |= IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING |
771	    IFCAP_VLAN_HWCSUM;
772	ifp->if_capenable = ifp->if_capabilities;
773
774	/* Tell the upper layer(s) we support long frames. */
775	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
776
777	/* Create local taskq. */
778	TASK_INIT(&sc->jme_tx_task, 1, jme_tx_task, ifp);
779	sc->jme_tq = taskqueue_create_fast("jme_taskq", M_WAITOK,
780	    taskqueue_thread_enqueue, &sc->jme_tq);
781	if (sc->jme_tq == NULL) {
782		device_printf(dev, "could not create taskqueue.\n");
783		ether_ifdetach(ifp);
784		error = ENXIO;
785		goto fail;
786	}
787	taskqueue_start_threads(&sc->jme_tq, 1, PI_NET, "%s taskq",
788	    device_get_nameunit(sc->jme_dev));
789
790	if ((sc->jme_flags & JME_FLAG_MSIX) != 0)
791		msic = JME_MSIX_MESSAGES;
792	else if ((sc->jme_flags & JME_FLAG_MSI) != 0)
793		msic = JME_MSI_MESSAGES;
794	else
795		msic = 1;
796	for (i = 0; i < msic; i++) {
797		error = bus_setup_intr(dev, sc->jme_irq[i],
798		    INTR_TYPE_NET | INTR_MPSAFE, jme_intr, NULL, sc,
799		    &sc->jme_intrhand[i]);
800		if (error != 0)
801			break;
802	}
803
804	if (error != 0) {
805		device_printf(dev, "could not set up interrupt handler.\n");
806		taskqueue_free(sc->jme_tq);
807		sc->jme_tq = NULL;
808		ether_ifdetach(ifp);
809		goto fail;
810	}
811
812fail:
813	if (error != 0)
814		jme_detach(dev);
815
816	return (error);
817}
818
819static int
820jme_detach(device_t dev)
821{
822	struct jme_softc *sc;
823	struct ifnet *ifp;
824	int i, msic;
825
826	sc = device_get_softc(dev);
827
828	ifp = sc->jme_ifp;
829	if (device_is_attached(dev)) {
830		JME_LOCK(sc);
831		sc->jme_flags |= JME_FLAG_DETACH;
832		jme_stop(sc);
833		JME_UNLOCK(sc);
834		callout_drain(&sc->jme_tick_ch);
835		taskqueue_drain(sc->jme_tq, &sc->jme_int_task);
836		taskqueue_drain(sc->jme_tq, &sc->jme_tx_task);
837		taskqueue_drain(taskqueue_swi, &sc->jme_link_task);
838		ether_ifdetach(ifp);
839	}
840
841	if (sc->jme_tq != NULL) {
842		taskqueue_drain(sc->jme_tq, &sc->jme_int_task);
843		taskqueue_free(sc->jme_tq);
844		sc->jme_tq = NULL;
845	}
846
847	if (sc->jme_miibus != NULL) {
848		device_delete_child(dev, sc->jme_miibus);
849		sc->jme_miibus = NULL;
850	}
851	bus_generic_detach(dev);
852	jme_dma_free(sc);
853
854	if (ifp != NULL) {
855		if_free(ifp);
856		sc->jme_ifp = NULL;
857	}
858
859	msic = 1;
860	if ((sc->jme_flags & JME_FLAG_MSIX) != 0)
861		msic = JME_MSIX_MESSAGES;
862	else if ((sc->jme_flags & JME_FLAG_MSI) != 0)
863		msic = JME_MSI_MESSAGES;
864	else
865		msic = 1;
866	for (i = 0; i < msic; i++) {
867		if (sc->jme_intrhand[i] != NULL) {
868			bus_teardown_intr(dev, sc->jme_irq[i],
869			    sc->jme_intrhand[i]);
870			sc->jme_intrhand[i] = NULL;
871		}
872	}
873
874	bus_release_resources(dev, sc->jme_irq_spec, sc->jme_irq);
875	if ((sc->jme_flags & (JME_FLAG_MSIX | JME_FLAG_MSI)) != 0)
876		pci_release_msi(dev);
877	bus_release_resources(dev, sc->jme_res_spec, sc->jme_res);
878	mtx_destroy(&sc->jme_mtx);
879
880	return (0);
881}
882
883static void
884jme_sysctl_node(struct jme_softc *sc)
885{
886	int error;
887
888	SYSCTL_ADD_PROC(device_get_sysctl_ctx(sc->jme_dev),
889	    SYSCTL_CHILDREN(device_get_sysctl_tree(sc->jme_dev)), OID_AUTO,
890	    "tx_coal_to", CTLTYPE_INT | CTLFLAG_RW, &sc->jme_tx_coal_to,
891	    0, sysctl_hw_jme_tx_coal_to, "I", "jme tx coalescing timeout");
892
893	SYSCTL_ADD_PROC(device_get_sysctl_ctx(sc->jme_dev),
894	    SYSCTL_CHILDREN(device_get_sysctl_tree(sc->jme_dev)), OID_AUTO,
895	    "tx_coal_pkt", CTLTYPE_INT | CTLFLAG_RW, &sc->jme_tx_coal_pkt,
896	    0, sysctl_hw_jme_tx_coal_pkt, "I", "jme tx coalescing packet");
897
898	SYSCTL_ADD_PROC(device_get_sysctl_ctx(sc->jme_dev),
899	    SYSCTL_CHILDREN(device_get_sysctl_tree(sc->jme_dev)), OID_AUTO,
900	    "rx_coal_to", CTLTYPE_INT | CTLFLAG_RW, &sc->jme_rx_coal_to,
901	    0, sysctl_hw_jme_rx_coal_to, "I", "jme rx coalescing timeout");
902
903	SYSCTL_ADD_PROC(device_get_sysctl_ctx(sc->jme_dev),
904	    SYSCTL_CHILDREN(device_get_sysctl_tree(sc->jme_dev)), OID_AUTO,
905	    "rx_coal_pkt", CTLTYPE_INT | CTLFLAG_RW, &sc->jme_rx_coal_pkt,
906	    0, sysctl_hw_jme_rx_coal_pkt, "I", "jme rx coalescing packet");
907
908	SYSCTL_ADD_PROC(device_get_sysctl_ctx(sc->jme_dev),
909	    SYSCTL_CHILDREN(device_get_sysctl_tree(sc->jme_dev)), OID_AUTO,
910	    "process_limit", CTLTYPE_INT | CTLFLAG_RW, &sc->jme_process_limit,
911	    0, sysctl_hw_jme_proc_limit, "I",
912	    "max number of Rx events to process");
913
914	/* Pull in device tunables. */
915	sc->jme_process_limit = JME_PROC_DEFAULT;
916	error = resource_int_value(device_get_name(sc->jme_dev),
917	    device_get_unit(sc->jme_dev), "process_limit",
918	    &sc->jme_process_limit);
919	if (error == 0) {
920		if (sc->jme_process_limit < JME_PROC_MIN ||
921		    sc->jme_process_limit > JME_PROC_MAX) {
922			device_printf(sc->jme_dev,
923			    "process_limit value out of range; "
924			    "using default: %d\n", JME_PROC_DEFAULT);
925			sc->jme_process_limit = JME_PROC_DEFAULT;
926		}
927	}
928
929	sc->jme_tx_coal_to = PCCTX_COAL_TO_DEFAULT;
930	error = resource_int_value(device_get_name(sc->jme_dev),
931	    device_get_unit(sc->jme_dev), "tx_coal_to", &sc->jme_tx_coal_to);
932	if (error == 0) {
933		if (sc->jme_tx_coal_to < PCCTX_COAL_TO_MIN ||
934		    sc->jme_tx_coal_to > PCCTX_COAL_TO_MAX) {
935			device_printf(sc->jme_dev,
936			    "tx_coal_to value out of range; "
937			    "using default: %d\n", PCCTX_COAL_TO_DEFAULT);
938			sc->jme_tx_coal_to = PCCTX_COAL_TO_DEFAULT;
939		}
940	}
941
942	sc->jme_tx_coal_pkt = PCCTX_COAL_PKT_DEFAULT;
943	error = resource_int_value(device_get_name(sc->jme_dev),
944	    device_get_unit(sc->jme_dev), "tx_coal_pkt", &sc->jme_tx_coal_to);
945	if (error == 0) {
946		if (sc->jme_tx_coal_pkt < PCCTX_COAL_PKT_MIN ||
947		    sc->jme_tx_coal_pkt > PCCTX_COAL_PKT_MAX) {
948			device_printf(sc->jme_dev,
949			    "tx_coal_pkt value out of range; "
950			    "using default: %d\n", PCCTX_COAL_PKT_DEFAULT);
951			sc->jme_tx_coal_pkt = PCCTX_COAL_PKT_DEFAULT;
952		}
953	}
954
955	sc->jme_rx_coal_to = PCCRX_COAL_TO_DEFAULT;
956	error = resource_int_value(device_get_name(sc->jme_dev),
957	    device_get_unit(sc->jme_dev), "rx_coal_to", &sc->jme_rx_coal_to);
958	if (error == 0) {
959		if (sc->jme_rx_coal_to < PCCRX_COAL_TO_MIN ||
960		    sc->jme_rx_coal_to > PCCRX_COAL_TO_MAX) {
961			device_printf(sc->jme_dev,
962			    "rx_coal_to value out of range; "
963			    "using default: %d\n", PCCRX_COAL_TO_DEFAULT);
964			sc->jme_rx_coal_to = PCCRX_COAL_TO_DEFAULT;
965		}
966	}
967
968	sc->jme_rx_coal_pkt = PCCRX_COAL_PKT_DEFAULT;
969	error = resource_int_value(device_get_name(sc->jme_dev),
970	    device_get_unit(sc->jme_dev), "rx_coal_pkt", &sc->jme_rx_coal_to);
971	if (error == 0) {
972		if (sc->jme_rx_coal_pkt < PCCRX_COAL_PKT_MIN ||
973		    sc->jme_rx_coal_pkt > PCCRX_COAL_PKT_MAX) {
974			device_printf(sc->jme_dev,
975			    "tx_coal_pkt value out of range; "
976			    "using default: %d\n", PCCRX_COAL_PKT_DEFAULT);
977			sc->jme_rx_coal_pkt = PCCRX_COAL_PKT_DEFAULT;
978		}
979	}
980}
981
982struct jme_dmamap_arg {
983	bus_addr_t	jme_busaddr;
984};
985
986static void
987jme_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
988{
989	struct jme_dmamap_arg *ctx;
990
991	if (error != 0)
992		return;
993
994	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
995
996	ctx = (struct jme_dmamap_arg *)arg;
997	ctx->jme_busaddr = segs[0].ds_addr;
998}
999
1000static int
1001jme_dma_alloc(struct jme_softc *sc)
1002{
1003	struct jme_dmamap_arg ctx;
1004	struct jme_txdesc *txd;
1005	struct jme_rxdesc *rxd;
1006	bus_addr_t lowaddr, rx_ring_end, tx_ring_end;
1007	int error, i;
1008
1009	lowaddr = BUS_SPACE_MAXADDR;
1010
1011again:
1012	/* Create parent ring tag. */
1013	error = bus_dma_tag_create(bus_get_dma_tag(sc->jme_dev),/* parent */
1014	    1, 0,			/* algnmnt, boundary */
1015	    lowaddr,			/* lowaddr */
1016	    BUS_SPACE_MAXADDR,		/* highaddr */
1017	    NULL, NULL,			/* filter, filterarg */
1018	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
1019	    0,				/* nsegments */
1020	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
1021	    0,				/* flags */
1022	    NULL, NULL,			/* lockfunc, lockarg */
1023	    &sc->jme_cdata.jme_ring_tag);
1024	if (error != 0) {
1025		device_printf(sc->jme_dev,
1026		    "could not create parent ring DMA tag.\n");
1027		goto fail;
1028	}
1029	/* Create tag for Tx ring. */
1030	error = bus_dma_tag_create(sc->jme_cdata.jme_ring_tag,/* parent */
1031	    JME_TX_RING_ALIGN, 0,	/* algnmnt, boundary */
1032	    BUS_SPACE_MAXADDR,		/* lowaddr */
1033	    BUS_SPACE_MAXADDR,		/* highaddr */
1034	    NULL, NULL,			/* filter, filterarg */
1035	    JME_TX_RING_SIZE,		/* maxsize */
1036	    1,				/* nsegments */
1037	    JME_TX_RING_SIZE,		/* maxsegsize */
1038	    0,				/* flags */
1039	    NULL, NULL,			/* lockfunc, lockarg */
1040	    &sc->jme_cdata.jme_tx_ring_tag);
1041	if (error != 0) {
1042		device_printf(sc->jme_dev,
1043		    "could not allocate Tx ring DMA tag.\n");
1044		goto fail;
1045	}
1046
1047	/* Create tag for Rx ring. */
1048	error = bus_dma_tag_create(sc->jme_cdata.jme_ring_tag,/* parent */
1049	    JME_RX_RING_ALIGN, 0,	/* algnmnt, boundary */
1050	    lowaddr,			/* lowaddr */
1051	    BUS_SPACE_MAXADDR,		/* highaddr */
1052	    NULL, NULL,			/* filter, filterarg */
1053	    JME_RX_RING_SIZE,		/* maxsize */
1054	    1,				/* nsegments */
1055	    JME_RX_RING_SIZE,		/* maxsegsize */
1056	    0,				/* flags */
1057	    NULL, NULL,			/* lockfunc, lockarg */
1058	    &sc->jme_cdata.jme_rx_ring_tag);
1059	if (error != 0) {
1060		device_printf(sc->jme_dev,
1061		    "could not allocate Rx ring DMA tag.\n");
1062		goto fail;
1063	}
1064
1065	/* Allocate DMA'able memory and load the DMA map for Tx ring. */
1066	error = bus_dmamem_alloc(sc->jme_cdata.jme_tx_ring_tag,
1067	    (void **)&sc->jme_rdata.jme_tx_ring,
1068	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1069	    &sc->jme_cdata.jme_tx_ring_map);
1070	if (error != 0) {
1071		device_printf(sc->jme_dev,
1072		    "could not allocate DMA'able memory for Tx ring.\n");
1073		goto fail;
1074	}
1075
1076	ctx.jme_busaddr = 0;
1077	error = bus_dmamap_load(sc->jme_cdata.jme_tx_ring_tag,
1078	    sc->jme_cdata.jme_tx_ring_map, sc->jme_rdata.jme_tx_ring,
1079	    JME_TX_RING_SIZE, jme_dmamap_cb, &ctx, BUS_DMA_NOWAIT);
1080	if (error != 0 || ctx.jme_busaddr == 0) {
1081		device_printf(sc->jme_dev,
1082		    "could not load DMA'able memory for Tx ring.\n");
1083		goto fail;
1084	}
1085	sc->jme_rdata.jme_tx_ring_paddr = ctx.jme_busaddr;
1086
1087	/* Allocate DMA'able memory and load the DMA map for Rx ring. */
1088	error = bus_dmamem_alloc(sc->jme_cdata.jme_rx_ring_tag,
1089	    (void **)&sc->jme_rdata.jme_rx_ring,
1090	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1091	    &sc->jme_cdata.jme_rx_ring_map);
1092	if (error != 0) {
1093		device_printf(sc->jme_dev,
1094		    "could not allocate DMA'able memory for Rx ring.\n");
1095		goto fail;
1096	}
1097
1098	ctx.jme_busaddr = 0;
1099	error = bus_dmamap_load(sc->jme_cdata.jme_rx_ring_tag,
1100	    sc->jme_cdata.jme_rx_ring_map, sc->jme_rdata.jme_rx_ring,
1101	    JME_RX_RING_SIZE, jme_dmamap_cb, &ctx, BUS_DMA_NOWAIT);
1102	if (error != 0 || ctx.jme_busaddr == 0) {
1103		device_printf(sc->jme_dev,
1104		    "could not load DMA'able memory for Rx ring.\n");
1105		goto fail;
1106	}
1107	sc->jme_rdata.jme_rx_ring_paddr = ctx.jme_busaddr;
1108
1109	/* Tx/Rx descriptor queue should reside within 4GB boundary. */
1110	tx_ring_end = sc->jme_rdata.jme_tx_ring_paddr + JME_TX_RING_SIZE;
1111	rx_ring_end = sc->jme_rdata.jme_rx_ring_paddr + JME_RX_RING_SIZE;
1112	if ((JME_ADDR_HI(tx_ring_end) !=
1113	    JME_ADDR_HI(sc->jme_rdata.jme_tx_ring_paddr)) ||
1114	    (JME_ADDR_HI(rx_ring_end) !=
1115	    JME_ADDR_HI(sc->jme_rdata.jme_rx_ring_paddr))) {
1116		device_printf(sc->jme_dev, "4GB boundary crossed, "
1117		    "switching to 32bit DMA address mode.\n");
1118		jme_dma_free(sc);
1119		/* Limit DMA address space to 32bit and try again. */
1120		lowaddr = BUS_SPACE_MAXADDR_32BIT;
1121		goto again;
1122	}
1123
1124	/* Create parent buffer tag. */
1125	error = bus_dma_tag_create(bus_get_dma_tag(sc->jme_dev),/* parent */
1126	    1, 0,			/* algnmnt, boundary */
1127	    BUS_SPACE_MAXADDR,		/* lowaddr */
1128	    BUS_SPACE_MAXADDR,		/* highaddr */
1129	    NULL, NULL,			/* filter, filterarg */
1130	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
1131	    0,				/* nsegments */
1132	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
1133	    0,				/* flags */
1134	    NULL, NULL,			/* lockfunc, lockarg */
1135	    &sc->jme_cdata.jme_buffer_tag);
1136	if (error != 0) {
1137		device_printf(sc->jme_dev,
1138		    "could not create parent buffer DMA tag.\n");
1139		goto fail;
1140	}
1141
1142	/* Create shadow status block tag. */
1143	error = bus_dma_tag_create(sc->jme_cdata.jme_buffer_tag,/* parent */
1144	    JME_SSB_ALIGN, 0,		/* algnmnt, boundary */
1145	    BUS_SPACE_MAXADDR,		/* lowaddr */
1146	    BUS_SPACE_MAXADDR,		/* highaddr */
1147	    NULL, NULL,			/* filter, filterarg */
1148	    JME_SSB_SIZE,		/* maxsize */
1149	    1,				/* nsegments */
1150	    JME_SSB_SIZE,		/* maxsegsize */
1151	    0,				/* flags */
1152	    NULL, NULL,			/* lockfunc, lockarg */
1153	    &sc->jme_cdata.jme_ssb_tag);
1154	if (error != 0) {
1155		device_printf(sc->jme_dev,
1156		    "could not create shared status block DMA tag.\n");
1157		goto fail;
1158	}
1159
1160	/* Create tag for Tx buffers. */
1161	error = bus_dma_tag_create(sc->jme_cdata.jme_buffer_tag,/* parent */
1162	    1, 0,			/* algnmnt, boundary */
1163	    BUS_SPACE_MAXADDR,		/* lowaddr */
1164	    BUS_SPACE_MAXADDR,		/* highaddr */
1165	    NULL, NULL,			/* filter, filterarg */
1166	    JME_TSO_MAXSIZE,		/* maxsize */
1167	    JME_MAXTXSEGS,		/* nsegments */
1168	    JME_TSO_MAXSEGSIZE,		/* maxsegsize */
1169	    0,				/* flags */
1170	    NULL, NULL,			/* lockfunc, lockarg */
1171	    &sc->jme_cdata.jme_tx_tag);
1172	if (error != 0) {
1173		device_printf(sc->jme_dev, "could not create Tx DMA tag.\n");
1174		goto fail;
1175	}
1176
1177	/* Create tag for Rx buffers. */
1178	error = bus_dma_tag_create(sc->jme_cdata.jme_buffer_tag,/* parent */
1179	    JME_RX_BUF_ALIGN, 0,	/* algnmnt, boundary */
1180	    BUS_SPACE_MAXADDR,		/* lowaddr */
1181	    BUS_SPACE_MAXADDR,		/* highaddr */
1182	    NULL, NULL,			/* filter, filterarg */
1183	    MCLBYTES,			/* maxsize */
1184	    1,				/* nsegments */
1185	    MCLBYTES,			/* maxsegsize */
1186	    0,				/* flags */
1187	    NULL, NULL,			/* lockfunc, lockarg */
1188	    &sc->jme_cdata.jme_rx_tag);
1189	if (error != 0) {
1190		device_printf(sc->jme_dev, "could not create Rx DMA tag.\n");
1191		goto fail;
1192	}
1193
1194	/*
1195	 * Allocate DMA'able memory and load the DMA map for shared
1196	 * status block.
1197	 */
1198	error = bus_dmamem_alloc(sc->jme_cdata.jme_ssb_tag,
1199	    (void **)&sc->jme_rdata.jme_ssb_block,
1200	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1201	    &sc->jme_cdata.jme_ssb_map);
1202	if (error != 0) {
1203		device_printf(sc->jme_dev, "could not allocate DMA'able "
1204		    "memory for shared status block.\n");
1205		goto fail;
1206	}
1207
1208	ctx.jme_busaddr = 0;
1209	error = bus_dmamap_load(sc->jme_cdata.jme_ssb_tag,
1210	    sc->jme_cdata.jme_ssb_map, sc->jme_rdata.jme_ssb_block,
1211	    JME_SSB_SIZE, jme_dmamap_cb, &ctx, BUS_DMA_NOWAIT);
1212	if (error != 0 || ctx.jme_busaddr == 0) {
1213		device_printf(sc->jme_dev, "could not load DMA'able memory "
1214		    "for shared status block.\n");
1215		goto fail;
1216	}
1217	sc->jme_rdata.jme_ssb_block_paddr = ctx.jme_busaddr;
1218
1219	/* Create DMA maps for Tx buffers. */
1220	for (i = 0; i < JME_TX_RING_CNT; i++) {
1221		txd = &sc->jme_cdata.jme_txdesc[i];
1222		txd->tx_m = NULL;
1223		txd->tx_dmamap = NULL;
1224		error = bus_dmamap_create(sc->jme_cdata.jme_tx_tag, 0,
1225		    &txd->tx_dmamap);
1226		if (error != 0) {
1227			device_printf(sc->jme_dev,
1228			    "could not create Tx dmamap.\n");
1229			goto fail;
1230		}
1231	}
1232	/* Create DMA maps for Rx buffers. */
1233	if ((error = bus_dmamap_create(sc->jme_cdata.jme_rx_tag, 0,
1234	    &sc->jme_cdata.jme_rx_sparemap)) != 0) {
1235		device_printf(sc->jme_dev,
1236		    "could not create spare Rx dmamap.\n");
1237		goto fail;
1238	}
1239	for (i = 0; i < JME_RX_RING_CNT; i++) {
1240		rxd = &sc->jme_cdata.jme_rxdesc[i];
1241		rxd->rx_m = NULL;
1242		rxd->rx_dmamap = NULL;
1243		error = bus_dmamap_create(sc->jme_cdata.jme_rx_tag, 0,
1244		    &rxd->rx_dmamap);
1245		if (error != 0) {
1246			device_printf(sc->jme_dev,
1247			    "could not create Rx dmamap.\n");
1248			goto fail;
1249		}
1250	}
1251
1252fail:
1253	return (error);
1254}
1255
1256static void
1257jme_dma_free(struct jme_softc *sc)
1258{
1259	struct jme_txdesc *txd;
1260	struct jme_rxdesc *rxd;
1261	int i;
1262
1263	/* Tx ring */
1264	if (sc->jme_cdata.jme_tx_ring_tag != NULL) {
1265		if (sc->jme_cdata.jme_tx_ring_map)
1266			bus_dmamap_unload(sc->jme_cdata.jme_tx_ring_tag,
1267			    sc->jme_cdata.jme_tx_ring_map);
1268		if (sc->jme_cdata.jme_tx_ring_map &&
1269		    sc->jme_rdata.jme_tx_ring)
1270			bus_dmamem_free(sc->jme_cdata.jme_tx_ring_tag,
1271			    sc->jme_rdata.jme_tx_ring,
1272			    sc->jme_cdata.jme_tx_ring_map);
1273		sc->jme_rdata.jme_tx_ring = NULL;
1274		sc->jme_cdata.jme_tx_ring_map = NULL;
1275		bus_dma_tag_destroy(sc->jme_cdata.jme_tx_ring_tag);
1276		sc->jme_cdata.jme_tx_ring_tag = NULL;
1277	}
1278	/* Rx ring */
1279	if (sc->jme_cdata.jme_rx_ring_tag != NULL) {
1280		if (sc->jme_cdata.jme_rx_ring_map)
1281			bus_dmamap_unload(sc->jme_cdata.jme_rx_ring_tag,
1282			    sc->jme_cdata.jme_rx_ring_map);
1283		if (sc->jme_cdata.jme_rx_ring_map &&
1284		    sc->jme_rdata.jme_rx_ring)
1285			bus_dmamem_free(sc->jme_cdata.jme_rx_ring_tag,
1286			    sc->jme_rdata.jme_rx_ring,
1287			    sc->jme_cdata.jme_rx_ring_map);
1288		sc->jme_rdata.jme_rx_ring = NULL;
1289		sc->jme_cdata.jme_rx_ring_map = NULL;
1290		bus_dma_tag_destroy(sc->jme_cdata.jme_rx_ring_tag);
1291		sc->jme_cdata.jme_rx_ring_tag = NULL;
1292	}
1293	/* Tx buffers */
1294	if (sc->jme_cdata.jme_tx_tag != NULL) {
1295		for (i = 0; i < JME_TX_RING_CNT; i++) {
1296			txd = &sc->jme_cdata.jme_txdesc[i];
1297			if (txd->tx_dmamap != NULL) {
1298				bus_dmamap_destroy(sc->jme_cdata.jme_tx_tag,
1299				    txd->tx_dmamap);
1300				txd->tx_dmamap = NULL;
1301			}
1302		}
1303		bus_dma_tag_destroy(sc->jme_cdata.jme_tx_tag);
1304		sc->jme_cdata.jme_tx_tag = NULL;
1305	}
1306	/* Rx buffers */
1307	if (sc->jme_cdata.jme_rx_tag != NULL) {
1308		for (i = 0; i < JME_RX_RING_CNT; i++) {
1309			rxd = &sc->jme_cdata.jme_rxdesc[i];
1310			if (rxd->rx_dmamap != NULL) {
1311				bus_dmamap_destroy(sc->jme_cdata.jme_rx_tag,
1312				    rxd->rx_dmamap);
1313				rxd->rx_dmamap = NULL;
1314			}
1315		}
1316		if (sc->jme_cdata.jme_rx_sparemap != NULL) {
1317			bus_dmamap_destroy(sc->jme_cdata.jme_rx_tag,
1318			    sc->jme_cdata.jme_rx_sparemap);
1319			sc->jme_cdata.jme_rx_sparemap = NULL;
1320		}
1321		bus_dma_tag_destroy(sc->jme_cdata.jme_rx_tag);
1322		sc->jme_cdata.jme_rx_tag = NULL;
1323	}
1324
1325	/* Shared status block. */
1326	if (sc->jme_cdata.jme_ssb_tag != NULL) {
1327		if (sc->jme_cdata.jme_ssb_map)
1328			bus_dmamap_unload(sc->jme_cdata.jme_ssb_tag,
1329			    sc->jme_cdata.jme_ssb_map);
1330		if (sc->jme_cdata.jme_ssb_map && sc->jme_rdata.jme_ssb_block)
1331			bus_dmamem_free(sc->jme_cdata.jme_ssb_tag,
1332			    sc->jme_rdata.jme_ssb_block,
1333			    sc->jme_cdata.jme_ssb_map);
1334		sc->jme_rdata.jme_ssb_block = NULL;
1335		sc->jme_cdata.jme_ssb_map = NULL;
1336		bus_dma_tag_destroy(sc->jme_cdata.jme_ssb_tag);
1337		sc->jme_cdata.jme_ssb_tag = NULL;
1338	}
1339
1340	if (sc->jme_cdata.jme_buffer_tag != NULL) {
1341		bus_dma_tag_destroy(sc->jme_cdata.jme_buffer_tag);
1342		sc->jme_cdata.jme_buffer_tag = NULL;
1343	}
1344	if (sc->jme_cdata.jme_ring_tag != NULL) {
1345		bus_dma_tag_destroy(sc->jme_cdata.jme_ring_tag);
1346		sc->jme_cdata.jme_ring_tag = NULL;
1347	}
1348}
1349
1350/*
1351 *	Make sure the interface is stopped at reboot time.
1352 */
1353static int
1354jme_shutdown(device_t dev)
1355{
1356
1357	return (jme_suspend(dev));
1358}
1359
1360/*
1361 * Unlike other ethernet controllers, JMC250 requires
1362 * explicit resetting link speed to 10/100Mbps as gigabit
1363 * link will cunsume more power than 375mA.
1364 * Note, we reset the link speed to 10/100Mbps with
1365 * auto-negotiation but we don't know whether that operation
1366 * would succeed or not as we have no control after powering
1367 * off. If the renegotiation fail WOL may not work. Running
1368 * at 1Gbps draws more power than 375mA at 3.3V which is
1369 * specified in PCI specification and that would result in
1370 * complete shutdowning power to ethernet controller.
1371 *
1372 * TODO
1373 *  Save current negotiated media speed/duplex/flow-control
1374 *  to softc and restore the same link again after resuming.
1375 *  PHY handling such as power down/resetting to 100Mbps
1376 *  may be better handled in suspend method in phy driver.
1377 */
1378static void
1379jme_setlinkspeed(struct jme_softc *sc)
1380{
1381	struct mii_data *mii;
1382	int aneg, i;
1383
1384	JME_LOCK_ASSERT(sc);
1385
1386	mii = device_get_softc(sc->jme_miibus);
1387	mii_pollstat(mii);
1388	aneg = 0;
1389	if ((mii->mii_media_status & IFM_AVALID) != 0) {
1390		switch IFM_SUBTYPE(mii->mii_media_active) {
1391		case IFM_10_T:
1392		case IFM_100_TX:
1393			return;
1394		case IFM_1000_T:
1395			aneg++;
1396		default:
1397			break;
1398		}
1399	}
1400	jme_miibus_writereg(sc->jme_dev, sc->jme_phyaddr, MII_100T2CR, 0);
1401	jme_miibus_writereg(sc->jme_dev, sc->jme_phyaddr, MII_ANAR,
1402	    ANAR_TX_FD | ANAR_TX | ANAR_10_FD | ANAR_10 | ANAR_CSMA);
1403	jme_miibus_writereg(sc->jme_dev, sc->jme_phyaddr, MII_BMCR,
1404	    BMCR_AUTOEN | BMCR_STARTNEG);
1405	DELAY(1000);
1406	if (aneg != 0) {
1407		/* Poll link state until jme(4) get a 10/100 link. */
1408		for (i = 0; i < MII_ANEGTICKS_GIGE; i++) {
1409			mii_pollstat(mii);
1410			if ((mii->mii_media_status & IFM_AVALID) != 0) {
1411				switch (IFM_SUBTYPE(mii->mii_media_active)) {
1412				case IFM_10_T:
1413				case IFM_100_TX:
1414					jme_mac_config(sc);
1415					return;
1416				default:
1417					break;
1418				}
1419			}
1420			JME_UNLOCK(sc);
1421			pause("jmelnk", hz);
1422			JME_LOCK(sc);
1423		}
1424		if (i == MII_ANEGTICKS_GIGE)
1425			device_printf(sc->jme_dev, "establishing link failed, "
1426			    "WOL may not work!");
1427	}
1428	/*
1429	 * No link, force MAC to have 100Mbps, full-duplex link.
1430	 * This is the last resort and may/may not work.
1431	 */
1432	mii->mii_media_status = IFM_AVALID | IFM_ACTIVE;
1433	mii->mii_media_active = IFM_ETHER | IFM_100_TX | IFM_FDX;
1434	jme_mac_config(sc);
1435}
1436
1437static void
1438jme_setwol(struct jme_softc *sc)
1439{
1440	struct ifnet *ifp;
1441	uint32_t gpr, pmcs;
1442	uint16_t pmstat;
1443	int pmc;
1444
1445	JME_LOCK_ASSERT(sc);
1446
1447	if (pci_find_extcap(sc->jme_dev, PCIY_PMG, &pmc) != 0) {
1448		/* No PME capability, PHY power down. */
1449		jme_miibus_writereg(sc->jme_dev, sc->jme_phyaddr,
1450		    MII_BMCR, BMCR_PDOWN);
1451		return;
1452	}
1453
1454	ifp = sc->jme_ifp;
1455	gpr = CSR_READ_4(sc, JME_GPREG0) & ~GPREG0_PME_ENB;
1456	pmcs = CSR_READ_4(sc, JME_PMCS);
1457	pmcs &= ~PMCS_WOL_ENB_MASK;
1458	if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0) {
1459		pmcs |= PMCS_MAGIC_FRAME | PMCS_MAGIC_FRAME_ENB;
1460		/* Enable PME message. */
1461		gpr |= GPREG0_PME_ENB;
1462		/* For gigabit controllers, reset link speed to 10/100. */
1463		if ((sc->jme_flags & JME_FLAG_FASTETH) == 0)
1464			jme_setlinkspeed(sc);
1465	}
1466
1467	CSR_WRITE_4(sc, JME_PMCS, pmcs);
1468	CSR_WRITE_4(sc, JME_GPREG0, gpr);
1469
1470	/* Request PME. */
1471	pmstat = pci_read_config(sc->jme_dev, pmc + PCIR_POWER_STATUS, 2);
1472	pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
1473	if ((ifp->if_capenable & IFCAP_WOL) != 0)
1474		pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
1475	pci_write_config(sc->jme_dev, pmc + PCIR_POWER_STATUS, pmstat, 2);
1476	if ((ifp->if_capenable & IFCAP_WOL) == 0) {
1477		/* No WOL, PHY power down. */
1478		jme_miibus_writereg(sc->jme_dev, sc->jme_phyaddr,
1479		    MII_BMCR, BMCR_PDOWN);
1480	}
1481}
1482
1483static int
1484jme_suspend(device_t dev)
1485{
1486	struct jme_softc *sc;
1487
1488	sc = device_get_softc(dev);
1489
1490	JME_LOCK(sc);
1491	jme_stop(sc);
1492	jme_setwol(sc);
1493	JME_UNLOCK(sc);
1494
1495	return (0);
1496}
1497
1498static int
1499jme_resume(device_t dev)
1500{
1501	struct jme_softc *sc;
1502	struct ifnet *ifp;
1503	uint16_t pmstat;
1504	int pmc;
1505
1506	sc = device_get_softc(dev);
1507
1508	JME_LOCK(sc);
1509	if (pci_find_extcap(sc->jme_dev, PCIY_PMG, &pmc) != 0) {
1510		pmstat = pci_read_config(sc->jme_dev,
1511		    pmc + PCIR_POWER_STATUS, 2);
1512		/* Disable PME clear PME status. */
1513		pmstat &= ~PCIM_PSTAT_PMEENABLE;
1514		pci_write_config(sc->jme_dev,
1515		    pmc + PCIR_POWER_STATUS, pmstat, 2);
1516	}
1517	ifp = sc->jme_ifp;
1518	if ((ifp->if_flags & IFF_UP) != 0)
1519		jme_init_locked(sc);
1520
1521	JME_UNLOCK(sc);
1522
1523	return (0);
1524}
1525
1526static int
1527jme_encap(struct jme_softc *sc, struct mbuf **m_head)
1528{
1529	struct jme_txdesc *txd;
1530	struct jme_desc *desc;
1531	struct mbuf *m;
1532	bus_dma_segment_t txsegs[JME_MAXTXSEGS];
1533	int error, i, nsegs, prod;
1534	uint32_t cflags, tso_segsz;
1535
1536	JME_LOCK_ASSERT(sc);
1537
1538	M_ASSERTPKTHDR((*m_head));
1539
1540	if (((*m_head)->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
1541		/*
1542		 * Due to the adherence to NDIS specification JMC250
1543		 * assumes upper stack computed TCP pseudo checksum
1544		 * without including payload length. This breaks
1545		 * checksum offload for TSO case so recompute TCP
1546		 * pseudo checksum for JMC250. Hopefully this wouldn't
1547		 * be much burden on modern CPUs.
1548		 */
1549		struct ether_header *eh;
1550		struct ip *ip;
1551		struct tcphdr *tcp;
1552		uint32_t ip_off, poff;
1553
1554		if (M_WRITABLE(*m_head) == 0) {
1555			/* Get a writable copy. */
1556			m = m_dup(*m_head, M_DONTWAIT);
1557			m_freem(*m_head);
1558			if (m == NULL) {
1559				*m_head = NULL;
1560				return (ENOBUFS);
1561			}
1562			*m_head = m;
1563		}
1564		ip_off = sizeof(struct ether_header);
1565		m = m_pullup(*m_head, ip_off);
1566		if (m == NULL) {
1567			*m_head = NULL;
1568			return (ENOBUFS);
1569		}
1570		eh = mtod(m, struct ether_header *);
1571		/* Check the existence of VLAN tag. */
1572		if (eh->ether_type == htons(ETHERTYPE_VLAN)) {
1573			ip_off = sizeof(struct ether_vlan_header);
1574			m = m_pullup(m, ip_off);
1575			if (m == NULL) {
1576				*m_head = NULL;
1577				return (ENOBUFS);
1578			}
1579		}
1580		m = m_pullup(m, ip_off + sizeof(struct ip));
1581		if (m == NULL) {
1582			*m_head = NULL;
1583			return (ENOBUFS);
1584		}
1585		ip = (struct ip *)(mtod(m, char *) + ip_off);
1586		poff = ip_off + (ip->ip_hl << 2);
1587		m = m_pullup(m, poff + sizeof(struct tcphdr));
1588		if (m == NULL) {
1589			*m_head = NULL;
1590			return (ENOBUFS);
1591		}
1592		tcp = (struct tcphdr *)(mtod(m, char *) + poff);
1593		/*
1594		 * Reset IP checksum and recompute TCP pseudo
1595		 * checksum that NDIS specification requires.
1596		 */
1597		ip->ip_sum = 0;
1598		if (poff + (tcp->th_off << 2) == m->m_pkthdr.len) {
1599			tcp->th_sum = in_pseudo(ip->ip_src.s_addr,
1600			    ip->ip_dst.s_addr,
1601			    htons((tcp->th_off << 2) + IPPROTO_TCP));
1602			/* No need to TSO, force IP checksum offload. */
1603			(*m_head)->m_pkthdr.csum_flags &= ~CSUM_TSO;
1604			(*m_head)->m_pkthdr.csum_flags |= CSUM_IP;
1605		} else
1606			tcp->th_sum = in_pseudo(ip->ip_src.s_addr,
1607			    ip->ip_dst.s_addr, htons(IPPROTO_TCP));
1608		*m_head = m;
1609	}
1610
1611	prod = sc->jme_cdata.jme_tx_prod;
1612	txd = &sc->jme_cdata.jme_txdesc[prod];
1613
1614	error = bus_dmamap_load_mbuf_sg(sc->jme_cdata.jme_tx_tag,
1615	    txd->tx_dmamap, *m_head, txsegs, &nsegs, 0);
1616	if (error == EFBIG) {
1617		m = m_collapse(*m_head, M_DONTWAIT, JME_MAXTXSEGS);
1618		if (m == NULL) {
1619			m_freem(*m_head);
1620			*m_head = NULL;
1621			return (ENOMEM);
1622		}
1623		*m_head = m;
1624		error = bus_dmamap_load_mbuf_sg(sc->jme_cdata.jme_tx_tag,
1625		    txd->tx_dmamap, *m_head, txsegs, &nsegs, 0);
1626		if (error != 0) {
1627			m_freem(*m_head);
1628			*m_head = NULL;
1629			return (error);
1630		}
1631	} else if (error != 0)
1632		return (error);
1633	if (nsegs == 0) {
1634		m_freem(*m_head);
1635		*m_head = NULL;
1636		return (EIO);
1637	}
1638
1639	/*
1640	 * Check descriptor overrun. Leave one free descriptor.
1641	 * Since we always use 64bit address mode for transmitting,
1642	 * each Tx request requires one more dummy descriptor.
1643	 */
1644	if (sc->jme_cdata.jme_tx_cnt + nsegs + 1 > JME_TX_RING_CNT - 1) {
1645		bus_dmamap_unload(sc->jme_cdata.jme_tx_tag, txd->tx_dmamap);
1646		return (ENOBUFS);
1647	}
1648
1649	m = *m_head;
1650	cflags = 0;
1651	tso_segsz = 0;
1652	/* Configure checksum offload and TSO. */
1653	if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
1654		tso_segsz = (uint32_t)m->m_pkthdr.tso_segsz <<
1655		    JME_TD_MSS_SHIFT;
1656		cflags |= JME_TD_TSO;
1657	} else {
1658		if ((m->m_pkthdr.csum_flags & CSUM_IP) != 0)
1659			cflags |= JME_TD_IPCSUM;
1660		if ((m->m_pkthdr.csum_flags & CSUM_TCP) != 0)
1661			cflags |= JME_TD_TCPCSUM;
1662		if ((m->m_pkthdr.csum_flags & CSUM_UDP) != 0)
1663			cflags |= JME_TD_UDPCSUM;
1664	}
1665	/* Configure VLAN. */
1666	if ((m->m_flags & M_VLANTAG) != 0) {
1667		cflags |= (m->m_pkthdr.ether_vtag & JME_TD_VLAN_MASK);
1668		cflags |= JME_TD_VLAN_TAG;
1669	}
1670
1671	desc = &sc->jme_rdata.jme_tx_ring[prod];
1672	desc->flags = htole32(cflags);
1673	desc->buflen = htole32(tso_segsz);
1674	desc->addr_hi = htole32(m->m_pkthdr.len);
1675	desc->addr_lo = 0;
1676	sc->jme_cdata.jme_tx_cnt++;
1677	JME_DESC_INC(prod, JME_TX_RING_CNT);
1678	for (i = 0; i < nsegs; i++) {
1679		desc = &sc->jme_rdata.jme_tx_ring[prod];
1680		desc->flags = htole32(JME_TD_OWN | JME_TD_64BIT);
1681		desc->buflen = htole32(txsegs[i].ds_len);
1682		desc->addr_hi = htole32(JME_ADDR_HI(txsegs[i].ds_addr));
1683		desc->addr_lo = htole32(JME_ADDR_LO(txsegs[i].ds_addr));
1684		sc->jme_cdata.jme_tx_cnt++;
1685		JME_DESC_INC(prod, JME_TX_RING_CNT);
1686	}
1687
1688	/* Update producer index. */
1689	sc->jme_cdata.jme_tx_prod = prod;
1690	/*
1691	 * Finally request interrupt and give the first descriptor
1692	 * owenership to hardware.
1693	 */
1694	desc = txd->tx_desc;
1695	desc->flags |= htole32(JME_TD_OWN | JME_TD_INTR);
1696
1697	txd->tx_m = m;
1698	txd->tx_ndesc = nsegs + 1;
1699
1700	/* Sync descriptors. */
1701	bus_dmamap_sync(sc->jme_cdata.jme_tx_tag, txd->tx_dmamap,
1702	    BUS_DMASYNC_PREWRITE);
1703	bus_dmamap_sync(sc->jme_cdata.jme_tx_ring_tag,
1704	    sc->jme_cdata.jme_tx_ring_map,
1705	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1706
1707	return (0);
1708}
1709
1710static void
1711jme_tx_task(void *arg, int pending)
1712{
1713	struct ifnet *ifp;
1714
1715	ifp = (struct ifnet *)arg;
1716	jme_start(ifp);
1717}
1718
1719static void
1720jme_start(struct ifnet *ifp)
1721{
1722        struct jme_softc *sc;
1723        struct mbuf *m_head;
1724	int enq;
1725
1726	sc = ifp->if_softc;
1727
1728	JME_LOCK(sc);
1729
1730	if (sc->jme_cdata.jme_tx_cnt >= JME_TX_DESC_HIWAT)
1731		jme_txeof(sc);
1732
1733	if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
1734	    IFF_DRV_RUNNING || (sc->jme_flags & JME_FLAG_LINK) == 0) {
1735		JME_UNLOCK(sc);
1736		return;
1737	}
1738
1739	for (enq = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd); ) {
1740		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
1741		if (m_head == NULL)
1742			break;
1743		/*
1744		 * Pack the data into the transmit ring. If we
1745		 * don't have room, set the OACTIVE flag and wait
1746		 * for the NIC to drain the ring.
1747		 */
1748		if (jme_encap(sc, &m_head)) {
1749			if (m_head == NULL)
1750				break;
1751			IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
1752			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1753			break;
1754		}
1755
1756		enq++;
1757		/*
1758		 * If there's a BPF listener, bounce a copy of this frame
1759		 * to him.
1760		 */
1761		ETHER_BPF_MTAP(ifp, m_head);
1762	}
1763
1764	if (enq > 0) {
1765		/*
1766		 * Reading TXCSR takes very long time under heavy load
1767		 * so cache TXCSR value and writes the ORed value with
1768		 * the kick command to the TXCSR. This saves one register
1769		 * access cycle.
1770		 */
1771		CSR_WRITE_4(sc, JME_TXCSR, sc->jme_txcsr | TXCSR_TX_ENB |
1772		    TXCSR_TXQ_N_START(TXCSR_TXQ0));
1773		/* Set a timeout in case the chip goes out to lunch. */
1774		sc->jme_watchdog_timer = JME_TX_TIMEOUT;
1775	}
1776
1777	JME_UNLOCK(sc);
1778}
1779
1780static void
1781jme_watchdog(struct jme_softc *sc)
1782{
1783	struct ifnet *ifp;
1784
1785	JME_LOCK_ASSERT(sc);
1786
1787	if (sc->jme_watchdog_timer == 0 || --sc->jme_watchdog_timer)
1788		return;
1789
1790	ifp = sc->jme_ifp;
1791	if ((sc->jme_flags & JME_FLAG_LINK) == 0) {
1792		if_printf(sc->jme_ifp, "watchdog timeout (missed link)\n");
1793		ifp->if_oerrors++;
1794		jme_init_locked(sc);
1795		return;
1796	}
1797	jme_txeof(sc);
1798	if (sc->jme_cdata.jme_tx_cnt == 0) {
1799		if_printf(sc->jme_ifp,
1800		    "watchdog timeout (missed Tx interrupts) -- recovering\n");
1801		if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1802			taskqueue_enqueue(sc->jme_tq, &sc->jme_tx_task);
1803		return;
1804	}
1805
1806	if_printf(sc->jme_ifp, "watchdog timeout\n");
1807	ifp->if_oerrors++;
1808	jme_init_locked(sc);
1809	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1810		taskqueue_enqueue(sc->jme_tq, &sc->jme_tx_task);
1811}
1812
1813static int
1814jme_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1815{
1816	struct jme_softc *sc;
1817	struct ifreq *ifr;
1818	struct mii_data *mii;
1819	uint32_t reg;
1820	int error, mask;
1821
1822	sc = ifp->if_softc;
1823	ifr = (struct ifreq *)data;
1824	error = 0;
1825	switch (cmd) {
1826	case SIOCSIFMTU:
1827		if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > JME_JUMBO_MTU ||
1828		    ((sc->jme_flags & JME_FLAG_NOJUMBO) != 0 &&
1829		    ifr->ifr_mtu > JME_MAX_MTU)) {
1830			error = EINVAL;
1831			break;
1832		}
1833
1834		if (ifp->if_mtu != ifr->ifr_mtu) {
1835			/*
1836			 * No special configuration is required when interface
1837			 * MTU is changed but availability of TSO/Tx checksum
1838			 * offload should be chcked against new MTU size as
1839			 * FIFO size is just 2K.
1840			 */
1841			JME_LOCK(sc);
1842			if (ifr->ifr_mtu >= JME_TX_FIFO_SIZE) {
1843				ifp->if_capenable &=
1844				    ~(IFCAP_TXCSUM | IFCAP_TSO4);
1845				ifp->if_hwassist &=
1846				    ~(JME_CSUM_FEATURES | CSUM_TSO);
1847				VLAN_CAPABILITIES(ifp);
1848			}
1849			ifp->if_mtu = ifr->ifr_mtu;
1850			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
1851				jme_init_locked(sc);
1852			JME_UNLOCK(sc);
1853		}
1854		break;
1855	case SIOCSIFFLAGS:
1856		JME_LOCK(sc);
1857		if ((ifp->if_flags & IFF_UP) != 0) {
1858			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
1859				if (((ifp->if_flags ^ sc->jme_if_flags)
1860				    & (IFF_PROMISC | IFF_ALLMULTI)) != 0)
1861					jme_set_filter(sc);
1862			} else {
1863				if ((sc->jme_flags & JME_FLAG_DETACH) == 0)
1864					jme_init_locked(sc);
1865			}
1866		} else {
1867			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
1868				jme_stop(sc);
1869		}
1870		sc->jme_if_flags = ifp->if_flags;
1871		JME_UNLOCK(sc);
1872		break;
1873	case SIOCADDMULTI:
1874	case SIOCDELMULTI:
1875		JME_LOCK(sc);
1876		if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
1877			jme_set_filter(sc);
1878		JME_UNLOCK(sc);
1879		break;
1880	case SIOCSIFMEDIA:
1881	case SIOCGIFMEDIA:
1882		mii = device_get_softc(sc->jme_miibus);
1883		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd);
1884		break;
1885	case SIOCSIFCAP:
1886		JME_LOCK(sc);
1887		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
1888		if ((mask & IFCAP_TXCSUM) != 0 &&
1889		    ifp->if_mtu < JME_TX_FIFO_SIZE) {
1890			if ((IFCAP_TXCSUM & ifp->if_capabilities) != 0) {
1891				ifp->if_capenable ^= IFCAP_TXCSUM;
1892				if ((IFCAP_TXCSUM & ifp->if_capenable) != 0)
1893					ifp->if_hwassist |= JME_CSUM_FEATURES;
1894				else
1895					ifp->if_hwassist &= ~JME_CSUM_FEATURES;
1896			}
1897		}
1898		if ((mask & IFCAP_RXCSUM) != 0 &&
1899		    (IFCAP_RXCSUM & ifp->if_capabilities) != 0) {
1900			ifp->if_capenable ^= IFCAP_RXCSUM;
1901			reg = CSR_READ_4(sc, JME_RXMAC);
1902			reg &= ~RXMAC_CSUM_ENB;
1903			if ((ifp->if_capenable & IFCAP_RXCSUM) != 0)
1904				reg |= RXMAC_CSUM_ENB;
1905			CSR_WRITE_4(sc, JME_RXMAC, reg);
1906		}
1907		if ((mask & IFCAP_TSO4) != 0 &&
1908		    ifp->if_mtu < JME_TX_FIFO_SIZE) {
1909			if ((IFCAP_TSO4 & ifp->if_capabilities) != 0) {
1910				ifp->if_capenable ^= IFCAP_TSO4;
1911				if ((IFCAP_TSO4 & ifp->if_capenable) != 0)
1912					ifp->if_hwassist |= CSUM_TSO;
1913				else
1914					ifp->if_hwassist &= ~CSUM_TSO;
1915			}
1916		}
1917		if ((mask & IFCAP_WOL_MAGIC) != 0 &&
1918		    (IFCAP_WOL_MAGIC & ifp->if_capabilities) != 0)
1919			ifp->if_capenable ^= IFCAP_WOL_MAGIC;
1920		if ((mask & IFCAP_VLAN_HWCSUM) != 0 &&
1921		    (ifp->if_capabilities & IFCAP_VLAN_HWCSUM) != 0)
1922			ifp->if_capenable ^= IFCAP_VLAN_HWCSUM;
1923		if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
1924		    (IFCAP_VLAN_HWTAGGING & ifp->if_capabilities) != 0) {
1925			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
1926			jme_set_vlan(sc);
1927		}
1928		JME_UNLOCK(sc);
1929		VLAN_CAPABILITIES(ifp);
1930		break;
1931	default:
1932		error = ether_ioctl(ifp, cmd, data);
1933		break;
1934	}
1935
1936	return (error);
1937}
1938
1939static void
1940jme_mac_config(struct jme_softc *sc)
1941{
1942	struct mii_data *mii;
1943	uint32_t ghc, rxmac, txmac, txpause;
1944
1945	JME_LOCK_ASSERT(sc);
1946
1947	mii = device_get_softc(sc->jme_miibus);
1948
1949	CSR_WRITE_4(sc, JME_GHC, GHC_RESET);
1950	DELAY(10);
1951	CSR_WRITE_4(sc, JME_GHC, 0);
1952	ghc = 0;
1953	rxmac = CSR_READ_4(sc, JME_RXMAC);
1954	rxmac &= ~RXMAC_FC_ENB;
1955	txmac = CSR_READ_4(sc, JME_TXMAC);
1956	txmac &= ~(TXMAC_CARRIER_EXT | TXMAC_FRAME_BURST);
1957	txpause = CSR_READ_4(sc, JME_TXPFC);
1958	txpause &= ~TXPFC_PAUSE_ENB;
1959	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
1960		ghc |= GHC_FULL_DUPLEX;
1961		rxmac &= ~RXMAC_COLL_DET_ENB;
1962		txmac &= ~(TXMAC_COLL_ENB | TXMAC_CARRIER_SENSE |
1963		    TXMAC_BACKOFF | TXMAC_CARRIER_EXT |
1964		    TXMAC_FRAME_BURST);
1965#ifdef notyet
1966		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
1967			txpause |= TXPFC_PAUSE_ENB;
1968		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
1969			rxmac |= RXMAC_FC_ENB;
1970#endif
1971		/* Disable retry transmit timer/retry limit. */
1972		CSR_WRITE_4(sc, JME_TXTRHD, CSR_READ_4(sc, JME_TXTRHD) &
1973		    ~(TXTRHD_RT_PERIOD_ENB | TXTRHD_RT_LIMIT_ENB));
1974	} else {
1975		rxmac |= RXMAC_COLL_DET_ENB;
1976		txmac |= TXMAC_COLL_ENB | TXMAC_CARRIER_SENSE | TXMAC_BACKOFF;
1977		/* Enable retry transmit timer/retry limit. */
1978		CSR_WRITE_4(sc, JME_TXTRHD, CSR_READ_4(sc, JME_TXTRHD) |
1979		    TXTRHD_RT_PERIOD_ENB | TXTRHD_RT_LIMIT_ENB);
1980	}
1981		/* Reprogram Tx/Rx MACs with resolved speed/duplex. */
1982	switch (IFM_SUBTYPE(mii->mii_media_active)) {
1983	case IFM_10_T:
1984		ghc |= GHC_SPEED_10;
1985		break;
1986	case IFM_100_TX:
1987		ghc |= GHC_SPEED_100;
1988		break;
1989	case IFM_1000_T:
1990		if ((sc->jme_flags & JME_FLAG_FASTETH) != 0)
1991			break;
1992		ghc |= GHC_SPEED_1000;
1993		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) == 0)
1994			txmac |= TXMAC_CARRIER_EXT | TXMAC_FRAME_BURST;
1995		break;
1996	default:
1997		break;
1998	}
1999	CSR_WRITE_4(sc, JME_GHC, ghc);
2000	CSR_WRITE_4(sc, JME_RXMAC, rxmac);
2001	CSR_WRITE_4(sc, JME_TXMAC, txmac);
2002	CSR_WRITE_4(sc, JME_TXPFC, txpause);
2003}
2004
2005static void
2006jme_link_task(void *arg, int pending)
2007{
2008	struct jme_softc *sc;
2009	struct mii_data *mii;
2010	struct ifnet *ifp;
2011	struct jme_txdesc *txd;
2012	bus_addr_t paddr;
2013	int i;
2014
2015	sc = (struct jme_softc *)arg;
2016
2017	JME_LOCK(sc);
2018	mii = device_get_softc(sc->jme_miibus);
2019	ifp = sc->jme_ifp;
2020	if (mii == NULL || ifp == NULL ||
2021	    (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
2022		JME_UNLOCK(sc);
2023		return;
2024	}
2025
2026	sc->jme_flags &= ~JME_FLAG_LINK;
2027	if ((mii->mii_media_status & IFM_AVALID) != 0) {
2028		switch (IFM_SUBTYPE(mii->mii_media_active)) {
2029		case IFM_10_T:
2030		case IFM_100_TX:
2031			sc->jme_flags |= JME_FLAG_LINK;
2032			break;
2033		case IFM_1000_T:
2034			if ((sc->jme_flags & JME_FLAG_FASTETH) != 0)
2035				break;
2036			sc->jme_flags |= JME_FLAG_LINK;
2037			break;
2038		default:
2039			break;
2040		}
2041	}
2042
2043	/*
2044	 * Disabling Rx/Tx MACs have a side-effect of resetting
2045	 * JME_TXNDA/JME_RXNDA register to the first address of
2046	 * Tx/Rx descriptor address. So driver should reset its
2047	 * internal procucer/consumer pointer and reclaim any
2048	 * allocated resources. Note, just saving the value of
2049	 * JME_TXNDA and JME_RXNDA registers before stopping MAC
2050	 * and restoring JME_TXNDA/JME_RXNDA register is not
2051	 * sufficient to make sure correct MAC state because
2052	 * stopping MAC operation can take a while and hardware
2053	 * might have updated JME_TXNDA/JME_RXNDA registers
2054	 * during the stop operation.
2055	 */
2056	/* Block execution of task. */
2057	taskqueue_block(sc->jme_tq);
2058	/* Disable interrupts and stop driver. */
2059	CSR_WRITE_4(sc, JME_INTR_MASK_CLR, JME_INTRS);
2060	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
2061	callout_stop(&sc->jme_tick_ch);
2062	sc->jme_watchdog_timer = 0;
2063
2064	/* Stop receiver/transmitter. */
2065	jme_stop_rx(sc);
2066	jme_stop_tx(sc);
2067
2068	/* XXX Drain all queued tasks. */
2069	JME_UNLOCK(sc);
2070	taskqueue_drain(sc->jme_tq, &sc->jme_int_task);
2071	taskqueue_drain(sc->jme_tq, &sc->jme_tx_task);
2072	JME_LOCK(sc);
2073
2074	jme_rxintr(sc, JME_RX_RING_CNT);
2075	if (sc->jme_cdata.jme_rxhead != NULL)
2076		m_freem(sc->jme_cdata.jme_rxhead);
2077	JME_RXCHAIN_RESET(sc);
2078	jme_txeof(sc);
2079	if (sc->jme_cdata.jme_tx_cnt != 0) {
2080		/* Remove queued packets for transmit. */
2081		for (i = 0; i < JME_TX_RING_CNT; i++) {
2082			txd = &sc->jme_cdata.jme_txdesc[i];
2083			if (txd->tx_m != NULL) {
2084				bus_dmamap_sync(
2085				    sc->jme_cdata.jme_tx_tag,
2086				    txd->tx_dmamap,
2087				    BUS_DMASYNC_POSTWRITE);
2088				bus_dmamap_unload(
2089				    sc->jme_cdata.jme_tx_tag,
2090				    txd->tx_dmamap);
2091				m_freem(txd->tx_m);
2092				txd->tx_m = NULL;
2093				txd->tx_ndesc = 0;
2094				ifp->if_oerrors++;
2095			}
2096		}
2097	}
2098
2099	/*
2100	 * Reuse configured Rx descriptors and reset
2101	 * procuder/consumer index.
2102	 */
2103	sc->jme_cdata.jme_rx_cons = 0;
2104	atomic_set_int(&sc->jme_morework, 0);
2105	jme_init_tx_ring(sc);
2106	/* Initialize shadow status block. */
2107	jme_init_ssb(sc);
2108
2109	/* Program MAC with resolved speed/duplex/flow-control. */
2110	if ((sc->jme_flags & JME_FLAG_LINK) != 0) {
2111		jme_mac_config(sc);
2112
2113		CSR_WRITE_4(sc, JME_RXCSR, sc->jme_rxcsr);
2114		CSR_WRITE_4(sc, JME_TXCSR, sc->jme_txcsr);
2115
2116		/* Set Tx ring address to the hardware. */
2117		paddr = JME_TX_RING_ADDR(sc, 0);
2118		CSR_WRITE_4(sc, JME_TXDBA_HI, JME_ADDR_HI(paddr));
2119		CSR_WRITE_4(sc, JME_TXDBA_LO, JME_ADDR_LO(paddr));
2120
2121		/* Set Rx ring address to the hardware. */
2122		paddr = JME_RX_RING_ADDR(sc, 0);
2123		CSR_WRITE_4(sc, JME_RXDBA_HI, JME_ADDR_HI(paddr));
2124		CSR_WRITE_4(sc, JME_RXDBA_LO, JME_ADDR_LO(paddr));
2125
2126		/* Restart receiver/transmitter. */
2127		CSR_WRITE_4(sc, JME_RXCSR, sc->jme_rxcsr | RXCSR_RX_ENB |
2128		    RXCSR_RXQ_START);
2129		CSR_WRITE_4(sc, JME_TXCSR, sc->jme_txcsr | TXCSR_TX_ENB);
2130	}
2131
2132	ifp->if_drv_flags |= IFF_DRV_RUNNING;
2133	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2134	callout_reset(&sc->jme_tick_ch, hz, jme_tick, sc);
2135	/* Unblock execution of task. */
2136	taskqueue_unblock(sc->jme_tq);
2137	/* Reenable interrupts. */
2138	CSR_WRITE_4(sc, JME_INTR_MASK_SET, JME_INTRS);
2139
2140	JME_UNLOCK(sc);
2141}
2142
2143static int
2144jme_intr(void *arg)
2145{
2146	struct jme_softc *sc;
2147	uint32_t status;
2148
2149	sc = (struct jme_softc *)arg;
2150
2151	status = CSR_READ_4(sc, JME_INTR_REQ_STATUS);
2152	if (status == 0 || status == 0xFFFFFFFF)
2153		return (FILTER_STRAY);
2154	/* Disable interrupts. */
2155	CSR_WRITE_4(sc, JME_INTR_MASK_CLR, JME_INTRS);
2156	taskqueue_enqueue(sc->jme_tq, &sc->jme_int_task);
2157
2158	return (FILTER_HANDLED);
2159}
2160
2161static void
2162jme_int_task(void *arg, int pending)
2163{
2164	struct jme_softc *sc;
2165	struct ifnet *ifp;
2166	uint32_t status;
2167	int more;
2168
2169	sc = (struct jme_softc *)arg;
2170	ifp = sc->jme_ifp;
2171
2172	status = CSR_READ_4(sc, JME_INTR_STATUS);
2173	more = atomic_readandclear_int(&sc->jme_morework);
2174	if (more != 0) {
2175		status |= INTR_RXQ_COAL | INTR_RXQ_COAL_TO;
2176		more = 0;
2177	}
2178	if ((status & JME_INTRS) == 0 || status == 0xFFFFFFFF)
2179		goto done;
2180	/* Reset PCC counter/timer and Ack interrupts. */
2181	status &= ~(INTR_TXQ_COMP | INTR_RXQ_COMP);
2182	if ((status & (INTR_TXQ_COAL | INTR_TXQ_COAL_TO)) != 0)
2183		status |= INTR_TXQ_COAL | INTR_TXQ_COAL_TO | INTR_TXQ_COMP;
2184	if ((status & (INTR_RXQ_COAL | INTR_RXQ_COAL_TO)) != 0)
2185		status |= INTR_RXQ_COAL | INTR_RXQ_COAL_TO | INTR_RXQ_COMP;
2186	CSR_WRITE_4(sc, JME_INTR_STATUS, status);
2187	more = 0;
2188	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
2189		if ((status & (INTR_RXQ_COAL | INTR_RXQ_COAL_TO)) != 0) {
2190			more = jme_rxintr(sc, sc->jme_process_limit);
2191			if (more != 0)
2192				atomic_set_int(&sc->jme_morework, 1);
2193		}
2194		if ((status & INTR_RXQ_DESC_EMPTY) != 0) {
2195			/*
2196			 * Notify hardware availability of new Rx
2197			 * buffers.
2198			 * Reading RXCSR takes very long time under
2199			 * heavy load so cache RXCSR value and writes
2200			 * the ORed value with the kick command to
2201			 * the RXCSR. This saves one register access
2202			 * cycle.
2203			 */
2204			CSR_WRITE_4(sc, JME_RXCSR, sc->jme_rxcsr |
2205			    RXCSR_RX_ENB | RXCSR_RXQ_START);
2206		}
2207		/*
2208		 * Reclaiming Tx buffers are deferred to make jme(4) run
2209		 * without locks held.
2210		 */
2211		if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
2212			taskqueue_enqueue(sc->jme_tq, &sc->jme_tx_task);
2213	}
2214
2215	if (more != 0 || (CSR_READ_4(sc, JME_INTR_STATUS) & JME_INTRS) != 0) {
2216		taskqueue_enqueue(sc->jme_tq, &sc->jme_int_task);
2217		return;
2218	}
2219done:
2220	/* Reenable interrupts. */
2221	CSR_WRITE_4(sc, JME_INTR_MASK_SET, JME_INTRS);
2222}
2223
2224static void
2225jme_txeof(struct jme_softc *sc)
2226{
2227	struct ifnet *ifp;
2228	struct jme_txdesc *txd;
2229	uint32_t status;
2230	int cons, nsegs;
2231
2232	JME_LOCK_ASSERT(sc);
2233
2234	ifp = sc->jme_ifp;
2235
2236	cons = sc->jme_cdata.jme_tx_cons;
2237	if (cons == sc->jme_cdata.jme_tx_prod)
2238		return;
2239
2240	bus_dmamap_sync(sc->jme_cdata.jme_tx_ring_tag,
2241	    sc->jme_cdata.jme_tx_ring_map,
2242	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2243
2244	/*
2245	 * Go through our Tx list and free mbufs for those
2246	 * frames which have been transmitted.
2247	 */
2248	for (; cons != sc->jme_cdata.jme_tx_prod;) {
2249		txd = &sc->jme_cdata.jme_txdesc[cons];
2250		status = le32toh(txd->tx_desc->flags);
2251		if ((status & JME_TD_OWN) == JME_TD_OWN)
2252			break;
2253
2254		if ((status & (JME_TD_TMOUT | JME_TD_RETRY_EXP)) != 0)
2255			ifp->if_oerrors++;
2256		else {
2257			ifp->if_opackets++;
2258			if ((status & JME_TD_COLLISION) != 0)
2259				ifp->if_collisions +=
2260				    le32toh(txd->tx_desc->buflen) &
2261				    JME_TD_BUF_LEN_MASK;
2262		}
2263		/*
2264		 * Only the first descriptor of multi-descriptor
2265		 * transmission is updated so driver have to skip entire
2266		 * chained buffers for the transmiited frame. In other
2267		 * words, JME_TD_OWN bit is valid only at the first
2268		 * descriptor of a multi-descriptor transmission.
2269		 */
2270		for (nsegs = 0; nsegs < txd->tx_ndesc; nsegs++) {
2271			sc->jme_rdata.jme_tx_ring[cons].flags = 0;
2272			JME_DESC_INC(cons, JME_TX_RING_CNT);
2273		}
2274
2275		/* Reclaim transferred mbufs. */
2276		bus_dmamap_sync(sc->jme_cdata.jme_tx_tag, txd->tx_dmamap,
2277		    BUS_DMASYNC_POSTWRITE);
2278		bus_dmamap_unload(sc->jme_cdata.jme_tx_tag, txd->tx_dmamap);
2279
2280		KASSERT(txd->tx_m != NULL,
2281		    ("%s: freeing NULL mbuf!\n", __func__));
2282		m_freem(txd->tx_m);
2283		txd->tx_m = NULL;
2284		sc->jme_cdata.jme_tx_cnt -= txd->tx_ndesc;
2285		KASSERT(sc->jme_cdata.jme_tx_cnt >= 0,
2286		    ("%s: Active Tx desc counter was garbled\n", __func__));
2287		txd->tx_ndesc = 0;
2288		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2289	}
2290	sc->jme_cdata.jme_tx_cons = cons;
2291	/* Unarm watchog timer when there is no pending descriptors in queue. */
2292	if (sc->jme_cdata.jme_tx_cnt == 0)
2293		sc->jme_watchdog_timer = 0;
2294
2295	bus_dmamap_sync(sc->jme_cdata.jme_tx_ring_tag,
2296	    sc->jme_cdata.jme_tx_ring_map,
2297	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2298}
2299
2300static __inline void
2301jme_discard_rxbuf(struct jme_softc *sc, int cons)
2302{
2303	struct jme_desc *desc;
2304
2305	desc = &sc->jme_rdata.jme_rx_ring[cons];
2306	desc->flags = htole32(JME_RD_OWN | JME_RD_INTR | JME_RD_64BIT);
2307	desc->buflen = htole32(MCLBYTES);
2308}
2309
2310/* Receive a frame. */
2311static void
2312jme_rxeof(struct jme_softc *sc)
2313{
2314	struct ifnet *ifp;
2315	struct jme_desc *desc;
2316	struct jme_rxdesc *rxd;
2317	struct mbuf *mp, *m;
2318	uint32_t flags, status;
2319	int cons, count, nsegs;
2320
2321	ifp = sc->jme_ifp;
2322
2323	cons = sc->jme_cdata.jme_rx_cons;
2324	desc = &sc->jme_rdata.jme_rx_ring[cons];
2325	flags = le32toh(desc->flags);
2326	status = le32toh(desc->buflen);
2327	nsegs = JME_RX_NSEGS(status);
2328	sc->jme_cdata.jme_rxlen = JME_RX_BYTES(status) - JME_RX_PAD_BYTES;
2329	if ((status & JME_RX_ERR_STAT) != 0) {
2330		ifp->if_ierrors++;
2331		jme_discard_rxbuf(sc, sc->jme_cdata.jme_rx_cons);
2332#ifdef JME_SHOW_ERRORS
2333		device_printf(sc->jme_dev, "%s : receive error = 0x%b\n",
2334		    __func__, JME_RX_ERR(status), JME_RX_ERR_BITS);
2335#endif
2336		sc->jme_cdata.jme_rx_cons += nsegs;
2337		sc->jme_cdata.jme_rx_cons %= JME_RX_RING_CNT;
2338		return;
2339	}
2340
2341	for (count = 0; count < nsegs; count++,
2342	    JME_DESC_INC(cons, JME_RX_RING_CNT)) {
2343		rxd = &sc->jme_cdata.jme_rxdesc[cons];
2344		mp = rxd->rx_m;
2345		/* Add a new receive buffer to the ring. */
2346		if (jme_newbuf(sc, rxd) != 0) {
2347			ifp->if_iqdrops++;
2348			/* Reuse buffer. */
2349			for (; count < nsegs; count++) {
2350				jme_discard_rxbuf(sc, cons);
2351				JME_DESC_INC(cons, JME_RX_RING_CNT);
2352			}
2353			if (sc->jme_cdata.jme_rxhead != NULL) {
2354				m_freem(sc->jme_cdata.jme_rxhead);
2355				JME_RXCHAIN_RESET(sc);
2356			}
2357			break;
2358		}
2359
2360		/*
2361		 * Assume we've received a full sized frame.
2362		 * Actual size is fixed when we encounter the end of
2363		 * multi-segmented frame.
2364		 */
2365		mp->m_len = MCLBYTES;
2366
2367		/* Chain received mbufs. */
2368		if (sc->jme_cdata.jme_rxhead == NULL) {
2369			sc->jme_cdata.jme_rxhead = mp;
2370			sc->jme_cdata.jme_rxtail = mp;
2371		} else {
2372			/*
2373			 * Receive processor can receive a maximum frame
2374			 * size of 65535 bytes.
2375			 */
2376			mp->m_flags &= ~M_PKTHDR;
2377			sc->jme_cdata.jme_rxtail->m_next = mp;
2378			sc->jme_cdata.jme_rxtail = mp;
2379		}
2380
2381		if (count == nsegs - 1) {
2382			/* Last desc. for this frame. */
2383			m = sc->jme_cdata.jme_rxhead;
2384			m->m_flags |= M_PKTHDR;
2385			m->m_pkthdr.len = sc->jme_cdata.jme_rxlen;
2386			if (nsegs > 1) {
2387				/* Set first mbuf size. */
2388				m->m_len = MCLBYTES - JME_RX_PAD_BYTES;
2389				/* Set last mbuf size. */
2390				mp->m_len = sc->jme_cdata.jme_rxlen -
2391				    ((MCLBYTES - JME_RX_PAD_BYTES) +
2392				    (MCLBYTES * (nsegs - 2)));
2393			} else
2394				m->m_len = sc->jme_cdata.jme_rxlen;
2395			m->m_pkthdr.rcvif = ifp;
2396
2397			/*
2398			 * Account for 10bytes auto padding which is used
2399			 * to align IP header on 32bit boundary. Also note,
2400			 * CRC bytes is automatically removed by the
2401			 * hardware.
2402			 */
2403			m->m_data += JME_RX_PAD_BYTES;
2404
2405			/* Set checksum information. */
2406			if ((ifp->if_capenable & IFCAP_RXCSUM) != 0 &&
2407			    (flags & JME_RD_IPV4) != 0) {
2408				m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
2409				if ((flags & JME_RD_IPCSUM) != 0)
2410					m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
2411				if (((flags & JME_RD_MORE_FRAG) == 0) &&
2412				    ((flags & (JME_RD_TCP | JME_RD_TCPCSUM)) ==
2413				    (JME_RD_TCP | JME_RD_TCPCSUM) ||
2414				    (flags & (JME_RD_UDP | JME_RD_UDPCSUM)) ==
2415				    (JME_RD_UDP | JME_RD_UDPCSUM))) {
2416					m->m_pkthdr.csum_flags |=
2417					    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
2418					m->m_pkthdr.csum_data = 0xffff;
2419				}
2420			}
2421
2422			/* Check for VLAN tagged packets. */
2423			if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0 &&
2424			    (flags & JME_RD_VLAN_TAG) != 0) {
2425				m->m_pkthdr.ether_vtag =
2426				    flags & JME_RD_VLAN_MASK;
2427				m->m_flags |= M_VLANTAG;
2428			}
2429
2430			ifp->if_ipackets++;
2431			/* Pass it on. */
2432			(*ifp->if_input)(ifp, m);
2433
2434			/* Reset mbuf chains. */
2435			JME_RXCHAIN_RESET(sc);
2436		}
2437	}
2438
2439	sc->jme_cdata.jme_rx_cons += nsegs;
2440	sc->jme_cdata.jme_rx_cons %= JME_RX_RING_CNT;
2441}
2442
2443static int
2444jme_rxintr(struct jme_softc *sc, int count)
2445{
2446	struct jme_desc *desc;
2447	int nsegs, prog, pktlen;
2448
2449	bus_dmamap_sync(sc->jme_cdata.jme_rx_ring_tag,
2450	    sc->jme_cdata.jme_rx_ring_map,
2451	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2452
2453	for (prog = 0; count > 0; prog++) {
2454		desc = &sc->jme_rdata.jme_rx_ring[sc->jme_cdata.jme_rx_cons];
2455		if ((le32toh(desc->flags) & JME_RD_OWN) == JME_RD_OWN)
2456			break;
2457		if ((le32toh(desc->buflen) & JME_RD_VALID) == 0)
2458			break;
2459		nsegs = JME_RX_NSEGS(le32toh(desc->buflen));
2460		/*
2461		 * Check number of segments against received bytes.
2462		 * Non-matching value would indicate that hardware
2463		 * is still trying to update Rx descriptors. I'm not
2464		 * sure whether this check is needed.
2465		 */
2466		pktlen = JME_RX_BYTES(le32toh(desc->buflen));
2467		if (nsegs != ((pktlen + (MCLBYTES - 1)) / MCLBYTES))
2468			break;
2469		prog++;
2470		/* Received a frame. */
2471		jme_rxeof(sc);
2472		count -= nsegs;
2473	}
2474
2475	if (prog > 0)
2476		bus_dmamap_sync(sc->jme_cdata.jme_rx_ring_tag,
2477		    sc->jme_cdata.jme_rx_ring_map,
2478		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2479
2480	return (count > 0 ? 0 : EAGAIN);
2481}
2482
2483static void
2484jme_tick(void *arg)
2485{
2486	struct jme_softc *sc;
2487	struct mii_data *mii;
2488
2489	sc = (struct jme_softc *)arg;
2490
2491	JME_LOCK_ASSERT(sc);
2492
2493	mii = device_get_softc(sc->jme_miibus);
2494	mii_tick(mii);
2495	/*
2496	 * Reclaim Tx buffers that have been completed. It's not
2497	 * needed here but it would release allocated mbuf chains
2498	 * faster and limit the maximum delay to a hz.
2499	 */
2500	jme_txeof(sc);
2501	jme_watchdog(sc);
2502	callout_reset(&sc->jme_tick_ch, hz, jme_tick, sc);
2503}
2504
2505static void
2506jme_reset(struct jme_softc *sc)
2507{
2508
2509	/* Stop receiver, transmitter. */
2510	jme_stop_rx(sc);
2511	jme_stop_tx(sc);
2512	CSR_WRITE_4(sc, JME_GHC, GHC_RESET);
2513	DELAY(10);
2514	CSR_WRITE_4(sc, JME_GHC, 0);
2515}
2516
2517static void
2518jme_init(void *xsc)
2519{
2520	struct jme_softc *sc;
2521
2522	sc = (struct jme_softc *)xsc;
2523	JME_LOCK(sc);
2524	jme_init_locked(sc);
2525	JME_UNLOCK(sc);
2526}
2527
2528static void
2529jme_init_locked(struct jme_softc *sc)
2530{
2531	struct ifnet *ifp;
2532	struct mii_data *mii;
2533	uint8_t eaddr[ETHER_ADDR_LEN];
2534	bus_addr_t paddr;
2535	uint32_t reg;
2536	int error;
2537
2538	JME_LOCK_ASSERT(sc);
2539
2540	ifp = sc->jme_ifp;
2541	mii = device_get_softc(sc->jme_miibus);
2542
2543	/*
2544	 * Cancel any pending I/O.
2545	 */
2546	jme_stop(sc);
2547
2548	/*
2549	 * Reset the chip to a known state.
2550	 */
2551	jme_reset(sc);
2552
2553	/* Init descriptors. */
2554	error = jme_init_rx_ring(sc);
2555        if (error != 0) {
2556                device_printf(sc->jme_dev,
2557                    "%s: initialization failed: no memory for Rx buffers.\n",
2558		    __func__);
2559                jme_stop(sc);
2560		return;
2561        }
2562	jme_init_tx_ring(sc);
2563	/* Initialize shadow status block. */
2564	jme_init_ssb(sc);
2565
2566	/* Reprogram the station address. */
2567	bcopy(IF_LLADDR(ifp), eaddr, ETHER_ADDR_LEN);
2568	CSR_WRITE_4(sc, JME_PAR0,
2569	    eaddr[3] << 24 | eaddr[2] << 16 | eaddr[1] << 8 | eaddr[0]);
2570	CSR_WRITE_4(sc, JME_PAR1, eaddr[5] << 8 | eaddr[4]);
2571
2572	/*
2573	 * Configure Tx queue.
2574	 *  Tx priority queue weight value : 0
2575	 *  Tx FIFO threshold for processing next packet : 16QW
2576	 *  Maximum Tx DMA length : 512
2577	 *  Allow Tx DMA burst.
2578	 */
2579	sc->jme_txcsr = TXCSR_TXQ_N_SEL(TXCSR_TXQ0);
2580	sc->jme_txcsr |= TXCSR_TXQ_WEIGHT(TXCSR_TXQ_WEIGHT_MIN);
2581	sc->jme_txcsr |= TXCSR_FIFO_THRESH_16QW;
2582	sc->jme_txcsr |= sc->jme_tx_dma_size;
2583	sc->jme_txcsr |= TXCSR_DMA_BURST;
2584	CSR_WRITE_4(sc, JME_TXCSR, sc->jme_txcsr);
2585
2586	/* Set Tx descriptor counter. */
2587	CSR_WRITE_4(sc, JME_TXQDC, JME_TX_RING_CNT);
2588
2589	/* Set Tx ring address to the hardware. */
2590	paddr = JME_TX_RING_ADDR(sc, 0);
2591	CSR_WRITE_4(sc, JME_TXDBA_HI, JME_ADDR_HI(paddr));
2592	CSR_WRITE_4(sc, JME_TXDBA_LO, JME_ADDR_LO(paddr));
2593
2594	/* Configure TxMAC parameters. */
2595	reg = TXMAC_IFG1_DEFAULT | TXMAC_IFG2_DEFAULT | TXMAC_IFG_ENB;
2596	reg |= TXMAC_THRESH_1_PKT;
2597	reg |= TXMAC_CRC_ENB | TXMAC_PAD_ENB;
2598	CSR_WRITE_4(sc, JME_TXMAC, reg);
2599
2600	/*
2601	 * Configure Rx queue.
2602	 *  FIFO full threshold for transmitting Tx pause packet : 128T
2603	 *  FIFO threshold for processing next packet : 128QW
2604	 *  Rx queue 0 select
2605	 *  Max Rx DMA length : 128
2606	 *  Rx descriptor retry : 32
2607	 *  Rx descriptor retry time gap : 256ns
2608	 *  Don't receive runt/bad frame.
2609	 */
2610	sc->jme_rxcsr = RXCSR_FIFO_FTHRESH_128T;
2611	/*
2612	 * Since Rx FIFO size is 4K bytes, receiving frames larger
2613	 * than 4K bytes will suffer from Rx FIFO overruns. So
2614	 * decrease FIFO threshold to reduce the FIFO overruns for
2615	 * frames larger than 4000 bytes.
2616	 * For best performance of standard MTU sized frames use
2617	 * maximum allowable FIFO threshold, 128QW.
2618	 */
2619	if ((ifp->if_mtu + ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN +
2620	    ETHER_CRC_LEN) > JME_RX_FIFO_SIZE)
2621		sc->jme_rxcsr |= RXCSR_FIFO_THRESH_16QW;
2622	else
2623		sc->jme_rxcsr |= RXCSR_FIFO_THRESH_128QW;
2624	sc->jme_rxcsr |= sc->jme_rx_dma_size | RXCSR_RXQ_N_SEL(RXCSR_RXQ0);
2625	sc->jme_rxcsr |= RXCSR_DESC_RT_CNT(RXCSR_DESC_RT_CNT_DEFAULT);
2626	sc->jme_rxcsr |= RXCSR_DESC_RT_GAP_256 & RXCSR_DESC_RT_GAP_MASK;
2627	CSR_WRITE_4(sc, JME_RXCSR, sc->jme_rxcsr);
2628
2629	/* Set Rx descriptor counter. */
2630	CSR_WRITE_4(sc, JME_RXQDC, JME_RX_RING_CNT);
2631
2632	/* Set Rx ring address to the hardware. */
2633	paddr = JME_RX_RING_ADDR(sc, 0);
2634	CSR_WRITE_4(sc, JME_RXDBA_HI, JME_ADDR_HI(paddr));
2635	CSR_WRITE_4(sc, JME_RXDBA_LO, JME_ADDR_LO(paddr));
2636
2637	/* Clear receive filter. */
2638	CSR_WRITE_4(sc, JME_RXMAC, 0);
2639	/* Set up the receive filter. */
2640	jme_set_filter(sc);
2641	jme_set_vlan(sc);
2642
2643	/*
2644	 * Disable all WOL bits as WOL can interfere normal Rx
2645	 * operation. Also clear WOL detection status bits.
2646	 */
2647	reg = CSR_READ_4(sc, JME_PMCS);
2648	reg &= ~PMCS_WOL_ENB_MASK;
2649	CSR_WRITE_4(sc, JME_PMCS, reg);
2650
2651	reg = CSR_READ_4(sc, JME_RXMAC);
2652	/*
2653	 * Pad 10bytes right before received frame. This will greatly
2654	 * help Rx performance on strict-alignment architectures as
2655	 * it does not need to copy the frame to align the payload.
2656	 */
2657	reg |= RXMAC_PAD_10BYTES;
2658	if ((ifp->if_capenable & IFCAP_RXCSUM) != 0)
2659		reg |= RXMAC_CSUM_ENB;
2660	CSR_WRITE_4(sc, JME_RXMAC, reg);
2661
2662	/* Configure general purpose reg0 */
2663	reg = CSR_READ_4(sc, JME_GPREG0);
2664	reg &= ~GPREG0_PCC_UNIT_MASK;
2665	/* Set PCC timer resolution to micro-seconds unit. */
2666	reg |= GPREG0_PCC_UNIT_US;
2667	/*
2668	 * Disable all shadow register posting as we have to read
2669	 * JME_INTR_STATUS register in jme_int_task. Also it seems
2670	 * that it's hard to synchronize interrupt status between
2671	 * hardware and software with shadow posting due to
2672	 * requirements of bus_dmamap_sync(9).
2673	 */
2674	reg |= GPREG0_SH_POST_DW7_DIS | GPREG0_SH_POST_DW6_DIS |
2675	    GPREG0_SH_POST_DW5_DIS | GPREG0_SH_POST_DW4_DIS |
2676	    GPREG0_SH_POST_DW3_DIS | GPREG0_SH_POST_DW2_DIS |
2677	    GPREG0_SH_POST_DW1_DIS | GPREG0_SH_POST_DW0_DIS;
2678	/* Disable posting of DW0. */
2679	reg &= ~GPREG0_POST_DW0_ENB;
2680	/* Clear PME message. */
2681	reg &= ~GPREG0_PME_ENB;
2682	/* Set PHY address. */
2683	reg &= ~GPREG0_PHY_ADDR_MASK;
2684	reg |= sc->jme_phyaddr;
2685	CSR_WRITE_4(sc, JME_GPREG0, reg);
2686
2687	/* Configure Tx queue 0 packet completion coalescing. */
2688	reg = (sc->jme_tx_coal_to << PCCTX_COAL_TO_SHIFT) &
2689	    PCCTX_COAL_TO_MASK;
2690	reg |= (sc->jme_tx_coal_pkt << PCCTX_COAL_PKT_SHIFT) &
2691	    PCCTX_COAL_PKT_MASK;
2692	reg |= PCCTX_COAL_TXQ0;
2693	CSR_WRITE_4(sc, JME_PCCTX, reg);
2694
2695	/* Configure Rx queue 0 packet completion coalescing. */
2696	reg = (sc->jme_rx_coal_to << PCCRX_COAL_TO_SHIFT) &
2697	    PCCRX_COAL_TO_MASK;
2698	reg |= (sc->jme_rx_coal_pkt << PCCRX_COAL_PKT_SHIFT) &
2699	    PCCRX_COAL_PKT_MASK;
2700	CSR_WRITE_4(sc, JME_PCCRX0, reg);
2701
2702	/* Configure shadow status block but don't enable posting. */
2703	paddr = sc->jme_rdata.jme_ssb_block_paddr;
2704	CSR_WRITE_4(sc, JME_SHBASE_ADDR_HI, JME_ADDR_HI(paddr));
2705	CSR_WRITE_4(sc, JME_SHBASE_ADDR_LO, JME_ADDR_LO(paddr));
2706
2707	/* Disable Timer 1 and Timer 2. */
2708	CSR_WRITE_4(sc, JME_TIMER1, 0);
2709	CSR_WRITE_4(sc, JME_TIMER2, 0);
2710
2711	/* Configure retry transmit period, retry limit value. */
2712	CSR_WRITE_4(sc, JME_TXTRHD,
2713	    ((TXTRHD_RT_PERIOD_DEFAULT << TXTRHD_RT_PERIOD_SHIFT) &
2714	    TXTRHD_RT_PERIOD_MASK) |
2715	    ((TXTRHD_RT_LIMIT_DEFAULT << TXTRHD_RT_LIMIT_SHIFT) &
2716	    TXTRHD_RT_LIMIT_SHIFT));
2717
2718	/* Disable RSS. */
2719	CSR_WRITE_4(sc, JME_RSSC, RSSC_DIS_RSS);
2720
2721	/* Initialize the interrupt mask. */
2722	CSR_WRITE_4(sc, JME_INTR_MASK_SET, JME_INTRS);
2723	CSR_WRITE_4(sc, JME_INTR_STATUS, 0xFFFFFFFF);
2724
2725	/*
2726	 * Enabling Tx/Rx DMA engines and Rx queue processing is
2727	 * done after detection of valid link in jme_link_task.
2728	 */
2729
2730	sc->jme_flags &= ~JME_FLAG_LINK;
2731	/* Set the current media. */
2732	mii_mediachg(mii);
2733
2734	callout_reset(&sc->jme_tick_ch, hz, jme_tick, sc);
2735
2736	ifp->if_drv_flags |= IFF_DRV_RUNNING;
2737	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2738}
2739
2740static void
2741jme_stop(struct jme_softc *sc)
2742{
2743	struct ifnet *ifp;
2744	struct jme_txdesc *txd;
2745	struct jme_rxdesc *rxd;
2746	int i;
2747
2748	JME_LOCK_ASSERT(sc);
2749	/*
2750	 * Mark the interface down and cancel the watchdog timer.
2751	 */
2752	ifp = sc->jme_ifp;
2753	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
2754	sc->jme_flags &= ~JME_FLAG_LINK;
2755	callout_stop(&sc->jme_tick_ch);
2756	sc->jme_watchdog_timer = 0;
2757
2758	/*
2759	 * Disable interrupts.
2760	 */
2761	CSR_WRITE_4(sc, JME_INTR_MASK_CLR, JME_INTRS);
2762	CSR_WRITE_4(sc, JME_INTR_STATUS, 0xFFFFFFFF);
2763
2764	/* Disable updating shadow status block. */
2765	CSR_WRITE_4(sc, JME_SHBASE_ADDR_LO,
2766	    CSR_READ_4(sc, JME_SHBASE_ADDR_LO) & ~SHBASE_POST_ENB);
2767
2768	/* Stop receiver, transmitter. */
2769	jme_stop_rx(sc);
2770	jme_stop_tx(sc);
2771
2772	 /* Reclaim Rx/Tx buffers that have been completed. */
2773	jme_rxintr(sc, JME_RX_RING_CNT);
2774	if (sc->jme_cdata.jme_rxhead != NULL)
2775		m_freem(sc->jme_cdata.jme_rxhead);
2776	JME_RXCHAIN_RESET(sc);
2777	jme_txeof(sc);
2778	/*
2779	 * Free RX and TX mbufs still in the queues.
2780	 */
2781	for (i = 0; i < JME_RX_RING_CNT; i++) {
2782		rxd = &sc->jme_cdata.jme_rxdesc[i];
2783		if (rxd->rx_m != NULL) {
2784			bus_dmamap_sync(sc->jme_cdata.jme_rx_tag,
2785			    rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
2786			bus_dmamap_unload(sc->jme_cdata.jme_rx_tag,
2787			    rxd->rx_dmamap);
2788			m_freem(rxd->rx_m);
2789			rxd->rx_m = NULL;
2790		}
2791        }
2792	for (i = 0; i < JME_TX_RING_CNT; i++) {
2793		txd = &sc->jme_cdata.jme_txdesc[i];
2794		if (txd->tx_m != NULL) {
2795			bus_dmamap_sync(sc->jme_cdata.jme_tx_tag,
2796			    txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
2797			bus_dmamap_unload(sc->jme_cdata.jme_tx_tag,
2798			    txd->tx_dmamap);
2799			m_freem(txd->tx_m);
2800			txd->tx_m = NULL;
2801			txd->tx_ndesc = 0;
2802		}
2803        }
2804}
2805
2806static void
2807jme_stop_tx(struct jme_softc *sc)
2808{
2809	uint32_t reg;
2810	int i;
2811
2812	reg = CSR_READ_4(sc, JME_TXCSR);
2813	if ((reg & TXCSR_TX_ENB) == 0)
2814		return;
2815	reg &= ~TXCSR_TX_ENB;
2816	CSR_WRITE_4(sc, JME_TXCSR, reg);
2817	for (i = JME_TIMEOUT; i > 0; i--) {
2818		DELAY(1);
2819		if ((CSR_READ_4(sc, JME_TXCSR) & TXCSR_TX_ENB) == 0)
2820			break;
2821	}
2822	if (i == 0)
2823		device_printf(sc->jme_dev, "stopping transmitter timeout!\n");
2824}
2825
2826static void
2827jme_stop_rx(struct jme_softc *sc)
2828{
2829	uint32_t reg;
2830	int i;
2831
2832	reg = CSR_READ_4(sc, JME_RXCSR);
2833	if ((reg & RXCSR_RX_ENB) == 0)
2834		return;
2835	reg &= ~RXCSR_RX_ENB;
2836	CSR_WRITE_4(sc, JME_RXCSR, reg);
2837	for (i = JME_TIMEOUT; i > 0; i--) {
2838		DELAY(1);
2839		if ((CSR_READ_4(sc, JME_RXCSR) & RXCSR_RX_ENB) == 0)
2840			break;
2841	}
2842	if (i == 0)
2843		device_printf(sc->jme_dev, "stopping recevier timeout!\n");
2844}
2845
2846static void
2847jme_init_tx_ring(struct jme_softc *sc)
2848{
2849	struct jme_ring_data *rd;
2850	struct jme_txdesc *txd;
2851	int i;
2852
2853	sc->jme_cdata.jme_tx_prod = 0;
2854	sc->jme_cdata.jme_tx_cons = 0;
2855	sc->jme_cdata.jme_tx_cnt = 0;
2856
2857	rd = &sc->jme_rdata;
2858	bzero(rd->jme_tx_ring, JME_TX_RING_SIZE);
2859	for (i = 0; i < JME_TX_RING_CNT; i++) {
2860		txd = &sc->jme_cdata.jme_txdesc[i];
2861		txd->tx_m = NULL;
2862		txd->tx_desc = &rd->jme_tx_ring[i];
2863		txd->tx_ndesc = 0;
2864	}
2865
2866	bus_dmamap_sync(sc->jme_cdata.jme_tx_ring_tag,
2867	    sc->jme_cdata.jme_tx_ring_map,
2868	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2869}
2870
2871static void
2872jme_init_ssb(struct jme_softc *sc)
2873{
2874	struct jme_ring_data *rd;
2875
2876	rd = &sc->jme_rdata;
2877	bzero(rd->jme_ssb_block, JME_SSB_SIZE);
2878	bus_dmamap_sync(sc->jme_cdata.jme_ssb_tag, sc->jme_cdata.jme_ssb_map,
2879	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2880}
2881
2882static int
2883jme_init_rx_ring(struct jme_softc *sc)
2884{
2885	struct jme_ring_data *rd;
2886	struct jme_rxdesc *rxd;
2887	int i;
2888
2889	sc->jme_cdata.jme_rx_cons = 0;
2890	JME_RXCHAIN_RESET(sc);
2891	atomic_set_int(&sc->jme_morework, 0);
2892
2893	rd = &sc->jme_rdata;
2894	bzero(rd->jme_rx_ring, JME_RX_RING_SIZE);
2895	for (i = 0; i < JME_RX_RING_CNT; i++) {
2896		rxd = &sc->jme_cdata.jme_rxdesc[i];
2897		rxd->rx_m = NULL;
2898		rxd->rx_desc = &rd->jme_rx_ring[i];
2899		if (jme_newbuf(sc, rxd) != 0)
2900			return (ENOBUFS);
2901	}
2902
2903	bus_dmamap_sync(sc->jme_cdata.jme_rx_ring_tag,
2904	    sc->jme_cdata.jme_rx_ring_map,
2905	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2906
2907	return (0);
2908}
2909
2910static int
2911jme_newbuf(struct jme_softc *sc, struct jme_rxdesc *rxd)
2912{
2913	struct jme_desc *desc;
2914	struct mbuf *m;
2915	bus_dma_segment_t segs[1];
2916	bus_dmamap_t map;
2917	int nsegs;
2918
2919	m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
2920	if (m == NULL)
2921		return (ENOBUFS);
2922	/*
2923	 * JMC250 has 64bit boundary alignment limitation so jme(4)
2924	 * takes advantage of 10 bytes padding feature of hardware
2925	 * in order not to copy entire frame to align IP header on
2926	 * 32bit boundary.
2927	 */
2928	m->m_len = m->m_pkthdr.len = MCLBYTES;
2929
2930	if (bus_dmamap_load_mbuf_sg(sc->jme_cdata.jme_rx_tag,
2931	    sc->jme_cdata.jme_rx_sparemap, m, segs, &nsegs, 0) != 0) {
2932		m_freem(m);
2933		return (ENOBUFS);
2934	}
2935	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
2936
2937	if (rxd->rx_m != NULL) {
2938		bus_dmamap_sync(sc->jme_cdata.jme_rx_tag, rxd->rx_dmamap,
2939		    BUS_DMASYNC_POSTREAD);
2940		bus_dmamap_unload(sc->jme_cdata.jme_rx_tag, rxd->rx_dmamap);
2941	}
2942	map = rxd->rx_dmamap;
2943	rxd->rx_dmamap = sc->jme_cdata.jme_rx_sparemap;
2944	sc->jme_cdata.jme_rx_sparemap = map;
2945	bus_dmamap_sync(sc->jme_cdata.jme_rx_tag, rxd->rx_dmamap,
2946	    BUS_DMASYNC_PREREAD);
2947	rxd->rx_m = m;
2948
2949	desc = rxd->rx_desc;
2950	desc->buflen = htole32(segs[0].ds_len);
2951	desc->addr_lo = htole32(JME_ADDR_LO(segs[0].ds_addr));
2952	desc->addr_hi = htole32(JME_ADDR_HI(segs[0].ds_addr));
2953	desc->flags = htole32(JME_RD_OWN | JME_RD_INTR | JME_RD_64BIT);
2954
2955	return (0);
2956}
2957
2958static void
2959jme_set_vlan(struct jme_softc *sc)
2960{
2961	struct ifnet *ifp;
2962	uint32_t reg;
2963
2964	JME_LOCK_ASSERT(sc);
2965
2966	ifp = sc->jme_ifp;
2967	reg = CSR_READ_4(sc, JME_RXMAC);
2968	reg &= ~RXMAC_VLAN_ENB;
2969	if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0)
2970		reg |= RXMAC_VLAN_ENB;
2971	CSR_WRITE_4(sc, JME_RXMAC, reg);
2972}
2973
2974static void
2975jme_set_filter(struct jme_softc *sc)
2976{
2977	struct ifnet *ifp;
2978	struct ifmultiaddr *ifma;
2979	uint32_t crc;
2980	uint32_t mchash[2];
2981	uint32_t rxcfg;
2982
2983	JME_LOCK_ASSERT(sc);
2984
2985	ifp = sc->jme_ifp;
2986
2987	rxcfg = CSR_READ_4(sc, JME_RXMAC);
2988	rxcfg &= ~ (RXMAC_BROADCAST | RXMAC_PROMISC | RXMAC_MULTICAST |
2989	    RXMAC_ALLMULTI);
2990	/* Always accept frames destined to our station address. */
2991	rxcfg |= RXMAC_UNICAST;
2992	if ((ifp->if_flags & IFF_BROADCAST) != 0)
2993		rxcfg |= RXMAC_BROADCAST;
2994	if ((ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) != 0) {
2995		if ((ifp->if_flags & IFF_PROMISC) != 0)
2996			rxcfg |= RXMAC_PROMISC;
2997		if ((ifp->if_flags & IFF_ALLMULTI) != 0)
2998			rxcfg |= RXMAC_ALLMULTI;
2999		CSR_WRITE_4(sc, JME_MAR0, 0xFFFFFFFF);
3000		CSR_WRITE_4(sc, JME_MAR1, 0xFFFFFFFF);
3001		CSR_WRITE_4(sc, JME_RXMAC, rxcfg);
3002		return;
3003	}
3004
3005	/*
3006	 * Set up the multicast address filter by passing all multicast
3007	 * addresses through a CRC generator, and then using the low-order
3008	 * 6 bits as an index into the 64 bit multicast hash table.  The
3009	 * high order bits select the register, while the rest of the bits
3010	 * select the bit within the register.
3011	 */
3012	rxcfg |= RXMAC_MULTICAST;
3013	bzero(mchash, sizeof(mchash));
3014
3015	IF_ADDR_LOCK(ifp);
3016	TAILQ_FOREACH(ifma, &sc->jme_ifp->if_multiaddrs, ifma_link) {
3017		if (ifma->ifma_addr->sa_family != AF_LINK)
3018			continue;
3019		crc = ether_crc32_be(LLADDR((struct sockaddr_dl *)
3020		    ifma->ifma_addr), ETHER_ADDR_LEN);
3021
3022		/* Just want the 6 least significant bits. */
3023		crc &= 0x3f;
3024
3025		/* Set the corresponding bit in the hash table. */
3026		mchash[crc >> 5] |= 1 << (crc & 0x1f);
3027	}
3028	IF_ADDR_UNLOCK(ifp);
3029
3030	CSR_WRITE_4(sc, JME_MAR0, mchash[0]);
3031	CSR_WRITE_4(sc, JME_MAR1, mchash[1]);
3032	CSR_WRITE_4(sc, JME_RXMAC, rxcfg);
3033}
3034
3035static int
3036sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
3037{
3038	int error, value;
3039
3040	if (arg1 == NULL)
3041		return (EINVAL);
3042	value = *(int *)arg1;
3043	error = sysctl_handle_int(oidp, &value, 0, req);
3044	if (error || req->newptr == NULL)
3045		return (error);
3046	if (value < low || value > high)
3047		return (EINVAL);
3048        *(int *)arg1 = value;
3049
3050        return (0);
3051}
3052
3053static int
3054sysctl_hw_jme_tx_coal_to(SYSCTL_HANDLER_ARGS)
3055{
3056	return (sysctl_int_range(oidp, arg1, arg2, req,
3057	    PCCTX_COAL_TO_MIN, PCCTX_COAL_TO_MAX));
3058}
3059
3060static int
3061sysctl_hw_jme_tx_coal_pkt(SYSCTL_HANDLER_ARGS)
3062{
3063	return (sysctl_int_range(oidp, arg1, arg2, req,
3064	    PCCTX_COAL_PKT_MIN, PCCTX_COAL_PKT_MAX));
3065}
3066
3067static int
3068sysctl_hw_jme_rx_coal_to(SYSCTL_HANDLER_ARGS)
3069{
3070	return (sysctl_int_range(oidp, arg1, arg2, req,
3071	    PCCRX_COAL_TO_MIN, PCCRX_COAL_TO_MAX));
3072}
3073
3074static int
3075sysctl_hw_jme_rx_coal_pkt(SYSCTL_HANDLER_ARGS)
3076{
3077	return (sysctl_int_range(oidp, arg1, arg2, req,
3078	    PCCRX_COAL_PKT_MIN, PCCRX_COAL_PKT_MAX));
3079}
3080
3081static int
3082sysctl_hw_jme_proc_limit(SYSCTL_HANDLER_ARGS)
3083{
3084	return (sysctl_int_range(oidp, arg1, arg2, req,
3085	    JME_PROC_MIN, JME_PROC_MAX));
3086}
3087