1/*-
2 * Copyright (c) 2003-2008 Joseph Koshy
3 * Copyright (c) 2007 The FreeBSD Foundation
4 * All rights reserved.
5 *
6 * Portions of this software were developed by A. Joseph Koshy under
7 * sponsorship from the FreeBSD Foundation and Google, Inc.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 *    notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 *    notice, this list of conditions and the following disclaimer in the
16 *    documentation and/or other materials provided with the distribution.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
19 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
22 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28 * SUCH DAMAGE.
29 *
30 */
31
32#include <sys/cdefs.h>
33__FBSDID("$FreeBSD: stable/11/sys/dev/hwpmc/hwpmc_mod.c 343350 2019-01-23 17:36:58Z markj $");
34
35#include <sys/param.h>
36#include <sys/eventhandler.h>
37#include <sys/jail.h>
38#include <sys/kernel.h>
39#include <sys/kthread.h>
40#include <sys/limits.h>
41#include <sys/lock.h>
42#include <sys/malloc.h>
43#include <sys/module.h>
44#include <sys/mount.h>
45#include <sys/mutex.h>
46#include <sys/pmc.h>
47#include <sys/pmckern.h>
48#include <sys/pmclog.h>
49#include <sys/priv.h>
50#include <sys/proc.h>
51#include <sys/queue.h>
52#include <sys/resourcevar.h>
53#include <sys/rwlock.h>
54#include <sys/sched.h>
55#include <sys/signalvar.h>
56#include <sys/smp.h>
57#include <sys/sx.h>
58#include <sys/sysctl.h>
59#include <sys/sysent.h>
60#include <sys/systm.h>
61#include <sys/vnode.h>
62
63#include <sys/linker.h>		/* needs to be after <sys/malloc.h> */
64
65#include <machine/atomic.h>
66#include <machine/md_var.h>
67
68#include <vm/vm.h>
69#include <vm/vm_extern.h>
70#include <vm/pmap.h>
71#include <vm/vm_map.h>
72#include <vm/vm_object.h>
73
74#include "hwpmc_soft.h"
75
76/*
77 * Types
78 */
79
80enum pmc_flags {
81	PMC_FLAG_NONE	  = 0x00, /* do nothing */
82	PMC_FLAG_REMOVE   = 0x01, /* atomically remove entry from hash */
83	PMC_FLAG_ALLOCATE = 0x02, /* add entry to hash if not found */
84};
85
86/*
87 * The offset in sysent where the syscall is allocated.
88 */
89
90static int pmc_syscall_num = NO_SYSCALL;
91struct pmc_cpu		**pmc_pcpu;	 /* per-cpu state */
92pmc_value_t		*pmc_pcpu_saved; /* saved PMC values: CSW handling */
93
94#define	PMC_PCPU_SAVED(C,R)	pmc_pcpu_saved[(R) + md->pmd_npmc*(C)]
95
96struct mtx_pool		*pmc_mtxpool;
97static int		*pmc_pmcdisp;	 /* PMC row dispositions */
98
99#define	PMC_ROW_DISP_IS_FREE(R)		(pmc_pmcdisp[(R)] == 0)
100#define	PMC_ROW_DISP_IS_THREAD(R)	(pmc_pmcdisp[(R)] > 0)
101#define	PMC_ROW_DISP_IS_STANDALONE(R)	(pmc_pmcdisp[(R)] < 0)
102
103#define	PMC_MARK_ROW_FREE(R) do {					  \
104	pmc_pmcdisp[(R)] = 0;						  \
105} while (0)
106
107#define	PMC_MARK_ROW_STANDALONE(R) do {					  \
108	KASSERT(pmc_pmcdisp[(R)] <= 0, ("[pmc,%d] row disposition error", \
109		    __LINE__));						  \
110	atomic_add_int(&pmc_pmcdisp[(R)], -1);				  \
111	KASSERT(pmc_pmcdisp[(R)] >= (-pmc_cpu_max_active()),		  \
112		("[pmc,%d] row disposition error", __LINE__));		  \
113} while (0)
114
115#define	PMC_UNMARK_ROW_STANDALONE(R) do { 				  \
116	atomic_add_int(&pmc_pmcdisp[(R)], 1);				  \
117	KASSERT(pmc_pmcdisp[(R)] <= 0, ("[pmc,%d] row disposition error", \
118		    __LINE__));						  \
119} while (0)
120
121#define	PMC_MARK_ROW_THREAD(R) do {					  \
122	KASSERT(pmc_pmcdisp[(R)] >= 0, ("[pmc,%d] row disposition error", \
123		    __LINE__));						  \
124	atomic_add_int(&pmc_pmcdisp[(R)], 1);				  \
125} while (0)
126
127#define	PMC_UNMARK_ROW_THREAD(R) do {					  \
128	atomic_add_int(&pmc_pmcdisp[(R)], -1);				  \
129	KASSERT(pmc_pmcdisp[(R)] >= 0, ("[pmc,%d] row disposition error", \
130		    __LINE__));						  \
131} while (0)
132
133
134/* various event handlers */
135static eventhandler_tag	pmc_exit_tag, pmc_fork_tag, pmc_kld_load_tag,
136    pmc_kld_unload_tag;
137
138/* Module statistics */
139struct pmc_op_getdriverstats pmc_stats;
140
141/* Machine/processor dependent operations */
142static struct pmc_mdep  *md;
143
144/*
145 * Hash tables mapping owner processes and target threads to PMCs.
146 */
147
148struct mtx pmc_processhash_mtx;		/* spin mutex */
149static u_long pmc_processhashmask;
150static LIST_HEAD(pmc_processhash, pmc_process)	*pmc_processhash;
151
152/*
153 * Hash table of PMC owner descriptors.  This table is protected by
154 * the shared PMC "sx" lock.
155 */
156
157static u_long pmc_ownerhashmask;
158static LIST_HEAD(pmc_ownerhash, pmc_owner)	*pmc_ownerhash;
159
160/*
161 * List of PMC owners with system-wide sampling PMCs.
162 */
163
164static LIST_HEAD(, pmc_owner)			pmc_ss_owners;
165
166
167/*
168 * A map of row indices to classdep structures.
169 */
170static struct pmc_classdep **pmc_rowindex_to_classdep;
171
172/*
173 * Prototypes
174 */
175
176#ifdef	HWPMC_DEBUG
177static int	pmc_debugflags_sysctl_handler(SYSCTL_HANDLER_ARGS);
178static int	pmc_debugflags_parse(char *newstr, char *fence);
179#endif
180
181static int	load(struct module *module, int cmd, void *arg);
182static int	pmc_attach_process(struct proc *p, struct pmc *pm);
183static struct pmc *pmc_allocate_pmc_descriptor(void);
184static struct pmc_owner *pmc_allocate_owner_descriptor(struct proc *p);
185static int	pmc_attach_one_process(struct proc *p, struct pmc *pm);
186static int	pmc_can_allocate_rowindex(struct proc *p, unsigned int ri,
187    int cpu);
188static int	pmc_can_attach(struct pmc *pm, struct proc *p);
189static void	pmc_capture_user_callchain(int cpu, int soft, struct trapframe *tf);
190static void	pmc_cleanup(void);
191static int	pmc_detach_process(struct proc *p, struct pmc *pm);
192static int	pmc_detach_one_process(struct proc *p, struct pmc *pm,
193    int flags);
194static void	pmc_destroy_owner_descriptor(struct pmc_owner *po);
195static void	pmc_destroy_pmc_descriptor(struct pmc *pm);
196static struct pmc_owner *pmc_find_owner_descriptor(struct proc *p);
197static int	pmc_find_pmc(pmc_id_t pmcid, struct pmc **pm);
198static struct pmc *pmc_find_pmc_descriptor_in_process(struct pmc_owner *po,
199    pmc_id_t pmc);
200static struct pmc_process *pmc_find_process_descriptor(struct proc *p,
201    uint32_t mode);
202static void	pmc_force_context_switch(void);
203static void	pmc_link_target_process(struct pmc *pm,
204    struct pmc_process *pp);
205static void	pmc_log_all_process_mappings(struct pmc_owner *po);
206static void	pmc_log_kernel_mappings(struct pmc *pm);
207static void	pmc_log_process_mappings(struct pmc_owner *po, struct proc *p);
208static void	pmc_maybe_remove_owner(struct pmc_owner *po);
209static void	pmc_process_csw_in(struct thread *td);
210static void	pmc_process_csw_out(struct thread *td);
211static void	pmc_process_exit(void *arg, struct proc *p);
212static void	pmc_process_fork(void *arg, struct proc *p1,
213    struct proc *p2, int n);
214static void	pmc_process_samples(int cpu, int soft);
215static void	pmc_release_pmc_descriptor(struct pmc *pmc);
216static void	pmc_remove_owner(struct pmc_owner *po);
217static void	pmc_remove_process_descriptor(struct pmc_process *pp);
218static void	pmc_restore_cpu_binding(struct pmc_binding *pb);
219static void	pmc_save_cpu_binding(struct pmc_binding *pb);
220static void	pmc_select_cpu(int cpu);
221static int	pmc_start(struct pmc *pm);
222static int	pmc_stop(struct pmc *pm);
223static int	pmc_syscall_handler(struct thread *td, void *syscall_args);
224static void	pmc_unlink_target_process(struct pmc *pmc,
225    struct pmc_process *pp);
226static int generic_switch_in(struct pmc_cpu *pc, struct pmc_process *pp);
227static int generic_switch_out(struct pmc_cpu *pc, struct pmc_process *pp);
228static struct pmc_mdep *pmc_generic_cpu_initialize(void);
229static void pmc_generic_cpu_finalize(struct pmc_mdep *md);
230
231/*
232 * Kernel tunables and sysctl(8) interface.
233 */
234
235SYSCTL_DECL(_kern_hwpmc);
236
237static int pmc_callchaindepth = PMC_CALLCHAIN_DEPTH;
238SYSCTL_INT(_kern_hwpmc, OID_AUTO, callchaindepth, CTLFLAG_RDTUN,
239    &pmc_callchaindepth, 0, "depth of call chain records");
240
241#ifdef	HWPMC_DEBUG
242struct pmc_debugflags pmc_debugflags = PMC_DEBUG_DEFAULT_FLAGS;
243char	pmc_debugstr[PMC_DEBUG_STRSIZE];
244TUNABLE_STR(PMC_SYSCTL_NAME_PREFIX "debugflags", pmc_debugstr,
245    sizeof(pmc_debugstr));
246SYSCTL_PROC(_kern_hwpmc, OID_AUTO, debugflags,
247    CTLTYPE_STRING | CTLFLAG_RWTUN | CTLFLAG_NOFETCH,
248    0, 0, pmc_debugflags_sysctl_handler, "A", "debug flags");
249#endif
250
251/*
252 * kern.hwpmc.hashrows -- determines the number of rows in the
253 * of the hash table used to look up threads
254 */
255
256static int pmc_hashsize = PMC_HASH_SIZE;
257SYSCTL_INT(_kern_hwpmc, OID_AUTO, hashsize, CTLFLAG_RDTUN,
258    &pmc_hashsize, 0, "rows in hash tables");
259
260/*
261 * kern.hwpmc.nsamples --- number of PC samples/callchain stacks per CPU
262 */
263
264static int pmc_nsamples = PMC_NSAMPLES;
265SYSCTL_INT(_kern_hwpmc, OID_AUTO, nsamples, CTLFLAG_RDTUN,
266    &pmc_nsamples, 0, "number of PC samples per CPU");
267
268
269/*
270 * kern.hwpmc.mtxpoolsize -- number of mutexes in the mutex pool.
271 */
272
273static int pmc_mtxpool_size = PMC_MTXPOOL_SIZE;
274SYSCTL_INT(_kern_hwpmc, OID_AUTO, mtxpoolsize, CTLFLAG_RDTUN,
275    &pmc_mtxpool_size, 0, "size of spin mutex pool");
276
277
278/*
279 * security.bsd.unprivileged_syspmcs -- allow non-root processes to
280 * allocate system-wide PMCs.
281 *
282 * Allowing unprivileged processes to allocate system PMCs is convenient
283 * if system-wide measurements need to be taken concurrently with other
284 * per-process measurements.  This feature is turned off by default.
285 */
286
287static int pmc_unprivileged_syspmcs = 0;
288SYSCTL_INT(_security_bsd, OID_AUTO, unprivileged_syspmcs, CTLFLAG_RWTUN,
289    &pmc_unprivileged_syspmcs, 0,
290    "allow unprivileged process to allocate system PMCs");
291
292/*
293 * Hash function.  Discard the lower 2 bits of the pointer since
294 * these are always zero for our uses.  The hash multiplier is
295 * round((2^LONG_BIT) * ((sqrt(5)-1)/2)).
296 */
297
298#if	LONG_BIT == 64
299#define	_PMC_HM		11400714819323198486u
300#elif	LONG_BIT == 32
301#define	_PMC_HM		2654435769u
302#else
303#error 	Must know the size of 'long' to compile
304#endif
305
306#define	PMC_HASH_PTR(P,M)	((((unsigned long) (P) >> 2) * _PMC_HM) & (M))
307
308/*
309 * Syscall structures
310 */
311
312/* The `sysent' for the new syscall */
313static struct sysent pmc_sysent = {
314	.sy_narg =	2,
315	.sy_call =	pmc_syscall_handler,
316};
317
318static struct syscall_module_data pmc_syscall_mod = {
319	.chainevh =	load,
320	.chainarg =	NULL,
321	.offset =	&pmc_syscall_num,
322	.new_sysent =	&pmc_sysent,
323	.old_sysent =	{ .sy_narg = 0, .sy_call = NULL },
324	.flags =	SY_THR_STATIC_KLD,
325};
326
327static moduledata_t pmc_mod = {
328	.name =		PMC_MODULE_NAME,
329	.evhand =	syscall_module_handler,
330	.priv =		&pmc_syscall_mod,
331};
332
333#ifdef EARLY_AP_STARTUP
334DECLARE_MODULE(pmc, pmc_mod, SI_SUB_SYSCALLS, SI_ORDER_ANY);
335#else
336DECLARE_MODULE(pmc, pmc_mod, SI_SUB_SMP, SI_ORDER_ANY);
337#endif
338MODULE_VERSION(pmc, PMC_VERSION);
339
340#ifdef	HWPMC_DEBUG
341enum pmc_dbgparse_state {
342	PMCDS_WS,		/* in whitespace */
343	PMCDS_MAJOR,		/* seen a major keyword */
344	PMCDS_MINOR
345};
346
347static int
348pmc_debugflags_parse(char *newstr, char *fence)
349{
350	char c, *p, *q;
351	struct pmc_debugflags *tmpflags;
352	int error, found, *newbits, tmp;
353	size_t kwlen;
354
355	tmpflags = malloc(sizeof(*tmpflags), M_PMC, M_WAITOK|M_ZERO);
356
357	p = newstr;
358	error = 0;
359
360	for (; p < fence && (c = *p); p++) {
361
362		/* skip white space */
363		if (c == ' ' || c == '\t')
364			continue;
365
366		/* look for a keyword followed by "=" */
367		for (q = p; p < fence && (c = *p) && c != '='; p++)
368			;
369		if (c != '=') {
370			error = EINVAL;
371			goto done;
372		}
373
374		kwlen = p - q;
375		newbits = NULL;
376
377		/* lookup flag group name */
378#define	DBG_SET_FLAG_MAJ(S,F)						\
379		if (kwlen == sizeof(S)-1 && strncmp(q, S, kwlen) == 0)	\
380			newbits = &tmpflags->pdb_ ## F;
381
382		DBG_SET_FLAG_MAJ("cpu",		CPU);
383		DBG_SET_FLAG_MAJ("csw",		CSW);
384		DBG_SET_FLAG_MAJ("logging",	LOG);
385		DBG_SET_FLAG_MAJ("module",	MOD);
386		DBG_SET_FLAG_MAJ("md", 		MDP);
387		DBG_SET_FLAG_MAJ("owner",	OWN);
388		DBG_SET_FLAG_MAJ("pmc",		PMC);
389		DBG_SET_FLAG_MAJ("process",	PRC);
390		DBG_SET_FLAG_MAJ("sampling", 	SAM);
391
392		if (newbits == NULL) {
393			error = EINVAL;
394			goto done;
395		}
396
397		p++;		/* skip the '=' */
398
399		/* Now parse the individual flags */
400		tmp = 0;
401	newflag:
402		for (q = p; p < fence && (c = *p); p++)
403			if (c == ' ' || c == '\t' || c == ',')
404				break;
405
406		/* p == fence or c == ws or c == "," or c == 0 */
407
408		if ((kwlen = p - q) == 0) {
409			*newbits = tmp;
410			continue;
411		}
412
413		found = 0;
414#define	DBG_SET_FLAG_MIN(S,F)						\
415		if (kwlen == sizeof(S)-1 && strncmp(q, S, kwlen) == 0)	\
416			tmp |= found = (1 << PMC_DEBUG_MIN_ ## F)
417
418		/* a '*' denotes all possible flags in the group */
419		if (kwlen == 1 && *q == '*')
420			tmp = found = ~0;
421		/* look for individual flag names */
422		DBG_SET_FLAG_MIN("allocaterow", ALR);
423		DBG_SET_FLAG_MIN("allocate",	ALL);
424		DBG_SET_FLAG_MIN("attach",	ATT);
425		DBG_SET_FLAG_MIN("bind",	BND);
426		DBG_SET_FLAG_MIN("config",	CFG);
427		DBG_SET_FLAG_MIN("exec",	EXC);
428		DBG_SET_FLAG_MIN("exit",	EXT);
429		DBG_SET_FLAG_MIN("find",	FND);
430		DBG_SET_FLAG_MIN("flush",	FLS);
431		DBG_SET_FLAG_MIN("fork",	FRK);
432		DBG_SET_FLAG_MIN("getbuf",	GTB);
433		DBG_SET_FLAG_MIN("hook",	PMH);
434		DBG_SET_FLAG_MIN("init",	INI);
435		DBG_SET_FLAG_MIN("intr",	INT);
436		DBG_SET_FLAG_MIN("linktarget",	TLK);
437		DBG_SET_FLAG_MIN("mayberemove", OMR);
438		DBG_SET_FLAG_MIN("ops",		OPS);
439		DBG_SET_FLAG_MIN("read",	REA);
440		DBG_SET_FLAG_MIN("register",	REG);
441		DBG_SET_FLAG_MIN("release",	REL);
442		DBG_SET_FLAG_MIN("remove",	ORM);
443		DBG_SET_FLAG_MIN("sample",	SAM);
444		DBG_SET_FLAG_MIN("scheduleio",	SIO);
445		DBG_SET_FLAG_MIN("select",	SEL);
446		DBG_SET_FLAG_MIN("signal",	SIG);
447		DBG_SET_FLAG_MIN("swi",		SWI);
448		DBG_SET_FLAG_MIN("swo",		SWO);
449		DBG_SET_FLAG_MIN("start",	STA);
450		DBG_SET_FLAG_MIN("stop",	STO);
451		DBG_SET_FLAG_MIN("syscall",	PMS);
452		DBG_SET_FLAG_MIN("unlinktarget", TUL);
453		DBG_SET_FLAG_MIN("write",	WRI);
454		if (found == 0) {
455			/* unrecognized flag name */
456			error = EINVAL;
457			goto done;
458		}
459
460		if (c == 0 || c == ' ' || c == '\t') {	/* end of flag group */
461			*newbits = tmp;
462			continue;
463		}
464
465		p++;
466		goto newflag;
467	}
468
469	/* save the new flag set */
470	bcopy(tmpflags, &pmc_debugflags, sizeof(pmc_debugflags));
471
472 done:
473	free(tmpflags, M_PMC);
474	return error;
475}
476
477static int
478pmc_debugflags_sysctl_handler(SYSCTL_HANDLER_ARGS)
479{
480	char *fence, *newstr;
481	int error;
482	unsigned int n;
483
484	(void) arg1; (void) arg2; /* unused parameters */
485
486	n = sizeof(pmc_debugstr);
487	newstr = malloc(n, M_PMC, M_WAITOK|M_ZERO);
488	(void) strlcpy(newstr, pmc_debugstr, n);
489
490	error = sysctl_handle_string(oidp, newstr, n, req);
491
492	/* if there is a new string, parse and copy it */
493	if (error == 0 && req->newptr != NULL) {
494		fence = newstr + (n < req->newlen ? n : req->newlen + 1);
495		if ((error = pmc_debugflags_parse(newstr, fence)) == 0)
496			(void) strlcpy(pmc_debugstr, newstr,
497			    sizeof(pmc_debugstr));
498	}
499
500	free(newstr, M_PMC);
501
502	return error;
503}
504#endif
505
506/*
507 * Map a row index to a classdep structure and return the adjusted row
508 * index for the PMC class index.
509 */
510static struct pmc_classdep *
511pmc_ri_to_classdep(struct pmc_mdep *md, int ri, int *adjri)
512{
513	struct pmc_classdep *pcd;
514
515	(void) md;
516
517	KASSERT(ri >= 0 && ri < md->pmd_npmc,
518	    ("[pmc,%d] illegal row-index %d", __LINE__, ri));
519
520	pcd = pmc_rowindex_to_classdep[ri];
521
522	KASSERT(pcd != NULL,
523	    ("[pmc,%d] ri %d null pcd", __LINE__, ri));
524
525	*adjri = ri - pcd->pcd_ri;
526
527	KASSERT(*adjri >= 0 && *adjri < pcd->pcd_num,
528	    ("[pmc,%d] adjusted row-index %d", __LINE__, *adjri));
529
530	return (pcd);
531}
532
533/*
534 * Concurrency Control
535 *
536 * The driver manages the following data structures:
537 *
538 *   - target process descriptors, one per target process
539 *   - owner process descriptors (and attached lists), one per owner process
540 *   - lookup hash tables for owner and target processes
541 *   - PMC descriptors (and attached lists)
542 *   - per-cpu hardware state
543 *   - the 'hook' variable through which the kernel calls into
544 *     this module
545 *   - the machine hardware state (managed by the MD layer)
546 *
547 * These data structures are accessed from:
548 *
549 * - thread context-switch code
550 * - interrupt handlers (possibly on multiple cpus)
551 * - kernel threads on multiple cpus running on behalf of user
552 *   processes doing system calls
553 * - this driver's private kernel threads
554 *
555 * = Locks and Locking strategy =
556 *
557 * The driver uses four locking strategies for its operation:
558 *
559 * - The global SX lock "pmc_sx" is used to protect internal
560 *   data structures.
561 *
562 *   Calls into the module by syscall() start with this lock being
563 *   held in exclusive mode.  Depending on the requested operation,
564 *   the lock may be downgraded to 'shared' mode to allow more
565 *   concurrent readers into the module.  Calls into the module from
566 *   other parts of the kernel acquire the lock in shared mode.
567 *
568 *   This SX lock is held in exclusive mode for any operations that
569 *   modify the linkages between the driver's internal data structures.
570 *
571 *   The 'pmc_hook' function pointer is also protected by this lock.
572 *   It is only examined with the sx lock held in exclusive mode.  The
573 *   kernel module is allowed to be unloaded only with the sx lock held
574 *   in exclusive mode.  In normal syscall handling, after acquiring the
575 *   pmc_sx lock we first check that 'pmc_hook' is non-null before
576 *   proceeding.  This prevents races between the thread unloading the module
577 *   and other threads seeking to use the module.
578 *
579 * - Lookups of target process structures and owner process structures
580 *   cannot use the global "pmc_sx" SX lock because these lookups need
581 *   to happen during context switches and in other critical sections
582 *   where sleeping is not allowed.  We protect these lookup tables
583 *   with their own private spin-mutexes, "pmc_processhash_mtx" and
584 *   "pmc_ownerhash_mtx".
585 *
586 * - Interrupt handlers work in a lock free manner.  At interrupt
587 *   time, handlers look at the PMC pointer (phw->phw_pmc) configured
588 *   when the PMC was started.  If this pointer is NULL, the interrupt
589 *   is ignored after updating driver statistics.  We ensure that this
590 *   pointer is set (using an atomic operation if necessary) before the
591 *   PMC hardware is started.  Conversely, this pointer is unset atomically
592 *   only after the PMC hardware is stopped.
593 *
594 *   We ensure that everything needed for the operation of an
595 *   interrupt handler is available without it needing to acquire any
596 *   locks.  We also ensure that a PMC's software state is destroyed only
597 *   after the PMC is taken off hardware (on all CPUs).
598 *
599 * - Context-switch handling with process-private PMCs needs more
600 *   care.
601 *
602 *   A given process may be the target of multiple PMCs.  For example,
603 *   PMCATTACH and PMCDETACH may be requested by a process on one CPU
604 *   while the target process is running on another.  A PMC could also
605 *   be getting released because its owner is exiting.  We tackle
606 *   these situations in the following manner:
607 *
608 *   - each target process structure 'pmc_process' has an array
609 *     of 'struct pmc *' pointers, one for each hardware PMC.
610 *
611 *   - At context switch IN time, each "target" PMC in RUNNING state
612 *     gets started on hardware and a pointer to each PMC is copied into
613 *     the per-cpu phw array.  The 'runcount' for the PMC is
614 *     incremented.
615 *
616 *   - At context switch OUT time, all process-virtual PMCs are stopped
617 *     on hardware.  The saved value is added to the PMCs value field
618 *     only if the PMC is in a non-deleted state (the PMCs state could
619 *     have changed during the current time slice).
620 *
621 *     Note that since in-between a switch IN on a processor and a switch
622 *     OUT, the PMC could have been released on another CPU.  Therefore
623 *     context switch OUT always looks at the hardware state to turn
624 *     OFF PMCs and will update a PMC's saved value only if reachable
625 *     from the target process record.
626 *
627 *   - OP PMCRELEASE could be called on a PMC at any time (the PMC could
628 *     be attached to many processes at the time of the call and could
629 *     be active on multiple CPUs).
630 *
631 *     We prevent further scheduling of the PMC by marking it as in
632 *     state 'DELETED'.  If the runcount of the PMC is non-zero then
633 *     this PMC is currently running on a CPU somewhere.  The thread
634 *     doing the PMCRELEASE operation waits by repeatedly doing a
635 *     pause() till the runcount comes to zero.
636 *
637 * The contents of a PMC descriptor (struct pmc) are protected using
638 * a spin-mutex.  In order to save space, we use a mutex pool.
639 *
640 * In terms of lock types used by witness(4), we use:
641 * - Type "pmc-sx", used by the global SX lock.
642 * - Type "pmc-sleep", for sleep mutexes used by logger threads.
643 * - Type "pmc-per-proc", for protecting PMC owner descriptors.
644 * - Type "pmc-leaf", used for all other spin mutexes.
645 */
646
647/*
648 * save the cpu binding of the current kthread
649 */
650
651static void
652pmc_save_cpu_binding(struct pmc_binding *pb)
653{
654	PMCDBG0(CPU,BND,2, "save-cpu");
655	thread_lock(curthread);
656	pb->pb_bound = sched_is_bound(curthread);
657	pb->pb_cpu   = curthread->td_oncpu;
658	thread_unlock(curthread);
659	PMCDBG1(CPU,BND,2, "save-cpu cpu=%d", pb->pb_cpu);
660}
661
662/*
663 * restore the cpu binding of the current thread
664 */
665
666static void
667pmc_restore_cpu_binding(struct pmc_binding *pb)
668{
669	PMCDBG2(CPU,BND,2, "restore-cpu curcpu=%d restore=%d",
670	    curthread->td_oncpu, pb->pb_cpu);
671	thread_lock(curthread);
672	if (pb->pb_bound)
673		sched_bind(curthread, pb->pb_cpu);
674	else
675		sched_unbind(curthread);
676	thread_unlock(curthread);
677	PMCDBG0(CPU,BND,2, "restore-cpu done");
678}
679
680/*
681 * move execution over the specified cpu and bind it there.
682 */
683
684static void
685pmc_select_cpu(int cpu)
686{
687	KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
688	    ("[pmc,%d] bad cpu number %d", __LINE__, cpu));
689
690	/* Never move to an inactive CPU. */
691	KASSERT(pmc_cpu_is_active(cpu), ("[pmc,%d] selecting inactive "
692	    "CPU %d", __LINE__, cpu));
693
694	PMCDBG1(CPU,SEL,2, "select-cpu cpu=%d", cpu);
695	thread_lock(curthread);
696	sched_bind(curthread, cpu);
697	thread_unlock(curthread);
698
699	KASSERT(curthread->td_oncpu == cpu,
700	    ("[pmc,%d] CPU not bound [cpu=%d, curr=%d]", __LINE__,
701		cpu, curthread->td_oncpu));
702
703	PMCDBG1(CPU,SEL,2, "select-cpu cpu=%d ok", cpu);
704}
705
706/*
707 * Force a context switch.
708 *
709 * We do this by pause'ing for 1 tick -- invoking mi_switch() is not
710 * guaranteed to force a context switch.
711 */
712
713static void
714pmc_force_context_switch(void)
715{
716
717	pause("pmcctx", 1);
718}
719
720/*
721 * Get the file name for an executable.  This is a simple wrapper
722 * around vn_fullpath(9).
723 */
724
725static void
726pmc_getfilename(struct vnode *v, char **fullpath, char **freepath)
727{
728
729	*fullpath = "unknown";
730	*freepath = NULL;
731	vn_fullpath(curthread, v, fullpath, freepath);
732}
733
734/*
735 * remove an process owning PMCs
736 */
737
738void
739pmc_remove_owner(struct pmc_owner *po)
740{
741	struct pmc *pm, *tmp;
742
743	sx_assert(&pmc_sx, SX_XLOCKED);
744
745	PMCDBG1(OWN,ORM,1, "remove-owner po=%p", po);
746
747	/* Remove descriptor from the owner hash table */
748	LIST_REMOVE(po, po_next);
749
750	/* release all owned PMC descriptors */
751	LIST_FOREACH_SAFE(pm, &po->po_pmcs, pm_next, tmp) {
752		PMCDBG1(OWN,ORM,2, "pmc=%p", pm);
753		KASSERT(pm->pm_owner == po,
754		    ("[pmc,%d] owner %p != po %p", __LINE__, pm->pm_owner, po));
755
756		pmc_release_pmc_descriptor(pm);	/* will unlink from the list */
757		pmc_destroy_pmc_descriptor(pm);
758	}
759
760	KASSERT(po->po_sscount == 0,
761	    ("[pmc,%d] SS count not zero", __LINE__));
762	KASSERT(LIST_EMPTY(&po->po_pmcs),
763	    ("[pmc,%d] PMC list not empty", __LINE__));
764
765	/* de-configure the log file if present */
766	if (po->po_flags & PMC_PO_OWNS_LOGFILE)
767		pmclog_deconfigure_log(po);
768}
769
770/*
771 * remove an owner process record if all conditions are met.
772 */
773
774static void
775pmc_maybe_remove_owner(struct pmc_owner *po)
776{
777
778	PMCDBG1(OWN,OMR,1, "maybe-remove-owner po=%p", po);
779
780	/*
781	 * Remove owner record if
782	 * - this process does not own any PMCs
783	 * - this process has not allocated a system-wide sampling buffer
784	 */
785
786	if (LIST_EMPTY(&po->po_pmcs) &&
787	    ((po->po_flags & PMC_PO_OWNS_LOGFILE) == 0)) {
788		pmc_remove_owner(po);
789		pmc_destroy_owner_descriptor(po);
790	}
791}
792
793/*
794 * Add an association between a target process and a PMC.
795 */
796
797static void
798pmc_link_target_process(struct pmc *pm, struct pmc_process *pp)
799{
800	int ri;
801	struct pmc_target *pt;
802
803	sx_assert(&pmc_sx, SX_XLOCKED);
804
805	KASSERT(pm != NULL && pp != NULL,
806	    ("[pmc,%d] Null pm %p or pp %p", __LINE__, pm, pp));
807	KASSERT(PMC_IS_VIRTUAL_MODE(PMC_TO_MODE(pm)),
808	    ("[pmc,%d] Attaching a non-process-virtual pmc=%p to pid=%d",
809		__LINE__, pm, pp->pp_proc->p_pid));
810	KASSERT(pp->pp_refcnt >= 0 && pp->pp_refcnt <= ((int) md->pmd_npmc - 1),
811	    ("[pmc,%d] Illegal reference count %d for process record %p",
812		__LINE__, pp->pp_refcnt, (void *) pp));
813
814	ri = PMC_TO_ROWINDEX(pm);
815
816	PMCDBG3(PRC,TLK,1, "link-target pmc=%p ri=%d pmc-process=%p",
817	    pm, ri, pp);
818
819#ifdef	HWPMC_DEBUG
820	LIST_FOREACH(pt, &pm->pm_targets, pt_next)
821	    if (pt->pt_process == pp)
822		    KASSERT(0, ("[pmc,%d] pp %p already in pmc %p targets",
823				__LINE__, pp, pm));
824#endif
825
826	pt = malloc(sizeof(struct pmc_target), M_PMC, M_WAITOK|M_ZERO);
827	pt->pt_process = pp;
828
829	LIST_INSERT_HEAD(&pm->pm_targets, pt, pt_next);
830
831	atomic_store_rel_ptr((uintptr_t *)&pp->pp_pmcs[ri].pp_pmc,
832	    (uintptr_t)pm);
833
834	if (pm->pm_owner->po_owner == pp->pp_proc)
835		pm->pm_flags |= PMC_F_ATTACHED_TO_OWNER;
836
837	/*
838	 * Initialize the per-process values at this row index.
839	 */
840	pp->pp_pmcs[ri].pp_pmcval = PMC_TO_MODE(pm) == PMC_MODE_TS ?
841	    pm->pm_sc.pm_reloadcount : 0;
842
843	pp->pp_refcnt++;
844
845}
846
847/*
848 * Removes the association between a target process and a PMC.
849 */
850
851static void
852pmc_unlink_target_process(struct pmc *pm, struct pmc_process *pp)
853{
854	int ri;
855	struct proc *p;
856	struct pmc_target *ptgt;
857
858	sx_assert(&pmc_sx, SX_XLOCKED);
859
860	KASSERT(pm != NULL && pp != NULL,
861	    ("[pmc,%d] Null pm %p or pp %p", __LINE__, pm, pp));
862
863	KASSERT(pp->pp_refcnt >= 1 && pp->pp_refcnt <= (int) md->pmd_npmc,
864	    ("[pmc,%d] Illegal ref count %d on process record %p",
865		__LINE__, pp->pp_refcnt, (void *) pp));
866
867	ri = PMC_TO_ROWINDEX(pm);
868
869	PMCDBG3(PRC,TUL,1, "unlink-target pmc=%p ri=%d pmc-process=%p",
870	    pm, ri, pp);
871
872	KASSERT(pp->pp_pmcs[ri].pp_pmc == pm,
873	    ("[pmc,%d] PMC ri %d mismatch pmc %p pp->[ri] %p", __LINE__,
874		ri, pm, pp->pp_pmcs[ri].pp_pmc));
875
876	pp->pp_pmcs[ri].pp_pmc = NULL;
877	pp->pp_pmcs[ri].pp_pmcval = (pmc_value_t) 0;
878
879	/* Remove owner-specific flags */
880	if (pm->pm_owner->po_owner == pp->pp_proc) {
881		pp->pp_flags &= ~PMC_PP_ENABLE_MSR_ACCESS;
882		pm->pm_flags &= ~PMC_F_ATTACHED_TO_OWNER;
883	}
884
885	pp->pp_refcnt--;
886
887	/* Remove the target process from the PMC structure */
888	LIST_FOREACH(ptgt, &pm->pm_targets, pt_next)
889		if (ptgt->pt_process == pp)
890			break;
891
892	KASSERT(ptgt != NULL, ("[pmc,%d] process %p (pp: %p) not found "
893		    "in pmc %p", __LINE__, pp->pp_proc, pp, pm));
894
895	LIST_REMOVE(ptgt, pt_next);
896	free(ptgt, M_PMC);
897
898	/* if the PMC now lacks targets, send the owner a SIGIO */
899	if (LIST_EMPTY(&pm->pm_targets)) {
900		p = pm->pm_owner->po_owner;
901		PROC_LOCK(p);
902		kern_psignal(p, SIGIO);
903		PROC_UNLOCK(p);
904
905		PMCDBG2(PRC,SIG,2, "signalling proc=%p signal=%d", p,
906		    SIGIO);
907	}
908}
909
910/*
911 * Check if PMC 'pm' may be attached to target process 't'.
912 */
913
914static int
915pmc_can_attach(struct pmc *pm, struct proc *t)
916{
917	struct proc *o;		/* pmc owner */
918	struct ucred *oc, *tc;	/* owner, target credentials */
919	int decline_attach, i;
920
921	/*
922	 * A PMC's owner can always attach that PMC to itself.
923	 */
924
925	if ((o = pm->pm_owner->po_owner) == t)
926		return 0;
927
928	PROC_LOCK(o);
929	oc = o->p_ucred;
930	crhold(oc);
931	PROC_UNLOCK(o);
932
933	PROC_LOCK(t);
934	tc = t->p_ucred;
935	crhold(tc);
936	PROC_UNLOCK(t);
937
938	/*
939	 * The effective uid of the PMC owner should match at least one
940	 * of the {effective,real,saved} uids of the target process.
941	 */
942
943	decline_attach = oc->cr_uid != tc->cr_uid &&
944	    oc->cr_uid != tc->cr_svuid &&
945	    oc->cr_uid != tc->cr_ruid;
946
947	/*
948	 * Every one of the target's group ids, must be in the owner's
949	 * group list.
950	 */
951	for (i = 0; !decline_attach && i < tc->cr_ngroups; i++)
952		decline_attach = !groupmember(tc->cr_groups[i], oc);
953
954	/* check the read and saved gids too */
955	if (decline_attach == 0)
956		decline_attach = !groupmember(tc->cr_rgid, oc) ||
957		    !groupmember(tc->cr_svgid, oc);
958
959	crfree(tc);
960	crfree(oc);
961
962	return !decline_attach;
963}
964
965/*
966 * Attach a process to a PMC.
967 */
968
969static int
970pmc_attach_one_process(struct proc *p, struct pmc *pm)
971{
972	int ri;
973	char *fullpath, *freepath;
974	struct pmc_process	*pp;
975
976	sx_assert(&pmc_sx, SX_XLOCKED);
977
978	PMCDBG5(PRC,ATT,2, "attach-one pm=%p ri=%d proc=%p (%d, %s)", pm,
979	    PMC_TO_ROWINDEX(pm), p, p->p_pid, p->p_comm);
980
981	/*
982	 * Locate the process descriptor corresponding to process 'p',
983	 * allocating space as needed.
984	 *
985	 * Verify that rowindex 'pm_rowindex' is free in the process
986	 * descriptor.
987	 *
988	 * If not, allocate space for a descriptor and link the
989	 * process descriptor and PMC.
990	 */
991	ri = PMC_TO_ROWINDEX(pm);
992
993	if ((pp = pmc_find_process_descriptor(p, PMC_FLAG_ALLOCATE)) == NULL)
994		return ENOMEM;
995
996	if (pp->pp_pmcs[ri].pp_pmc == pm) /* already present at slot [ri] */
997		return EEXIST;
998
999	if (pp->pp_pmcs[ri].pp_pmc != NULL)
1000		return EBUSY;
1001
1002	pmc_link_target_process(pm, pp);
1003
1004	if (PMC_IS_SAMPLING_MODE(PMC_TO_MODE(pm)) &&
1005	    (pm->pm_flags & PMC_F_ATTACHED_TO_OWNER) == 0)
1006		pm->pm_flags |= PMC_F_NEEDS_LOGFILE;
1007
1008	pm->pm_flags |= PMC_F_ATTACH_DONE; /* mark as attached */
1009
1010	/* issue an attach event to a configured log file */
1011	if (pm->pm_owner->po_flags & PMC_PO_OWNS_LOGFILE) {
1012		if (p->p_flag & P_KPROC) {
1013			fullpath = kernelname;
1014			freepath = NULL;
1015		} else {
1016			pmc_getfilename(p->p_textvp, &fullpath, &freepath);
1017			pmclog_process_pmcattach(pm, p->p_pid, fullpath);
1018		}
1019		free(freepath, M_TEMP);
1020		if (PMC_IS_SAMPLING_MODE(PMC_TO_MODE(pm)))
1021			pmc_log_process_mappings(pm->pm_owner, p);
1022	}
1023	/* mark process as using HWPMCs */
1024	PROC_LOCK(p);
1025	p->p_flag |= P_HWPMC;
1026	PROC_UNLOCK(p);
1027
1028	return 0;
1029}
1030
1031/*
1032 * Attach a process and optionally its children
1033 */
1034
1035static int
1036pmc_attach_process(struct proc *p, struct pmc *pm)
1037{
1038	int error;
1039	struct proc *top;
1040
1041	sx_assert(&pmc_sx, SX_XLOCKED);
1042
1043	PMCDBG5(PRC,ATT,1, "attach pm=%p ri=%d proc=%p (%d, %s)", pm,
1044	    PMC_TO_ROWINDEX(pm), p, p->p_pid, p->p_comm);
1045
1046
1047	/*
1048	 * If this PMC successfully allowed a GETMSR operation
1049	 * in the past, disallow further ATTACHes.
1050	 */
1051
1052	if ((pm->pm_flags & PMC_PP_ENABLE_MSR_ACCESS) != 0)
1053		return EPERM;
1054
1055	if ((pm->pm_flags & PMC_F_DESCENDANTS) == 0)
1056		return pmc_attach_one_process(p, pm);
1057
1058	/*
1059	 * Traverse all child processes, attaching them to
1060	 * this PMC.
1061	 */
1062
1063	sx_slock(&proctree_lock);
1064
1065	top = p;
1066
1067	for (;;) {
1068		if ((error = pmc_attach_one_process(p, pm)) != 0)
1069			break;
1070		if (!LIST_EMPTY(&p->p_children))
1071			p = LIST_FIRST(&p->p_children);
1072		else for (;;) {
1073			if (p == top)
1074				goto done;
1075			if (LIST_NEXT(p, p_sibling)) {
1076				p = LIST_NEXT(p, p_sibling);
1077				break;
1078			}
1079			p = p->p_pptr;
1080		}
1081	}
1082
1083	if (error)
1084		(void) pmc_detach_process(top, pm);
1085
1086 done:
1087	sx_sunlock(&proctree_lock);
1088	return error;
1089}
1090
1091/*
1092 * Detach a process from a PMC.  If there are no other PMCs tracking
1093 * this process, remove the process structure from its hash table.  If
1094 * 'flags' contains PMC_FLAG_REMOVE, then free the process structure.
1095 */
1096
1097static int
1098pmc_detach_one_process(struct proc *p, struct pmc *pm, int flags)
1099{
1100	int ri;
1101	struct pmc_process *pp;
1102
1103	sx_assert(&pmc_sx, SX_XLOCKED);
1104
1105	KASSERT(pm != NULL,
1106	    ("[pmc,%d] null pm pointer", __LINE__));
1107
1108	ri = PMC_TO_ROWINDEX(pm);
1109
1110	PMCDBG6(PRC,ATT,2, "detach-one pm=%p ri=%d proc=%p (%d, %s) flags=0x%x",
1111	    pm, ri, p, p->p_pid, p->p_comm, flags);
1112
1113	if ((pp = pmc_find_process_descriptor(p, 0)) == NULL)
1114		return ESRCH;
1115
1116	if (pp->pp_pmcs[ri].pp_pmc != pm)
1117		return EINVAL;
1118
1119	pmc_unlink_target_process(pm, pp);
1120
1121	/* Issue a detach entry if a log file is configured */
1122	if (pm->pm_owner->po_flags & PMC_PO_OWNS_LOGFILE)
1123		pmclog_process_pmcdetach(pm, p->p_pid);
1124
1125	/*
1126	 * If there are no PMCs targeting this process, we remove its
1127	 * descriptor from the target hash table and unset the P_HWPMC
1128	 * flag in the struct proc.
1129	 */
1130	KASSERT(pp->pp_refcnt >= 0 && pp->pp_refcnt <= (int) md->pmd_npmc,
1131	    ("[pmc,%d] Illegal refcnt %d for process struct %p",
1132		__LINE__, pp->pp_refcnt, pp));
1133
1134	if (pp->pp_refcnt != 0)	/* still a target of some PMC */
1135		return 0;
1136
1137	pmc_remove_process_descriptor(pp);
1138
1139	if (flags & PMC_FLAG_REMOVE)
1140		free(pp, M_PMC);
1141
1142	PROC_LOCK(p);
1143	p->p_flag &= ~P_HWPMC;
1144	PROC_UNLOCK(p);
1145
1146	return 0;
1147}
1148
1149/*
1150 * Detach a process and optionally its descendants from a PMC.
1151 */
1152
1153static int
1154pmc_detach_process(struct proc *p, struct pmc *pm)
1155{
1156	struct proc *top;
1157
1158	sx_assert(&pmc_sx, SX_XLOCKED);
1159
1160	PMCDBG5(PRC,ATT,1, "detach pm=%p ri=%d proc=%p (%d, %s)", pm,
1161	    PMC_TO_ROWINDEX(pm), p, p->p_pid, p->p_comm);
1162
1163	if ((pm->pm_flags & PMC_F_DESCENDANTS) == 0)
1164		return pmc_detach_one_process(p, pm, PMC_FLAG_REMOVE);
1165
1166	/*
1167	 * Traverse all children, detaching them from this PMC.  We
1168	 * ignore errors since we could be detaching a PMC from a
1169	 * partially attached proc tree.
1170	 */
1171
1172	sx_slock(&proctree_lock);
1173
1174	top = p;
1175
1176	for (;;) {
1177		(void) pmc_detach_one_process(p, pm, PMC_FLAG_REMOVE);
1178
1179		if (!LIST_EMPTY(&p->p_children))
1180			p = LIST_FIRST(&p->p_children);
1181		else for (;;) {
1182			if (p == top)
1183				goto done;
1184			if (LIST_NEXT(p, p_sibling)) {
1185				p = LIST_NEXT(p, p_sibling);
1186				break;
1187			}
1188			p = p->p_pptr;
1189		}
1190	}
1191
1192 done:
1193	sx_sunlock(&proctree_lock);
1194
1195	if (LIST_EMPTY(&pm->pm_targets))
1196		pm->pm_flags &= ~PMC_F_ATTACH_DONE;
1197
1198	return 0;
1199}
1200
1201
1202/*
1203 * Thread context switch IN
1204 */
1205
1206static void
1207pmc_process_csw_in(struct thread *td)
1208{
1209	int cpu;
1210	unsigned int adjri, ri;
1211	struct pmc *pm;
1212	struct proc *p;
1213	struct pmc_cpu *pc;
1214	struct pmc_hw *phw;
1215	pmc_value_t newvalue;
1216	struct pmc_process *pp;
1217	struct pmc_classdep *pcd;
1218
1219	p = td->td_proc;
1220
1221	if ((pp = pmc_find_process_descriptor(p, PMC_FLAG_NONE)) == NULL)
1222		return;
1223
1224	KASSERT(pp->pp_proc == td->td_proc,
1225	    ("[pmc,%d] not my thread state", __LINE__));
1226
1227	critical_enter(); /* no preemption from this point */
1228
1229	cpu = PCPU_GET(cpuid); /* td->td_oncpu is invalid */
1230
1231	PMCDBG5(CSW,SWI,1, "cpu=%d proc=%p (%d, %s) pp=%p", cpu, p,
1232	    p->p_pid, p->p_comm, pp);
1233
1234	KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
1235	    ("[pmc,%d] weird CPU id %d", __LINE__, cpu));
1236
1237	pc = pmc_pcpu[cpu];
1238
1239	for (ri = 0; ri < md->pmd_npmc; ri++) {
1240
1241		if ((pm = pp->pp_pmcs[ri].pp_pmc) == NULL)
1242			continue;
1243
1244		KASSERT(PMC_IS_VIRTUAL_MODE(PMC_TO_MODE(pm)),
1245		    ("[pmc,%d] Target PMC in non-virtual mode (%d)",
1246			__LINE__, PMC_TO_MODE(pm)));
1247
1248		KASSERT(PMC_TO_ROWINDEX(pm) == ri,
1249		    ("[pmc,%d] Row index mismatch pmc %d != ri %d",
1250			__LINE__, PMC_TO_ROWINDEX(pm), ri));
1251
1252		/*
1253		 * Only PMCs that are marked as 'RUNNING' need
1254		 * be placed on hardware.
1255		 */
1256
1257		if (pm->pm_state != PMC_STATE_RUNNING)
1258			continue;
1259
1260		/* increment PMC runcount */
1261		atomic_add_rel_int(&pm->pm_runcount, 1);
1262
1263		/* configure the HWPMC we are going to use. */
1264		pcd = pmc_ri_to_classdep(md, ri, &adjri);
1265		pcd->pcd_config_pmc(cpu, adjri, pm);
1266
1267		phw = pc->pc_hwpmcs[ri];
1268
1269		KASSERT(phw != NULL,
1270		    ("[pmc,%d] null hw pointer", __LINE__));
1271
1272		KASSERT(phw->phw_pmc == pm,
1273		    ("[pmc,%d] hw->pmc %p != pmc %p", __LINE__,
1274			phw->phw_pmc, pm));
1275
1276		/*
1277		 * Write out saved value and start the PMC.
1278		 *
1279		 * Sampling PMCs use a per-process value, while
1280		 * counting mode PMCs use a per-pmc value that is
1281		 * inherited across descendants.
1282		 */
1283		if (PMC_TO_MODE(pm) == PMC_MODE_TS) {
1284			mtx_pool_lock_spin(pmc_mtxpool, pm);
1285
1286			/*
1287			 * Use the saved value calculated after the most recent
1288			 * thread switch out to start this counter.  Reset
1289			 * the saved count in case another thread from this
1290			 * process switches in before any threads switch out.
1291			 */
1292			newvalue = PMC_PCPU_SAVED(cpu,ri) =
1293			    pp->pp_pmcs[ri].pp_pmcval;
1294			pp->pp_pmcs[ri].pp_pmcval = pm->pm_sc.pm_reloadcount;
1295			mtx_pool_unlock_spin(pmc_mtxpool, pm);
1296		} else {
1297			KASSERT(PMC_TO_MODE(pm) == PMC_MODE_TC,
1298			    ("[pmc,%d] illegal mode=%d", __LINE__,
1299			    PMC_TO_MODE(pm)));
1300			mtx_pool_lock_spin(pmc_mtxpool, pm);
1301			newvalue = PMC_PCPU_SAVED(cpu, ri) =
1302			    pm->pm_gv.pm_savedvalue;
1303			mtx_pool_unlock_spin(pmc_mtxpool, pm);
1304		}
1305
1306		PMCDBG3(CSW,SWI,1,"cpu=%d ri=%d new=%jd", cpu, ri, newvalue);
1307
1308		pcd->pcd_write_pmc(cpu, adjri, newvalue);
1309
1310		/* If a sampling mode PMC, reset stalled state. */
1311		if (PMC_TO_MODE(pm) == PMC_MODE_TS)
1312			CPU_CLR_ATOMIC(cpu, &pm->pm_stalled);
1313
1314		/* Indicate that we desire this to run. */
1315		CPU_SET_ATOMIC(cpu, &pm->pm_cpustate);
1316
1317		/* Start the PMC. */
1318		pcd->pcd_start_pmc(cpu, adjri);
1319	}
1320
1321	/*
1322	 * perform any other architecture/cpu dependent thread
1323	 * switch-in actions.
1324	 */
1325
1326	(void) (*md->pmd_switch_in)(pc, pp);
1327
1328	critical_exit();
1329
1330}
1331
1332/*
1333 * Thread context switch OUT.
1334 */
1335
1336static void
1337pmc_process_csw_out(struct thread *td)
1338{
1339	int cpu;
1340	int64_t tmp;
1341	struct pmc *pm;
1342	struct proc *p;
1343	enum pmc_mode mode;
1344	struct pmc_cpu *pc;
1345	pmc_value_t newvalue;
1346	unsigned int adjri, ri;
1347	struct pmc_process *pp;
1348	struct pmc_classdep *pcd;
1349
1350
1351	/*
1352	 * Locate our process descriptor; this may be NULL if
1353	 * this process is exiting and we have already removed
1354	 * the process from the target process table.
1355	 *
1356	 * Note that due to kernel preemption, multiple
1357	 * context switches may happen while the process is
1358	 * exiting.
1359	 *
1360	 * Note also that if the target process cannot be
1361	 * found we still need to deconfigure any PMCs that
1362	 * are currently running on hardware.
1363	 */
1364
1365	p = td->td_proc;
1366	pp = pmc_find_process_descriptor(p, PMC_FLAG_NONE);
1367
1368	/*
1369	 * save PMCs
1370	 */
1371
1372	critical_enter();
1373
1374	cpu = PCPU_GET(cpuid); /* td->td_oncpu is invalid */
1375
1376	PMCDBG5(CSW,SWO,1, "cpu=%d proc=%p (%d, %s) pp=%p", cpu, p,
1377	    p->p_pid, p->p_comm, pp);
1378
1379	KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
1380	    ("[pmc,%d weird CPU id %d", __LINE__, cpu));
1381
1382	pc = pmc_pcpu[cpu];
1383
1384	/*
1385	 * When a PMC gets unlinked from a target PMC, it will
1386	 * be removed from the target's pp_pmc[] array.
1387	 *
1388	 * However, on a MP system, the target could have been
1389	 * executing on another CPU at the time of the unlink.
1390	 * So, at context switch OUT time, we need to look at
1391	 * the hardware to determine if a PMC is scheduled on
1392	 * it.
1393	 */
1394
1395	for (ri = 0; ri < md->pmd_npmc; ri++) {
1396
1397		pcd = pmc_ri_to_classdep(md, ri, &adjri);
1398		pm  = NULL;
1399		(void) (*pcd->pcd_get_config)(cpu, adjri, &pm);
1400
1401		if (pm == NULL)	/* nothing at this row index */
1402			continue;
1403
1404		mode = PMC_TO_MODE(pm);
1405		if (!PMC_IS_VIRTUAL_MODE(mode))
1406			continue; /* not a process virtual PMC */
1407
1408		KASSERT(PMC_TO_ROWINDEX(pm) == ri,
1409		    ("[pmc,%d] ri mismatch pmc(%d) ri(%d)",
1410			__LINE__, PMC_TO_ROWINDEX(pm), ri));
1411
1412		/*
1413		 * Change desired state, and then stop if not stalled.
1414		 * This two-step dance should avoid race conditions where
1415		 * an interrupt re-enables the PMC after this code has
1416		 * already checked the pm_stalled flag.
1417		 */
1418		CPU_CLR_ATOMIC(cpu, &pm->pm_cpustate);
1419		if (!CPU_ISSET(cpu, &pm->pm_stalled))
1420			pcd->pcd_stop_pmc(cpu, adjri);
1421
1422		/* reduce this PMC's runcount */
1423		atomic_subtract_rel_int(&pm->pm_runcount, 1);
1424
1425		/*
1426		 * If this PMC is associated with this process,
1427		 * save the reading.
1428		 */
1429
1430		if (pm->pm_state != PMC_STATE_DELETED && pp != NULL &&
1431		    pp->pp_pmcs[ri].pp_pmc != NULL) {
1432			KASSERT(pm == pp->pp_pmcs[ri].pp_pmc,
1433			    ("[pmc,%d] pm %p != pp_pmcs[%d] %p", __LINE__,
1434				pm, ri, pp->pp_pmcs[ri].pp_pmc));
1435
1436			KASSERT(pp->pp_refcnt > 0,
1437			    ("[pmc,%d] pp refcnt = %d", __LINE__,
1438				pp->pp_refcnt));
1439
1440			pcd->pcd_read_pmc(cpu, adjri, &newvalue);
1441
1442			if (mode == PMC_MODE_TS) {
1443				PMCDBG3(CSW,SWO,1,"cpu=%d ri=%d tmp=%jd (samp)",
1444				    cpu, ri, PMC_PCPU_SAVED(cpu,ri) - newvalue);
1445
1446				/*
1447				 * For sampling process-virtual PMCs,
1448				 * newvalue is the number of events to be seen
1449				 * until the next sampling interrupt.
1450				 * We can just add the events left from this
1451				 * invocation to the counter, then adjust
1452				 * in case we overflow our range.
1453				 *
1454				 * (Recall that we reload the counter every
1455				 * time we use it.)
1456				 */
1457				mtx_pool_lock_spin(pmc_mtxpool, pm);
1458
1459				pp->pp_pmcs[ri].pp_pmcval += newvalue;
1460				if (pp->pp_pmcs[ri].pp_pmcval >
1461				    pm->pm_sc.pm_reloadcount)
1462					pp->pp_pmcs[ri].pp_pmcval -=
1463					    pm->pm_sc.pm_reloadcount;
1464				KASSERT(pp->pp_pmcs[ri].pp_pmcval > 0 &&
1465				    pp->pp_pmcs[ri].pp_pmcval <=
1466				    pm->pm_sc.pm_reloadcount,
1467				    ("[pmc,%d] pp_pmcval outside of expected "
1468				    "range cpu=%d ri=%d pp_pmcval=%jx "
1469				    "pm_reloadcount=%jx", __LINE__, cpu, ri,
1470				    pp->pp_pmcs[ri].pp_pmcval,
1471				    pm->pm_sc.pm_reloadcount));
1472				mtx_pool_unlock_spin(pmc_mtxpool, pm);
1473
1474			} else {
1475				tmp = newvalue - PMC_PCPU_SAVED(cpu,ri);
1476
1477				PMCDBG3(CSW,SWO,1,"cpu=%d ri=%d tmp=%jd (count)",
1478				    cpu, ri, tmp);
1479
1480				/*
1481				 * For counting process-virtual PMCs,
1482				 * we expect the count to be
1483				 * increasing monotonically, modulo a 64
1484				 * bit wraparound.
1485				 */
1486				KASSERT(tmp >= 0,
1487				    ("[pmc,%d] negative increment cpu=%d "
1488				     "ri=%d newvalue=%jx saved=%jx "
1489				     "incr=%jx", __LINE__, cpu, ri,
1490				     newvalue, PMC_PCPU_SAVED(cpu,ri), tmp));
1491
1492				mtx_pool_lock_spin(pmc_mtxpool, pm);
1493				pm->pm_gv.pm_savedvalue += tmp;
1494				pp->pp_pmcs[ri].pp_pmcval += tmp;
1495				mtx_pool_unlock_spin(pmc_mtxpool, pm);
1496
1497				if (pm->pm_flags & PMC_F_LOG_PROCCSW)
1498					pmclog_process_proccsw(pm, pp, tmp);
1499			}
1500		}
1501
1502		/* mark hardware as free */
1503		pcd->pcd_config_pmc(cpu, adjri, NULL);
1504	}
1505
1506	/*
1507	 * perform any other architecture/cpu dependent thread
1508	 * switch out functions.
1509	 */
1510
1511	(void) (*md->pmd_switch_out)(pc, pp);
1512
1513	critical_exit();
1514}
1515
1516/*
1517 * A mapping change for a process.
1518 */
1519
1520static void
1521pmc_process_mmap(struct thread *td, struct pmckern_map_in *pkm)
1522{
1523	int ri;
1524	pid_t pid;
1525	char *fullpath, *freepath;
1526	const struct pmc *pm;
1527	struct pmc_owner *po;
1528	const struct pmc_process *pp;
1529
1530	freepath = fullpath = NULL;
1531	pmc_getfilename((struct vnode *) pkm->pm_file, &fullpath, &freepath);
1532
1533	pid = td->td_proc->p_pid;
1534
1535	/* Inform owners of all system-wide sampling PMCs. */
1536	LIST_FOREACH(po, &pmc_ss_owners, po_ssnext)
1537	    if (po->po_flags & PMC_PO_OWNS_LOGFILE)
1538		pmclog_process_map_in(po, pid, pkm->pm_address, fullpath);
1539
1540	if ((pp = pmc_find_process_descriptor(td->td_proc, 0)) == NULL)
1541		goto done;
1542
1543	/*
1544	 * Inform sampling PMC owners tracking this process.
1545	 */
1546	for (ri = 0; ri < md->pmd_npmc; ri++)
1547		if ((pm = pp->pp_pmcs[ri].pp_pmc) != NULL &&
1548		    PMC_IS_SAMPLING_MODE(PMC_TO_MODE(pm)))
1549			pmclog_process_map_in(pm->pm_owner,
1550			    pid, pkm->pm_address, fullpath);
1551
1552  done:
1553	if (freepath)
1554		free(freepath, M_TEMP);
1555}
1556
1557
1558/*
1559 * Log an munmap request.
1560 */
1561
1562static void
1563pmc_process_munmap(struct thread *td, struct pmckern_map_out *pkm)
1564{
1565	int ri;
1566	pid_t pid;
1567	struct pmc_owner *po;
1568	const struct pmc *pm;
1569	const struct pmc_process *pp;
1570
1571	pid = td->td_proc->p_pid;
1572
1573	LIST_FOREACH(po, &pmc_ss_owners, po_ssnext)
1574	    if (po->po_flags & PMC_PO_OWNS_LOGFILE)
1575		pmclog_process_map_out(po, pid, pkm->pm_address,
1576		    pkm->pm_address + pkm->pm_size);
1577
1578	if ((pp = pmc_find_process_descriptor(td->td_proc, 0)) == NULL)
1579		return;
1580
1581	for (ri = 0; ri < md->pmd_npmc; ri++)
1582		if ((pm = pp->pp_pmcs[ri].pp_pmc) != NULL &&
1583		    PMC_IS_SAMPLING_MODE(PMC_TO_MODE(pm)))
1584			pmclog_process_map_out(pm->pm_owner, pid,
1585			    pkm->pm_address, pkm->pm_address + pkm->pm_size);
1586}
1587
1588/*
1589 * Log mapping information about the kernel.
1590 */
1591
1592static void
1593pmc_log_kernel_mappings(struct pmc *pm)
1594{
1595	struct pmc_owner *po;
1596	struct pmckern_map_in *km, *kmbase;
1597
1598	sx_assert(&pmc_sx, SX_LOCKED);
1599	KASSERT(PMC_IS_SAMPLING_MODE(PMC_TO_MODE(pm)),
1600	    ("[pmc,%d] non-sampling PMC (%p) desires mapping information",
1601		__LINE__, (void *) pm));
1602
1603	po = pm->pm_owner;
1604
1605	if (po->po_flags & PMC_PO_INITIAL_MAPPINGS_DONE)
1606		return;
1607
1608	/*
1609	 * Log the current set of kernel modules.
1610	 */
1611	kmbase = linker_hwpmc_list_objects();
1612	for (km = kmbase; km->pm_file != NULL; km++) {
1613		PMCDBG2(LOG,REG,1,"%s %p", (char *) km->pm_file,
1614		    (void *) km->pm_address);
1615		pmclog_process_map_in(po, (pid_t) -1, km->pm_address,
1616		    km->pm_file);
1617	}
1618	free(kmbase, M_LINKER);
1619
1620	po->po_flags |= PMC_PO_INITIAL_MAPPINGS_DONE;
1621}
1622
1623/*
1624 * Log the mappings for a single process.
1625 */
1626
1627static void
1628pmc_log_process_mappings(struct pmc_owner *po, struct proc *p)
1629{
1630	vm_map_t map;
1631	struct vnode *vp;
1632	struct vmspace *vm;
1633	vm_map_entry_t entry;
1634	vm_offset_t last_end;
1635	u_int last_timestamp;
1636	struct vnode *last_vp;
1637	vm_offset_t start_addr;
1638	vm_object_t obj, lobj, tobj;
1639	char *fullpath, *freepath;
1640
1641	last_vp = NULL;
1642	last_end = (vm_offset_t) 0;
1643	fullpath = freepath = NULL;
1644
1645	if ((vm = vmspace_acquire_ref(p)) == NULL)
1646		return;
1647
1648	map = &vm->vm_map;
1649	vm_map_lock_read(map);
1650
1651	for (entry = map->header.next; entry != &map->header; entry = entry->next) {
1652
1653		if (entry == NULL) {
1654			PMCDBG2(LOG,OPS,2, "hwpmc: vm_map entry unexpectedly "
1655			    "NULL! pid=%d vm_map=%p\n", p->p_pid, map);
1656			break;
1657		}
1658
1659		/*
1660		 * We only care about executable map entries.
1661		 */
1662		if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) ||
1663		    !(entry->protection & VM_PROT_EXECUTE) ||
1664		    (entry->object.vm_object == NULL)) {
1665			continue;
1666		}
1667
1668		obj = entry->object.vm_object;
1669		VM_OBJECT_RLOCK(obj);
1670
1671		/*
1672		 * Walk the backing_object list to find the base
1673		 * (non-shadowed) vm_object.
1674		 */
1675		for (lobj = tobj = obj; tobj != NULL; tobj = tobj->backing_object) {
1676			if (tobj != obj)
1677				VM_OBJECT_RLOCK(tobj);
1678			if (lobj != obj)
1679				VM_OBJECT_RUNLOCK(lobj);
1680			lobj = tobj;
1681		}
1682
1683		/*
1684		 * At this point lobj is the base vm_object and it is locked.
1685		 */
1686		if (lobj == NULL) {
1687			PMCDBG3(LOG,OPS,2, "hwpmc: lobj unexpectedly NULL! pid=%d "
1688			    "vm_map=%p vm_obj=%p\n", p->p_pid, map, obj);
1689			VM_OBJECT_RUNLOCK(obj);
1690			continue;
1691		}
1692
1693		vp = vm_object_vnode(lobj);
1694		if (vp == NULL) {
1695			if (lobj != obj)
1696				VM_OBJECT_RUNLOCK(lobj);
1697			VM_OBJECT_RUNLOCK(obj);
1698			continue;
1699		}
1700
1701		/*
1702		 * Skip contiguous regions that point to the same
1703		 * vnode, so we don't emit redundant MAP-IN
1704		 * directives.
1705		 */
1706		if (entry->start == last_end && vp == last_vp) {
1707			last_end = entry->end;
1708			if (lobj != obj)
1709				VM_OBJECT_RUNLOCK(lobj);
1710			VM_OBJECT_RUNLOCK(obj);
1711			continue;
1712		}
1713
1714		/*
1715		 * We don't want to keep the proc's vm_map or this
1716		 * vm_object locked while we walk the pathname, since
1717		 * vn_fullpath() can sleep.  However, if we drop the
1718		 * lock, it's possible for concurrent activity to
1719		 * modify the vm_map list.  To protect against this,
1720		 * we save the vm_map timestamp before we release the
1721		 * lock, and check it after we reacquire the lock
1722		 * below.
1723		 */
1724		start_addr = entry->start;
1725		last_end = entry->end;
1726		last_timestamp = map->timestamp;
1727		vm_map_unlock_read(map);
1728
1729		vref(vp);
1730		if (lobj != obj)
1731			VM_OBJECT_RUNLOCK(lobj);
1732
1733		VM_OBJECT_RUNLOCK(obj);
1734
1735		freepath = NULL;
1736		pmc_getfilename(vp, &fullpath, &freepath);
1737		last_vp = vp;
1738
1739		vrele(vp);
1740
1741		vp = NULL;
1742		pmclog_process_map_in(po, p->p_pid, start_addr, fullpath);
1743		if (freepath)
1744			free(freepath, M_TEMP);
1745
1746		vm_map_lock_read(map);
1747
1748		/*
1749		 * If our saved timestamp doesn't match, this means
1750		 * that the vm_map was modified out from under us and
1751		 * we can't trust our current "entry" pointer.  Do a
1752		 * new lookup for this entry.  If there is no entry
1753		 * for this address range, vm_map_lookup_entry() will
1754		 * return the previous one, so we always want to go to
1755		 * entry->next on the next loop iteration.
1756		 *
1757		 * There is an edge condition here that can occur if
1758		 * there is no entry at or before this address.  In
1759		 * this situation, vm_map_lookup_entry returns
1760		 * &map->header, which would cause our loop to abort
1761		 * without processing the rest of the map.  However,
1762		 * in practice this will never happen for process
1763		 * vm_map.  This is because the executable's text
1764		 * segment is the first mapping in the proc's address
1765		 * space, and this mapping is never removed until the
1766		 * process exits, so there will always be a non-header
1767		 * entry at or before the requested address for
1768		 * vm_map_lookup_entry to return.
1769		 */
1770		if (map->timestamp != last_timestamp)
1771			vm_map_lookup_entry(map, last_end - 1, &entry);
1772	}
1773
1774	vm_map_unlock_read(map);
1775	vmspace_free(vm);
1776	return;
1777}
1778
1779/*
1780 * Log mappings for all processes in the system.
1781 */
1782
1783static void
1784pmc_log_all_process_mappings(struct pmc_owner *po)
1785{
1786	struct proc *p, *top;
1787
1788	sx_assert(&pmc_sx, SX_XLOCKED);
1789
1790	if ((p = pfind(1)) == NULL)
1791		panic("[pmc,%d] Cannot find init", __LINE__);
1792
1793	PROC_UNLOCK(p);
1794
1795	sx_slock(&proctree_lock);
1796
1797	top = p;
1798
1799	for (;;) {
1800		pmc_log_process_mappings(po, p);
1801		if (!LIST_EMPTY(&p->p_children))
1802			p = LIST_FIRST(&p->p_children);
1803		else for (;;) {
1804			if (p == top)
1805				goto done;
1806			if (LIST_NEXT(p, p_sibling)) {
1807				p = LIST_NEXT(p, p_sibling);
1808				break;
1809			}
1810			p = p->p_pptr;
1811		}
1812	}
1813 done:
1814	sx_sunlock(&proctree_lock);
1815}
1816
1817/*
1818 * The 'hook' invoked from the kernel proper
1819 */
1820
1821
1822#ifdef	HWPMC_DEBUG
1823const char *pmc_hooknames[] = {
1824	/* these strings correspond to PMC_FN_* in <sys/pmckern.h> */
1825	"",
1826	"EXEC",
1827	"CSW-IN",
1828	"CSW-OUT",
1829	"SAMPLE",
1830	"UNUSED1",
1831	"UNUSED2",
1832	"MMAP",
1833	"MUNMAP",
1834	"CALLCHAIN-NMI",
1835	"CALLCHAIN-SOFT",
1836	"SOFTSAMPLING"
1837};
1838#endif
1839
1840static int
1841pmc_hook_handler(struct thread *td, int function, void *arg)
1842{
1843
1844	PMCDBG4(MOD,PMH,1, "hook td=%p func=%d \"%s\" arg=%p", td, function,
1845	    pmc_hooknames[function], arg);
1846
1847	switch (function)
1848	{
1849
1850	/*
1851	 * Process exec()
1852	 */
1853
1854	case PMC_FN_PROCESS_EXEC:
1855	{
1856		char *fullpath, *freepath;
1857		unsigned int ri;
1858		int is_using_hwpmcs;
1859		struct pmc *pm;
1860		struct proc *p;
1861		struct pmc_owner *po;
1862		struct pmc_process *pp;
1863		struct pmckern_procexec *pk;
1864
1865		sx_assert(&pmc_sx, SX_XLOCKED);
1866
1867		p = td->td_proc;
1868		pmc_getfilename(p->p_textvp, &fullpath, &freepath);
1869
1870		pk = (struct pmckern_procexec *) arg;
1871
1872		/* Inform owners of SS mode PMCs of the exec event. */
1873		LIST_FOREACH(po, &pmc_ss_owners, po_ssnext)
1874		    if (po->po_flags & PMC_PO_OWNS_LOGFILE)
1875			    pmclog_process_procexec(po, PMC_ID_INVALID,
1876				p->p_pid, pk->pm_entryaddr, fullpath);
1877
1878		PROC_LOCK(p);
1879		is_using_hwpmcs = p->p_flag & P_HWPMC;
1880		PROC_UNLOCK(p);
1881
1882		if (!is_using_hwpmcs) {
1883			if (freepath)
1884				free(freepath, M_TEMP);
1885			break;
1886		}
1887
1888		/*
1889		 * PMCs are not inherited across an exec():  remove any
1890		 * PMCs that this process is the owner of.
1891		 */
1892
1893		if ((po = pmc_find_owner_descriptor(p)) != NULL) {
1894			pmc_remove_owner(po);
1895			pmc_destroy_owner_descriptor(po);
1896		}
1897
1898		/*
1899		 * If the process being exec'ed is not the target of any
1900		 * PMC, we are done.
1901		 */
1902		if ((pp = pmc_find_process_descriptor(p, 0)) == NULL) {
1903			if (freepath)
1904				free(freepath, M_TEMP);
1905			break;
1906		}
1907
1908		/*
1909		 * Log the exec event to all monitoring owners.  Skip
1910		 * owners who have already received the event because
1911		 * they had system sampling PMCs active.
1912		 */
1913		for (ri = 0; ri < md->pmd_npmc; ri++)
1914			if ((pm = pp->pp_pmcs[ri].pp_pmc) != NULL) {
1915				po = pm->pm_owner;
1916				if (po->po_sscount == 0 &&
1917				    po->po_flags & PMC_PO_OWNS_LOGFILE)
1918					pmclog_process_procexec(po, pm->pm_id,
1919					    p->p_pid, pk->pm_entryaddr,
1920					    fullpath);
1921			}
1922
1923		if (freepath)
1924			free(freepath, M_TEMP);
1925
1926
1927		PMCDBG4(PRC,EXC,1, "exec proc=%p (%d, %s) cred-changed=%d",
1928		    p, p->p_pid, p->p_comm, pk->pm_credentialschanged);
1929
1930		if (pk->pm_credentialschanged == 0) /* no change */
1931			break;
1932
1933		/*
1934		 * If the newly exec()'ed process has a different credential
1935		 * than before, allow it to be the target of a PMC only if
1936		 * the PMC's owner has sufficient privilege.
1937		 */
1938
1939		for (ri = 0; ri < md->pmd_npmc; ri++)
1940			if ((pm = pp->pp_pmcs[ri].pp_pmc) != NULL)
1941				if (pmc_can_attach(pm, td->td_proc) != 0)
1942					pmc_detach_one_process(td->td_proc,
1943					    pm, PMC_FLAG_NONE);
1944
1945		KASSERT(pp->pp_refcnt >= 0 && pp->pp_refcnt <= (int) md->pmd_npmc,
1946		    ("[pmc,%d] Illegal ref count %d on pp %p", __LINE__,
1947			pp->pp_refcnt, pp));
1948
1949		/*
1950		 * If this process is no longer the target of any
1951		 * PMCs, we can remove the process entry and free
1952		 * up space.
1953		 */
1954
1955		if (pp->pp_refcnt == 0) {
1956			pmc_remove_process_descriptor(pp);
1957			free(pp, M_PMC);
1958			break;
1959		}
1960
1961	}
1962	break;
1963
1964	case PMC_FN_CSW_IN:
1965		pmc_process_csw_in(td);
1966		break;
1967
1968	case PMC_FN_CSW_OUT:
1969		pmc_process_csw_out(td);
1970		break;
1971
1972	/*
1973	 * Process accumulated PC samples.
1974	 *
1975	 * This function is expected to be called by hardclock() for
1976	 * each CPU that has accumulated PC samples.
1977	 *
1978	 * This function is to be executed on the CPU whose samples
1979	 * are being processed.
1980	 */
1981	case PMC_FN_DO_SAMPLES:
1982
1983		/*
1984		 * Clear the cpu specific bit in the CPU mask before
1985		 * do the rest of the processing.  If the NMI handler
1986		 * gets invoked after the "atomic_clear_int()" call
1987		 * below but before "pmc_process_samples()" gets
1988		 * around to processing the interrupt, then we will
1989		 * come back here at the next hardclock() tick (and
1990		 * may find nothing to do if "pmc_process_samples()"
1991		 * had already processed the interrupt).  We don't
1992		 * lose the interrupt sample.
1993		 */
1994		CPU_CLR_ATOMIC(PCPU_GET(cpuid), &pmc_cpumask);
1995		pmc_process_samples(PCPU_GET(cpuid), PMC_HR);
1996		pmc_process_samples(PCPU_GET(cpuid), PMC_SR);
1997		break;
1998
1999	case PMC_FN_MMAP:
2000		sx_assert(&pmc_sx, SX_LOCKED);
2001		pmc_process_mmap(td, (struct pmckern_map_in *) arg);
2002		break;
2003
2004	case PMC_FN_MUNMAP:
2005		sx_assert(&pmc_sx, SX_LOCKED);
2006		pmc_process_munmap(td, (struct pmckern_map_out *) arg);
2007		break;
2008
2009	case PMC_FN_USER_CALLCHAIN:
2010		/*
2011		 * Record a call chain.
2012		 */
2013		KASSERT(td == curthread, ("[pmc,%d] td != curthread",
2014		    __LINE__));
2015
2016		pmc_capture_user_callchain(PCPU_GET(cpuid), PMC_HR,
2017		    (struct trapframe *) arg);
2018		td->td_pflags &= ~TDP_CALLCHAIN;
2019		break;
2020
2021	case PMC_FN_USER_CALLCHAIN_SOFT:
2022		/*
2023		 * Record a call chain.
2024		 */
2025		KASSERT(td == curthread, ("[pmc,%d] td != curthread",
2026		    __LINE__));
2027		pmc_capture_user_callchain(PCPU_GET(cpuid), PMC_SR,
2028		    (struct trapframe *) arg);
2029		td->td_pflags &= ~TDP_CALLCHAIN;
2030		break;
2031
2032	case PMC_FN_SOFT_SAMPLING:
2033		/*
2034		 * Call soft PMC sampling intr.
2035		 */
2036		pmc_soft_intr((struct pmckern_soft *) arg);
2037		break;
2038
2039	default:
2040#ifdef	HWPMC_DEBUG
2041		KASSERT(0, ("[pmc,%d] unknown hook %d\n", __LINE__, function));
2042#endif
2043		break;
2044
2045	}
2046
2047	return 0;
2048}
2049
2050/*
2051 * allocate a 'struct pmc_owner' descriptor in the owner hash table.
2052 */
2053
2054static struct pmc_owner *
2055pmc_allocate_owner_descriptor(struct proc *p)
2056{
2057	uint32_t hindex;
2058	struct pmc_owner *po;
2059	struct pmc_ownerhash *poh;
2060
2061	hindex = PMC_HASH_PTR(p, pmc_ownerhashmask);
2062	poh = &pmc_ownerhash[hindex];
2063
2064	/* allocate space for N pointers and one descriptor struct */
2065	po = malloc(sizeof(struct pmc_owner), M_PMC, M_WAITOK|M_ZERO);
2066	po->po_owner = p;
2067	LIST_INSERT_HEAD(poh, po, po_next); /* insert into hash table */
2068
2069	TAILQ_INIT(&po->po_logbuffers);
2070	mtx_init(&po->po_mtx, "pmc-owner-mtx", "pmc-per-proc", MTX_SPIN);
2071
2072	PMCDBG4(OWN,ALL,1, "allocate-owner proc=%p (%d, %s) pmc-owner=%p",
2073	    p, p->p_pid, p->p_comm, po);
2074
2075	return po;
2076}
2077
2078static void
2079pmc_destroy_owner_descriptor(struct pmc_owner *po)
2080{
2081
2082	PMCDBG4(OWN,REL,1, "destroy-owner po=%p proc=%p (%d, %s)",
2083	    po, po->po_owner, po->po_owner->p_pid, po->po_owner->p_comm);
2084
2085	mtx_destroy(&po->po_mtx);
2086	free(po, M_PMC);
2087}
2088
2089/*
2090 * find the descriptor corresponding to process 'p', adding or removing it
2091 * as specified by 'mode'.
2092 */
2093
2094static struct pmc_process *
2095pmc_find_process_descriptor(struct proc *p, uint32_t mode)
2096{
2097	uint32_t hindex;
2098	struct pmc_process *pp, *ppnew;
2099	struct pmc_processhash *pph;
2100
2101	hindex = PMC_HASH_PTR(p, pmc_processhashmask);
2102	pph = &pmc_processhash[hindex];
2103
2104	ppnew = NULL;
2105
2106	/*
2107	 * Pre-allocate memory in the FIND_ALLOCATE case since we
2108	 * cannot call malloc(9) once we hold a spin lock.
2109	 */
2110	if (mode & PMC_FLAG_ALLOCATE)
2111		ppnew = malloc(sizeof(struct pmc_process) + md->pmd_npmc *
2112		    sizeof(struct pmc_targetstate), M_PMC, M_WAITOK|M_ZERO);
2113
2114	mtx_lock_spin(&pmc_processhash_mtx);
2115	LIST_FOREACH(pp, pph, pp_next)
2116	    if (pp->pp_proc == p)
2117		    break;
2118
2119	if ((mode & PMC_FLAG_REMOVE) && pp != NULL)
2120		LIST_REMOVE(pp, pp_next);
2121
2122	if ((mode & PMC_FLAG_ALLOCATE) && pp == NULL &&
2123	    ppnew != NULL) {
2124		ppnew->pp_proc = p;
2125		LIST_INSERT_HEAD(pph, ppnew, pp_next);
2126		pp = ppnew;
2127		ppnew = NULL;
2128	}
2129	mtx_unlock_spin(&pmc_processhash_mtx);
2130
2131	if (pp != NULL && ppnew != NULL)
2132		free(ppnew, M_PMC);
2133
2134	return pp;
2135}
2136
2137/*
2138 * remove a process descriptor from the process hash table.
2139 */
2140
2141static void
2142pmc_remove_process_descriptor(struct pmc_process *pp)
2143{
2144	KASSERT(pp->pp_refcnt == 0,
2145	    ("[pmc,%d] Removing process descriptor %p with count %d",
2146		__LINE__, pp, pp->pp_refcnt));
2147
2148	mtx_lock_spin(&pmc_processhash_mtx);
2149	LIST_REMOVE(pp, pp_next);
2150	mtx_unlock_spin(&pmc_processhash_mtx);
2151}
2152
2153
2154/*
2155 * find an owner descriptor corresponding to proc 'p'
2156 */
2157
2158static struct pmc_owner *
2159pmc_find_owner_descriptor(struct proc *p)
2160{
2161	uint32_t hindex;
2162	struct pmc_owner *po;
2163	struct pmc_ownerhash *poh;
2164
2165	hindex = PMC_HASH_PTR(p, pmc_ownerhashmask);
2166	poh = &pmc_ownerhash[hindex];
2167
2168	po = NULL;
2169	LIST_FOREACH(po, poh, po_next)
2170	    if (po->po_owner == p)
2171		    break;
2172
2173	PMCDBG5(OWN,FND,1, "find-owner proc=%p (%d, %s) hindex=0x%x -> "
2174	    "pmc-owner=%p", p, p->p_pid, p->p_comm, hindex, po);
2175
2176	return po;
2177}
2178
2179/*
2180 * pmc_allocate_pmc_descriptor
2181 *
2182 * Allocate a pmc descriptor and initialize its
2183 * fields.
2184 */
2185
2186static struct pmc *
2187pmc_allocate_pmc_descriptor(void)
2188{
2189	struct pmc *pmc;
2190
2191	pmc = malloc(sizeof(struct pmc), M_PMC, M_WAITOK|M_ZERO);
2192
2193	PMCDBG1(PMC,ALL,1, "allocate-pmc -> pmc=%p", pmc);
2194
2195	return pmc;
2196}
2197
2198/*
2199 * Destroy a pmc descriptor.
2200 */
2201
2202static void
2203pmc_destroy_pmc_descriptor(struct pmc *pm)
2204{
2205
2206	KASSERT(pm->pm_state == PMC_STATE_DELETED ||
2207	    pm->pm_state == PMC_STATE_FREE,
2208	    ("[pmc,%d] destroying non-deleted PMC", __LINE__));
2209	KASSERT(LIST_EMPTY(&pm->pm_targets),
2210	    ("[pmc,%d] destroying pmc with targets", __LINE__));
2211	KASSERT(pm->pm_owner == NULL,
2212	    ("[pmc,%d] destroying pmc attached to an owner", __LINE__));
2213	KASSERT(pm->pm_runcount == 0,
2214	    ("[pmc,%d] pmc has non-zero run count %d", __LINE__,
2215		pm->pm_runcount));
2216
2217	free(pm, M_PMC);
2218}
2219
2220static void
2221pmc_wait_for_pmc_idle(struct pmc *pm)
2222{
2223#ifdef HWPMC_DEBUG
2224	volatile int maxloop;
2225
2226	maxloop = 100 * pmc_cpu_max();
2227#endif
2228	/*
2229	 * Loop (with a forced context switch) till the PMC's runcount
2230	 * comes down to zero.
2231	 */
2232	while (atomic_load_acq_32(&pm->pm_runcount) > 0) {
2233#ifdef HWPMC_DEBUG
2234		maxloop--;
2235		KASSERT(maxloop > 0,
2236		    ("[pmc,%d] (ri%d, rc%d) waiting too long for "
2237			"pmc to be free", __LINE__,
2238			PMC_TO_ROWINDEX(pm), pm->pm_runcount));
2239#endif
2240		pmc_force_context_switch();
2241	}
2242}
2243
2244/*
2245 * This function does the following things:
2246 *
2247 *  - detaches the PMC from hardware
2248 *  - unlinks all target threads that were attached to it
2249 *  - removes the PMC from its owner's list
2250 *  - destroys the PMC private mutex
2251 *
2252 * Once this function completes, the given pmc pointer can be freed by
2253 * calling pmc_destroy_pmc_descriptor().
2254 */
2255
2256static void
2257pmc_release_pmc_descriptor(struct pmc *pm)
2258{
2259	enum pmc_mode mode;
2260	struct pmc_hw *phw;
2261	u_int adjri, ri, cpu;
2262	struct pmc_owner *po;
2263	struct pmc_binding pb;
2264	struct pmc_process *pp;
2265	struct pmc_classdep *pcd;
2266	struct pmc_target *ptgt, *tmp;
2267
2268	sx_assert(&pmc_sx, SX_XLOCKED);
2269
2270	KASSERT(pm, ("[pmc,%d] null pmc", __LINE__));
2271
2272	ri   = PMC_TO_ROWINDEX(pm);
2273	pcd  = pmc_ri_to_classdep(md, ri, &adjri);
2274	mode = PMC_TO_MODE(pm);
2275
2276	PMCDBG3(PMC,REL,1, "release-pmc pmc=%p ri=%d mode=%d", pm, ri,
2277	    mode);
2278
2279	/*
2280	 * First, we take the PMC off hardware.
2281	 */
2282	cpu = 0;
2283	if (PMC_IS_SYSTEM_MODE(mode)) {
2284
2285		/*
2286		 * A system mode PMC runs on a specific CPU.  Switch
2287		 * to this CPU and turn hardware off.
2288		 */
2289		pmc_save_cpu_binding(&pb);
2290
2291		cpu = PMC_TO_CPU(pm);
2292
2293		pmc_select_cpu(cpu);
2294
2295		/* switch off non-stalled CPUs */
2296		CPU_CLR_ATOMIC(cpu, &pm->pm_cpustate);
2297		if (pm->pm_state == PMC_STATE_RUNNING &&
2298		    !CPU_ISSET(cpu, &pm->pm_stalled)) {
2299
2300			phw = pmc_pcpu[cpu]->pc_hwpmcs[ri];
2301
2302			KASSERT(phw->phw_pmc == pm,
2303			    ("[pmc, %d] pmc ptr ri(%d) hw(%p) pm(%p)",
2304				__LINE__, ri, phw->phw_pmc, pm));
2305			PMCDBG2(PMC,REL,2, "stopping cpu=%d ri=%d", cpu, ri);
2306
2307			critical_enter();
2308			pcd->pcd_stop_pmc(cpu, adjri);
2309			critical_exit();
2310		}
2311
2312		PMCDBG2(PMC,REL,2, "decfg cpu=%d ri=%d", cpu, ri);
2313
2314		critical_enter();
2315		pcd->pcd_config_pmc(cpu, adjri, NULL);
2316		critical_exit();
2317
2318		/* adjust the global and process count of SS mode PMCs */
2319		if (mode == PMC_MODE_SS && pm->pm_state == PMC_STATE_RUNNING) {
2320			po = pm->pm_owner;
2321			po->po_sscount--;
2322			if (po->po_sscount == 0) {
2323				atomic_subtract_rel_int(&pmc_ss_count, 1);
2324				LIST_REMOVE(po, po_ssnext);
2325			}
2326		}
2327
2328		pm->pm_state = PMC_STATE_DELETED;
2329
2330		pmc_restore_cpu_binding(&pb);
2331
2332		/*
2333		 * We could have references to this PMC structure in
2334		 * the per-cpu sample queues.  Wait for the queue to
2335		 * drain.
2336		 */
2337		pmc_wait_for_pmc_idle(pm);
2338
2339	} else if (PMC_IS_VIRTUAL_MODE(mode)) {
2340
2341		/*
2342		 * A virtual PMC could be running on multiple CPUs at
2343		 * a given instant.
2344		 *
2345		 * By marking its state as DELETED, we ensure that
2346		 * this PMC is never further scheduled on hardware.
2347		 *
2348		 * Then we wait till all CPUs are done with this PMC.
2349		 */
2350		pm->pm_state = PMC_STATE_DELETED;
2351
2352
2353		/* Wait for the PMCs runcount to come to zero. */
2354		pmc_wait_for_pmc_idle(pm);
2355
2356		/*
2357		 * At this point the PMC is off all CPUs and cannot be
2358		 * freshly scheduled onto a CPU.  It is now safe to
2359		 * unlink all targets from this PMC.  If a
2360		 * process-record's refcount falls to zero, we remove
2361		 * it from the hash table.  The module-wide SX lock
2362		 * protects us from races.
2363		 */
2364		LIST_FOREACH_SAFE(ptgt, &pm->pm_targets, pt_next, tmp) {
2365			pp = ptgt->pt_process;
2366			pmc_unlink_target_process(pm, pp); /* frees 'ptgt' */
2367
2368			PMCDBG1(PMC,REL,3, "pp->refcnt=%d", pp->pp_refcnt);
2369
2370			/*
2371			 * If the target process record shows that no
2372			 * PMCs are attached to it, reclaim its space.
2373			 */
2374
2375			if (pp->pp_refcnt == 0) {
2376				pmc_remove_process_descriptor(pp);
2377				free(pp, M_PMC);
2378			}
2379		}
2380
2381		cpu = curthread->td_oncpu; /* setup cpu for pmd_release() */
2382
2383	}
2384
2385	/*
2386	 * Release any MD resources
2387	 */
2388	(void) pcd->pcd_release_pmc(cpu, adjri, pm);
2389
2390	/*
2391	 * Update row disposition
2392	 */
2393
2394	if (PMC_IS_SYSTEM_MODE(PMC_TO_MODE(pm)))
2395		PMC_UNMARK_ROW_STANDALONE(ri);
2396	else
2397		PMC_UNMARK_ROW_THREAD(ri);
2398
2399	/* unlink from the owner's list */
2400	if (pm->pm_owner) {
2401		LIST_REMOVE(pm, pm_next);
2402		pm->pm_owner = NULL;
2403	}
2404}
2405
2406/*
2407 * Register an owner and a pmc.
2408 */
2409
2410static int
2411pmc_register_owner(struct proc *p, struct pmc *pmc)
2412{
2413	struct pmc_owner *po;
2414
2415	sx_assert(&pmc_sx, SX_XLOCKED);
2416
2417	if ((po = pmc_find_owner_descriptor(p)) == NULL)
2418		if ((po = pmc_allocate_owner_descriptor(p)) == NULL)
2419			return ENOMEM;
2420
2421	KASSERT(pmc->pm_owner == NULL,
2422	    ("[pmc,%d] attempting to own an initialized PMC", __LINE__));
2423	pmc->pm_owner  = po;
2424
2425	LIST_INSERT_HEAD(&po->po_pmcs, pmc, pm_next);
2426
2427	PROC_LOCK(p);
2428	p->p_flag |= P_HWPMC;
2429	PROC_UNLOCK(p);
2430
2431	if (po->po_flags & PMC_PO_OWNS_LOGFILE)
2432		pmclog_process_pmcallocate(pmc);
2433
2434	PMCDBG2(PMC,REG,1, "register-owner pmc-owner=%p pmc=%p",
2435	    po, pmc);
2436
2437	return 0;
2438}
2439
2440/*
2441 * Return the current row disposition:
2442 * == 0 => FREE
2443 *  > 0 => PROCESS MODE
2444 *  < 0 => SYSTEM MODE
2445 */
2446
2447int
2448pmc_getrowdisp(int ri)
2449{
2450	return pmc_pmcdisp[ri];
2451}
2452
2453/*
2454 * Check if a PMC at row index 'ri' can be allocated to the current
2455 * process.
2456 *
2457 * Allocation can fail if:
2458 *   - the current process is already being profiled by a PMC at index 'ri',
2459 *     attached to it via OP_PMCATTACH.
2460 *   - the current process has already allocated a PMC at index 'ri'
2461 *     via OP_ALLOCATE.
2462 */
2463
2464static int
2465pmc_can_allocate_rowindex(struct proc *p, unsigned int ri, int cpu)
2466{
2467	enum pmc_mode mode;
2468	struct pmc *pm;
2469	struct pmc_owner *po;
2470	struct pmc_process *pp;
2471
2472	PMCDBG5(PMC,ALR,1, "can-allocate-rowindex proc=%p (%d, %s) ri=%d "
2473	    "cpu=%d", p, p->p_pid, p->p_comm, ri, cpu);
2474
2475	/*
2476	 * We shouldn't have already allocated a process-mode PMC at
2477	 * row index 'ri'.
2478	 *
2479	 * We shouldn't have allocated a system-wide PMC on the same
2480	 * CPU and same RI.
2481	 */
2482	if ((po = pmc_find_owner_descriptor(p)) != NULL)
2483		LIST_FOREACH(pm, &po->po_pmcs, pm_next) {
2484		    if (PMC_TO_ROWINDEX(pm) == ri) {
2485			    mode = PMC_TO_MODE(pm);
2486			    if (PMC_IS_VIRTUAL_MODE(mode))
2487				    return EEXIST;
2488			    if (PMC_IS_SYSTEM_MODE(mode) &&
2489				(int) PMC_TO_CPU(pm) == cpu)
2490				    return EEXIST;
2491		    }
2492	        }
2493
2494	/*
2495	 * We also shouldn't be the target of any PMC at this index
2496	 * since otherwise a PMC_ATTACH to ourselves will fail.
2497	 */
2498	if ((pp = pmc_find_process_descriptor(p, 0)) != NULL)
2499		if (pp->pp_pmcs[ri].pp_pmc)
2500			return EEXIST;
2501
2502	PMCDBG4(PMC,ALR,2, "can-allocate-rowindex proc=%p (%d, %s) ri=%d ok",
2503	    p, p->p_pid, p->p_comm, ri);
2504
2505	return 0;
2506}
2507
2508/*
2509 * Check if a given PMC at row index 'ri' can be currently used in
2510 * mode 'mode'.
2511 */
2512
2513static int
2514pmc_can_allocate_row(int ri, enum pmc_mode mode)
2515{
2516	enum pmc_disp	disp;
2517
2518	sx_assert(&pmc_sx, SX_XLOCKED);
2519
2520	PMCDBG2(PMC,ALR,1, "can-allocate-row ri=%d mode=%d", ri, mode);
2521
2522	if (PMC_IS_SYSTEM_MODE(mode))
2523		disp = PMC_DISP_STANDALONE;
2524	else
2525		disp = PMC_DISP_THREAD;
2526
2527	/*
2528	 * check disposition for PMC row 'ri':
2529	 *
2530	 * Expected disposition		Row-disposition		Result
2531	 *
2532	 * STANDALONE			STANDALONE or FREE	proceed
2533	 * STANDALONE			THREAD			fail
2534	 * THREAD			THREAD or FREE		proceed
2535	 * THREAD			STANDALONE		fail
2536	 */
2537
2538	if (!PMC_ROW_DISP_IS_FREE(ri) &&
2539	    !(disp == PMC_DISP_THREAD && PMC_ROW_DISP_IS_THREAD(ri)) &&
2540	    !(disp == PMC_DISP_STANDALONE && PMC_ROW_DISP_IS_STANDALONE(ri)))
2541		return EBUSY;
2542
2543	/*
2544	 * All OK
2545	 */
2546
2547	PMCDBG2(PMC,ALR,2, "can-allocate-row ri=%d mode=%d ok", ri, mode);
2548
2549	return 0;
2550
2551}
2552
2553/*
2554 * Find a PMC descriptor with user handle 'pmcid' for thread 'td'.
2555 */
2556
2557static struct pmc *
2558pmc_find_pmc_descriptor_in_process(struct pmc_owner *po, pmc_id_t pmcid)
2559{
2560	struct pmc *pm;
2561
2562	KASSERT(PMC_ID_TO_ROWINDEX(pmcid) < md->pmd_npmc,
2563	    ("[pmc,%d] Illegal pmc index %d (max %d)", __LINE__,
2564		PMC_ID_TO_ROWINDEX(pmcid), md->pmd_npmc));
2565
2566	LIST_FOREACH(pm, &po->po_pmcs, pm_next)
2567	    if (pm->pm_id == pmcid)
2568		    return pm;
2569
2570	return NULL;
2571}
2572
2573static int
2574pmc_find_pmc(pmc_id_t pmcid, struct pmc **pmc)
2575{
2576
2577	struct pmc *pm, *opm;
2578	struct pmc_owner *po;
2579	struct pmc_process *pp;
2580
2581	PMCDBG1(PMC,FND,1, "find-pmc id=%d", pmcid);
2582	if (PMC_ID_TO_ROWINDEX(pmcid) >= md->pmd_npmc)
2583		return (EINVAL);
2584
2585	if ((po = pmc_find_owner_descriptor(curthread->td_proc)) == NULL) {
2586		/*
2587		 * In case of PMC_F_DESCENDANTS child processes we will not find
2588		 * the current process in the owners hash list.  Find the owner
2589		 * process first and from there lookup the po.
2590		 */
2591		if ((pp = pmc_find_process_descriptor(curthread->td_proc,
2592		    PMC_FLAG_NONE)) == NULL) {
2593			return ESRCH;
2594		} else {
2595			opm = pp->pp_pmcs[PMC_ID_TO_ROWINDEX(pmcid)].pp_pmc;
2596			if (opm == NULL)
2597				return ESRCH;
2598			if ((opm->pm_flags & (PMC_F_ATTACHED_TO_OWNER|
2599			    PMC_F_DESCENDANTS)) != (PMC_F_ATTACHED_TO_OWNER|
2600			    PMC_F_DESCENDANTS))
2601				return ESRCH;
2602			po = opm->pm_owner;
2603		}
2604	}
2605
2606	if ((pm = pmc_find_pmc_descriptor_in_process(po, pmcid)) == NULL)
2607		return EINVAL;
2608
2609	PMCDBG2(PMC,FND,2, "find-pmc id=%d -> pmc=%p", pmcid, pm);
2610
2611	*pmc = pm;
2612	return 0;
2613}
2614
2615/*
2616 * Start a PMC.
2617 */
2618
2619static int
2620pmc_start(struct pmc *pm)
2621{
2622	enum pmc_mode mode;
2623	struct pmc_owner *po;
2624	struct pmc_binding pb;
2625	struct pmc_classdep *pcd;
2626	int adjri, error, cpu, ri;
2627
2628	KASSERT(pm != NULL,
2629	    ("[pmc,%d] null pm", __LINE__));
2630
2631	mode = PMC_TO_MODE(pm);
2632	ri   = PMC_TO_ROWINDEX(pm);
2633	pcd  = pmc_ri_to_classdep(md, ri, &adjri);
2634
2635	error = 0;
2636
2637	PMCDBG3(PMC,OPS,1, "start pmc=%p mode=%d ri=%d", pm, mode, ri);
2638
2639	po = pm->pm_owner;
2640
2641	/*
2642	 * Disallow PMCSTART if a logfile is required but has not been
2643	 * configured yet.
2644	 */
2645	if ((pm->pm_flags & PMC_F_NEEDS_LOGFILE) &&
2646	    (po->po_flags & PMC_PO_OWNS_LOGFILE) == 0)
2647		return (EDOOFUS);	/* programming error */
2648
2649	/*
2650	 * If this is a sampling mode PMC, log mapping information for
2651	 * the kernel modules that are currently loaded.
2652	 */
2653	if (PMC_IS_SAMPLING_MODE(PMC_TO_MODE(pm)))
2654	    pmc_log_kernel_mappings(pm);
2655
2656	if (PMC_IS_VIRTUAL_MODE(mode)) {
2657
2658		/*
2659		 * If a PMCATTACH has never been done on this PMC,
2660		 * attach it to its owner process.
2661		 */
2662
2663		if (LIST_EMPTY(&pm->pm_targets))
2664			error = (pm->pm_flags & PMC_F_ATTACH_DONE) ? ESRCH :
2665			    pmc_attach_process(po->po_owner, pm);
2666
2667		/*
2668		 * If the PMC is attached to its owner, then force a context
2669		 * switch to ensure that the MD state gets set correctly.
2670		 */
2671
2672		if (error == 0) {
2673			pm->pm_state = PMC_STATE_RUNNING;
2674			if (pm->pm_flags & PMC_F_ATTACHED_TO_OWNER)
2675				pmc_force_context_switch();
2676		}
2677
2678		return (error);
2679	}
2680
2681
2682	/*
2683	 * A system-wide PMC.
2684	 *
2685	 * Add the owner to the global list if this is a system-wide
2686	 * sampling PMC.
2687	 */
2688
2689	if (mode == PMC_MODE_SS) {
2690		if (po->po_sscount == 0) {
2691			LIST_INSERT_HEAD(&pmc_ss_owners, po, po_ssnext);
2692			atomic_add_rel_int(&pmc_ss_count, 1);
2693			PMCDBG1(PMC,OPS,1, "po=%p in global list", po);
2694		}
2695		po->po_sscount++;
2696
2697		/*
2698		 * Log mapping information for all existing processes in the
2699		 * system.  Subsequent mappings are logged as they happen;
2700		 * see pmc_process_mmap().
2701		 */
2702		if (po->po_logprocmaps == 0) {
2703			pmc_log_all_process_mappings(po);
2704			po->po_logprocmaps = 1;
2705		}
2706	}
2707
2708	/*
2709	 * Move to the CPU associated with this
2710	 * PMC, and start the hardware.
2711	 */
2712
2713	pmc_save_cpu_binding(&pb);
2714
2715	cpu = PMC_TO_CPU(pm);
2716
2717	if (!pmc_cpu_is_active(cpu))
2718		return (ENXIO);
2719
2720	pmc_select_cpu(cpu);
2721
2722	/*
2723	 * global PMCs are configured at allocation time
2724	 * so write out the initial value and start the PMC.
2725	 */
2726
2727	pm->pm_state = PMC_STATE_RUNNING;
2728
2729	critical_enter();
2730	if ((error = pcd->pcd_write_pmc(cpu, adjri,
2731		 PMC_IS_SAMPLING_MODE(mode) ?
2732		 pm->pm_sc.pm_reloadcount :
2733		 pm->pm_sc.pm_initial)) == 0) {
2734		/* If a sampling mode PMC, reset stalled state. */
2735		if (PMC_IS_SAMPLING_MODE(mode))
2736			CPU_CLR_ATOMIC(cpu, &pm->pm_stalled);
2737
2738		/* Indicate that we desire this to run. Start it. */
2739		CPU_SET_ATOMIC(cpu, &pm->pm_cpustate);
2740		error = pcd->pcd_start_pmc(cpu, adjri);
2741	}
2742	critical_exit();
2743
2744	pmc_restore_cpu_binding(&pb);
2745
2746	return (error);
2747}
2748
2749/*
2750 * Stop a PMC.
2751 */
2752
2753static int
2754pmc_stop(struct pmc *pm)
2755{
2756	struct pmc_owner *po;
2757	struct pmc_binding pb;
2758	struct pmc_classdep *pcd;
2759	int adjri, cpu, error, ri;
2760
2761	KASSERT(pm != NULL, ("[pmc,%d] null pmc", __LINE__));
2762
2763	PMCDBG3(PMC,OPS,1, "stop pmc=%p mode=%d ri=%d", pm,
2764	    PMC_TO_MODE(pm), PMC_TO_ROWINDEX(pm));
2765
2766	pm->pm_state = PMC_STATE_STOPPED;
2767
2768	/*
2769	 * If the PMC is a virtual mode one, changing the state to
2770	 * non-RUNNING is enough to ensure that the PMC never gets
2771	 * scheduled.
2772	 *
2773	 * If this PMC is current running on a CPU, then it will
2774	 * handled correctly at the time its target process is context
2775	 * switched out.
2776	 */
2777
2778	if (PMC_IS_VIRTUAL_MODE(PMC_TO_MODE(pm)))
2779		return 0;
2780
2781	/*
2782	 * A system-mode PMC.  Move to the CPU associated with
2783	 * this PMC, and stop the hardware.  We update the
2784	 * 'initial count' so that a subsequent PMCSTART will
2785	 * resume counting from the current hardware count.
2786	 */
2787
2788	pmc_save_cpu_binding(&pb);
2789
2790	cpu = PMC_TO_CPU(pm);
2791
2792	KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
2793	    ("[pmc,%d] illegal cpu=%d", __LINE__, cpu));
2794
2795	if (!pmc_cpu_is_active(cpu))
2796		return ENXIO;
2797
2798	pmc_select_cpu(cpu);
2799
2800	ri = PMC_TO_ROWINDEX(pm);
2801	pcd = pmc_ri_to_classdep(md, ri, &adjri);
2802
2803	CPU_CLR_ATOMIC(cpu, &pm->pm_cpustate);
2804	critical_enter();
2805	if ((error = pcd->pcd_stop_pmc(cpu, adjri)) == 0)
2806		error = pcd->pcd_read_pmc(cpu, adjri, &pm->pm_sc.pm_initial);
2807	critical_exit();
2808
2809	pmc_restore_cpu_binding(&pb);
2810
2811	po = pm->pm_owner;
2812
2813	/* remove this owner from the global list of SS PMC owners */
2814	if (PMC_TO_MODE(pm) == PMC_MODE_SS) {
2815		po->po_sscount--;
2816		if (po->po_sscount == 0) {
2817			atomic_subtract_rel_int(&pmc_ss_count, 1);
2818			LIST_REMOVE(po, po_ssnext);
2819			PMCDBG1(PMC,OPS,2,"po=%p removed from global list", po);
2820		}
2821	}
2822
2823	return (error);
2824}
2825
2826
2827#ifdef	HWPMC_DEBUG
2828static const char *pmc_op_to_name[] = {
2829#undef	__PMC_OP
2830#define	__PMC_OP(N, D)	#N ,
2831	__PMC_OPS()
2832	NULL
2833};
2834#endif
2835
2836/*
2837 * The syscall interface
2838 */
2839
2840#define	PMC_GET_SX_XLOCK(...) do {		\
2841	sx_xlock(&pmc_sx);			\
2842	if (pmc_hook == NULL) {			\
2843		sx_xunlock(&pmc_sx);		\
2844		return __VA_ARGS__;		\
2845	}					\
2846} while (0)
2847
2848#define	PMC_DOWNGRADE_SX() do {			\
2849	sx_downgrade(&pmc_sx);			\
2850	is_sx_downgraded = 1;			\
2851} while (0)
2852
2853static int
2854pmc_syscall_handler(struct thread *td, void *syscall_args)
2855{
2856	int error, is_sx_downgraded, op;
2857	struct pmc_syscall_args *c;
2858	void *pmclog_proc_handle;
2859	void *arg;
2860
2861	c = (struct pmc_syscall_args *)syscall_args;
2862	op = c->pmop_code;
2863	arg = c->pmop_data;
2864	if (op == PMC_OP_CONFIGURELOG) {
2865		/*
2866		 * We cannot create the logging process inside
2867		 * pmclog_configure_log() because there is a LOR
2868		 * between pmc_sx and process structure locks.
2869		 * Instead, pre-create the process and ignite the loop
2870		 * if everything is fine, otherwise direct the process
2871		 * to exit.
2872		 */
2873		error = pmclog_proc_create(td, &pmclog_proc_handle);
2874		if (error != 0)
2875			goto done_syscall;
2876	}
2877
2878	PMC_GET_SX_XLOCK(ENOSYS);
2879	is_sx_downgraded = 0;
2880
2881	PMCDBG3(MOD,PMS,1, "syscall op=%d \"%s\" arg=%p", op,
2882	    pmc_op_to_name[op], arg);
2883
2884	error = 0;
2885	atomic_add_int(&pmc_stats.pm_syscalls, 1);
2886
2887	switch (op) {
2888
2889
2890	/*
2891	 * Configure a log file.
2892	 *
2893	 * XXX This OP will be reworked.
2894	 */
2895
2896	case PMC_OP_CONFIGURELOG:
2897	{
2898		struct proc *p;
2899		struct pmc *pm;
2900		struct pmc_owner *po;
2901		struct pmc_op_configurelog cl;
2902
2903		if ((error = copyin(arg, &cl, sizeof(cl))) != 0) {
2904			pmclog_proc_ignite(pmclog_proc_handle, NULL);
2905			break;
2906		}
2907
2908		/* mark this process as owning a log file */
2909		p = td->td_proc;
2910		if ((po = pmc_find_owner_descriptor(p)) == NULL)
2911			if ((po = pmc_allocate_owner_descriptor(p)) == NULL) {
2912				pmclog_proc_ignite(pmclog_proc_handle, NULL);
2913				error = ENOMEM;
2914				break;
2915			}
2916
2917		/*
2918		 * If a valid fd was passed in, try to configure that,
2919		 * otherwise if 'fd' was less than zero and there was
2920		 * a log file configured, flush its buffers and
2921		 * de-configure it.
2922		 */
2923		if (cl.pm_logfd >= 0) {
2924			error = pmclog_configure_log(md, po, cl.pm_logfd);
2925			pmclog_proc_ignite(pmclog_proc_handle, error == 0 ?
2926			    po : NULL);
2927		} else if (po->po_flags & PMC_PO_OWNS_LOGFILE) {
2928			pmclog_proc_ignite(pmclog_proc_handle, NULL);
2929			error = pmclog_close(po);
2930			if (error == 0) {
2931				LIST_FOREACH(pm, &po->po_pmcs, pm_next)
2932				    if (pm->pm_flags & PMC_F_NEEDS_LOGFILE &&
2933					pm->pm_state == PMC_STATE_RUNNING)
2934					    pmc_stop(pm);
2935				error = pmclog_deconfigure_log(po);
2936			}
2937		} else {
2938			pmclog_proc_ignite(pmclog_proc_handle, NULL);
2939			error = EINVAL;
2940		}
2941	}
2942	break;
2943
2944	/*
2945	 * Flush a log file.
2946	 */
2947
2948	case PMC_OP_FLUSHLOG:
2949	{
2950		struct pmc_owner *po;
2951
2952		sx_assert(&pmc_sx, SX_XLOCKED);
2953
2954		if ((po = pmc_find_owner_descriptor(td->td_proc)) == NULL) {
2955			error = EINVAL;
2956			break;
2957		}
2958
2959		error = pmclog_flush(po);
2960	}
2961	break;
2962
2963	/*
2964	 * Close a log file.
2965	 */
2966
2967	case PMC_OP_CLOSELOG:
2968	{
2969		struct pmc_owner *po;
2970
2971		sx_assert(&pmc_sx, SX_XLOCKED);
2972
2973		if ((po = pmc_find_owner_descriptor(td->td_proc)) == NULL) {
2974			error = EINVAL;
2975			break;
2976		}
2977
2978		error = pmclog_close(po);
2979	}
2980	break;
2981
2982	/*
2983	 * Retrieve hardware configuration.
2984	 */
2985
2986	case PMC_OP_GETCPUINFO:	/* CPU information */
2987	{
2988		struct pmc_op_getcpuinfo gci;
2989		struct pmc_classinfo *pci;
2990		struct pmc_classdep *pcd;
2991		int cl;
2992
2993		memset(&gci, 0, sizeof(gci));
2994		gci.pm_cputype = md->pmd_cputype;
2995		gci.pm_ncpu    = pmc_cpu_max();
2996		gci.pm_npmc    = md->pmd_npmc;
2997		gci.pm_nclass  = md->pmd_nclass;
2998		pci = gci.pm_classes;
2999		pcd = md->pmd_classdep;
3000		for (cl = 0; cl < md->pmd_nclass; cl++, pci++, pcd++) {
3001			pci->pm_caps  = pcd->pcd_caps;
3002			pci->pm_class = pcd->pcd_class;
3003			pci->pm_width = pcd->pcd_width;
3004			pci->pm_num   = pcd->pcd_num;
3005		}
3006		error = copyout(&gci, arg, sizeof(gci));
3007	}
3008	break;
3009
3010	/*
3011	 * Retrieve soft events list.
3012	 */
3013	case PMC_OP_GETDYNEVENTINFO:
3014	{
3015		enum pmc_class			cl;
3016		enum pmc_event			ev;
3017		struct pmc_op_getdyneventinfo	*gei;
3018		struct pmc_dyn_event_descr	dev;
3019		struct pmc_soft			*ps;
3020		uint32_t			nevent;
3021
3022		sx_assert(&pmc_sx, SX_LOCKED);
3023
3024		gei = (struct pmc_op_getdyneventinfo *) arg;
3025
3026		if ((error = copyin(&gei->pm_class, &cl, sizeof(cl))) != 0)
3027			break;
3028
3029		/* Only SOFT class is dynamic. */
3030		if (cl != PMC_CLASS_SOFT) {
3031			error = EINVAL;
3032			break;
3033		}
3034
3035		nevent = 0;
3036		for (ev = PMC_EV_SOFT_FIRST; (int)ev <= PMC_EV_SOFT_LAST; ev++) {
3037			ps = pmc_soft_ev_acquire(ev);
3038			if (ps == NULL)
3039				continue;
3040			bcopy(&ps->ps_ev, &dev, sizeof(dev));
3041			pmc_soft_ev_release(ps);
3042
3043			error = copyout(&dev,
3044			    &gei->pm_events[nevent],
3045			    sizeof(struct pmc_dyn_event_descr));
3046			if (error != 0)
3047				break;
3048			nevent++;
3049		}
3050		if (error != 0)
3051			break;
3052
3053		error = copyout(&nevent, &gei->pm_nevent,
3054		    sizeof(nevent));
3055	}
3056	break;
3057
3058	/*
3059	 * Get module statistics
3060	 */
3061
3062	case PMC_OP_GETDRIVERSTATS:
3063	{
3064		struct pmc_op_getdriverstats gms;
3065
3066		bcopy(&pmc_stats, &gms, sizeof(gms));
3067		error = copyout(&gms, arg, sizeof(gms));
3068	}
3069	break;
3070
3071
3072	/*
3073	 * Retrieve module version number
3074	 */
3075
3076	case PMC_OP_GETMODULEVERSION:
3077	{
3078		uint32_t cv, modv;
3079
3080		/* retrieve the client's idea of the ABI version */
3081		if ((error = copyin(arg, &cv, sizeof(uint32_t))) != 0)
3082			break;
3083		/* don't service clients newer than our driver */
3084		modv = PMC_VERSION;
3085		if ((cv & 0xFFFF0000) > (modv & 0xFFFF0000)) {
3086			error = EPROGMISMATCH;
3087			break;
3088		}
3089		error = copyout(&modv, arg, sizeof(int));
3090	}
3091	break;
3092
3093
3094	/*
3095	 * Retrieve the state of all the PMCs on a given
3096	 * CPU.
3097	 */
3098
3099	case PMC_OP_GETPMCINFO:
3100	{
3101		int ari;
3102		struct pmc *pm;
3103		size_t pmcinfo_size;
3104		uint32_t cpu, n, npmc;
3105		struct pmc_owner *po;
3106		struct pmc_binding pb;
3107		struct pmc_classdep *pcd;
3108		struct pmc_info *p, *pmcinfo;
3109		struct pmc_op_getpmcinfo *gpi;
3110
3111		PMC_DOWNGRADE_SX();
3112
3113		gpi = (struct pmc_op_getpmcinfo *) arg;
3114
3115		if ((error = copyin(&gpi->pm_cpu, &cpu, sizeof(cpu))) != 0)
3116			break;
3117
3118		if (cpu >= pmc_cpu_max()) {
3119			error = EINVAL;
3120			break;
3121		}
3122
3123		if (!pmc_cpu_is_active(cpu)) {
3124			error = ENXIO;
3125			break;
3126		}
3127
3128		/* switch to CPU 'cpu' */
3129		pmc_save_cpu_binding(&pb);
3130		pmc_select_cpu(cpu);
3131
3132		npmc = md->pmd_npmc;
3133
3134		pmcinfo_size = npmc * sizeof(struct pmc_info);
3135		pmcinfo = malloc(pmcinfo_size, M_PMC, M_WAITOK | M_ZERO);
3136
3137		p = pmcinfo;
3138
3139		for (n = 0; n < md->pmd_npmc; n++, p++) {
3140
3141			pcd = pmc_ri_to_classdep(md, n, &ari);
3142
3143			KASSERT(pcd != NULL,
3144			    ("[pmc,%d] null pcd ri=%d", __LINE__, n));
3145
3146			if ((error = pcd->pcd_describe(cpu, ari, p, &pm)) != 0)
3147				break;
3148
3149			if (PMC_ROW_DISP_IS_STANDALONE(n))
3150				p->pm_rowdisp = PMC_DISP_STANDALONE;
3151			else if (PMC_ROW_DISP_IS_THREAD(n))
3152				p->pm_rowdisp = PMC_DISP_THREAD;
3153			else
3154				p->pm_rowdisp = PMC_DISP_FREE;
3155
3156			p->pm_ownerpid = -1;
3157
3158			if (pm == NULL)	/* no PMC associated */
3159				continue;
3160
3161			po = pm->pm_owner;
3162
3163			KASSERT(po->po_owner != NULL,
3164			    ("[pmc,%d] pmc_owner had a null proc pointer",
3165				__LINE__));
3166
3167			p->pm_ownerpid = po->po_owner->p_pid;
3168			p->pm_mode     = PMC_TO_MODE(pm);
3169			p->pm_event    = pm->pm_event;
3170			p->pm_flags    = pm->pm_flags;
3171
3172			if (PMC_IS_SAMPLING_MODE(PMC_TO_MODE(pm)))
3173				p->pm_reloadcount =
3174				    pm->pm_sc.pm_reloadcount;
3175		}
3176
3177		pmc_restore_cpu_binding(&pb);
3178
3179		/* now copy out the PMC info collected */
3180		if (error == 0)
3181			error = copyout(pmcinfo, &gpi->pm_pmcs, pmcinfo_size);
3182
3183		free(pmcinfo, M_PMC);
3184	}
3185	break;
3186
3187
3188	/*
3189	 * Set the administrative state of a PMC.  I.e. whether
3190	 * the PMC is to be used or not.
3191	 */
3192
3193	case PMC_OP_PMCADMIN:
3194	{
3195		int cpu, ri;
3196		enum pmc_state request;
3197		struct pmc_cpu *pc;
3198		struct pmc_hw *phw;
3199		struct pmc_op_pmcadmin pma;
3200		struct pmc_binding pb;
3201
3202		sx_assert(&pmc_sx, SX_XLOCKED);
3203
3204		KASSERT(td == curthread,
3205		    ("[pmc,%d] td != curthread", __LINE__));
3206
3207		error = priv_check(td, PRIV_PMC_MANAGE);
3208		if (error)
3209			break;
3210
3211		if ((error = copyin(arg, &pma, sizeof(pma))) != 0)
3212			break;
3213
3214		cpu = pma.pm_cpu;
3215
3216		if (cpu < 0 || cpu >= (int) pmc_cpu_max()) {
3217			error = EINVAL;
3218			break;
3219		}
3220
3221		if (!pmc_cpu_is_active(cpu)) {
3222			error = ENXIO;
3223			break;
3224		}
3225
3226		request = pma.pm_state;
3227
3228		if (request != PMC_STATE_DISABLED &&
3229		    request != PMC_STATE_FREE) {
3230			error = EINVAL;
3231			break;
3232		}
3233
3234		ri = pma.pm_pmc; /* pmc id == row index */
3235		if (ri < 0 || ri >= (int) md->pmd_npmc) {
3236			error = EINVAL;
3237			break;
3238		}
3239
3240		/*
3241		 * We can't disable a PMC with a row-index allocated
3242		 * for process virtual PMCs.
3243		 */
3244
3245		if (PMC_ROW_DISP_IS_THREAD(ri) &&
3246		    request == PMC_STATE_DISABLED) {
3247			error = EBUSY;
3248			break;
3249		}
3250
3251		/*
3252		 * otherwise, this PMC on this CPU is either free or
3253		 * in system-wide mode.
3254		 */
3255
3256		pmc_save_cpu_binding(&pb);
3257		pmc_select_cpu(cpu);
3258
3259		pc  = pmc_pcpu[cpu];
3260		phw = pc->pc_hwpmcs[ri];
3261
3262		/*
3263		 * XXX do we need some kind of 'forced' disable?
3264		 */
3265
3266		if (phw->phw_pmc == NULL) {
3267			if (request == PMC_STATE_DISABLED &&
3268			    (phw->phw_state & PMC_PHW_FLAG_IS_ENABLED)) {
3269				phw->phw_state &= ~PMC_PHW_FLAG_IS_ENABLED;
3270				PMC_MARK_ROW_STANDALONE(ri);
3271			} else if (request == PMC_STATE_FREE &&
3272			    (phw->phw_state & PMC_PHW_FLAG_IS_ENABLED) == 0) {
3273				phw->phw_state |=  PMC_PHW_FLAG_IS_ENABLED;
3274				PMC_UNMARK_ROW_STANDALONE(ri);
3275			}
3276			/* other cases are a no-op */
3277		} else
3278			error = EBUSY;
3279
3280		pmc_restore_cpu_binding(&pb);
3281	}
3282	break;
3283
3284
3285	/*
3286	 * Allocate a PMC.
3287	 */
3288
3289	case PMC_OP_PMCALLOCATE:
3290	{
3291		int adjri, n;
3292		u_int cpu;
3293		uint32_t caps;
3294		struct pmc *pmc;
3295		enum pmc_mode mode;
3296		struct pmc_hw *phw;
3297		struct pmc_binding pb;
3298		struct pmc_classdep *pcd;
3299		struct pmc_op_pmcallocate pa;
3300
3301		if ((error = copyin(arg, &pa, sizeof(pa))) != 0)
3302			break;
3303
3304		caps = pa.pm_caps;
3305		mode = pa.pm_mode;
3306		cpu  = pa.pm_cpu;
3307
3308		if ((mode != PMC_MODE_SS  &&  mode != PMC_MODE_SC  &&
3309		     mode != PMC_MODE_TS  &&  mode != PMC_MODE_TC) ||
3310		    (cpu != (u_int) PMC_CPU_ANY && cpu >= pmc_cpu_max())) {
3311			error = EINVAL;
3312			break;
3313		}
3314
3315		/*
3316		 * Virtual PMCs should only ask for a default CPU.
3317		 * System mode PMCs need to specify a non-default CPU.
3318		 */
3319
3320		if ((PMC_IS_VIRTUAL_MODE(mode) && cpu != (u_int) PMC_CPU_ANY) ||
3321		    (PMC_IS_SYSTEM_MODE(mode) && cpu == (u_int) PMC_CPU_ANY)) {
3322			error = EINVAL;
3323			break;
3324		}
3325
3326		/*
3327		 * Check that an inactive CPU is not being asked for.
3328		 */
3329
3330		if (PMC_IS_SYSTEM_MODE(mode) && !pmc_cpu_is_active(cpu)) {
3331			error = ENXIO;
3332			break;
3333		}
3334
3335		/*
3336		 * Refuse an allocation for a system-wide PMC if this
3337		 * process has been jailed, or if this process lacks
3338		 * super-user credentials and the sysctl tunable
3339		 * 'security.bsd.unprivileged_syspmcs' is zero.
3340		 */
3341
3342		if (PMC_IS_SYSTEM_MODE(mode)) {
3343			if (jailed(curthread->td_ucred)) {
3344				error = EPERM;
3345				break;
3346			}
3347			if (!pmc_unprivileged_syspmcs) {
3348				error = priv_check(curthread,
3349				    PRIV_PMC_SYSTEM);
3350				if (error)
3351					break;
3352			}
3353		}
3354
3355		/*
3356		 * Look for valid values for 'pm_flags'
3357		 */
3358
3359		if ((pa.pm_flags & ~(PMC_F_DESCENDANTS | PMC_F_LOG_PROCCSW |
3360		    PMC_F_LOG_PROCEXIT | PMC_F_CALLCHAIN)) != 0) {
3361			error = EINVAL;
3362			break;
3363		}
3364
3365		/* process logging options are not allowed for system PMCs */
3366		if (PMC_IS_SYSTEM_MODE(mode) && (pa.pm_flags &
3367		    (PMC_F_LOG_PROCCSW | PMC_F_LOG_PROCEXIT))) {
3368			error = EINVAL;
3369			break;
3370		}
3371
3372		/*
3373		 * All sampling mode PMCs need to be able to interrupt the
3374		 * CPU.
3375		 */
3376		if (PMC_IS_SAMPLING_MODE(mode))
3377			caps |= PMC_CAP_INTERRUPT;
3378
3379		/* A valid class specifier should have been passed in. */
3380		for (n = 0; n < md->pmd_nclass; n++)
3381			if (md->pmd_classdep[n].pcd_class == pa.pm_class)
3382				break;
3383		if (n == md->pmd_nclass) {
3384			error = EINVAL;
3385			break;
3386		}
3387
3388		/* The requested PMC capabilities should be feasible. */
3389		if ((md->pmd_classdep[n].pcd_caps & caps) != caps) {
3390			error = EOPNOTSUPP;
3391			break;
3392		}
3393
3394		PMCDBG4(PMC,ALL,2, "event=%d caps=0x%x mode=%d cpu=%d",
3395		    pa.pm_ev, caps, mode, cpu);
3396
3397		pmc = pmc_allocate_pmc_descriptor();
3398		pmc->pm_id    = PMC_ID_MAKE_ID(cpu,pa.pm_mode,pa.pm_class,
3399		    PMC_ID_INVALID);
3400		pmc->pm_event = pa.pm_ev;
3401		pmc->pm_state = PMC_STATE_FREE;
3402		pmc->pm_caps  = caps;
3403		pmc->pm_flags = pa.pm_flags;
3404
3405		/* switch thread to CPU 'cpu' */
3406		pmc_save_cpu_binding(&pb);
3407
3408#define	PMC_IS_SHAREABLE_PMC(cpu, n)				\
3409	(pmc_pcpu[(cpu)]->pc_hwpmcs[(n)]->phw_state &		\
3410	 PMC_PHW_FLAG_IS_SHAREABLE)
3411#define	PMC_IS_UNALLOCATED(cpu, n)				\
3412	(pmc_pcpu[(cpu)]->pc_hwpmcs[(n)]->phw_pmc == NULL)
3413
3414		if (PMC_IS_SYSTEM_MODE(mode)) {
3415			pmc_select_cpu(cpu);
3416			for (n = 0; n < (int) md->pmd_npmc; n++) {
3417				pcd = pmc_ri_to_classdep(md, n, &adjri);
3418				if (pmc_can_allocate_row(n, mode) == 0 &&
3419				    pmc_can_allocate_rowindex(
3420					    curthread->td_proc, n, cpu) == 0 &&
3421				    (PMC_IS_UNALLOCATED(cpu, n) ||
3422				     PMC_IS_SHAREABLE_PMC(cpu, n)) &&
3423				    pcd->pcd_allocate_pmc(cpu, adjri, pmc,
3424					&pa) == 0)
3425					break;
3426			}
3427		} else {
3428			/* Process virtual mode */
3429			for (n = 0; n < (int) md->pmd_npmc; n++) {
3430				pcd = pmc_ri_to_classdep(md, n, &adjri);
3431				if (pmc_can_allocate_row(n, mode) == 0 &&
3432				    pmc_can_allocate_rowindex(
3433					    curthread->td_proc, n,
3434					    PMC_CPU_ANY) == 0 &&
3435				    pcd->pcd_allocate_pmc(curthread->td_oncpu,
3436					adjri, pmc, &pa) == 0)
3437					break;
3438			}
3439		}
3440
3441#undef	PMC_IS_UNALLOCATED
3442#undef	PMC_IS_SHAREABLE_PMC
3443
3444		pmc_restore_cpu_binding(&pb);
3445
3446		if (n == (int) md->pmd_npmc) {
3447			pmc_destroy_pmc_descriptor(pmc);
3448			pmc = NULL;
3449			error = EINVAL;
3450			break;
3451		}
3452
3453		/* Fill in the correct value in the ID field */
3454		pmc->pm_id = PMC_ID_MAKE_ID(cpu,mode,pa.pm_class,n);
3455
3456		PMCDBG5(PMC,ALL,2, "ev=%d class=%d mode=%d n=%d -> pmcid=%x",
3457		    pmc->pm_event, pa.pm_class, mode, n, pmc->pm_id);
3458
3459		/* Process mode PMCs with logging enabled need log files */
3460		if (pmc->pm_flags & (PMC_F_LOG_PROCEXIT | PMC_F_LOG_PROCCSW))
3461			pmc->pm_flags |= PMC_F_NEEDS_LOGFILE;
3462
3463		/* All system mode sampling PMCs require a log file */
3464		if (PMC_IS_SAMPLING_MODE(mode) && PMC_IS_SYSTEM_MODE(mode))
3465			pmc->pm_flags |= PMC_F_NEEDS_LOGFILE;
3466
3467		/*
3468		 * Configure global pmc's immediately
3469		 */
3470
3471		if (PMC_IS_SYSTEM_MODE(PMC_TO_MODE(pmc))) {
3472
3473			pmc_save_cpu_binding(&pb);
3474			pmc_select_cpu(cpu);
3475
3476			phw = pmc_pcpu[cpu]->pc_hwpmcs[n];
3477			pcd = pmc_ri_to_classdep(md, n, &adjri);
3478
3479			if ((phw->phw_state & PMC_PHW_FLAG_IS_ENABLED) == 0 ||
3480			    (error = pcd->pcd_config_pmc(cpu, adjri, pmc)) != 0) {
3481				(void) pcd->pcd_release_pmc(cpu, adjri, pmc);
3482				pmc_destroy_pmc_descriptor(pmc);
3483				pmc = NULL;
3484				pmc_restore_cpu_binding(&pb);
3485				error = EPERM;
3486				break;
3487			}
3488
3489			pmc_restore_cpu_binding(&pb);
3490		}
3491
3492		pmc->pm_state    = PMC_STATE_ALLOCATED;
3493
3494		/*
3495		 * mark row disposition
3496		 */
3497
3498		if (PMC_IS_SYSTEM_MODE(mode))
3499			PMC_MARK_ROW_STANDALONE(n);
3500		else
3501			PMC_MARK_ROW_THREAD(n);
3502
3503		/*
3504		 * Register this PMC with the current thread as its owner.
3505		 */
3506
3507		if ((error =
3508		    pmc_register_owner(curthread->td_proc, pmc)) != 0) {
3509			pmc_release_pmc_descriptor(pmc);
3510			pmc_destroy_pmc_descriptor(pmc);
3511			pmc = NULL;
3512			break;
3513		}
3514
3515		/*
3516		 * Return the allocated index.
3517		 */
3518
3519		pa.pm_pmcid = pmc->pm_id;
3520
3521		error = copyout(&pa, arg, sizeof(pa));
3522	}
3523	break;
3524
3525
3526	/*
3527	 * Attach a PMC to a process.
3528	 */
3529
3530	case PMC_OP_PMCATTACH:
3531	{
3532		struct pmc *pm;
3533		struct proc *p;
3534		struct pmc_op_pmcattach a;
3535
3536		sx_assert(&pmc_sx, SX_XLOCKED);
3537
3538		if ((error = copyin(arg, &a, sizeof(a))) != 0)
3539			break;
3540
3541		if (a.pm_pid < 0) {
3542			error = EINVAL;
3543			break;
3544		} else if (a.pm_pid == 0)
3545			a.pm_pid = td->td_proc->p_pid;
3546
3547		if ((error = pmc_find_pmc(a.pm_pmc, &pm)) != 0)
3548			break;
3549
3550		if (PMC_IS_SYSTEM_MODE(PMC_TO_MODE(pm))) {
3551			error = EINVAL;
3552			break;
3553		}
3554
3555		/* PMCs may be (re)attached only when allocated or stopped */
3556		if (pm->pm_state == PMC_STATE_RUNNING) {
3557			error = EBUSY;
3558			break;
3559		} else if (pm->pm_state != PMC_STATE_ALLOCATED &&
3560		    pm->pm_state != PMC_STATE_STOPPED) {
3561			error = EINVAL;
3562			break;
3563		}
3564
3565		/* lookup pid */
3566		if ((p = pfind(a.pm_pid)) == NULL) {
3567			error = ESRCH;
3568			break;
3569		}
3570
3571		/*
3572		 * Ignore processes that are working on exiting.
3573		 */
3574		if (p->p_flag & P_WEXIT) {
3575			error = ESRCH;
3576			PROC_UNLOCK(p);	/* pfind() returns a locked process */
3577			break;
3578		}
3579
3580		/*
3581		 * we are allowed to attach a PMC to a process if
3582		 * we can debug it.
3583		 */
3584		error = p_candebug(curthread, p);
3585
3586		PROC_UNLOCK(p);
3587
3588		if (error == 0)
3589			error = pmc_attach_process(p, pm);
3590	}
3591	break;
3592
3593
3594	/*
3595	 * Detach an attached PMC from a process.
3596	 */
3597
3598	case PMC_OP_PMCDETACH:
3599	{
3600		struct pmc *pm;
3601		struct proc *p;
3602		struct pmc_op_pmcattach a;
3603
3604		if ((error = copyin(arg, &a, sizeof(a))) != 0)
3605			break;
3606
3607		if (a.pm_pid < 0) {
3608			error = EINVAL;
3609			break;
3610		} else if (a.pm_pid == 0)
3611			a.pm_pid = td->td_proc->p_pid;
3612
3613		if ((error = pmc_find_pmc(a.pm_pmc, &pm)) != 0)
3614			break;
3615
3616		if ((p = pfind(a.pm_pid)) == NULL) {
3617			error = ESRCH;
3618			break;
3619		}
3620
3621		/*
3622		 * Treat processes that are in the process of exiting
3623		 * as if they were not present.
3624		 */
3625
3626		if (p->p_flag & P_WEXIT)
3627			error = ESRCH;
3628
3629		PROC_UNLOCK(p);	/* pfind() returns a locked process */
3630
3631		if (error == 0)
3632			error = pmc_detach_process(p, pm);
3633	}
3634	break;
3635
3636
3637	/*
3638	 * Retrieve the MSR number associated with the counter
3639	 * 'pmc_id'.  This allows processes to directly use RDPMC
3640	 * instructions to read their PMCs, without the overhead of a
3641	 * system call.
3642	 */
3643
3644	case PMC_OP_PMCGETMSR:
3645	{
3646		int adjri, ri;
3647		struct pmc *pm;
3648		struct pmc_target *pt;
3649		struct pmc_op_getmsr gm;
3650		struct pmc_classdep *pcd;
3651
3652		PMC_DOWNGRADE_SX();
3653
3654		if ((error = copyin(arg, &gm, sizeof(gm))) != 0)
3655			break;
3656
3657		if ((error = pmc_find_pmc(gm.pm_pmcid, &pm)) != 0)
3658			break;
3659
3660		/*
3661		 * The allocated PMC has to be a process virtual PMC,
3662		 * i.e., of type MODE_T[CS].  Global PMCs can only be
3663		 * read using the PMCREAD operation since they may be
3664		 * allocated on a different CPU than the one we could
3665		 * be running on at the time of the RDPMC instruction.
3666		 *
3667		 * The GETMSR operation is not allowed for PMCs that
3668		 * are inherited across processes.
3669		 */
3670
3671		if (!PMC_IS_VIRTUAL_MODE(PMC_TO_MODE(pm)) ||
3672		    (pm->pm_flags & PMC_F_DESCENDANTS)) {
3673			error = EINVAL;
3674			break;
3675		}
3676
3677		/*
3678		 * It only makes sense to use a RDPMC (or its
3679		 * equivalent instruction on non-x86 architectures) on
3680		 * a process that has allocated and attached a PMC to
3681		 * itself.  Conversely the PMC is only allowed to have
3682		 * one process attached to it -- its owner.
3683		 */
3684
3685		if ((pt = LIST_FIRST(&pm->pm_targets)) == NULL ||
3686		    LIST_NEXT(pt, pt_next) != NULL ||
3687		    pt->pt_process->pp_proc != pm->pm_owner->po_owner) {
3688			error = EINVAL;
3689			break;
3690		}
3691
3692		ri = PMC_TO_ROWINDEX(pm);
3693		pcd = pmc_ri_to_classdep(md, ri, &adjri);
3694
3695		/* PMC class has no 'GETMSR' support */
3696		if (pcd->pcd_get_msr == NULL) {
3697			error = ENOSYS;
3698			break;
3699		}
3700
3701		if ((error = (*pcd->pcd_get_msr)(adjri, &gm.pm_msr)) < 0)
3702			break;
3703
3704		if ((error = copyout(&gm, arg, sizeof(gm))) < 0)
3705			break;
3706
3707		/*
3708		 * Mark our process as using MSRs.  Update machine
3709		 * state using a forced context switch.
3710		 */
3711
3712		pt->pt_process->pp_flags |= PMC_PP_ENABLE_MSR_ACCESS;
3713		pmc_force_context_switch();
3714
3715	}
3716	break;
3717
3718	/*
3719	 * Release an allocated PMC
3720	 */
3721
3722	case PMC_OP_PMCRELEASE:
3723	{
3724		pmc_id_t pmcid;
3725		struct pmc *pm;
3726		struct pmc_owner *po;
3727		struct pmc_op_simple sp;
3728
3729		/*
3730		 * Find PMC pointer for the named PMC.
3731		 *
3732		 * Use pmc_release_pmc_descriptor() to switch off the
3733		 * PMC, remove all its target threads, and remove the
3734		 * PMC from its owner's list.
3735		 *
3736		 * Remove the owner record if this is the last PMC
3737		 * owned.
3738		 *
3739		 * Free up space.
3740		 */
3741
3742		if ((error = copyin(arg, &sp, sizeof(sp))) != 0)
3743			break;
3744
3745		pmcid = sp.pm_pmcid;
3746
3747		if ((error = pmc_find_pmc(pmcid, &pm)) != 0)
3748			break;
3749
3750		po = pm->pm_owner;
3751		pmc_release_pmc_descriptor(pm);
3752		pmc_maybe_remove_owner(po);
3753		pmc_destroy_pmc_descriptor(pm);
3754	}
3755	break;
3756
3757
3758	/*
3759	 * Read and/or write a PMC.
3760	 */
3761
3762	case PMC_OP_PMCRW:
3763	{
3764		int adjri;
3765		struct pmc *pm;
3766		uint32_t cpu, ri;
3767		pmc_value_t oldvalue;
3768		struct pmc_binding pb;
3769		struct pmc_op_pmcrw prw;
3770		struct pmc_classdep *pcd;
3771		struct pmc_op_pmcrw *pprw;
3772
3773		PMC_DOWNGRADE_SX();
3774
3775		if ((error = copyin(arg, &prw, sizeof(prw))) != 0)
3776			break;
3777
3778		ri = 0;
3779		PMCDBG2(PMC,OPS,1, "rw id=%d flags=0x%x", prw.pm_pmcid,
3780		    prw.pm_flags);
3781
3782		/* must have at least one flag set */
3783		if ((prw.pm_flags & (PMC_F_OLDVALUE|PMC_F_NEWVALUE)) == 0) {
3784			error = EINVAL;
3785			break;
3786		}
3787
3788		/* locate pmc descriptor */
3789		if ((error = pmc_find_pmc(prw.pm_pmcid, &pm)) != 0)
3790			break;
3791
3792		/* Can't read a PMC that hasn't been started. */
3793		if (pm->pm_state != PMC_STATE_ALLOCATED &&
3794		    pm->pm_state != PMC_STATE_STOPPED &&
3795		    pm->pm_state != PMC_STATE_RUNNING) {
3796			error = EINVAL;
3797			break;
3798		}
3799
3800		/* writing a new value is allowed only for 'STOPPED' pmcs */
3801		if (pm->pm_state == PMC_STATE_RUNNING &&
3802		    (prw.pm_flags & PMC_F_NEWVALUE)) {
3803			error = EBUSY;
3804			break;
3805		}
3806
3807		if (PMC_IS_VIRTUAL_MODE(PMC_TO_MODE(pm))) {
3808
3809			/*
3810			 * If this PMC is attached to its owner (i.e.,
3811			 * the process requesting this operation) and
3812			 * is running, then attempt to get an
3813			 * upto-date reading from hardware for a READ.
3814			 * Writes are only allowed when the PMC is
3815			 * stopped, so only update the saved value
3816			 * field.
3817			 *
3818			 * If the PMC is not running, or is not
3819			 * attached to its owner, read/write to the
3820			 * savedvalue field.
3821			 */
3822
3823			ri = PMC_TO_ROWINDEX(pm);
3824			pcd = pmc_ri_to_classdep(md, ri, &adjri);
3825
3826			mtx_pool_lock_spin(pmc_mtxpool, pm);
3827			cpu = curthread->td_oncpu;
3828
3829			if (prw.pm_flags & PMC_F_OLDVALUE) {
3830				if ((pm->pm_flags & PMC_F_ATTACHED_TO_OWNER) &&
3831				    (pm->pm_state == PMC_STATE_RUNNING))
3832					error = (*pcd->pcd_read_pmc)(cpu, adjri,
3833					    &oldvalue);
3834				else
3835					oldvalue = pm->pm_gv.pm_savedvalue;
3836			}
3837			if (prw.pm_flags & PMC_F_NEWVALUE)
3838				pm->pm_gv.pm_savedvalue = prw.pm_value;
3839
3840			mtx_pool_unlock_spin(pmc_mtxpool, pm);
3841
3842		} else { /* System mode PMCs */
3843			cpu = PMC_TO_CPU(pm);
3844			ri  = PMC_TO_ROWINDEX(pm);
3845			pcd = pmc_ri_to_classdep(md, ri, &adjri);
3846
3847			if (!pmc_cpu_is_active(cpu)) {
3848				error = ENXIO;
3849				break;
3850			}
3851
3852			/* move this thread to CPU 'cpu' */
3853			pmc_save_cpu_binding(&pb);
3854			pmc_select_cpu(cpu);
3855
3856			critical_enter();
3857			/* save old value */
3858			if (prw.pm_flags & PMC_F_OLDVALUE)
3859				if ((error = (*pcd->pcd_read_pmc)(cpu, adjri,
3860					 &oldvalue)))
3861					goto error;
3862			/* write out new value */
3863			if (prw.pm_flags & PMC_F_NEWVALUE)
3864				error = (*pcd->pcd_write_pmc)(cpu, adjri,
3865				    prw.pm_value);
3866		error:
3867			critical_exit();
3868			pmc_restore_cpu_binding(&pb);
3869			if (error)
3870				break;
3871		}
3872
3873		pprw = (struct pmc_op_pmcrw *) arg;
3874
3875#ifdef	HWPMC_DEBUG
3876		if (prw.pm_flags & PMC_F_NEWVALUE)
3877			PMCDBG3(PMC,OPS,2, "rw id=%d new %jx -> old %jx",
3878			    ri, prw.pm_value, oldvalue);
3879		else if (prw.pm_flags & PMC_F_OLDVALUE)
3880			PMCDBG2(PMC,OPS,2, "rw id=%d -> old %jx", ri, oldvalue);
3881#endif
3882
3883		/* return old value if requested */
3884		if (prw.pm_flags & PMC_F_OLDVALUE)
3885			if ((error = copyout(&oldvalue, &pprw->pm_value,
3886				 sizeof(prw.pm_value))))
3887				break;
3888
3889	}
3890	break;
3891
3892
3893	/*
3894	 * Set the sampling rate for a sampling mode PMC and the
3895	 * initial count for a counting mode PMC.
3896	 */
3897
3898	case PMC_OP_PMCSETCOUNT:
3899	{
3900		struct pmc *pm;
3901		struct pmc_op_pmcsetcount sc;
3902
3903		PMC_DOWNGRADE_SX();
3904
3905		if ((error = copyin(arg, &sc, sizeof(sc))) != 0)
3906			break;
3907
3908		if ((error = pmc_find_pmc(sc.pm_pmcid, &pm)) != 0)
3909			break;
3910
3911		if (pm->pm_state == PMC_STATE_RUNNING) {
3912			error = EBUSY;
3913			break;
3914		}
3915
3916		if (PMC_IS_SAMPLING_MODE(PMC_TO_MODE(pm)))
3917			pm->pm_sc.pm_reloadcount = sc.pm_count;
3918		else
3919			pm->pm_sc.pm_initial = sc.pm_count;
3920	}
3921	break;
3922
3923
3924	/*
3925	 * Start a PMC.
3926	 */
3927
3928	case PMC_OP_PMCSTART:
3929	{
3930		pmc_id_t pmcid;
3931		struct pmc *pm;
3932		struct pmc_op_simple sp;
3933
3934		sx_assert(&pmc_sx, SX_XLOCKED);
3935
3936		if ((error = copyin(arg, &sp, sizeof(sp))) != 0)
3937			break;
3938
3939		pmcid = sp.pm_pmcid;
3940
3941		if ((error = pmc_find_pmc(pmcid, &pm)) != 0)
3942			break;
3943
3944		KASSERT(pmcid == pm->pm_id,
3945		    ("[pmc,%d] pmcid %x != id %x", __LINE__,
3946			pm->pm_id, pmcid));
3947
3948		if (pm->pm_state == PMC_STATE_RUNNING) /* already running */
3949			break;
3950		else if (pm->pm_state != PMC_STATE_STOPPED &&
3951		    pm->pm_state != PMC_STATE_ALLOCATED) {
3952			error = EINVAL;
3953			break;
3954		}
3955
3956		error = pmc_start(pm);
3957	}
3958	break;
3959
3960
3961	/*
3962	 * Stop a PMC.
3963	 */
3964
3965	case PMC_OP_PMCSTOP:
3966	{
3967		pmc_id_t pmcid;
3968		struct pmc *pm;
3969		struct pmc_op_simple sp;
3970
3971		PMC_DOWNGRADE_SX();
3972
3973		if ((error = copyin(arg, &sp, sizeof(sp))) != 0)
3974			break;
3975
3976		pmcid = sp.pm_pmcid;
3977
3978		/*
3979		 * Mark the PMC as inactive and invoke the MD stop
3980		 * routines if needed.
3981		 */
3982
3983		if ((error = pmc_find_pmc(pmcid, &pm)) != 0)
3984			break;
3985
3986		KASSERT(pmcid == pm->pm_id,
3987		    ("[pmc,%d] pmc id %x != pmcid %x", __LINE__,
3988			pm->pm_id, pmcid));
3989
3990		if (pm->pm_state == PMC_STATE_STOPPED) /* already stopped */
3991			break;
3992		else if (pm->pm_state != PMC_STATE_RUNNING) {
3993			error = EINVAL;
3994			break;
3995		}
3996
3997		error = pmc_stop(pm);
3998	}
3999	break;
4000
4001
4002	/*
4003	 * Write a user supplied value to the log file.
4004	 */
4005
4006	case PMC_OP_WRITELOG:
4007	{
4008		struct pmc_op_writelog wl;
4009		struct pmc_owner *po;
4010
4011		PMC_DOWNGRADE_SX();
4012
4013		if ((error = copyin(arg, &wl, sizeof(wl))) != 0)
4014			break;
4015
4016		if ((po = pmc_find_owner_descriptor(td->td_proc)) == NULL) {
4017			error = EINVAL;
4018			break;
4019		}
4020
4021		if ((po->po_flags & PMC_PO_OWNS_LOGFILE) == 0) {
4022			error = EINVAL;
4023			break;
4024		}
4025
4026		error = pmclog_process_userlog(po, &wl);
4027	}
4028	break;
4029
4030
4031	default:
4032		error = EINVAL;
4033		break;
4034	}
4035
4036	if (is_sx_downgraded)
4037		sx_sunlock(&pmc_sx);
4038	else
4039		sx_xunlock(&pmc_sx);
4040done_syscall:
4041	if (error)
4042		atomic_add_int(&pmc_stats.pm_syscall_errors, 1);
4043
4044	return (error);
4045}
4046
4047/*
4048 * Helper functions
4049 */
4050
4051
4052/*
4053 * Mark the thread as needing callchain capture and post an AST.  The
4054 * actual callchain capture will be done in a context where it is safe
4055 * to take page faults.
4056 */
4057
4058static void
4059pmc_post_callchain_callback(void)
4060{
4061	struct thread *td;
4062
4063	td = curthread;
4064
4065	/*
4066	 * If there is multiple PMCs for the same interrupt ignore new post
4067	 */
4068	if (td->td_pflags & TDP_CALLCHAIN)
4069		return;
4070
4071	/*
4072	 * Mark this thread as needing callchain capture.
4073	 * `td->td_pflags' will be safe to touch because this thread
4074	 * was in user space when it was interrupted.
4075	 */
4076	td->td_pflags |= TDP_CALLCHAIN;
4077
4078	/*
4079	 * Don't let this thread migrate between CPUs until callchain
4080	 * capture completes.
4081	 */
4082	sched_pin();
4083
4084	return;
4085}
4086
4087/*
4088 * Interrupt processing.
4089 *
4090 * Find a free slot in the per-cpu array of samples and capture the
4091 * current callchain there.  If a sample was successfully added, a bit
4092 * is set in mask 'pmc_cpumask' denoting that the DO_SAMPLES hook
4093 * needs to be invoked from the clock handler.
4094 *
4095 * This function is meant to be called from an NMI handler.  It cannot
4096 * use any of the locking primitives supplied by the OS.
4097 */
4098
4099int
4100pmc_process_interrupt(int cpu, int ring, struct pmc *pm, struct trapframe *tf,
4101    int inuserspace)
4102{
4103	int error, callchaindepth;
4104	struct thread *td;
4105	struct pmc_sample *ps;
4106	struct pmc_samplebuffer *psb;
4107
4108	error = 0;
4109
4110	/*
4111	 * Allocate space for a sample buffer.
4112	 */
4113	psb = pmc_pcpu[cpu]->pc_sb[ring];
4114
4115	ps = psb->ps_write;
4116	if (ps->ps_nsamples) {	/* in use, reader hasn't caught up */
4117		CPU_SET_ATOMIC(cpu, &pm->pm_stalled);
4118		atomic_add_int(&pmc_stats.pm_intr_bufferfull, 1);
4119		PMCDBG6(SAM,INT,1,"(spc) cpu=%d pm=%p tf=%p um=%d wr=%d rd=%d",
4120		    cpu, pm, (void *) tf, inuserspace,
4121		    (int) (psb->ps_write - psb->ps_samples),
4122		    (int) (psb->ps_read - psb->ps_samples));
4123		callchaindepth = 1;
4124		error = ENOMEM;
4125		goto done;
4126	}
4127
4128
4129	/* Fill in entry. */
4130	PMCDBG6(SAM,INT,1,"cpu=%d pm=%p tf=%p um=%d wr=%d rd=%d", cpu, pm,
4131	    (void *) tf, inuserspace,
4132	    (int) (psb->ps_write - psb->ps_samples),
4133	    (int) (psb->ps_read - psb->ps_samples));
4134
4135	KASSERT(pm->pm_runcount >= 0,
4136	    ("[pmc,%d] pm=%p runcount %d", __LINE__, (void *) pm,
4137		pm->pm_runcount));
4138
4139	atomic_add_rel_int(&pm->pm_runcount, 1);	/* hold onto PMC */
4140
4141	ps->ps_pmc = pm;
4142	if ((td = curthread) && td->td_proc)
4143		ps->ps_pid = td->td_proc->p_pid;
4144	else
4145		ps->ps_pid = -1;
4146	ps->ps_cpu = cpu;
4147	ps->ps_td = td;
4148	ps->ps_flags = inuserspace ? PMC_CC_F_USERSPACE : 0;
4149
4150	callchaindepth = (pm->pm_flags & PMC_F_CALLCHAIN) ?
4151	    pmc_callchaindepth : 1;
4152
4153	if (callchaindepth == 1)
4154		ps->ps_pc[0] = PMC_TRAPFRAME_TO_PC(tf);
4155	else {
4156		/*
4157		 * Kernel stack traversals can be done immediately,
4158		 * while we defer to an AST for user space traversals.
4159		 */
4160		if (!inuserspace) {
4161			callchaindepth =
4162			    pmc_save_kernel_callchain(ps->ps_pc,
4163				callchaindepth, tf);
4164		} else {
4165			pmc_post_callchain_callback();
4166			callchaindepth = PMC_SAMPLE_INUSE;
4167		}
4168	}
4169
4170	ps->ps_nsamples = callchaindepth;	/* mark entry as in use */
4171
4172	/* increment write pointer, modulo ring buffer size */
4173	ps++;
4174	if (ps == psb->ps_fence)
4175		psb->ps_write = psb->ps_samples;
4176	else
4177		psb->ps_write = ps;
4178
4179 done:
4180	/* mark CPU as needing processing */
4181	if (callchaindepth != PMC_SAMPLE_INUSE)
4182		CPU_SET_ATOMIC(cpu, &pmc_cpumask);
4183
4184	return (error);
4185}
4186
4187/*
4188 * Capture a user call chain.  This function will be called from ast()
4189 * before control returns to userland and before the process gets
4190 * rescheduled.
4191 */
4192
4193static void
4194pmc_capture_user_callchain(int cpu, int ring, struct trapframe *tf)
4195{
4196	struct pmc *pm;
4197	struct thread *td;
4198	struct pmc_sample *ps, *ps_end;
4199	struct pmc_samplebuffer *psb;
4200#ifdef	INVARIANTS
4201	int ncallchains;
4202	int nfree;
4203#endif
4204
4205	psb = pmc_pcpu[cpu]->pc_sb[ring];
4206	td = curthread;
4207
4208	KASSERT(td->td_pflags & TDP_CALLCHAIN,
4209	    ("[pmc,%d] Retrieving callchain for thread that doesn't want it",
4210		__LINE__));
4211
4212#ifdef	INVARIANTS
4213	ncallchains = 0;
4214	nfree = 0;
4215#endif
4216
4217	/*
4218	 * Iterate through all deferred callchain requests.
4219	 * Walk from the current read pointer to the current
4220	 * write pointer.
4221	 */
4222
4223	ps = psb->ps_read;
4224	ps_end = psb->ps_write;
4225	do {
4226#ifdef	INVARIANTS
4227		if (ps->ps_pmc->pm_state != PMC_STATE_RUNNING)
4228			nfree++;
4229#endif
4230		if (ps->ps_nsamples != PMC_SAMPLE_INUSE)
4231			goto next;
4232		if (ps->ps_td != td)
4233			goto next;
4234
4235		KASSERT(ps->ps_cpu == cpu,
4236		    ("[pmc,%d] cpu mismatch ps_cpu=%d pcpu=%d", __LINE__,
4237			ps->ps_cpu, PCPU_GET(cpuid)));
4238
4239		pm = ps->ps_pmc;
4240
4241		KASSERT(pm->pm_flags & PMC_F_CALLCHAIN,
4242		    ("[pmc,%d] Retrieving callchain for PMC that doesn't "
4243			"want it", __LINE__));
4244
4245		KASSERT(pm->pm_runcount > 0,
4246		    ("[pmc,%d] runcount %d", __LINE__, pm->pm_runcount));
4247
4248		/*
4249		 * Retrieve the callchain and mark the sample buffer
4250		 * as 'processable' by the timer tick sweep code.
4251		 */
4252		ps->ps_nsamples = pmc_save_user_callchain(ps->ps_pc,
4253		    pmc_callchaindepth, tf);
4254
4255#ifdef	INVARIANTS
4256		ncallchains++;
4257#endif
4258
4259next:
4260		/* increment the pointer, modulo sample ring size */
4261		if (++ps == psb->ps_fence)
4262			ps = psb->ps_samples;
4263	} while (ps != ps_end);
4264
4265	KASSERT(ncallchains > 0 || nfree > 0,
4266	    ("[pmc,%d] cpu %d didn't find a sample to collect", __LINE__,
4267		cpu));
4268
4269	KASSERT(td->td_pinned == 1,
4270	    ("[pmc,%d] invalid td_pinned value", __LINE__));
4271	sched_unpin();	/* Can migrate safely now. */
4272
4273	/* mark CPU as needing processing */
4274	CPU_SET_ATOMIC(cpu, &pmc_cpumask);
4275
4276	return;
4277}
4278
4279/*
4280 * Process saved PC samples.
4281 */
4282
4283static void
4284pmc_process_samples(int cpu, int ring)
4285{
4286	struct pmc *pm;
4287	int adjri, n;
4288	struct thread *td;
4289	struct pmc_owner *po;
4290	struct pmc_sample *ps;
4291	struct pmc_classdep *pcd;
4292	struct pmc_samplebuffer *psb;
4293
4294	KASSERT(PCPU_GET(cpuid) == cpu,
4295	    ("[pmc,%d] not on the correct CPU pcpu=%d cpu=%d", __LINE__,
4296		PCPU_GET(cpuid), cpu));
4297
4298	psb = pmc_pcpu[cpu]->pc_sb[ring];
4299
4300	for (n = 0; n < pmc_nsamples; n++) { /* bound on #iterations */
4301
4302		ps = psb->ps_read;
4303		if (ps->ps_nsamples == PMC_SAMPLE_FREE)
4304			break;
4305
4306		pm = ps->ps_pmc;
4307
4308		KASSERT(pm->pm_runcount > 0,
4309		    ("[pmc,%d] pm=%p runcount %d", __LINE__, (void *) pm,
4310			pm->pm_runcount));
4311
4312		po = pm->pm_owner;
4313
4314		KASSERT(PMC_IS_SAMPLING_MODE(PMC_TO_MODE(pm)),
4315		    ("[pmc,%d] pmc=%p non-sampling mode=%d", __LINE__,
4316			pm, PMC_TO_MODE(pm)));
4317
4318		/* Ignore PMCs that have been switched off */
4319		if (pm->pm_state != PMC_STATE_RUNNING)
4320			goto entrydone;
4321
4322		/* If there is a pending AST wait for completion */
4323		if (ps->ps_nsamples == PMC_SAMPLE_INUSE) {
4324			/* Need a rescan at a later time. */
4325			CPU_SET_ATOMIC(cpu, &pmc_cpumask);
4326			break;
4327		}
4328
4329		PMCDBG6(SAM,OPS,1,"cpu=%d pm=%p n=%d fl=%x wr=%d rd=%d", cpu,
4330		    pm, ps->ps_nsamples, ps->ps_flags,
4331		    (int) (psb->ps_write - psb->ps_samples),
4332		    (int) (psb->ps_read - psb->ps_samples));
4333
4334		/*
4335		 * If this is a process-mode PMC that is attached to
4336		 * its owner, and if the PC is in user mode, update
4337		 * profiling statistics like timer-based profiling
4338		 * would have done.
4339		 */
4340		if (pm->pm_flags & PMC_F_ATTACHED_TO_OWNER) {
4341			if (ps->ps_flags & PMC_CC_F_USERSPACE) {
4342				td = FIRST_THREAD_IN_PROC(po->po_owner);
4343				addupc_intr(td, ps->ps_pc[0], 1);
4344			}
4345			goto entrydone;
4346		}
4347
4348		/*
4349		 * Otherwise, this is either a sampling mode PMC that
4350		 * is attached to a different process than its owner,
4351		 * or a system-wide sampling PMC.  Dispatch a log
4352		 * entry to the PMC's owner process.
4353		 */
4354		pmclog_process_callchain(pm, ps);
4355
4356	entrydone:
4357		ps->ps_nsamples = 0; /* mark entry as free */
4358		atomic_subtract_rel_int(&pm->pm_runcount, 1);
4359
4360		/* increment read pointer, modulo sample size */
4361		if (++ps == psb->ps_fence)
4362			psb->ps_read = psb->ps_samples;
4363		else
4364			psb->ps_read = ps;
4365	}
4366
4367	atomic_add_int(&pmc_stats.pm_log_sweeps, 1);
4368
4369	/* Do not re-enable stalled PMCs if we failed to process any samples */
4370	if (n == 0)
4371		return;
4372
4373	/*
4374	 * Restart any stalled sampling PMCs on this CPU.
4375	 *
4376	 * If the NMI handler sets the pm_stalled field of a PMC after
4377	 * the check below, we'll end up processing the stalled PMC at
4378	 * the next hardclock tick.
4379	 */
4380	for (n = 0; n < md->pmd_npmc; n++) {
4381		pcd = pmc_ri_to_classdep(md, n, &adjri);
4382		KASSERT(pcd != NULL,
4383		    ("[pmc,%d] null pcd ri=%d", __LINE__, n));
4384		(void) (*pcd->pcd_get_config)(cpu,adjri,&pm);
4385
4386		if (pm == NULL ||			 /* !cfg'ed */
4387		    pm->pm_state != PMC_STATE_RUNNING || /* !active */
4388		    !PMC_IS_SAMPLING_MODE(PMC_TO_MODE(pm)) || /* !sampling */
4389		    !CPU_ISSET(cpu, &pm->pm_cpustate) || /* !desired */
4390		    !CPU_ISSET(cpu, &pm->pm_stalled)) /* !stalled */
4391			continue;
4392
4393		CPU_CLR_ATOMIC(cpu, &pm->pm_stalled);
4394		(*pcd->pcd_start_pmc)(cpu, adjri);
4395	}
4396}
4397
4398/*
4399 * Event handlers.
4400 */
4401
4402/*
4403 * Handle a process exit.
4404 *
4405 * Remove this process from all hash tables.  If this process
4406 * owned any PMCs, turn off those PMCs and deallocate them,
4407 * removing any associations with target processes.
4408 *
4409 * This function will be called by the last 'thread' of a
4410 * process.
4411 *
4412 * XXX This eventhandler gets called early in the exit process.
4413 * Consider using a 'hook' invocation from thread_exit() or equivalent
4414 * spot.  Another negative is that kse_exit doesn't seem to call
4415 * exit1() [??].
4416 *
4417 */
4418
4419static void
4420pmc_process_exit(void *arg __unused, struct proc *p)
4421{
4422	struct pmc *pm;
4423	int adjri, cpu;
4424	unsigned int ri;
4425	int is_using_hwpmcs;
4426	struct pmc_owner *po;
4427	struct pmc_process *pp;
4428	struct pmc_classdep *pcd;
4429	pmc_value_t newvalue, tmp;
4430
4431	PROC_LOCK(p);
4432	is_using_hwpmcs = p->p_flag & P_HWPMC;
4433	PROC_UNLOCK(p);
4434
4435	/*
4436	 * Log a sysexit event to all SS PMC owners.
4437	 */
4438	LIST_FOREACH(po, &pmc_ss_owners, po_ssnext)
4439	    if (po->po_flags & PMC_PO_OWNS_LOGFILE)
4440		    pmclog_process_sysexit(po, p->p_pid);
4441
4442	if (!is_using_hwpmcs)
4443		return;
4444
4445	PMC_GET_SX_XLOCK();
4446	PMCDBG3(PRC,EXT,1,"process-exit proc=%p (%d, %s)", p, p->p_pid,
4447	    p->p_comm);
4448
4449	/*
4450	 * Since this code is invoked by the last thread in an exiting
4451	 * process, we would have context switched IN at some prior
4452	 * point.  However, with PREEMPTION, kernel mode context
4453	 * switches may happen any time, so we want to disable a
4454	 * context switch OUT till we get any PMCs targeting this
4455	 * process off the hardware.
4456	 *
4457	 * We also need to atomically remove this process'
4458	 * entry from our target process hash table, using
4459	 * PMC_FLAG_REMOVE.
4460	 */
4461	PMCDBG3(PRC,EXT,1, "process-exit proc=%p (%d, %s)", p, p->p_pid,
4462	    p->p_comm);
4463
4464	critical_enter(); /* no preemption */
4465
4466	cpu = curthread->td_oncpu;
4467
4468	if ((pp = pmc_find_process_descriptor(p,
4469		 PMC_FLAG_REMOVE)) != NULL) {
4470
4471		PMCDBG2(PRC,EXT,2,
4472		    "process-exit proc=%p pmc-process=%p", p, pp);
4473
4474		/*
4475		 * The exiting process could the target of
4476		 * some PMCs which will be running on
4477		 * currently executing CPU.
4478		 *
4479		 * We need to turn these PMCs off like we
4480		 * would do at context switch OUT time.
4481		 */
4482		for (ri = 0; ri < md->pmd_npmc; ri++) {
4483
4484			/*
4485			 * Pick up the pmc pointer from hardware
4486			 * state similar to the CSW_OUT code.
4487			 */
4488			pm = NULL;
4489
4490			pcd = pmc_ri_to_classdep(md, ri, &adjri);
4491
4492			(void) (*pcd->pcd_get_config)(cpu, adjri, &pm);
4493
4494			PMCDBG2(PRC,EXT,2, "ri=%d pm=%p", ri, pm);
4495
4496			if (pm == NULL ||
4497			    !PMC_IS_VIRTUAL_MODE(PMC_TO_MODE(pm)))
4498				continue;
4499
4500			PMCDBG4(PRC,EXT,2, "ppmcs[%d]=%p pm=%p "
4501			    "state=%d", ri, pp->pp_pmcs[ri].pp_pmc,
4502			    pm, pm->pm_state);
4503
4504			KASSERT(PMC_TO_ROWINDEX(pm) == ri,
4505			    ("[pmc,%d] ri mismatch pmc(%d) ri(%d)",
4506				__LINE__, PMC_TO_ROWINDEX(pm), ri));
4507
4508			KASSERT(pm == pp->pp_pmcs[ri].pp_pmc,
4509			    ("[pmc,%d] pm %p != pp_pmcs[%d] %p",
4510				__LINE__, pm, ri, pp->pp_pmcs[ri].pp_pmc));
4511
4512			KASSERT(pm->pm_runcount > 0,
4513			    ("[pmc,%d] bad runcount ri %d rc %d",
4514				__LINE__, ri, pm->pm_runcount));
4515
4516			/*
4517			 * Change desired state, and then stop if not
4518			 * stalled. This two-step dance should avoid
4519			 * race conditions where an interrupt re-enables
4520			 * the PMC after this code has already checked
4521			 * the pm_stalled flag.
4522			 */
4523			if (CPU_ISSET(cpu, &pm->pm_cpustate)) {
4524				CPU_CLR_ATOMIC(cpu, &pm->pm_cpustate);
4525				if (!CPU_ISSET(cpu, &pm->pm_stalled)) {
4526					(void) pcd->pcd_stop_pmc(cpu, adjri);
4527					pcd->pcd_read_pmc(cpu, adjri,
4528					    &newvalue);
4529					tmp = newvalue -
4530					    PMC_PCPU_SAVED(cpu,ri);
4531
4532					mtx_pool_lock_spin(pmc_mtxpool, pm);
4533					pm->pm_gv.pm_savedvalue += tmp;
4534					pp->pp_pmcs[ri].pp_pmcval += tmp;
4535					mtx_pool_unlock_spin(pmc_mtxpool, pm);
4536				}
4537			}
4538
4539			atomic_subtract_rel_int(&pm->pm_runcount,1);
4540
4541			KASSERT((int) pm->pm_runcount >= 0,
4542			    ("[pmc,%d] runcount is %d", __LINE__, ri));
4543
4544			(void) pcd->pcd_config_pmc(cpu, adjri, NULL);
4545		}
4546
4547		/*
4548		 * Inform the MD layer of this pseudo "context switch
4549		 * out"
4550		 */
4551		(void) md->pmd_switch_out(pmc_pcpu[cpu], pp);
4552
4553		critical_exit(); /* ok to be pre-empted now */
4554
4555		/*
4556		 * Unlink this process from the PMCs that are
4557		 * targeting it.  This will send a signal to
4558		 * all PMC owner's whose PMCs are orphaned.
4559		 *
4560		 * Log PMC value at exit time if requested.
4561		 */
4562		for (ri = 0; ri < md->pmd_npmc; ri++)
4563			if ((pm = pp->pp_pmcs[ri].pp_pmc) != NULL) {
4564				if (pm->pm_flags & PMC_F_NEEDS_LOGFILE &&
4565				    PMC_IS_COUNTING_MODE(PMC_TO_MODE(pm)))
4566					pmclog_process_procexit(pm, pp);
4567				pmc_unlink_target_process(pm, pp);
4568			}
4569		free(pp, M_PMC);
4570
4571	} else
4572		critical_exit(); /* pp == NULL */
4573
4574
4575	/*
4576	 * If the process owned PMCs, free them up and free up
4577	 * memory.
4578	 */
4579	if ((po = pmc_find_owner_descriptor(p)) != NULL) {
4580		pmc_remove_owner(po);
4581		pmc_destroy_owner_descriptor(po);
4582	}
4583
4584	sx_xunlock(&pmc_sx);
4585}
4586
4587/*
4588 * Handle a process fork.
4589 *
4590 * If the parent process 'p1' is under HWPMC monitoring, then copy
4591 * over any attached PMCs that have 'do_descendants' semantics.
4592 */
4593
4594static void
4595pmc_process_fork(void *arg __unused, struct proc *p1, struct proc *newproc,
4596    int flags)
4597{
4598	int is_using_hwpmcs;
4599	unsigned int ri;
4600	uint32_t do_descendants;
4601	struct pmc *pm;
4602	struct pmc_owner *po;
4603	struct pmc_process *ppnew, *ppold;
4604
4605	(void) flags;		/* unused parameter */
4606
4607	PROC_LOCK(p1);
4608	is_using_hwpmcs = p1->p_flag & P_HWPMC;
4609	PROC_UNLOCK(p1);
4610
4611	/*
4612	 * If there are system-wide sampling PMCs active, we need to
4613	 * log all fork events to their owner's logs.
4614	 */
4615
4616	LIST_FOREACH(po, &pmc_ss_owners, po_ssnext)
4617	    if (po->po_flags & PMC_PO_OWNS_LOGFILE)
4618		    pmclog_process_procfork(po, p1->p_pid, newproc->p_pid);
4619
4620	if (!is_using_hwpmcs)
4621		return;
4622
4623	PMC_GET_SX_XLOCK();
4624	PMCDBG4(PMC,FRK,1, "process-fork proc=%p (%d, %s) -> %p", p1,
4625	    p1->p_pid, p1->p_comm, newproc);
4626
4627	/*
4628	 * If the parent process (curthread->td_proc) is a
4629	 * target of any PMCs, look for PMCs that are to be
4630	 * inherited, and link these into the new process
4631	 * descriptor.
4632	 */
4633	if ((ppold = pmc_find_process_descriptor(curthread->td_proc,
4634		 PMC_FLAG_NONE)) == NULL)
4635		goto done;		/* nothing to do */
4636
4637	do_descendants = 0;
4638	for (ri = 0; ri < md->pmd_npmc; ri++)
4639		if ((pm = ppold->pp_pmcs[ri].pp_pmc) != NULL)
4640			do_descendants |= pm->pm_flags & PMC_F_DESCENDANTS;
4641	if (do_descendants == 0) /* nothing to do */
4642		goto done;
4643
4644	/* allocate a descriptor for the new process  */
4645	if ((ppnew = pmc_find_process_descriptor(newproc,
4646		 PMC_FLAG_ALLOCATE)) == NULL)
4647		goto done;
4648
4649	/*
4650	 * Run through all PMCs that were targeting the old process
4651	 * and which specified F_DESCENDANTS and attach them to the
4652	 * new process.
4653	 *
4654	 * Log the fork event to all owners of PMCs attached to this
4655	 * process, if not already logged.
4656	 */
4657	for (ri = 0; ri < md->pmd_npmc; ri++)
4658		if ((pm = ppold->pp_pmcs[ri].pp_pmc) != NULL &&
4659		    (pm->pm_flags & PMC_F_DESCENDANTS)) {
4660			pmc_link_target_process(pm, ppnew);
4661			po = pm->pm_owner;
4662			if (po->po_sscount == 0 &&
4663			    po->po_flags & PMC_PO_OWNS_LOGFILE)
4664				pmclog_process_procfork(po, p1->p_pid,
4665				    newproc->p_pid);
4666		}
4667
4668	/*
4669	 * Now mark the new process as being tracked by this driver.
4670	 */
4671	PROC_LOCK(newproc);
4672	newproc->p_flag |= P_HWPMC;
4673	PROC_UNLOCK(newproc);
4674
4675 done:
4676	sx_xunlock(&pmc_sx);
4677}
4678
4679static void
4680pmc_kld_load(void *arg __unused, linker_file_t lf)
4681{
4682	struct pmc_owner *po;
4683
4684	sx_slock(&pmc_sx);
4685
4686	/*
4687	 * Notify owners of system sampling PMCs about KLD operations.
4688	 */
4689	LIST_FOREACH(po, &pmc_ss_owners, po_ssnext)
4690		if (po->po_flags & PMC_PO_OWNS_LOGFILE)
4691			pmclog_process_map_in(po, (pid_t) -1,
4692			    (uintfptr_t) lf->address, lf->filename);
4693
4694	/*
4695	 * TODO: Notify owners of (all) process-sampling PMCs too.
4696	 */
4697
4698	sx_sunlock(&pmc_sx);
4699}
4700
4701static void
4702pmc_kld_unload(void *arg __unused, const char *filename __unused,
4703    caddr_t address, size_t size)
4704{
4705	struct pmc_owner *po;
4706
4707	sx_slock(&pmc_sx);
4708
4709	LIST_FOREACH(po, &pmc_ss_owners, po_ssnext)
4710		if (po->po_flags & PMC_PO_OWNS_LOGFILE)
4711			pmclog_process_map_out(po, (pid_t) -1,
4712			    (uintfptr_t) address, (uintfptr_t) address + size);
4713
4714	/*
4715	 * TODO: Notify owners of process-sampling PMCs.
4716	 */
4717
4718	sx_sunlock(&pmc_sx);
4719}
4720
4721/*
4722 * initialization
4723 */
4724static const char *
4725pmc_name_of_pmcclass(enum pmc_class class)
4726{
4727
4728	switch (class) {
4729#undef	__PMC_CLASS
4730#define	__PMC_CLASS(S,V,D)						\
4731	case PMC_CLASS_##S:						\
4732		return #S;
4733	__PMC_CLASSES();
4734	default:
4735		return ("<unknown>");
4736	}
4737}
4738
4739/*
4740 * Base class initializer: allocate structure and set default classes.
4741 */
4742struct pmc_mdep *
4743pmc_mdep_alloc(int nclasses)
4744{
4745	struct pmc_mdep *md;
4746	int	n;
4747
4748	/* SOFT + md classes */
4749	n = 1 + nclasses;
4750	md = malloc(sizeof(struct pmc_mdep) + n *
4751	    sizeof(struct pmc_classdep), M_PMC, M_WAITOK|M_ZERO);
4752	md->pmd_nclass = n;
4753
4754	/* Add base class. */
4755	pmc_soft_initialize(md);
4756	return md;
4757}
4758
4759void
4760pmc_mdep_free(struct pmc_mdep *md)
4761{
4762	pmc_soft_finalize(md);
4763	free(md, M_PMC);
4764}
4765
4766static int
4767generic_switch_in(struct pmc_cpu *pc, struct pmc_process *pp)
4768{
4769	(void) pc; (void) pp;
4770
4771	return (0);
4772}
4773
4774static int
4775generic_switch_out(struct pmc_cpu *pc, struct pmc_process *pp)
4776{
4777	(void) pc; (void) pp;
4778
4779	return (0);
4780}
4781
4782static struct pmc_mdep *
4783pmc_generic_cpu_initialize(void)
4784{
4785	struct pmc_mdep *md;
4786
4787	md = pmc_mdep_alloc(0);
4788
4789	md->pmd_cputype    = PMC_CPU_GENERIC;
4790
4791	md->pmd_pcpu_init  = NULL;
4792	md->pmd_pcpu_fini  = NULL;
4793	md->pmd_switch_in  = generic_switch_in;
4794	md->pmd_switch_out = generic_switch_out;
4795
4796	return (md);
4797}
4798
4799static void
4800pmc_generic_cpu_finalize(struct pmc_mdep *md)
4801{
4802	(void) md;
4803}
4804
4805
4806static int
4807pmc_initialize(void)
4808{
4809	int c, cpu, error, n, ri;
4810	unsigned int maxcpu;
4811	struct pmc_binding pb;
4812	struct pmc_sample *ps;
4813	struct pmc_classdep *pcd;
4814	struct pmc_samplebuffer *sb;
4815
4816	md = NULL;
4817	error = 0;
4818
4819#ifdef	HWPMC_DEBUG
4820	/* parse debug flags first */
4821	if (TUNABLE_STR_FETCH(PMC_SYSCTL_NAME_PREFIX "debugflags",
4822		pmc_debugstr, sizeof(pmc_debugstr)))
4823		pmc_debugflags_parse(pmc_debugstr,
4824		    pmc_debugstr+strlen(pmc_debugstr));
4825#endif
4826
4827	PMCDBG1(MOD,INI,0, "PMC Initialize (version %x)", PMC_VERSION);
4828
4829	/* check kernel version */
4830	if (pmc_kernel_version != PMC_VERSION) {
4831		if (pmc_kernel_version == 0)
4832			printf("hwpmc: this kernel has not been compiled with "
4833			    "'options HWPMC_HOOKS'.\n");
4834		else
4835			printf("hwpmc: kernel version (0x%x) does not match "
4836			    "module version (0x%x).\n", pmc_kernel_version,
4837			    PMC_VERSION);
4838		return EPROGMISMATCH;
4839	}
4840
4841	/*
4842	 * check sysctl parameters
4843	 */
4844
4845	if (pmc_hashsize <= 0) {
4846		(void) printf("hwpmc: tunable \"hashsize\"=%d must be "
4847		    "greater than zero.\n", pmc_hashsize);
4848		pmc_hashsize = PMC_HASH_SIZE;
4849	}
4850
4851	if (pmc_nsamples <= 0 || pmc_nsamples > 65535) {
4852		(void) printf("hwpmc: tunable \"nsamples\"=%d out of "
4853		    "range.\n", pmc_nsamples);
4854		pmc_nsamples = PMC_NSAMPLES;
4855	}
4856
4857	if (pmc_callchaindepth <= 0 ||
4858	    pmc_callchaindepth > PMC_CALLCHAIN_DEPTH_MAX) {
4859		(void) printf("hwpmc: tunable \"callchaindepth\"=%d out of "
4860		    "range - using %d.\n", pmc_callchaindepth,
4861		    PMC_CALLCHAIN_DEPTH_MAX);
4862		pmc_callchaindepth = PMC_CALLCHAIN_DEPTH_MAX;
4863	}
4864
4865	md = pmc_md_initialize();
4866	if (md == NULL) {
4867		/* Default to generic CPU. */
4868		md = pmc_generic_cpu_initialize();
4869		if (md == NULL)
4870			return (ENOSYS);
4871        }
4872
4873	KASSERT(md->pmd_nclass >= 1 && md->pmd_npmc >= 1,
4874	    ("[pmc,%d] no classes or pmcs", __LINE__));
4875
4876	/* Compute the map from row-indices to classdep pointers. */
4877	pmc_rowindex_to_classdep = malloc(sizeof(struct pmc_classdep *) *
4878	    md->pmd_npmc, M_PMC, M_WAITOK|M_ZERO);
4879
4880	for (n = 0; n < md->pmd_npmc; n++)
4881		pmc_rowindex_to_classdep[n] = NULL;
4882	for (ri = c = 0; c < md->pmd_nclass; c++) {
4883		pcd = &md->pmd_classdep[c];
4884		for (n = 0; n < pcd->pcd_num; n++, ri++)
4885			pmc_rowindex_to_classdep[ri] = pcd;
4886	}
4887
4888	KASSERT(ri == md->pmd_npmc,
4889	    ("[pmc,%d] npmc miscomputed: ri=%d, md->npmc=%d", __LINE__,
4890	    ri, md->pmd_npmc));
4891
4892	maxcpu = pmc_cpu_max();
4893
4894	/* allocate space for the per-cpu array */
4895	pmc_pcpu = malloc(maxcpu * sizeof(struct pmc_cpu *), M_PMC,
4896	    M_WAITOK|M_ZERO);
4897
4898	/* per-cpu 'saved values' for managing process-mode PMCs */
4899	pmc_pcpu_saved = malloc(sizeof(pmc_value_t) * maxcpu * md->pmd_npmc,
4900	    M_PMC, M_WAITOK);
4901
4902	/* Perform CPU-dependent initialization. */
4903	pmc_save_cpu_binding(&pb);
4904	error = 0;
4905	for (cpu = 0; error == 0 && cpu < maxcpu; cpu++) {
4906		if (!pmc_cpu_is_active(cpu))
4907			continue;
4908		pmc_select_cpu(cpu);
4909		pmc_pcpu[cpu] = malloc(sizeof(struct pmc_cpu) +
4910		    md->pmd_npmc * sizeof(struct pmc_hw *), M_PMC,
4911		    M_WAITOK|M_ZERO);
4912		if (md->pmd_pcpu_init)
4913			error = md->pmd_pcpu_init(md, cpu);
4914		for (n = 0; error == 0 && n < md->pmd_nclass; n++)
4915			error = md->pmd_classdep[n].pcd_pcpu_init(md, cpu);
4916	}
4917	pmc_restore_cpu_binding(&pb);
4918
4919	if (error)
4920		return (error);
4921
4922	/* allocate space for the sample array */
4923	for (cpu = 0; cpu < maxcpu; cpu++) {
4924		if (!pmc_cpu_is_active(cpu))
4925			continue;
4926
4927		sb = malloc(sizeof(struct pmc_samplebuffer) +
4928		    pmc_nsamples * sizeof(struct pmc_sample), M_PMC,
4929		    M_WAITOK|M_ZERO);
4930		sb->ps_read = sb->ps_write = sb->ps_samples;
4931		sb->ps_fence = sb->ps_samples + pmc_nsamples;
4932
4933		KASSERT(pmc_pcpu[cpu] != NULL,
4934		    ("[pmc,%d] cpu=%d Null per-cpu data", __LINE__, cpu));
4935
4936		sb->ps_callchains = malloc(pmc_callchaindepth * pmc_nsamples *
4937		    sizeof(uintptr_t), M_PMC, M_WAITOK|M_ZERO);
4938
4939		for (n = 0, ps = sb->ps_samples; n < pmc_nsamples; n++, ps++)
4940			ps->ps_pc = sb->ps_callchains +
4941			    (n * pmc_callchaindepth);
4942
4943		pmc_pcpu[cpu]->pc_sb[PMC_HR] = sb;
4944
4945		sb = malloc(sizeof(struct pmc_samplebuffer) +
4946		    pmc_nsamples * sizeof(struct pmc_sample), M_PMC,
4947		    M_WAITOK|M_ZERO);
4948		sb->ps_read = sb->ps_write = sb->ps_samples;
4949		sb->ps_fence = sb->ps_samples + pmc_nsamples;
4950
4951		KASSERT(pmc_pcpu[cpu] != NULL,
4952		    ("[pmc,%d] cpu=%d Null per-cpu data", __LINE__, cpu));
4953
4954		sb->ps_callchains = malloc(pmc_callchaindepth * pmc_nsamples *
4955		    sizeof(uintptr_t), M_PMC, M_WAITOK|M_ZERO);
4956
4957		for (n = 0, ps = sb->ps_samples; n < pmc_nsamples; n++, ps++)
4958			ps->ps_pc = sb->ps_callchains +
4959			    (n * pmc_callchaindepth);
4960
4961		pmc_pcpu[cpu]->pc_sb[PMC_SR] = sb;
4962	}
4963
4964	/* allocate space for the row disposition array */
4965	pmc_pmcdisp = malloc(sizeof(enum pmc_mode) * md->pmd_npmc,
4966	    M_PMC, M_WAITOK|M_ZERO);
4967
4968	/* mark all PMCs as available */
4969	for (n = 0; n < (int) md->pmd_npmc; n++)
4970		PMC_MARK_ROW_FREE(n);
4971
4972	/* allocate thread hash tables */
4973	pmc_ownerhash = hashinit(pmc_hashsize, M_PMC,
4974	    &pmc_ownerhashmask);
4975
4976	pmc_processhash = hashinit(pmc_hashsize, M_PMC,
4977	    &pmc_processhashmask);
4978	mtx_init(&pmc_processhash_mtx, "pmc-process-hash", "pmc-leaf",
4979	    MTX_SPIN);
4980
4981	LIST_INIT(&pmc_ss_owners);
4982	pmc_ss_count = 0;
4983
4984	/* allocate a pool of spin mutexes */
4985	pmc_mtxpool = mtx_pool_create("pmc-leaf", pmc_mtxpool_size,
4986	    MTX_SPIN);
4987
4988	PMCDBG4(MOD,INI,1, "pmc_ownerhash=%p, mask=0x%lx "
4989	    "targethash=%p mask=0x%lx", pmc_ownerhash, pmc_ownerhashmask,
4990	    pmc_processhash, pmc_processhashmask);
4991
4992	/* register process {exit,fork,exec} handlers */
4993	pmc_exit_tag = EVENTHANDLER_REGISTER(process_exit,
4994	    pmc_process_exit, NULL, EVENTHANDLER_PRI_ANY);
4995	pmc_fork_tag = EVENTHANDLER_REGISTER(process_fork,
4996	    pmc_process_fork, NULL, EVENTHANDLER_PRI_ANY);
4997
4998	/* register kld event handlers */
4999	pmc_kld_load_tag = EVENTHANDLER_REGISTER(kld_load, pmc_kld_load,
5000	    NULL, EVENTHANDLER_PRI_ANY);
5001	pmc_kld_unload_tag = EVENTHANDLER_REGISTER(kld_unload, pmc_kld_unload,
5002	    NULL, EVENTHANDLER_PRI_ANY);
5003
5004	/* initialize logging */
5005	pmclog_initialize();
5006
5007	/* set hook functions */
5008	pmc_intr = md->pmd_intr;
5009	pmc_hook = pmc_hook_handler;
5010
5011	if (error == 0) {
5012		printf(PMC_MODULE_NAME ":");
5013		for (n = 0; n < (int) md->pmd_nclass; n++) {
5014			pcd = &md->pmd_classdep[n];
5015			printf(" %s/%d/%d/0x%b",
5016			    pmc_name_of_pmcclass(pcd->pcd_class),
5017			    pcd->pcd_num,
5018			    pcd->pcd_width,
5019			    pcd->pcd_caps,
5020			    "\20"
5021			    "\1INT\2USR\3SYS\4EDG\5THR"
5022			    "\6REA\7WRI\10INV\11QUA\12PRC"
5023			    "\13TAG\14CSC");
5024		}
5025		printf("\n");
5026	}
5027
5028	return (error);
5029}
5030
5031/* prepare to be unloaded */
5032static void
5033pmc_cleanup(void)
5034{
5035	int c, cpu;
5036	unsigned int maxcpu;
5037	struct pmc_ownerhash *ph;
5038	struct pmc_owner *po, *tmp;
5039	struct pmc_binding pb;
5040#ifdef	HWPMC_DEBUG
5041	struct pmc_processhash *prh;
5042#endif
5043
5044	PMCDBG0(MOD,INI,0, "cleanup");
5045
5046	/* switch off sampling */
5047	CPU_ZERO(&pmc_cpumask);
5048	pmc_intr = NULL;
5049
5050	sx_xlock(&pmc_sx);
5051	if (pmc_hook == NULL) {	/* being unloaded already */
5052		sx_xunlock(&pmc_sx);
5053		return;
5054	}
5055
5056	pmc_hook = NULL; /* prevent new threads from entering module */
5057
5058	/* deregister event handlers */
5059	EVENTHANDLER_DEREGISTER(process_fork, pmc_fork_tag);
5060	EVENTHANDLER_DEREGISTER(process_exit, pmc_exit_tag);
5061	EVENTHANDLER_DEREGISTER(kld_load, pmc_kld_load_tag);
5062	EVENTHANDLER_DEREGISTER(kld_unload, pmc_kld_unload_tag);
5063
5064	/* send SIGBUS to all owner threads, free up allocations */
5065	if (pmc_ownerhash)
5066		for (ph = pmc_ownerhash;
5067		     ph <= &pmc_ownerhash[pmc_ownerhashmask];
5068		     ph++) {
5069			LIST_FOREACH_SAFE(po, ph, po_next, tmp) {
5070				pmc_remove_owner(po);
5071
5072				/* send SIGBUS to owner processes */
5073				PMCDBG3(MOD,INI,2, "cleanup signal proc=%p "
5074				    "(%d, %s)", po->po_owner,
5075				    po->po_owner->p_pid,
5076				    po->po_owner->p_comm);
5077
5078				PROC_LOCK(po->po_owner);
5079				kern_psignal(po->po_owner, SIGBUS);
5080				PROC_UNLOCK(po->po_owner);
5081
5082				pmc_destroy_owner_descriptor(po);
5083			}
5084		}
5085
5086	/* reclaim allocated data structures */
5087	if (pmc_mtxpool)
5088		mtx_pool_destroy(&pmc_mtxpool);
5089
5090	mtx_destroy(&pmc_processhash_mtx);
5091	if (pmc_processhash) {
5092#ifdef	HWPMC_DEBUG
5093		struct pmc_process *pp;
5094
5095		PMCDBG0(MOD,INI,3, "destroy process hash");
5096		for (prh = pmc_processhash;
5097		     prh <= &pmc_processhash[pmc_processhashmask];
5098		     prh++)
5099			LIST_FOREACH(pp, prh, pp_next)
5100			    PMCDBG1(MOD,INI,3, "pid=%d", pp->pp_proc->p_pid);
5101#endif
5102
5103		hashdestroy(pmc_processhash, M_PMC, pmc_processhashmask);
5104		pmc_processhash = NULL;
5105	}
5106
5107	if (pmc_ownerhash) {
5108		PMCDBG0(MOD,INI,3, "destroy owner hash");
5109		hashdestroy(pmc_ownerhash, M_PMC, pmc_ownerhashmask);
5110		pmc_ownerhash = NULL;
5111	}
5112
5113	KASSERT(LIST_EMPTY(&pmc_ss_owners),
5114	    ("[pmc,%d] Global SS owner list not empty", __LINE__));
5115	KASSERT(pmc_ss_count == 0,
5116	    ("[pmc,%d] Global SS count not empty", __LINE__));
5117
5118 	/* do processor and pmc-class dependent cleanup */
5119	maxcpu = pmc_cpu_max();
5120
5121	PMCDBG0(MOD,INI,3, "md cleanup");
5122	if (md) {
5123		pmc_save_cpu_binding(&pb);
5124		for (cpu = 0; cpu < maxcpu; cpu++) {
5125			PMCDBG2(MOD,INI,1,"pmc-cleanup cpu=%d pcs=%p",
5126			    cpu, pmc_pcpu[cpu]);
5127			if (!pmc_cpu_is_active(cpu) || pmc_pcpu[cpu] == NULL)
5128				continue;
5129			pmc_select_cpu(cpu);
5130			for (c = 0; c < md->pmd_nclass; c++)
5131				md->pmd_classdep[c].pcd_pcpu_fini(md, cpu);
5132			if (md->pmd_pcpu_fini)
5133				md->pmd_pcpu_fini(md, cpu);
5134		}
5135
5136		if (md->pmd_cputype == PMC_CPU_GENERIC)
5137			pmc_generic_cpu_finalize(md);
5138		else
5139			pmc_md_finalize(md);
5140
5141		pmc_mdep_free(md);
5142		md = NULL;
5143		pmc_restore_cpu_binding(&pb);
5144	}
5145
5146	/* Free per-cpu descriptors. */
5147	for (cpu = 0; cpu < maxcpu; cpu++) {
5148		if (!pmc_cpu_is_active(cpu))
5149			continue;
5150		KASSERT(pmc_pcpu[cpu]->pc_sb[PMC_HR] != NULL,
5151		    ("[pmc,%d] Null hw cpu sample buffer cpu=%d", __LINE__,
5152			cpu));
5153		KASSERT(pmc_pcpu[cpu]->pc_sb[PMC_SR] != NULL,
5154		    ("[pmc,%d] Null sw cpu sample buffer cpu=%d", __LINE__,
5155			cpu));
5156		free(pmc_pcpu[cpu]->pc_sb[PMC_HR]->ps_callchains, M_PMC);
5157		free(pmc_pcpu[cpu]->pc_sb[PMC_HR], M_PMC);
5158		free(pmc_pcpu[cpu]->pc_sb[PMC_SR]->ps_callchains, M_PMC);
5159		free(pmc_pcpu[cpu]->pc_sb[PMC_SR], M_PMC);
5160		free(pmc_pcpu[cpu], M_PMC);
5161	}
5162
5163	free(pmc_pcpu, M_PMC);
5164	pmc_pcpu = NULL;
5165
5166	free(pmc_pcpu_saved, M_PMC);
5167	pmc_pcpu_saved = NULL;
5168
5169	if (pmc_pmcdisp) {
5170		free(pmc_pmcdisp, M_PMC);
5171		pmc_pmcdisp = NULL;
5172	}
5173
5174	if (pmc_rowindex_to_classdep) {
5175		free(pmc_rowindex_to_classdep, M_PMC);
5176		pmc_rowindex_to_classdep = NULL;
5177	}
5178
5179	pmclog_shutdown();
5180
5181	sx_xunlock(&pmc_sx); 	/* we are done */
5182}
5183
5184/*
5185 * The function called at load/unload.
5186 */
5187
5188static int
5189load (struct module *module __unused, int cmd, void *arg __unused)
5190{
5191	int error;
5192
5193	error = 0;
5194
5195	switch (cmd) {
5196	case MOD_LOAD :
5197		/* initialize the subsystem */
5198		error = pmc_initialize();
5199		if (error != 0)
5200			break;
5201		PMCDBG2(MOD,INI,1, "syscall=%d maxcpu=%d",
5202		    pmc_syscall_num, pmc_cpu_max());
5203		break;
5204
5205
5206	case MOD_UNLOAD :
5207	case MOD_SHUTDOWN:
5208		pmc_cleanup();
5209		PMCDBG0(MOD,INI,1, "unloaded");
5210		break;
5211
5212	default :
5213		error = EINVAL;	/* XXX should panic(9) */
5214		break;
5215	}
5216
5217	return error;
5218}
5219
5220/* memory pool */
5221MALLOC_DEFINE(M_PMC, "pmc", "Memory space for the PMC module");
5222