hwpmc_mod.c revision 310064
195908Sdes/*-
2115619Sdes * Copyright (c) 2003-2008 Joseph Koshy
3228690Sdes * Copyright (c) 2007 The FreeBSD Foundation
495908Sdes * All rights reserved.
595908Sdes *
695908Sdes * Portions of this software were developed by A. Joseph Koshy under
799158Sdes * sponsorship from the FreeBSD Foundation and Google, Inc.
899158Sdes *
999158Sdes * Redistribution and use in source and binary forms, with or without
1095908Sdes * modification, are permitted provided that the following conditions
1195908Sdes * are met:
1295908Sdes * 1. Redistributions of source code must retain the above copyright
1395908Sdes *    notice, this list of conditions and the following disclaimer.
1495908Sdes * 2. Redistributions in binary form must reproduce the above copyright
1595908Sdes *    notice, this list of conditions and the following disclaimer in the
1695908Sdes *    documentation and/or other materials provided with the distribution.
1795908Sdes *
1895908Sdes * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
1995908Sdes * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
2095908Sdes * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
2195908Sdes * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
2295908Sdes * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
2395908Sdes * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
2495908Sdes * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
2595908Sdes * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
2695908Sdes * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
2795908Sdes * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
2895908Sdes * SUCH DAMAGE.
2995908Sdes *
3095908Sdes */
3195908Sdes
3295908Sdes#include <sys/cdefs.h>
3395908Sdes__FBSDID("$FreeBSD: stable/11/sys/dev/hwpmc/hwpmc_mod.c 310064 2016-12-14 16:04:04Z avg $");
3495908Sdes
35263421Sdes#include <sys/param.h>
3695908Sdes#include <sys/eventhandler.h>
3795908Sdes#include <sys/jail.h>
38228690Sdes#include <sys/kernel.h>
39228690Sdes#include <sys/kthread.h>
40228690Sdes#include <sys/limits.h>
41228690Sdes#include <sys/lock.h>
4295908Sdes#include <sys/malloc.h>
4395908Sdes#include <sys/module.h>
4495908Sdes#include <sys/mount.h>
4595908Sdes#include <sys/mutex.h>
46107937Sdes#include <sys/pmc.h>
47107937Sdes#include <sys/pmckern.h>
4895908Sdes#include <sys/pmclog.h>
4995908Sdes#include <sys/priv.h>
5095908Sdes#include <sys/proc.h>
5195908Sdes#include <sys/queue.h>
5295908Sdes#include <sys/resourcevar.h>
5395908Sdes#include <sys/rwlock.h>
5495908Sdes#include <sys/sched.h>
5595908Sdes#include <sys/signalvar.h>
5695908Sdes#include <sys/smp.h>
5795908Sdes#include <sys/sx.h>
5895908Sdes#include <sys/sysctl.h>
5995908Sdes#include <sys/sysent.h>
6095908Sdes#include <sys/systm.h>
61107937Sdes#include <sys/vnode.h>
6295908Sdes
6395908Sdes#include <sys/linker.h>		/* needs to be after <sys/malloc.h> */
6495908Sdes
6595908Sdes#include <machine/atomic.h>
66107937Sdes#include <machine/md_var.h>
6795908Sdes
6895908Sdes#include <vm/vm.h>
6995908Sdes#include <vm/vm_extern.h>
7095908Sdes#include <vm/pmap.h>
7195908Sdes#include <vm/vm_map.h>
7295908Sdes#include <vm/vm_object.h>
7395908Sdes
7497241Sdes#include "hwpmc_soft.h"
7597241Sdes
7697241Sdes/*
7797241Sdes * Types
78141098Sdes */
79141098Sdes
80141098Sdesenum pmc_flags {
81141098Sdes	PMC_FLAG_NONE	  = 0x00, /* do nothing */
82141098Sdes	PMC_FLAG_REMOVE   = 0x01, /* atomically remove entry from hash */
83141098Sdes	PMC_FLAG_ALLOCATE = 0x02, /* add entry to hash if not found */
84141098Sdes};
8597241Sdes
8697241Sdes/*
8797241Sdes * The offset in sysent where the syscall is allocated.
8897241Sdes */
8997241Sdes
9097241Sdesstatic int pmc_syscall_num = NO_SYSCALL;
91struct pmc_cpu		**pmc_pcpu;	 /* per-cpu state */
92pmc_value_t		*pmc_pcpu_saved; /* saved PMC values: CSW handling */
93
94#define	PMC_PCPU_SAVED(C,R)	pmc_pcpu_saved[(R) + md->pmd_npmc*(C)]
95
96struct mtx_pool		*pmc_mtxpool;
97static int		*pmc_pmcdisp;	 /* PMC row dispositions */
98
99#define	PMC_ROW_DISP_IS_FREE(R)		(pmc_pmcdisp[(R)] == 0)
100#define	PMC_ROW_DISP_IS_THREAD(R)	(pmc_pmcdisp[(R)] > 0)
101#define	PMC_ROW_DISP_IS_STANDALONE(R)	(pmc_pmcdisp[(R)] < 0)
102
103#define	PMC_MARK_ROW_FREE(R) do {					  \
104	pmc_pmcdisp[(R)] = 0;						  \
105} while (0)
106
107#define	PMC_MARK_ROW_STANDALONE(R) do {					  \
108	KASSERT(pmc_pmcdisp[(R)] <= 0, ("[pmc,%d] row disposition error", \
109		    __LINE__));						  \
110	atomic_add_int(&pmc_pmcdisp[(R)], -1);				  \
111	KASSERT(pmc_pmcdisp[(R)] >= (-pmc_cpu_max_active()),		  \
112		("[pmc,%d] row disposition error", __LINE__));		  \
113} while (0)
114
115#define	PMC_UNMARK_ROW_STANDALONE(R) do { 				  \
116	atomic_add_int(&pmc_pmcdisp[(R)], 1);				  \
117	KASSERT(pmc_pmcdisp[(R)] <= 0, ("[pmc,%d] row disposition error", \
118		    __LINE__));						  \
119} while (0)
120
121#define	PMC_MARK_ROW_THREAD(R) do {					  \
122	KASSERT(pmc_pmcdisp[(R)] >= 0, ("[pmc,%d] row disposition error", \
123		    __LINE__));						  \
124	atomic_add_int(&pmc_pmcdisp[(R)], 1);				  \
125} while (0)
126
127#define	PMC_UNMARK_ROW_THREAD(R) do {					  \
128	atomic_add_int(&pmc_pmcdisp[(R)], -1);				  \
129	KASSERT(pmc_pmcdisp[(R)] >= 0, ("[pmc,%d] row disposition error", \
130		    __LINE__));						  \
131} while (0)
132
133
134/* various event handlers */
135static eventhandler_tag	pmc_exit_tag, pmc_fork_tag, pmc_kld_load_tag,
136    pmc_kld_unload_tag;
137
138/* Module statistics */
139struct pmc_op_getdriverstats pmc_stats;
140
141/* Machine/processor dependent operations */
142static struct pmc_mdep  *md;
143
144/*
145 * Hash tables mapping owner processes and target threads to PMCs.
146 */
147
148struct mtx pmc_processhash_mtx;		/* spin mutex */
149static u_long pmc_processhashmask;
150static LIST_HEAD(pmc_processhash, pmc_process)	*pmc_processhash;
151
152/*
153 * Hash table of PMC owner descriptors.  This table is protected by
154 * the shared PMC "sx" lock.
155 */
156
157static u_long pmc_ownerhashmask;
158static LIST_HEAD(pmc_ownerhash, pmc_owner)	*pmc_ownerhash;
159
160/*
161 * List of PMC owners with system-wide sampling PMCs.
162 */
163
164static LIST_HEAD(, pmc_owner)			pmc_ss_owners;
165
166
167/*
168 * A map of row indices to classdep structures.
169 */
170static struct pmc_classdep **pmc_rowindex_to_classdep;
171
172/*
173 * Prototypes
174 */
175
176#ifdef	HWPMC_DEBUG
177static int	pmc_debugflags_sysctl_handler(SYSCTL_HANDLER_ARGS);
178static int	pmc_debugflags_parse(char *newstr, char *fence);
179#endif
180
181static int	load(struct module *module, int cmd, void *arg);
182static int	pmc_attach_process(struct proc *p, struct pmc *pm);
183static struct pmc *pmc_allocate_pmc_descriptor(void);
184static struct pmc_owner *pmc_allocate_owner_descriptor(struct proc *p);
185static int	pmc_attach_one_process(struct proc *p, struct pmc *pm);
186static int	pmc_can_allocate_rowindex(struct proc *p, unsigned int ri,
187    int cpu);
188static int	pmc_can_attach(struct pmc *pm, struct proc *p);
189static void	pmc_capture_user_callchain(int cpu, int soft, struct trapframe *tf);
190static void	pmc_cleanup(void);
191static int	pmc_detach_process(struct proc *p, struct pmc *pm);
192static int	pmc_detach_one_process(struct proc *p, struct pmc *pm,
193    int flags);
194static void	pmc_destroy_owner_descriptor(struct pmc_owner *po);
195static void	pmc_destroy_pmc_descriptor(struct pmc *pm);
196static struct pmc_owner *pmc_find_owner_descriptor(struct proc *p);
197static int	pmc_find_pmc(pmc_id_t pmcid, struct pmc **pm);
198static struct pmc *pmc_find_pmc_descriptor_in_process(struct pmc_owner *po,
199    pmc_id_t pmc);
200static struct pmc_process *pmc_find_process_descriptor(struct proc *p,
201    uint32_t mode);
202static void	pmc_force_context_switch(void);
203static void	pmc_link_target_process(struct pmc *pm,
204    struct pmc_process *pp);
205static void	pmc_log_all_process_mappings(struct pmc_owner *po);
206static void	pmc_log_kernel_mappings(struct pmc *pm);
207static void	pmc_log_process_mappings(struct pmc_owner *po, struct proc *p);
208static void	pmc_maybe_remove_owner(struct pmc_owner *po);
209static void	pmc_process_csw_in(struct thread *td);
210static void	pmc_process_csw_out(struct thread *td);
211static void	pmc_process_exit(void *arg, struct proc *p);
212static void	pmc_process_fork(void *arg, struct proc *p1,
213    struct proc *p2, int n);
214static void	pmc_process_samples(int cpu, int soft);
215static void	pmc_release_pmc_descriptor(struct pmc *pmc);
216static void	pmc_remove_owner(struct pmc_owner *po);
217static void	pmc_remove_process_descriptor(struct pmc_process *pp);
218static void	pmc_restore_cpu_binding(struct pmc_binding *pb);
219static void	pmc_save_cpu_binding(struct pmc_binding *pb);
220static void	pmc_select_cpu(int cpu);
221static int	pmc_start(struct pmc *pm);
222static int	pmc_stop(struct pmc *pm);
223static int	pmc_syscall_handler(struct thread *td, void *syscall_args);
224static void	pmc_unlink_target_process(struct pmc *pmc,
225    struct pmc_process *pp);
226static int generic_switch_in(struct pmc_cpu *pc, struct pmc_process *pp);
227static int generic_switch_out(struct pmc_cpu *pc, struct pmc_process *pp);
228static struct pmc_mdep *pmc_generic_cpu_initialize(void);
229static void pmc_generic_cpu_finalize(struct pmc_mdep *md);
230
231/*
232 * Kernel tunables and sysctl(8) interface.
233 */
234
235SYSCTL_DECL(_kern_hwpmc);
236
237static int pmc_callchaindepth = PMC_CALLCHAIN_DEPTH;
238SYSCTL_INT(_kern_hwpmc, OID_AUTO, callchaindepth, CTLFLAG_RDTUN,
239    &pmc_callchaindepth, 0, "depth of call chain records");
240
241#ifdef	HWPMC_DEBUG
242struct pmc_debugflags pmc_debugflags = PMC_DEBUG_DEFAULT_FLAGS;
243char	pmc_debugstr[PMC_DEBUG_STRSIZE];
244TUNABLE_STR(PMC_SYSCTL_NAME_PREFIX "debugflags", pmc_debugstr,
245    sizeof(pmc_debugstr));
246SYSCTL_PROC(_kern_hwpmc, OID_AUTO, debugflags,
247    CTLTYPE_STRING | CTLFLAG_RWTUN | CTLFLAG_NOFETCH,
248    0, 0, pmc_debugflags_sysctl_handler, "A", "debug flags");
249#endif
250
251/*
252 * kern.hwpmc.hashrows -- determines the number of rows in the
253 * of the hash table used to look up threads
254 */
255
256static int pmc_hashsize = PMC_HASH_SIZE;
257SYSCTL_INT(_kern_hwpmc, OID_AUTO, hashsize, CTLFLAG_RDTUN,
258    &pmc_hashsize, 0, "rows in hash tables");
259
260/*
261 * kern.hwpmc.nsamples --- number of PC samples/callchain stacks per CPU
262 */
263
264static int pmc_nsamples = PMC_NSAMPLES;
265SYSCTL_INT(_kern_hwpmc, OID_AUTO, nsamples, CTLFLAG_RDTUN,
266    &pmc_nsamples, 0, "number of PC samples per CPU");
267
268
269/*
270 * kern.hwpmc.mtxpoolsize -- number of mutexes in the mutex pool.
271 */
272
273static int pmc_mtxpool_size = PMC_MTXPOOL_SIZE;
274SYSCTL_INT(_kern_hwpmc, OID_AUTO, mtxpoolsize, CTLFLAG_RDTUN,
275    &pmc_mtxpool_size, 0, "size of spin mutex pool");
276
277
278/*
279 * security.bsd.unprivileged_syspmcs -- allow non-root processes to
280 * allocate system-wide PMCs.
281 *
282 * Allowing unprivileged processes to allocate system PMCs is convenient
283 * if system-wide measurements need to be taken concurrently with other
284 * per-process measurements.  This feature is turned off by default.
285 */
286
287static int pmc_unprivileged_syspmcs = 0;
288SYSCTL_INT(_security_bsd, OID_AUTO, unprivileged_syspmcs, CTLFLAG_RWTUN,
289    &pmc_unprivileged_syspmcs, 0,
290    "allow unprivileged process to allocate system PMCs");
291
292/*
293 * Hash function.  Discard the lower 2 bits of the pointer since
294 * these are always zero for our uses.  The hash multiplier is
295 * round((2^LONG_BIT) * ((sqrt(5)-1)/2)).
296 */
297
298#if	LONG_BIT == 64
299#define	_PMC_HM		11400714819323198486u
300#elif	LONG_BIT == 32
301#define	_PMC_HM		2654435769u
302#else
303#error 	Must know the size of 'long' to compile
304#endif
305
306#define	PMC_HASH_PTR(P,M)	((((unsigned long) (P) >> 2) * _PMC_HM) & (M))
307
308/*
309 * Syscall structures
310 */
311
312/* The `sysent' for the new syscall */
313static struct sysent pmc_sysent = {
314	2,			/* sy_narg */
315	pmc_syscall_handler	/* sy_call */
316};
317
318static struct syscall_module_data pmc_syscall_mod = {
319	load,
320	NULL,
321	&pmc_syscall_num,
322	&pmc_sysent,
323#if (__FreeBSD_version >= 1100000)
324	{ 0, NULL },
325	SY_THR_STATIC_KLD,
326#else
327	{ 0, NULL }
328#endif
329};
330
331static moduledata_t pmc_mod = {
332	PMC_MODULE_NAME,
333	syscall_module_handler,
334	&pmc_syscall_mod
335};
336
337#ifdef EARLY_AP_STARTUP
338DECLARE_MODULE(pmc, pmc_mod, SI_SUB_SYSCALLS, SI_ORDER_ANY);
339#else
340DECLARE_MODULE(pmc, pmc_mod, SI_SUB_SMP, SI_ORDER_ANY);
341#endif
342MODULE_VERSION(pmc, PMC_VERSION);
343
344#ifdef	HWPMC_DEBUG
345enum pmc_dbgparse_state {
346	PMCDS_WS,		/* in whitespace */
347	PMCDS_MAJOR,		/* seen a major keyword */
348	PMCDS_MINOR
349};
350
351static int
352pmc_debugflags_parse(char *newstr, char *fence)
353{
354	char c, *p, *q;
355	struct pmc_debugflags *tmpflags;
356	int error, found, *newbits, tmp;
357	size_t kwlen;
358
359	tmpflags = malloc(sizeof(*tmpflags), M_PMC, M_WAITOK|M_ZERO);
360
361	p = newstr;
362	error = 0;
363
364	for (; p < fence && (c = *p); p++) {
365
366		/* skip white space */
367		if (c == ' ' || c == '\t')
368			continue;
369
370		/* look for a keyword followed by "=" */
371		for (q = p; p < fence && (c = *p) && c != '='; p++)
372			;
373		if (c != '=') {
374			error = EINVAL;
375			goto done;
376		}
377
378		kwlen = p - q;
379		newbits = NULL;
380
381		/* lookup flag group name */
382#define	DBG_SET_FLAG_MAJ(S,F)						\
383		if (kwlen == sizeof(S)-1 && strncmp(q, S, kwlen) == 0)	\
384			newbits = &tmpflags->pdb_ ## F;
385
386		DBG_SET_FLAG_MAJ("cpu",		CPU);
387		DBG_SET_FLAG_MAJ("csw",		CSW);
388		DBG_SET_FLAG_MAJ("logging",	LOG);
389		DBG_SET_FLAG_MAJ("module",	MOD);
390		DBG_SET_FLAG_MAJ("md", 		MDP);
391		DBG_SET_FLAG_MAJ("owner",	OWN);
392		DBG_SET_FLAG_MAJ("pmc",		PMC);
393		DBG_SET_FLAG_MAJ("process",	PRC);
394		DBG_SET_FLAG_MAJ("sampling", 	SAM);
395
396		if (newbits == NULL) {
397			error = EINVAL;
398			goto done;
399		}
400
401		p++;		/* skip the '=' */
402
403		/* Now parse the individual flags */
404		tmp = 0;
405	newflag:
406		for (q = p; p < fence && (c = *p); p++)
407			if (c == ' ' || c == '\t' || c == ',')
408				break;
409
410		/* p == fence or c == ws or c == "," or c == 0 */
411
412		if ((kwlen = p - q) == 0) {
413			*newbits = tmp;
414			continue;
415		}
416
417		found = 0;
418#define	DBG_SET_FLAG_MIN(S,F)						\
419		if (kwlen == sizeof(S)-1 && strncmp(q, S, kwlen) == 0)	\
420			tmp |= found = (1 << PMC_DEBUG_MIN_ ## F)
421
422		/* a '*' denotes all possible flags in the group */
423		if (kwlen == 1 && *q == '*')
424			tmp = found = ~0;
425		/* look for individual flag names */
426		DBG_SET_FLAG_MIN("allocaterow", ALR);
427		DBG_SET_FLAG_MIN("allocate",	ALL);
428		DBG_SET_FLAG_MIN("attach",	ATT);
429		DBG_SET_FLAG_MIN("bind",	BND);
430		DBG_SET_FLAG_MIN("config",	CFG);
431		DBG_SET_FLAG_MIN("exec",	EXC);
432		DBG_SET_FLAG_MIN("exit",	EXT);
433		DBG_SET_FLAG_MIN("find",	FND);
434		DBG_SET_FLAG_MIN("flush",	FLS);
435		DBG_SET_FLAG_MIN("fork",	FRK);
436		DBG_SET_FLAG_MIN("getbuf",	GTB);
437		DBG_SET_FLAG_MIN("hook",	PMH);
438		DBG_SET_FLAG_MIN("init",	INI);
439		DBG_SET_FLAG_MIN("intr",	INT);
440		DBG_SET_FLAG_MIN("linktarget",	TLK);
441		DBG_SET_FLAG_MIN("mayberemove", OMR);
442		DBG_SET_FLAG_MIN("ops",		OPS);
443		DBG_SET_FLAG_MIN("read",	REA);
444		DBG_SET_FLAG_MIN("register",	REG);
445		DBG_SET_FLAG_MIN("release",	REL);
446		DBG_SET_FLAG_MIN("remove",	ORM);
447		DBG_SET_FLAG_MIN("sample",	SAM);
448		DBG_SET_FLAG_MIN("scheduleio",	SIO);
449		DBG_SET_FLAG_MIN("select",	SEL);
450		DBG_SET_FLAG_MIN("signal",	SIG);
451		DBG_SET_FLAG_MIN("swi",		SWI);
452		DBG_SET_FLAG_MIN("swo",		SWO);
453		DBG_SET_FLAG_MIN("start",	STA);
454		DBG_SET_FLAG_MIN("stop",	STO);
455		DBG_SET_FLAG_MIN("syscall",	PMS);
456		DBG_SET_FLAG_MIN("unlinktarget", TUL);
457		DBG_SET_FLAG_MIN("write",	WRI);
458		if (found == 0) {
459			/* unrecognized flag name */
460			error = EINVAL;
461			goto done;
462		}
463
464		if (c == 0 || c == ' ' || c == '\t') {	/* end of flag group */
465			*newbits = tmp;
466			continue;
467		}
468
469		p++;
470		goto newflag;
471	}
472
473	/* save the new flag set */
474	bcopy(tmpflags, &pmc_debugflags, sizeof(pmc_debugflags));
475
476 done:
477	free(tmpflags, M_PMC);
478	return error;
479}
480
481static int
482pmc_debugflags_sysctl_handler(SYSCTL_HANDLER_ARGS)
483{
484	char *fence, *newstr;
485	int error;
486	unsigned int n;
487
488	(void) arg1; (void) arg2; /* unused parameters */
489
490	n = sizeof(pmc_debugstr);
491	newstr = malloc(n, M_PMC, M_WAITOK|M_ZERO);
492	(void) strlcpy(newstr, pmc_debugstr, n);
493
494	error = sysctl_handle_string(oidp, newstr, n, req);
495
496	/* if there is a new string, parse and copy it */
497	if (error == 0 && req->newptr != NULL) {
498		fence = newstr + (n < req->newlen ? n : req->newlen + 1);
499		if ((error = pmc_debugflags_parse(newstr, fence)) == 0)
500			(void) strlcpy(pmc_debugstr, newstr,
501			    sizeof(pmc_debugstr));
502	}
503
504	free(newstr, M_PMC);
505
506	return error;
507}
508#endif
509
510/*
511 * Map a row index to a classdep structure and return the adjusted row
512 * index for the PMC class index.
513 */
514static struct pmc_classdep *
515pmc_ri_to_classdep(struct pmc_mdep *md, int ri, int *adjri)
516{
517	struct pmc_classdep *pcd;
518
519	(void) md;
520
521	KASSERT(ri >= 0 && ri < md->pmd_npmc,
522	    ("[pmc,%d] illegal row-index %d", __LINE__, ri));
523
524	pcd = pmc_rowindex_to_classdep[ri];
525
526	KASSERT(pcd != NULL,
527	    ("[pmc,%d] ri %d null pcd", __LINE__, ri));
528
529	*adjri = ri - pcd->pcd_ri;
530
531	KASSERT(*adjri >= 0 && *adjri < pcd->pcd_num,
532	    ("[pmc,%d] adjusted row-index %d", __LINE__, *adjri));
533
534	return (pcd);
535}
536
537/*
538 * Concurrency Control
539 *
540 * The driver manages the following data structures:
541 *
542 *   - target process descriptors, one per target process
543 *   - owner process descriptors (and attached lists), one per owner process
544 *   - lookup hash tables for owner and target processes
545 *   - PMC descriptors (and attached lists)
546 *   - per-cpu hardware state
547 *   - the 'hook' variable through which the kernel calls into
548 *     this module
549 *   - the machine hardware state (managed by the MD layer)
550 *
551 * These data structures are accessed from:
552 *
553 * - thread context-switch code
554 * - interrupt handlers (possibly on multiple cpus)
555 * - kernel threads on multiple cpus running on behalf of user
556 *   processes doing system calls
557 * - this driver's private kernel threads
558 *
559 * = Locks and Locking strategy =
560 *
561 * The driver uses four locking strategies for its operation:
562 *
563 * - The global SX lock "pmc_sx" is used to protect internal
564 *   data structures.
565 *
566 *   Calls into the module by syscall() start with this lock being
567 *   held in exclusive mode.  Depending on the requested operation,
568 *   the lock may be downgraded to 'shared' mode to allow more
569 *   concurrent readers into the module.  Calls into the module from
570 *   other parts of the kernel acquire the lock in shared mode.
571 *
572 *   This SX lock is held in exclusive mode for any operations that
573 *   modify the linkages between the driver's internal data structures.
574 *
575 *   The 'pmc_hook' function pointer is also protected by this lock.
576 *   It is only examined with the sx lock held in exclusive mode.  The
577 *   kernel module is allowed to be unloaded only with the sx lock held
578 *   in exclusive mode.  In normal syscall handling, after acquiring the
579 *   pmc_sx lock we first check that 'pmc_hook' is non-null before
580 *   proceeding.  This prevents races between the thread unloading the module
581 *   and other threads seeking to use the module.
582 *
583 * - Lookups of target process structures and owner process structures
584 *   cannot use the global "pmc_sx" SX lock because these lookups need
585 *   to happen during context switches and in other critical sections
586 *   where sleeping is not allowed.  We protect these lookup tables
587 *   with their own private spin-mutexes, "pmc_processhash_mtx" and
588 *   "pmc_ownerhash_mtx".
589 *
590 * - Interrupt handlers work in a lock free manner.  At interrupt
591 *   time, handlers look at the PMC pointer (phw->phw_pmc) configured
592 *   when the PMC was started.  If this pointer is NULL, the interrupt
593 *   is ignored after updating driver statistics.  We ensure that this
594 *   pointer is set (using an atomic operation if necessary) before the
595 *   PMC hardware is started.  Conversely, this pointer is unset atomically
596 *   only after the PMC hardware is stopped.
597 *
598 *   We ensure that everything needed for the operation of an
599 *   interrupt handler is available without it needing to acquire any
600 *   locks.  We also ensure that a PMC's software state is destroyed only
601 *   after the PMC is taken off hardware (on all CPUs).
602 *
603 * - Context-switch handling with process-private PMCs needs more
604 *   care.
605 *
606 *   A given process may be the target of multiple PMCs.  For example,
607 *   PMCATTACH and PMCDETACH may be requested by a process on one CPU
608 *   while the target process is running on another.  A PMC could also
609 *   be getting released because its owner is exiting.  We tackle
610 *   these situations in the following manner:
611 *
612 *   - each target process structure 'pmc_process' has an array
613 *     of 'struct pmc *' pointers, one for each hardware PMC.
614 *
615 *   - At context switch IN time, each "target" PMC in RUNNING state
616 *     gets started on hardware and a pointer to each PMC is copied into
617 *     the per-cpu phw array.  The 'runcount' for the PMC is
618 *     incremented.
619 *
620 *   - At context switch OUT time, all process-virtual PMCs are stopped
621 *     on hardware.  The saved value is added to the PMCs value field
622 *     only if the PMC is in a non-deleted state (the PMCs state could
623 *     have changed during the current time slice).
624 *
625 *     Note that since in-between a switch IN on a processor and a switch
626 *     OUT, the PMC could have been released on another CPU.  Therefore
627 *     context switch OUT always looks at the hardware state to turn
628 *     OFF PMCs and will update a PMC's saved value only if reachable
629 *     from the target process record.
630 *
631 *   - OP PMCRELEASE could be called on a PMC at any time (the PMC could
632 *     be attached to many processes at the time of the call and could
633 *     be active on multiple CPUs).
634 *
635 *     We prevent further scheduling of the PMC by marking it as in
636 *     state 'DELETED'.  If the runcount of the PMC is non-zero then
637 *     this PMC is currently running on a CPU somewhere.  The thread
638 *     doing the PMCRELEASE operation waits by repeatedly doing a
639 *     pause() till the runcount comes to zero.
640 *
641 * The contents of a PMC descriptor (struct pmc) are protected using
642 * a spin-mutex.  In order to save space, we use a mutex pool.
643 *
644 * In terms of lock types used by witness(4), we use:
645 * - Type "pmc-sx", used by the global SX lock.
646 * - Type "pmc-sleep", for sleep mutexes used by logger threads.
647 * - Type "pmc-per-proc", for protecting PMC owner descriptors.
648 * - Type "pmc-leaf", used for all other spin mutexes.
649 */
650
651/*
652 * save the cpu binding of the current kthread
653 */
654
655static void
656pmc_save_cpu_binding(struct pmc_binding *pb)
657{
658	PMCDBG0(CPU,BND,2, "save-cpu");
659	thread_lock(curthread);
660	pb->pb_bound = sched_is_bound(curthread);
661	pb->pb_cpu   = curthread->td_oncpu;
662	thread_unlock(curthread);
663	PMCDBG1(CPU,BND,2, "save-cpu cpu=%d", pb->pb_cpu);
664}
665
666/*
667 * restore the cpu binding of the current thread
668 */
669
670static void
671pmc_restore_cpu_binding(struct pmc_binding *pb)
672{
673	PMCDBG2(CPU,BND,2, "restore-cpu curcpu=%d restore=%d",
674	    curthread->td_oncpu, pb->pb_cpu);
675	thread_lock(curthread);
676	if (pb->pb_bound)
677		sched_bind(curthread, pb->pb_cpu);
678	else
679		sched_unbind(curthread);
680	thread_unlock(curthread);
681	PMCDBG0(CPU,BND,2, "restore-cpu done");
682}
683
684/*
685 * move execution over the specified cpu and bind it there.
686 */
687
688static void
689pmc_select_cpu(int cpu)
690{
691	KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
692	    ("[pmc,%d] bad cpu number %d", __LINE__, cpu));
693
694	/* Never move to an inactive CPU. */
695	KASSERT(pmc_cpu_is_active(cpu), ("[pmc,%d] selecting inactive "
696	    "CPU %d", __LINE__, cpu));
697
698	PMCDBG1(CPU,SEL,2, "select-cpu cpu=%d", cpu);
699	thread_lock(curthread);
700	sched_bind(curthread, cpu);
701	thread_unlock(curthread);
702
703	KASSERT(curthread->td_oncpu == cpu,
704	    ("[pmc,%d] CPU not bound [cpu=%d, curr=%d]", __LINE__,
705		cpu, curthread->td_oncpu));
706
707	PMCDBG1(CPU,SEL,2, "select-cpu cpu=%d ok", cpu);
708}
709
710/*
711 * Force a context switch.
712 *
713 * We do this by pause'ing for 1 tick -- invoking mi_switch() is not
714 * guaranteed to force a context switch.
715 */
716
717static void
718pmc_force_context_switch(void)
719{
720
721	pause("pmcctx", 1);
722}
723
724/*
725 * Get the file name for an executable.  This is a simple wrapper
726 * around vn_fullpath(9).
727 */
728
729static void
730pmc_getfilename(struct vnode *v, char **fullpath, char **freepath)
731{
732
733	*fullpath = "unknown";
734	*freepath = NULL;
735	vn_fullpath(curthread, v, fullpath, freepath);
736}
737
738/*
739 * remove an process owning PMCs
740 */
741
742void
743pmc_remove_owner(struct pmc_owner *po)
744{
745	struct pmc *pm, *tmp;
746
747	sx_assert(&pmc_sx, SX_XLOCKED);
748
749	PMCDBG1(OWN,ORM,1, "remove-owner po=%p", po);
750
751	/* Remove descriptor from the owner hash table */
752	LIST_REMOVE(po, po_next);
753
754	/* release all owned PMC descriptors */
755	LIST_FOREACH_SAFE(pm, &po->po_pmcs, pm_next, tmp) {
756		PMCDBG1(OWN,ORM,2, "pmc=%p", pm);
757		KASSERT(pm->pm_owner == po,
758		    ("[pmc,%d] owner %p != po %p", __LINE__, pm->pm_owner, po));
759
760		pmc_release_pmc_descriptor(pm);	/* will unlink from the list */
761		pmc_destroy_pmc_descriptor(pm);
762	}
763
764	KASSERT(po->po_sscount == 0,
765	    ("[pmc,%d] SS count not zero", __LINE__));
766	KASSERT(LIST_EMPTY(&po->po_pmcs),
767	    ("[pmc,%d] PMC list not empty", __LINE__));
768
769	/* de-configure the log file if present */
770	if (po->po_flags & PMC_PO_OWNS_LOGFILE)
771		pmclog_deconfigure_log(po);
772}
773
774/*
775 * remove an owner process record if all conditions are met.
776 */
777
778static void
779pmc_maybe_remove_owner(struct pmc_owner *po)
780{
781
782	PMCDBG1(OWN,OMR,1, "maybe-remove-owner po=%p", po);
783
784	/*
785	 * Remove owner record if
786	 * - this process does not own any PMCs
787	 * - this process has not allocated a system-wide sampling buffer
788	 */
789
790	if (LIST_EMPTY(&po->po_pmcs) &&
791	    ((po->po_flags & PMC_PO_OWNS_LOGFILE) == 0)) {
792		pmc_remove_owner(po);
793		pmc_destroy_owner_descriptor(po);
794	}
795}
796
797/*
798 * Add an association between a target process and a PMC.
799 */
800
801static void
802pmc_link_target_process(struct pmc *pm, struct pmc_process *pp)
803{
804	int ri;
805	struct pmc_target *pt;
806
807	sx_assert(&pmc_sx, SX_XLOCKED);
808
809	KASSERT(pm != NULL && pp != NULL,
810	    ("[pmc,%d] Null pm %p or pp %p", __LINE__, pm, pp));
811	KASSERT(PMC_IS_VIRTUAL_MODE(PMC_TO_MODE(pm)),
812	    ("[pmc,%d] Attaching a non-process-virtual pmc=%p to pid=%d",
813		__LINE__, pm, pp->pp_proc->p_pid));
814	KASSERT(pp->pp_refcnt >= 0 && pp->pp_refcnt <= ((int) md->pmd_npmc - 1),
815	    ("[pmc,%d] Illegal reference count %d for process record %p",
816		__LINE__, pp->pp_refcnt, (void *) pp));
817
818	ri = PMC_TO_ROWINDEX(pm);
819
820	PMCDBG3(PRC,TLK,1, "link-target pmc=%p ri=%d pmc-process=%p",
821	    pm, ri, pp);
822
823#ifdef	HWPMC_DEBUG
824	LIST_FOREACH(pt, &pm->pm_targets, pt_next)
825	    if (pt->pt_process == pp)
826		    KASSERT(0, ("[pmc,%d] pp %p already in pmc %p targets",
827				__LINE__, pp, pm));
828#endif
829
830	pt = malloc(sizeof(struct pmc_target), M_PMC, M_WAITOK|M_ZERO);
831	pt->pt_process = pp;
832
833	LIST_INSERT_HEAD(&pm->pm_targets, pt, pt_next);
834
835	atomic_store_rel_ptr((uintptr_t *)&pp->pp_pmcs[ri].pp_pmc,
836	    (uintptr_t)pm);
837
838	if (pm->pm_owner->po_owner == pp->pp_proc)
839		pm->pm_flags |= PMC_F_ATTACHED_TO_OWNER;
840
841	/*
842	 * Initialize the per-process values at this row index.
843	 */
844	pp->pp_pmcs[ri].pp_pmcval = PMC_TO_MODE(pm) == PMC_MODE_TS ?
845	    pm->pm_sc.pm_reloadcount : 0;
846
847	pp->pp_refcnt++;
848
849}
850
851/*
852 * Removes the association between a target process and a PMC.
853 */
854
855static void
856pmc_unlink_target_process(struct pmc *pm, struct pmc_process *pp)
857{
858	int ri;
859	struct proc *p;
860	struct pmc_target *ptgt;
861
862	sx_assert(&pmc_sx, SX_XLOCKED);
863
864	KASSERT(pm != NULL && pp != NULL,
865	    ("[pmc,%d] Null pm %p or pp %p", __LINE__, pm, pp));
866
867	KASSERT(pp->pp_refcnt >= 1 && pp->pp_refcnt <= (int) md->pmd_npmc,
868	    ("[pmc,%d] Illegal ref count %d on process record %p",
869		__LINE__, pp->pp_refcnt, (void *) pp));
870
871	ri = PMC_TO_ROWINDEX(pm);
872
873	PMCDBG3(PRC,TUL,1, "unlink-target pmc=%p ri=%d pmc-process=%p",
874	    pm, ri, pp);
875
876	KASSERT(pp->pp_pmcs[ri].pp_pmc == pm,
877	    ("[pmc,%d] PMC ri %d mismatch pmc %p pp->[ri] %p", __LINE__,
878		ri, pm, pp->pp_pmcs[ri].pp_pmc));
879
880	pp->pp_pmcs[ri].pp_pmc = NULL;
881	pp->pp_pmcs[ri].pp_pmcval = (pmc_value_t) 0;
882
883	/* Remove owner-specific flags */
884	if (pm->pm_owner->po_owner == pp->pp_proc) {
885		pp->pp_flags &= ~PMC_PP_ENABLE_MSR_ACCESS;
886		pm->pm_flags &= ~PMC_F_ATTACHED_TO_OWNER;
887	}
888
889	pp->pp_refcnt--;
890
891	/* Remove the target process from the PMC structure */
892	LIST_FOREACH(ptgt, &pm->pm_targets, pt_next)
893		if (ptgt->pt_process == pp)
894			break;
895
896	KASSERT(ptgt != NULL, ("[pmc,%d] process %p (pp: %p) not found "
897		    "in pmc %p", __LINE__, pp->pp_proc, pp, pm));
898
899	LIST_REMOVE(ptgt, pt_next);
900	free(ptgt, M_PMC);
901
902	/* if the PMC now lacks targets, send the owner a SIGIO */
903	if (LIST_EMPTY(&pm->pm_targets)) {
904		p = pm->pm_owner->po_owner;
905		PROC_LOCK(p);
906		kern_psignal(p, SIGIO);
907		PROC_UNLOCK(p);
908
909		PMCDBG2(PRC,SIG,2, "signalling proc=%p signal=%d", p,
910		    SIGIO);
911	}
912}
913
914/*
915 * Check if PMC 'pm' may be attached to target process 't'.
916 */
917
918static int
919pmc_can_attach(struct pmc *pm, struct proc *t)
920{
921	struct proc *o;		/* pmc owner */
922	struct ucred *oc, *tc;	/* owner, target credentials */
923	int decline_attach, i;
924
925	/*
926	 * A PMC's owner can always attach that PMC to itself.
927	 */
928
929	if ((o = pm->pm_owner->po_owner) == t)
930		return 0;
931
932	PROC_LOCK(o);
933	oc = o->p_ucred;
934	crhold(oc);
935	PROC_UNLOCK(o);
936
937	PROC_LOCK(t);
938	tc = t->p_ucred;
939	crhold(tc);
940	PROC_UNLOCK(t);
941
942	/*
943	 * The effective uid of the PMC owner should match at least one
944	 * of the {effective,real,saved} uids of the target process.
945	 */
946
947	decline_attach = oc->cr_uid != tc->cr_uid &&
948	    oc->cr_uid != tc->cr_svuid &&
949	    oc->cr_uid != tc->cr_ruid;
950
951	/*
952	 * Every one of the target's group ids, must be in the owner's
953	 * group list.
954	 */
955	for (i = 0; !decline_attach && i < tc->cr_ngroups; i++)
956		decline_attach = !groupmember(tc->cr_groups[i], oc);
957
958	/* check the read and saved gids too */
959	if (decline_attach == 0)
960		decline_attach = !groupmember(tc->cr_rgid, oc) ||
961		    !groupmember(tc->cr_svgid, oc);
962
963	crfree(tc);
964	crfree(oc);
965
966	return !decline_attach;
967}
968
969/*
970 * Attach a process to a PMC.
971 */
972
973static int
974pmc_attach_one_process(struct proc *p, struct pmc *pm)
975{
976	int ri;
977	char *fullpath, *freepath;
978	struct pmc_process	*pp;
979
980	sx_assert(&pmc_sx, SX_XLOCKED);
981
982	PMCDBG5(PRC,ATT,2, "attach-one pm=%p ri=%d proc=%p (%d, %s)", pm,
983	    PMC_TO_ROWINDEX(pm), p, p->p_pid, p->p_comm);
984
985	/*
986	 * Locate the process descriptor corresponding to process 'p',
987	 * allocating space as needed.
988	 *
989	 * Verify that rowindex 'pm_rowindex' is free in the process
990	 * descriptor.
991	 *
992	 * If not, allocate space for a descriptor and link the
993	 * process descriptor and PMC.
994	 */
995	ri = PMC_TO_ROWINDEX(pm);
996
997	if ((pp = pmc_find_process_descriptor(p, PMC_FLAG_ALLOCATE)) == NULL)
998		return ENOMEM;
999
1000	if (pp->pp_pmcs[ri].pp_pmc == pm) /* already present at slot [ri] */
1001		return EEXIST;
1002
1003	if (pp->pp_pmcs[ri].pp_pmc != NULL)
1004		return EBUSY;
1005
1006	pmc_link_target_process(pm, pp);
1007
1008	if (PMC_IS_SAMPLING_MODE(PMC_TO_MODE(pm)) &&
1009	    (pm->pm_flags & PMC_F_ATTACHED_TO_OWNER) == 0)
1010		pm->pm_flags |= PMC_F_NEEDS_LOGFILE;
1011
1012	pm->pm_flags |= PMC_F_ATTACH_DONE; /* mark as attached */
1013
1014	/* issue an attach event to a configured log file */
1015	if (pm->pm_owner->po_flags & PMC_PO_OWNS_LOGFILE) {
1016		if (p->p_flag & P_KPROC) {
1017			fullpath = kernelname;
1018			freepath = NULL;
1019		} else {
1020			pmc_getfilename(p->p_textvp, &fullpath, &freepath);
1021			pmclog_process_pmcattach(pm, p->p_pid, fullpath);
1022		}
1023		free(freepath, M_TEMP);
1024		if (PMC_IS_SAMPLING_MODE(PMC_TO_MODE(pm)))
1025			pmc_log_process_mappings(pm->pm_owner, p);
1026	}
1027	/* mark process as using HWPMCs */
1028	PROC_LOCK(p);
1029	p->p_flag |= P_HWPMC;
1030	PROC_UNLOCK(p);
1031
1032	return 0;
1033}
1034
1035/*
1036 * Attach a process and optionally its children
1037 */
1038
1039static int
1040pmc_attach_process(struct proc *p, struct pmc *pm)
1041{
1042	int error;
1043	struct proc *top;
1044
1045	sx_assert(&pmc_sx, SX_XLOCKED);
1046
1047	PMCDBG5(PRC,ATT,1, "attach pm=%p ri=%d proc=%p (%d, %s)", pm,
1048	    PMC_TO_ROWINDEX(pm), p, p->p_pid, p->p_comm);
1049
1050
1051	/*
1052	 * If this PMC successfully allowed a GETMSR operation
1053	 * in the past, disallow further ATTACHes.
1054	 */
1055
1056	if ((pm->pm_flags & PMC_PP_ENABLE_MSR_ACCESS) != 0)
1057		return EPERM;
1058
1059	if ((pm->pm_flags & PMC_F_DESCENDANTS) == 0)
1060		return pmc_attach_one_process(p, pm);
1061
1062	/*
1063	 * Traverse all child processes, attaching them to
1064	 * this PMC.
1065	 */
1066
1067	sx_slock(&proctree_lock);
1068
1069	top = p;
1070
1071	for (;;) {
1072		if ((error = pmc_attach_one_process(p, pm)) != 0)
1073			break;
1074		if (!LIST_EMPTY(&p->p_children))
1075			p = LIST_FIRST(&p->p_children);
1076		else for (;;) {
1077			if (p == top)
1078				goto done;
1079			if (LIST_NEXT(p, p_sibling)) {
1080				p = LIST_NEXT(p, p_sibling);
1081				break;
1082			}
1083			p = p->p_pptr;
1084		}
1085	}
1086
1087	if (error)
1088		(void) pmc_detach_process(top, pm);
1089
1090 done:
1091	sx_sunlock(&proctree_lock);
1092	return error;
1093}
1094
1095/*
1096 * Detach a process from a PMC.  If there are no other PMCs tracking
1097 * this process, remove the process structure from its hash table.  If
1098 * 'flags' contains PMC_FLAG_REMOVE, then free the process structure.
1099 */
1100
1101static int
1102pmc_detach_one_process(struct proc *p, struct pmc *pm, int flags)
1103{
1104	int ri;
1105	struct pmc_process *pp;
1106
1107	sx_assert(&pmc_sx, SX_XLOCKED);
1108
1109	KASSERT(pm != NULL,
1110	    ("[pmc,%d] null pm pointer", __LINE__));
1111
1112	ri = PMC_TO_ROWINDEX(pm);
1113
1114	PMCDBG6(PRC,ATT,2, "detach-one pm=%p ri=%d proc=%p (%d, %s) flags=0x%x",
1115	    pm, ri, p, p->p_pid, p->p_comm, flags);
1116
1117	if ((pp = pmc_find_process_descriptor(p, 0)) == NULL)
1118		return ESRCH;
1119
1120	if (pp->pp_pmcs[ri].pp_pmc != pm)
1121		return EINVAL;
1122
1123	pmc_unlink_target_process(pm, pp);
1124
1125	/* Issue a detach entry if a log file is configured */
1126	if (pm->pm_owner->po_flags & PMC_PO_OWNS_LOGFILE)
1127		pmclog_process_pmcdetach(pm, p->p_pid);
1128
1129	/*
1130	 * If there are no PMCs targeting this process, we remove its
1131	 * descriptor from the target hash table and unset the P_HWPMC
1132	 * flag in the struct proc.
1133	 */
1134	KASSERT(pp->pp_refcnt >= 0 && pp->pp_refcnt <= (int) md->pmd_npmc,
1135	    ("[pmc,%d] Illegal refcnt %d for process struct %p",
1136		__LINE__, pp->pp_refcnt, pp));
1137
1138	if (pp->pp_refcnt != 0)	/* still a target of some PMC */
1139		return 0;
1140
1141	pmc_remove_process_descriptor(pp);
1142
1143	if (flags & PMC_FLAG_REMOVE)
1144		free(pp, M_PMC);
1145
1146	PROC_LOCK(p);
1147	p->p_flag &= ~P_HWPMC;
1148	PROC_UNLOCK(p);
1149
1150	return 0;
1151}
1152
1153/*
1154 * Detach a process and optionally its descendants from a PMC.
1155 */
1156
1157static int
1158pmc_detach_process(struct proc *p, struct pmc *pm)
1159{
1160	struct proc *top;
1161
1162	sx_assert(&pmc_sx, SX_XLOCKED);
1163
1164	PMCDBG5(PRC,ATT,1, "detach pm=%p ri=%d proc=%p (%d, %s)", pm,
1165	    PMC_TO_ROWINDEX(pm), p, p->p_pid, p->p_comm);
1166
1167	if ((pm->pm_flags & PMC_F_DESCENDANTS) == 0)
1168		return pmc_detach_one_process(p, pm, PMC_FLAG_REMOVE);
1169
1170	/*
1171	 * Traverse all children, detaching them from this PMC.  We
1172	 * ignore errors since we could be detaching a PMC from a
1173	 * partially attached proc tree.
1174	 */
1175
1176	sx_slock(&proctree_lock);
1177
1178	top = p;
1179
1180	for (;;) {
1181		(void) pmc_detach_one_process(p, pm, PMC_FLAG_REMOVE);
1182
1183		if (!LIST_EMPTY(&p->p_children))
1184			p = LIST_FIRST(&p->p_children);
1185		else for (;;) {
1186			if (p == top)
1187				goto done;
1188			if (LIST_NEXT(p, p_sibling)) {
1189				p = LIST_NEXT(p, p_sibling);
1190				break;
1191			}
1192			p = p->p_pptr;
1193		}
1194	}
1195
1196 done:
1197	sx_sunlock(&proctree_lock);
1198
1199	if (LIST_EMPTY(&pm->pm_targets))
1200		pm->pm_flags &= ~PMC_F_ATTACH_DONE;
1201
1202	return 0;
1203}
1204
1205
1206/*
1207 * Thread context switch IN
1208 */
1209
1210static void
1211pmc_process_csw_in(struct thread *td)
1212{
1213	int cpu;
1214	unsigned int adjri, ri;
1215	struct pmc *pm;
1216	struct proc *p;
1217	struct pmc_cpu *pc;
1218	struct pmc_hw *phw;
1219	pmc_value_t newvalue;
1220	struct pmc_process *pp;
1221	struct pmc_classdep *pcd;
1222
1223	p = td->td_proc;
1224
1225	if ((pp = pmc_find_process_descriptor(p, PMC_FLAG_NONE)) == NULL)
1226		return;
1227
1228	KASSERT(pp->pp_proc == td->td_proc,
1229	    ("[pmc,%d] not my thread state", __LINE__));
1230
1231	critical_enter(); /* no preemption from this point */
1232
1233	cpu = PCPU_GET(cpuid); /* td->td_oncpu is invalid */
1234
1235	PMCDBG5(CSW,SWI,1, "cpu=%d proc=%p (%d, %s) pp=%p", cpu, p,
1236	    p->p_pid, p->p_comm, pp);
1237
1238	KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
1239	    ("[pmc,%d] weird CPU id %d", __LINE__, cpu));
1240
1241	pc = pmc_pcpu[cpu];
1242
1243	for (ri = 0; ri < md->pmd_npmc; ri++) {
1244
1245		if ((pm = pp->pp_pmcs[ri].pp_pmc) == NULL)
1246			continue;
1247
1248		KASSERT(PMC_IS_VIRTUAL_MODE(PMC_TO_MODE(pm)),
1249		    ("[pmc,%d] Target PMC in non-virtual mode (%d)",
1250			__LINE__, PMC_TO_MODE(pm)));
1251
1252		KASSERT(PMC_TO_ROWINDEX(pm) == ri,
1253		    ("[pmc,%d] Row index mismatch pmc %d != ri %d",
1254			__LINE__, PMC_TO_ROWINDEX(pm), ri));
1255
1256		/*
1257		 * Only PMCs that are marked as 'RUNNING' need
1258		 * be placed on hardware.
1259		 */
1260
1261		if (pm->pm_state != PMC_STATE_RUNNING)
1262			continue;
1263
1264		/* increment PMC runcount */
1265		atomic_add_rel_int(&pm->pm_runcount, 1);
1266
1267		/* configure the HWPMC we are going to use. */
1268		pcd = pmc_ri_to_classdep(md, ri, &adjri);
1269		pcd->pcd_config_pmc(cpu, adjri, pm);
1270
1271		phw = pc->pc_hwpmcs[ri];
1272
1273		KASSERT(phw != NULL,
1274		    ("[pmc,%d] null hw pointer", __LINE__));
1275
1276		KASSERT(phw->phw_pmc == pm,
1277		    ("[pmc,%d] hw->pmc %p != pmc %p", __LINE__,
1278			phw->phw_pmc, pm));
1279
1280		/*
1281		 * Write out saved value and start the PMC.
1282		 *
1283		 * Sampling PMCs use a per-process value, while
1284		 * counting mode PMCs use a per-pmc value that is
1285		 * inherited across descendants.
1286		 */
1287		if (PMC_TO_MODE(pm) == PMC_MODE_TS) {
1288			mtx_pool_lock_spin(pmc_mtxpool, pm);
1289
1290			/*
1291			 * Use the saved value calculated after the most recent
1292			 * thread switch out to start this counter.  Reset
1293			 * the saved count in case another thread from this
1294			 * process switches in before any threads switch out.
1295			 */
1296			newvalue = PMC_PCPU_SAVED(cpu,ri) =
1297			    pp->pp_pmcs[ri].pp_pmcval;
1298			pp->pp_pmcs[ri].pp_pmcval = pm->pm_sc.pm_reloadcount;
1299			mtx_pool_unlock_spin(pmc_mtxpool, pm);
1300		} else {
1301			KASSERT(PMC_TO_MODE(pm) == PMC_MODE_TC,
1302			    ("[pmc,%d] illegal mode=%d", __LINE__,
1303			    PMC_TO_MODE(pm)));
1304			mtx_pool_lock_spin(pmc_mtxpool, pm);
1305			newvalue = PMC_PCPU_SAVED(cpu, ri) =
1306			    pm->pm_gv.pm_savedvalue;
1307			mtx_pool_unlock_spin(pmc_mtxpool, pm);
1308		}
1309
1310		PMCDBG3(CSW,SWI,1,"cpu=%d ri=%d new=%jd", cpu, ri, newvalue);
1311
1312		pcd->pcd_write_pmc(cpu, adjri, newvalue);
1313
1314		/* If a sampling mode PMC, reset stalled state. */
1315		if (PMC_TO_MODE(pm) == PMC_MODE_TS)
1316			CPU_CLR_ATOMIC(cpu, &pm->pm_stalled);
1317
1318		/* Indicate that we desire this to run. */
1319		CPU_SET_ATOMIC(cpu, &pm->pm_cpustate);
1320
1321		/* Start the PMC. */
1322		pcd->pcd_start_pmc(cpu, adjri);
1323	}
1324
1325	/*
1326	 * perform any other architecture/cpu dependent thread
1327	 * switch-in actions.
1328	 */
1329
1330	(void) (*md->pmd_switch_in)(pc, pp);
1331
1332	critical_exit();
1333
1334}
1335
1336/*
1337 * Thread context switch OUT.
1338 */
1339
1340static void
1341pmc_process_csw_out(struct thread *td)
1342{
1343	int cpu;
1344	int64_t tmp;
1345	struct pmc *pm;
1346	struct proc *p;
1347	enum pmc_mode mode;
1348	struct pmc_cpu *pc;
1349	pmc_value_t newvalue;
1350	unsigned int adjri, ri;
1351	struct pmc_process *pp;
1352	struct pmc_classdep *pcd;
1353
1354
1355	/*
1356	 * Locate our process descriptor; this may be NULL if
1357	 * this process is exiting and we have already removed
1358	 * the process from the target process table.
1359	 *
1360	 * Note that due to kernel preemption, multiple
1361	 * context switches may happen while the process is
1362	 * exiting.
1363	 *
1364	 * Note also that if the target process cannot be
1365	 * found we still need to deconfigure any PMCs that
1366	 * are currently running on hardware.
1367	 */
1368
1369	p = td->td_proc;
1370	pp = pmc_find_process_descriptor(p, PMC_FLAG_NONE);
1371
1372	/*
1373	 * save PMCs
1374	 */
1375
1376	critical_enter();
1377
1378	cpu = PCPU_GET(cpuid); /* td->td_oncpu is invalid */
1379
1380	PMCDBG5(CSW,SWO,1, "cpu=%d proc=%p (%d, %s) pp=%p", cpu, p,
1381	    p->p_pid, p->p_comm, pp);
1382
1383	KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
1384	    ("[pmc,%d weird CPU id %d", __LINE__, cpu));
1385
1386	pc = pmc_pcpu[cpu];
1387
1388	/*
1389	 * When a PMC gets unlinked from a target PMC, it will
1390	 * be removed from the target's pp_pmc[] array.
1391	 *
1392	 * However, on a MP system, the target could have been
1393	 * executing on another CPU at the time of the unlink.
1394	 * So, at context switch OUT time, we need to look at
1395	 * the hardware to determine if a PMC is scheduled on
1396	 * it.
1397	 */
1398
1399	for (ri = 0; ri < md->pmd_npmc; ri++) {
1400
1401		pcd = pmc_ri_to_classdep(md, ri, &adjri);
1402		pm  = NULL;
1403		(void) (*pcd->pcd_get_config)(cpu, adjri, &pm);
1404
1405		if (pm == NULL)	/* nothing at this row index */
1406			continue;
1407
1408		mode = PMC_TO_MODE(pm);
1409		if (!PMC_IS_VIRTUAL_MODE(mode))
1410			continue; /* not a process virtual PMC */
1411
1412		KASSERT(PMC_TO_ROWINDEX(pm) == ri,
1413		    ("[pmc,%d] ri mismatch pmc(%d) ri(%d)",
1414			__LINE__, PMC_TO_ROWINDEX(pm), ri));
1415
1416		/*
1417		 * Change desired state, and then stop if not stalled.
1418		 * This two-step dance should avoid race conditions where
1419		 * an interrupt re-enables the PMC after this code has
1420		 * already checked the pm_stalled flag.
1421		 */
1422		CPU_CLR_ATOMIC(cpu, &pm->pm_cpustate);
1423		if (!CPU_ISSET(cpu, &pm->pm_stalled))
1424			pcd->pcd_stop_pmc(cpu, adjri);
1425
1426		/* reduce this PMC's runcount */
1427		atomic_subtract_rel_int(&pm->pm_runcount, 1);
1428
1429		/*
1430		 * If this PMC is associated with this process,
1431		 * save the reading.
1432		 */
1433
1434		if (pm->pm_state != PMC_STATE_DELETED && pp != NULL &&
1435		    pp->pp_pmcs[ri].pp_pmc != NULL) {
1436			KASSERT(pm == pp->pp_pmcs[ri].pp_pmc,
1437			    ("[pmc,%d] pm %p != pp_pmcs[%d] %p", __LINE__,
1438				pm, ri, pp->pp_pmcs[ri].pp_pmc));
1439
1440			KASSERT(pp->pp_refcnt > 0,
1441			    ("[pmc,%d] pp refcnt = %d", __LINE__,
1442				pp->pp_refcnt));
1443
1444			pcd->pcd_read_pmc(cpu, adjri, &newvalue);
1445
1446			if (mode == PMC_MODE_TS) {
1447				PMCDBG3(CSW,SWO,1,"cpu=%d ri=%d tmp=%jd (samp)",
1448				    cpu, ri, PMC_PCPU_SAVED(cpu,ri) - newvalue);
1449
1450				/*
1451				 * For sampling process-virtual PMCs,
1452				 * newvalue is the number of events to be seen
1453				 * until the next sampling interrupt.
1454				 * We can just add the events left from this
1455				 * invocation to the counter, then adjust
1456				 * in case we overflow our range.
1457				 *
1458				 * (Recall that we reload the counter every
1459				 * time we use it.)
1460				 */
1461				mtx_pool_lock_spin(pmc_mtxpool, pm);
1462
1463				pp->pp_pmcs[ri].pp_pmcval += newvalue;
1464				if (pp->pp_pmcs[ri].pp_pmcval >
1465				    pm->pm_sc.pm_reloadcount)
1466					pp->pp_pmcs[ri].pp_pmcval -=
1467					    pm->pm_sc.pm_reloadcount;
1468				KASSERT(pp->pp_pmcs[ri].pp_pmcval > 0 &&
1469				    pp->pp_pmcs[ri].pp_pmcval <=
1470				    pm->pm_sc.pm_reloadcount,
1471				    ("[pmc,%d] pp_pmcval outside of expected "
1472				    "range cpu=%d ri=%d pp_pmcval=%jx "
1473				    "pm_reloadcount=%jx", __LINE__, cpu, ri,
1474				    pp->pp_pmcs[ri].pp_pmcval,
1475				    pm->pm_sc.pm_reloadcount));
1476				mtx_pool_unlock_spin(pmc_mtxpool, pm);
1477
1478			} else {
1479				tmp = newvalue - PMC_PCPU_SAVED(cpu,ri);
1480
1481				PMCDBG3(CSW,SWO,1,"cpu=%d ri=%d tmp=%jd (count)",
1482				    cpu, ri, tmp);
1483
1484				/*
1485				 * For counting process-virtual PMCs,
1486				 * we expect the count to be
1487				 * increasing monotonically, modulo a 64
1488				 * bit wraparound.
1489				 */
1490				KASSERT(tmp >= 0,
1491				    ("[pmc,%d] negative increment cpu=%d "
1492				     "ri=%d newvalue=%jx saved=%jx "
1493				     "incr=%jx", __LINE__, cpu, ri,
1494				     newvalue, PMC_PCPU_SAVED(cpu,ri), tmp));
1495
1496				mtx_pool_lock_spin(pmc_mtxpool, pm);
1497				pm->pm_gv.pm_savedvalue += tmp;
1498				pp->pp_pmcs[ri].pp_pmcval += tmp;
1499				mtx_pool_unlock_spin(pmc_mtxpool, pm);
1500
1501				if (pm->pm_flags & PMC_F_LOG_PROCCSW)
1502					pmclog_process_proccsw(pm, pp, tmp);
1503			}
1504		}
1505
1506		/* mark hardware as free */
1507		pcd->pcd_config_pmc(cpu, adjri, NULL);
1508	}
1509
1510	/*
1511	 * perform any other architecture/cpu dependent thread
1512	 * switch out functions.
1513	 */
1514
1515	(void) (*md->pmd_switch_out)(pc, pp);
1516
1517	critical_exit();
1518}
1519
1520/*
1521 * A mapping change for a process.
1522 */
1523
1524static void
1525pmc_process_mmap(struct thread *td, struct pmckern_map_in *pkm)
1526{
1527	int ri;
1528	pid_t pid;
1529	char *fullpath, *freepath;
1530	const struct pmc *pm;
1531	struct pmc_owner *po;
1532	const struct pmc_process *pp;
1533
1534	freepath = fullpath = NULL;
1535	pmc_getfilename((struct vnode *) pkm->pm_file, &fullpath, &freepath);
1536
1537	pid = td->td_proc->p_pid;
1538
1539	/* Inform owners of all system-wide sampling PMCs. */
1540	LIST_FOREACH(po, &pmc_ss_owners, po_ssnext)
1541	    if (po->po_flags & PMC_PO_OWNS_LOGFILE)
1542		pmclog_process_map_in(po, pid, pkm->pm_address, fullpath);
1543
1544	if ((pp = pmc_find_process_descriptor(td->td_proc, 0)) == NULL)
1545		goto done;
1546
1547	/*
1548	 * Inform sampling PMC owners tracking this process.
1549	 */
1550	for (ri = 0; ri < md->pmd_npmc; ri++)
1551		if ((pm = pp->pp_pmcs[ri].pp_pmc) != NULL &&
1552		    PMC_IS_SAMPLING_MODE(PMC_TO_MODE(pm)))
1553			pmclog_process_map_in(pm->pm_owner,
1554			    pid, pkm->pm_address, fullpath);
1555
1556  done:
1557	if (freepath)
1558		free(freepath, M_TEMP);
1559}
1560
1561
1562/*
1563 * Log an munmap request.
1564 */
1565
1566static void
1567pmc_process_munmap(struct thread *td, struct pmckern_map_out *pkm)
1568{
1569	int ri;
1570	pid_t pid;
1571	struct pmc_owner *po;
1572	const struct pmc *pm;
1573	const struct pmc_process *pp;
1574
1575	pid = td->td_proc->p_pid;
1576
1577	LIST_FOREACH(po, &pmc_ss_owners, po_ssnext)
1578	    if (po->po_flags & PMC_PO_OWNS_LOGFILE)
1579		pmclog_process_map_out(po, pid, pkm->pm_address,
1580		    pkm->pm_address + pkm->pm_size);
1581
1582	if ((pp = pmc_find_process_descriptor(td->td_proc, 0)) == NULL)
1583		return;
1584
1585	for (ri = 0; ri < md->pmd_npmc; ri++)
1586		if ((pm = pp->pp_pmcs[ri].pp_pmc) != NULL &&
1587		    PMC_IS_SAMPLING_MODE(PMC_TO_MODE(pm)))
1588			pmclog_process_map_out(pm->pm_owner, pid,
1589			    pkm->pm_address, pkm->pm_address + pkm->pm_size);
1590}
1591
1592/*
1593 * Log mapping information about the kernel.
1594 */
1595
1596static void
1597pmc_log_kernel_mappings(struct pmc *pm)
1598{
1599	struct pmc_owner *po;
1600	struct pmckern_map_in *km, *kmbase;
1601
1602	sx_assert(&pmc_sx, SX_LOCKED);
1603	KASSERT(PMC_IS_SAMPLING_MODE(PMC_TO_MODE(pm)),
1604	    ("[pmc,%d] non-sampling PMC (%p) desires mapping information",
1605		__LINE__, (void *) pm));
1606
1607	po = pm->pm_owner;
1608
1609	if (po->po_flags & PMC_PO_INITIAL_MAPPINGS_DONE)
1610		return;
1611
1612	/*
1613	 * Log the current set of kernel modules.
1614	 */
1615	kmbase = linker_hwpmc_list_objects();
1616	for (km = kmbase; km->pm_file != NULL; km++) {
1617		PMCDBG2(LOG,REG,1,"%s %p", (char *) km->pm_file,
1618		    (void *) km->pm_address);
1619		pmclog_process_map_in(po, (pid_t) -1, km->pm_address,
1620		    km->pm_file);
1621	}
1622	free(kmbase, M_LINKER);
1623
1624	po->po_flags |= PMC_PO_INITIAL_MAPPINGS_DONE;
1625}
1626
1627/*
1628 * Log the mappings for a single process.
1629 */
1630
1631static void
1632pmc_log_process_mappings(struct pmc_owner *po, struct proc *p)
1633{
1634	vm_map_t map;
1635	struct vnode *vp;
1636	struct vmspace *vm;
1637	vm_map_entry_t entry;
1638	vm_offset_t last_end;
1639	u_int last_timestamp;
1640	struct vnode *last_vp;
1641	vm_offset_t start_addr;
1642	vm_object_t obj, lobj, tobj;
1643	char *fullpath, *freepath;
1644
1645	last_vp = NULL;
1646	last_end = (vm_offset_t) 0;
1647	fullpath = freepath = NULL;
1648
1649	if ((vm = vmspace_acquire_ref(p)) == NULL)
1650		return;
1651
1652	map = &vm->vm_map;
1653	vm_map_lock_read(map);
1654
1655	for (entry = map->header.next; entry != &map->header; entry = entry->next) {
1656
1657		if (entry == NULL) {
1658			PMCDBG2(LOG,OPS,2, "hwpmc: vm_map entry unexpectedly "
1659			    "NULL! pid=%d vm_map=%p\n", p->p_pid, map);
1660			break;
1661		}
1662
1663		/*
1664		 * We only care about executable map entries.
1665		 */
1666		if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) ||
1667		    !(entry->protection & VM_PROT_EXECUTE) ||
1668		    (entry->object.vm_object == NULL)) {
1669			continue;
1670		}
1671
1672		obj = entry->object.vm_object;
1673		VM_OBJECT_RLOCK(obj);
1674
1675		/*
1676		 * Walk the backing_object list to find the base
1677		 * (non-shadowed) vm_object.
1678		 */
1679		for (lobj = tobj = obj; tobj != NULL; tobj = tobj->backing_object) {
1680			if (tobj != obj)
1681				VM_OBJECT_RLOCK(tobj);
1682			if (lobj != obj)
1683				VM_OBJECT_RUNLOCK(lobj);
1684			lobj = tobj;
1685		}
1686
1687		/*
1688		 * At this point lobj is the base vm_object and it is locked.
1689		 */
1690		if (lobj == NULL) {
1691			PMCDBG3(LOG,OPS,2, "hwpmc: lobj unexpectedly NULL! pid=%d "
1692			    "vm_map=%p vm_obj=%p\n", p->p_pid, map, obj);
1693			VM_OBJECT_RUNLOCK(obj);
1694			continue;
1695		}
1696
1697		vp = vm_object_vnode(lobj);
1698		if (vp == NULL) {
1699			if (lobj != obj)
1700				VM_OBJECT_RUNLOCK(lobj);
1701			VM_OBJECT_RUNLOCK(obj);
1702			continue;
1703		}
1704
1705		/*
1706		 * Skip contiguous regions that point to the same
1707		 * vnode, so we don't emit redundant MAP-IN
1708		 * directives.
1709		 */
1710		if (entry->start == last_end && vp == last_vp) {
1711			last_end = entry->end;
1712			if (lobj != obj)
1713				VM_OBJECT_RUNLOCK(lobj);
1714			VM_OBJECT_RUNLOCK(obj);
1715			continue;
1716		}
1717
1718		/*
1719		 * We don't want to keep the proc's vm_map or this
1720		 * vm_object locked while we walk the pathname, since
1721		 * vn_fullpath() can sleep.  However, if we drop the
1722		 * lock, it's possible for concurrent activity to
1723		 * modify the vm_map list.  To protect against this,
1724		 * we save the vm_map timestamp before we release the
1725		 * lock, and check it after we reacquire the lock
1726		 * below.
1727		 */
1728		start_addr = entry->start;
1729		last_end = entry->end;
1730		last_timestamp = map->timestamp;
1731		vm_map_unlock_read(map);
1732
1733		vref(vp);
1734		if (lobj != obj)
1735			VM_OBJECT_RUNLOCK(lobj);
1736
1737		VM_OBJECT_RUNLOCK(obj);
1738
1739		freepath = NULL;
1740		pmc_getfilename(vp, &fullpath, &freepath);
1741		last_vp = vp;
1742
1743		vrele(vp);
1744
1745		vp = NULL;
1746		pmclog_process_map_in(po, p->p_pid, start_addr, fullpath);
1747		if (freepath)
1748			free(freepath, M_TEMP);
1749
1750		vm_map_lock_read(map);
1751
1752		/*
1753		 * If our saved timestamp doesn't match, this means
1754		 * that the vm_map was modified out from under us and
1755		 * we can't trust our current "entry" pointer.  Do a
1756		 * new lookup for this entry.  If there is no entry
1757		 * for this address range, vm_map_lookup_entry() will
1758		 * return the previous one, so we always want to go to
1759		 * entry->next on the next loop iteration.
1760		 *
1761		 * There is an edge condition here that can occur if
1762		 * there is no entry at or before this address.  In
1763		 * this situation, vm_map_lookup_entry returns
1764		 * &map->header, which would cause our loop to abort
1765		 * without processing the rest of the map.  However,
1766		 * in practice this will never happen for process
1767		 * vm_map.  This is because the executable's text
1768		 * segment is the first mapping in the proc's address
1769		 * space, and this mapping is never removed until the
1770		 * process exits, so there will always be a non-header
1771		 * entry at or before the requested address for
1772		 * vm_map_lookup_entry to return.
1773		 */
1774		if (map->timestamp != last_timestamp)
1775			vm_map_lookup_entry(map, last_end - 1, &entry);
1776	}
1777
1778	vm_map_unlock_read(map);
1779	vmspace_free(vm);
1780	return;
1781}
1782
1783/*
1784 * Log mappings for all processes in the system.
1785 */
1786
1787static void
1788pmc_log_all_process_mappings(struct pmc_owner *po)
1789{
1790	struct proc *p, *top;
1791
1792	sx_assert(&pmc_sx, SX_XLOCKED);
1793
1794	if ((p = pfind(1)) == NULL)
1795		panic("[pmc,%d] Cannot find init", __LINE__);
1796
1797	PROC_UNLOCK(p);
1798
1799	sx_slock(&proctree_lock);
1800
1801	top = p;
1802
1803	for (;;) {
1804		pmc_log_process_mappings(po, p);
1805		if (!LIST_EMPTY(&p->p_children))
1806			p = LIST_FIRST(&p->p_children);
1807		else for (;;) {
1808			if (p == top)
1809				goto done;
1810			if (LIST_NEXT(p, p_sibling)) {
1811				p = LIST_NEXT(p, p_sibling);
1812				break;
1813			}
1814			p = p->p_pptr;
1815		}
1816	}
1817 done:
1818	sx_sunlock(&proctree_lock);
1819}
1820
1821/*
1822 * The 'hook' invoked from the kernel proper
1823 */
1824
1825
1826#ifdef	HWPMC_DEBUG
1827const char *pmc_hooknames[] = {
1828	/* these strings correspond to PMC_FN_* in <sys/pmckern.h> */
1829	"",
1830	"EXEC",
1831	"CSW-IN",
1832	"CSW-OUT",
1833	"SAMPLE",
1834	"UNUSED1",
1835	"UNUSED2",
1836	"MMAP",
1837	"MUNMAP",
1838	"CALLCHAIN-NMI",
1839	"CALLCHAIN-SOFT",
1840	"SOFTSAMPLING"
1841};
1842#endif
1843
1844static int
1845pmc_hook_handler(struct thread *td, int function, void *arg)
1846{
1847
1848	PMCDBG4(MOD,PMH,1, "hook td=%p func=%d \"%s\" arg=%p", td, function,
1849	    pmc_hooknames[function], arg);
1850
1851	switch (function)
1852	{
1853
1854	/*
1855	 * Process exec()
1856	 */
1857
1858	case PMC_FN_PROCESS_EXEC:
1859	{
1860		char *fullpath, *freepath;
1861		unsigned int ri;
1862		int is_using_hwpmcs;
1863		struct pmc *pm;
1864		struct proc *p;
1865		struct pmc_owner *po;
1866		struct pmc_process *pp;
1867		struct pmckern_procexec *pk;
1868
1869		sx_assert(&pmc_sx, SX_XLOCKED);
1870
1871		p = td->td_proc;
1872		pmc_getfilename(p->p_textvp, &fullpath, &freepath);
1873
1874		pk = (struct pmckern_procexec *) arg;
1875
1876		/* Inform owners of SS mode PMCs of the exec event. */
1877		LIST_FOREACH(po, &pmc_ss_owners, po_ssnext)
1878		    if (po->po_flags & PMC_PO_OWNS_LOGFILE)
1879			    pmclog_process_procexec(po, PMC_ID_INVALID,
1880				p->p_pid, pk->pm_entryaddr, fullpath);
1881
1882		PROC_LOCK(p);
1883		is_using_hwpmcs = p->p_flag & P_HWPMC;
1884		PROC_UNLOCK(p);
1885
1886		if (!is_using_hwpmcs) {
1887			if (freepath)
1888				free(freepath, M_TEMP);
1889			break;
1890		}
1891
1892		/*
1893		 * PMCs are not inherited across an exec():  remove any
1894		 * PMCs that this process is the owner of.
1895		 */
1896
1897		if ((po = pmc_find_owner_descriptor(p)) != NULL) {
1898			pmc_remove_owner(po);
1899			pmc_destroy_owner_descriptor(po);
1900		}
1901
1902		/*
1903		 * If the process being exec'ed is not the target of any
1904		 * PMC, we are done.
1905		 */
1906		if ((pp = pmc_find_process_descriptor(p, 0)) == NULL) {
1907			if (freepath)
1908				free(freepath, M_TEMP);
1909			break;
1910		}
1911
1912		/*
1913		 * Log the exec event to all monitoring owners.  Skip
1914		 * owners who have already received the event because
1915		 * they had system sampling PMCs active.
1916		 */
1917		for (ri = 0; ri < md->pmd_npmc; ri++)
1918			if ((pm = pp->pp_pmcs[ri].pp_pmc) != NULL) {
1919				po = pm->pm_owner;
1920				if (po->po_sscount == 0 &&
1921				    po->po_flags & PMC_PO_OWNS_LOGFILE)
1922					pmclog_process_procexec(po, pm->pm_id,
1923					    p->p_pid, pk->pm_entryaddr,
1924					    fullpath);
1925			}
1926
1927		if (freepath)
1928			free(freepath, M_TEMP);
1929
1930
1931		PMCDBG4(PRC,EXC,1, "exec proc=%p (%d, %s) cred-changed=%d",
1932		    p, p->p_pid, p->p_comm, pk->pm_credentialschanged);
1933
1934		if (pk->pm_credentialschanged == 0) /* no change */
1935			break;
1936
1937		/*
1938		 * If the newly exec()'ed process has a different credential
1939		 * than before, allow it to be the target of a PMC only if
1940		 * the PMC's owner has sufficient privilege.
1941		 */
1942
1943		for (ri = 0; ri < md->pmd_npmc; ri++)
1944			if ((pm = pp->pp_pmcs[ri].pp_pmc) != NULL)
1945				if (pmc_can_attach(pm, td->td_proc) != 0)
1946					pmc_detach_one_process(td->td_proc,
1947					    pm, PMC_FLAG_NONE);
1948
1949		KASSERT(pp->pp_refcnt >= 0 && pp->pp_refcnt <= (int) md->pmd_npmc,
1950		    ("[pmc,%d] Illegal ref count %d on pp %p", __LINE__,
1951			pp->pp_refcnt, pp));
1952
1953		/*
1954		 * If this process is no longer the target of any
1955		 * PMCs, we can remove the process entry and free
1956		 * up space.
1957		 */
1958
1959		if (pp->pp_refcnt == 0) {
1960			pmc_remove_process_descriptor(pp);
1961			free(pp, M_PMC);
1962			break;
1963		}
1964
1965	}
1966	break;
1967
1968	case PMC_FN_CSW_IN:
1969		pmc_process_csw_in(td);
1970		break;
1971
1972	case PMC_FN_CSW_OUT:
1973		pmc_process_csw_out(td);
1974		break;
1975
1976	/*
1977	 * Process accumulated PC samples.
1978	 *
1979	 * This function is expected to be called by hardclock() for
1980	 * each CPU that has accumulated PC samples.
1981	 *
1982	 * This function is to be executed on the CPU whose samples
1983	 * are being processed.
1984	 */
1985	case PMC_FN_DO_SAMPLES:
1986
1987		/*
1988		 * Clear the cpu specific bit in the CPU mask before
1989		 * do the rest of the processing.  If the NMI handler
1990		 * gets invoked after the "atomic_clear_int()" call
1991		 * below but before "pmc_process_samples()" gets
1992		 * around to processing the interrupt, then we will
1993		 * come back here at the next hardclock() tick (and
1994		 * may find nothing to do if "pmc_process_samples()"
1995		 * had already processed the interrupt).  We don't
1996		 * lose the interrupt sample.
1997		 */
1998		CPU_CLR_ATOMIC(PCPU_GET(cpuid), &pmc_cpumask);
1999		pmc_process_samples(PCPU_GET(cpuid), PMC_HR);
2000		pmc_process_samples(PCPU_GET(cpuid), PMC_SR);
2001		break;
2002
2003	case PMC_FN_MMAP:
2004		sx_assert(&pmc_sx, SX_LOCKED);
2005		pmc_process_mmap(td, (struct pmckern_map_in *) arg);
2006		break;
2007
2008	case PMC_FN_MUNMAP:
2009		sx_assert(&pmc_sx, SX_LOCKED);
2010		pmc_process_munmap(td, (struct pmckern_map_out *) arg);
2011		break;
2012
2013	case PMC_FN_USER_CALLCHAIN:
2014		/*
2015		 * Record a call chain.
2016		 */
2017		KASSERT(td == curthread, ("[pmc,%d] td != curthread",
2018		    __LINE__));
2019
2020		pmc_capture_user_callchain(PCPU_GET(cpuid), PMC_HR,
2021		    (struct trapframe *) arg);
2022		td->td_pflags &= ~TDP_CALLCHAIN;
2023		break;
2024
2025	case PMC_FN_USER_CALLCHAIN_SOFT:
2026		/*
2027		 * Record a call chain.
2028		 */
2029		KASSERT(td == curthread, ("[pmc,%d] td != curthread",
2030		    __LINE__));
2031		pmc_capture_user_callchain(PCPU_GET(cpuid), PMC_SR,
2032		    (struct trapframe *) arg);
2033		td->td_pflags &= ~TDP_CALLCHAIN;
2034		break;
2035
2036	case PMC_FN_SOFT_SAMPLING:
2037		/*
2038		 * Call soft PMC sampling intr.
2039		 */
2040		pmc_soft_intr((struct pmckern_soft *) arg);
2041		break;
2042
2043	default:
2044#ifdef	HWPMC_DEBUG
2045		KASSERT(0, ("[pmc,%d] unknown hook %d\n", __LINE__, function));
2046#endif
2047		break;
2048
2049	}
2050
2051	return 0;
2052}
2053
2054/*
2055 * allocate a 'struct pmc_owner' descriptor in the owner hash table.
2056 */
2057
2058static struct pmc_owner *
2059pmc_allocate_owner_descriptor(struct proc *p)
2060{
2061	uint32_t hindex;
2062	struct pmc_owner *po;
2063	struct pmc_ownerhash *poh;
2064
2065	hindex = PMC_HASH_PTR(p, pmc_ownerhashmask);
2066	poh = &pmc_ownerhash[hindex];
2067
2068	/* allocate space for N pointers and one descriptor struct */
2069	po = malloc(sizeof(struct pmc_owner), M_PMC, M_WAITOK|M_ZERO);
2070	po->po_owner = p;
2071	LIST_INSERT_HEAD(poh, po, po_next); /* insert into hash table */
2072
2073	TAILQ_INIT(&po->po_logbuffers);
2074	mtx_init(&po->po_mtx, "pmc-owner-mtx", "pmc-per-proc", MTX_SPIN);
2075
2076	PMCDBG4(OWN,ALL,1, "allocate-owner proc=%p (%d, %s) pmc-owner=%p",
2077	    p, p->p_pid, p->p_comm, po);
2078
2079	return po;
2080}
2081
2082static void
2083pmc_destroy_owner_descriptor(struct pmc_owner *po)
2084{
2085
2086	PMCDBG4(OWN,REL,1, "destroy-owner po=%p proc=%p (%d, %s)",
2087	    po, po->po_owner, po->po_owner->p_pid, po->po_owner->p_comm);
2088
2089	mtx_destroy(&po->po_mtx);
2090	free(po, M_PMC);
2091}
2092
2093/*
2094 * find the descriptor corresponding to process 'p', adding or removing it
2095 * as specified by 'mode'.
2096 */
2097
2098static struct pmc_process *
2099pmc_find_process_descriptor(struct proc *p, uint32_t mode)
2100{
2101	uint32_t hindex;
2102	struct pmc_process *pp, *ppnew;
2103	struct pmc_processhash *pph;
2104
2105	hindex = PMC_HASH_PTR(p, pmc_processhashmask);
2106	pph = &pmc_processhash[hindex];
2107
2108	ppnew = NULL;
2109
2110	/*
2111	 * Pre-allocate memory in the FIND_ALLOCATE case since we
2112	 * cannot call malloc(9) once we hold a spin lock.
2113	 */
2114	if (mode & PMC_FLAG_ALLOCATE)
2115		ppnew = malloc(sizeof(struct pmc_process) + md->pmd_npmc *
2116		    sizeof(struct pmc_targetstate), M_PMC, M_WAITOK|M_ZERO);
2117
2118	mtx_lock_spin(&pmc_processhash_mtx);
2119	LIST_FOREACH(pp, pph, pp_next)
2120	    if (pp->pp_proc == p)
2121		    break;
2122
2123	if ((mode & PMC_FLAG_REMOVE) && pp != NULL)
2124		LIST_REMOVE(pp, pp_next);
2125
2126	if ((mode & PMC_FLAG_ALLOCATE) && pp == NULL &&
2127	    ppnew != NULL) {
2128		ppnew->pp_proc = p;
2129		LIST_INSERT_HEAD(pph, ppnew, pp_next);
2130		pp = ppnew;
2131		ppnew = NULL;
2132	}
2133	mtx_unlock_spin(&pmc_processhash_mtx);
2134
2135	if (pp != NULL && ppnew != NULL)
2136		free(ppnew, M_PMC);
2137
2138	return pp;
2139}
2140
2141/*
2142 * remove a process descriptor from the process hash table.
2143 */
2144
2145static void
2146pmc_remove_process_descriptor(struct pmc_process *pp)
2147{
2148	KASSERT(pp->pp_refcnt == 0,
2149	    ("[pmc,%d] Removing process descriptor %p with count %d",
2150		__LINE__, pp, pp->pp_refcnt));
2151
2152	mtx_lock_spin(&pmc_processhash_mtx);
2153	LIST_REMOVE(pp, pp_next);
2154	mtx_unlock_spin(&pmc_processhash_mtx);
2155}
2156
2157
2158/*
2159 * find an owner descriptor corresponding to proc 'p'
2160 */
2161
2162static struct pmc_owner *
2163pmc_find_owner_descriptor(struct proc *p)
2164{
2165	uint32_t hindex;
2166	struct pmc_owner *po;
2167	struct pmc_ownerhash *poh;
2168
2169	hindex = PMC_HASH_PTR(p, pmc_ownerhashmask);
2170	poh = &pmc_ownerhash[hindex];
2171
2172	po = NULL;
2173	LIST_FOREACH(po, poh, po_next)
2174	    if (po->po_owner == p)
2175		    break;
2176
2177	PMCDBG5(OWN,FND,1, "find-owner proc=%p (%d, %s) hindex=0x%x -> "
2178	    "pmc-owner=%p", p, p->p_pid, p->p_comm, hindex, po);
2179
2180	return po;
2181}
2182
2183/*
2184 * pmc_allocate_pmc_descriptor
2185 *
2186 * Allocate a pmc descriptor and initialize its
2187 * fields.
2188 */
2189
2190static struct pmc *
2191pmc_allocate_pmc_descriptor(void)
2192{
2193	struct pmc *pmc;
2194
2195	pmc = malloc(sizeof(struct pmc), M_PMC, M_WAITOK|M_ZERO);
2196
2197	PMCDBG1(PMC,ALL,1, "allocate-pmc -> pmc=%p", pmc);
2198
2199	return pmc;
2200}
2201
2202/*
2203 * Destroy a pmc descriptor.
2204 */
2205
2206static void
2207pmc_destroy_pmc_descriptor(struct pmc *pm)
2208{
2209
2210	KASSERT(pm->pm_state == PMC_STATE_DELETED ||
2211	    pm->pm_state == PMC_STATE_FREE,
2212	    ("[pmc,%d] destroying non-deleted PMC", __LINE__));
2213	KASSERT(LIST_EMPTY(&pm->pm_targets),
2214	    ("[pmc,%d] destroying pmc with targets", __LINE__));
2215	KASSERT(pm->pm_owner == NULL,
2216	    ("[pmc,%d] destroying pmc attached to an owner", __LINE__));
2217	KASSERT(pm->pm_runcount == 0,
2218	    ("[pmc,%d] pmc has non-zero run count %d", __LINE__,
2219		pm->pm_runcount));
2220
2221	free(pm, M_PMC);
2222}
2223
2224static void
2225pmc_wait_for_pmc_idle(struct pmc *pm)
2226{
2227#ifdef HWPMC_DEBUG
2228	volatile int maxloop;
2229
2230	maxloop = 100 * pmc_cpu_max();
2231#endif
2232	/*
2233	 * Loop (with a forced context switch) till the PMC's runcount
2234	 * comes down to zero.
2235	 */
2236	while (atomic_load_acq_32(&pm->pm_runcount) > 0) {
2237#ifdef HWPMC_DEBUG
2238		maxloop--;
2239		KASSERT(maxloop > 0,
2240		    ("[pmc,%d] (ri%d, rc%d) waiting too long for "
2241			"pmc to be free", __LINE__,
2242			PMC_TO_ROWINDEX(pm), pm->pm_runcount));
2243#endif
2244		pmc_force_context_switch();
2245	}
2246}
2247
2248/*
2249 * This function does the following things:
2250 *
2251 *  - detaches the PMC from hardware
2252 *  - unlinks all target threads that were attached to it
2253 *  - removes the PMC from its owner's list
2254 *  - destroys the PMC private mutex
2255 *
2256 * Once this function completes, the given pmc pointer can be freed by
2257 * calling pmc_destroy_pmc_descriptor().
2258 */
2259
2260static void
2261pmc_release_pmc_descriptor(struct pmc *pm)
2262{
2263	enum pmc_mode mode;
2264	struct pmc_hw *phw;
2265	u_int adjri, ri, cpu;
2266	struct pmc_owner *po;
2267	struct pmc_binding pb;
2268	struct pmc_process *pp;
2269	struct pmc_classdep *pcd;
2270	struct pmc_target *ptgt, *tmp;
2271
2272	sx_assert(&pmc_sx, SX_XLOCKED);
2273
2274	KASSERT(pm, ("[pmc,%d] null pmc", __LINE__));
2275
2276	ri   = PMC_TO_ROWINDEX(pm);
2277	pcd  = pmc_ri_to_classdep(md, ri, &adjri);
2278	mode = PMC_TO_MODE(pm);
2279
2280	PMCDBG3(PMC,REL,1, "release-pmc pmc=%p ri=%d mode=%d", pm, ri,
2281	    mode);
2282
2283	/*
2284	 * First, we take the PMC off hardware.
2285	 */
2286	cpu = 0;
2287	if (PMC_IS_SYSTEM_MODE(mode)) {
2288
2289		/*
2290		 * A system mode PMC runs on a specific CPU.  Switch
2291		 * to this CPU and turn hardware off.
2292		 */
2293		pmc_save_cpu_binding(&pb);
2294
2295		cpu = PMC_TO_CPU(pm);
2296
2297		pmc_select_cpu(cpu);
2298
2299		/* switch off non-stalled CPUs */
2300		CPU_CLR_ATOMIC(cpu, &pm->pm_cpustate);
2301		if (pm->pm_state == PMC_STATE_RUNNING &&
2302		    !CPU_ISSET(cpu, &pm->pm_stalled)) {
2303
2304			phw = pmc_pcpu[cpu]->pc_hwpmcs[ri];
2305
2306			KASSERT(phw->phw_pmc == pm,
2307			    ("[pmc, %d] pmc ptr ri(%d) hw(%p) pm(%p)",
2308				__LINE__, ri, phw->phw_pmc, pm));
2309			PMCDBG2(PMC,REL,2, "stopping cpu=%d ri=%d", cpu, ri);
2310
2311			critical_enter();
2312			pcd->pcd_stop_pmc(cpu, adjri);
2313			critical_exit();
2314		}
2315
2316		PMCDBG2(PMC,REL,2, "decfg cpu=%d ri=%d", cpu, ri);
2317
2318		critical_enter();
2319		pcd->pcd_config_pmc(cpu, adjri, NULL);
2320		critical_exit();
2321
2322		/* adjust the global and process count of SS mode PMCs */
2323		if (mode == PMC_MODE_SS && pm->pm_state == PMC_STATE_RUNNING) {
2324			po = pm->pm_owner;
2325			po->po_sscount--;
2326			if (po->po_sscount == 0) {
2327				atomic_subtract_rel_int(&pmc_ss_count, 1);
2328				LIST_REMOVE(po, po_ssnext);
2329			}
2330		}
2331
2332		pm->pm_state = PMC_STATE_DELETED;
2333
2334		pmc_restore_cpu_binding(&pb);
2335
2336		/*
2337		 * We could have references to this PMC structure in
2338		 * the per-cpu sample queues.  Wait for the queue to
2339		 * drain.
2340		 */
2341		pmc_wait_for_pmc_idle(pm);
2342
2343	} else if (PMC_IS_VIRTUAL_MODE(mode)) {
2344
2345		/*
2346		 * A virtual PMC could be running on multiple CPUs at
2347		 * a given instant.
2348		 *
2349		 * By marking its state as DELETED, we ensure that
2350		 * this PMC is never further scheduled on hardware.
2351		 *
2352		 * Then we wait till all CPUs are done with this PMC.
2353		 */
2354		pm->pm_state = PMC_STATE_DELETED;
2355
2356
2357		/* Wait for the PMCs runcount to come to zero. */
2358		pmc_wait_for_pmc_idle(pm);
2359
2360		/*
2361		 * At this point the PMC is off all CPUs and cannot be
2362		 * freshly scheduled onto a CPU.  It is now safe to
2363		 * unlink all targets from this PMC.  If a
2364		 * process-record's refcount falls to zero, we remove
2365		 * it from the hash table.  The module-wide SX lock
2366		 * protects us from races.
2367		 */
2368		LIST_FOREACH_SAFE(ptgt, &pm->pm_targets, pt_next, tmp) {
2369			pp = ptgt->pt_process;
2370			pmc_unlink_target_process(pm, pp); /* frees 'ptgt' */
2371
2372			PMCDBG1(PMC,REL,3, "pp->refcnt=%d", pp->pp_refcnt);
2373
2374			/*
2375			 * If the target process record shows that no
2376			 * PMCs are attached to it, reclaim its space.
2377			 */
2378
2379			if (pp->pp_refcnt == 0) {
2380				pmc_remove_process_descriptor(pp);
2381				free(pp, M_PMC);
2382			}
2383		}
2384
2385		cpu = curthread->td_oncpu; /* setup cpu for pmd_release() */
2386
2387	}
2388
2389	/*
2390	 * Release any MD resources
2391	 */
2392	(void) pcd->pcd_release_pmc(cpu, adjri, pm);
2393
2394	/*
2395	 * Update row disposition
2396	 */
2397
2398	if (PMC_IS_SYSTEM_MODE(PMC_TO_MODE(pm)))
2399		PMC_UNMARK_ROW_STANDALONE(ri);
2400	else
2401		PMC_UNMARK_ROW_THREAD(ri);
2402
2403	/* unlink from the owner's list */
2404	if (pm->pm_owner) {
2405		LIST_REMOVE(pm, pm_next);
2406		pm->pm_owner = NULL;
2407	}
2408}
2409
2410/*
2411 * Register an owner and a pmc.
2412 */
2413
2414static int
2415pmc_register_owner(struct proc *p, struct pmc *pmc)
2416{
2417	struct pmc_owner *po;
2418
2419	sx_assert(&pmc_sx, SX_XLOCKED);
2420
2421	if ((po = pmc_find_owner_descriptor(p)) == NULL)
2422		if ((po = pmc_allocate_owner_descriptor(p)) == NULL)
2423			return ENOMEM;
2424
2425	KASSERT(pmc->pm_owner == NULL,
2426	    ("[pmc,%d] attempting to own an initialized PMC", __LINE__));
2427	pmc->pm_owner  = po;
2428
2429	LIST_INSERT_HEAD(&po->po_pmcs, pmc, pm_next);
2430
2431	PROC_LOCK(p);
2432	p->p_flag |= P_HWPMC;
2433	PROC_UNLOCK(p);
2434
2435	if (po->po_flags & PMC_PO_OWNS_LOGFILE)
2436		pmclog_process_pmcallocate(pmc);
2437
2438	PMCDBG2(PMC,REG,1, "register-owner pmc-owner=%p pmc=%p",
2439	    po, pmc);
2440
2441	return 0;
2442}
2443
2444/*
2445 * Return the current row disposition:
2446 * == 0 => FREE
2447 *  > 0 => PROCESS MODE
2448 *  < 0 => SYSTEM MODE
2449 */
2450
2451int
2452pmc_getrowdisp(int ri)
2453{
2454	return pmc_pmcdisp[ri];
2455}
2456
2457/*
2458 * Check if a PMC at row index 'ri' can be allocated to the current
2459 * process.
2460 *
2461 * Allocation can fail if:
2462 *   - the current process is already being profiled by a PMC at index 'ri',
2463 *     attached to it via OP_PMCATTACH.
2464 *   - the current process has already allocated a PMC at index 'ri'
2465 *     via OP_ALLOCATE.
2466 */
2467
2468static int
2469pmc_can_allocate_rowindex(struct proc *p, unsigned int ri, int cpu)
2470{
2471	enum pmc_mode mode;
2472	struct pmc *pm;
2473	struct pmc_owner *po;
2474	struct pmc_process *pp;
2475
2476	PMCDBG5(PMC,ALR,1, "can-allocate-rowindex proc=%p (%d, %s) ri=%d "
2477	    "cpu=%d", p, p->p_pid, p->p_comm, ri, cpu);
2478
2479	/*
2480	 * We shouldn't have already allocated a process-mode PMC at
2481	 * row index 'ri'.
2482	 *
2483	 * We shouldn't have allocated a system-wide PMC on the same
2484	 * CPU and same RI.
2485	 */
2486	if ((po = pmc_find_owner_descriptor(p)) != NULL)
2487		LIST_FOREACH(pm, &po->po_pmcs, pm_next) {
2488		    if (PMC_TO_ROWINDEX(pm) == ri) {
2489			    mode = PMC_TO_MODE(pm);
2490			    if (PMC_IS_VIRTUAL_MODE(mode))
2491				    return EEXIST;
2492			    if (PMC_IS_SYSTEM_MODE(mode) &&
2493				(int) PMC_TO_CPU(pm) == cpu)
2494				    return EEXIST;
2495		    }
2496	        }
2497
2498	/*
2499	 * We also shouldn't be the target of any PMC at this index
2500	 * since otherwise a PMC_ATTACH to ourselves will fail.
2501	 */
2502	if ((pp = pmc_find_process_descriptor(p, 0)) != NULL)
2503		if (pp->pp_pmcs[ri].pp_pmc)
2504			return EEXIST;
2505
2506	PMCDBG4(PMC,ALR,2, "can-allocate-rowindex proc=%p (%d, %s) ri=%d ok",
2507	    p, p->p_pid, p->p_comm, ri);
2508
2509	return 0;
2510}
2511
2512/*
2513 * Check if a given PMC at row index 'ri' can be currently used in
2514 * mode 'mode'.
2515 */
2516
2517static int
2518pmc_can_allocate_row(int ri, enum pmc_mode mode)
2519{
2520	enum pmc_disp	disp;
2521
2522	sx_assert(&pmc_sx, SX_XLOCKED);
2523
2524	PMCDBG2(PMC,ALR,1, "can-allocate-row ri=%d mode=%d", ri, mode);
2525
2526	if (PMC_IS_SYSTEM_MODE(mode))
2527		disp = PMC_DISP_STANDALONE;
2528	else
2529		disp = PMC_DISP_THREAD;
2530
2531	/*
2532	 * check disposition for PMC row 'ri':
2533	 *
2534	 * Expected disposition		Row-disposition		Result
2535	 *
2536	 * STANDALONE			STANDALONE or FREE	proceed
2537	 * STANDALONE			THREAD			fail
2538	 * THREAD			THREAD or FREE		proceed
2539	 * THREAD			STANDALONE		fail
2540	 */
2541
2542	if (!PMC_ROW_DISP_IS_FREE(ri) &&
2543	    !(disp == PMC_DISP_THREAD && PMC_ROW_DISP_IS_THREAD(ri)) &&
2544	    !(disp == PMC_DISP_STANDALONE && PMC_ROW_DISP_IS_STANDALONE(ri)))
2545		return EBUSY;
2546
2547	/*
2548	 * All OK
2549	 */
2550
2551	PMCDBG2(PMC,ALR,2, "can-allocate-row ri=%d mode=%d ok", ri, mode);
2552
2553	return 0;
2554
2555}
2556
2557/*
2558 * Find a PMC descriptor with user handle 'pmcid' for thread 'td'.
2559 */
2560
2561static struct pmc *
2562pmc_find_pmc_descriptor_in_process(struct pmc_owner *po, pmc_id_t pmcid)
2563{
2564	struct pmc *pm;
2565
2566	KASSERT(PMC_ID_TO_ROWINDEX(pmcid) < md->pmd_npmc,
2567	    ("[pmc,%d] Illegal pmc index %d (max %d)", __LINE__,
2568		PMC_ID_TO_ROWINDEX(pmcid), md->pmd_npmc));
2569
2570	LIST_FOREACH(pm, &po->po_pmcs, pm_next)
2571	    if (pm->pm_id == pmcid)
2572		    return pm;
2573
2574	return NULL;
2575}
2576
2577static int
2578pmc_find_pmc(pmc_id_t pmcid, struct pmc **pmc)
2579{
2580
2581	struct pmc *pm, *opm;
2582	struct pmc_owner *po;
2583	struct pmc_process *pp;
2584
2585	KASSERT(PMC_ID_TO_ROWINDEX(pmcid) < md->pmd_npmc,
2586	    ("[pmc,%d] Illegal pmc index %d (max %d)", __LINE__,
2587		PMC_ID_TO_ROWINDEX(pmcid), md->pmd_npmc));
2588	PMCDBG1(PMC,FND,1, "find-pmc id=%d", pmcid);
2589
2590	if ((po = pmc_find_owner_descriptor(curthread->td_proc)) == NULL) {
2591		/*
2592		 * In case of PMC_F_DESCENDANTS child processes we will not find
2593		 * the current process in the owners hash list.  Find the owner
2594		 * process first and from there lookup the po.
2595		 */
2596		if ((pp = pmc_find_process_descriptor(curthread->td_proc,
2597		    PMC_FLAG_NONE)) == NULL) {
2598			return ESRCH;
2599		} else {
2600			opm = pp->pp_pmcs[PMC_ID_TO_ROWINDEX(pmcid)].pp_pmc;
2601			if (opm == NULL)
2602				return ESRCH;
2603			if ((opm->pm_flags & (PMC_F_ATTACHED_TO_OWNER|
2604			    PMC_F_DESCENDANTS)) != (PMC_F_ATTACHED_TO_OWNER|
2605			    PMC_F_DESCENDANTS))
2606				return ESRCH;
2607			po = opm->pm_owner;
2608		}
2609	}
2610
2611	if ((pm = pmc_find_pmc_descriptor_in_process(po, pmcid)) == NULL)
2612		return EINVAL;
2613
2614	PMCDBG2(PMC,FND,2, "find-pmc id=%d -> pmc=%p", pmcid, pm);
2615
2616	*pmc = pm;
2617	return 0;
2618}
2619
2620/*
2621 * Start a PMC.
2622 */
2623
2624static int
2625pmc_start(struct pmc *pm)
2626{
2627	enum pmc_mode mode;
2628	struct pmc_owner *po;
2629	struct pmc_binding pb;
2630	struct pmc_classdep *pcd;
2631	int adjri, error, cpu, ri;
2632
2633	KASSERT(pm != NULL,
2634	    ("[pmc,%d] null pm", __LINE__));
2635
2636	mode = PMC_TO_MODE(pm);
2637	ri   = PMC_TO_ROWINDEX(pm);
2638	pcd  = pmc_ri_to_classdep(md, ri, &adjri);
2639
2640	error = 0;
2641
2642	PMCDBG3(PMC,OPS,1, "start pmc=%p mode=%d ri=%d", pm, mode, ri);
2643
2644	po = pm->pm_owner;
2645
2646	/*
2647	 * Disallow PMCSTART if a logfile is required but has not been
2648	 * configured yet.
2649	 */
2650	if ((pm->pm_flags & PMC_F_NEEDS_LOGFILE) &&
2651	    (po->po_flags & PMC_PO_OWNS_LOGFILE) == 0)
2652		return (EDOOFUS);	/* programming error */
2653
2654	/*
2655	 * If this is a sampling mode PMC, log mapping information for
2656	 * the kernel modules that are currently loaded.
2657	 */
2658	if (PMC_IS_SAMPLING_MODE(PMC_TO_MODE(pm)))
2659	    pmc_log_kernel_mappings(pm);
2660
2661	if (PMC_IS_VIRTUAL_MODE(mode)) {
2662
2663		/*
2664		 * If a PMCATTACH has never been done on this PMC,
2665		 * attach it to its owner process.
2666		 */
2667
2668		if (LIST_EMPTY(&pm->pm_targets))
2669			error = (pm->pm_flags & PMC_F_ATTACH_DONE) ? ESRCH :
2670			    pmc_attach_process(po->po_owner, pm);
2671
2672		/*
2673		 * If the PMC is attached to its owner, then force a context
2674		 * switch to ensure that the MD state gets set correctly.
2675		 */
2676
2677		if (error == 0) {
2678			pm->pm_state = PMC_STATE_RUNNING;
2679			if (pm->pm_flags & PMC_F_ATTACHED_TO_OWNER)
2680				pmc_force_context_switch();
2681		}
2682
2683		return (error);
2684	}
2685
2686
2687	/*
2688	 * A system-wide PMC.
2689	 *
2690	 * Add the owner to the global list if this is a system-wide
2691	 * sampling PMC.
2692	 */
2693
2694	if (mode == PMC_MODE_SS) {
2695		if (po->po_sscount == 0) {
2696			LIST_INSERT_HEAD(&pmc_ss_owners, po, po_ssnext);
2697			atomic_add_rel_int(&pmc_ss_count, 1);
2698			PMCDBG1(PMC,OPS,1, "po=%p in global list", po);
2699		}
2700		po->po_sscount++;
2701
2702		/*
2703		 * Log mapping information for all existing processes in the
2704		 * system.  Subsequent mappings are logged as they happen;
2705		 * see pmc_process_mmap().
2706		 */
2707		if (po->po_logprocmaps == 0) {
2708			pmc_log_all_process_mappings(po);
2709			po->po_logprocmaps = 1;
2710		}
2711	}
2712
2713	/*
2714	 * Move to the CPU associated with this
2715	 * PMC, and start the hardware.
2716	 */
2717
2718	pmc_save_cpu_binding(&pb);
2719
2720	cpu = PMC_TO_CPU(pm);
2721
2722	if (!pmc_cpu_is_active(cpu))
2723		return (ENXIO);
2724
2725	pmc_select_cpu(cpu);
2726
2727	/*
2728	 * global PMCs are configured at allocation time
2729	 * so write out the initial value and start the PMC.
2730	 */
2731
2732	pm->pm_state = PMC_STATE_RUNNING;
2733
2734	critical_enter();
2735	if ((error = pcd->pcd_write_pmc(cpu, adjri,
2736		 PMC_IS_SAMPLING_MODE(mode) ?
2737		 pm->pm_sc.pm_reloadcount :
2738		 pm->pm_sc.pm_initial)) == 0) {
2739		/* If a sampling mode PMC, reset stalled state. */
2740		if (PMC_IS_SAMPLING_MODE(mode))
2741			CPU_CLR_ATOMIC(cpu, &pm->pm_stalled);
2742
2743		/* Indicate that we desire this to run. Start it. */
2744		CPU_SET_ATOMIC(cpu, &pm->pm_cpustate);
2745		error = pcd->pcd_start_pmc(cpu, adjri);
2746	}
2747	critical_exit();
2748
2749	pmc_restore_cpu_binding(&pb);
2750
2751	return (error);
2752}
2753
2754/*
2755 * Stop a PMC.
2756 */
2757
2758static int
2759pmc_stop(struct pmc *pm)
2760{
2761	struct pmc_owner *po;
2762	struct pmc_binding pb;
2763	struct pmc_classdep *pcd;
2764	int adjri, cpu, error, ri;
2765
2766	KASSERT(pm != NULL, ("[pmc,%d] null pmc", __LINE__));
2767
2768	PMCDBG3(PMC,OPS,1, "stop pmc=%p mode=%d ri=%d", pm,
2769	    PMC_TO_MODE(pm), PMC_TO_ROWINDEX(pm));
2770
2771	pm->pm_state = PMC_STATE_STOPPED;
2772
2773	/*
2774	 * If the PMC is a virtual mode one, changing the state to
2775	 * non-RUNNING is enough to ensure that the PMC never gets
2776	 * scheduled.
2777	 *
2778	 * If this PMC is current running on a CPU, then it will
2779	 * handled correctly at the time its target process is context
2780	 * switched out.
2781	 */
2782
2783	if (PMC_IS_VIRTUAL_MODE(PMC_TO_MODE(pm)))
2784		return 0;
2785
2786	/*
2787	 * A system-mode PMC.  Move to the CPU associated with
2788	 * this PMC, and stop the hardware.  We update the
2789	 * 'initial count' so that a subsequent PMCSTART will
2790	 * resume counting from the current hardware count.
2791	 */
2792
2793	pmc_save_cpu_binding(&pb);
2794
2795	cpu = PMC_TO_CPU(pm);
2796
2797	KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
2798	    ("[pmc,%d] illegal cpu=%d", __LINE__, cpu));
2799
2800	if (!pmc_cpu_is_active(cpu))
2801		return ENXIO;
2802
2803	pmc_select_cpu(cpu);
2804
2805	ri = PMC_TO_ROWINDEX(pm);
2806	pcd = pmc_ri_to_classdep(md, ri, &adjri);
2807
2808	CPU_CLR_ATOMIC(cpu, &pm->pm_cpustate);
2809	critical_enter();
2810	if ((error = pcd->pcd_stop_pmc(cpu, adjri)) == 0)
2811		error = pcd->pcd_read_pmc(cpu, adjri, &pm->pm_sc.pm_initial);
2812	critical_exit();
2813
2814	pmc_restore_cpu_binding(&pb);
2815
2816	po = pm->pm_owner;
2817
2818	/* remove this owner from the global list of SS PMC owners */
2819	if (PMC_TO_MODE(pm) == PMC_MODE_SS) {
2820		po->po_sscount--;
2821		if (po->po_sscount == 0) {
2822			atomic_subtract_rel_int(&pmc_ss_count, 1);
2823			LIST_REMOVE(po, po_ssnext);
2824			PMCDBG1(PMC,OPS,2,"po=%p removed from global list", po);
2825		}
2826	}
2827
2828	return (error);
2829}
2830
2831
2832#ifdef	HWPMC_DEBUG
2833static const char *pmc_op_to_name[] = {
2834#undef	__PMC_OP
2835#define	__PMC_OP(N, D)	#N ,
2836	__PMC_OPS()
2837	NULL
2838};
2839#endif
2840
2841/*
2842 * The syscall interface
2843 */
2844
2845#define	PMC_GET_SX_XLOCK(...) do {		\
2846	sx_xlock(&pmc_sx);			\
2847	if (pmc_hook == NULL) {			\
2848		sx_xunlock(&pmc_sx);		\
2849		return __VA_ARGS__;		\
2850	}					\
2851} while (0)
2852
2853#define	PMC_DOWNGRADE_SX() do {			\
2854	sx_downgrade(&pmc_sx);			\
2855	is_sx_downgraded = 1;			\
2856} while (0)
2857
2858static int
2859pmc_syscall_handler(struct thread *td, void *syscall_args)
2860{
2861	int error, is_sx_downgraded, is_sx_locked, op;
2862	struct pmc_syscall_args *c;
2863	void *arg;
2864
2865	PMC_GET_SX_XLOCK(ENOSYS);
2866
2867	DROP_GIANT();
2868
2869	is_sx_downgraded = 0;
2870	is_sx_locked = 1;
2871
2872	c = (struct pmc_syscall_args *) syscall_args;
2873
2874	op = c->pmop_code;
2875	arg = c->pmop_data;
2876
2877	PMCDBG3(MOD,PMS,1, "syscall op=%d \"%s\" arg=%p", op,
2878	    pmc_op_to_name[op], arg);
2879
2880	error = 0;
2881	atomic_add_int(&pmc_stats.pm_syscalls, 1);
2882
2883	switch(op)
2884	{
2885
2886
2887	/*
2888	 * Configure a log file.
2889	 *
2890	 * XXX This OP will be reworked.
2891	 */
2892
2893	case PMC_OP_CONFIGURELOG:
2894	{
2895		struct proc *p;
2896		struct pmc *pm;
2897		struct pmc_owner *po;
2898		struct pmc_op_configurelog cl;
2899
2900		sx_assert(&pmc_sx, SX_XLOCKED);
2901
2902		if ((error = copyin(arg, &cl, sizeof(cl))) != 0)
2903			break;
2904
2905		/* mark this process as owning a log file */
2906		p = td->td_proc;
2907		if ((po = pmc_find_owner_descriptor(p)) == NULL)
2908			if ((po = pmc_allocate_owner_descriptor(p)) == NULL) {
2909				error = ENOMEM;
2910				break;
2911			}
2912
2913		/*
2914		 * If a valid fd was passed in, try to configure that,
2915		 * otherwise if 'fd' was less than zero and there was
2916		 * a log file configured, flush its buffers and
2917		 * de-configure it.
2918		 */
2919		if (cl.pm_logfd >= 0) {
2920			sx_xunlock(&pmc_sx);
2921			is_sx_locked = 0;
2922			error = pmclog_configure_log(md, po, cl.pm_logfd);
2923		} else if (po->po_flags & PMC_PO_OWNS_LOGFILE) {
2924			pmclog_process_closelog(po);
2925			error = pmclog_close(po);
2926			if (error == 0) {
2927				LIST_FOREACH(pm, &po->po_pmcs, pm_next)
2928				    if (pm->pm_flags & PMC_F_NEEDS_LOGFILE &&
2929					pm->pm_state == PMC_STATE_RUNNING)
2930					    pmc_stop(pm);
2931				error = pmclog_deconfigure_log(po);
2932			}
2933		} else
2934			error = EINVAL;
2935
2936		if (error)
2937			break;
2938	}
2939	break;
2940
2941	/*
2942	 * Flush a log file.
2943	 */
2944
2945	case PMC_OP_FLUSHLOG:
2946	{
2947		struct pmc_owner *po;
2948
2949		sx_assert(&pmc_sx, SX_XLOCKED);
2950
2951		if ((po = pmc_find_owner_descriptor(td->td_proc)) == NULL) {
2952			error = EINVAL;
2953			break;
2954		}
2955
2956		error = pmclog_flush(po);
2957	}
2958	break;
2959
2960	/*
2961	 * Close a log file.
2962	 */
2963
2964	case PMC_OP_CLOSELOG:
2965	{
2966		struct pmc_owner *po;
2967
2968		sx_assert(&pmc_sx, SX_XLOCKED);
2969
2970		if ((po = pmc_find_owner_descriptor(td->td_proc)) == NULL) {
2971			error = EINVAL;
2972			break;
2973		}
2974
2975		error = pmclog_close(po);
2976	}
2977	break;
2978
2979	/*
2980	 * Retrieve hardware configuration.
2981	 */
2982
2983	case PMC_OP_GETCPUINFO:	/* CPU information */
2984	{
2985		struct pmc_op_getcpuinfo gci;
2986		struct pmc_classinfo *pci;
2987		struct pmc_classdep *pcd;
2988		int cl;
2989
2990		gci.pm_cputype = md->pmd_cputype;
2991		gci.pm_ncpu    = pmc_cpu_max();
2992		gci.pm_npmc    = md->pmd_npmc;
2993		gci.pm_nclass  = md->pmd_nclass;
2994		pci = gci.pm_classes;
2995		pcd = md->pmd_classdep;
2996		for (cl = 0; cl < md->pmd_nclass; cl++, pci++, pcd++) {
2997			pci->pm_caps  = pcd->pcd_caps;
2998			pci->pm_class = pcd->pcd_class;
2999			pci->pm_width = pcd->pcd_width;
3000			pci->pm_num   = pcd->pcd_num;
3001		}
3002		error = copyout(&gci, arg, sizeof(gci));
3003	}
3004	break;
3005
3006	/*
3007	 * Retrieve soft events list.
3008	 */
3009	case PMC_OP_GETDYNEVENTINFO:
3010	{
3011		enum pmc_class			cl;
3012		enum pmc_event			ev;
3013		struct pmc_op_getdyneventinfo	*gei;
3014		struct pmc_dyn_event_descr	dev;
3015		struct pmc_soft			*ps;
3016		uint32_t			nevent;
3017
3018		sx_assert(&pmc_sx, SX_LOCKED);
3019
3020		gei = (struct pmc_op_getdyneventinfo *) arg;
3021
3022		if ((error = copyin(&gei->pm_class, &cl, sizeof(cl))) != 0)
3023			break;
3024
3025		/* Only SOFT class is dynamic. */
3026		if (cl != PMC_CLASS_SOFT) {
3027			error = EINVAL;
3028			break;
3029		}
3030
3031		nevent = 0;
3032		for (ev = PMC_EV_SOFT_FIRST; (int)ev <= PMC_EV_SOFT_LAST; ev++) {
3033			ps = pmc_soft_ev_acquire(ev);
3034			if (ps == NULL)
3035				continue;
3036			bcopy(&ps->ps_ev, &dev, sizeof(dev));
3037			pmc_soft_ev_release(ps);
3038
3039			error = copyout(&dev,
3040			    &gei->pm_events[nevent],
3041			    sizeof(struct pmc_dyn_event_descr));
3042			if (error != 0)
3043				break;
3044			nevent++;
3045		}
3046		if (error != 0)
3047			break;
3048
3049		error = copyout(&nevent, &gei->pm_nevent,
3050		    sizeof(nevent));
3051	}
3052	break;
3053
3054	/*
3055	 * Get module statistics
3056	 */
3057
3058	case PMC_OP_GETDRIVERSTATS:
3059	{
3060		struct pmc_op_getdriverstats gms;
3061
3062		bcopy(&pmc_stats, &gms, sizeof(gms));
3063		error = copyout(&gms, arg, sizeof(gms));
3064	}
3065	break;
3066
3067
3068	/*
3069	 * Retrieve module version number
3070	 */
3071
3072	case PMC_OP_GETMODULEVERSION:
3073	{
3074		uint32_t cv, modv;
3075
3076		/* retrieve the client's idea of the ABI version */
3077		if ((error = copyin(arg, &cv, sizeof(uint32_t))) != 0)
3078			break;
3079		/* don't service clients newer than our driver */
3080		modv = PMC_VERSION;
3081		if ((cv & 0xFFFF0000) > (modv & 0xFFFF0000)) {
3082			error = EPROGMISMATCH;
3083			break;
3084		}
3085		error = copyout(&modv, arg, sizeof(int));
3086	}
3087	break;
3088
3089
3090	/*
3091	 * Retrieve the state of all the PMCs on a given
3092	 * CPU.
3093	 */
3094
3095	case PMC_OP_GETPMCINFO:
3096	{
3097		int ari;
3098		struct pmc *pm;
3099		size_t pmcinfo_size;
3100		uint32_t cpu, n, npmc;
3101		struct pmc_owner *po;
3102		struct pmc_binding pb;
3103		struct pmc_classdep *pcd;
3104		struct pmc_info *p, *pmcinfo;
3105		struct pmc_op_getpmcinfo *gpi;
3106
3107		PMC_DOWNGRADE_SX();
3108
3109		gpi = (struct pmc_op_getpmcinfo *) arg;
3110
3111		if ((error = copyin(&gpi->pm_cpu, &cpu, sizeof(cpu))) != 0)
3112			break;
3113
3114		if (cpu >= pmc_cpu_max()) {
3115			error = EINVAL;
3116			break;
3117		}
3118
3119		if (!pmc_cpu_is_active(cpu)) {
3120			error = ENXIO;
3121			break;
3122		}
3123
3124		/* switch to CPU 'cpu' */
3125		pmc_save_cpu_binding(&pb);
3126		pmc_select_cpu(cpu);
3127
3128		npmc = md->pmd_npmc;
3129
3130		pmcinfo_size = npmc * sizeof(struct pmc_info);
3131		pmcinfo = malloc(pmcinfo_size, M_PMC, M_WAITOK);
3132
3133		p = pmcinfo;
3134
3135		for (n = 0; n < md->pmd_npmc; n++, p++) {
3136
3137			pcd = pmc_ri_to_classdep(md, n, &ari);
3138
3139			KASSERT(pcd != NULL,
3140			    ("[pmc,%d] null pcd ri=%d", __LINE__, n));
3141
3142			if ((error = pcd->pcd_describe(cpu, ari, p, &pm)) != 0)
3143				break;
3144
3145			if (PMC_ROW_DISP_IS_STANDALONE(n))
3146				p->pm_rowdisp = PMC_DISP_STANDALONE;
3147			else if (PMC_ROW_DISP_IS_THREAD(n))
3148				p->pm_rowdisp = PMC_DISP_THREAD;
3149			else
3150				p->pm_rowdisp = PMC_DISP_FREE;
3151
3152			p->pm_ownerpid = -1;
3153
3154			if (pm == NULL)	/* no PMC associated */
3155				continue;
3156
3157			po = pm->pm_owner;
3158
3159			KASSERT(po->po_owner != NULL,
3160			    ("[pmc,%d] pmc_owner had a null proc pointer",
3161				__LINE__));
3162
3163			p->pm_ownerpid = po->po_owner->p_pid;
3164			p->pm_mode     = PMC_TO_MODE(pm);
3165			p->pm_event    = pm->pm_event;
3166			p->pm_flags    = pm->pm_flags;
3167
3168			if (PMC_IS_SAMPLING_MODE(PMC_TO_MODE(pm)))
3169				p->pm_reloadcount =
3170				    pm->pm_sc.pm_reloadcount;
3171		}
3172
3173		pmc_restore_cpu_binding(&pb);
3174
3175		/* now copy out the PMC info collected */
3176		if (error == 0)
3177			error = copyout(pmcinfo, &gpi->pm_pmcs, pmcinfo_size);
3178
3179		free(pmcinfo, M_PMC);
3180	}
3181	break;
3182
3183
3184	/*
3185	 * Set the administrative state of a PMC.  I.e. whether
3186	 * the PMC is to be used or not.
3187	 */
3188
3189	case PMC_OP_PMCADMIN:
3190	{
3191		int cpu, ri;
3192		enum pmc_state request;
3193		struct pmc_cpu *pc;
3194		struct pmc_hw *phw;
3195		struct pmc_op_pmcadmin pma;
3196		struct pmc_binding pb;
3197
3198		sx_assert(&pmc_sx, SX_XLOCKED);
3199
3200		KASSERT(td == curthread,
3201		    ("[pmc,%d] td != curthread", __LINE__));
3202
3203		error = priv_check(td, PRIV_PMC_MANAGE);
3204		if (error)
3205			break;
3206
3207		if ((error = copyin(arg, &pma, sizeof(pma))) != 0)
3208			break;
3209
3210		cpu = pma.pm_cpu;
3211
3212		if (cpu < 0 || cpu >= (int) pmc_cpu_max()) {
3213			error = EINVAL;
3214			break;
3215		}
3216
3217		if (!pmc_cpu_is_active(cpu)) {
3218			error = ENXIO;
3219			break;
3220		}
3221
3222		request = pma.pm_state;
3223
3224		if (request != PMC_STATE_DISABLED &&
3225		    request != PMC_STATE_FREE) {
3226			error = EINVAL;
3227			break;
3228		}
3229
3230		ri = pma.pm_pmc; /* pmc id == row index */
3231		if (ri < 0 || ri >= (int) md->pmd_npmc) {
3232			error = EINVAL;
3233			break;
3234		}
3235
3236		/*
3237		 * We can't disable a PMC with a row-index allocated
3238		 * for process virtual PMCs.
3239		 */
3240
3241		if (PMC_ROW_DISP_IS_THREAD(ri) &&
3242		    request == PMC_STATE_DISABLED) {
3243			error = EBUSY;
3244			break;
3245		}
3246
3247		/*
3248		 * otherwise, this PMC on this CPU is either free or
3249		 * in system-wide mode.
3250		 */
3251
3252		pmc_save_cpu_binding(&pb);
3253		pmc_select_cpu(cpu);
3254
3255		pc  = pmc_pcpu[cpu];
3256		phw = pc->pc_hwpmcs[ri];
3257
3258		/*
3259		 * XXX do we need some kind of 'forced' disable?
3260		 */
3261
3262		if (phw->phw_pmc == NULL) {
3263			if (request == PMC_STATE_DISABLED &&
3264			    (phw->phw_state & PMC_PHW_FLAG_IS_ENABLED)) {
3265				phw->phw_state &= ~PMC_PHW_FLAG_IS_ENABLED;
3266				PMC_MARK_ROW_STANDALONE(ri);
3267			} else if (request == PMC_STATE_FREE &&
3268			    (phw->phw_state & PMC_PHW_FLAG_IS_ENABLED) == 0) {
3269				phw->phw_state |=  PMC_PHW_FLAG_IS_ENABLED;
3270				PMC_UNMARK_ROW_STANDALONE(ri);
3271			}
3272			/* other cases are a no-op */
3273		} else
3274			error = EBUSY;
3275
3276		pmc_restore_cpu_binding(&pb);
3277	}
3278	break;
3279
3280
3281	/*
3282	 * Allocate a PMC.
3283	 */
3284
3285	case PMC_OP_PMCALLOCATE:
3286	{
3287		int adjri, n;
3288		u_int cpu;
3289		uint32_t caps;
3290		struct pmc *pmc;
3291		enum pmc_mode mode;
3292		struct pmc_hw *phw;
3293		struct pmc_binding pb;
3294		struct pmc_classdep *pcd;
3295		struct pmc_op_pmcallocate pa;
3296
3297		if ((error = copyin(arg, &pa, sizeof(pa))) != 0)
3298			break;
3299
3300		caps = pa.pm_caps;
3301		mode = pa.pm_mode;
3302		cpu  = pa.pm_cpu;
3303
3304		if ((mode != PMC_MODE_SS  &&  mode != PMC_MODE_SC  &&
3305		     mode != PMC_MODE_TS  &&  mode != PMC_MODE_TC) ||
3306		    (cpu != (u_int) PMC_CPU_ANY && cpu >= pmc_cpu_max())) {
3307			error = EINVAL;
3308			break;
3309		}
3310
3311		/*
3312		 * Virtual PMCs should only ask for a default CPU.
3313		 * System mode PMCs need to specify a non-default CPU.
3314		 */
3315
3316		if ((PMC_IS_VIRTUAL_MODE(mode) && cpu != (u_int) PMC_CPU_ANY) ||
3317		    (PMC_IS_SYSTEM_MODE(mode) && cpu == (u_int) PMC_CPU_ANY)) {
3318			error = EINVAL;
3319			break;
3320		}
3321
3322		/*
3323		 * Check that an inactive CPU is not being asked for.
3324		 */
3325
3326		if (PMC_IS_SYSTEM_MODE(mode) && !pmc_cpu_is_active(cpu)) {
3327			error = ENXIO;
3328			break;
3329		}
3330
3331		/*
3332		 * Refuse an allocation for a system-wide PMC if this
3333		 * process has been jailed, or if this process lacks
3334		 * super-user credentials and the sysctl tunable
3335		 * 'security.bsd.unprivileged_syspmcs' is zero.
3336		 */
3337
3338		if (PMC_IS_SYSTEM_MODE(mode)) {
3339			if (jailed(curthread->td_ucred)) {
3340				error = EPERM;
3341				break;
3342			}
3343			if (!pmc_unprivileged_syspmcs) {
3344				error = priv_check(curthread,
3345				    PRIV_PMC_SYSTEM);
3346				if (error)
3347					break;
3348			}
3349		}
3350
3351		/*
3352		 * Look for valid values for 'pm_flags'
3353		 */
3354
3355		if ((pa.pm_flags & ~(PMC_F_DESCENDANTS | PMC_F_LOG_PROCCSW |
3356		    PMC_F_LOG_PROCEXIT | PMC_F_CALLCHAIN)) != 0) {
3357			error = EINVAL;
3358			break;
3359		}
3360
3361		/* process logging options are not allowed for system PMCs */
3362		if (PMC_IS_SYSTEM_MODE(mode) && (pa.pm_flags &
3363		    (PMC_F_LOG_PROCCSW | PMC_F_LOG_PROCEXIT))) {
3364			error = EINVAL;
3365			break;
3366		}
3367
3368		/*
3369		 * All sampling mode PMCs need to be able to interrupt the
3370		 * CPU.
3371		 */
3372		if (PMC_IS_SAMPLING_MODE(mode))
3373			caps |= PMC_CAP_INTERRUPT;
3374
3375		/* A valid class specifier should have been passed in. */
3376		for (n = 0; n < md->pmd_nclass; n++)
3377			if (md->pmd_classdep[n].pcd_class == pa.pm_class)
3378				break;
3379		if (n == md->pmd_nclass) {
3380			error = EINVAL;
3381			break;
3382		}
3383
3384		/* The requested PMC capabilities should be feasible. */
3385		if ((md->pmd_classdep[n].pcd_caps & caps) != caps) {
3386			error = EOPNOTSUPP;
3387			break;
3388		}
3389
3390		PMCDBG4(PMC,ALL,2, "event=%d caps=0x%x mode=%d cpu=%d",
3391		    pa.pm_ev, caps, mode, cpu);
3392
3393		pmc = pmc_allocate_pmc_descriptor();
3394		pmc->pm_id    = PMC_ID_MAKE_ID(cpu,pa.pm_mode,pa.pm_class,
3395		    PMC_ID_INVALID);
3396		pmc->pm_event = pa.pm_ev;
3397		pmc->pm_state = PMC_STATE_FREE;
3398		pmc->pm_caps  = caps;
3399		pmc->pm_flags = pa.pm_flags;
3400
3401		/* switch thread to CPU 'cpu' */
3402		pmc_save_cpu_binding(&pb);
3403
3404#define	PMC_IS_SHAREABLE_PMC(cpu, n)				\
3405	(pmc_pcpu[(cpu)]->pc_hwpmcs[(n)]->phw_state &		\
3406	 PMC_PHW_FLAG_IS_SHAREABLE)
3407#define	PMC_IS_UNALLOCATED(cpu, n)				\
3408	(pmc_pcpu[(cpu)]->pc_hwpmcs[(n)]->phw_pmc == NULL)
3409
3410		if (PMC_IS_SYSTEM_MODE(mode)) {
3411			pmc_select_cpu(cpu);
3412			for (n = 0; n < (int) md->pmd_npmc; n++) {
3413				pcd = pmc_ri_to_classdep(md, n, &adjri);
3414				if (pmc_can_allocate_row(n, mode) == 0 &&
3415				    pmc_can_allocate_rowindex(
3416					    curthread->td_proc, n, cpu) == 0 &&
3417				    (PMC_IS_UNALLOCATED(cpu, n) ||
3418				     PMC_IS_SHAREABLE_PMC(cpu, n)) &&
3419				    pcd->pcd_allocate_pmc(cpu, adjri, pmc,
3420					&pa) == 0)
3421					break;
3422			}
3423		} else {
3424			/* Process virtual mode */
3425			for (n = 0; n < (int) md->pmd_npmc; n++) {
3426				pcd = pmc_ri_to_classdep(md, n, &adjri);
3427				if (pmc_can_allocate_row(n, mode) == 0 &&
3428				    pmc_can_allocate_rowindex(
3429					    curthread->td_proc, n,
3430					    PMC_CPU_ANY) == 0 &&
3431				    pcd->pcd_allocate_pmc(curthread->td_oncpu,
3432					adjri, pmc, &pa) == 0)
3433					break;
3434			}
3435		}
3436
3437#undef	PMC_IS_UNALLOCATED
3438#undef	PMC_IS_SHAREABLE_PMC
3439
3440		pmc_restore_cpu_binding(&pb);
3441
3442		if (n == (int) md->pmd_npmc) {
3443			pmc_destroy_pmc_descriptor(pmc);
3444			pmc = NULL;
3445			error = EINVAL;
3446			break;
3447		}
3448
3449		/* Fill in the correct value in the ID field */
3450		pmc->pm_id = PMC_ID_MAKE_ID(cpu,mode,pa.pm_class,n);
3451
3452		PMCDBG5(PMC,ALL,2, "ev=%d class=%d mode=%d n=%d -> pmcid=%x",
3453		    pmc->pm_event, pa.pm_class, mode, n, pmc->pm_id);
3454
3455		/* Process mode PMCs with logging enabled need log files */
3456		if (pmc->pm_flags & (PMC_F_LOG_PROCEXIT | PMC_F_LOG_PROCCSW))
3457			pmc->pm_flags |= PMC_F_NEEDS_LOGFILE;
3458
3459		/* All system mode sampling PMCs require a log file */
3460		if (PMC_IS_SAMPLING_MODE(mode) && PMC_IS_SYSTEM_MODE(mode))
3461			pmc->pm_flags |= PMC_F_NEEDS_LOGFILE;
3462
3463		/*
3464		 * Configure global pmc's immediately
3465		 */
3466
3467		if (PMC_IS_SYSTEM_MODE(PMC_TO_MODE(pmc))) {
3468
3469			pmc_save_cpu_binding(&pb);
3470			pmc_select_cpu(cpu);
3471
3472			phw = pmc_pcpu[cpu]->pc_hwpmcs[n];
3473			pcd = pmc_ri_to_classdep(md, n, &adjri);
3474
3475			if ((phw->phw_state & PMC_PHW_FLAG_IS_ENABLED) == 0 ||
3476			    (error = pcd->pcd_config_pmc(cpu, adjri, pmc)) != 0) {
3477				(void) pcd->pcd_release_pmc(cpu, adjri, pmc);
3478				pmc_destroy_pmc_descriptor(pmc);
3479				pmc = NULL;
3480				pmc_restore_cpu_binding(&pb);
3481				error = EPERM;
3482				break;
3483			}
3484
3485			pmc_restore_cpu_binding(&pb);
3486		}
3487
3488		pmc->pm_state    = PMC_STATE_ALLOCATED;
3489
3490		/*
3491		 * mark row disposition
3492		 */
3493
3494		if (PMC_IS_SYSTEM_MODE(mode))
3495			PMC_MARK_ROW_STANDALONE(n);
3496		else
3497			PMC_MARK_ROW_THREAD(n);
3498
3499		/*
3500		 * Register this PMC with the current thread as its owner.
3501		 */
3502
3503		if ((error =
3504		    pmc_register_owner(curthread->td_proc, pmc)) != 0) {
3505			pmc_release_pmc_descriptor(pmc);
3506			pmc_destroy_pmc_descriptor(pmc);
3507			pmc = NULL;
3508			break;
3509		}
3510
3511		/*
3512		 * Return the allocated index.
3513		 */
3514
3515		pa.pm_pmcid = pmc->pm_id;
3516
3517		error = copyout(&pa, arg, sizeof(pa));
3518	}
3519	break;
3520
3521
3522	/*
3523	 * Attach a PMC to a process.
3524	 */
3525
3526	case PMC_OP_PMCATTACH:
3527	{
3528		struct pmc *pm;
3529		struct proc *p;
3530		struct pmc_op_pmcattach a;
3531
3532		sx_assert(&pmc_sx, SX_XLOCKED);
3533
3534		if ((error = copyin(arg, &a, sizeof(a))) != 0)
3535			break;
3536
3537		if (a.pm_pid < 0) {
3538			error = EINVAL;
3539			break;
3540		} else if (a.pm_pid == 0)
3541			a.pm_pid = td->td_proc->p_pid;
3542
3543		if ((error = pmc_find_pmc(a.pm_pmc, &pm)) != 0)
3544			break;
3545
3546		if (PMC_IS_SYSTEM_MODE(PMC_TO_MODE(pm))) {
3547			error = EINVAL;
3548			break;
3549		}
3550
3551		/* PMCs may be (re)attached only when allocated or stopped */
3552		if (pm->pm_state == PMC_STATE_RUNNING) {
3553			error = EBUSY;
3554			break;
3555		} else if (pm->pm_state != PMC_STATE_ALLOCATED &&
3556		    pm->pm_state != PMC_STATE_STOPPED) {
3557			error = EINVAL;
3558			break;
3559		}
3560
3561		/* lookup pid */
3562		if ((p = pfind(a.pm_pid)) == NULL) {
3563			error = ESRCH;
3564			break;
3565		}
3566
3567		/*
3568		 * Ignore processes that are working on exiting.
3569		 */
3570		if (p->p_flag & P_WEXIT) {
3571			error = ESRCH;
3572			PROC_UNLOCK(p);	/* pfind() returns a locked process */
3573			break;
3574		}
3575
3576		/*
3577		 * we are allowed to attach a PMC to a process if
3578		 * we can debug it.
3579		 */
3580		error = p_candebug(curthread, p);
3581
3582		PROC_UNLOCK(p);
3583
3584		if (error == 0)
3585			error = pmc_attach_process(p, pm);
3586	}
3587	break;
3588
3589
3590	/*
3591	 * Detach an attached PMC from a process.
3592	 */
3593
3594	case PMC_OP_PMCDETACH:
3595	{
3596		struct pmc *pm;
3597		struct proc *p;
3598		struct pmc_op_pmcattach a;
3599
3600		if ((error = copyin(arg, &a, sizeof(a))) != 0)
3601			break;
3602
3603		if (a.pm_pid < 0) {
3604			error = EINVAL;
3605			break;
3606		} else if (a.pm_pid == 0)
3607			a.pm_pid = td->td_proc->p_pid;
3608
3609		if ((error = pmc_find_pmc(a.pm_pmc, &pm)) != 0)
3610			break;
3611
3612		if ((p = pfind(a.pm_pid)) == NULL) {
3613			error = ESRCH;
3614			break;
3615		}
3616
3617		/*
3618		 * Treat processes that are in the process of exiting
3619		 * as if they were not present.
3620		 */
3621
3622		if (p->p_flag & P_WEXIT)
3623			error = ESRCH;
3624
3625		PROC_UNLOCK(p);	/* pfind() returns a locked process */
3626
3627		if (error == 0)
3628			error = pmc_detach_process(p, pm);
3629	}
3630	break;
3631
3632
3633	/*
3634	 * Retrieve the MSR number associated with the counter
3635	 * 'pmc_id'.  This allows processes to directly use RDPMC
3636	 * instructions to read their PMCs, without the overhead of a
3637	 * system call.
3638	 */
3639
3640	case PMC_OP_PMCGETMSR:
3641	{
3642		int adjri, ri;
3643		struct pmc *pm;
3644		struct pmc_target *pt;
3645		struct pmc_op_getmsr gm;
3646		struct pmc_classdep *pcd;
3647
3648		PMC_DOWNGRADE_SX();
3649
3650		if ((error = copyin(arg, &gm, sizeof(gm))) != 0)
3651			break;
3652
3653		if ((error = pmc_find_pmc(gm.pm_pmcid, &pm)) != 0)
3654			break;
3655
3656		/*
3657		 * The allocated PMC has to be a process virtual PMC,
3658		 * i.e., of type MODE_T[CS].  Global PMCs can only be
3659		 * read using the PMCREAD operation since they may be
3660		 * allocated on a different CPU than the one we could
3661		 * be running on at the time of the RDPMC instruction.
3662		 *
3663		 * The GETMSR operation is not allowed for PMCs that
3664		 * are inherited across processes.
3665		 */
3666
3667		if (!PMC_IS_VIRTUAL_MODE(PMC_TO_MODE(pm)) ||
3668		    (pm->pm_flags & PMC_F_DESCENDANTS)) {
3669			error = EINVAL;
3670			break;
3671		}
3672
3673		/*
3674		 * It only makes sense to use a RDPMC (or its
3675		 * equivalent instruction on non-x86 architectures) on
3676		 * a process that has allocated and attached a PMC to
3677		 * itself.  Conversely the PMC is only allowed to have
3678		 * one process attached to it -- its owner.
3679		 */
3680
3681		if ((pt = LIST_FIRST(&pm->pm_targets)) == NULL ||
3682		    LIST_NEXT(pt, pt_next) != NULL ||
3683		    pt->pt_process->pp_proc != pm->pm_owner->po_owner) {
3684			error = EINVAL;
3685			break;
3686		}
3687
3688		ri = PMC_TO_ROWINDEX(pm);
3689		pcd = pmc_ri_to_classdep(md, ri, &adjri);
3690
3691		/* PMC class has no 'GETMSR' support */
3692		if (pcd->pcd_get_msr == NULL) {
3693			error = ENOSYS;
3694			break;
3695		}
3696
3697		if ((error = (*pcd->pcd_get_msr)(adjri, &gm.pm_msr)) < 0)
3698			break;
3699
3700		if ((error = copyout(&gm, arg, sizeof(gm))) < 0)
3701			break;
3702
3703		/*
3704		 * Mark our process as using MSRs.  Update machine
3705		 * state using a forced context switch.
3706		 */
3707
3708		pt->pt_process->pp_flags |= PMC_PP_ENABLE_MSR_ACCESS;
3709		pmc_force_context_switch();
3710
3711	}
3712	break;
3713
3714	/*
3715	 * Release an allocated PMC
3716	 */
3717
3718	case PMC_OP_PMCRELEASE:
3719	{
3720		pmc_id_t pmcid;
3721		struct pmc *pm;
3722		struct pmc_owner *po;
3723		struct pmc_op_simple sp;
3724
3725		/*
3726		 * Find PMC pointer for the named PMC.
3727		 *
3728		 * Use pmc_release_pmc_descriptor() to switch off the
3729		 * PMC, remove all its target threads, and remove the
3730		 * PMC from its owner's list.
3731		 *
3732		 * Remove the owner record if this is the last PMC
3733		 * owned.
3734		 *
3735		 * Free up space.
3736		 */
3737
3738		if ((error = copyin(arg, &sp, sizeof(sp))) != 0)
3739			break;
3740
3741		pmcid = sp.pm_pmcid;
3742
3743		if ((error = pmc_find_pmc(pmcid, &pm)) != 0)
3744			break;
3745
3746		po = pm->pm_owner;
3747		pmc_release_pmc_descriptor(pm);
3748		pmc_maybe_remove_owner(po);
3749		pmc_destroy_pmc_descriptor(pm);
3750	}
3751	break;
3752
3753
3754	/*
3755	 * Read and/or write a PMC.
3756	 */
3757
3758	case PMC_OP_PMCRW:
3759	{
3760		int adjri;
3761		struct pmc *pm;
3762		uint32_t cpu, ri;
3763		pmc_value_t oldvalue;
3764		struct pmc_binding pb;
3765		struct pmc_op_pmcrw prw;
3766		struct pmc_classdep *pcd;
3767		struct pmc_op_pmcrw *pprw;
3768
3769		PMC_DOWNGRADE_SX();
3770
3771		if ((error = copyin(arg, &prw, sizeof(prw))) != 0)
3772			break;
3773
3774		ri = 0;
3775		PMCDBG2(PMC,OPS,1, "rw id=%d flags=0x%x", prw.pm_pmcid,
3776		    prw.pm_flags);
3777
3778		/* must have at least one flag set */
3779		if ((prw.pm_flags & (PMC_F_OLDVALUE|PMC_F_NEWVALUE)) == 0) {
3780			error = EINVAL;
3781			break;
3782		}
3783
3784		/* locate pmc descriptor */
3785		if ((error = pmc_find_pmc(prw.pm_pmcid, &pm)) != 0)
3786			break;
3787
3788		/* Can't read a PMC that hasn't been started. */
3789		if (pm->pm_state != PMC_STATE_ALLOCATED &&
3790		    pm->pm_state != PMC_STATE_STOPPED &&
3791		    pm->pm_state != PMC_STATE_RUNNING) {
3792			error = EINVAL;
3793			break;
3794		}
3795
3796		/* writing a new value is allowed only for 'STOPPED' pmcs */
3797		if (pm->pm_state == PMC_STATE_RUNNING &&
3798		    (prw.pm_flags & PMC_F_NEWVALUE)) {
3799			error = EBUSY;
3800			break;
3801		}
3802
3803		if (PMC_IS_VIRTUAL_MODE(PMC_TO_MODE(pm))) {
3804
3805			/*
3806			 * If this PMC is attached to its owner (i.e.,
3807			 * the process requesting this operation) and
3808			 * is running, then attempt to get an
3809			 * upto-date reading from hardware for a READ.
3810			 * Writes are only allowed when the PMC is
3811			 * stopped, so only update the saved value
3812			 * field.
3813			 *
3814			 * If the PMC is not running, or is not
3815			 * attached to its owner, read/write to the
3816			 * savedvalue field.
3817			 */
3818
3819			ri = PMC_TO_ROWINDEX(pm);
3820			pcd = pmc_ri_to_classdep(md, ri, &adjri);
3821
3822			mtx_pool_lock_spin(pmc_mtxpool, pm);
3823			cpu = curthread->td_oncpu;
3824
3825			if (prw.pm_flags & PMC_F_OLDVALUE) {
3826				if ((pm->pm_flags & PMC_F_ATTACHED_TO_OWNER) &&
3827				    (pm->pm_state == PMC_STATE_RUNNING))
3828					error = (*pcd->pcd_read_pmc)(cpu, adjri,
3829					    &oldvalue);
3830				else
3831					oldvalue = pm->pm_gv.pm_savedvalue;
3832			}
3833			if (prw.pm_flags & PMC_F_NEWVALUE)
3834				pm->pm_gv.pm_savedvalue = prw.pm_value;
3835
3836			mtx_pool_unlock_spin(pmc_mtxpool, pm);
3837
3838		} else { /* System mode PMCs */
3839			cpu = PMC_TO_CPU(pm);
3840			ri  = PMC_TO_ROWINDEX(pm);
3841			pcd = pmc_ri_to_classdep(md, ri, &adjri);
3842
3843			if (!pmc_cpu_is_active(cpu)) {
3844				error = ENXIO;
3845				break;
3846			}
3847
3848			/* move this thread to CPU 'cpu' */
3849			pmc_save_cpu_binding(&pb);
3850			pmc_select_cpu(cpu);
3851
3852			critical_enter();
3853			/* save old value */
3854			if (prw.pm_flags & PMC_F_OLDVALUE)
3855				if ((error = (*pcd->pcd_read_pmc)(cpu, adjri,
3856					 &oldvalue)))
3857					goto error;
3858			/* write out new value */
3859			if (prw.pm_flags & PMC_F_NEWVALUE)
3860				error = (*pcd->pcd_write_pmc)(cpu, adjri,
3861				    prw.pm_value);
3862		error:
3863			critical_exit();
3864			pmc_restore_cpu_binding(&pb);
3865			if (error)
3866				break;
3867		}
3868
3869		pprw = (struct pmc_op_pmcrw *) arg;
3870
3871#ifdef	HWPMC_DEBUG
3872		if (prw.pm_flags & PMC_F_NEWVALUE)
3873			PMCDBG3(PMC,OPS,2, "rw id=%d new %jx -> old %jx",
3874			    ri, prw.pm_value, oldvalue);
3875		else if (prw.pm_flags & PMC_F_OLDVALUE)
3876			PMCDBG2(PMC,OPS,2, "rw id=%d -> old %jx", ri, oldvalue);
3877#endif
3878
3879		/* return old value if requested */
3880		if (prw.pm_flags & PMC_F_OLDVALUE)
3881			if ((error = copyout(&oldvalue, &pprw->pm_value,
3882				 sizeof(prw.pm_value))))
3883				break;
3884
3885	}
3886	break;
3887
3888
3889	/*
3890	 * Set the sampling rate for a sampling mode PMC and the
3891	 * initial count for a counting mode PMC.
3892	 */
3893
3894	case PMC_OP_PMCSETCOUNT:
3895	{
3896		struct pmc *pm;
3897		struct pmc_op_pmcsetcount sc;
3898
3899		PMC_DOWNGRADE_SX();
3900
3901		if ((error = copyin(arg, &sc, sizeof(sc))) != 0)
3902			break;
3903
3904		if ((error = pmc_find_pmc(sc.pm_pmcid, &pm)) != 0)
3905			break;
3906
3907		if (pm->pm_state == PMC_STATE_RUNNING) {
3908			error = EBUSY;
3909			break;
3910		}
3911
3912		if (PMC_IS_SAMPLING_MODE(PMC_TO_MODE(pm)))
3913			pm->pm_sc.pm_reloadcount = sc.pm_count;
3914		else
3915			pm->pm_sc.pm_initial = sc.pm_count;
3916	}
3917	break;
3918
3919
3920	/*
3921	 * Start a PMC.
3922	 */
3923
3924	case PMC_OP_PMCSTART:
3925	{
3926		pmc_id_t pmcid;
3927		struct pmc *pm;
3928		struct pmc_op_simple sp;
3929
3930		sx_assert(&pmc_sx, SX_XLOCKED);
3931
3932		if ((error = copyin(arg, &sp, sizeof(sp))) != 0)
3933			break;
3934
3935		pmcid = sp.pm_pmcid;
3936
3937		if ((error = pmc_find_pmc(pmcid, &pm)) != 0)
3938			break;
3939
3940		KASSERT(pmcid == pm->pm_id,
3941		    ("[pmc,%d] pmcid %x != id %x", __LINE__,
3942			pm->pm_id, pmcid));
3943
3944		if (pm->pm_state == PMC_STATE_RUNNING) /* already running */
3945			break;
3946		else if (pm->pm_state != PMC_STATE_STOPPED &&
3947		    pm->pm_state != PMC_STATE_ALLOCATED) {
3948			error = EINVAL;
3949			break;
3950		}
3951
3952		error = pmc_start(pm);
3953	}
3954	break;
3955
3956
3957	/*
3958	 * Stop a PMC.
3959	 */
3960
3961	case PMC_OP_PMCSTOP:
3962	{
3963		pmc_id_t pmcid;
3964		struct pmc *pm;
3965		struct pmc_op_simple sp;
3966
3967		PMC_DOWNGRADE_SX();
3968
3969		if ((error = copyin(arg, &sp, sizeof(sp))) != 0)
3970			break;
3971
3972		pmcid = sp.pm_pmcid;
3973
3974		/*
3975		 * Mark the PMC as inactive and invoke the MD stop
3976		 * routines if needed.
3977		 */
3978
3979		if ((error = pmc_find_pmc(pmcid, &pm)) != 0)
3980			break;
3981
3982		KASSERT(pmcid == pm->pm_id,
3983		    ("[pmc,%d] pmc id %x != pmcid %x", __LINE__,
3984			pm->pm_id, pmcid));
3985
3986		if (pm->pm_state == PMC_STATE_STOPPED) /* already stopped */
3987			break;
3988		else if (pm->pm_state != PMC_STATE_RUNNING) {
3989			error = EINVAL;
3990			break;
3991		}
3992
3993		error = pmc_stop(pm);
3994	}
3995	break;
3996
3997
3998	/*
3999	 * Write a user supplied value to the log file.
4000	 */
4001
4002	case PMC_OP_WRITELOG:
4003	{
4004		struct pmc_op_writelog wl;
4005		struct pmc_owner *po;
4006
4007		PMC_DOWNGRADE_SX();
4008
4009		if ((error = copyin(arg, &wl, sizeof(wl))) != 0)
4010			break;
4011
4012		if ((po = pmc_find_owner_descriptor(td->td_proc)) == NULL) {
4013			error = EINVAL;
4014			break;
4015		}
4016
4017		if ((po->po_flags & PMC_PO_OWNS_LOGFILE) == 0) {
4018			error = EINVAL;
4019			break;
4020		}
4021
4022		error = pmclog_process_userlog(po, &wl);
4023	}
4024	break;
4025
4026
4027	default:
4028		error = EINVAL;
4029		break;
4030	}
4031
4032	if (is_sx_locked != 0) {
4033		if (is_sx_downgraded)
4034			sx_sunlock(&pmc_sx);
4035		else
4036			sx_xunlock(&pmc_sx);
4037	}
4038
4039	if (error)
4040		atomic_add_int(&pmc_stats.pm_syscall_errors, 1);
4041
4042	PICKUP_GIANT();
4043
4044	return error;
4045}
4046
4047/*
4048 * Helper functions
4049 */
4050
4051
4052/*
4053 * Mark the thread as needing callchain capture and post an AST.  The
4054 * actual callchain capture will be done in a context where it is safe
4055 * to take page faults.
4056 */
4057
4058static void
4059pmc_post_callchain_callback(void)
4060{
4061	struct thread *td;
4062
4063	td = curthread;
4064
4065	/*
4066	 * If there is multiple PMCs for the same interrupt ignore new post
4067	 */
4068	if (td->td_pflags & TDP_CALLCHAIN)
4069		return;
4070
4071	/*
4072	 * Mark this thread as needing callchain capture.
4073	 * `td->td_pflags' will be safe to touch because this thread
4074	 * was in user space when it was interrupted.
4075	 */
4076	td->td_pflags |= TDP_CALLCHAIN;
4077
4078	/*
4079	 * Don't let this thread migrate between CPUs until callchain
4080	 * capture completes.
4081	 */
4082	sched_pin();
4083
4084	return;
4085}
4086
4087/*
4088 * Interrupt processing.
4089 *
4090 * Find a free slot in the per-cpu array of samples and capture the
4091 * current callchain there.  If a sample was successfully added, a bit
4092 * is set in mask 'pmc_cpumask' denoting that the DO_SAMPLES hook
4093 * needs to be invoked from the clock handler.
4094 *
4095 * This function is meant to be called from an NMI handler.  It cannot
4096 * use any of the locking primitives supplied by the OS.
4097 */
4098
4099int
4100pmc_process_interrupt(int cpu, int ring, struct pmc *pm, struct trapframe *tf,
4101    int inuserspace)
4102{
4103	int error, callchaindepth;
4104	struct thread *td;
4105	struct pmc_sample *ps;
4106	struct pmc_samplebuffer *psb;
4107
4108	error = 0;
4109
4110	/*
4111	 * Allocate space for a sample buffer.
4112	 */
4113	psb = pmc_pcpu[cpu]->pc_sb[ring];
4114
4115	ps = psb->ps_write;
4116	if (ps->ps_nsamples) {	/* in use, reader hasn't caught up */
4117		CPU_SET_ATOMIC(cpu, &pm->pm_stalled);
4118		atomic_add_int(&pmc_stats.pm_intr_bufferfull, 1);
4119		PMCDBG6(SAM,INT,1,"(spc) cpu=%d pm=%p tf=%p um=%d wr=%d rd=%d",
4120		    cpu, pm, (void *) tf, inuserspace,
4121		    (int) (psb->ps_write - psb->ps_samples),
4122		    (int) (psb->ps_read - psb->ps_samples));
4123		callchaindepth = 1;
4124		error = ENOMEM;
4125		goto done;
4126	}
4127
4128
4129	/* Fill in entry. */
4130	PMCDBG6(SAM,INT,1,"cpu=%d pm=%p tf=%p um=%d wr=%d rd=%d", cpu, pm,
4131	    (void *) tf, inuserspace,
4132	    (int) (psb->ps_write - psb->ps_samples),
4133	    (int) (psb->ps_read - psb->ps_samples));
4134
4135	KASSERT(pm->pm_runcount >= 0,
4136	    ("[pmc,%d] pm=%p runcount %d", __LINE__, (void *) pm,
4137		pm->pm_runcount));
4138
4139	atomic_add_rel_int(&pm->pm_runcount, 1);	/* hold onto PMC */
4140
4141	ps->ps_pmc = pm;
4142	if ((td = curthread) && td->td_proc)
4143		ps->ps_pid = td->td_proc->p_pid;
4144	else
4145		ps->ps_pid = -1;
4146	ps->ps_cpu = cpu;
4147	ps->ps_td = td;
4148	ps->ps_flags = inuserspace ? PMC_CC_F_USERSPACE : 0;
4149
4150	callchaindepth = (pm->pm_flags & PMC_F_CALLCHAIN) ?
4151	    pmc_callchaindepth : 1;
4152
4153	if (callchaindepth == 1)
4154		ps->ps_pc[0] = PMC_TRAPFRAME_TO_PC(tf);
4155	else {
4156		/*
4157		 * Kernel stack traversals can be done immediately,
4158		 * while we defer to an AST for user space traversals.
4159		 */
4160		if (!inuserspace) {
4161			callchaindepth =
4162			    pmc_save_kernel_callchain(ps->ps_pc,
4163				callchaindepth, tf);
4164		} else {
4165			pmc_post_callchain_callback();
4166			callchaindepth = PMC_SAMPLE_INUSE;
4167		}
4168	}
4169
4170	ps->ps_nsamples = callchaindepth;	/* mark entry as in use */
4171
4172	/* increment write pointer, modulo ring buffer size */
4173	ps++;
4174	if (ps == psb->ps_fence)
4175		psb->ps_write = psb->ps_samples;
4176	else
4177		psb->ps_write = ps;
4178
4179 done:
4180	/* mark CPU as needing processing */
4181	if (callchaindepth != PMC_SAMPLE_INUSE)
4182		CPU_SET_ATOMIC(cpu, &pmc_cpumask);
4183
4184	return (error);
4185}
4186
4187/*
4188 * Capture a user call chain.  This function will be called from ast()
4189 * before control returns to userland and before the process gets
4190 * rescheduled.
4191 */
4192
4193static void
4194pmc_capture_user_callchain(int cpu, int ring, struct trapframe *tf)
4195{
4196	struct pmc *pm;
4197	struct thread *td;
4198	struct pmc_sample *ps, *ps_end;
4199	struct pmc_samplebuffer *psb;
4200#ifdef	INVARIANTS
4201	int ncallchains;
4202	int nfree;
4203#endif
4204
4205	psb = pmc_pcpu[cpu]->pc_sb[ring];
4206	td = curthread;
4207
4208	KASSERT(td->td_pflags & TDP_CALLCHAIN,
4209	    ("[pmc,%d] Retrieving callchain for thread that doesn't want it",
4210		__LINE__));
4211
4212#ifdef	INVARIANTS
4213	ncallchains = 0;
4214	nfree = 0;
4215#endif
4216
4217	/*
4218	 * Iterate through all deferred callchain requests.
4219	 * Walk from the current read pointer to the current
4220	 * write pointer.
4221	 */
4222
4223	ps = psb->ps_read;
4224	ps_end = psb->ps_write;
4225	do {
4226#ifdef	INVARIANTS
4227		if (ps->ps_pmc->pm_state != PMC_STATE_RUNNING)
4228			nfree++;
4229#endif
4230		if (ps->ps_nsamples != PMC_SAMPLE_INUSE)
4231			goto next;
4232		if (ps->ps_td != td)
4233			goto next;
4234
4235		KASSERT(ps->ps_cpu == cpu,
4236		    ("[pmc,%d] cpu mismatch ps_cpu=%d pcpu=%d", __LINE__,
4237			ps->ps_cpu, PCPU_GET(cpuid)));
4238
4239		pm = ps->ps_pmc;
4240
4241		KASSERT(pm->pm_flags & PMC_F_CALLCHAIN,
4242		    ("[pmc,%d] Retrieving callchain for PMC that doesn't "
4243			"want it", __LINE__));
4244
4245		KASSERT(pm->pm_runcount > 0,
4246		    ("[pmc,%d] runcount %d", __LINE__, pm->pm_runcount));
4247
4248		/*
4249		 * Retrieve the callchain and mark the sample buffer
4250		 * as 'processable' by the timer tick sweep code.
4251		 */
4252		ps->ps_nsamples = pmc_save_user_callchain(ps->ps_pc,
4253		    pmc_callchaindepth, tf);
4254
4255#ifdef	INVARIANTS
4256		ncallchains++;
4257#endif
4258
4259next:
4260		/* increment the pointer, modulo sample ring size */
4261		if (++ps == psb->ps_fence)
4262			ps = psb->ps_samples;
4263	} while (ps != ps_end);
4264
4265	KASSERT(ncallchains > 0 || nfree > 0,
4266	    ("[pmc,%d] cpu %d didn't find a sample to collect", __LINE__,
4267		cpu));
4268
4269	KASSERT(td->td_pinned == 1,
4270	    ("[pmc,%d] invalid td_pinned value", __LINE__));
4271	sched_unpin();	/* Can migrate safely now. */
4272
4273	/* mark CPU as needing processing */
4274	CPU_SET_ATOMIC(cpu, &pmc_cpumask);
4275
4276	return;
4277}
4278
4279/*
4280 * Process saved PC samples.
4281 */
4282
4283static void
4284pmc_process_samples(int cpu, int ring)
4285{
4286	struct pmc *pm;
4287	int adjri, n;
4288	struct thread *td;
4289	struct pmc_owner *po;
4290	struct pmc_sample *ps;
4291	struct pmc_classdep *pcd;
4292	struct pmc_samplebuffer *psb;
4293
4294	KASSERT(PCPU_GET(cpuid) == cpu,
4295	    ("[pmc,%d] not on the correct CPU pcpu=%d cpu=%d", __LINE__,
4296		PCPU_GET(cpuid), cpu));
4297
4298	psb = pmc_pcpu[cpu]->pc_sb[ring];
4299
4300	for (n = 0; n < pmc_nsamples; n++) { /* bound on #iterations */
4301
4302		ps = psb->ps_read;
4303		if (ps->ps_nsamples == PMC_SAMPLE_FREE)
4304			break;
4305
4306		pm = ps->ps_pmc;
4307
4308		KASSERT(pm->pm_runcount > 0,
4309		    ("[pmc,%d] pm=%p runcount %d", __LINE__, (void *) pm,
4310			pm->pm_runcount));
4311
4312		po = pm->pm_owner;
4313
4314		KASSERT(PMC_IS_SAMPLING_MODE(PMC_TO_MODE(pm)),
4315		    ("[pmc,%d] pmc=%p non-sampling mode=%d", __LINE__,
4316			pm, PMC_TO_MODE(pm)));
4317
4318		/* Ignore PMCs that have been switched off */
4319		if (pm->pm_state != PMC_STATE_RUNNING)
4320			goto entrydone;
4321
4322		/* If there is a pending AST wait for completion */
4323		if (ps->ps_nsamples == PMC_SAMPLE_INUSE) {
4324			/* Need a rescan at a later time. */
4325			CPU_SET_ATOMIC(cpu, &pmc_cpumask);
4326			break;
4327		}
4328
4329		PMCDBG6(SAM,OPS,1,"cpu=%d pm=%p n=%d fl=%x wr=%d rd=%d", cpu,
4330		    pm, ps->ps_nsamples, ps->ps_flags,
4331		    (int) (psb->ps_write - psb->ps_samples),
4332		    (int) (psb->ps_read - psb->ps_samples));
4333
4334		/*
4335		 * If this is a process-mode PMC that is attached to
4336		 * its owner, and if the PC is in user mode, update
4337		 * profiling statistics like timer-based profiling
4338		 * would have done.
4339		 */
4340		if (pm->pm_flags & PMC_F_ATTACHED_TO_OWNER) {
4341			if (ps->ps_flags & PMC_CC_F_USERSPACE) {
4342				td = FIRST_THREAD_IN_PROC(po->po_owner);
4343				addupc_intr(td, ps->ps_pc[0], 1);
4344			}
4345			goto entrydone;
4346		}
4347
4348		/*
4349		 * Otherwise, this is either a sampling mode PMC that
4350		 * is attached to a different process than its owner,
4351		 * or a system-wide sampling PMC.  Dispatch a log
4352		 * entry to the PMC's owner process.
4353		 */
4354		pmclog_process_callchain(pm, ps);
4355
4356	entrydone:
4357		ps->ps_nsamples = 0; /* mark entry as free */
4358		atomic_subtract_rel_int(&pm->pm_runcount, 1);
4359
4360		/* increment read pointer, modulo sample size */
4361		if (++ps == psb->ps_fence)
4362			psb->ps_read = psb->ps_samples;
4363		else
4364			psb->ps_read = ps;
4365	}
4366
4367	atomic_add_int(&pmc_stats.pm_log_sweeps, 1);
4368
4369	/* Do not re-enable stalled PMCs if we failed to process any samples */
4370	if (n == 0)
4371		return;
4372
4373	/*
4374	 * Restart any stalled sampling PMCs on this CPU.
4375	 *
4376	 * If the NMI handler sets the pm_stalled field of a PMC after
4377	 * the check below, we'll end up processing the stalled PMC at
4378	 * the next hardclock tick.
4379	 */
4380	for (n = 0; n < md->pmd_npmc; n++) {
4381		pcd = pmc_ri_to_classdep(md, n, &adjri);
4382		KASSERT(pcd != NULL,
4383		    ("[pmc,%d] null pcd ri=%d", __LINE__, n));
4384		(void) (*pcd->pcd_get_config)(cpu,adjri,&pm);
4385
4386		if (pm == NULL ||			 /* !cfg'ed */
4387		    pm->pm_state != PMC_STATE_RUNNING || /* !active */
4388		    !PMC_IS_SAMPLING_MODE(PMC_TO_MODE(pm)) || /* !sampling */
4389		    !CPU_ISSET(cpu, &pm->pm_cpustate) || /* !desired */
4390		    !CPU_ISSET(cpu, &pm->pm_stalled)) /* !stalled */
4391			continue;
4392
4393		CPU_CLR_ATOMIC(cpu, &pm->pm_stalled);
4394		(*pcd->pcd_start_pmc)(cpu, adjri);
4395	}
4396}
4397
4398/*
4399 * Event handlers.
4400 */
4401
4402/*
4403 * Handle a process exit.
4404 *
4405 * Remove this process from all hash tables.  If this process
4406 * owned any PMCs, turn off those PMCs and deallocate them,
4407 * removing any associations with target processes.
4408 *
4409 * This function will be called by the last 'thread' of a
4410 * process.
4411 *
4412 * XXX This eventhandler gets called early in the exit process.
4413 * Consider using a 'hook' invocation from thread_exit() or equivalent
4414 * spot.  Another negative is that kse_exit doesn't seem to call
4415 * exit1() [??].
4416 *
4417 */
4418
4419static void
4420pmc_process_exit(void *arg __unused, struct proc *p)
4421{
4422	struct pmc *pm;
4423	int adjri, cpu;
4424	unsigned int ri;
4425	int is_using_hwpmcs;
4426	struct pmc_owner *po;
4427	struct pmc_process *pp;
4428	struct pmc_classdep *pcd;
4429	pmc_value_t newvalue, tmp;
4430
4431	PROC_LOCK(p);
4432	is_using_hwpmcs = p->p_flag & P_HWPMC;
4433	PROC_UNLOCK(p);
4434
4435	/*
4436	 * Log a sysexit event to all SS PMC owners.
4437	 */
4438	LIST_FOREACH(po, &pmc_ss_owners, po_ssnext)
4439	    if (po->po_flags & PMC_PO_OWNS_LOGFILE)
4440		    pmclog_process_sysexit(po, p->p_pid);
4441
4442	if (!is_using_hwpmcs)
4443		return;
4444
4445	PMC_GET_SX_XLOCK();
4446	PMCDBG3(PRC,EXT,1,"process-exit proc=%p (%d, %s)", p, p->p_pid,
4447	    p->p_comm);
4448
4449	/*
4450	 * Since this code is invoked by the last thread in an exiting
4451	 * process, we would have context switched IN at some prior
4452	 * point.  However, with PREEMPTION, kernel mode context
4453	 * switches may happen any time, so we want to disable a
4454	 * context switch OUT till we get any PMCs targeting this
4455	 * process off the hardware.
4456	 *
4457	 * We also need to atomically remove this process'
4458	 * entry from our target process hash table, using
4459	 * PMC_FLAG_REMOVE.
4460	 */
4461	PMCDBG3(PRC,EXT,1, "process-exit proc=%p (%d, %s)", p, p->p_pid,
4462	    p->p_comm);
4463
4464	critical_enter(); /* no preemption */
4465
4466	cpu = curthread->td_oncpu;
4467
4468	if ((pp = pmc_find_process_descriptor(p,
4469		 PMC_FLAG_REMOVE)) != NULL) {
4470
4471		PMCDBG2(PRC,EXT,2,
4472		    "process-exit proc=%p pmc-process=%p", p, pp);
4473
4474		/*
4475		 * The exiting process could the target of
4476		 * some PMCs which will be running on
4477		 * currently executing CPU.
4478		 *
4479		 * We need to turn these PMCs off like we
4480		 * would do at context switch OUT time.
4481		 */
4482		for (ri = 0; ri < md->pmd_npmc; ri++) {
4483
4484			/*
4485			 * Pick up the pmc pointer from hardware
4486			 * state similar to the CSW_OUT code.
4487			 */
4488			pm = NULL;
4489
4490			pcd = pmc_ri_to_classdep(md, ri, &adjri);
4491
4492			(void) (*pcd->pcd_get_config)(cpu, adjri, &pm);
4493
4494			PMCDBG2(PRC,EXT,2, "ri=%d pm=%p", ri, pm);
4495
4496			if (pm == NULL ||
4497			    !PMC_IS_VIRTUAL_MODE(PMC_TO_MODE(pm)))
4498				continue;
4499
4500			PMCDBG4(PRC,EXT,2, "ppmcs[%d]=%p pm=%p "
4501			    "state=%d", ri, pp->pp_pmcs[ri].pp_pmc,
4502			    pm, pm->pm_state);
4503
4504			KASSERT(PMC_TO_ROWINDEX(pm) == ri,
4505			    ("[pmc,%d] ri mismatch pmc(%d) ri(%d)",
4506				__LINE__, PMC_TO_ROWINDEX(pm), ri));
4507
4508			KASSERT(pm == pp->pp_pmcs[ri].pp_pmc,
4509			    ("[pmc,%d] pm %p != pp_pmcs[%d] %p",
4510				__LINE__, pm, ri, pp->pp_pmcs[ri].pp_pmc));
4511
4512			KASSERT(pm->pm_runcount > 0,
4513			    ("[pmc,%d] bad runcount ri %d rc %d",
4514				__LINE__, ri, pm->pm_runcount));
4515
4516			/*
4517			 * Change desired state, and then stop if not
4518			 * stalled. This two-step dance should avoid
4519			 * race conditions where an interrupt re-enables
4520			 * the PMC after this code has already checked
4521			 * the pm_stalled flag.
4522			 */
4523			if (CPU_ISSET(cpu, &pm->pm_cpustate)) {
4524				CPU_CLR_ATOMIC(cpu, &pm->pm_cpustate);
4525				if (!CPU_ISSET(cpu, &pm->pm_stalled)) {
4526					(void) pcd->pcd_stop_pmc(cpu, adjri);
4527					pcd->pcd_read_pmc(cpu, adjri,
4528					    &newvalue);
4529					tmp = newvalue -
4530					    PMC_PCPU_SAVED(cpu,ri);
4531
4532					mtx_pool_lock_spin(pmc_mtxpool, pm);
4533					pm->pm_gv.pm_savedvalue += tmp;
4534					pp->pp_pmcs[ri].pp_pmcval += tmp;
4535					mtx_pool_unlock_spin(pmc_mtxpool, pm);
4536				}
4537			}
4538
4539			atomic_subtract_rel_int(&pm->pm_runcount,1);
4540
4541			KASSERT((int) pm->pm_runcount >= 0,
4542			    ("[pmc,%d] runcount is %d", __LINE__, ri));
4543
4544			(void) pcd->pcd_config_pmc(cpu, adjri, NULL);
4545		}
4546
4547		/*
4548		 * Inform the MD layer of this pseudo "context switch
4549		 * out"
4550		 */
4551		(void) md->pmd_switch_out(pmc_pcpu[cpu], pp);
4552
4553		critical_exit(); /* ok to be pre-empted now */
4554
4555		/*
4556		 * Unlink this process from the PMCs that are
4557		 * targeting it.  This will send a signal to
4558		 * all PMC owner's whose PMCs are orphaned.
4559		 *
4560		 * Log PMC value at exit time if requested.
4561		 */
4562		for (ri = 0; ri < md->pmd_npmc; ri++)
4563			if ((pm = pp->pp_pmcs[ri].pp_pmc) != NULL) {
4564				if (pm->pm_flags & PMC_F_NEEDS_LOGFILE &&
4565				    PMC_IS_COUNTING_MODE(PMC_TO_MODE(pm)))
4566					pmclog_process_procexit(pm, pp);
4567				pmc_unlink_target_process(pm, pp);
4568			}
4569		free(pp, M_PMC);
4570
4571	} else
4572		critical_exit(); /* pp == NULL */
4573
4574
4575	/*
4576	 * If the process owned PMCs, free them up and free up
4577	 * memory.
4578	 */
4579	if ((po = pmc_find_owner_descriptor(p)) != NULL) {
4580		pmc_remove_owner(po);
4581		pmc_destroy_owner_descriptor(po);
4582	}
4583
4584	sx_xunlock(&pmc_sx);
4585}
4586
4587/*
4588 * Handle a process fork.
4589 *
4590 * If the parent process 'p1' is under HWPMC monitoring, then copy
4591 * over any attached PMCs that have 'do_descendants' semantics.
4592 */
4593
4594static void
4595pmc_process_fork(void *arg __unused, struct proc *p1, struct proc *newproc,
4596    int flags)
4597{
4598	int is_using_hwpmcs;
4599	unsigned int ri;
4600	uint32_t do_descendants;
4601	struct pmc *pm;
4602	struct pmc_owner *po;
4603	struct pmc_process *ppnew, *ppold;
4604
4605	(void) flags;		/* unused parameter */
4606
4607	PROC_LOCK(p1);
4608	is_using_hwpmcs = p1->p_flag & P_HWPMC;
4609	PROC_UNLOCK(p1);
4610
4611	/*
4612	 * If there are system-wide sampling PMCs active, we need to
4613	 * log all fork events to their owner's logs.
4614	 */
4615
4616	LIST_FOREACH(po, &pmc_ss_owners, po_ssnext)
4617	    if (po->po_flags & PMC_PO_OWNS_LOGFILE)
4618		    pmclog_process_procfork(po, p1->p_pid, newproc->p_pid);
4619
4620	if (!is_using_hwpmcs)
4621		return;
4622
4623	PMC_GET_SX_XLOCK();
4624	PMCDBG4(PMC,FRK,1, "process-fork proc=%p (%d, %s) -> %p", p1,
4625	    p1->p_pid, p1->p_comm, newproc);
4626
4627	/*
4628	 * If the parent process (curthread->td_proc) is a
4629	 * target of any PMCs, look for PMCs that are to be
4630	 * inherited, and link these into the new process
4631	 * descriptor.
4632	 */
4633	if ((ppold = pmc_find_process_descriptor(curthread->td_proc,
4634		 PMC_FLAG_NONE)) == NULL)
4635		goto done;		/* nothing to do */
4636
4637	do_descendants = 0;
4638	for (ri = 0; ri < md->pmd_npmc; ri++)
4639		if ((pm = ppold->pp_pmcs[ri].pp_pmc) != NULL)
4640			do_descendants |= pm->pm_flags & PMC_F_DESCENDANTS;
4641	if (do_descendants == 0) /* nothing to do */
4642		goto done;
4643
4644	/* allocate a descriptor for the new process  */
4645	if ((ppnew = pmc_find_process_descriptor(newproc,
4646		 PMC_FLAG_ALLOCATE)) == NULL)
4647		goto done;
4648
4649	/*
4650	 * Run through all PMCs that were targeting the old process
4651	 * and which specified F_DESCENDANTS and attach them to the
4652	 * new process.
4653	 *
4654	 * Log the fork event to all owners of PMCs attached to this
4655	 * process, if not already logged.
4656	 */
4657	for (ri = 0; ri < md->pmd_npmc; ri++)
4658		if ((pm = ppold->pp_pmcs[ri].pp_pmc) != NULL &&
4659		    (pm->pm_flags & PMC_F_DESCENDANTS)) {
4660			pmc_link_target_process(pm, ppnew);
4661			po = pm->pm_owner;
4662			if (po->po_sscount == 0 &&
4663			    po->po_flags & PMC_PO_OWNS_LOGFILE)
4664				pmclog_process_procfork(po, p1->p_pid,
4665				    newproc->p_pid);
4666		}
4667
4668	/*
4669	 * Now mark the new process as being tracked by this driver.
4670	 */
4671	PROC_LOCK(newproc);
4672	newproc->p_flag |= P_HWPMC;
4673	PROC_UNLOCK(newproc);
4674
4675 done:
4676	sx_xunlock(&pmc_sx);
4677}
4678
4679static void
4680pmc_kld_load(void *arg __unused, linker_file_t lf)
4681{
4682	struct pmc_owner *po;
4683
4684	sx_slock(&pmc_sx);
4685
4686	/*
4687	 * Notify owners of system sampling PMCs about KLD operations.
4688	 */
4689	LIST_FOREACH(po, &pmc_ss_owners, po_ssnext)
4690		if (po->po_flags & PMC_PO_OWNS_LOGFILE)
4691			pmclog_process_map_in(po, (pid_t) -1,
4692			    (uintfptr_t) lf->address, lf->filename);
4693
4694	/*
4695	 * TODO: Notify owners of (all) process-sampling PMCs too.
4696	 */
4697
4698	sx_sunlock(&pmc_sx);
4699}
4700
4701static void
4702pmc_kld_unload(void *arg __unused, const char *filename __unused,
4703    caddr_t address, size_t size)
4704{
4705	struct pmc_owner *po;
4706
4707	sx_slock(&pmc_sx);
4708
4709	LIST_FOREACH(po, &pmc_ss_owners, po_ssnext)
4710		if (po->po_flags & PMC_PO_OWNS_LOGFILE)
4711			pmclog_process_map_out(po, (pid_t) -1,
4712			    (uintfptr_t) address, (uintfptr_t) address + size);
4713
4714	/*
4715	 * TODO: Notify owners of process-sampling PMCs.
4716	 */
4717
4718	sx_sunlock(&pmc_sx);
4719}
4720
4721/*
4722 * initialization
4723 */
4724static const char *
4725pmc_name_of_pmcclass(enum pmc_class class)
4726{
4727
4728	switch (class) {
4729#undef	__PMC_CLASS
4730#define	__PMC_CLASS(S,V,D)						\
4731	case PMC_CLASS_##S:						\
4732		return #S;
4733	__PMC_CLASSES();
4734	default:
4735		return ("<unknown>");
4736	}
4737}
4738
4739/*
4740 * Base class initializer: allocate structure and set default classes.
4741 */
4742struct pmc_mdep *
4743pmc_mdep_alloc(int nclasses)
4744{
4745	struct pmc_mdep *md;
4746	int	n;
4747
4748	/* SOFT + md classes */
4749	n = 1 + nclasses;
4750	md = malloc(sizeof(struct pmc_mdep) + n *
4751	    sizeof(struct pmc_classdep), M_PMC, M_WAITOK|M_ZERO);
4752	md->pmd_nclass = n;
4753
4754	/* Add base class. */
4755	pmc_soft_initialize(md);
4756	return md;
4757}
4758
4759void
4760pmc_mdep_free(struct pmc_mdep *md)
4761{
4762	pmc_soft_finalize(md);
4763	free(md, M_PMC);
4764}
4765
4766static int
4767generic_switch_in(struct pmc_cpu *pc, struct pmc_process *pp)
4768{
4769	(void) pc; (void) pp;
4770
4771	return (0);
4772}
4773
4774static int
4775generic_switch_out(struct pmc_cpu *pc, struct pmc_process *pp)
4776{
4777	(void) pc; (void) pp;
4778
4779	return (0);
4780}
4781
4782static struct pmc_mdep *
4783pmc_generic_cpu_initialize(void)
4784{
4785	struct pmc_mdep *md;
4786
4787	md = pmc_mdep_alloc(0);
4788
4789	md->pmd_cputype    = PMC_CPU_GENERIC;
4790
4791	md->pmd_pcpu_init  = NULL;
4792	md->pmd_pcpu_fini  = NULL;
4793	md->pmd_switch_in  = generic_switch_in;
4794	md->pmd_switch_out = generic_switch_out;
4795
4796	return (md);
4797}
4798
4799static void
4800pmc_generic_cpu_finalize(struct pmc_mdep *md)
4801{
4802	(void) md;
4803}
4804
4805
4806static int
4807pmc_initialize(void)
4808{
4809	int c, cpu, error, n, ri;
4810	unsigned int maxcpu;
4811	struct pmc_binding pb;
4812	struct pmc_sample *ps;
4813	struct pmc_classdep *pcd;
4814	struct pmc_samplebuffer *sb;
4815
4816	md = NULL;
4817	error = 0;
4818
4819#ifdef	HWPMC_DEBUG
4820	/* parse debug flags first */
4821	if (TUNABLE_STR_FETCH(PMC_SYSCTL_NAME_PREFIX "debugflags",
4822		pmc_debugstr, sizeof(pmc_debugstr)))
4823		pmc_debugflags_parse(pmc_debugstr,
4824		    pmc_debugstr+strlen(pmc_debugstr));
4825#endif
4826
4827	PMCDBG1(MOD,INI,0, "PMC Initialize (version %x)", PMC_VERSION);
4828
4829	/* check kernel version */
4830	if (pmc_kernel_version != PMC_VERSION) {
4831		if (pmc_kernel_version == 0)
4832			printf("hwpmc: this kernel has not been compiled with "
4833			    "'options HWPMC_HOOKS'.\n");
4834		else
4835			printf("hwpmc: kernel version (0x%x) does not match "
4836			    "module version (0x%x).\n", pmc_kernel_version,
4837			    PMC_VERSION);
4838		return EPROGMISMATCH;
4839	}
4840
4841	/*
4842	 * check sysctl parameters
4843	 */
4844
4845	if (pmc_hashsize <= 0) {
4846		(void) printf("hwpmc: tunable \"hashsize\"=%d must be "
4847		    "greater than zero.\n", pmc_hashsize);
4848		pmc_hashsize = PMC_HASH_SIZE;
4849	}
4850
4851	if (pmc_nsamples <= 0 || pmc_nsamples > 65535) {
4852		(void) printf("hwpmc: tunable \"nsamples\"=%d out of "
4853		    "range.\n", pmc_nsamples);
4854		pmc_nsamples = PMC_NSAMPLES;
4855	}
4856
4857	if (pmc_callchaindepth <= 0 ||
4858	    pmc_callchaindepth > PMC_CALLCHAIN_DEPTH_MAX) {
4859		(void) printf("hwpmc: tunable \"callchaindepth\"=%d out of "
4860		    "range - using %d.\n", pmc_callchaindepth,
4861		    PMC_CALLCHAIN_DEPTH_MAX);
4862		pmc_callchaindepth = PMC_CALLCHAIN_DEPTH_MAX;
4863	}
4864
4865	md = pmc_md_initialize();
4866	if (md == NULL) {
4867		/* Default to generic CPU. */
4868		md = pmc_generic_cpu_initialize();
4869		if (md == NULL)
4870			return (ENOSYS);
4871        }
4872
4873	KASSERT(md->pmd_nclass >= 1 && md->pmd_npmc >= 1,
4874	    ("[pmc,%d] no classes or pmcs", __LINE__));
4875
4876	/* Compute the map from row-indices to classdep pointers. */
4877	pmc_rowindex_to_classdep = malloc(sizeof(struct pmc_classdep *) *
4878	    md->pmd_npmc, M_PMC, M_WAITOK|M_ZERO);
4879
4880	for (n = 0; n < md->pmd_npmc; n++)
4881		pmc_rowindex_to_classdep[n] = NULL;
4882	for (ri = c = 0; c < md->pmd_nclass; c++) {
4883		pcd = &md->pmd_classdep[c];
4884		for (n = 0; n < pcd->pcd_num; n++, ri++)
4885			pmc_rowindex_to_classdep[ri] = pcd;
4886	}
4887
4888	KASSERT(ri == md->pmd_npmc,
4889	    ("[pmc,%d] npmc miscomputed: ri=%d, md->npmc=%d", __LINE__,
4890	    ri, md->pmd_npmc));
4891
4892	maxcpu = pmc_cpu_max();
4893
4894	/* allocate space for the per-cpu array */
4895	pmc_pcpu = malloc(maxcpu * sizeof(struct pmc_cpu *), M_PMC,
4896	    M_WAITOK|M_ZERO);
4897
4898	/* per-cpu 'saved values' for managing process-mode PMCs */
4899	pmc_pcpu_saved = malloc(sizeof(pmc_value_t) * maxcpu * md->pmd_npmc,
4900	    M_PMC, M_WAITOK);
4901
4902	/* Perform CPU-dependent initialization. */
4903	pmc_save_cpu_binding(&pb);
4904	error = 0;
4905	for (cpu = 0; error == 0 && cpu < maxcpu; cpu++) {
4906		if (!pmc_cpu_is_active(cpu))
4907			continue;
4908		pmc_select_cpu(cpu);
4909		pmc_pcpu[cpu] = malloc(sizeof(struct pmc_cpu) +
4910		    md->pmd_npmc * sizeof(struct pmc_hw *), M_PMC,
4911		    M_WAITOK|M_ZERO);
4912		if (md->pmd_pcpu_init)
4913			error = md->pmd_pcpu_init(md, cpu);
4914		for (n = 0; error == 0 && n < md->pmd_nclass; n++)
4915			error = md->pmd_classdep[n].pcd_pcpu_init(md, cpu);
4916	}
4917	pmc_restore_cpu_binding(&pb);
4918
4919	if (error)
4920		return (error);
4921
4922	/* allocate space for the sample array */
4923	for (cpu = 0; cpu < maxcpu; cpu++) {
4924		if (!pmc_cpu_is_active(cpu))
4925			continue;
4926
4927		sb = malloc(sizeof(struct pmc_samplebuffer) +
4928		    pmc_nsamples * sizeof(struct pmc_sample), M_PMC,
4929		    M_WAITOK|M_ZERO);
4930		sb->ps_read = sb->ps_write = sb->ps_samples;
4931		sb->ps_fence = sb->ps_samples + pmc_nsamples;
4932
4933		KASSERT(pmc_pcpu[cpu] != NULL,
4934		    ("[pmc,%d] cpu=%d Null per-cpu data", __LINE__, cpu));
4935
4936		sb->ps_callchains = malloc(pmc_callchaindepth * pmc_nsamples *
4937		    sizeof(uintptr_t), M_PMC, M_WAITOK|M_ZERO);
4938
4939		for (n = 0, ps = sb->ps_samples; n < pmc_nsamples; n++, ps++)
4940			ps->ps_pc = sb->ps_callchains +
4941			    (n * pmc_callchaindepth);
4942
4943		pmc_pcpu[cpu]->pc_sb[PMC_HR] = sb;
4944
4945		sb = malloc(sizeof(struct pmc_samplebuffer) +
4946		    pmc_nsamples * sizeof(struct pmc_sample), M_PMC,
4947		    M_WAITOK|M_ZERO);
4948		sb->ps_read = sb->ps_write = sb->ps_samples;
4949		sb->ps_fence = sb->ps_samples + pmc_nsamples;
4950
4951		KASSERT(pmc_pcpu[cpu] != NULL,
4952		    ("[pmc,%d] cpu=%d Null per-cpu data", __LINE__, cpu));
4953
4954		sb->ps_callchains = malloc(pmc_callchaindepth * pmc_nsamples *
4955		    sizeof(uintptr_t), M_PMC, M_WAITOK|M_ZERO);
4956
4957		for (n = 0, ps = sb->ps_samples; n < pmc_nsamples; n++, ps++)
4958			ps->ps_pc = sb->ps_callchains +
4959			    (n * pmc_callchaindepth);
4960
4961		pmc_pcpu[cpu]->pc_sb[PMC_SR] = sb;
4962	}
4963
4964	/* allocate space for the row disposition array */
4965	pmc_pmcdisp = malloc(sizeof(enum pmc_mode) * md->pmd_npmc,
4966	    M_PMC, M_WAITOK|M_ZERO);
4967
4968	/* mark all PMCs as available */
4969	for (n = 0; n < (int) md->pmd_npmc; n++)
4970		PMC_MARK_ROW_FREE(n);
4971
4972	/* allocate thread hash tables */
4973	pmc_ownerhash = hashinit(pmc_hashsize, M_PMC,
4974	    &pmc_ownerhashmask);
4975
4976	pmc_processhash = hashinit(pmc_hashsize, M_PMC,
4977	    &pmc_processhashmask);
4978	mtx_init(&pmc_processhash_mtx, "pmc-process-hash", "pmc-leaf",
4979	    MTX_SPIN);
4980
4981	LIST_INIT(&pmc_ss_owners);
4982	pmc_ss_count = 0;
4983
4984	/* allocate a pool of spin mutexes */
4985	pmc_mtxpool = mtx_pool_create("pmc-leaf", pmc_mtxpool_size,
4986	    MTX_SPIN);
4987
4988	PMCDBG4(MOD,INI,1, "pmc_ownerhash=%p, mask=0x%lx "
4989	    "targethash=%p mask=0x%lx", pmc_ownerhash, pmc_ownerhashmask,
4990	    pmc_processhash, pmc_processhashmask);
4991
4992	/* register process {exit,fork,exec} handlers */
4993	pmc_exit_tag = EVENTHANDLER_REGISTER(process_exit,
4994	    pmc_process_exit, NULL, EVENTHANDLER_PRI_ANY);
4995	pmc_fork_tag = EVENTHANDLER_REGISTER(process_fork,
4996	    pmc_process_fork, NULL, EVENTHANDLER_PRI_ANY);
4997
4998	/* register kld event handlers */
4999	pmc_kld_load_tag = EVENTHANDLER_REGISTER(kld_load, pmc_kld_load,
5000	    NULL, EVENTHANDLER_PRI_ANY);
5001	pmc_kld_unload_tag = EVENTHANDLER_REGISTER(kld_unload, pmc_kld_unload,
5002	    NULL, EVENTHANDLER_PRI_ANY);
5003
5004	/* initialize logging */
5005	pmclog_initialize();
5006
5007	/* set hook functions */
5008	pmc_intr = md->pmd_intr;
5009	pmc_hook = pmc_hook_handler;
5010
5011	if (error == 0) {
5012		printf(PMC_MODULE_NAME ":");
5013		for (n = 0; n < (int) md->pmd_nclass; n++) {
5014			pcd = &md->pmd_classdep[n];
5015			printf(" %s/%d/%d/0x%b",
5016			    pmc_name_of_pmcclass(pcd->pcd_class),
5017			    pcd->pcd_num,
5018			    pcd->pcd_width,
5019			    pcd->pcd_caps,
5020			    "\20"
5021			    "\1INT\2USR\3SYS\4EDG\5THR"
5022			    "\6REA\7WRI\10INV\11QUA\12PRC"
5023			    "\13TAG\14CSC");
5024		}
5025		printf("\n");
5026	}
5027
5028	return (error);
5029}
5030
5031/* prepare to be unloaded */
5032static void
5033pmc_cleanup(void)
5034{
5035	int c, cpu;
5036	unsigned int maxcpu;
5037	struct pmc_ownerhash *ph;
5038	struct pmc_owner *po, *tmp;
5039	struct pmc_binding pb;
5040#ifdef	HWPMC_DEBUG
5041	struct pmc_processhash *prh;
5042#endif
5043
5044	PMCDBG0(MOD,INI,0, "cleanup");
5045
5046	/* switch off sampling */
5047	CPU_ZERO(&pmc_cpumask);
5048	pmc_intr = NULL;
5049
5050	sx_xlock(&pmc_sx);
5051	if (pmc_hook == NULL) {	/* being unloaded already */
5052		sx_xunlock(&pmc_sx);
5053		return;
5054	}
5055
5056	pmc_hook = NULL; /* prevent new threads from entering module */
5057
5058	/* deregister event handlers */
5059	EVENTHANDLER_DEREGISTER(process_fork, pmc_fork_tag);
5060	EVENTHANDLER_DEREGISTER(process_exit, pmc_exit_tag);
5061	EVENTHANDLER_DEREGISTER(kld_load, pmc_kld_load_tag);
5062	EVENTHANDLER_DEREGISTER(kld_unload, pmc_kld_unload_tag);
5063
5064	/* send SIGBUS to all owner threads, free up allocations */
5065	if (pmc_ownerhash)
5066		for (ph = pmc_ownerhash;
5067		     ph <= &pmc_ownerhash[pmc_ownerhashmask];
5068		     ph++) {
5069			LIST_FOREACH_SAFE(po, ph, po_next, tmp) {
5070				pmc_remove_owner(po);
5071
5072				/* send SIGBUS to owner processes */
5073				PMCDBG3(MOD,INI,2, "cleanup signal proc=%p "
5074				    "(%d, %s)", po->po_owner,
5075				    po->po_owner->p_pid,
5076				    po->po_owner->p_comm);
5077
5078				PROC_LOCK(po->po_owner);
5079				kern_psignal(po->po_owner, SIGBUS);
5080				PROC_UNLOCK(po->po_owner);
5081
5082				pmc_destroy_owner_descriptor(po);
5083			}
5084		}
5085
5086	/* reclaim allocated data structures */
5087	if (pmc_mtxpool)
5088		mtx_pool_destroy(&pmc_mtxpool);
5089
5090	mtx_destroy(&pmc_processhash_mtx);
5091	if (pmc_processhash) {
5092#ifdef	HWPMC_DEBUG
5093		struct pmc_process *pp;
5094
5095		PMCDBG0(MOD,INI,3, "destroy process hash");
5096		for (prh = pmc_processhash;
5097		     prh <= &pmc_processhash[pmc_processhashmask];
5098		     prh++)
5099			LIST_FOREACH(pp, prh, pp_next)
5100			    PMCDBG1(MOD,INI,3, "pid=%d", pp->pp_proc->p_pid);
5101#endif
5102
5103		hashdestroy(pmc_processhash, M_PMC, pmc_processhashmask);
5104		pmc_processhash = NULL;
5105	}
5106
5107	if (pmc_ownerhash) {
5108		PMCDBG0(MOD,INI,3, "destroy owner hash");
5109		hashdestroy(pmc_ownerhash, M_PMC, pmc_ownerhashmask);
5110		pmc_ownerhash = NULL;
5111	}
5112
5113	KASSERT(LIST_EMPTY(&pmc_ss_owners),
5114	    ("[pmc,%d] Global SS owner list not empty", __LINE__));
5115	KASSERT(pmc_ss_count == 0,
5116	    ("[pmc,%d] Global SS count not empty", __LINE__));
5117
5118 	/* do processor and pmc-class dependent cleanup */
5119	maxcpu = pmc_cpu_max();
5120
5121	PMCDBG0(MOD,INI,3, "md cleanup");
5122	if (md) {
5123		pmc_save_cpu_binding(&pb);
5124		for (cpu = 0; cpu < maxcpu; cpu++) {
5125			PMCDBG2(MOD,INI,1,"pmc-cleanup cpu=%d pcs=%p",
5126			    cpu, pmc_pcpu[cpu]);
5127			if (!pmc_cpu_is_active(cpu) || pmc_pcpu[cpu] == NULL)
5128				continue;
5129			pmc_select_cpu(cpu);
5130			for (c = 0; c < md->pmd_nclass; c++)
5131				md->pmd_classdep[c].pcd_pcpu_fini(md, cpu);
5132			if (md->pmd_pcpu_fini)
5133				md->pmd_pcpu_fini(md, cpu);
5134		}
5135
5136		if (md->pmd_cputype == PMC_CPU_GENERIC)
5137			pmc_generic_cpu_finalize(md);
5138		else
5139			pmc_md_finalize(md);
5140
5141		pmc_mdep_free(md);
5142		md = NULL;
5143		pmc_restore_cpu_binding(&pb);
5144	}
5145
5146	/* Free per-cpu descriptors. */
5147	for (cpu = 0; cpu < maxcpu; cpu++) {
5148		if (!pmc_cpu_is_active(cpu))
5149			continue;
5150		KASSERT(pmc_pcpu[cpu]->pc_sb[PMC_HR] != NULL,
5151		    ("[pmc,%d] Null hw cpu sample buffer cpu=%d", __LINE__,
5152			cpu));
5153		KASSERT(pmc_pcpu[cpu]->pc_sb[PMC_SR] != NULL,
5154		    ("[pmc,%d] Null sw cpu sample buffer cpu=%d", __LINE__,
5155			cpu));
5156		free(pmc_pcpu[cpu]->pc_sb[PMC_HR]->ps_callchains, M_PMC);
5157		free(pmc_pcpu[cpu]->pc_sb[PMC_HR], M_PMC);
5158		free(pmc_pcpu[cpu]->pc_sb[PMC_SR]->ps_callchains, M_PMC);
5159		free(pmc_pcpu[cpu]->pc_sb[PMC_SR], M_PMC);
5160		free(pmc_pcpu[cpu], M_PMC);
5161	}
5162
5163	free(pmc_pcpu, M_PMC);
5164	pmc_pcpu = NULL;
5165
5166	free(pmc_pcpu_saved, M_PMC);
5167	pmc_pcpu_saved = NULL;
5168
5169	if (pmc_pmcdisp) {
5170		free(pmc_pmcdisp, M_PMC);
5171		pmc_pmcdisp = NULL;
5172	}
5173
5174	if (pmc_rowindex_to_classdep) {
5175		free(pmc_rowindex_to_classdep, M_PMC);
5176		pmc_rowindex_to_classdep = NULL;
5177	}
5178
5179	pmclog_shutdown();
5180
5181	sx_xunlock(&pmc_sx); 	/* we are done */
5182}
5183
5184/*
5185 * The function called at load/unload.
5186 */
5187
5188static int
5189load (struct module *module __unused, int cmd, void *arg __unused)
5190{
5191	int error;
5192
5193	error = 0;
5194
5195	switch (cmd) {
5196	case MOD_LOAD :
5197		/* initialize the subsystem */
5198		error = pmc_initialize();
5199		if (error != 0)
5200			break;
5201		PMCDBG2(MOD,INI,1, "syscall=%d maxcpu=%d",
5202		    pmc_syscall_num, pmc_cpu_max());
5203		break;
5204
5205
5206	case MOD_UNLOAD :
5207	case MOD_SHUTDOWN:
5208		pmc_cleanup();
5209		PMCDBG0(MOD,INI,1, "unloaded");
5210		break;
5211
5212	default :
5213		error = EINVAL;	/* XXX should panic(9) */
5214		break;
5215	}
5216
5217	return error;
5218}
5219
5220/* memory pool */
5221MALLOC_DEFINE(M_PMC, "pmc", "Memory space for the PMC module");
5222